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Items 

• One-way ANOVA 
(completely random 
design): 
– Principles for partitioning 

variation 
– ANOVA table and F test 
– Conditions of applicability 

• Normality in the residuals 
and transformations  

• Equality of variances 

– Comparisons of means 
• Multiple comparisons 
• Pre-planed comparisons 

– Power  
– Sample size 
– Matrix version 

• Basic commands 
– bartlett.test, leveneTest 

– tapply - cbind 

– aov – anova, summary lm 

– layout – plot 

– tukeyHSD 

– contrasts 

• Libraries 
– car 

– agricolae 
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Inferences on more than two samples 

This session is devoted to present methods to compare location parameters 
(means) of more than two samples through parametric  procedures.  

When we have more than two samples, ANOVA techniques are preferable 
over several pair-wise comparisons because of two main reasons: 

1. We get a better estimate of the within group (residual) variance. 

2. The probability of false positives (Type I errors) is lower. The 
Experiment-wise error rate, i.e., the probability of finding a 
significant result by chance when c comparisons are made is         
1− (1−)c,  being the Comparison-wise error rate. 

Comparisons Prob. Not Significant Prob. Significant 

1 (1−) 1− (1−) =  
2 (1−)

2
 1− (1−)

2
 

. . . 

. . . 
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 1− (1−)

c
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¿Are significantly different the means of the three 
treatments,                                 ?  

One-way ANOVA (1) – Completely Random Design 

3210 : yyyH 

Suppose we have 30 young bulls assigned randomly to three treatments 
(feed additives) and we measure carcass conformation on a SEUROP scale. 

T1 T2 T3 

7 9 8 
8 13 7 
9 12 8 
7 11 5 
6 14 6 
9 11 9 
8 10 8 
7 12 5 
8 9 7 
7 11 9 

 

i  

yij 

S U R O P E 

with intermediate scores (+/-) 
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One-way ANOVA (2) 

Between 
treatments 
variability 

Within 
treatments 
variability 

Total variability 5 



One-way ANOVA (3) 

ijiijy  

)()( ...... yyyyyy iiijij 

Model: 

Total SS, SST 

where   i) 1  t 

 j) 1  n, balanced design 
     1  ni, unbalanced design 

Between groups, SSB 

Within groups (residual), SSW 

Sums of squares (SS) 

By squaring  and summing 
these quantities, we arrive 
after some algebra at the 
computing formulas of the  
next slide 

Level of a factor (fixed effect) 

¡We make a partition of the variation! 

Overall mean Mean of level i 
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One-way ANOVA (4) (for a balanced design) 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean squares F 

Between groups t1 SSB SSB / (t1) MSB / MSW 

Within groups 
(error) 

t(n1) SSW SSW / (tnt) 

Total tn1 SST SST / (tn1) 
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One-way ANOVA (5), contrast of hypothesis 
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The null hypothesis and the alternative hypothesis can be stated as: 

 H0: 1 = 2 = 3 , the population means are equal 
 H1: i ≠ i’ , for at least one pair (i, i’), the means are not equal  
An equivalent formulation of the hypothesis is: 

 H0: 1 = 2 = 3 , there is no difference among treatments 
 H1: i ≠ i’ , for at least one pair (i, i’), a difference among 
 treatments exist  
It can be shown that the expectations of the mean squares are: 

 
MSW is an unbiased estimator of σ2 
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One-way ANOVA (6), our example 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean squares F 

Between groups 3  1 = 2 2350.4-2253.333 = 
97.067 

97.067 / 2 = 48.533               48.5333/ 1.911 =  

25.40 

Within groups 
(error) 

3*(101) = 27 2402  2350.4 = 51.6 51.6/ 27 = 1.911 

Total 3*10  1 = 29 2402  2253.33 = 
148.667 

148.667 / 29 = 5.126 

333.2253
103

)975...987( 22

.. 





tn

y

4.2350
10

7211276 2222

.






n

y
i i

2402975...987 2222222 ij ijy
25.40 > F2,27  (=3.35) 

Reject H0, means are 

significantly different (p<0.05), 

BUT which ones? 

