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El carácter covariante de las ecuaciones fundamentales de una
teoría general de los campos exige la determinación 'previa de la va-
riância -de las magnitudes "que en ella intervienen. El objeto de este
artículo, primero de una serie, es precisamente fijar el de las que se
encuentran en el formalismo canónico. Se demuestra, además, que
este formalismo no implica necesariamente la introducción de una
métrica ni aun la de una conexión de tipo afín. El formalismo canó-
nico queda subordinado simplemente a la elección de un campo de
vectores contravariantes no tangentes a determinadas variedades n-di-
mensionales. Dicho campo es, por lo demás, completamente arbitrario.

1. Sea fy* {.r) un campo definido con relación a un sistema de
coordenadas (x) en una variedad XKtl de n + 1 dimensiones conside-
rada en sí. No es necesario suponer por el momento que Xn+1 posea
una estructura ; es decir, Xn+1 constituye un espacio amorfo. En cam-
bio, por lo que toca a las componentes <}a.del campo, hacemos la hi-
pótesis de que en cada punto P 6 Xn+1 el campo es base de una repre-
sentación lineal homogénea de grado v del grupo de las transforma-
ciones afines en el espacio E„+1 tangente a Xnt l en P que conservan
el punto P. Con otras palabras, si en el punto P pasamos del siste-
ma de referencia local R (P) en el que las componentes del campo
son (}<a.(P)i(a = 1, 2, ..., v), al sistema de referencia R' (P) definido
Por los nuevos vectores de base e,: — e¿ a'/,, ak

t (; |<z*,-1|=(= 0), las-nue-
vas componentes (J/p son funciones lineales y homogéneas de las ^,
y recíprocamente:

f=A??¿'3, e'? = B?a6
a, [1]
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donde los coeficientes A^ de la matriz de transformación no singu-
lar son funciones de los coeficientes ak-< y B'Vson los coeficientes 'de
la matriz (B) inversa de la (A). En particular, cuando en Xn+1 se
efectúa una transformación de coordenadas regular

xí = xi(x'<), ...,*'"), (z = 0,1, . . . , » ) , [2]

ésta induce en las referencias, locales R [P; (.*•)] asociadas al sistema
de coordenadas („r) el cambio

a'-j, (XÌ = d',, x'\ V.k (*} = dk *"' (1)

y, por lo tanto, se obtiene un campo de transformaciones lineales
A'ß'C^7),' B?a(X) entre las componentes -i" I(.T) y sus transformadas
'!/"(.*•') vinculado a [2].

Sentado esto, admitamos que las ecuaciones del campo ̂  {x) de-
rivan de un principio de extremum, y sea

(» + !)

W = j' £ (x\ ¿", ¿%) d .r (4.% = a, -ia) p]

la integral de acción. En ella, d x = í/JT° rf,^-1 . . . . d - x K es una capaci-
dad escalar y W, en tanto que magnitud no localizada en un espacio
amorfo, debe ser un escalar si pretendemos que no dependa del. siste-
ma de referencia adoptado. Por lo tanto £ es necesariamente una den-
sidad escalar—la densidad de acción lagrangiana. D es un dominio ar-
bitrario del Xn+1 limitado por una hipersuperficie a, suficientemente
regular como para que tengan sentido las operaciones que efectuare-
mos. De acuerdo con la notación de Roberts [1], llamaremos S a l«'i
superficie <r una vez dotada de un sistema de coordenadas curvilíneas
u1, ..., un, es decir, a la superficie <s una vez parametrizada. En lo
que sigue convendrá también distinguir dos tipos de transformacio-

(1) dk(a ò'k\ es el operador de derivación parcial respecto de xk (a- x'*) ; ——Tt

"es el 'Operador de derivación total respecto de x*. Un operador difiere del otro uní-'
camente cuando se aplican a funciones compuestas.
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nés, las transformaciones [2] de coordenadas, en el espacio ambien-
te de u y las transformaciones regulares

ur — ur(//'1, .,., u'"') (>• —1,2, ...,"«) [4]

de coordenadas curvilíneas en ç. El comportamiento tensorial dé las
diferentes magnitudes es distinto, por lo general, según se trate de
tinas u otras transformaciones. En el caso de las transformaciones [2],
la variância de los diferentes entes se llamará variância-.^; en el caso
de las transformaciones [4], variancia-it.

