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Items 

• Multiple linear regression 
– Model and matrix notation 

– General protocol 

– Model fit 

– Multicollinearity 

– Analysis of residuals 

– Influence 

– Choice of the best model 

– Variable selection 
procedures 

• Basic commands 
– seq 

– vif, tol 

– cor (multiple) 

– step 

• Libraries 
– car (scatterplot) 

– leaps 

– faraway (cp plot) 
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Why multiple linear regression? 

The general purpose of multiple regression (the term was first used by Pearson, 
1908) is to learn more about the relationship between several independent or 
predictor variables (regressors) and a dependent variable.   

Multiple linear regression attempts to model this relationship by fitting a linear 
equation to observed data. Every value of the independent variable x is associated 
with a value of the dependent variable y.  

In the multivariate case, when there is more than one independent variable, the 
regression line cannot be visualized in the two dimensional space, but can be 
computed just as easily.  

The general model is now: 

 

 

 

where the betas are partial regression coefficients that represent the expected 
change (positive or negative) in response (dependent variable), per unit of change 
in a xi with the other x’s held constant. One or more xi can be indicator variables, 
i.e., taking 0 or 1 values. 
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Matrix notation 
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This can be solved by least squares (as before) giving the normal equations: 
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Multiple linear regression - General protocol - 

1. Plot y against each x variable in turn. Curvature indicates the need 
for transformations. Linear plots indicate important predictors. 

2. Check for evenness in variables using boxplots and histograms. 

3. Fit the regression equation, after transformation if necessary. Look 
at studentized residuals, leverages, Dffits, Dfbetas and Cook’s D.  

4. Perform diagnostic checks. 

5. Check for multicollinearity, i.e.,  two or more predictor variables in 
a multiple regression model are highly correlated.  

6. Investigate the possibility of reducing the number of predictor 
variables (variable selection procedures). 

7. When an optimum regression equation is obtained, assess its value 
for the purposes for which it was intended. If it is used for 
prediction, calculate the confidence intervals or prediction 
intervals. 

(Adapted from Fry, 1993) 
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Carcass and meat data (AM beef breed) 

