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El caracter covariante de las ecuaciones fundamentales de una
teoria general de los campos exige la determinacién ‘previa de la va-
riancia de las magnitudes que en ella intervienen. El objeto de este
articulo, primero de una serie, es precisamente fijar el de las que se
encuentran en el formalismo canbnico. Se demuestra, ademas, que
este formalismo no implica necesariamente la introduccion de una
métrica ni aun Ja de una conexi6én de tipo afin. El formalismo canoé-
nico queda subordinado simplemente a la eleccién de un campo de
vectores contravariantes no tangentes a determinadas variedades n-di-
mensionales. Dicho campo es, por lo demas, completamente arbitrario.

1. Sea ¢*{x) un campo definido con relaciéon a un sistema de
coordenadas (#) en una variedad X,,, de-n + 1 dimensiones conside-
rada en si. No es necesario suponer por el momento que X,,, posea
una estructura ; es decir, X,,, constituye un espacio amotfo. En cam-
bio, por lo que toca a las componentes $*.del campo, hacemos la hi-
pétesis de que en cada punto P € X,,, el campo es base de una repre-
sentacion lineal homogénea de grado v del grupo de las transforma-
ciones afines en el espacio E,,, tangente a X,,, en P que conservan
el punto P. Con otras palabras, si en el punto P pasamos del siste-
ma de referencia local R (P) en el que las componentes. del campo
son *(P)I(x =1, 2, ..., v), al sistema de referencia R’ (P) definido
por los nuevos vectores de base €; = €, a’,, a% (|a* |3 0), las nue-
vas componentes ¢”® son funciones lineales y homogéneas de las ¢
¥ reciprocamente:

40 = A%y, P =1l (1
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donde los coeficientes A% de la matriz ‘de transformacién no singu-
lar son funciones de los coeficientes a]?‘,‘ y Bf. son los coeficientes ‘de
la matriz (B) inversa de la (A). En particular, cuando en X,,, se
efectfia una fransformacién de coordenadas regular

x":x“(x"’, con xM), f=01,...,7), [2]

ésta induce en las referencias locales R [P ; (x)] asociadas al sistema
de coordenadas (&) el cambio

Aty =9, o, Palx) =0, (1)

v, por lo tanto, se obtiene un campo de transformaciones lineales
Al '(-’V’),'B?a () entre las componentes +*ix) y sus transformadas
V(&) vinculado a [2].

Sentado esto, admitamos que las ecuaciones del campo ¢ {x) de-
rivan de un principio de extremum, y sea

(n+1)

W o= ].f(x", o, L{ff/() dx (q;af;( =0, b“) i3]
D

la integral de accién. En ella, d ¥ = d #° d 47 ... d #* es una capaci-
dad escalar y W, en tanto que magnitud no localizada en un espacio
amorfo, debe ser un escalar si pretendemos que no dependa del siste-
ma de referencia adoptado. Por lo tanto L es necesariamente una den-
sidad escalar—la densidad de accién lagrangiana. D es un dominio ar-
bitrario del X,,, limitado por una hipersuperficie o, suficientemente
regular como para que tengan sentido las operaciones que efectuare-
mos. De acuerdo con la notacion de Roberts [1], llamnaremos S a la
superficie ¢ una vez dotada de un sistema de coordenadas curvilineas
', ..., u", es decir, a la superficie s una vez parametrizada. En 10
que sigue convendri también distinguir dos tipos de transformacio-

L 9, (e 6;) es el operadoz" de derivaciéon parcial respecto de- st (o 27%); e

‘es el operador de derivacion total respecto de x*, Un operador difiere del otro fini-
camente cuando se aplican a funciones compuestas.
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nes, las transformaciones [2] de coordenadas, en el espacio ambicn-
te de ¢ y las transformaciones regulares
il

=" (W', ., w0’ (r=12,....,m [4]

de coordenadas curvilineas en ¢. El comportamiento tensorial dé las
diferentes magnitudes es distinto, por lo general, segiin se trate de
unas u otras transformaciones. En el caso de las transformaciones [2],
la variancia de los diferentes entes se llamara variancia-x; en el caso
de las transformaciones [4], variancia-u.