La variancia-.r de la .densidad £ está bien definida : es la variân-
cia típica de las densidades escalares

p [ 1 ta t a \ \' F» f "' t 'a l 'a \•í-^-v,* , í . f . ) — A JL (x ,6 , ¿ . / t j , [5]

donde

A' =
ò (x10 , x'»)
Ô (.r°, . . ., .v«) "

es el jacobiano de la transformación inversa de la [2], igual al recí-
proco del jacobiano de ésta. No ocurre así en el caso de las compo-
nentes derivadas ty"/,. En efecto, de [1] se deduce como ley de trans-
formación de éstas

^=A°?¿^'?* + a;A°3^, [7]

4·?*=B?aa':^?/+^B?.·r· n

O sea, en un cambio de coordenadas (.v), las componentes deriva-
das <ìi*/{ no se transforman entre sí salvo en el caso de que .los ele-
mentos de matriz A"p —y por ende los de la matriz inversa B?n—sean
constantes.

2.^.Calculemos ahora la variación S W de la integral de acción W
para una variación infinitesimal (deformación) del dominio de inte-
gración D y una variación infinitesimal arbitraria de las componen-
tes del campo. En este proceso permanece fijo el sistema de coorde-
nadas en Xn+1. Si aquellas variaciones son, respectivamente,

Jf1' -* X{ + £ Î/ (*•)' = X>, i« (.r) -» '¡ta (x) + s v¡a (x) = Ia Ç.r) [8]
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en las que t es el parámetro infinitesimal de variación, un cálculo ya
clásico conduce a la variación primera de W(2)

(»)

[9]
í"fl)_ . . . . «

y]« d X + z (f) (£ o> + -^- a,, ï)" | d «,
¿>(1.,-

T a x ¿> / ¿>.£\ „ ^ > /
I r—— t Y)" ¿-v + £ (f) ,

J á-}« a,-' \<H°,.j ^P

en la que ts¡ d u es la componente i de la capacidad vèctarial covarian-
te-^ que define un elemento de hipersuperficie de S ( 3 > . De las dife-
rentes magnitudes que aparecen en [0], respecto de las transforma-
ciones [2] T)" es cogrediente de fy*, y ambos están lotalizados en
un mismo punto x y ?/ es un vector contravariante, asimismo loca-
lizado en x, en tanto que e v' es una deformación infinitesimal'"'.
Por lo que concierne a la expresión

^ 0£ d-l-^-\, [i»]
¿ [oft I8 i" díf" ox'

en la que se reconoce desde luego la derivada variacional parcial
respecto de ^ de W considerada como funcional de las componen-
tes del campo ^, es fácil ver ya en [9], que.es una densidad contra-

d£
srrediente-^ respecto de las u*. Finalmente, es un ente de va-

' ¿><laí
riancia mixta

*í.s-^- mi
8¿?¿

con el carácter de una densidad contragrediente respecto de '|a y
oontravariante con rela.ción al índice /'. Es claro que todas esas mag-

(2) Cf., por ejemplo, el excelente articulo de E. L. HILL, Rev. of Mod. Phys.,
3, 233 (1951).

(3) SCHOUTEN, pág .95 y ss.
(2) Cf., por ejemplo, ORTIZ FORNAGUERA, [1], pág. 594.
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nitudes son por completo independientes de la parametrización S de
a, es decir, escalares-«. En cambio <r¡, que es una capacidad vectorial
covariante-^, depende esencialmente de la parametrización. Basta para
verlo efectuar en la integral de superficie que aparece en [9] una
transformación [4J. Se tiene entonces

a. d u = a'- ti.ií' ,

esto es,

J^".....«^ _1̂  ,
a(«*, ...,«") ' A« l J

lo que prueba que cada componente <J¡ es una densidad escalar-M<5>_
Las n + 1 cantidades c¡ no sólo dependen, pues, de la hipersupérfi-
cie s base de S por cuanto definen el hiperplano tangente a a en el
punto P en que se las considere respecto de la referencia local R (P),
sino qué para P fijo en o y u fija cada ima de ellas varía con las trans-
formaciones [4] de acuerdo con [12].

