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INTRODUCTION

Although some general comments on the role of numerical ana-
lysis techniques in nuclear reactor calculations were made in Section
IV of the EACRP report "Review of Reactor Physics Problems'", the Commi-
ttee felt that numerical methods deserved a more detailed considera-
tion. The objective of this report is to give a brief and somewhat
sketchy review of current trends and advances in the field of numeri-
cal analysis as applied to nuclear reactor physics problems. The re-
port is largely based on information provided by many laboratories
in reply to a questionnaire which was sent last July to all EACRP
members. Another very important source ~f information and comments
has been the valuable discussions with many scientists organized on
the occasion of visits to the following centres: EIR, Wirenlingen,
Switzerland; Centro di Calcolo, CNEN, Bologna, Italy; EURATOM, CCR,
Ispra, Italy; Centre de Saclay, CEA, Saclay, France; AERE, Winfrith,

Dorchester, Dorset, U.K.

The questionnaire mentioned above referred to the following
three points: A) information on the present work being done in the
field of numerical methods for reactor calculations; B) anomalies ob-
served, if any, in the behaviour of currently used nuclear program-
mes; C) directions in which substantial improvements could be reached
as compared with the present approaches. The report is accordingly

divided into three sections:

Section A: Present trends in numerical methods.
Section B: Do some codes show a '"pathological
behaviour?

- Section C: ©Possible improvements.




This report does not claim to be complete.
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Only some trends and some

directions have been discussed and the author is well aware that many

important items remain untouched.
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A, PRESENT TRENDS IN NUMERICAL METHODS

A,l. Tinite difference methods

General

There exists a large variety of methods for obtaining nume-
rical solutions to a given system of differential or integro-diffe -
rential equations. In particular, the partial differential equations
of the multigroup-diffusion model are replaced over the region in
which the solution is sought by finite difference equations over a
set of mesh points within the region. The reduction of the problem
posed in a continuum set to a problem posed in a discrete set (the

so called discretization of the problem) is carried out by replacing

the differential operators involved with finite difference operators
related to a given mesh imposed on the domain of the independent va-
riables. In this manner a finite difference analog of the continuous
space problem is derived which is actually used in numerical computa
tions. It is possible to control the accuracy of the numerical re -
sults either by increasing the number of mesh-points and/or by impro

ving the approximation of the finite difference operators.

The accuracy of the numerical solution, however, refers to
the solution of the mathematical model of the actual physical system
In fact, it is important to bear in mind that it does not alwiys fo-
llow that improving the accuracy with which a particular (approxima-
te) reactor model is solved necessarily improves the accuracy in real
terms of the final answer. Thus whilst it is possible to improve the
accuracy of the numerical solution of the homogeneocus reactor calcu-
lations by increasing the number of mesh points, etc., it does not
follow that by doing this one is improving the solution to the origi

nal physical problem.,

The discretization of a given problem poses some general

questions of practical characterl. Thus,




a) Although there are in principle many meshes which might
be used, the behaviour of the solution, and the form of the domain
and its boundaries, severely limitthe number of possible choices .
This is an important point, since a wrong selection could imply, for
example, the use of an unnecessarily large number of mesh points,.Even
more, it has been pointed out2 that, in using standard discretiza -
tion methods as applied to heterogeneous systems, it may give erro -
neous results to use a mesh bearing no relation to the heterogeneous
lattice geometry and that better results should be obtained with mesh
points at channel centres..On the other hand, the physical ﬁofion of
"characteristic length" should be mentioned as a guideline to mesh
spacing. Characteristic length and radius of curvature of boundaries

are the two natural scaling factors on the length dimension.

b) There are many different difference approximations to a
given differential operator. The selection of a particular approxima
tion is largely determined by the mesh structure and by the nature
of the truncation error associated with the apprcximation. However ,
the selection is not unique in the sense that the difference opera -

tor need not necessarily be the same throughout the mesh,

A proper handling of hexagonal geometries, for example,has
led to a formulation of multigroup-diffusion equations in terms of a
uniform triangular mesh. However, in some cases the restriction to
uniform spacing resulted in a need for anbexcesive number of mesh
points, whereas the use of a non-uniform triangular mesh enables to
reduce this number considerably. Ritz variational methods have been

applied to derive the corresponding finite difference operatorB.