La variancia-+ de la.densidad L estd bien definida: es la varian-
cia tipica de las densidades escalares

£ 40, 40) =0 L (747 4, ]
donde

. d(x"’,...,x"”) ___lﬁ R
A= O .., T A 18]

es el jacobiano de la transformacién inversa de la [2], igual al reci-
proco -del jacobiano de ésta. No ocurre asi en el caso de las compo-

nentes derivadas ¢°%;. En efecto, de [1] se deduce como ley de trans-
formacién de éstas

ko g % -
o= AL B4 0, AT, LY 7]

13 ( . N e
o =Bl al, 4%+ o, BY, 4 (7]

O sea, en un cambio de coordenadas (¥), las componentes deriva-
das ¢% no se transforman entre si salvo en el caso de que los ele-
mentos de matriz A’ —y por ende los de la matriz inversa Bfa—sean
constantes.

2. ..Calculemos ahora la variacion 3 W de la integral de accion W
para una variacion infinitesimal (deformaciéon) del dominio de inte-
gracion D y una variacion infinitesimal arbitraria de las componen-
tes del campo. En este proceso permanece fijo el sistema de coorde-
nadas en X,,,. Si aquellas variaciones son, respectivamente,

st +e 7 (x) =

'J:’a {x) — 4‘“ () ¢ 7% () = ,!:“\ (a) (8]
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en las que ¢ es el pardmetro infinitesimal de variacion, un calculo ya
clasico conduce a la variacién primera de W

(n+1) )

) L
PW=c¢ af'qa,—f— 9 9 a’x’+s¢fciuia’u
o¢* 24 .
s

D

9]
(7+1) ()

= ().E_ 0. oL ndx+e Lo v -
d’,‘»“ ax’ dkp?;

D

ot o;n*\d u,
4%

en la que s; d u es la componente ¢ de la capacidad véctarial covarian-
te-x que define un elemento de hipersuperficie de S, De las dife--
rentes magnitudes que aparecen en [9], respecto de las transforma-
ciones [2] 7* es cogrediente de ¢% y ambos estan lotalizados en
un mismo punto & y ' es un vector contravariante, asimismo loca-
lizado en #, en tanto que ¢ 7' es una deformacion infinitesimal®’,
Por lo que concierne a la expresion

L oL 9 ( a.c) (10

DR F N P -
en la que se reconoce desde luego la derivada variacional parcial
respecto de V* de W considerada eomo funcional de las componen-
tes del campo ¢, es facil ver ya en [9] que.es una densidad contra-

. oL
grediente-r respecto de las ¢*. Finalmente, S es un ente de va-
‘ Q.7
riancia mixta

P, = ‘ [11]

con el caricter de una densidad contragrediente respecto de 4* y
contravariante con relacion al indice i. Es claro que todas esas mag-

(2) Ci., por ejemplo, el excelente articulo de E. L. Hiwi, Rev. of Mod. Phys.,
28, 233 (1951).

(3) Scmoutex, pag .95 yss. ‘

(2) Cf, por ejemplo, Ortiz FornagUERA, [1], pag. 594,
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nitudes son por completo independientes de la parametrizaciéon S de
s, es decir, escalares-. En cambio ¢;, que es una capacidad vectorial
covariante-r, depende esencialmente de la parametrizacién. Basta para
verlo ‘efectuar en la integral de superficie que -aparece en [9] una
transformacion [4]. Se tiene entonces

o;du=g;du,
esto’ es,
('Y, ... u'”) 1

Go= ——— 6h = —— ;- [[‘)]

’ ety .. u) t As

lo que prueba que cade componente o; es una denstdad escalar-u (3
Las n + 1 cantidades ¢; no sélo dependen, pues, de la hipersuperfi-
cie ¢ base de S por cuanto definen el hiperplano tangente a ¢ en el
punto P en que se las considere respecto de la referencia local R (P),
sino que para P fijo en o y ¢ fija cada una de ellas varia con las trans-
formaciones [4] de acuerdo con [12]. »

Volviendo a las magnitudes [10] y [11], es ficil comprobar direc-
tamente lo dicho acerca de su variancia sin necesidad de acudir a [9].
Asi por ejemplo, de [B] y [7'] se deduce sin més- '