Volviendo a las magnitudes [10] y [ill], es fácil comprobar direc-
tamente lo dicho acerca de su variância sin necesidad de acudir a [9].
Así por ejemplo, de [5] y [7'] se deduce sin más

*' -_^£—A'-¿^-—-A'B? a'' £<
•= * * ! , * * ' ? , *#,- -A *"••**•>•

nas i

h~>] se obtiene

-iberamente más complicado es'el cálculo para-^ .- Derivando en
ò ò"

d£ - A - B f 0£ +A'á ' B? 0£
• — * n-a -_—^T ~T * & k ß-a. T"— -a e,,

v d tf' â^

A(-^-U^?.-^-í-£f) + A'^B?.^T- [131
d of \d$i] d=c'k \dV?J ¿fí*

ïin más que utilizar la fórmula de derivación de determinantes

¿»¿a = A ̂ ',. a; ¿I,,, = A //",• ym ¿k

O») Roberts, en cambio, dice erróneamente que ¡r. (N L en su notación) es una
densidad vectorial para transformaciones de las ur, en abierta contradicción con [12].
(ROBERTS, [1], pág. 131.)



— 142 -

y la relación
Û'^A-1

De [13] se signe inmediatamente

ò£ d£ d í ò£\ . B ü£

ò ò" d <!/" . dUJ^-W*?.—
*' V á tf// S o ' ?

como queríamos demostrar. Es sabido que las ecuaciones del campo
son precisamente, en la forma de Lagrange, las que resultan de igua-

ï£
lar a cero % |0t~ , esto es, recordando [11],

4í--TTff-« = 0- [H|
â y ò x

3. Y se plantea ahora un punto delicado que pasó por alto a al-
gunos autores. Hasta aquí ninguna necesidad hubo de hacer hipóte-
sis acerca de la estructura del espacio Xn+1. El formalismo es por
completo covariante en cualquier caso. Pero supongamos que se trata
de-comparar por diferencia las componentes vanadas ^* correspon-
dientes al punto variado, x con las componentes iniciales ^a en el punto
inicial x. El razonamiento que se suele hacer es el siguiente : sea

E 'C (x) ~ ̂  (x) — <!?" (*) • [15]

De [8] se deduce

p (ï) = f (ï) -f B r," (x) = ? (*) + e j tf, (4f) p* (ar) + n" (*) j ,

salvo infinitésimos de orden superior al primero en B. Por Io tanto

C* (.r) = ,« (*) + tf, (*) »* (*) . (6) [16]

El error consiste en que carece de todo sentido en una teoría cova-
riante comparar directamente dos magnitudes 4/a (JF) y i^ (.r) locali-
zadas en puntos distintos, x y x. Ahora bien, si pretendemos reali-
zar aquella comparación, debemos poseer una ley que nos permita

(tí) Cf. WEISS, [1], pág. ? ? ? : [21, pág. 105. y ROBERTS, [1], pág. 131.
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trasladar una cualquiera de las dos magnitudes al punto de aplicación
de la otra y entonces, referidas ya al mismo sistema local de coorde-
nadas, efectuar la comparación. Por consiguiente, es menester con-
tar con una ley de transporte paralelo, por lo menos para las compo-
nentes del campo. O con otras palabras, es necesario que el espacio
Xii-n posea una estructura afín con relación a las *|/a como mínimo.

Admitamos, pues, que en XB+1 se ha definido una ley de traslación
para las componentes del campo

|a (x + M = 6a (x) - A* k $ 8 x
k , [17]

donde fy* {.v + S .v) son las componentes del campo en x trasladadas
al punto x + 3 x. En estas condiciones podemos formar con pleno
sentido el ente cogrediente respecto del "campo ^*

e O) = fa(*)-0a (*); !181

*expresión en la que tjT" (x) es el traslado a x de <ia {x) de acuerdo con
la ley de traslación [17]. Salvo infinitésimos de orden superior al pri-
mero, [18] equivale a

£ C (*) = f (X) - f (X) + \%A ̂  (X) 3 Xk

= e^(*) + í**V**'(*).

es decir, en vez de [16] obtenemos

:•(*) = y (*) + »* v* *°. I191

eji la que V* ^* es la derivada covariante asociada a 'la ley de tras-
lación [17]. La ecuación [19] difiere de la [16] por la sustitución
de ^k— que carece de variância (cf. ec. [7])—por la derivada abso-
luta Vt <]/".

