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Analysis of several variables

Two main interests:

1.

Estimating the degree of association between two variables:
CORRELATION analysis.

Predicting the values of one variable given that we know the realised
value of another variable(s): REGRESSION analysis. This analysis can
also be used to understand the relationship among variables.

a) Aresponse variable and an independent variable: simple (linear)
regression.

b) A response variable and two or more independent variables:
multiple (linear) regression.

c) When the relationship among variables is not linear: nonlinear
regression.

d) If the variable is a dichotomous or binary variable: logistic
regression.



Data example

Suppose we have recorded the age
(years) and blood pressure (mm Hg)
of 20 people, obtaining the data
presented in the table.

Age Blood pressure
20 120
43 128
63 141
26 126
53 134
31 128
58 136
46 132
58 140
70 144
46 128
53 136
70 146
20 124
63 143
43 130
26 124
19 121
31 126
23 123




Simple statistics

> ## Importing data
> BLOODP<-read.csv2 ("bloodpress.csv", header=T)
> attach (BLOODP)
> options (na.action=na.exclude)
> summary (BLOODP)
AGE BLPRESS

Min. :19.0 Min. :120.0
1st Qu.:26.0 1st Qu.:125.5
Median :44.5 Median :129.0
Mean :43.1 Mean :131.5
3rd Qu.:58.0 3rd Qu.:137.0
Max. :70.0 Max. :146.0

To avoid problems in prediction when missing values are present, we must use
options (na.action=na.exclude). With the current data set it would be

unnecessary.



Plot of raw data

A plot for a pair of variables gives us a first impression about their
relationship. It is also useful for detecting some extreme values.

> plot (AGE,BLPRESS) > library(car)
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> scatterplot (AGE,BLPRESS)
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Data not obviously non linear and no evidence of non-normality (boxplots
not asymmetrical). No evidence of extreme values.



Correlation (Pearson)

The correlation is a measure of the degree of association between two

variables. It is calculated as
r 1s an estimator of p, the population parameter.

cov(x, ») Zi (x. —X)(y, = ¥) The denommator 1S the geometflc mean of the
= = sample variances estimates. This makes 7 to
2 2 —=\2 —\2 . .
S8y \/Zl (x; —x) Zi (v,—Y) range from -1 to 1. As close is an estimate to -1
or 1, the correlation is larger.

> cor.test (BLPRESS, AGE)

Pearson's product-moment correlation
data: BLPRESS and AGE Hy: (p=0), is rejected
t = 16.0262, df = 18, |p-value = 4.239%e-12 /”}'
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:

0.9160501 0.9869976
sample estimates:
cor
0.966699 |———p |




Correlation — sample size -

The sample size required to have a particular correlation statistically
different from O depends upon the same correlation coefficient:

'—0.51n 1—r Fisher’s classic z-transformation to normalize the
Z=V. distribution of Pearson correlation coefficient.
|
Sample size for a
— - power of
Ziqi2 T Z1p 0 80% 90%
n= +3
' ' 0.1 781 1044
T4 0.2 194 258
0.3 85 113
) ] 0.4 47 62
r, =0 and r, is the magnitude 0.5 29 38
of the coefficient we want to 0.6 20 25
estimate. 0.7 14 17
0.8 10 12

0.9 7 3




Simple linear regression - the model -

yi = IBO + Ilei + gi —> Random error
\ {

Dependent variable |ntercept l Independent variable

Regression coefficient (slope)

To estimate £, and [, we
resort to the Least Squares
methodology, i.e., minimize
the sum of the squares of
the deviations (red arrows)
between actual (blue
diamond) an predicted
values (on the slope).

,é _ cov(x, )

2
S

X

X

B, 1s the increase of the dependent variable when . .
the independent variable increases 1 unit Bo=y—px



Assumptions in regression analysis

The variables x and y are linearly related (definition of the model).
Both variables are measured for each of n observations.
Variable x is measured without error (fixed).

Variable y is a set of random observations measured with error.

A N

The errors are independent and normally distributed with homogeneous

e~ N(0,Ic”)

Some of the above conditions can | ‘
be seen in the figure. For each i e
value (fixed) of x, there is a normal
distribution of y (random), with
mean on the regression line.

RN
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Matrix notation

Vi
V2
V3

Vi

1

X

n

Py

P

E

n

y=XB+¢

Note that X is not a matrix of O
and 1, but contains the values of
the independent variable x.