0L oL L

P, = =a'Bf 4, P,
ooy o, 94 !
Ligeramente mas complicado es el calculo para :;ﬁ ; Derivando en
0
|5] se obtiene
oL _ B@u_é_{’_’JrA,c),kB@a‘ oL
vooy oY 4%
15} oL ) oL oL (13}
- ) =4 B?a——'— +’~\’a’/¢ B?a 3
o' \ 9% ox* \ow?, cu?,

$in mas que utilizar la formula de derivacion de determinantes
AL A=A8";0; at,=A" 9, al,
TTe—

(3) Roberts, en cambio, dice erréneamente que o, (N, en su notacién) es una
densidad vectorial para transformaciones de las u7, en abierta contradiccion con [12].
(Roweres, [17, pag. 131.)



— 142 —

y la relacion
A ==pt

De [18] se sigue inmediatamente

6¢a aq‘a ax_z

3L oL 9 [of :
3 _ — A B, 8L ’
o 4% 5 of
como queriamos demostrar. Es sabido que las ecuaciones del campo
son precisamente, en la forma de Lagrange, las que resultan de igua-
' oL .
lar a cero S » esto es, recordando [11],
v 4
oL 0

~ Pt = (. 14
9% o« T " b

3. Y se plantea ahora un punto delicado que pasé por alto a al
gunos autores. Hasta aqui ninguna necesidad hubo de hacer hipoéte-
sis acerca de la estructura del espacio X,,,. El formalismo es por
completo covariante en cualquier caso. Pero supongamos que se trata
de-comparar por diferencia las componentes variadas $* correspon-
dientes al punto variado # con las componentes iniciales $* en el punto
inicial #. El razonamiento que se suele hacer es el siguiente: sea

0 (w) = 3% (o) — 42 () - [15]
De [8] se deduce
P =@+ @ =4" () 4% @) o () + 1 @),
salvo infinitésimos de orden superior al primero en . Por lo tanto
C@) =t @) 4@ @) ) [16]

‘Tl error consiste en que carece de todo sentido en una teoria cova-
riante comparar directamente dos magnitudes (%) y ¢*(x) locali-
sadas en punmtos distintos, ¥ y x. Ahora bién, si pretendemos realt-
zar aquella comparaci6én, debemos poseer una ley que nos permita

) Cf. Werss, [1], phg. ?727: [2], pag. 105, v Roserts, [1], pag. 131



— 143 —

trasladar una cualquiera de las dos magnitudes al punto de aplicacién
de la otra y entonces, referidas ya al mismo sistema local de coorde-
nadas, efectuar la comparaciéon. Por consiguiente, es menester con-
tar con una ley de transporte paralelo, por lo menos para las compo-
nentes del campo. O con otras palabras, es necesario que el espacio
X,.s posea una estructura afin con relacion a las 4% como minimo.

Admitamos, pues, que en X,,, se ha definido una ley de traslacion
para las componentes del campo

*a ~ o 3 Ba % -
¢(x+ox)=¢(x)—1\pk4) 5« [17]

*
donde ¢* (x + 3 x) son las componentes del campo en & trasladadas
al punto 2 + 3.v. En estas condiciones podemos formar con pleno
sentido el ente cogrediente respecto del campo ¢*

e () = 213 (@) — 4" (), (18]

expresion en la que ¥ (a) es el traslado a x de U* (%) dé acuerdo con
la ley de traslacion [17]. Salvo infinitésimos de orden superior al pri-
mero, [18] equivale a

£ 0 () = 47 () — 4" () + A5, 0 ()3 ot

=" {x)4-0 %% V9" (%),
es decir, en vez de [16] obtermemos

2 vy =t (&) + ¥ v, 07, [19]

en la que V,d* es la derivada covariante asociada a-la ley de tras-
lacion [17]. La ecuacién [19] difiere de la [16] por la sustitucién
de ¢"s—que carece de variancia {cf. ec. [7])—por la derivada abso-
luta v, P,

Sustituyendo 7% (#) por su valor deducido de [19] en la integral
sobre la frontera S de D que aparece en [9], resulta:

(n+1)
3L
o 4*

()

Tdx4e ¢ (‘G'k oF + P, ’:a)cs,i du [20]
s

IW=c¢

D
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en la que
Tlo= L3, — 20,0, 21}

es nuna denstdad tensorial mixta de segundo orden. Es claro que, por
el contrario, el ente definido por Weiss