Sustituyendo tf {x) por su valor deducido de [19] en la integral
sobre la frontera S de D que aparece en [!)], resulta:

/"t0 '">
í W = e í '-^- 7¡« rf* + a 6 (Ç{* ** + A. ̂ , d u [20]

. / H /
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en la que

tf* = .C3Ù-£':avvk [21}

es una densidad.tensorial mixta de segundo orden. Es claro que,'por
el contrario, el ente definido por Weiss

w k=£v. ,,-&,.¥ * [221

(cf. Weiss [2], pág. 106, ec. [3.5]) no es, en general, un tensor. En
efecto, las leyes de transformación de X y £?'« y las ecuaciones [7^
permiten escribir

- W.k - A' «•;,„ V.k (£• S?; - tf'.i; $:?,.) - A' B?a dk A?T <„ <?'?:, *'T

- A' a'! ,„ V.k V'.;" - A' B?a dk A«T «í m <?:¿" V T ,

relación que pone de manifiesto la existencia, en general, de una par-
te parásita—el segundo término del segundo miembro. Esta desapa-
rece en el caso de un espacio plano referido a coordinadas cartesia-
nas generales, pero entonces *£?'. k =. 1C'- k. Dado que las ecuaciones
del campo [Í4] adoptan la misma forma en cualquier sistema de co-
ordenadas, en el ente ?¿'. ¿definido por [22] en cada uno de ellos cum-
ple en cualquier caso la ecuación

d
TV(k = dk£ [23]

dx'

ya que ésta es consecuencia de [li]< En efecto, de [22] se sigue

-^-' V( Í = dA£ + — $A +' -^JL ok p. -tf,^- < - T\ d{ tf * ,
ò x' d'í/ ' d Y-i d x'

ecuación que se reduce a [23] en virtud de las ecuaciones del camp"
y de ser

¿i*", =<?,•*'*•

En particular, si JC no depende explícitamente de las coordenadas,
en cada sistema se «conservará» IL'.k, esto es, en cada sistema sera

0 «:* = ().¿>v
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Pero no hay que perder de vista que las componentes IL'.k individua-
lizan un objeto físico distinto del determinado con relación al siste-
ma (V) por

U'¡.k = £'tk -2>'.'„fV

á. De'[2] y [14] se deduce que la condición de que <>* {x} satis-
faga las ecuaciones del campo y la condición de hallar un sistema de
funciones ^* (.v) tales que, para todo D y cualquier -o* {x), sea

(»)

Ò Y V

s

\nf
i = 3 (j) (&.k vk + 2Ía Ç") s,, d «, [24]

son condiciones equivalentes. Puesta esta última en la forma

(«)
S \V = (j) (&. k B *•* -f £»:„ Ò f) a. d u,

permite reconocer en

íA = ¿,.CÍ*, -,= ^2>- t25!

las derivadas funcionales de la acción W considerada como funcional
de la frontera S—es decir, de las x* (u)—y de las ijrx sobré S. Pero
adviértase que 8 ̂ a es la variación de ^a en la hipersuperficie defor-
mada una vez trasladada dicha variación al punto inicial de la hiper-
superficie sin deformar. La propiedad antes indicada de que gozan j*
y Tta, conduce a Weiss a definir como pares de variables conjugadas
a. los pares \(sk, x**) y (ica, ^

a).
En cuanto al carácter tensorial de sk y ictt, [25] nos dice que Jt

es un vector covariante-.r y que •*«. es meramente contragrediente
respecto de '|a. Tanto una como otra son funciones de punto, porque
tal son *£''* y íPÍ«, y de la orientación definida por a¡.- Pero hay más ;
it y it«, no sólo dependen de la orientación de la hipersuperficie o en
el punto considerado, sino .también de la parametrización de <r, es de-
cir, jt y Tía dependen del punto y de la hipersuperficie parametrizada
S que pase por éste. La fórmula [12] ños dice que al efectuar una
transformación en las ur, st y ^a cambian de acuerdo con

í4=a,..'5·:*=A1:«íçi:*=À>;
REV. DE LA REAL ACADEMIA DE CÍINCIAS.—1952 10
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y análogamente

Por lo tanto, con relación a las transformaciones-H cada componènte
de st j de n«. es una densidad escalar.

Pasemos ahora a considerar los sistemas locales de referencia
subordinados en <r a las coordenadas curvilíneas S. La hipersuperfi-
cie cr considerada en sí constituye un espacio de w dimensiones. Si
xl = .v1 (wr) son las ecuaciones paramétricas de S en el espacio am-
biente X,,+1, es claro que los vectores ur linealmente independientes
y en número de n definidos respecto de R [P; i(V)] por las igualdades

u,—e, a'.r(u), [26]

â x'en las que a'_r.(u) = -^—-, son tangentes a c en el punto P = x (it).

