

DUALITY OF INFINITE-DIMENSIONAL SUBSPACES
IN AN INDEFINITE INNER PRODUCT SPACE
Robert Fuster Capilla

Abstract: A characterization of the subspaces of an inner product space which admit a dual companion and the relation between duality and orthogonal projections are given.

Following Bognár [1] we mean, by "inner product space", a complex vector space E , endowed with a sesquilinear form $(\cdot | \cdot)$ -the "inner product on E "- not necessarily positive defined. If A is a subset of E , we symbolize by A^\perp the set of all vectors $x \in E$ such that $(a|x)=0$ for every $a \in A$. Two subspaces L and M are "dual companions" ($L \# M$) if $L \cap M^\perp = L^\perp \cap M = 0$. A locally convex topology τ on E is "admissible" if the inner product is separately τ -continuous and, for every linear form φ τ -continuous φ there exists a vector x_0 with $\varphi(y) = (y|x_0)$ for every y .

In [1], [2] and [3] duality between finite-dimensional subspaces is studied.

The purpose of this note is to give a characterisation of the subspaces L of E which admit a dual companion (Corollary 1) that generalizes the results of the quoted works. Theorem 2 gives a constructive method of dual companions in a particular case, which extends a result of [1]. Finally, if the subspaces considered are orthocomplemented ($L+L^\perp=E$), we express the duality by means of orthogonal projections.

THEOREM 1: Let L and M be subspaces of the inner product space E with $L \cap M^\perp = 0$. Then, M contains a dual companion of L .

Proof: The result is obvious when $L=0$. In the other case, let Ω be the family of the pairs (L', M') of subspaces of E such that $L' \# M'$, $L' \subset L$ and $M' \subset M$. Because $0 \# 0$, Ω is not void.

Besides, the relation

$$(L', M') \leq (L'', M'') \iff L' \subset L'' \text{ and } M' \subset M''$$

determines a partial ordering of Ω . If

$$\Omega_1 = \{(L_i, M_i) : i \in I\}$$

is a totally ordered subset of Ω , let be

$$L' = \bigcup_{i \in I} L_i, \quad M' = \bigcup_{i \in I} M_i.$$

Since Ω_1 is totally ordered, we get the identities

$$L' = \bigcup_{i \in I} L_i, \quad M' = \bigcup_{i \in I} M_i.$$

Consequently, if z is a vector of $L' \cap M'^\perp$, there must exist an index i_0 in I such that

$$z \in L_{i_0} \cap M'^\perp = L_{i_0} \cap (\bigcap_{i \in I} M_i^\perp) \subset L_{i_0} \cap M_{i_0}^\perp.$$

i.e., $z=0$, because $L_{i_0} \# M_{i_0}$.

Similarly, $L'^\perp \cap M' = 0$, so (L', M') is an upper bound of Ω_1 .

Thus, from the Zorn Lemma, we infer the existence of a maximal element (L_1, M_1) in Ω . The proof will conclude if we get the identity $L = L_1$. Let us assume now $L \neq L_1$; if so, we can consider a vector x in $L - L_1$ and the subspace $L_2 = L_1 + \langle x \rangle \subset L$ ($\langle x \rangle$ symbolizes the linear span of x). By virtue of maximality of (L_1, M_1) , there must be $u \neq 0$ in $L_2 \cap M_1^\perp$ since $L_2^\perp \cap M_1 \subseteq L_1^\perp \cap M_1 = 0$. Thus, $u = z + ax$, with $z \in L_1$ and $a \neq 0$, which implies $L_2 = L_1 + \langle u \rangle$.

On the other hand, since $L \cap M^\perp = 0$, it is possible to get $y \in M$ with

$$(u|y) = 1 \tag{1}$$

and consider the subspace of M , $M_2 = M_1 + \langle y \rangle$.

Then immediately follows $M_2^\perp \cap L_2 = 0$, so, $M_2^\perp \cap L_2^\perp \neq 0$ and there exists $v \neq 0$ in $M_2^\perp \cap L_2^\perp$. So, $M_2 = M_1 + \langle v \rangle$, since

$$v = m + dy, \quad m \in M_1, \quad d \neq 0 \tag{2}$$

By considering a not vanishing vector $m_1 + bv$ in $M_2 \cap L_2^\perp$ (consequently, $b \neq 0$), for every $t \in L_1$, $(m_1 + bv|t) = 0$,
 since $L_2^\perp \subset L_1^\perp$. From it, $(m_1|t) = 0$,
 and so, $m_1 = 0$.

Finally, since $u \in L_2$, $v \in L_2^\perp$,

$$(m_1 + bv|u) = b(v|u) = 0.$$

But, taking into account (1) and (2),

$$(v|u) = (m_1 + bv|u) = b \neq 0. \blacksquare$$

COROLLARY 1: A subspace L of the inner product space E admits a dual companion if and only if $L \cap E^\perp = 0$. \blacksquare

COROLLARY 2: Let E be an inner product space and let ζ be an admissible topology on E . The following propositions are equivalent:

- i) E is non degenerate (i.e., $E^\perp = 0$)
- ii) Every subspace of E admits a dual companion
- iii) There exists a subspace L , ζ -closed in E , which admits dual companion.

Proof: By using Corollary 1 it is enough to prove that i) follows from iii). If M is a dual companion of the ζ -closed subspace L , we obtain,

$$E^\perp \subset (L^\perp + M)^\perp = L^{\perp\perp} \cap M^\perp = L \cap M^\perp = 0$$

since $L^{\perp\perp}$ coincides with the ζ -closure of L given that ζ is admissible. \blacksquare

In Corollary 2, iii) the hypothesis of L be closed is necessary as the following example proves: Let $E = \langle e, f \rangle$, $(e|e) = (e|f) = (f|e) = 0$, $(f|f) = 1$. Then $\langle f \rangle \neq \langle f \rangle$, but E is degenerate.