Uiy =L, — P, %, [22]

{cf. Weiss [2], pag. 106, ec. [3.5]) no es, en general, un tensor. En
efecto, las leyes de transformacion de Ly P« y las ecuaciones [T4
permiten escribir

Ul =8 al, o (L — gt ) — 8 B0, Atdl,, @y

. i ; ’ . ' 3 : Py !
=8a, b U — A B0, A d,, 2T,

relacién que pone de manifiesto la existencia, en general, de una par-
te pardsita—el segundo término del segundo miembro. Esta desapa-
rece en el caso de un espacio plano referido a coordinadas cartesia-
nas generales, pero entonces Gir=U'». Dado que las ecnaciones
del campo [14] adoptan la misma forma en cualquier sistema de co-
ordenadas, en el ente W zdefinido por [22] en cada uno de ellos cum-
ple en cualquier caso la ecuacién

)
0x°

Uiy =09,L 23]

ya que ésta es consecuencia de [i4]. En efecto, de [22] se sigue

be) - oL L .
qpiymo, o O g, 2 0L gy, O
ox' o" T oY d«

i ] a
g’.a—-fﬁu ai{‘l‘./¢|

ccuacion que sé reduce a [23] en virtud de las ecuaciones del campo
y de ser

0, 4% =0, 4%

En particular, si £ no depende explicitamente de las coordenadas,
en cada sistema se «conservariy U.:, esto es, en cada sistema serd

0
ot

cl,[.ik-—”:().
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Pero no hay que perder de vista que las componentes s individua-
lizan un objeto fisico distinto del determinado con relacion al siste-
ma (+’) por

e Y 7 a
‘Z[./(—,C Gop — g}.la(;l./(.

4. De [2] y [14] se deduce que la condicion de que ¢* () satis-
faga las ecuaciones del campo y la condicién de hallar un sistema de
funciones ¢* (+) tales que, para todo D y cualquier 4* (¥), sea

(n)
W= (D (Gl of 200 5,4, [24]

S

son condiciones equivalentes. Puesta esta altima en la forma
)
3\\’:95(‘G'./e?)xk—}-f".yﬁqaa)cidu,
.S

permite reconocer en

$,=05, G, %, =0, P, [25]

las derivadas funcionales de la accion W considerada como funcional
de la frontera S—es decir, de las 2% (u)—y de las §* sobré S. Pero
adviértase que 8 ¢* es la variacion de ¢* en la hipersuperficie defor-
mada una vez trasladada dicha variacion al punto inicial de la hiper-
superficie sin deformar. La propiedad antes indicada de que gozan s
Y m«, conduce a Weiss a definir como pares de variables conjugadas
a.los pares ((sx, #%) v (ma, $%).

En cuanto al caracter tensorial de s y ms, [25] nos dice que s
es un vector covariante-r y que w, es meramente contragrediente
respecto de ¢*. Tanto una como otra son funciones de punto, porque
tal son Gis y Pla, y de la orientacién definida por s;. Pero hay mas;
St Yy ®, no s6lo dependen de la orientacién de la hipersuperficie s en
el punto considerado, sino también de la parametrizacién de s, es de-
cir, s, y o dependen del punto y de la hipersuperficie parametrizada
S que pase por éste. La férmula [12] nos dice que al efectuar una
transformacién en las «", s, y =, cambian de acuerdo con

s,=0,Gl =04, Gl =45,

EI O

REV. bE 1A REAL AcADEMIA DE Cixvcias.—1952 10
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y andlogameunte

2 . . . N
Por lo tanto, con relacidon a las transformaciones-u cada componénte
de s¢ v de =, es una densidad escalar.