Pre-planed or Multiple 

comparisons 
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1. Import the data (reorganize levels of the factor, if 
needed) 

2. Assess normality/homogeneity of variance using 
boxplots 

3. Assess homogeneity of variance assumption 

4. Test H0 that population group mean are all equal – 
perform analysis of variance 

5. Examine the ANOVA table 

6. Make diagnostic plots 

7. Perform post-hoc tests 

8. Make graphics 

9. Compute the power of the ANOVA test 

 

Protocol to develop ANOVA  
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Conditions of applicability of ANOVA  

The conditions of applicability (additivity and normal errors identically 
distributed with common variance σ2) must be met when we want to make 
some inference, such as the estimation of the confidence interval or some 
hypothesis testing. There are two main conditions to be checked: 

 

 

 

 

 

 

 

 

If the conditions of applicability are not met, we can use some 
transformations. 

1. Normality of errors. We check this in the residuals, our best estimate 
of the errors. The analysis of variance, however, is little sensitive 
(robust) to the non normality of the populations under study. In 
practice it is enough to avoid the use of the ANOVA when the 
samples deviate heavily from the normal distribution or the 
distribution of the samples is very different, mainly in small samples. 

2. Homogeneity of within group variances. It can be tested through 
the Bartlett 2 test, among others. Its importance is relatively 
secondary when sample sizes are equal (balanced designs). 
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> bartlett.test(CONF~TRT, CONFBEEF) 

 

    Bartlett test of homogeneity of variances 

 

data:  CONF by TRT  

Bartlett's K-squared = 2.3132, df = 2, p-value = 0.3145 

Testing for homogeneity of within group variances (1) 

The null hypothesis of homogeneity of within treatment 
variance is not rejected 

> 1-pchisq(2.3132,2) 

[1] 0.3145538 
Be careful: 

The Bartlett test is too sensitive to 

the deviations to normality and may 

indicate non normality instead of 

variance heterogeneity 
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> #Levene test 

> library(car) 

> leveneTest(y = CONF, group = TRT)  

 

Levene's Test for Homogeneity of Variance (center 

= median) 

      Df F value Pr(>F) 

group  2   0.809 0.4558 

      27  

Testing for homogeneity of within group variances (2) 

The null hypothesis of homogeneity of within 
treatment variance is not rejected 

> 1-pf(0.809,2,27) 

[1] 0.4558065 
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Working ANOVA with R (1)  

No obvious violations of normality 
and homogeneity of variance 

(boxplots not asymmetrical and do 
not vary greatly in size) 

No obvious relationship between 
group (treatment) mean and 

variance 

> boxplot(CONF~TRT, CONFBEEF) 
> plot(tapply(CONF, TRT, mean), 

+   tapply(CONF, TRT, var)) 
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Transformations (1)  

The objective is to normalise the distribution and to stabilise the variances. 
If this procedure does not give satisfactory results Non Parametric Tests can 
be used. 

1. Logarithmic. When the treatments have a multiplicative effect, i.e., 
when they increment or decrement the measurements in a percent 
and not in a fixed quantity. 

2. Root square. For data consisting of integers coming from counting 
(ticks on a cow). It tends to equalise  2. 

3. Angular (arcsine). Data are the number of individuals with some 

particular characteristic (percentages and proportions). Equalises  2. 

4. Probit. For percentage data, like mortality. It is used in pharmacology. 

5. Box-Cox. A general methodology to transform data. 
 

To present a true mean value of data in the linear scale it is necessary to reconvert the 

transformed mean. The standard deviation in this case is of no value and you should 

compute confidence limits of the transformed data and then convert these to the linear scale.  
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Transformations (2) 
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Transformations (example in microbiology) 

>hist(LACTOC,col="blue“,breaks=100) >hist(log10(LACTOC),col="blue“, 

breaks=100) 
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> CONFBEEF.AOV<-aov(CONF~TRT, CONFBEEF) 

> anova(CONFBEEF.AOV) 

 

Analysis of Variance Table 

Response: CONF 

          Df Sum Sq Mean Sq F value   Pr(>F)     

TRT        2 97.067  48.533  25.395 6.25e-07 *** 

Residuals 27 51.600   1.911                      

--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Working ANOVA with R (2)  

This is a typical ANOVA table that includes the p-value for the significance 
of the F value. This allows us to reject the overall null hypothesis of no 
influence of the factors included in the model. In this case we reject H0 of 
equality among all treatments. 