ADG: average daily 
gain 

LMAREA: loin 
muscle area 

CONF: conformation 
score 

FAT: fat score 

INTRAMFAT: 
intramuscular fat 

WHC: water holding 
capacity 

DRYMAT: dry matter 

COOKLOSS: cooking 
losses 

TEXTWB: Warner 
Blatzer shear force 

TENDERNESS: 
meat tenderness 

    ADG LMAREA CONF FAT INTRAMFAT   WHC DRYMAT COOKLOSS TEXTWB TENDERNESS 

1  1.03  65.65    7   9      1.60 20.34  23.69    11.74   3.43       6.56 

2  1.00  29.57    2   7      3.20 15.93  24.75    11.13   5.62       6.80 

3  1.06  42.50    8  11      1.75 21.75  24.52    15.26   5.85       4.70 

4  1.13  51.13    8  10      2.40 23.73  24.59    15.52   4.64       5.31 

5  1.21  44.50    8   9      1.25 21.33  23.50    12.80   8.19       5.75 

6  1.11  36.10    8   8      1.30 16.85  24.11    17.57   3.46       6.72 

7  1.11  49.32    8   9      0.75 22.80  24.09     8.30   5.25       6.00 

8  1.05  44.73    8   7      2.50 21.95  24.24    19.61   7.51       4.90 

9  1.08  41.22    7  11      1.15 18.96  24.19    13.06   4.96       6.18 

10 1.26  39.65    7  10      1.80 21.45  24.04     8.50   5.24       6.92 

11 1.19  44.67    6  11      2.90 22.91  25.39     6.44   3.64       6.92 

12 1.20  51.40    9   8      3.95 23.68  25.39    13.21   2.76       5.93 

13 1.12  41.70    8  10      1.50 23.20  24.81    11.80   3.90       6.38 

14 1.13  53.50    8   6      4.25 19.96  25.22    16.32   3.84       6.64 

15 0.96  37.45    8   8      2.50 19.98  26.04    16.06   4.12       6.08 

16 1.01  39.50    7   7      3.15 20.33  24.48    16.99   3.99       6.27 

17 1.10  45.50    8   8      1.90 20.20  24.47    13.65   3.58       6.98 

18 0.96  42.35    7   7      1.05 22.86  25.37    13.38   4.47       6.96 

19 1.06  44.65    7   7      1.45 24.25  24.39     9.73   4.66       6.85 

20 1.06  45.50    8   6      2.20 25.24  25.03    16.75   4.59       6.54 

21 1.08  41.55    8   8      3.20 24.72  25.01    11.72   3.62       7.03 

22 1.20  49.55    8   9      0.80 26.51  24.40    10.98   4.71       6.66 

23 1.07  52.45    9   8      2.10 20.33  24.21    14.08   6.02       3.99 

24 1.18  46.40    8   8      1.00 22.28  23.33    12.55   4.52       6.33 

25 1.14  48.65    7   5      1.55 23.65  25.09    19.37   6.94       4.97 

26 1.10  39.65    6   9      2.85 19.90  24.71    14.73   5.23       6.08 

27 1.10  42.65    8   8      3.00 22.73  25.32    14.74   2.74       7.23 

28 1.13  51.53    9   6      4.45 22.58  25.70    14.42   3.91       6.29 

29 1.15  38.82    8   8      1.95 23.45  24.52     9.83   5.61       6.18 

30 0.97  43.73    7   7      2.05 24.97  24.61    10.43   3.40       6.42 

31 1.28  36.70    8   8      4.55 21.95  27.05    12.39   4.35       6.09 

32 1.01  40.50    9   9      1.95 21.77  24.38    12.83   4.08       5.95 

33 1.13  40.97    9   6      4.20 24.22  24.52     9.94   4.38       7.08 

34 1.05  34.70    8   6      2.40 21.61  24.48    13.71   5.62       6.67 

35 1.13  38.90    8   7      2.30 20.12  24.55    14.91   2.33       8.01 6 



Assumptions of linearity, normality, homog. var. 
> scatterplot.matrix(~ADG+LMAREA+CONF+FAT+INTRAMFAT+WHC+DRYMAT+COOKLOSS+ 

+ +TEXTWB+TENDERNESS, diag="boxplot") 

Observe the relationship 
between tenderness and 
texture WB. 

In general, good 
agreement to normality: 
symmetrical boxplots 
(CONF with a outlier?). 

No evidence of non-
homogeneity of variance 
(even spread of points 
around each trend) or 
non-linearity. 
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> TEND.LM<-lm(TENDERNESS~ADG+LMAREA+CONF+FAT+INTRAMFAT+WHC+DRYMAT+ 

> + COOKLOSS+TEXTWB) 

> summary(TEND.LM) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 16.08589    4.04187   3.980 0.000522 *** 

ADG          2.41867    1.20541   2.007 0.055732 .   

LMAREA      -0.03725    0.01400  -2.660 0.013451 *   

CONF        -0.15123    0.08507  -1.778 0.087613 .   

FAT         -0.20507    0.06618  -3.099 0.004756 **  

INTRAMFAT   -0.11912    0.11372  -1.047 0.304925     

WHC          0.01089    0.04950   0.220 0.827721     

DRYMAT      -0.20156    0.16608  -1.214 0.236226     

COOKLOSS    -0.06310    0.03644  -1.732 0.095650 .   

TEXTWB      -0.47059    0.07360  -6.394 1.08e-06 *** 

Multiple linear regression – model - 

We assume that k (=9) independent variables can be associated to the 
response variable TENDERNESS in the Asturiana de la Montaña beef breed: 

The significance of the beta coefficients are tested through a t-test. Three regressors 
are significant at the 5% level (fat, lmarea, textwb) and three more at the 10% level. 

Observe that the sentence is similar to that of simple linear regression 

but adding variables with the + sign. All regressors can be represented 

by a dot ( .). 

  = 
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Observe that model d.f. equal the number of regressors (or number total 
of  minus 1). 

The adjustment by the model is highly significant. 

Around 64%  of the variance of the dependent variable tenderness is 
explained by the regressors included in the model. 

 

Residual standard error: 0.4716 on 25 degrees of freedom 

Multiple R-squared: 0.7388,     Adjusted R-squared: 0.6447  

F-statistic: 7.855 on 9 and 25 DF,  p-value: 2.065e-05  

 

Multiple linear regression – model (cont) - 

Some more information about the model is: 
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Multiple linear regression – residuals and influence - 

Remember 
that Residuals 
are equal to 
Observed 
minus 
Predicted 
values. 