Pasemos ahora a considerar los sistemas locales de referencia
subordinados en s a las coordenadas curvilineas S. La hipersuperfi-
cie s considerada en si constituye un espacio de n dimensiones. Si
x' = &' (u") son las ecuaciones paramétricas de S en el espacio am-
biente X,,,, es claro que los vectores u, linealmente independientes
y en ntimero de n definidos respecto de R [P ; )] por las igualdades

u =e, a (u), [26]

: 2
en las que & J(u)= S

Dichos vectores constituyen, pues, una referencia local R, [P (u)]
en el punto P para la variedad s de » dimensiones. Pero no menos
claro es que para ampliar R, [P {(u)] hasta conseguir un sistema
de referencia local para el espacio ambiente X,,,, es menester aso-
ciar a cada punto P € ¢ un vector contravariante linealmente indepen- -
diente de los vectores u, que corresponden a dicho punto, .es decir,
un elemento extrafio a la variedad s. En realidad, se trata del mismo
problema que se plantea cuando de una funciéon F (1) se conocen
sus valores sobre una hipersuperficie s. Dado F* ) = F [ ()], se

x7 .
——, somn tangentes a ¢ en el punto P = x ().

conocen todas las derivadas interiores de la funcién F (). sobre o,
pero no es posible caleular las 7 + 1 derivadas 9; F, ni aun sobre s,
si no se nos da para cada punto de ¢ la derivada de F en una direc:
cion que salga de o, esto es, una derivada exterior (@,

Sea, por consiguiente, X' (#) un campo de véctores definido so-
bre S con la condicién de que en cada punto. P € el vector X' {u)
sea independiente linealmente de los u,(x#). X'{u) es, pues, un cam-
po de seudonormales en el sentido de Schouten. Dado que

6; = (-— l)l:s(ll‘..l’ 'l,l‘+’1...ﬂ

donde SO!-..¢ Li+l:.» e5 una componente cualquiera del n-vector

>(7) Cf. Courant-Trserr, 1I, pag. 111 y ss.; pag. 346 y ss.
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ri o . . ’ -
[u,...,u], X' (u) sera independiente de las u, siempre y sdlo cuando
1 -

XOxt,., X"

0 1
. Q. . @y
X'6, = =T 27}

sea distinto de cero. Esta es la tinica restriccion que imponemos al
campo X'{u). Por lo demas, puede ser cualquiera, El producto .con-
tracto © = X' s; es una capacidad-#, pero una densidad-x. Fijado el
campo X'(u), la referencia local ambiente R [P; (#)] estd ligada
con la Ry [P; (#)] ampliada con X' por la matriz dia 1), cuyos ele
mentos son

o= XE (n), at, = [25]

T owr

Ls facil ver que la matriz inversa b4; (1) tiene por clementos

”

ke )
B 2% [,".-_cﬂ"_é___l_ﬁ_l__:, X# [29]
¥ B P ] it T ry < - < ik ’ =
3, X T s, X
& &

;
donde o, es la capacidad covariante-x antisimétrica de segundo or-
den ligada al n —1 vector (— 1) [ue...,u, u,..., u]:

1 r-—-1 r+1 "

)

5,'1,2(“ 1)i+ﬁ SO...k"],/c"'l..-i BRIV LD ) ('é /t') (8)

-

Las férmulas [29] ponen de manifiesto que, como era de prever,
los elementos 5% dependen del campo X' (u) elegido, pero mientras
b dependen esencialmente del vector X los elementos b’; depen-
den sélo de la direccidn de X, en tanto que funciones homogéneas
de grado cero de las componentes de dicho vector.

ILa interpretacién geomdétrica de los elementos [29] como proyec-
tores es inmediata: P, = (4%, ..., 0" ) proyecta sobre el plano = tan-
gente a ¢ en P los vectores contravariantes de X,,, paralelamente al
vector X! es decir, hace corresponder a cada v* aplicado en P el vec-

(8) Cf. Orriz TornacUEra, [1], § 4.
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tor de = 7 = b¥; o', proyeccion de v' sobre = paralelamente a X'. Es
ésta otra razdn para que las b7 no dependan de X', sino de su di-
reccion. En cnanto a b, éstas permiten proyectar o' paralelamente
a =, con lo qﬁe salimos de la variedad s a menos que s; ¢/ = 0, en
cuyo caso la proyeccion es nula.

En una transformacion-u y por su propia definicion [28], a'v es
para cada i independiente de la parametrizacion, es decir, los afo son
7 + 1 escalares-u, mientras que los o', —para | fijo—se transforman
entre si como las componentes de un vector covariante-n. Escalares-u
lo son también los n + 1 elementos §’;, mientras que los 07 —i fijo—
constituyen n + 1 vectores contravariantes-u.