DEFINITION: Two families of vectors $\{e_i : i \in I\}$ and $\{f_i : i \in I\}$ in the inner product space E form a "dual pair" if, for every $i, j \in I$, with $i \neq j$, the relations

$$(e_i | f_i) = 1 \quad (e_i | f_j) = 0,$$

are verified.

As is easily checked, if two families of vectors form dual pair each of them is linearly independent and their linear envelopes are dual companions.

THEOREM 2: Let L and M be subspaces of the inner product space E such that $L \cap M^\perp = 0$. If L admits a countable Hamel basis then it exists a dual pair of families of vectors, their linear envelopes being L and a subspace of M .

Proof: We will construct recurrently the dual pair.

Let $\{g_n : n=1, 2, \dots\}$ a Hamel basis of L . Since $g_1 \notin M^\perp$, it is possible to find f_1 in M with $(g_1 | f_1) = 1$. Let $e_1 = g_1$.

Assuming that the vectors e_1, e_2, \dots, e_n in L and f_1, f_2, \dots, f_n in M are given verifying

$$(e_i | f_j) = \begin{cases} 1, & \text{if } i=j \\ 0, & \text{if } i \neq j \end{cases} \quad 1 \leq i, j \leq n \quad (4)$$

and

$$\langle e_1, e_2, \dots, e_n \rangle = \langle g_1, g_2, \dots, g_n \rangle, \quad (4')$$

we define

$$e_{n+1} = g_{n+1} - \sum_{k=1}^n (g_{n+1} | f_k) e_k,$$

and, because $e_{n+1} \in M$, it exists $h \in M$ such that $(e_{n+1} | h) = 1$. Let

$$f_{n+1} = h - \sum_{k=1}^n (h | e_k) f_k.$$

Now, the relations (4), (4') also follow when the indexes i, j range

form 1 to $n+1$.

The countable families obtained by means of this process form dual pair and, obviously, the former one is a Hamel basis for L . ■

If the subspace L is orthocomplemented, every vector of E can be expressed (in a not necessarily only way) as the sum of one of L and another of L^\perp . Thus, in a natural way, the "orthogonal projection" of a subspace M on L , $P_L M$, can be defined as the set of the vectors $x \in L$ such that $x - z \in L^\perp$ for some z in M .

For a Hilbert space it is well known the fact that, given two closed subspaces L and M , $L \cap M^\perp = 0$ if and only if $P_L M$ is dense in L . The following lemma expresses the best possible generalization of this result for an inner product space.

LEMMA 1: Let L be an orthocomplemented subspace of the inner product space E such that $L \cap L^\perp = 0$ (i.e., L is nondegenerate). Then, for every subspace M in E and for every admissible topology τ on E ,

$$M^\perp \cap L = 0 \iff P_L M \text{ is } \tau\text{-dense in } L.$$

Proof: Since the closures of the subspaces are the same for every admissible topologies it is enough to work with one of them, in particular with the weak topology $\sigma(E)$. Following a result of Scheibe (see [3]) if L is orthocomplemented then the weak topology of L , $\sigma(L)$ coincides with the relative one of $\sigma(E)$. Besides, in [1] it is proved that $(P_L M)^\perp \cap L = 0$ if and only if $P_L M$ is $\sigma(L)$ -dense in L . Finally, it is easily checked that (for L orthocomplemented) $M^\perp \cap L = (P_L M)^\perp \cap L$, which concludes the proof. ■

Lemma 1 is a particular case of the following fact: if L is an orthocomplemented subspace of E , then for every admissible topology and for every subspace M , $P_L M$ is dense in L if and only if $L \cap M^\perp = L \cap L^\perp$, result established in [4].

From Lemma 1 the proof of the next theorem follows straightforwardly

THEOREM 3: Let L and M be subspaces of the inner product space E and assume that L is orthocomplemented and nondegenerate. Then, if \mathcal{T} is an admissible topology on E ,

$$L \# M \iff P_L M \text{ is } \mathcal{T}\text{-dense in } L \text{ and } M \cap L^\perp = 0. \blacksquare$$

COROLLARY 3: If L and M are orthocomplemented nondegenerate subspaces of the inner product space E , then $L \# M$ if and only if $P_L M$ is weakly dense in L and $P_M L$ is weakly dense in M . \blacksquare

REFERENCES

- [1] BOGNÁR, J.: *Indefinite inner product spaces*. Berlin-Heidelberg-New York. Springer Verlag (1974).
- [2] IOHVIDOV, I.S. & KREIN, M.G.: Spectral theory of operators in spaces with an indefinite metric I. *Trudy Moskov. Mat. Obšč.* 5, 367-432 (1956) & 6, 486 (1957) (in russian).
- [3] SCHEIBE, E.: Über hermitische Formen in topologischen Vektorräumen I. *Ann. Acad. Sci. Fenn. Ser. A I*, no. 294 (1960).
- [4] FUSTER, R.: *Espaces con producto interior indefinido y espacios de Krein: Geometría de subespacios y algunas cuestiones sobre operadores multiformes*. Tesis doctoral. València (1983).

Rebut el 3 de març del 1986

Departament de Matemàtiques. E.T.S.E. Agrònoms
Universitat Politècnica
Camí de Vera, nº 14
46020 València
ESPAÑA