¢) It would be very convenient to find the means of automa
tically choosing both the mesh and the difference operator approxima
tion "best" suited to a'givén situation (of course, after defining

what is meant by '"best'"). In particular, it has been possible to cons



truct codes in which mesh doubling takes place as iteration proceeds.

d) There are available various numerical methods for sol -
ving the system of equations of the discrete finite difference ana -
log. The choice of the numerical method will depend not only on the
nature of the problem to be solved, but also on the computing hard =-
ware to be used. In other words, the problem requirements plus the
computer available often determine the broad strategy of the solu -
tion, and this in turn determines the numerical method that is most

appropriate.

Inner-outer iterations

Two basic procedures have been used for solving the finite
difference analog of the multigroup diffusion equations: inner-outer
iterations and the Equipoise iterative procedure. The algebraic equa

tions to be solved can be written in the matrix form

Ag = ’; Fo , (1)
where ¢ is a vector whose GxN components ?é:(ft=1,2,...,G; n=l,2,e00
sN) are the approximations for the G fluxes ¢4(x) at the N prescri -
bed mesh points; A is a matrix representing leakage, absorption,out-
and in-scattering; F is a matrix representing the fission source.The
usual process of solving (1) consists of guessing an eigenvalue and
a source distribution, computing the G fluxes at each mesh point,and
recomputing the source and the eigénvalue. This computation, called
an outer (or fission-neutron source) iteration, is repeated sucessi-
vely, stopping when it is felt that consistency has been reached
according to pre-established criteria (convergence indicators). When
direct inversion of A is not practical, as it can be the case when
the value of N dealt with is too large, iterative techniques will be
used in computing the flux from a given fission source. These itera-

tions are referred to as inner iterations (or mesh sweeps).




The interrelationship between inner and outer iterations
appears to be very complex and poses the problem of how to reach an
optimum strategy between inner and outer iterations. AR optimum
strategy here means a combination of inner and outer iterations
in such an order and number that the time required to solve the pro
blem on a given computing system be a minimum. In this sense, inner
and outer iterations have to be tailored to the computer being used.
It has been pointed outu, for example, that problems for which the
inner iteration can be contained in fast memory are often solved most
efficiently by imposing stringent error reduction requirements on the
inner iteration. This enables more effective Chebyshev extrapolation
of the outer iteration. When the inner iteration is not memory con -
tained, an effective strategy is to perform relatively few inner ite

rations with restricted extrapolation on the outer iteration.

Two basic outer iteration procedures are being widely used
for solving the discrete multigroup~diffusion equations: the Wie -
landt’s method and Chebyshev extrapolation. As is well known Wie =~
landt’s method (also called fractional iteration or inverse power me
thod) substitutes the matrix equation

(A-L Fye = (4 . 1)H)Fg (2)

Ae A Ae

for the matrix equation (1). If the estimated eigenvalueAe is grea =~
ter than the true fundamental eigenvalue Ao by order of magnitude a
few percent, the dominance ratio is sharply reduced thus improving
the rate of convergence. When direct inversion may be applied to (1)
or (2), to invert (A- A; F ) is perhaps more trouble fhan to in-
vert A, However, the increased difficulty involved in the inversion
of (A-'\; F) rather than A appears less significant than the sharp
reduction in the dominance ratio. No in stability has been reported
thus far in the application of this method 5.

the
Although some of the assumptions on which/Chebyshev extra-




polation is based have not been shown to be valid in all conceiva =~
ble practical cases (e.g., the assumption that the eigenvalues of
A-lF are resl and non-negative and that the eigenvectors form a com-
plete set6 ), this method has been, and is being, widely used quite
sucessfully. As a matter of fact, the theory of Chebyshev extrapola=-
tion has been extended 7 to consider complex eigenvalues and the re-
lationship between the convergence rate and certain acceleration pa-
rameters has been determined. In particular it has been shown that
Chebyshev extrapolation is the best acceleration scheme in the com -
pPlex eigenvalue case provided the eigenvalues lie within a particu -

lar region of the complex plane.