As in ANOVA, we can minimize the sum of the squared errors and then
we have the normal equations:

X'Xp=Xy = p=(X'X)"'XYy

Now X’X is not singular and can be solved without need of a
generalised inverse (or restrictions).
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Simple linear regression — Protocol -

1. Decide which variable is to be y and which is to be x.

2. Plot data, y in the vertical axis.

3. Check evenness of x and y variables by a box-plot.

4. Transform x and/or y if not even.

5. Compute regression, save residuals, fitted y values and influence statistics.
Calculate Durbin-Watson statistic if data are in a logical order.

6. Plot studentized or standardized residuals against fitted values (or x variable).
Examine residual plots for outliers, and consider rejection of outliers with
studentized or standardized residuals > 3 and go to step 5.

7. Compare influence statistics with critical values:

. Leverage > 2p/n

J Dffits (absolute value) > 2\/(p/n)
. Cook’s D > 4/n

J Dfbetas > 2/\n

-> Where p = number of parameters in the model (humber of f) and n = number of data
points in the regression. If two or more influence statistics (among the first three) are
greater than the critical values, consider rejecting points and return to step 5.

8. If outliers or leverage points are a problem, consider using a robust regression

method.
(Adapted from Fry, 1993)



Simple linear regression - Results (1) -

> BLOODP.REG <- 1lm(BLPRESS ~ AGE); summary (BLOODP.REG)

Residuals:
Min 19 Median 30 Max
-4.7908 -1.2777 0.1688 1.8725 2.7816

Coefficients:
/§ Estimate Std. Error t value Pr(>|t])
f)'\(Intercept) 112.31666 1.28744 87.24 < 2e-16 *** H: B.=0 i
IB o~ AGE 0.44509 0.02777 16.03 [4.24e-12 *** o p=0, is
= rejected
Signif. codes: 0 ‘'***’ (0,001 ‘**’ 0.01 ‘*" 0.05 '.” 0.1 ' " 1
For each increment of 1 year, blood <
pressure increases 0.4451 mm Hg t(B,) = LA
s.e.(f,)

j>i =112.3167+0.4451 X, _ 044509 —16.03

- 0.02777
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Simple linear regression - Results (2) -

Residual standard error: 2.12 on 18 degrees of freedom
Multiple R-squared: 0.9345, Adjusted R-squared: 0.9309
F-statistic: 256.8 on 1 and 18 DF, p-value: 4.239%9e-12

> anova (BLOODP.REG)

Analysis of Variance Table

F=¢t H, (£,=0) is
Response: BLPRESS 1 —" rejected
Df Sum Sq Mean Sq F value Pr (>F)
AGE 1 1154.12 1154.12 256.84|4.23%9e-12 ***

Residuals 18 80.88 4.49

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 '.” 0.1 "' 1

R-Squared is the square of the correlation coefficient. It

represents the fraction of the total variation in blood R*=SS ../ SSoru
pressure that is explained by the linear relationship with N1
age' Rjdj - 1—(1_R2)m

Adj R-Sqg includes a correction to overcome the increment
in R-Squared with the number of regressors (k). 14



ANOVA in regression

(=)= =)+ (-7)
y—r J" Y J"y

Deviated to Due to
regression regression

Squaring and and summing on both
sides of the equation we can arrive
at the following ANOVA table:

X
Source d.f. S.S. MLS. EM.S.) F
Due to I psp, .SP, o’ + BSS, MSre/
regression MSEror

Deviations to n-2 5, - B.SP, (SS,-BSP)(n-2) o
regression
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Simple linear regression - Results (3) -

Confidence intervals for g, (for 3, is similar):

(B —t,,5e(f), B +1,,,5e(f))

This can be done easily with R (both for b, and b,):

> confint (BLOODP.REG, level=0.95)
2.5 % 97.5 %

(Intercept) 109.6118594 115.0214613
AGE 0.3867409 0.5034373

16



Simple linear regression - Results (4) -

> data.frame (BLOODP, Predicted=fitted (BLOODP.REG),

+ RIstudent=rstandard (BLOODP.REG),

AGE BLPRESS

1 20
2 43
3 63
4 26
5 53
6 31
7 58
8 46
9 58
10 70
11 46
12 53
13 70
14 20
15 63
l6 43
17 26
18 19
19 31
20 23

120
128
141
126
134
128
136
132
140
144
128
136
146
124
143
130
124
121
126
123

Predicted

121.
131.
140.
123.
135.
126.
138.
132.
138.
143.
132.
135.
143.
121.
140.
131.
123.
120.
126.
.5537