 

   Tender. Predicted   Residuals   RIstudent   REstudent 

1     6.56  6.128296  0.43170385  1.36230868  1.38726955 

2     6.80  7.121661 -0.32166052 -1.30326969 -1.32265959 

3     4.70  4.971050 -0.27105042 -0.68139636 -0.67391669 

4     5.31  5.506986 -0.19698606 -0.48423168 -0.47668897 

5     5.75  4.984138  0.76586155  2.00130156  2.13974671 

6     6.72  7.007448 -0.28744788 -0.80911589 -0.80335686 

7     6.00  6.186869 -0.18686856 -0.45498913 -0.44765376 

8     4.90  4.597686  0.30231394  0.78729301  0.78113061 

9     6.18  5.883602  0.29639842  0.70062775  0.69331260 

10    6.92  6.718424  0.20157627  0.49181816  0.48422966 

11    6.92  6.803969  0.11603116  0.30250069  0.29693286 

12    5.93  6.609211 -0.67921075 -1.61922520 -1.67687688 

13    6.38  6.474147 -0.09414654 -0.21384015 -0.20971158 

14    6.64  6.176600  0.46340008  1.16463863  1.17338317 

15    6.08  5.881178  0.19882243  0.53167874  0.52390706 

> data.frame(Tender.=TENDERNESS, Predicted=fitted(TEND.LM), 

+ Residuals=resid(TEND.LM), RIstudent=rstandard(TEND.LM),    

+ REstudent=rstudent(TEND.LM)) 
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(continues from the previous slide)  

Multiple linear regression – residuals and influence (cont) - 

Rstudent 
values higher 
than 2 could 
suggest a weak 
outlier, and 
higher than 3 
an outlier. This 
could be the 
condition for 
observations 5 
and 23. 

   Tender. Predicted   Residuals   RIstudent   REstudent 

16    6.27  6.525356 -0.25535577 -0.60854716 -0.60071788 

17    6.98  6.716444  0.26355607  0.59066083  0.58280795 

18    6.96  6.398485  0.56151522  1.44373999  1.47750463 

19    6.85  6.860609 -0.01060922 -0.02469703 -0.02419835 

20    6.54  6.265179  0.27482092  0.65351301  0.64584971 

21    7.03  6.703682  0.32631809  0.75574628  0.74908336 

22    6.66  6.452923  0.20707660  0.51319759  0.50549862 

23    3.99  5.088394 -1.09839417 -2.74627603 -3.21997842 

24    6.33  6.863100 -0.53310029 -1.28837693 -1.30646369 

25    4.97  5.474445 -0.50444474 -1.54714249 -1.59411889 

26    6.08  6.022310  0.05769010  0.13353734  0.13088603 

27    7.23  6.874301  0.35569941  0.81014858  0.80440983 

28    6.29  6.093660  0.19634009  0.47989518  0.47238014 

29    6.18  6.391316 -0.21131576 -0.48497646 -0.47742910 

30    6.42  7.117991 -0.69799051 -1.72789599 -1.80413916 

31    6.09  6.380125 -0.29012536 -0.89980553 -0.89625832 

32    5.95  6.174438 -0.22443759 -0.53476399 -0.52698229 

33    7.08  6.834025  0.24597534  0.67705812  0.66954567 

34    6.67  6.397946  0.27205438  0.64622696  0.63852607 

35    8.01  7.684010  0.32599021  0.81473550  0.80908811 
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> influence.measures(TEND.LM) 

      

      dffit  cov.r   cook.d   hat inf 

1    1.5289 1.5402 2.25e-01 0.548   * 

2   -2.1534 2.7171 4.50e-01 0.726   * 

3   -0.4291 1.7526 1.88e-02 0.288     

4   -0.2795 1.8395 8.06e-03 0.256     

5    1.5409 0.3985 2.08e-01 0.341   * 

6   -0.7013 2.0326 4.99e-02 0.432     

7   -0.2526 1.8248 6.59e-03 0.241     

8    0.5569 1.7649 3.15e-02 0.337     

9    0.3415 1.5328 1.19e-02 0.195     

10   0.2756 1.8068 7.83e-03 0.245     

11   0.2124 2.1917 4.68e-03 0.338     

12  -0.8614 0.6278 6.92e-02 0.209     

13  -0.0805 1.6944 6.74e-04 0.128     

14   0.7464 1.2095 5.49e-02 0.288     

15   0.4025 2.1349 1.67e-02 0.371     

16  -0.3081 1.6364 9.74e-03 0.208     

17   0.1993 1.4598 4.08e-03 0.105     

18   1.0131 0.9259 9.80e-02 0.320     

19  -0.0110 1.8122 1.25e-05 0.170     

20   0.3278 1.5921 1.10e-02 0.205     

21   0.3289 1.4240 1.10e-02 0.162     

22   0.3058 1.8480 9.64e-03 0.268     

23  -2.0114 0.0577 2.94e-01 0.281   * 

24  -0.7143 0.9829 4.96e-02 0.230     

25  -1.6658 1.1501 2.61e-01 0.522  

Multiple linear regression – Influence 1- 

Values inside a green rectangle 
are bigger than their respective 
critical values: 0.57 (= 2*10/35) 
for leverage, 0.114   (= 4/35) for 
Cook’s D, and 1.069 (= 
2*(10/35)) for DFFITS.  