Two general methods are currently used as iterative techni
ques for .inner iteration: successive overrelaxation (either point
successive, SCR, or line successive, SLOR, or 2-line successive, S2-
LOR, overrelaxation) and alternating direction implicit iteration
(ADI). Both represent mathematical advances which have largely de =
creased the number of iterations needed to solve neutron-diffusion
problems. The improvement is specially evident when one has to deal
with problems with a very large number of mesh points. Methods are
now available for improving all points on a mesh line simultaneously
without any increase in arithmetic effort in passing from point to line
successive overrelaxation. Other partitionings of the matrix A
which leave A in block tridiagonal form allow the simultaneous solu-
tion for all points on two and even three adjacent mesh lines, each
iteration requiring only 20-40 percent more computer time than does
each iteration in the case of SOR., By increasing the rate of conver-
gence, the use of all these block iterative methods have greatly
brought down the number of iterations required to reduce the norm of
the error vector to a specified.fraction of the norm of the initial

error vector,

Many variants of alternative direction implicit iteration




have been developed and often provide very powerful techniques for
solving finite difference analogs of partial differential equations
of elliptic type. Although general convergence proofs have been gi=-
ven, the theoretical explanation for the success of ADI iteration
techniques is incomplete. The theory is in fact so unsatisfactory
that it is often not possible to predict whether a suggested ADI
scheme is likely to converge or note. On the other hand, many dis -
cussions of the ADI and SOR techniques are at least implicitly res -
tricted to two dimensional considerationé; Under these circumstan
ces it is probably worth mentioning that extrapolation of the sche

mes to three-~dimensional situations is not clear.

As said before, the general problem of finding an optimum
strategy between inner and outer iterations which would minimize the
computer running time is a very complex problem. As a consequence |,
great efforts have been made to analyse the outer iteration and its
relationship to the inner iteration. It has been pointed outh that
poor convergence of the inner iteration leads to complex eigenvalues
in the matrix relating successive fission source distributions,which
in turn adversely affects the convergence of the outer iteration. To
escape this situation, in a code for one-dimensional calculations
Wielandt method has been used to accelerate the convergence of the
outer iteration, whereas inner iteration is based on analytical me -
thods. However, at the same laboratory, in a second code for solving
tﬁg-dimensional problems, SLOR was used as the inner iteration sche~-

me

The opinion has also been expressed that programming theo-
ry aproaches should be recommended in discussing the relationship
between inner and outer iterations. In other words, it should be po-
ssible after iteration to "evaluate'" the results within a monitoring

subroutine, thereby "learn' what is the best combination.




The Equipoise method

Either the original version of the Equipoise iterative pro
cedure or some variants of it have been applied both to diffusion
and transport theory. These techniques contrast with the conventio -
nal inner-outer iteration methods in that blocks of equations are
forced to satisfy overall neutron balance conditions. Although this
method looks rather simple to apply, no proof has been given that

the iterative processes it represents will always converge.