> 1-pf(25.395,2,27) 

[1] 6.250862e-07 
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Working ANOVA with R (2b)  

 

> CONFBEEF.LM<-lm(CONF~TRT, CONFBEEF) 

> anova(CONFBEEF.LM) 

 

Analysis of Variance Table 

 

Response: CONF 

          Df Sum Sq Mean Sq F value   Pr(>F)     

TRT        2 97.067  48.533  25.395 6.25e-07 *** 

Residuals 27 51.600   1.911                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Observe that we have used lm instead of aov. lm stands for Linear 

Model, a more general procedure than aov. 
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> CONFBEEF.AOV<-aov(CONF~TRT, CONFBEEF) 

> summary.lm(aov(CONF~TRT)) 

 

Call: aov(formula = CONF ~ TRT) 

Residuals: 

   Min     1Q Median     3Q    Max  

  -2.2   -0.6   -0.2    0.8    2.8  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   7.6000     0.4372  17.385 3.44e-16 *** 

TRTT2         3.6000     0.6182   5.823 3.38e-06 *** 

TRTT3        -0.4000     0.6182  -0.647    0.523     

 

Residual standard error: 1.382 on 27 degrees of freedom 

Multiple R-squared: 0.6529,     Adjusted R-squared: 0.6272  

F-statistic:  25.4 on 2 and 27 DF,  p-value: 6.25e-07  

Working ANOVA with R (3)  

R-squared is a measure of the fit of the model, SSModel / SST, and ranges from 0 to 
1. It quantifies the proportion of (the variability) of the dependent variable 
explained by the model (independent variables), in this case 65.29%. 

Residual standard error is an estimate of the within group standard deviation. 
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Working ANOVA with R (3b)  

> CONFBEEF.LM<-lm(CONF~TRT, CONFBEEF) 

> summary(CONFBEEF.LM) 

 

Call: 

lm(formula = CONF ~ TRT, data = CONFBEEF) 

 

Residuals: 

   Min     1Q Median     3Q    Max  

  -2.2   -0.6   -0.2    0.8    2.8  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   7.6000     0.4372  17.385 3.44e-16 *** 

TRTT2         3.6000     0.6182   5.823 3.38e-06 *** 

TRTT3        -0.4000     0.6182  -0.647    0.523     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Residual standard error: 1.382 on 27 degrees of freedom 

Multiple R-squared: 0.6529,     Adjusted R-squared: 0.6272  

F-statistic:  25.4 on 2 and 27 DF,  p-value: 6.25e-07  
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Working ANOVA with R (4). Analysis of residuals 

No obvious 
violation of 
homogeneity 
of variance: no 
wedge shape in 
residuals. 
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No obvious 
violation of 
normality: Q-Q 
plot of residuals 
is linear. 

Cook’s D values 
meaningless in 
ANOVA. 

> layout(matrix(c(1,2,3,4),2,2))  

> plot(CONFBEEF.AOV) iijij ye  ˆˆˆ 
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Multiple comparisons 

If H0 is not rejected, it is not necessary or appropriate to further analyse 
the problem, although the researcher must be aware of the possibility of 
a Type II error. 

If H0 is rejected, then we must question which treatment or treatments 
caused a differential effect, that is, between which groups is the 
significant difference found. 

For t treatments, there is a total of        pair-wise comparisons of means. 
For each comparison there is the possibility of making Type I or Type II 
errors. 

Looking at the experiment as a whole, the probability of making an error 
in conclusion is defined as the Experiment-wise Error Rate (EER). 

There are many procedures of pair-wise comparisons of means: 
Bonferroni, Duncan, Dunnet, LSD, Scheffé, Student-Newman-Keuls, 
Tukey, among others.  















