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Learning objectives

 Define the statistics related to the association between variables: 
correlation and regression.

 Explain how to explore the data: scatter plot (linear trend) and 
boxplots (evenness of the data) with R Commander.

 Define and calculate the correlation coefficient as a measure of 
association.

 Define linear regression as a statistic tool for prediction.

 Establish the model describing linear regression: intercept and 
slope, and the assumptions implied.

 Test the significance of the regression coefficients.

 Development of calculations by R Commander and interpretation of 
the outputs, including regression diagnostics.

 Define R2, the coefficient of determination.

 Distinguish outliers from influential observations and define 
procedures to detect them.
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Analysis of several variables

Two main interests:

1. Estimating the degree of association between two variables: 
CORRELATION analysis.

2. Predicting the values of one variable given that we know the realised 
value of another variable(s): REGRESSION analysis. This analysis can 
also be used to understand the relationship among variables.

a) A response variable and an independent variable: simple (linear) 
regression. 

b) A response variable and two or more independent variables:
multiple (linear) regression.

c) When the relationship among variables is not linear: nonlinear 
regression. 

d) If the variable is a dichotomous or binary variable: logistic 
regression.
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Data example
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To analyse the relationship of two 
variables we will return to the 
catsWeight data base. In this case 
we will pick up the variables body 
weight in kilograms (BODYwt) as the 
independent or explanatory 
variable, and hearth weight 
expressed in grams (HEARTwt) as 
the dependent or response variable.



Studying normality

Different distributions for males and females in both variables

From now on, we will work only with the male’s subset
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Data: catsWeight
Graphs > Boxplot; Plot by: Sex
Variable: BODYwt Variable: HEARTHwt



Subsetting (for males, “M”)
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Plot of data from males

A plot for a pair of variables gives us a first impression about their 
relationship. 

A linear relationship 
is observed
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Data: catsWeightM
Graphs > Scatterplot 
x-variable: BODYwt; y-variable: HEARTHwt; Options: Least-squares line



Pearson's product-moment correlation

data:  BODYwt and HEARTHwt

t = 12.688, df = 95, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.7051085 0.8569367

sample estimates:

cor

0.7930296

Correlation (Pearson)
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The correlation is a measure of the degree of association between two 
variables. It is calculated as 

r is an estimator of , the 

population parameter.

The denominator is the 

geometric mean of the sample 

variances estimates. This 

makes  r to range from -1 to 

1. As close is an estimate to -1 

or 1, the correlation is larger.

H0: ( = 0), is rejectedr
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Statistics > Summaries > Correlation test
Variables: BODYwt and HEARTHwt



Correlation – sample size -
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The sample size required to have a particular correlation statistically 
different from 0 depends upon the same correlation coefficient:

r0 = 0 and r1 is the magnitude 
of the coefficient we want to 
estimate.

Fisher’s classic z-transformation to normalize the 
distribution of Pearson correlation coefficient.

 Sample size for a 
power of 

 80% 90% 

0.1 781 1044 
0.2 194 258 
0.3 85 113 
0.4 47 62 
0.5 29 38 
0.6 20 25 
0.7 14 17 
0.8 10 12 
0.9 7 8 
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Correlation – sample size with R -
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> library(pwr)

> pwr.r.test(r = 0.5, sig.level = 0.05, power = 0.80)

approximate correlation power calculation (arctangh

transformation) 

n = 28.24841

r = 0.5

sig.level = 0.05

power = 0.8

alternative = two.sided



To estimate 0 and 1 we 
resort to the Least Squares 
methodology, i.e., minimize 
the sum of the squares of 
the deviations (red arrows) 
between actual (blue 
diamond) an predicted 
values (on the slope).

Simple linear regression - the model -
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1  is the increase of the dependent variable when 

the independent variable increases 1 unit 
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Assumptions in regression analysis

1. The variables x and y are linearly related (definition of the model).

2. Both variables are measured for each of n observations.

3. Variable x is measured without error (fixed).

4. Variable y is a set of random observations measured with error.

5. The errors are independent and normally distributed with homogeneous 
variance:

),(~ 2

eN I0ε

y

x2 ….

Some of the above conditions can 
be seen in the figure. For each 
value (fixed) of x, there is a normal 
distribution of y (random), with 
mean on the regression line.

x1 xn
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Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)  -1.1841     0.9983  -1.186    0.239    

BODYwt 4.3127     0.3399  12.688   <2e-16 ***

---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Simple linear regression - Results (1) -
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H0: 0 = 1 = 0, is rejected
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Statistics > Fit models > Linear regression
Response variable: HEARTHwt; Explanatory variables: BODYwt



Simple linear regression - Results (1 cont.) -
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R-Squared is the square of the correlation coefficient. It represents the 
fraction of the total variation in blood pressure that is explained by the 
linear relationship with age. In this case 62.89% of the variation of blood 
pressure is explained by age.

Adj R-Sq includes a correction to overcome the increment in R-Squared
with the number of regressors (k).
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Residual standard error: 1.557 on 95 degrees of freedom

Multiple R-squared:  0.6289, Adjusted R-squared:  0.625 

F-statistic:   161 on 1 and 95 DF,  p-value: < 2.2e-16



Diagnostics - Some plots of residuals

Ideal residual plot (random distribution around 0)
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Model should involve curvature Heterogeneous variance
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Simple linear regression – Results (2) -

Residuals are distributed 
approximately at random 
around 0: homogeneity of 
variance met 
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Models > Graphs > Basic diagnostic plots

No important deviations 
in Q-Q plot: response 
variable normal



Some graphics about influential observations

High leverage, influential High leverage, not influential

Low leverage, influential
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Standardized residual

Weak outlier, |rsi| > 2   (95% confidence) 

Strong outlier, |rsi| >3   (95% confidence)

Leverage (hi)

Standardized value of how much an observation deviates from the centre of the space of x values. 

Observations with high leverage can indicate an outlier in the x and are potentially influent. 

Computed as the diagonal elements of X(X’X)-1X’.

where cjj are the diagonal elements of (X’X)-1. Analyse only DFBETAS corresponding to high 

values of DFFITS.

Cook’s D

Essentially a DFFITS statistic scaled and squared to make extreme values stand out more clearly.

Some statistics useful for regression analysis
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Simple linear regression – Results (3) -

None of the points is outside the 
high Cook’s distance contour(s), 
the dashed red lines: none of the 
observations is influential
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Models > Graphs > Basic diagnostic plots

The standardized residual of 
obs. 140 is greater than 2 
(=1.41): weak outlier; the one of 
obs. 144 is greater than 3 
(=1.73): strong outlier

See also: http://www.sthda.com/english/articles/39-regression-model-diagnostics/161-linear-regression-assumptions-

and-diagnostics-in-r-essentials