122

2184
4555
3573
8890
9064
1144
1318
7908
1318
4729
7908
9064
4729
2184
3573
4555
8890
7734
1144

O oOoOORrMNMDMNMDO

4

Residuals RIstudent Restudent
.21844210 -0.62038822 -0.60946002
.45549109 -1.67245066 -1.76853813
.64272718 0.32284288 0.31465921
.11102338 1.04984002 1.05300889
.90638196 -0.93096414 -0.92733538
.88557795 0.92493113 0.92102499
.13182739 -1.05313803 -1.05653371
.79075835 -0.38301620 -0.37375101
.86817261 0.92289068 0.91889212
.52710357 0.27363114 0.26647648
.79075835| -2.32047892 -2.69371696|
.09361804 0.04571751 0.04443202
.52710357 1.31187546 1.34061303
.78155790 1.41627226 1.46012594
.64272718 1.32744606 1.35824022
.45549109 -0.70445473 -0.69424391
.11102338 0.05521340 0.05366233
.22664698 0.11594922 0.11272449
.11442205 -0.05612736 -0.05455077
.44629064 0.22434720 0.21833176

¥, =112.317+0.445x20=121.2184;

7 =120-121.2184 =-1.2184

Residuals=resid (BLOODP.REG),
Restudent=rstudent (BLOODP.REG))

RIstudentisan
“Internally
studentized
residual”, i.e., the
residual divided by
the own standard
error (not uniform
across
observations).

REstudent is an
“Externally
studentized
residual”.

Only observation
11 is a weak outlier.

17



Some statistics useful for regression analysis

Internally studentized residual ”
Weak outlier, [rs;| > 2 (95% confidence) s, = L
Strong outlier, |rs)| >3 (95% confidence) : \/ MSE (1 — hl)

~ Ty i

Externally studentized residuals (-i)
Calculated as the previous one, but removing the i observation to calculate the s2. Under H,,, it
follows a ¢ distribution with N-k-2 df.

Leverage (4,)
Standardized value of how much an observation deviates from the centre of the space of x values.
Observations with high leverage can indicate an outlier in the x and are potentially influent.

Computed as the diagonal elements of X(X’X) X",
1

N

. /8]' _:Bj,—i

S 2
Vi 7 Vi :R—Student{ hih } DFBETAS ;=

s by

where c;; are the diagonal elements of (X"X)!. Analyse only DFBETAS corresponding to high
values of DFFITS.

DFFITS, =

Sin €

i

Cook’s D
Essentially a DFFITS statistic scaled and squared to make extreme values stand out more clearly.

18
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Simple linear regression - Results (5) -

> influence.measures (BLOODP.REG)

dfb.1_

.23925
.15159
.05363
.32262
.03674
.22000
.10973
.01804
.09543
.07195
.13000
.00176
.36195
.57320
.23151
.05951
.01644
.04595
.01303
.07612

0.
0.

0.
0.
-0.
0.
0.
-0.
0.
0.
-0.
-0.
0.
-0.

dfb.AGE
199083
002377
.087353
.248700
.124512
.151823
.215983
.014580
187846
103347
105085
005966
519927
476956
377061
000933
012674
038599
008992
061268

O OO O0OO0OO0OO0OOoOOo

dffit
.2475
.4057
.1151
.3514
.2482
.2625
.3284
.0870
.2856
.1224
.6273
.0119
.6157
.5930
.4967
.1593
.0179
.0473
.0155
.0804

cov.r
.251
.842
.256
.098
.088
.100
.083
.163
.116
. 346
.581
.201
.110
.031
.034
.116
.246
.317
.212
.266

HERRRPRRPRRRHERORRRPRRREKREBRERKREOLR

WkRRRRPRPRRRPRPRPRPRIRIdMLUOWLWLWOONW

cook.d

.17e-02
.36e-02
.97e-03
.14e-02
.10e-02
.47e-02
.36e-02
.98e-03
.11le-02
.90e-03
.46e-01
.48e-05
.82e-01
.65e-01
.18e-01
.31e-02
.70e-04
.18e-03
.28e-04
.41e-03

O 0O 000000000000 O0OOOOOO

hat inf

.1416
.0500
.1180
.1002
.0668
.0751
.0881
.0514
.0881
.1742 *
.0514 *
.0668
.1742
.1416
.1180
.0500
.1002
.1497
.0751
.1193

All values of DFFIT are below
the critical value 0.63 (=2
\(2/20)), i.e., not influential
observations on the predicted
values. DFBETAS (dfb.) test
influence on the parameter
estimates, and do not need to
be examined because DFFIT
values are low.