Direct inversion technigues

8,9

Work in numerical analysis has been reported on direct
(non-iterative) solution of large systems of linear equations with
block=~-tri-diagonal coefficient matrix by stable numerical procedures.
At the same time, convergence acceleration by variational coarse
mesh methods has been applied to burn-up codes because the region wi
se averaged fluxes converge rapidlylo. Thus, a new one-dimensional
equilibrium-cycle burnup code has been developed using the direct in
version technique for block-tri-diagonal matrices mentioned abovell.
The thermal groups are solved simultaneously, no inner iterations
being necessary. The same method is used in a one-dimensional deple-
tion code with and without reload features. An extension to seven
groups (4 thermal groups) is also availablelz. Development has been
reported also of a few group, two dimensional diffusion code for he=
xagonal geometry (constant mesh size), in which direct inversion
technique is used to calculate the fluxes in the interior of very
large sized diffusion blocks. This procedure leads to an ihproved
convergence rate of the spatial iterationslB; The development of a
three dimensional diffusion code, using the direct inversion techni-
ques for large sized diffusion blocks is presently under way at Gene

ral Atonmic,.




Response matrix methods

Response matrix method is another interesting approach to
the proble%k’ls'ls”l?. It has been applied to criticality calcula -
tions of two-dimensional systems in a few group model. In this me =
thod the reactor is assumed to consist of a number of infinitely
high, rectangular homogeneous blocks, the composition of which may
change from block to blocke The response matrix method treats the mo
tion of neutrons in a block rigorously except for the assumed form
of the intensity distribution of the current incident on the block .
The response matrices of component blocks in the reactor are calcula
ted first analytically with group-diffusion approximation. Then the
multiplication factor and the associated eigencurrents, together
with mean flux in all the blocks, are determined from these matrices
by an iterative method. The time required for a typical problem (two
groups, two-dimensional) is reported to be less than 1 min, whereas
it takes about 20 min for PDQ to do the same calculation with the sa
me accuracy. However, the application of the method to multigroup
problems has not yet been successful.

()

Heterogeneous methods

There are many systems, such as substitution lattices, mi=-
xed lattices and lattices with several control rods or channels that
contain important areas in which it can be difficult to define cells
with geometrically simple boundaries. For this kind of problems, he-
terogeneous source-sink methods are well suited to obtain accurate
flux distributions. As is well known, in this method the flux is ex-
panded into a Fourier series in the azimutal angle around each chan-

nel. The monopole term describes absorption and production characte-

# The following comments were written prior to the EACRP-CEA mee-
ting on the application of heterogeneous methods to burnup calcula -
tions held at Saclay, 16-18 January 1967.




ristics of the channel; the dipole sine and cosine terms represent
effects due to radial leakage and streaming as a result of radial

bucklinge.

In one version of these methodslg, neutron flux distribu -
tion evaluated at several points around every fuel element is corre-
lated to the harmonic components of a neutron flux from a sink multi
pole, and then the iteration between the source and the sink strength
is carried out until a sufficient convergence is attained. In anot -
‘her versioélgg a solution of the heterogeneous neutron flux equa -~
tions is superimposed upon the macroscopic solution of the hbmoge -
neous neutron diffusion equations obtained using a coarse finite-dif
ference mesh. The macroscopic distribution is used to provide bounda
ry conditions on the subregions of the reactor which will then be

treated by a heterogeneous method,

Quite recently an extension of the source-sink method to fi
nite fuel elements has been developed and reformulated in terms of
the conventional finite difference equations plus some extra term.s2 .
In such an approximation to the fully heterogeneous method,the equa-
tions are converted to finite difference form with one mesh point
per channel and direct coupling between all mesh points. The correc=-
tion terms to the terms of the conventional finite difference homoge
necus type depend on the distant mesh points representing the hetero
geneity effects,

A.2. Variational methods

General

Variational methods are of growing interest in all fields
of reactor calculations. The development of variational principles
for general linear operator equations is therefore, very important.

Variational principles for general inhomogeneous linear operator
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equations and for eigenvalue equations in case of general linear ope

0
rators have been derived recent1y2 ’21’22.