Dichos vectores constituyen, pues, una referencia local R S | P ; • ( « ) ]
en el punto P para la variedad <r de w dimensiones. Pero no menos
claro es que para ampliar RS ' [P ; (M)]. hasta conseguir un sistema
de referencia local para el espacio ambiente XB t , , es menester aso-
ciar a cada punto P £ cr un vector contravariante linealmente indepen- •
diente de los vectores ur que corresponden a dicho punto, .es decir,
un elemento extraño a la .variedad o. En realidad, se trata, del mismo
problema que se plantea cuando de una función F (.r) se conocen
sus valores sobre una hipersuperficie <s. Dado F*'(«) = F [.r(«)], se
conocen todas las derivadas interiores de la función F <(x). sobre o,
pero no es posible calcular las n + 1 derivadas d¡ F, ni aun sobre <r,
si no se nos da para cada punto de o la derivada de F en una direc-
ción que salga de <r, esto es, tina derivada exterior(7\

Sea, por consiguiente, X' (M) un campo de vectores definido so-
bre S con la condición de que en cada punto, P Ç u el vector X' (M)
sea independiente linealmente de los Ur'fyi). X'•(«) es, pues, un cam-
po de seudonormales en el sentido de Schonten. Dado qtie

a.= ( ._l) 'S"l..- '- - !,.>!...«

donde 5 0 1 . . . ( - - 1 , 1 + 1 , . . « es una componente cualquiera del «-vector

(7) Cf. CouRANT-HtLBKKT. II, pág. 111 y ss. ; pág. 346 y ss.
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[u,... . , u], X' (w) será independiente de las u r siempre y sólo cuando
i »

X' a.. =
a\ a]i . .. ali

«?„«!„...«'!„

[27]

sea distinto de cero. Esta es la única restricción que imponemos al
campo X' '(«'). Por lo demás, puede ser cualquiera. El producto .con-
tracto T = X' 5, es una capacidad-.r, pero una densidad-«. Fijado el
campo X'(«), la referencia local ambiente R [P ;•(.*•)~| está ligada
con la Rs [P ; («)] ampliada con X' por la matriz a'.* («•), cuyos ele
mentos son

à x'
«'•o = X' («), a:r — õ ur [28]

Es fácil ver que la matriz inversa bk;'{n) tiene por elementos

*'.'.• =
9 ,X*

A'' - 3<* X ! - l '' v*
""• * "¡̂  t - T 0/* '

[29]

donde vik es la capacidad covariante-^' .antisimétrica de segundo or-
den ligada al n—¡1 vector (— IT [u,,..., U, u , . . . , u]:

°,-* = <-D'J - O . . . /í - J , A + 1 . . . í ( , /+1 . (-6<i) (8)

Las fórmulas [20] ponen de manifiesto que, como era de prever,
los elementos bk-í dependen del campo X' (M) elegido, pero mientras
b-i dependen esencialmente del vector X', los elementos &',• depen-
den sólo de la dirección de X', en tanto que funciones homogéneas
de grado cero de las componentes de dicho vector.

'La interpretación geométrica de los elementos [29] como proyec-
tores es inmediata : P¡ = (//;,..., I"; ) proyecta sobre el plano -x tan-
gente a u en P los vectores contravariantes de X)1+1 paralelamente al
vector X¡, es decir, hace corresponder a cada v" aplicado en P el vec-

(8) Cf. ORTIZ FORNAGUKRA, [1], § 4.
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tor de - v" — b*¡ i'1, 'proyección de v1 sobre r, paralelamente a X'. 'Es
ésta otra ra.zón para que las b'-; no dependan de X', sino de su di-
rección. En cuanto a b°-¡, éstas permiten proyectar vl paralelamente
a K, con lo que salimos de la variedad c a menos que cr( v' = O, en
cuyo caso la proyección es nula.

En una transformación-«, y por su propia definición [-8], a'-'» es
para cada i independiente de la parametrización, es decir, los a'-o son
n + ~L escalares-«, mientras que los a-,—para í fijo—se transforman
entre si como las componentes de un vector covariante-M. Escalares-it
lo son también los n + 1 elementos ó";, mientras que los br-¡—i fijo—
constituyen n + 1 vectores contravariantes-«.