2

t
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Working ANOVA with R (5) 

> M<-tapply(CONF, TRT, length) 

> P<-tapply(CONF, TRT, mean) 

> R<-tapply(CONF, TRT, sd) 

> cbind(N=M, Mean=P, Std.dev=R) 

 

    N Mean   Std.dev 

T1 10  7.6 0.9660918 

T2 10 11.2 1.6193277 

T3 10  7.2 1.4757296 

Before comparing the means, we may want to print a table 
with them: 
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Working ANOVA with R (5b) 

> barplot(P, xlab="Treatment", ylab="SEUROP conformation", 

+ col="blue") 

T1 T2 T3

Treatment

S
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8
1
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Working ANOVA with R (5c) 

#Standard errors in a graphic (seBars function) from R-book p 216 

 

seBars<-function(x,y){ 

 model<-lm(y~factor(x)) 

 reps<-length(y)/length(levels(x)) 

 sem<-summary(model)$sigma/sqrt(reps) 

 m<-as.vector(tapply(y,x,mean)) 

 upper<-max(m)+sem 

 nn<-as.character(levels(x)) 

 xs<-barplot(m,ylim=c(0,upper),names=nn,col="green", 

 ylab=deparse(substitute(y)),xlab=deparse(substitute(x))) 

for (i in 1:length(xs)){ 

 arrows(xs[i],m[i]+sem,xs[i],m[i]-sem, angle=90,code=3,length=0.1)} 

} 

 

seBars(TRT,CONF) # This executes the function for TRT and CONF 

A function to include SE in the graphic (balanced design) 

To get the 95% confidence intervals in the error bars write in this case  
sem*qt(.975,10)instead of sem 
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Working ANOVA with R (5d) 
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Working ANOVA with R (6) 

Treatment T2 differs significantly from treatments T1 and T3, which do 
not differ between them.  

Observe that the confidence interval of the difference T3-T1 does 
include 0. 

> CONFBEEF.TUKEY<-TukeyHSD(CONFBEEF.AOV,"TRT") 

> CONFBEEF.TUKEY 

 

  Tukey multiple comparisons of means 
    95% family-wise confidence level 

 

Fit: aov(formula = CONF ~ TRT, data = CONFBEEF) 

 

$TRT 

      diff       lwr       upr     p adj 

T2-T1  3.6  2.067122  5.132878 0.0000099 

T3-T1 -0.4 -1.932878  1.132878 0.7956248 

T3-T2 -4.0 -5.532878 -2.467122 0.0000018 
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Working ANOVA with R (7) 

This is a graphic 
way to see the 
results in the 
previous slide.  

Only the 
confidence 
interval of T3-T1 
overlaps 0 (i.e., 
their means do 
not differ). 

> plot(CONFBEEF.TUKEY) 
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> library(agricolae) 

> resultHSD<-HSD.test(CONFBEEF.AOV, "TRT");resultHSD 

 

Study: 

HSD Test for CONF  

Mean Square Error:  1.911111  

 

TRT,  means 

   CONF   std.err  r Min. Max. 

T1  7.6 0.3055050 10    6    9 

T2 11.2 0.5120764 10    9   14 

T3  7.2 0.4666667 10    5    9 

 

alpha: 0.05 ; Df Error: 27  

Critical Value of Studentized Range: 3.506426  

Honestly Significant Difference: 1.532878  

 

Means with the same letter are not significantly different. 

Groups, Treatments and means 

a        T2      11.2  

b        T1      7.6  

b        T3      7.2  

Working ANOVA with R (8) 
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Multiple comparison is the more frequent alternative. But we can be 
interested a priori in a limited number of comparisons. 

Imagine that T2 would have been a standard diet and T1 and T3 
experimental diets. We can be interested in testing if the experimental 
diets differ from the standard diet first, and later if differences exist 
between the two experimental diets. 

This type of comparisons are called contrasts. Contrasts are linear 
functions of the solution’s vector, in which the sum of coefficients 
(weighted by their sample size) must be 0. Two contrasts (cij and cik) are 
orthogonal (independent) when satisfy: 

 

 

If ni is the same for all groups, this factor can be ignored. Generally, a 
design with t levels in a factor can be partitioned to a (t-1) orthogonal 
contrasts. It can be shown that orthogonal contrasts control Type I error. 

