Pub. Mat. UAB Vol. 30 Nº 1 Maig 1986

ONE MORE FACET OF A MAPPING THEOREM FOR LUSTERNIK SCHNIRELMANN CATEGORY

H. Scheerer

Let $f: X \to Y$ be a map of simply connected CW-spaces. When is $cat(X) \le cat(Y)$? In [2] an answer has been given within rational homotopy category and in [3] within rational or tame homotopy theory. Here we prove a corresponding result using the theory of [1].

Let R be a subring of Φ containing 1/2, 1/3 throughout.

<u>Proposition</u>: Let $f: X \to Y$ be a map of simply connected R-local CW-spaces. Let ΩY be decomposable over R; assume that the homomorphism $(\Omega f)_{\star}: \pi_{\star}(\Omega X) \to \pi_{\star}(\Omega Y)$ of M-Lie algebras (in the sense of [1]) has a left inverse in the category of M-Lie algebras.

Then $cat(X) \le cat(Y)$.

We first explain the notions used in the proposition.

We work in the homotopy category of pointed spaces.

A connected complex X is called "R-local", if the reduced homology $\widetilde{H}_{\star}(X;\mathbb{Z})$ is an R-module. For X nilpotent we denote by $X \to X_R$ the localization of X with respect to the set of primes not invertible in R.

For n > 0 we set

$$\Omega^n_R \; := \; \left\{ \begin{array}{lll} s^n_R & & \text{n odd,} \\ \\ \\ \Omega \Sigma s^n_R & & \text{n even,} \end{array} \right.$$

where Σ , Ω denotes the suspension resp. loop space functor.

For any connected finite dimensional complex X let $M^i(X) := R$ for i=0 and $M^i(X) := [X,\Omega^i_R]$ for i>0.

An H-space E is called "decomposable over R ", if E is homotopy equivalent to a weak direct product $\prod_{i \in I}^{n_i} \Omega_R^{n_i}$.

Let E be a connected grouplike R-local H-space. Then the Lie algebra $\pi_{\star}(E)$ (with the Samelson product as Lie bracket) has an additional structure as an M-Lie algebra (see [1], chap. V, (2.12) and [4], section 7), i.e. there is an operation (i,r > 0)

$$, \pi_{\mathbf{i}}(E) \times M^{\mathbf{i}}(S^{\mathbf{r}}) \to \pi_{\mathbf{r}}(E) \ , \ (\alpha, \zeta) \to \alpha \odot \zeta \ ,$$

defined by the formula

$$\alpha \otimes \zeta := \left\{ \begin{array}{ll} \alpha \zeta & \text{for i odd,} \\ \\ r_{\mathbf{R}}(\Omega \Sigma \alpha) \zeta & \text{for i even,} \end{array} \right.$$

where $r_E \colon \Omega \Sigma E \to E$ is an H-retraction (see [4], section 7). (Note that we do not notationally distinguish between maps and there homotopy classes). This operation obeys certain laws ([1], loc.cit.) which we do not need here.

Proof of the proposition: Let ΩY be homotopy equivalent to $\stackrel{W}{\prod} \Omega_R^{n_i}$. Let $\alpha_i \colon s^{n_i} \to \Omega Y$ represent a generator ier (over R) of the direct summand $\pi_{n_i}(\Omega_R^{n_i})$ of $\pi_{n_i}(\Omega Y)$. For m>0 let $M^{m,*}:=\bigoplus_{j\geq 0}M^m(s^j)$; the maps α_i induce maps $M^{n_i,*}\to \pi_*(\Omega Y)$, $\zeta\to\alpha_i$ \otimes ζ , such that the map ier $M^{n_i,*}\to \pi_*(\Omega Y)$, $(\zeta_i)_{i\in I}\to \Sigma$ α_i \otimes ζ_i , is an isomorphism of R-modules. (This is proved in [1], chap. V, (3.13) in case $H_*(\Omega Y;R)$ is of finite type over R; but this assumption is not needed).

Let now ϕ be a left inverse to $\{\Omega f\}_{\star} \colon \pi_{\star}(\Omega X) \to \pi_{\star}(\Omega Y)$.

We define maps $\beta_i : \Omega_R^{n_i} \to \Omega X$ using $\phi(\alpha_i)$ as follows:

$$\beta_{i} := \left\{ \begin{array}{ll} \phi\left(\alpha_{i}\right) & \text{for } n_{i} & \text{odd,} \\ \\ r_{\Omega X}\left(\Omega \Sigma\left(\phi\left(\alpha_{i}\right)\right)\right) & \text{for } n_{i} & \text{even.} \end{array} \right.$$

Since ΩX may be thought of as an associative H-space with unit, the maps β_i can be multiplied together to a map β_i : $\Omega Y = \bigcup_{i \in I} \Omega_R^{ni} \to \Omega X$ with $\beta \mid \Omega_R^{ni}$ homotopic to β_i . We have $\beta_{i\star}(\alpha_i) = \phi(\alpha_i)$, hence $\beta_{i\star}(\alpha_i) = \beta_{i\star}(\alpha_i) = \beta_$

Remark: By [4], appendix, the H-space ΩX is also decomposable over R .

References:

- Baues, H.J.: Commutator Calculus and Groups of, Homotopy Classes. London Math. Soc. Lecture Notes Series 50. Cambridge University Press 1981.
- Félix, Y., Halperin, S.: Rational Lusternik-Schnirelmann category and its applications. Transact. Amer. Math. Soc. 273 (1982), 1 - 38.
- Félix, Y., Lemaire, J.M.: On the mapping theorem for Lusternik-Schnirelmann category. Top 24 (1985), 41-43.

 Scheerer, H.: Decomposable H- and co-H- spaces. Lecture Notes n° 7 (1984). Centre de Recerca Matematica, Institut d'Estudis Catalans.

Rebut el 13 de novembre del 1985

Mathematisches Institut Arnimallee 2 - 6 1000 Berlin 33 West Germany