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Learning objectives

 State the concept of Statistical Inference.

 Distinguish between parameters and statistics.

 State the difference between point and interval estimation.

 Define the standard normal distribution and its applications.

 Define the concept of standard error, in particular of a mean.

 Define confidence intervals, both when the variances are known or 
unknown (estimated), as well as the t-distribution.

 Establish the four steps of a Test of Hypothesis: 
1. Define the Null hypothesis (H0) and the Alternative hypothesis (H1)

2. Find an appropriate Test statistic 

3. Calculate the p-value 

4. Establish a decision rule

 Distinguish Type I and Type II errors, Significance level and Power of 
the test.

 Make some calculations with R Commander and R.
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Statistical inference

Drawing conclusions based on data taking into account the 
inherent random variation.

1. Second step after the description of the data.

2. We want to extrapolate to the population which we observe in a sample.

3. Need to assume a particular data distribution:

• Normal: adult weight, loin muscle area, average daily gain, …

• T: distribution of some statistics.

• Bernoulli: ill vs. not ill.

• Poisson: number of microorganisms in a microscope field.

4. In inferential statistics we estimate –obtain an approximate value of- the 
true value of the parameter (a mean for example) through an adequate 
statistic (sample mean, for example).

5. There are a many contexts in which inference is desirable, and there are 
many approaches to performing inference. 

6. Some methods do not need to assume a distribution: non parametric 
methods.
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Parameters and statistics

Usually the parameters of the distribution are designed with Greek
characters, whereas the corresponding statistics are designed with Latin
characters. The next table includes some examples:

Estimator: Some equation that allows us to estimate some parameter.

Estimate: The value obtained.

 Parameter  
(population) 

Statistic    
(sample) 

Mean   y  

Variance  2  2s  

Standard deviation   s  

Proportion   p  
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Estimation of parameters 

1. Point estimation: a value is obtained as an estimate of the 
parameter.

2. Interval estimation: we calculate an interval in which we 
affirm that with a certain probability we can find the true 
value of the parameters.

So far we have presented some point estimators of several parameters. 

In practice, when we work with the unknown parameter of the 
population, in addition to this point estimate we are usually 
interested in an interval (confidence interval, CI) that gives an idea of 
the uncertainty of the estimate.

We will present the way to construct intervals through some classical 
examples. The procedure is based upon the distribution of the 
statistic.
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One application of the standard normal

s

yy
z i

i


 , where zi follows a standard normal distribution.  

> z <- (3.3-2.9)/0.4675; z

[1] 0.855615

> pnorm(z)

[1] 0.8038946

The complement of pnorm(z), i.e. 1-pnorm(z), will be the 
probability of having a value greater than 3.3, in this case  0.2.

An easier way to compute this probability and the quantile is:
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A male has BODYwt of 3.3 kg in our cat dataset. Assuming that the 
distribution is normal, we can compute the probability of having a 
value lower or equal than this one (CDF) using R syntaxis:

> pnorm(3.3,2.9,0.4675)

[1] 0.8038946

> qnorm(0.8038946,2.9,0.4675)

[1] 3.3



Another application of the standard normal

We can compute z.025 and z.975 in R:
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Following with the previous example, imagine we want to know the 
central interval that includes 95% of the values. Then we have 2.5% of 
the values to the left and 2.5% to the right, outside this interval. Then:

szyy
s

yy
z ii

i
i 


 ;

> qnorm(.025)

[1] -1.959964

> qnorm(.975)

[1] 1.959964

Then, the lower and upper limits of the interval are:

.025

.975

2.90 ( 1.96) 0.4675 1.984

2.90 1.96 0.4675 3.816

lower

upper

y y z s

y y z s

      

     

qnorm gives the z-value 

for a given quantile of the 

cdf of a standard normal



Distribution of the entire population

Suppose we want to know the mean for BODYwt of male cats. Usually we 
do not have the entire population, but a sample. Let assume that we take 
repeated samples with replacement of size n (in our case n = 97) from that 
entire population, that is normally distributed.

For each sample we will have a different, but close mean, for example 
2.90, 2.81, 2.93, 2.76, 2.83, … and so on. It can be shown that:

Standard error of the mean


n







Distribution of the 
estimated means



Standard 
error of 

the mean

Used to 
compute C.I.
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CI: mean of a normal, variance known 

n
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n
zy






22

11 


If we fix some confidence level  (for example 95%), with       
 = 1 -  , the true mean  is found in the interval:

1.96 for  = 95%

Confidence limits

n
z



2

1
2















n

zy
n

zy



22

11
,

Interval length

In this formula we have 

used the same principle 

as in slide 7, but applied 

to the distribution of the 

means.