5. Consideremos de nuevo las ecuaciones [14] del campo. Ponien-

do de manifiesto las derivadas implicitas en el simbolo L, [14]

Q «?
toma la forma
e p )
2 — 47y W0, oLy 2L =0, (30]
047048, 0% 047 Iy o4

Es decir, las ecuacionés del campo constituyen un sistema de ecuacio-
nes quasilineales entre derivadas parciales de segundo orden. Supon-
dremos la existéncia de toda una categoria de hipersuperficies o tales
que si sobre una de ellas—o una parte de una de ellas—cualquiera se
dan &% y 4%, el sistema [30] determina univocamente el campo ¢ {x).
Dar la «cobertura» ¢* (1), esto es, los valores del campo sobre la hi-

B(b

Y (u), es de-

persuperficie s parametrizada, es dar a la vez

cir, todas las derivadas interiores. Por lo tanto, una vez ﬁjado el campo
X! (u), so0lo cabe dar las derivadas primeras de las ¢* en la direccién
de X/, ¢% = 4% X5 Es sabido que el formalismo candnico sustitu-
ye las v funciones % por los «impulsosy =,. Nétese que por su pro-
pia definicion {25], vdlida en S, éstos son independientes del campo
X!1u). No asi las derivadas exteriores %), las cuales dependen esen-
cialmente de X'. Para introducir aquel formalismo es menester, pues,
considerar referencias locales ligadas a X'y S.

En lo que concierne a las referencias locales, cabe sustituir las
que estan vinculadas al sistema de coordenadas («) en X,,,, por las

[X u u] o por las [&’ u ceny u] donde & es la densidad vecto-

rial contravarlante X df,ﬁnldd respecto de R [P; (¥)] por las com-
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ponentes &' = 3%’— (r = X'a;, ec. [27]). Estas tltimas son las que,
va introducida la métrica, adoptan Weiss y Roberts. En tal caso, la
coordenada () es en rigor una seudocoordenada v del tipo capacidad.
Adoptemos primero este punto de vista, es decir, en vez de las 4%,
consideradas como pardmetros, introduzcamos los (n-+ 1) pardme-
tros v, 4" mediante (n + 1) funciones- &' = ¢’ (v, u) sujetas a las
condiciones de que para v = 0, esto es, sobre S, sea

( a‘Pl.) - ﬂi_ =a’, (u).
du’ ~)=0a”l

pi (0, 2) = af (2, (

Dado que el jacobiano de la transformacion se reduce a la unidad
para v = 0, cualesquiera que sean las u” dentro del dominio de defi-
nicion de a7 ((a), en virtud de

(Ouhate x| g |
e e (X e=1h [31)

v==0

D0, )=

’

también para valores suficientemente pequefios de v serd D (v, u) = 0
y existird con_seguridad la transformacion inversa (v, #) = (). Por
ejemplo, ¢abe tomar

S, ) = & (o) v F ()
con lo que se cumplen evidentemente las condiciones antes indicadas
Pero no se pierda de vista que si bien en cada P €S el valor del ja-
cobiano es la unidad, no serd asi, en general, en un entorno de .P
con puntos fuera de S. Sobre ésta se tiene
' . o’ dv du’

=& (4), == a’, (u), — = gi(zl), —— == 4", (u), (sobreS), [32]

o o o’ ox

donde las afr y &% estan dadas por [28] y [29]. Ahora bien, en todo
problema variacional ligado a una integral de la forma [3], junto a
las transformaciones generales

! ’
.&".:A\‘[(x’oy ---\x’”)w q)a:’lﬂa(q’(l, ...»¢’v;x 0’ sey X n)

cabe considerar en particular transformaciones en las que se conser-
van los parAmetros y se someten a transformacion las variables ¢* y
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transformaciones en las que, por el contrario, se expresan las &' en
funcién de n + 1 parametros y se conservan las ¢*®. Esto ultimo
significa geométricamente que el campo ¢* se sigue refiriendo a los
ejes locales primitivos, pero que se ha adoptado para los demas en-
tes—en particular los puntos del espacio—un nuevo sistema de coor-
denadas. Por consiguiente, las componentes de campo se tratan for-
malmente como escalares. En estas condiciones, es claro que en un
entorno suficientemente pequeilo E de PE€S se podm escribir