5.- Consideremos de nuevo las ecuaciones [14] del campo. Ponien-

do de manifiesto las derivadas implícitas en el símbolo — — j - , [14-J

toma la forma

d-£ 3 , d"~£ 3 / o£ \ a£
~r- 'i?.'* + r tf¡.+ a; = ( ) . [30]

d t f i d t f t ' ' d t f i d t f ' '\o'F,-l o*fl

lis decir, las ecuaciones del campo constituyen un sistema de ecuacio-
nes quasilineales entre derivadas parciales de segundo orden. Supon-
dremos la existencia de toda una categoría de hipersuperficies a tales
que si sobre una de ellas—o una parte de una de ellas—cualquiera se
dan <!>a y <{>?/, el sistema [30] determina unívocamente el campo t{/T {.v).
Uar la «cobertura» i* {«), esto es, los valores del campo sobre la hi-

persuperficie i parametrizada, es dar a la vez -~- ^ 6?,- (u), es de-

cir, todas las derivadas interiores. Por lo tanto, xina vez fijado el. campo
X' (it), sólo cabe dar las derivadas primeras de las ^a en la dirección
de X¡, <>A) = fy".k X*. Es sabido que el formalismo canónico sustitu-
ye las M funciones tyV por los «impulsos« 1%. Nótese que por su pro-
pia definición [25], válida en S, éstos 'son independientes del campo
X'I(M). No así las derivadas exteriores <^o, las cuales dependen esen-
cialmente de X1'. Para introducir aquel formalismo es menester, pues,

considerar referencias locales ligadas a X' y S.

En lo que concierne a las referencias locales, cabe sustituir las
que están vinculadas al sistema de coordenadas l(V) en Xn+1, por las

[X, u, . . . , u] o por las [££, u, ..., u], donde SC es la densidad vecto-
1 a • í n

rial contravariante-.r definida respecto de R [P; (x)} por' las coin-
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X'
ponentes SC' = —— (T = X' s¡, ec. [27J). Estas últimas son las que,

ya introducida la métrica, adoptan Weiss y Roberts. íEjí tal caso, la
coordenada •(") es en rigor una seudocoordenada v' -del tipo capacidad.
Adoptemos primero este punto de vista, es decir, en vez ide las x1,
consideradas como parámetros, introduzcamos los («•+ 1) paráme-
tros v, ur mediante (K + 1) funciones- xl = 9' (v, u) sujetas a las
condiciones de que para v = O, esto es, sobre S, sea

,f,-(o, „) = *••<*), . (4f) = <r>), (.iilU J£- s <>).
\ o v /v = o \ du' /v = () ¿)«'

Dado que el jacobiano de la transformación se reduce a la unidad
para v = O, cualesquiera que sean las ur dentro del dominio de defi-
nición de .v' 1(7»), en virtud de

í rl Ir« A-1 • v>'\ )n^")=i-^r:r^-i=f0.-=1' ™

también para valores suficientemente pequeños de v será D (v, M) ̂  O
y existirá con, seguridad la transformación inversa (v. M) -> (#). Por
ejemplo, cabe tornar

• ?' (v, w) = .v1' (K) + v <F (w) ,

con lo que se cumplen evidentemente las condiciones antes indicadas
Pero no se pierda de vista que si bien en cada P € S el valor del ja-
cobiano es la unidad, no será así, en general, en un entorno de .P
con puntos fuera de S. Sobre ésta se tiene

OX - = Sr(u), ^-^a\r(u), -^I7-=3/(w), — — = *:,-(«), (sobre S), [32]
3'' dnr "' a.v'' " dx'

donde las a'.,- y ¿'.,- están dadas por [28" y [29]. Ahora bien, en todo
problema variacional ligado a una integral de la forma [8], junto a
las transformaciones generales

.v''=.r<V°, ...,*'"), <l·a = ·r(<V'1 , ...,f v ; .r '° , . . . ,*'")

cabe considerar en particular transformaciones en las que se conser-
van los parámetros y se someten a transformación las variables ^ y
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transformaciones en las que, por el contrario, se expresan las xl eft
función de n + l parámetros y se conservan las <^*(9). Esto último
significa geométricamente que el campo ù* se sigue refiriendo a los
ejes locales primitivos, pero que se ha adoptado para los demás en-
tes—en' particular los .puntos del espacio—un nuevo sistema de coor-
denadas. Por consiguiente, las componentes de campo se tratan f o r -
malmente como escalares. En estas condiciones, es claro que en un
entorno suficientemente pequeño E de P6S se podrá escribir

í/i + i) , u + ii
J^(*,^tti)rf*-=J':ë(;, $-,<!,?*),*£.
E E

donde

2(;'*"< *;*)~ UN-'*"• *"')•
^,^1=^4,

oxk axk

Las variables x son los nuevos parámetros que sustituyen a las x.
Tomemos. en particular