 

Five observations (1, 2, 5, 23, 25) 
have two or more values bigger 
than the critical values for Cook’s 
D, leverage and DFFITS, and thus 
are potentially influential. 
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Multiple linear regression – Influence 2 - 

This table presents DFBETAS only for those observations with two or more values 
indicating potential influence (see previous slide). 

There are some DFBETAS with an absolute value greater than the critical value 0.3381 
(=2/35) suggested before, but none of the values reaches a more general critical value 
of 2 (Myers). This is consistent with what can be observed in the regression plots. 

No remedial measures are needed to overcome the effects of potential influential 
observations in this analysis. 

 

When some observations are clearly influential, the researcher must analyze 
carefully and decide what to do with these observations. 

Obs   dfb.1_  dfb.ADG  dfb.LMAR dfb.CONF  dfb.FAT dfb.INTR  dfb.WHC  dfb.DRYM dfb.COOK  dfb.TEXT 

  

1    0.21370 -0.29938  1.260121 -0.25096  0.00883 -0.01270 -0.40919 -0.101710 -0.24109 -2.18e-01 

2   -0.53031  0.13806  0.147696  1.24744  0.28990 -0.36256  0.32347  0.136544  0.26077 -2.08e-01 

 

5    0.07995  0.38585 -0.001381  0.31323  0.00865  0.03917 -0.25881 -0.241745 -0.19858  1.04e+00 

 

23   0.10130  0.66973 -0.987220 -1.22423  0.20285 -0.02432  1.19739 -0.333793  0.85039 -1.16e+00 

  

25   0.71288 -0.64668 -0.398246  0.61047  0.68517  0.71097 -0.24452 -0.507008 -0.61434 -3.37e-01 
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The distribution of 
residuals is about 
random (homogeneity 
of variance).  

The Q-Q plot does not 
deviate greatly from 
normality. 

Only one observation 
approaches Cook’s 
contours, suggesting 
that we must analyze if 
it is potentially 
influential. 

Multiple linear regression – Graphic diagnostics - 
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> layout(matrix(c(1,2,3,4),2,2))  

> plot(TEND.LM) 
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Observe that one 
of the observations 
has a |studentized 
residual|>2, but 
lower than 3: weak 
outlier.  

Multiple linear regression – another graphic diagnostic - 

> plot(fitted(TEND.LM), rstandard(TEND.LM)) 
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A very desirable condition in a set of regression data is to have regressors (covariates) 

that are not “moving with each other” (redundant) in the data set, i.e., not correlated. 

Near linear dependencies render it more difficult to sort out the impact of each 

regressor on the response. 

The variances of the coefficients are inflated due to collinearity. The variance inflation 

factor (VIF) is the factor of multiplication of that variance and could led to erroneous 

p-values. For the i-th regression coefficient, VIF can be written as 

 

 

 

where Tol stands for Tolerance, and        is the coefficient of multiple determination of 

the regression produced by regressing the variable xi against the other regression 

variables: 

 

 

Another effect of multicollinearity is the instability of regression coefficients, i.e., 

coefficients that are very much dependent of the data set. 

Multicollinearity  
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Multiple correlation 

Note that the correlation matrix is symmetrical, with duplicated information. 

Given the sample size (35) only correlations bigger than 0.32 are significant (7 in 
total). Probably we will not find multicollinearity. 

> cor(TEND.AM[,1:10]) 