Pre-planed comparisons  

 


t

i ikiji ccn
1

0
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> contrasts(TRT)<-cbind(c(-0.5, 1, -0.5), c(1, 0, -1)) 

> round(crossprod(contrasts(TRT)), 2) 

     [,1] [,2] 

[1,]  1.5    0 

[2,]  0.0    2 

 

> summary(CONFBEEF.AOV, split=list(TRT = list ("T2 vs 

(T1+T3)/2" = 1, "T1 vs T3" = 2))) 

                       Df Sum Sq Mean Sq F value   Pr(>F)     

TRT                     2  97.07   48.53  25.395 6.25e-07 *** 

  TRT: T2 vs (T1+T3)/2  1  96.27   96.27  50.372 1.25e-07 *** 

  TRT: T1 vs T3         1   0.80    0.80   0.419    0.523     

Residuals              27  51.60    1.91                      

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

Working ANOVA with R (9) 

We can use contrasts to test the difference between two or several 
groups (or combinations of them), written after the anova calculus.  

Contrasts are linear combinations of levels that add to 1. 

T2 is different from the mean of T1 and T3; T1 and T3 do not differ.  

Independent contrasts 

This tests the orthogonality 

of contrasts. Non diagonal 

elements must be 0. 
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Power in the One-way ANOVA 

The power of a test is the probability that a false null hypothesis is 
correctly rejected or a true difference is correctly declared different. 

Under the H0, the F statistic has a central F distribution with (t-1) and   
(tn-t  = N-t) degrees of freedom. When at least one treatment effect is 
nonzero,  the F test statistic follows a non-central F distribution with 
noncentrality parameter  = SSB / MSW, and degrees of freedom as 
before. Then   

 Power = P(F > F,t-1,N-t = F)  

using a non-central F distribution for H1. The figure in the next slide 
represents the relationship between significance and power. 

 1. If a more stringent  is chosen (critical value shifted to the 
right), the power will decrease. 

2. A larger SSB and a smaller MSW means larger , the noncentrality 
curve is shifted to the right and this augments the area under 
this curve (power) to the right of the critical value. 
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Relationship between significance and power 

(Kaps and Lamberson, 2004) 
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> #Power in a CRD-one way ANOVA 

> ACONFBEEF <- anova(lm(CONF~TRT, CONFBEEF)) 

> DFB <- ACONFBEEF[["Df"]][1]  

> DFW <- ACONFBEEF[["Df"]][2] 

> SSB <- ACONFBEEF[["Sum Sq"]][1] 

> MSW <- ACONFBEEF[["Mean Sq"]][2] 

> LAMBDA=SSB/MSW; ALPHA=0.05  

> FCRIT=qf(1-ALPHA,DFB,DFW) 

> POWER=1-pf(FCRIT,DFB,DFW,LAMBDA) 

> cbind(Sig.level=ALPHA, DF.between=DFB, DF.within=DFW, 

 + POWER=POWER) 

     Sig.level DF.between DF.within      POWER 

[1,]      0.05          2        27  0.9999942 

Power of our example 

Following the example of K&L, p. 229, we can write in R: 

This value is bigger than the 0.8 usually required.  

The power of the tests was very high because of the differences among 
means of treatments (TRT MS) were much higher than the differences 
between observations of the same group (Residual MS). 

Observe how particular 

values of the ANOVA 

table are extracted 
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Power of our example (easier) 

> power.anova.test(groups=3, n=10, 

between.var=48.533, within.var=1.911, 

sig.level=0.05) 

 

Balanced one-way analysis of variance power calculation  

 

         groups = 3 

              n = 10 

    between.var = 48.533 

     within.var = 1.911 

      sig.level = 0.05 

          power = 1 

 

 NOTE: n is number in each group  
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Sample size in a One-way ANOVA (programme) 

In a previous lesson, the number of replications necessary for a test of 
difference between two means was given. With more than two means, 
the level of significance must be adjusted for multiple comparisons. 

An alternative is to compute sample size from power calculations: 

> for (n in 2:20) { 

+ DFW[n] <- (DFB+1)*(n-1)  

+ FCRIT[n]<-qf(1-ALPHA,DFB,DFW[n]) 

+ POWER[n]<-1-pf(FCRIT[n],DFB,DFW[n],LAMBDA) 

+     if(POWER[n]>=.80 && n<10){ 

+     print(paste("n =", as.numeric(n),"  ", "Power =", 

round(POWER[n], digits=7)), quote=FALSE) 

+     } 

+     else if(POWER[n]>=.80 && n>=10){ 

+     print(paste("n =", as.numeric(n)," ", "Power =", 

round(POWER[n], digits=7)), quote=FALSE) 