{(n+1) , (n+1)

f_f(x, ¢, ¢?k)a’.x*:ff(§. $ 47 )dx.
E

B

~donde
0 (x) :
L(*, 47, 3%) = Y L%, 4% %),
A - a¢a — 42 ()__t;‘
A E T =9 T
ox dx*

Las variables # son los nuevos parametros que sustituyen a las .
Tomemos.en particular

y hagamos

” .
() Y ) ] 2"

Las ecuaciones del campo toman la forma

oL 9 oL a" 'a_'C' =0, 133]
09t 9v\od® du \ 0,

P=Do,0.L

siendo

De esta Gltima- identidad se sigue

&l

oL v
~ =D, u) L
T v )041 P

7 =9
T

il

(9) Cf. DE DonpER, pags. 9y 42, v en el apéndice, R. DaLADRIERE, La forme
paramétrique ou homogéne dans lc calcul des variations.
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relacion gue sobre’S toma la forma

(:‘f’(’a) = .‘Z“?a % =Ty ()

va=

en virtud de [253], [31] y [82]. Si se extiende la definicidn’ de =, (1)
por fuera de S haciendo

T, (1) = Q’?a, [34]
las ecuaciones [33] nos dicen que sobre la hipersuperficie S es

‘C)Tta*a_f'() ((‘).L’)

Ov T o¢* du \ 9%,

o, 3%,
donde 5 representa el valor-de —5 para v = 0.
M : v

Introduzcamos el ente P, definido en cada referencia local sobre
S por la ignaldad andloga a [25]
P, =o, U, . [36)
. . = . - .y
Con relacion a los ejes [&,u,...,u], la correspondiente definicion
' . 1 "

sera

Pero sobre S es’

_ o .
% = 9; C)()y =o & =1,
- c)xj
g, = ¢ =0;

1"

por consiguiente
l;;‘,: -Ca(.)k - @oa&?k = ‘Ca?k ‘—T:u('?'?k :
Generalmente se hace

ﬂf(u)s-};o-_—_,f—xalp“, R, (#) =P =—x, 4 . {37)
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Estas cuatro funciones—cuya variancia-u estudiaremos mas adelante—
son las llamadas funciones hamiltonianas (Cf. Weiss, |2], pag. 108,
ec. 5.3; Roberts, |1], pag. 132, ec. 23). Dado que sobre la hiper-
superficie S se tiene

o.L
K, o=, 38
T [38]

se podran despejar en [38] las $* como funciones uniformes y deri-
_oL
, 9§ 0
cero. Pero es facil ver que esta condicion es la misma que debe cum-
plirse para que las ecuaciones del campo determinen univocamente
todas las derivadas segundas de las ¢* dadas que sean la «cobertu-

24"
ov

vables de las variables =, si el determinante es distinto de

ran V*{(u) y sobre la hipersuperficie S. De las funciones hamil-

tonianas [37], la dnica realmente importante es la primera, F u).
St se fijanr sobre S las 2 v funciones ¢* (#) y =4 (), las derivadas ex-
. o4t 9%, . . ~
teriores —5-y —-- estan determinadas univocamente por & (1) y
las ecuaciones del campo. Basta para verlo efectuar la transformacion

de Legendre ¢* —> %4, L — FH. Es ficil ver que, admitida la no anu-

lacion de —‘—C)—"—C—— , €es
4% ¢k
OH oL oH i OH oL
09t a4 0%, t0g oW,
y, por lo tanto,
. 3% . om,
cP(){E_c‘)i_:__c)ﬂ(, ;= _OH _ 6. ():7( (30
ov - o, ov 94° o \ 3¢,

con lo que queda completado el esquema canonico.

En resumen, dada una hipersuperficie ¢ y fijados: a) un sistema
de coordenadas () en X,,,; b) un sistema de coordenadas curvili-
neas #” sobre s, con lo que ésta se convierte en una hipersuperficie
parametrizada S ; ¢) un campo de vectores contravariantes X' (u) so-
bre Sy no tangentes a S, y d) 2 v funciones * (%), =, (1), compo-
nentes sobre S respecto del sistema de coordenadas elegido en X,
del campo ¢* y del conjugado candnico =, quedan determinadas’ uni-
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. . . g ox .
vocamente sobre S las derivadas primeras abk Y 37 en virtud de
x X"
las ecuaciones [39]:
J 4" OH o
q) = e ——— Gk + q‘ b’-k‘
o x* 97, du”
Ot (OFH o (0FH\]| . 9% 5 S
dxt a¢" du" | 09%, Skt G Yay  (SobreS)

De lo que precede se sigue que el formalismo canénico no implica
necesariamente la introduccién de una métrica en el espacio ambien-
te X,,; v que basta para establecerlo la introducciéon de un campo
de vectores exterior a S.