Cook’s D values are below the
critical value 0.2 (=4/20).
Leverage is presented in hat.
All values are lower than 0.2,
the critical value.
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Criteria to flag an observation as influential in R

In slide 12 we presented some critical points to decide if an
observation can be influential or not. These critical points are not
statistical tests but rules of thumb. Furthermore, there are not
agreement among statisticians on the values. In fact, R puts a flag (a
star) on an observation, when:

v' any of its absolute dfbetas value is greater than 1, or
its absolute dffits value is greater than 3\/(p/(n-p), or
abs(1-covratio) is greater than 3p/(n-p), or

AN NI

its Cook’s distance is greater than the 50% percentile of an F-
distribution with p and n-p degrees of freedom, or

v’ its hat value is greater than 3p/n

Where p denotes the number of model coefficients, including the
intercept.

20



Some graphics about influential observations

High leverage, influential High leverage, not influential
Y
X X
Low leverage, influential Low leverage, not influential
Y Y

21



Simple linear regression - diagnostics -

> layout (matrix(c(1,2,3,4),2,2)) # optional 4 graphs/page
> plot (BLOODP.REG)

Residuals vs Fitted Scale-Location
©v _ 110
014 o o - v
. ] e ° S 014 i o o
Residuals are o o lo oo . ol 18 24 °o, 0 8
distributed 3 o \/ g /\
. 0 o o 5 2 o o °
approximately at « R o
random: homogenetiy Y 7 o 2 ° o o
. " o |
of variance met. | | | | S | | | |
. . . 120 125 130 135 140 120 125 130 135 140

No important deviations
. Fitted values Fitted values
in Q-Q plot: response
variable normal.

. Normal Q-Q Residuals vs Leverage
None of the points 2

. .o o 140 o 140 o
approach the high 2 - 05® 2 - o0 °
Cook’s distance ¢ _ | 460 g o
contour(s): none of the & v g
observations are I B - .
. . 0 02 noN - N
Inﬂuentlal' R _'6'1’1 ==\ Cook'g distance /,,—"'” °

I I I I I I I I I
-2 -1 0 1 2 0.00 0.05 0.10 0.15

Theoretical Quantiles Leverage



Some plots of residuals

Ideal residual p|0t (random distribution around 0)

Model should involve curvature

Heterogeneous variance

23



Blood pressure (mm Hg)

Simple linear regression - Regression line and CL -

145

140

-
w
(&) ]

-
w
o

125

120

Blood presure = 0.441*Age+112.32

R*=0.935

S5, =

95% upper limit
Regression line

95% lower limit

Observations (e)

X, —X)°

SS

XX

MS . %+(

Note that for greater values of x the standard error of
predicted values is greater, and thus CL.

This is little distinguishable when the prediction is made

in the interval of the observed x’s.

20 30 40 50 60 70

Age (years)
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Simple linear regression — program of the graphic -

## Summary scatterplot

#cretate a plot with solid dots (pch=16) and no axis or labels
plot (BLPRESS~AGE, pch=16, axes=F, xlab="", ylab="")

#put the x-axis (axisl) with smaller label font size

axis(l, cex.axis=.8)

#put the x-axis label 3 lines down from the axis

mtext (text="Age (years)", side=1l, line=3)

#put the y-axis (axis 2) with horizontal tick labels

axis (2, las=1l)

#put the y-aix label 3 lines to the left of the axis

mtext (text= "Blood pressure (mm Hg)", side=2, line=3)

#add the regression line from the fitted model

abline (BLOODP.REG)

#add the regression formula

text (50,145, "Blood presure = 0.441*Age+112.32", pos=2)

#add the r squared value

text (50,143, expression (paste (R*"2==0.935)), pos=2)

#create a sequence of 100 numbers spanning the range of ages
x<-seq(min (AGE) , max (AGE), 1=1000)

#for each value of x, calculate the upper and lower 95% confidence
y<-predict (BLOODP.REG, data.frame (AGE=x), interval="c")
#plot the upper and lower 95% confidence limits
matlines(x,y, lty=1, col=1l)

#put an L-shaped box to complete the axis

box (bty="1")

VVVVVVVVVVVVYVVVVVVYVVVVYVYVYV
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