Note that       is the 

standard error, i.e., the 

standard deviation of the 

distribution of means 

under a repeated 

sampling (infinite) of 

size n.

n


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CI: mean of a normal, variance known (example)

Assuming that the estimated variance for BODYwt is the true 
variance, and that BODYwt is normally distributed, the 95% 
confidence interval of the mean is: 

 2.90 1.96 0.0475, 2.90 1.96 0.0475   

 2.807, 2.993

2 1.96 0.0475 0.186   

With interval length:
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t distribution (1)
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if its p.d.f. is 

Gosset

Note that the t-distribution (red or green line) 

approaches the normal distribution (blue line) 

as  increases 

with  = n - 1

http://en.wikipedia.org/wiki/Student%27s_t-distribution

http://en.wikipedia.org/wiki/

William_Sealy_Gosset

 =1  =30
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CI: mean of a normal, variance unknown (1)

2 2

1 1

1 1
, 

 

 

 
  

 

n ns s
y t y t

n n

This is the common case, because we have an estimate of the 
variance or the standard deviation instead of the true value.

It is similar to the previous case but using the t-distribution 
instead of the Normal distribution.
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Or in a synthetic expression:

2

1

1 




 n s
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One Sample t-test

data:  BODYwt

t = 61.097, df = 96, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

2.805781 2.994219

sample estimates:

mean of x 

2.9 

CI: mean of a normal, variance unknown (2)
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Data: catsWeightM
Statistics > Means > Single-sample t-test
Variable: BODYwt; Alternative Hypothesis: Population mean !=mu0

First we need a 
subset with male

weights only:  
catsWeightM



CI: Interpretation

If we would take all possible samples of size 97 of 
body weight in the cat males, and for each of them 
we would made the above calculations, 95% of the 
intervals found, approximately, would contain .

We do not know whether the interval we have 
found contains or not , because this parameter is 
unknown (in fact it is what we are looking for), but 
we are 95% confident in that it be so.
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Test of Hypothesis (Neyman-Pearson approach)

Hypothesis testing is the use of Statistics to determine the probability that a 
given hypothesis is true. The usual process of hypothesis testing consists of 
four steps. 

1. Formulate the null hypothesis H0 (commonly, that the observations are 
the result of pure chance) and the alternative hypothesis H1 (commonly, 
that the observations are the result of a real effect combined with a 
component of chance variation). 

2. Identify a test statistic that can be used to assess the truth of the null 
hypothesis.

3. Compute the p-value, which is the probability of finding a value of the 
test statistic bigger (or lower, depending on the tail) as the one observed, 
assuming that the null hypothesis were true. The smaller the p-value, the 
stronger the evidence against the null hypothesis. 

4. Construct a decision rule: Compare the  p-value to an acceptable 
significance level  . If  p  , that the observed effect is statistically 
significant, the null hypothesis is rejected, and the alternative hypothesis 
is accepted. 
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Test of Hypothesis (cont.)

Null 
hypothesis 

Accepted  Rejected 

True Correct decision Type I error () or 

significance level 
(False positives) 

False Type II error () 
(False negatives) 

Correct decision  

(1- = Power of test) 

 

The decision rule is based upon Type I error: 
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• If p-value > 0.05  accept H0

• If p-value < 0.05  reject H0



Contrasting a mean

17

The null hypothesis (H0:  = 0) is rejected, as the p-value < 0.05

To contrast that the mean of weight of male cats is different 
from 0, we can use a previous procedure and result:

Data: catsWeightM
Statistics > Means > Single-sample t-test
Variable: BODYwt; Alternative Hypothesis: Population mean !=mu0

One Sample t-test

data:  BODYwt

t = 61.097, df = 96, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

2.805781 2.994219

sample estimates:

mean of x 

2.9 



Contrasting normality: Shapiro-Wilk test

Male’s weight is 
normally 
distributed, but 
Females and the 
mixture distribution 
are not
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The null hypothesis 
(H0) is that the 
distribution is normal

Statistics > Summaries > Test of normality
Variable: BODYwt; Normality test: Shapiro-Wilk

Shapiro-Wilk normality test

data:  BODYwt

W = 0.95188, p-value = 0.00006731

Test by groups: Sex

Sex = F 

data:  BODYwt

W = 0.89096, p-value = 0.0003754

Sex = M 

data:  BODYwt

W = 0.97883, p-value = 0.119