From a less general point of view, it is best to point out
that several aprroximate methods have been developed based on varia-
tional principles. Variational technicues not only offer a means for
reducing the Boltzmann equation to approximations which are computa-
tionally more convenient, but provide criteria for selecting 'best"
approximations to partial differential operators or finding '"best"
trial vectors for nonlinear iteration techniques. Thus, Ritz varia -
tional methods have been used3 to derive difference equations for
the case in which the set of mesh points does not form a rectangu -
lar pattern. On the other hand, variational principles have been
applied23 to provide a basis for nonlinear acceleration of linear
iterative methods. Linear combinations of the elements of a sequence
of successive approximations obtained by a linear iterative procedu-
re are used as trial functions for the functional equivalent to the

given linear problem.

Considering again the multigroup-diffusion equations, the-
se equations have been solved by applying Ritz and Kantorovich me -

2L,

thods to appropriate functionals associated with these equations
25’26. Both methods have been compared, with regard to accuracy and
computing time, wvith the finite d;fference methods used in present
nuclear codes'az Variational techﬁiques have been applied also to
the solution of reactor kinetics problemses. Thus, the multigroup so
lution of time-dependent diffusion equations by variational methods
has received much attention during the last few years. The resulting
set of ordinary differential equations for the time-dependent coeffi
cients in the trial function can be solved by well known numerical
techniques, such as the implicit (or backward difference) method or
the implicitly explicit method. The implicit integration technique,

in particular, has been widely used (see, e.g.,70)} because such a
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technique is more stable than an explicit integration technique (in
fact it is unconditionally stable); therefore, a large time mesh
can be used regardless of spatial mesh size, and the computation ti

29

me is reduced correspondingly “. However, it has been pointed out
that the extension of such an implicit technique to more than two
groups of neutrons becomes a very time consuming procedure.Quite re

centlyBo

+ an unconditionally stable one-dimensional multigroup-dif-
fusion code has been designed which requires 4 min of computer time
on an IBM-7094 for solving problems involving 4 energy group, 6 de-

layed neutron groups, 100 space points and 300 to 500 time steps.

The various perturbation methods are closely related to

the conceont of variation of a functional. .The non-self-adjoint
nature of nuclear reactor problems involves several technical mathe
matical difficulties. The situation is much more complicated than

say, in quantum mechanics. Nevertheless, the recent developments of
non-self-adjoint perturbation methods for reactor physics has subs-
tantially increased the amount of information that can be obtained

from a given criticality calculation. This is valuable because the
number of these complex and expensive calculations is thereby redu-
ced in the long run. The full complexity of reactor calculations,ho
wever, 1s better revealed by the burnup problem than by the critica
lity problem, since the usual flux calculation must be repeated at
each time step. Consequently, work is now in progress on the appli-

cation of perturbation theory to the burnup problemBl*

The last application requires extending the concept of an
adjoint from the fluxes to the isotopic concentrations. The diffi -
culty that the burnup problem is no longer linear, because the iso-
topic concentrations that multiply the fluxes are now variables as
the fluxes themselves, may be overcome by basing the treatment on
the linear equations that determine the small devarture from a known

solution of the burnup equations. The difficulty that the multipli-
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cation factor is no longer appropriate to use as the quantity whose
perturbations are sought may be overcome by using for this purpose
some specially significant property of the burnup history, such as
the burnup exposuré or lifetime beyond which the fuel is too deple-
ted to maintain a critical reaction. A theory has been developed in
detail32 for a simple two-group ﬁoint burnup model that allows va -
riable composition for nine isotopes, including four heavy isotopes
and five fission productss This theory is the basis of a new code

which solves a burnup problem specified in the input, and then com-
putes the adjoints for the neighbourhood of this solution and wuses
the solution and the adjoints to calculate derivatives of the burn-

up lifetime with respect to the input parameters.

Synthesis methods

Although not always based explicitly on variational princi
ples, synthesis methods have been evolving into more and more accu-
rate techniques. Apart from the conventional variational synthesis
methods, even the multichannel synthesis method, originally based on
heuristic methods, has recently been derived from a basic functional

33

by using variational techniques””. As is well known, in the multichan
nel flux synthesis method, regions are represented by nodes and no ~-
dal-difference equations are derived with the aid of the lower dimen
sional results. The nodal equations are a system of simultaneous li-
near equations which may be solved by conventional methods. In the
new variational formulation the‘trial functions used are, in gene =~
ral, not continuous, and nodal-difference equations are derived from

a variational principle.