 
                   ADG      LMAREA        CONF          FAT   INTRAMFAT 

ADG         1.00000000  0.11308494  0.23086676  0.233538931  0.14648715 

LMAREA      0.11308494  1.00000000  0.34498818  0.039055283 -0.08071684 

CONF        0.23086676  0.34498818  1.00000000 -0.055828172  0.04923206 

FAT         0.23353893  0.03905528 -0.05582817  1.000000000 -0.35340524 

INTRAMFAT   0.14648715 -0.08071684  0.04923206 -0.353405242  1.00000000 

WHC         0.20277949  0.30990410  0.42039164 -0.086593004 -0.04564285 

DRYMAT      0.05713545 -0.18620606  0.02066455 -0.220360438  0.63879943 

COOKLOSS   -0.25960403  0.03042370  0.19294086 -0.392611852  0.10446587 

TEXTWB      0.06894135 -0.07750252 -0.13892865 -0.004208519 -0.29135912 

TENDERNESS  0.04072221 -0.27374126 -0.20522130 -0.150228271  0.11045691 

                    WHC      DRYMAT   COOKLOSS       TEXTWB   TENDERNESS 

ADG         0.202779490  0.05713545 -0.2596040  0.068941354  0.040722211 

LMAREA      0.309904098 -0.18620606  0.0304237 -0.077502521 -0.273741264 

CONF        0.420391640  0.02066455  0.1929409 -0.138928648 -0.205221304 

FAT        -0.086593004 -0.22036044 -0.3926119 -0.004208519 -0.150228271 

INTRAMFAT  -0.045642850  0.63879943  0.1044659 -0.291359124  0.110456912 

WHC         1.000000000  0.13346766 -0.2514503 -0.039393442 -0.007659911 

DRYMAT      0.133467663  1.00000000  0.1148036 -0.316161438  0.089036413 

COOKLOSS   -0.251450275  0.11480358  1.0000000  0.156279740 -0.368306227 

TEXTWB     -0.039393442 -0.31616144  0.1562797  1.000000000 -0.625808183 

TENDERNESS -0.007659911  0.08903641 -0.3683062 -0.625808183  1.000000000 

17 



Multiple linear regression – VIF and Tol - 

> VIF<-vif(TEND.LM) 

> TOL<-1/vif(TEND.LM) 

> cbind(VIF=VIF, Tol=TOL) 

 

               VIF       Tol 

ADG       1.387940 0.7204921 

LMAREA    1.320040 0.7575525 

CONF      1.697632 0.5890558 

FAT       1.594628 0.6271053 

INTRAMFAT 2.223073 0.4498277 

WHC       1.912595 0.5228499 

DRYMAT    2.173664 0.4600527 

COOKLOSS  1.871217 0.5344115 

TEXTWB    1.375392 0.7270654 

All values of Variance Inflation 
are below 10  suggest 
absence of multicollinearity.  

VIF and Tol define the same. 
Only one of them (VIF) would 
be needed. 
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Simple correlations among regressor variables 

The simple correlations not always underscore the extent of the problem. 

 

Variance Inflation Factor (VIF) 

It involves the notion of multiple association. If       is near unity, VIFi will be quite large. This will occur if the 

regressor variable has a linear strong association with the other variables. Myers says that any VIF exceeds 10, 

there is reason of some concern. 

 

Eigenvalues of X’X 

The eigenvalues would all be 1 if the variables define an orthogonal system (variables are independent). Very 

small eigenvalues indicate multicollinearity, but there is not rule of thumb.  

 

Condition index 

Square root of the quotient between the first and the ith eigenvalues. Values exceeding 30 indicate 

multicollinearity. 

 

 

 

Variance proportions 

The appearance of a small eigenvalue implies that any or all regression coefficients may be adversely affected. 

It is of interest to determine what proportion of the variance of each coefficient is attributed to each 

dependency. A small eigenvalue (or a high condition index), accompanied by a subset of regressors (at least 2) 

with high variance proportions (greater than 0.5), represents a dependency involving the regressors in that 

subset, damaging the precision of estimation of the coefficients in the subset. 

Diagnosis of multicollinearity  

i1IndexCond. 

2

iR
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Criteria to choose the best model 

The researcher faces the question of what terms to include in the regression 
model, as not all are significant. This can be complicated by the existence of 
multicollinearity and scientist’s prior views regarding the importance of individual 
variables. 

The successful model builder must understand that several models can be fit that 
would be nearly equal in effectiveness: Prior to the analysis, the question should 
be: What will be done with the model? 

1. Learn something about the system from which data were taken: a slope, a 
sign, optimum operating conditions, … 

2. Learn which regressors are important and which are not: conduct a variable 
selection. Usually a prelude to a more elaborate search for a model. 1 and 2 
are related. 

3. Prediction: selection of one model that best predicts from a pool of candidate 
models. Often a difficult task, not covered in this course. 
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Standard criteria for comparing models 

1. Coefficient of Determination, R2.  It is a measure of the model’s capability to fit 

the present data. The insertion of a new regressor into a model can not bring about 

a decrease in R2. Not conceptually prediction oriented. 