~0 " —/• ;-
X = V , X = U ,

y hagamos

;. <H" Ta <H*
<l> = —; . ' i - r ^ -

du"

Las ecuaciones del campo toman la forma

^__4.f^_.^_Y^Ã)sa0i [33]d ï" â v V d *a / • d ur \ â tf, '
siendo

JC=D(v,u)jC

De esta última identidad se sigue

à o _ d ï „. . d£ d '^.S-^- = D ( v , « )
d'if" â<(.?* a^

(9) Cf. DE DONDEE, págs. 9 y 42, y en el apéndice, R. DALADRIERE, La forme
paramétrique ou homogène dans le calcul des variations.
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relación que sobrc'S toma la forma

(£?¿)= #.*,= *»
v = ()

en virtud de [25], [31] y [82]. Si se extiende la definición' de ic» (M)
por fuera de S -haciendo

= a ( v , « ) = f f ? a , [34]

las ecuaciones [33] nos dicen que sobre la hip ers ¡¿perfide S es

'**« 0£' d ' 0£ ' [35]¿v a¿a ¿z*'" \ á <])?,. /'

<K ¿5>0a
donde representa el valor 'de para v = 0.

d -> ' • d v
Introduzcamos el ente Pt definido en cada referencia local sobre

S por la igualdad análoga a [25]

PA=„,.#':*. [36]

Con relación a los ejes [5T, u,.:., u], la correspondiente definición
i »

será

P* = ë,- «í* = 3,- ÇÈ 3Í* -5Í0 $?*) .

Pero sobre S es

dxj

uo-v> d v "">

c)^'

= o,- a?' = i ,

' .' > rd"

por consiguiente

P, = £tk - ?\ fik - A - ». $'* -

Generalmente se hace

SV («) s P0 = £ - T„ ¿a, A, («) = Ì3, = - *„ &r . [37]



— 152 —

Estas cuatro funciones—cuya variancia-w estudiaremos más adelante—
son las llamadas funciones hamiltomanas (Cf. Weiss, [2], pág-. 108,
ec. 5.3; Roberts, [1], pág. 132, ec. 23). Dado que sobre l'a hiper-
superficie S se tiene

d£
d A"

[38]

se podrán despejar en [38] las ^a como funciones uniformes y deri-

vables de las variables -«. si el determinante —: rr- es distinto de
•••dífd^

cero. Pero es fácil ver que esta condición es la misma que debe cum-
plirse para que las ecuaciones del campo determinen' unívocamente
todas las derivadas segundas de las ^, dadas que sean la «còberiu-

d <!?a

ra» fy* (w) y -yf- sobre la hipersuperficie S. De las funciones hamil-

tonianas [37], la única realmente importante es la primera, %K \u).
Si se fijan' sobre S las 2 v funciones fy* (u) y r^ (u), las derivadas ex-

teriores .' v —^- están determinadas unívocamente por SK(ii)' yd v ¿> v \ / ->
ias ecuaciones del campo. Basta para verlo efectuar la transformación
de Legendre fy* -> ^a., £^£f{. Es fácil ver que, admitida la no anu-

lación de —:—-TJA, es
d ' f d t f f

Ò3C ò£ Ò3Í •„ Ò3Í d£
• — — ^ ,

¿if dp -d^ à~ít*.r dtfr

y, por lo tanto,

¿« - _¿Ü_ _ _-Íüü - ^J^-AÏL-^I^d^\ mi
• - av á^ ' 1 "a=" ¿>v dy dur\dtfr~) l J

con lo que queda completado el esquema canónico.

En resumen, dada una hipersuperficie u y fijados : a) un sistema
de coordenadas l(.v) en Xn+l ; b) un sistema de coordenadas curvilí-
neas ur sobre <s, con lo que ésta se convierte en una hipersuperficie
parametrizada S ; c) un campó de vectores contravariantes X' (M) so-
bre S y no tangentes a S, y d) 2 v funciones ^"VOO* •*»{«)> co.mpo-
nentes sobre S respecto del sistema de coordenadas elegido en XB+1

del campo <^tt y del conjugado canónico -K^, quedan determinadas' uní-
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ri '! a à ~
vocamente sobre S las derivadas primeras v — en virtud de

dxk J dxk

las ecuaciones [39] :

à*/1 Õ3Í ¿><1/'

a**~ -O
•Ò9C õ tà3C\
où" dur \ dtf, f

-1- o - k ,
du1'

à K a.