Consideremos ahora la variancia-u de las magnitudes [37]. Es
facil comprobar que

Ho= ‘Z['.ka,-x/( , b, = ‘Z[',kc;a/f,

Pero, conforme vimos, cada componente s, es una densidad escalar-u,
como también lo es evidentemente t = X' g,, Por consiguiente, las
Xk

componentes F* = son capacidades escalares-n, es decir,

3(: S; ?,[’../e&‘k

es un escalar-u ya que 9. es independiente de la parametrizacion
{cf. ec. [22]). AnAlogamente, dado que para cada valor i (= 0,1,
2, .., %) d\r es un vector covariante-u, el conjunto de las n funcio-
nes i, constituyen en S un campo de densidades vectoriales covarian-
tes-u. No es necesario insistir acerca de la variancia-u de las restan-
tes magnitudes. Es claro que respecto de los cambios de parametri-
zacion qL“ es una capacidad escalar, =, un escalar y que &% son vec-
tores covariantes en niimero de v.

El formalismo anterior se-apoya en la eleccion de las referencias

S ‘ . L
locales auxiliares [, u, ..., u]. Es precisamente esta eleccién lo que
1

"
conduce a introducir la sendocoordenada v y hace de $H un escalar
Tespecto de los cambios de los pardmetros u”. Pero esto trae consi-

80 que la funcional de ¢* (1) y = (1)

()
H :fﬂ(d u [40]

s
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dependa esencialmente de la parametrizacion, ya que si se adoptan
£
nuevos parametros u’, resulta

() () ‘
H::jﬂ[(u)du:fﬂ[(u)-g—((:—,))—du’
s s

y siendo JH un escalar-u, este valor es distinto de

n) ()
H’—_—f,‘}(’dz’:fﬂfdu'.

S S

Este inconveniente puede evitarse eligiendo como referencias locales
auxiliares las [X,n,...,n]. El cilculo se desarrolla en todos sus
! .

”
puntos de manera andloga al caso anterior, por lo cual no lo repeti-
remos limitandonos a indicar el resultado. :-Llamando #° a la coorde-
nada asociada a X, de suerte que sobre S u° = 0, se define:

oL dix) oL oud

aglr T dlmm 947, ox*

T, (40 %) =

con lo que sobre S es también ahora
]
&
w8 = Py =, (W)

(cf. [29]). En cambio, P, se sustituye por

1y : . I¥3 ? ’
PL= ol U= 00 ( L3 — 2 4) = L0 — 4
es decir,
0
o

3

H*=P =1L-x

mientras subsisten las expresiones para las k,, como era de prever.
La funcién hamiltoniana &* que reemplaza a la anterior $H es una
densidad escalar-1, con lo cual la funcional

()
H“ =j 9[* du
s
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es independiente de la parametrizacion. Con relacién a H*, las ecua-

ciones del campo adoptan la forma canodnica

om * * .
W _OHT 9 (agc) ]

99t 0T+ _
dud o4° . oud 948 ou c)dg/‘:
donde
$o =yt = oy
ou”

Sin embargo, tanto en un caso como en otro las n funcionales de

Y5 () y mai(u)
(n)
[42]

H,zj ko (w)d u
s

carecen de variancia definida, excepto cuando las transformaciones
%t = 1’ sean lineales. Se tiene, en efecto, en ambos casos

ko )ﬂ__r)(u’) Qu”’ Wy
lf u)— a(”) (_-)u’ 5

¥, por lo ianto,
() (%) ‘
(), / o klowyda .

oo | O 0%y 2
" o) 94 o) ou”
S

s

entonces
’

vy H, constituye un vector covariante-u.
Junta de Energia Nuclear
Secciéon Tedrica

Madrid, junio de 1952,
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