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Items 

• Curvilinear regression 
– Polynomial regression 

– Segmented regression 

– Non linear functions 

 

• Basic commands 
– legend 

– lines 

– nls 

 

• Libraries 
– segmented 
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Growth data in fish 

Length of a fish species recorded weekly (data from Freund and Littell, 1991): 

Age (days) Length (cm) 

14 5.90 
21 9.10 
28 13.05 
35 17.30 
42 21.40 
49 27.25 
56 28.90 
63 36.85 
70 39.20 
77 43.25 
84 44.10 
91 44.85 
98 45.15 

105   44.80 
112 45.20 
119 45.45 
126 45.25 
133 45.60 
140 45.65 
147 46.26 
154 45.66 

 

> plot(AGE, LENGTH, pch=19, col="orange") 

No linear influence of independent on 
dependent variable 3 



Polynomial regression 
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This model is linear in the parameters (i.e., the first partial derivative for 
each parameter does not contain any of the parameters in the model), 
despite the relationship between x and y is not linear. 

 All parameters and statistics have the same connotation as in any 

linear regression analysis. 

Polynomial models are used to fit a relatively smooth curve to a set of 
data. 

It is customary to build an appropriate polynomial model by sequentially 
fitting equations with higher order terms. 

 

A one-variable polynomial model is defined as follows: 
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Polynomial regression in matrix terms 
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Suppose we have a fourth order polynomial model: 

The normal equations to obtain the  estimates are the usual: 
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Polynomial regression in R – first order - 

> L.POL1<-lm(LENGTH ~ AGE) 

> summary(L.POL1) 

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) 11.43959    3.17371   3.604  0.00189 **  

AGE          0.28341    0.03373   8.402 8.03e-08 *** 

 

Residual standard error: 6.552 on 19 degrees of freedom 

Multiple R-squared: 0.7879,     Adjusted R-squared: 0.7768  

F-statistic:  70.6 on 1 and 19 DF,  p-value: 8.029e-08  

 

> anova(L.POL1) 

 

Analysis of Variance Table 

Response: LENGTH 

          Df  Sum Sq Mean Sq F value    Pr(>F)     

AGE        1 3030.56 3030.56  70.595 8.029e-08 *** 

Residuals 19  815.64 
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Polynomial regression in R – second order, quadratic - 

> AGE2=AGE^2 

> L.POL2<-lm(LENGTH ~ AGE + AGE2) 

> summary(L.POL2) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -8.1664197  1.6706215  -4.888 0.000118 *** 

AGE          0.9096909  0.0453168  20.074 9.04e-14 *** 

AGE2        -0.0037279  0.0002632 -14.165 3.35e-11 *** 

 

Residual standard error: 1.931 on 18 degrees of freedom 

Multiple R-squared: 0.9825,     Adjusted R-squared: 0.9806  

F-statistic: 506.5 on 2 and 18 DF,  p-value: < 2.2e-16  

 

> anova(L.POL2) 

 

Analysis of Variance Table 

Response: LENGTH 

          Df  Sum Sq Mean Sq F value    Pr(>F)     

AGE        1 3030.56 3030.56  812.41 < 2.2e-16 *** 

AGE2       1  748.50  748.50  200.65 3.347e-11 *** 

Residuals 18   67.15    3.73                       
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Polynomial regression in R – third order, cubic - 

> AGE3=AGE^3  

> L.POL3<-lm(LENGTH ~ AGE + AGE2 + AGE3) 

> summary(L.POL3) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept) -1.037e+01  2.846e+00  -3.645  0.00200 **  

AGE          1.033e+00  1.361e-01   7.589 7.43e-07 *** 

AGE2        -5.457e-03  1.821e-03  -2.997  0.00811 **  

AGE3         6.860e-06  7.150e-06   0.960  0.35075     

 

Residual standard error: 1.936 on 17 degrees of freedom 

Multiple R-squared: 0.9834,     Adjusted R-squared: 0.9805  

F-statistic: 336.5 on 3 and 17 DF,  p-value: 2.481e-15  

 

> anova(L.POL3) 

 

Analysis of Variance Table 

Response: LENGTH 

          Df  Sum Sq Mean Sq  F value    Pr(>F)     

AGE        1 3030.56 3030.56 808.8346 8.904e-16 *** 

AGE2       1  748.50  748.50 199.7685 7.925e-11 *** 

AGE3       1    3.45    3.45   0.9207    0.3507     

Residuals 17   63.70    3.75                        

            
8 



Polynomial regression in R – fourth order, quartic - 

> AGE4=AGE^4 

> L.POL4<-lm(LENGTH ~ AGE + AGE2 + AGE3 + AGE4) 

> summary(L.POL4) 