+     } 

+ } 
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Sample size in a One-way ANOVA (output) 

The required sample 
size (= 2) is actually 
a very low number, 
but it was expected 

if we remember 
that RMSE was very 

low and the 
differences among 
groups very high 

[1] n = 2    Power = 0.9378067 

[1] n = 3    Power = 0.9984039 

[1] n = 4    Power = 0.999802 

[1] n = 5    Power = 0.9999425 

[1] n = 6    Power = 0.9999741 

[1] n = 7    Power = 0.9999851 

[1] n = 8    Power = 0.9999901 

[1] n = 9    Power = 0.9999927 

[1] n = 10   Power = 0.9999942 

[1] n = 11   Power = 0.9999953 

[1] n = 12   Power = 0.999996 

[1] n = 13   Power = 0.9999965 

[1] n = 14   Power = 0.9999968 

[1] n = 15   Power = 0.9999971 

[1] n = 16   Power = 0.9999974 

[1] n = 17   Power = 0.9999975 

[1] n = 18   Power = 0.9999977 

[1] n = 19   Power = 0.9999978 

[1] n = 20   Power = 0.9999979 
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A matrix view of ANOVA (1) 

S1 S2 S3 

45 32 35 

47 40 37 

46 39 

εXby 

Suppose we have the following data corresponding to the birth weight 

(kg) of the progeny of three sires: 
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One way ANOVA design 

In matrix terms 

We are interested in estimating the 

value of the elements of vector b 

Fixed effect 

Fixed model, 

although  is 

random 

Incidence or design matrix 
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A matrix view of ANOVA (2) 

yXXXbyXbXX ')'(ˆ'ˆ' 1
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Obs. Sire 1 

But the determinant of X’X = 0: singular, it has not an inverse. 

Normal equations: 
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A matrix view of ANOVA (3) 
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 This is in fact a 

solution vector for b, 

not an estimator of b. 

The vector depends 

upon the generalized 

inverse calculated. 

A convenient generalized inverse of X’X is G: 

Observe that we can take the A square 

submatrix with rank = rank(X’X) from 

different positions of X’X, and then put it 

in the corresponding position in G. This 

can give different generalized inverses. 
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A matrix view of ANOVA (4) 

It is possible to obtain a vector of predicted values from   ,           . The 

square sum of the deviations of observed y’s to their predicted values 

is the error or residual sum of squares (SSe): 

  yXbyy '''ˆ
2

 
i j ijije yySS

  22

.. ' yNyySS
i j ijT  yy

Source of Variation d.f. Sums of Squares F 

Between groups 
(Fitting of the model) 

t1 2''ˆ yNSSB  yXb  

e

B

e

B

MS

MS

tNSS

tSS






)/(

)1/(
 

Within groups (error)  t(n1) yXbyy ''ˆ' eSS   

Total  tn-1 2' yNSST  yy  (N = tn) 

 

This sum of squares is invariant to any generalized inverse that we use to estimate       

Furthermore, the total (corrected) sum of squares is: 

(Searle, 1982) 

Then, we can write the following ANOVA table: 

bXy ˆˆ b̂

b̂

This is the 

way in which 

statistical 

packages 

like R work 
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A matrix view of ANOVA (5) 

Observe that the solutions for b in this table are different from the solutions obtained 
with our generalized inverse. R equals to 0 the first level of each factor. 

> birth.aov<-aov(BIRTH.W~SIRE) 

> anova(birth.aov) 

Analysis of Variance Table 

Response: BIRTH.W 

          Df Sum Sq Mean Sq F value  Pr(>F)   

SIRE       2 166.88  83.438   9.933 0.01813 * 

Residuals  5  42.00   8.400 

                   

> summary.lm(aov(BIRTH.W~SIRE)) 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   46.000      1.673  27.490 1.19e-06 *** 

SIRES2       -10.000      2.646  -3.780   0.0129 *   

SIRES3        -9.000      2.366  -3.803   0.0126 *   

Residual standard error: 2.898 on 5 degrees of freedom 

Multiple R-squared: 0.7989,     Adjusted R-squared: 0.7185  

F-statistic: 9.933 on 2 and 5 DF,  p-value: 0.01813  

b̂
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