2. Estimate of Error Variance, often called Residual Mean Square (RMS). A 

reasonable plan is to choose the candidate model with the smallest value of RMS. 

3. Adjusted R2. This is a R2-like statistic that guards against the practice of 

overfitting. This statistic punishes the user who includes marginally important 

model terms at the expenses of error degrees of freedom. 

4. PRESS (Prediction Sum of Squares) statistic. It is computed from the PRESS 

residuals. For choice of the best model one might favour the model with the 

smallest PRESS. 

 

 

5. Conceptually predictive criteria (Cp) Statistic. Prediction oriented criterion. A 

reasonable choice is the model with the smallest value and Cp = p, the number of 

parameters. This can be done through a plot of p against Cp. 

  
n

i iii yy
1

2

, )ˆ(PRESS
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Sequential variable selection procedures 

Sequential algorithms are an important heritage of least 
squares regression and are used by a large number of analysts 
(probably because they are implemented in many statistical 
packages). Myers, however, says that coupled with the reality 
that multicollinearity often clouds the picture, sequential 
algorithms might not be of practical use except in rare cases. 
There are three general types: 

1. Forward selection. 

2. Backward elimination. 

3. Stepwise regression.  

 
In addition we will consider Mallows Cp. 
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FORWARD selection 

The initial model contains only a constant term. The procedure 
selects for entry the variable that produces the largest R2 of 
any single regressor. Lets call this regressor x1. The second 
regressor (x2) is chosen which produces the largest increase in 
R2 in the presence  of x1. This is equivalent to choosing the 
regressor with the largest partial F. Thus, at stage 2 we have 

 

 

 

The above process continues until the candidate regressor for 
entry does not exceed a preselected F or its significance level. 

),(

)|(

12

12

xxMSError

xxMSReg
F 
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BACKWARD elimination 

This procedure begins with all regressors in the model and 
eliminates one at a time. The criterion is to eliminate the 
regressor with the highest p-value. The procedure is continued 
until the candidate regressor for removal experiences a partial 
t value which exceeds the preselected level.  

It is recommended not to impose a too strict significance level, 
for example 0.10, to maintain a variable in the model.  

It is basically a manual process from the console. Consist of 
working in the console and removing from the full model the 
variable that has a larger p-value for the t-statistic. This process 
is done repeatedly until all variables have a p-value higher than 
the preselected level. 
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BACKWARD elimination – results 1 step 0 - 

> summary(TEND.LM) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 16.08589    4.04187   3.980 0.000522 *** 

ADG          2.41867    1.20541   2.007 0.055732 .   

LMAREA      -0.03725    0.01400  -2.660 0.013451 *   

CONF        -0.15123    0.08507  -1.778 0.087613 .   

FAT         -0.20507    0.06618  -3.099 0.004756 **  

INTRAMFAT   -0.11912    0.11372  -1.047 0.304925     

WHC          0.01089    0.04950   0.220 0.827721     

DRYMAT      -0.20156    0.16608  -1.214 0.236226     

COOKLOSS    -0.06310    0.03644  -1.732 0.095650 .   

TEXTWB      -0.47059    0.07360  -6.394 1.08e-06 *** 

 

Residual standard error: 0.4716 on 25 degrees of freedom 

Multiple R-squared: 0.7388,     Adjusted R-squared: 0.6447  

F-statistic: 7.855 on 9 and 25 DF,  p-value: 2.065e-05  

Full 
model 

From here, the process is fully manual. 
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Call: 

lm(formula = TENDERNESS ~ ADG + LMAREA + CONF + FAT + 

INTRAMFAT + DRYMAT + COOKLOSS + TEXTWB) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 15.95165    3.92171   4.068 0.000392 *** 

ADG          2.42825    1.18237   2.054 0.050189 .   

LMAREA      -0.03634    0.01313  -2.767 0.010278 *   

CONF        -0.14260    0.07409  -1.925 0.065281 .   

FAT         -0.20975    0.06151  -3.410 0.002130 **  

INTRAMFAT   -0.12669    0.10638  -1.191 0.244448     

DRYMAT      -0.18733    0.15014  -1.248 0.223240     

COOKLOSS    -0.06705    0.03114  -2.153 0.040739 *   

TEXTWB      -0.46775    0.07112  -6.577 5.65e-07 *** 

 

Residual standard error: 0.4629 on 26 degrees of freedom 

Multiple R-squared: 0.7383,     Adjusted R-squared: 0.6577  

F-statistic: 9.167 on 8 and 26 DF,  p-value: 6.583e-06  

BACKWARD elimination – results 2, step 1 - 

WHC 
removed 
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Call: 

lm(formula = TENDERNESS ~ ADG + LMAREA + CONF + FAT + 

DRYMAT + COOKLOSS + TEXTWB) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 18.13804    3.49218   5.194 1.81e-05 *** 

ADG          2.06800    1.15184   1.795  0.08379 .   