 

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  2.802e+00  2.870e+00   0.976 0.343501     

AGE         -2.803e-02  2.035e-01  -0.138 0.892189     

AGE2         1.956e-02  4.537e-03   4.312 0.000537 *** 

AGE3        -2.158e-04  3.945e-05  -5.472 5.12e-05 *** 

AGE4         6.628e-07  1.167e-07   5.679 3.42e-05 *** 

 

Residual standard error: 1.149 on 16 degrees of freedom 

Multiple R-squared: 0.9945,     Adjusted R-squared: 0.9931  

F-statistic: 724.3 on 4 and 16 DF,  p-value: < 2.2e-16  

 

> anova(L.POL4) 

 

Analysis of Variance Table 

Response: LENGTH 

          Df  Sum Sq Mean Sq   F value    Pr(>F)     

AGE        1 3030.56 3030.56 2295.4596 < 2.2e-16 *** 

AGE2       1  748.50  748.50  566.9399 6.404e-14 *** 

AGE3       1    3.45    3.45    2.6129    0.1255     

AGE4       1   42.57   42.57   32.2457 3.424e-05 *** 

Residuals 16   21.12    1.32  
9 



Polynomial regression in R – summary - 

The addition of the different terms is justified, although the cubic term 
only approached statistical significance. Polynomials beyond the fourth 
degree are not often used. 
 
With the coefficients obtained we can construct the following regression 
equations: 
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The polynomial model is only used to approximate a curve, and the 

coefficients have no practical interpretation. 
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Polynomial regression in R – program for graphics - 

pch indicates the character to be printed (see character tables in Dalgaar, for example) and 

col the colour. 

Additional graphics are added to the original plot with the command lines. 

Predicted values in each model are obtained with predict applied to a lm object. 

A line is specified with type=l. 

legend(100, 30, ...) includes a legend at position x = 100 and y = 30 (upper left 

corner) with the specified content. 

> plot(AGE, LENGTH, pch=19, col="orange") 

> lines(AGE, predict(L.POL1), type="l", col="maroon") 

> lines(AGE, predict(L.POL2), type="l", col="red") 

> lines(AGE, predict(L.POL3), type="l", col="darkblue") 

> lines(AGE, predict(L.POL4), type="l", col="darkgreen") 

> legend(100, 30, c("Linear", "Quadratic", "Cubic", "Quartic"),                                

pch=151, col=c("maroon", "red", "darkblue", "darkgreen")) 
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Polynomial regression in R – graphic - 

Comments in the next slide 
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Polynomial regression in R – comments on the graphic - 

• The plot clearly shows the limited improvement due to 
the cubic and fourth degree terms. 

• The four degree curve shows a particular hook a the upper 
end that is not typical of growth curves. 

• The quadratic curve shows negative growth in this region, 
which is unsatisfactory. 

• In summary, the polynomial model could be 
unsatisfactory for this particular dataset. 

Other approaches, such as segmented regression or 
nonlinear regression (different growth curves) must be 
explored. 
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Segmented (spline) regression 

Some distributions of data can be fitted by several regressions, simple or 
polynomial. Let’s see a simple example with a knot (x0): 
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Segmented regression in R – program - 

We will explore now a spline model with a unknown knot.  

Note that segmented works on a lm object. 

seq.Z equals the model without the dependent variable. 

psi specifies a guess of the value of the knot or knots we assume that can be the 

breakpoints of  two or more regression lines. When the specified psi is close to the 

true knot, less iterations are needed. The approximated value of the knot can be 

guessed by inspection of the graphic. 

> library(segmented) 

> L.SEG<- segmented(lm(LENGTH~AGE), seg.Z=~AGE, psi=c(80)) 

> summary(L.SEG) 

> anova(L.SEG) 

> intercept(L.SEG) 

> slope(L.SEG) 

> confint(L.SEG) 
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Estimated Break-Point(s): 
   Est. St.Err  

78.490  1.144     knot estimate 
 

Meaningful coefficients of the linear terms: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -3.61182    0.60411  -5.979  1.5e-05 *** 

AGE          0.61169    0.01214  50.368  < 2e-16 *** 

U1.AGE      -0.59014    0.01607 -36.734       NA     

 

Residual standard error: 0.7721 on 17 degrees of freedom 

Multiple R-Squared: 0.9974,  Adjusted R-squared: 0.9969  

 

Convergence attained in 2 iterations with relative change 2.082593e-15  

 

Analysis of Variance Table 

Response: LENGTH 

          Df  Sum Sq Mean Sq F value Pr(>F)     