°* + ~a»r"*-*T^T = -TTT - ITT- | -TïT | °* '+ T^ * * - (Sobre S).

De lo que precede se sigue que el formalismo canónico no implica
necesariamente la introducción de una mètrica en el espacio ambien-
te Xn+1 y que basta para establecerlo la introducción de un campo
de vectores exterior a S.

Consideremos ahora la variância-« de las magnitudes [37j. Es
fácil comprobar que

JK =«':*<!,.**, A r=îr :Ao ? t f Î , .

Pero, conforma vimos, cada componente o, es una densidad escalar-M,
como también lo es evidentemente T = X¡ u,. Por consiguiente, las

X/e

componentes 3Ck=-— son capacidades escalares-«, es decir,

sf^a^úar*

es un escalar-it ya que 'U'-i, es independiente de la parametrización
(cf. ec. [22]). Análogamente, dado que para cada valor i (— O, 1,
-'> -.., n) a'-,- es un vector covariante-w, el conjunto de las n funcio-
nes //.r constituyen en S un campo de densidades vectoriales covarian-
tes-M. No es necesario insistir acerca de la variancia-w de las restan-
tes magnitudes. Es claro que respecto de los cambios de parametri-
zación •if"- es una capacidad1 escalar, T;X un escalar y que A°, son vec-
tores covariantes en número de v.

El formalismo anterior se apoya en la elección de las referencias

locales auxiliares \3C, u, ..., u]. Es precisamente esta elección lo que
i ' « "

conduce a introducir la seudocoordenada v y hace de £7f un escalar
respecto de los cambios de los parámetros «''. Pero esto trae consi-
go que la funcional de ^ (u) y ^a (M)

(»)
H = f f 7 f r f « [40]

s-
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dependa esencialmente de la parametrización, ya que si se adoptan
nuevos parámetros u', resulta

(«) (»;
H=Í3fí(a)(iu=ÍSfC(u)-^-du'

s s

j siendo SC un escalar-M, este valor es distinto de

(n) («) '

\V = í3Í' du'— ï f K d u ' .
s s

Este inconveniente puede evitarse eligiendo como referencias locales
auxiliares las [X, u, ..., u.J. El cálculo se desarrolla en todos sus

i »
puntos de manera análoga al caso anterior, por lo cual no lo repeti-
remos limitándonos a indicar el resultado. '-Llamando «° a la coorde-
nada asociada a X, de suerte que sobre S u" ~ O, se define'

-, (,,Q »)- 0£> == a(x) d~ A !̂_^ ( « , « ; „ _ ^^ ó(x^¡} -¿^- aa.A

con lo que sobre S es también ahora

->,*) = T £PV°*- - = e.(«)

(cf. [29]). En cambio, P* se sustituye por

p;=«í «i'i=»?.-(-f'»•;*-*'i-i-';)=-c'»%-*.'!'•;.
es decir,

W*^PÍ = t^-<-d 1 >

a«»

mientras subsisten las expresiones para las hr> como era de prever.
La función hamiltoniana £K* que reemplaza a la anterior 3í es una
densidad escalar-«, con lo cual la funcional

(»)
H*=-fsK*du
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es independiente de la parametrización. Con relación a ¿f{*, las 'ecua-
ciones del campo adoptan la forma canónica

¿ci-" ^ òsi* a*« = òste* â / ¿ g y * \ 4 .
àu« ~ ¿y ' au" ~ ,dp~ , ¿ „<- \ ¿) 4,;« | '

donde

.'. 7. <H"
*-r = *-r=-— •

¿>ZÍA

Sin embargo, tanto en un caso como en otro las n funcionales de
P («) y ««.(«)

(«)
Hr=J hr(u)au [42]

carecen de variância definida, excepto cuando las transformaciones
M -> u' sean lineales. Se tiene, en efecto, en ambos casos

d(u') du's
h («) = -——!- / / (* ' )

<? («) a ur

y. por lo tanto,

(») (»)
f ¿l («') d u's ò (u) ' ¡' ô n:s

H = I —— h'(u')—— da '= I h ' - ( u ' ) d u ' .
r- J à (U) du<- i V 0(U') J dur >

s s

Si

du'

entonces

H/.=·Bí,. H' /

J Hr constituye un vector covariante-M.

Junta de Energía Nuclear
Sección Teórica

Madrid, junio de 1952.
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