LMAREA      -0.03652    0.01323  -2.759  0.01027 *   

CONF        -0.13661    0.07449  -1.834  0.07771 .   

FAT         -0.18500    0.05834  -3.171  0.00376 **  

DRYMAT      -0.28372    0.12743  -2.226  0.03452 *   

COOKLOSS    -0.06808    0.03136  -2.171  0.03892 *   

TEXTWB      -0.45160    0.07035  -6.419 7.07e-07 *** 

 

Residual standard error: 0.4664 on 27 degrees of freedom 

Multiple R-squared: 0.724,      Adjusted R-squared: 0.6524  

F-statistic: 10.12 on 7 and 27 DF,  p-value: 3.683e-06  

 

BACKWARD elimination – results 3, step2 - 

No additional regressors need to be removed with a t-stay of 0.10. 

INTRAMFAT 
removed 
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STEPWISE selection 

This is a combination of the two previous types. 

In R, the process starts from the full model and is a Backward 
elimination as described before, but assessing the possibility of 
re-introducing a variable that was removed before. 

Thus, at each stage a regressor can be entered, and another 
can be eliminated. This is because multicollinearity can render 
a regressor of little value even though it was an important 
candidate at an early stage of the procedure.  

The procedure ends when no additional regressors can be 
eliminated on the basis of tstay and no additional regressors 
must be introduced in the model. Typical values for entry and 
stay are 0.15. 
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> step(TEND.LM) 

 

Start:  AIC=-44.39 

TENDERNESS ~ ADG + LMAREA + CONF + FAT + INTRAMFAT + 

WHC + DRYMAT + COOKLOSS + TEXTWB 

 

            Df Sum of Sq     RSS     AIC 

- WHC        1    0.0108  5.5704 -46.326 

- INTRAMFAT  1    0.2440  5.8037 -44.890 

<none>                    5.5597 -44.393 

- DRYMAT     1    0.3276  5.8872 -44.390 

- COOKLOSS   1    0.6669  6.2266 -42.428 

- CONF       1    0.7028  6.2625 -42.227 

- ADG        1    0.8954  6.4550 -41.167 

- LMAREA     1    1.5732  7.1329 -37.672 

- FAT        1    2.1355  7.6952 -35.016 

- TEXTWB     1    9.0918 14.6515 -12.478 

STEPWISE selection – results 1 - 

Full 
model 
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Step:  AIC=-46.33 

TENDERNESS ~ ADG + LMAREA + CONF + FAT + INTRAMFAT + 

DRYMAT + COOKLOSS + TEXTWB 

 

            Df Sum of Sq     RSS     AIC 

- INTRAMFAT  1    0.3039  5.8743 -46.467 

<none>                    5.5704 -46.326 

- DRYMAT     1    0.3336  5.9040 -46.290 

- CONF       1    0.7936  6.3641 -43.664 

- ADG        1    0.9036  6.4741 -43.064 

- COOKLOSS   1    0.9935  6.5639 -42.582 

- LMAREA     1    1.6404  7.2109 -39.292 

- FAT        1    2.4914  8.0618 -35.387 

- TEXTWB     1    9.2679 14.8383 -14.035 

STEPWISE selection – results 2 - 

WHC 
eliminated 
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Step:  AIC=-46.47 

TENDERNESS ~ ADG + LMAREA + CONF + FAT + DRYMAT + 

COOKLOSS + TEXTWB 

 

           Df Sum of Sq     RSS     AIC 

<none>                   5.8743 -46.467 

- ADG       1    0.7013  6.5756 -44.519 

- CONF      1    0.7317  6.6060 -44.358 

- COOKLOSS  1    1.0251  6.8994 -42.837 

- DRYMAT    1    1.0785  6.9528 -42.567 

- LMAREA    1    1.6565  7.5308 -39.772 

- FAT       1    2.1879  8.0622 -37.386 

- TEXTWB    1    8.9649 14.8392 -16.033 

STEPWISE selection – results 3 - 

INTRAMFAT 
removed 

31 



STEPWISE selection – results 4 - 

Those are the variables retained for the final model and their coefficients. 