AGE        1 3030.56 3030.56  5083.1 <2e-16 *** 

U1.AGE     1  805.51  805.51  1351.1 <2e-16 *** 

psi1.AGE   1    0.00    0.00     0.0      1     

Residuals 17   10.14 

Segmented regression in R – results 1 -   
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$AGE 

             Est. 

intercept1 -3.612 

intercept2 42.710 

 

$AGE 

          Est. St.Err. t value CI(95%).l CI(95%).u 

slope1 0.61170 0.01214  50.370  0.586100   0.63730 

slope2 0.02155 0.01052   2.049 -0.000644   0.04373 

 

$AGE 

  Est. CI(95%).l CI(95%).u 

 78.49     76.07      80.9 

Segmented regression in R – results 2 -   

Parameter estimates of ’s and the knot (with their CI): 

A negative length at time 0 (intercept1) 
is a nonsense 

Note that slope2 = AGE+U1.AGE 
in the previous slide. 
Its CI includes the 0 (not significant). 
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:knot the After
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Segmented regression in R – graphic - 

At first sight we have obtained a good and simple fit to our data, BUT …  

> plot(AGE, LENGTH, pch=19, col="orange") 

> lines(AGE, predict(L.SEG), type="l", col="darkblue") 
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Segmented regression in R – comments -   

Some of the results may not be valid for models like the one 
fitted here, because the partial derivative of the model with 
respect to one of the parameters (knot) is not continuous 
(the curve has a discontinuity in the knot). In particular, the 
confidence intervals and standard errors may not  be all 
correct.  

In general, this discontinuity can disturb convergence of the 
iterative process and result in different final estimates 
depending on modest differences in specified starting 
values. An strategy could be to run the program with 
different starting points and see how parameter estimates 
vary. 
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A growth curve usually shows a rapid initial growth that gradually becomes 
slower and may eventually cease. 

Several nonlinear functions are used to describe growth trajectories in 
animals, among them, exponential (decay), Brody, Gompertz, … and the 
logistic growth curve: 

 

 

 

 

Logistic growth curve 
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y0 :  expected value of y at time t = 0 

k : height of the horizontal asymptote 
(the expected value of y for very large t) 

r : measure of growth rate 

i : random error 

In many nonlinear models 

the parameters represent 

meaningful quantities of the 

process described by the 

model.  

The solutions to the equations 

are obtained by means of 

iterative processes. 
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Logistic growth curve in R – program - 

nls allows to estimate parameters of some particular formula if we know some 

variables (response and independent variables). 

Starting values are needed (start=list(k = 40, y0 = 1, r = .05). 

They are an arbitrary guess of the parameters or estimates of a recent run that had 

arbitrary starting values . 

There are several algorithms available and the most appropriate one for our data set 

must be chosen. 

> L.LOG<-nls(LENGTH ~ k/(1+((k-y0)/y0)*exp(-r*AGE)), 

+            start=list(k = 40, y0 = 1, r = .05), 

+            algorithm = "port”) 

> summary(L.LOG) 

> confint(L.LOG) 
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Parameters: 

    Estimate Std. Error t value Pr(>|t|)     

k  46.101579   0.351096 131.308  < 2e-16 *** 

y0  2.571762   0.281782   9.127 3.57e-08 *** 

r   0.065008   0.002615  24.863 2.18e-15 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 0.9941 on 18 degrees of freedom 

 

Algorithm "port", convergence message: relative convergence (4)  

 

          2.5%       97.5% 

k  45.38498233 46.83617481 

y0  2.03107612  3.19114640 

r   0.05993243  0.07053084 

Logistic growth curve in R – results - 

Asymptotic standard errors and corresponding confidence intervals for 
the parameters show that they are estimated with useful precision. 

The logistic growth curve fits quite well our data set. 

22 



Logistic growth curve in R – graphic - 

> plot(AGE, LENGTH, pch=19, col="orange") 

> lines(AGE, predict(L.LOG), type="l", col="darkgreen") 
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Final comments 
It is difficult to make a choice among several models. A family of 
polynomial models has been discarded to fit well this data set, although 
the corresponding R-square estimates were very high. 

 

 

 

 

 

 

 

Another additional criterion is a lower MSE. This parameter clearly 
favours spline regression and logistic growth curve models. But 
remember that spline regression led to a nonsense estimate of 0. 

If we are interested in testing the predictive ability of our models, some 
additional analyses like Cross-validation would be recommended. 

MODEL R-
square 

Adj. R-
square 

MSE 

Simple regression 0.7879 0.7768 42.93 

Quadratic regression 0.9825 0.9806 3.73 

Cubic regression 0.9834 0.9805 3.75 

Fourth order regression 0.9945 0.9931 1.32 

Spline regression 0.9974 0.9969 0.6 

Logistic growth curve   0.99 
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