Call: 

lm(formula = TENDERNESS ~ ADG + LMAREA + CONF + FAT + 

DRYMAT + COOKLOSS + TEXTWB) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 18.13804    3.49218   5.194 1.81e-05 *** 

ADG          2.06800    1.15184   1.795  0.08379 .   

LMAREA      -0.03652    0.01323  -2.759  0.01027 *   

CONF        -0.13661    0.07449  -1.834  0.07771 .   

FAT         -0.18500    0.05834  -3.171  0.00376 **  

DRYMAT      -0.28372    0.12743  -2.226  0.03452 *   

COOKLOSS    -0.06808    0.03136  -2.171  0.03892 *   

TEXTWB      -0.45160    0.07035  -6.419 7.07e-07 *** 

 

Residual standard error: 0.4664 on 27 degrees of freedom 

Multiple R-squared: 0.724,      Adjusted R-squared: 0.6524  

F-statistic: 10.12 on 7 and 27 DF,  p-value: 3.683e-06  
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Some comments (from Myers) 

1. The data analyst should view the sequential model-building 
algorithms not as a black box, which produces one final model, but 
rather as an exercise that allows the user to see several models 
perform: exploratory procedure. 

2. The sequential procedures can be partially ineffective with data sets 
involving collinearity among a large number of regressors. 

3. Bear in mind that there is no assurance that any specific sequential 
model-building strategy will result in the best variable subset. The 
final result is very much dependent on the sequential method 
chosen and the tentry and tstay values. 

4. There are procedures that rather than producing a final single 
model, several models are suggested with final choice left to the 
analyst: maximum R2 procedure with a Cp statistic. 
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Graphical summary of different models 

This figure shows 
the dependent 
variables that most 
appear in the 
different models. 
In this case: 
TEXTWB, 
COOKLOSS, FAT, 
LMAREA. 

library(leaps) 

> TEND.LEAPS<-regsubsets(TENDERNESS~., data=TEND.AM, nbest=2) 

> # plot a table of models showing variables in each model 

> plot(TEND.LEAPS, scale="r2") 
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R-Square and Mallows Cp 

The Cp statistic is a measure of total squared error for a subset of models 
containing k independent variables.   

The total squared error is a measure of the error variance plus the bias 
introduced by not including important variables in the model.  

  Cp = (SSE(k)/MSE) – (n2k) +1 

MSE, error mean square for the full model. 

SSE(k), error sum of squares for the subset model containing k independent 
variables (intercept not included). 

n, total sample size. 

Cp > (k+1)   bias due to an incompletely specified model. 

Cp < (k+1)   model overspecified, with too many variables. 

Mallows recommends that Cp be plotted against k, and further recommends 
selecting that subset size where the minimum Cp first approaches k+1, starting 

from the full model: i.e., models with small k+1 and Cp around or less than k+1. 
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Cp plot 

The numbers indicate the 
independent variables in the 
order of the original (full) model. 

This plot clearly favours models 
with a high number of 
regressors; 7 would be the best 
option. 

In this case, 1234589 and 
1234789 would be very similar 
from a statistical point of view 
(see next slide). 

Note that the model 1234789 
correspond to the one selected 
by the Stepwise procedure.  

> x <- model.matrix(TEND.LM)[,-1] 

> y <- TEND.AM$TENDERNESS 

> g <- leaps(x,y) 

> library(faraway); Cpplot(g) 

(=k+1) 
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Getting R2 of selected models 

With the libraries leaps and faraway activated: 

> adjr <- leaps(x,y, method="adjr2") 

> maxadjr(adjr,4) 

  

  1,2,3,4,5,7,8,9     1,2,3,4,7,8,9     1,2,3,4,5,8,9 

            0.658             0.652             0.651             

 

1,2,3,4,5,6,7,8,9 

      0.645  

The two models of 7 variables selected have adjusted R2 of  0.652 and 
0.651, respectively. The researcher must decide the best model depending 
upon statistical criteria and also the objective of the analysis: a) study of the 
relationships among variables or b) prediction. 
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Final comment 

Statistics is rarely a substitute for sound scientific 
knowledge and reasoning 

We cannot ignore input from experts in the scientific discipline involved. 
Statistical procedures are vehicles that lead us to conclusions, but 
scientific logic paves the road along the way. 

However, a good scientist must remember that to arrive to an adequate 
prediction equation, balance must be achieved that takes into account 
what the data can support.  

There are times when inadequacies in the data and random noise may not 
allow the true structure to come through.  

For these reasons, a proper marriage must exist between the experienced 
statistician and the learned expert in the discipline involved.   

(Myers, 1990) 
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