In the particular case of continuous trial functions and a
single channel, the procedure is equivalent to the conventional va -
riational synthesis. In the case of one trial function per channel ,

the nodal-difference equations are identical in structure to the con

ventional multichannel synthesis.
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An interesting feature of this approach to the flux syn-
thesis is the increased efficiency in the use of the two-dimensio-~
nal base functions forming the three-dimensional discontinuous
trial functions for the variational synthesis computation.Since the
machine time consumed in obtaining the two-dimeﬁsional base func -
tions is a large fraction of the total time required by the over -
all computation, the above mentioned increase in efficiency leads

to a reduction in computing time.

A new method for solving the space-time problem in terms
of a synthesis formulation of the multigroup-diffusion equations

34,35

has been also reported o The method considers techniques as
used in a one-dimensional multigroup code for the Sn solution to
the transport equation as well as diffusion theory. The technique

has been intended to incorporate nonlinear temperature feedback 36.

A,3, The S. method

A few words on the S, method. Although existing two-dimen
sional Sn-type transport codes have not always proved entirely sa-
tisfactory (see Sec.B), much effort is going into the development
of new versions which might allow to overcome the difficulties one
encounters in using them. Nevertheless, the value of the various
proposed improvements on the general method cannot be ascertained
until they have been incorporated in new transport codes and tested
37

in a wide variety of problems

However, it might be said, that from a practical point of
view, the Sn method is far and away the most popular and widely
used method for solving the transport equation-especially in one di
mension.It is a most powerful tool and enables anisotropic events, the
effect of boundary conditions to be readily studied and lends itself
without difficulty to adjoint and perturbation method solutions. As

a consequence , it is thought that the DSN and SNG techni-



ques will continue to play a vitally important rdle in future com -

38

putational methods for handling transport problems .

A.4. Collision probabilities methods

The methods of collision probabilities seem at present to
be among the prevalent forms of integral transport theory. These me
thods are becoming more and more important as a useful and practi -
cal tool in reactor calculations. Thus, methods of calculating the
neutron flux within a lattice cell as a function of space and ener-
gy have been developed based on a representation of neutron trans =-
port in terms of first collision probabilities without recourse to

the Boltzmann integro differential equation 39.

An essential part of a calculation according to all these
schemes is the evaluation of the collision probabilities to a fair
degree of accuracy and with a reasonable amount of computing time .
In fact, the practical applicability of the collision probability
techniques depends heavily on the availability of methods adequate
for calculating these probabilities. An exact method for calcula -
ting collision probabilities in square and hexagonal lattices has
been developed and applied to the calculation of the thermal spec -
trum following the matrix factorization technique 40. On the other
hand, several approximative schemes have been proposed in order to
facilitate the evaluation of coll?sion probabilities in the particu

41. It has been found, ho-

larly important case of annular geometry
wever, that some of the approximations (e.g., behaviour of the angu
lar flux distribution at boundaries between regions) are not really

Lo Lz LY

necessary

Quite recently, a new, purely numerical technique has been

45 . The
collision probability routine PIJ may be used to compute collision

developed to deal with complicated fuel element geometries

probabilities in two dimensions in all practical geometries. In par
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ticular, PIJ includes specific representation of individual rods in
cluster geometry with internal subdivision of the rods if required.
This routine is available within the WIMS framework. The WIMS co -
de 46 (#infrith Improved Multi-group Scheme) is a general code for
reactor lattice cell calculations applicable to a wide range of
reactor types including both thermal and fast reactors. Solution of
the transport equation is provided either by use of the Carlson DSN
method or by collision probability methods. The differential solu -
tion is performed by the discrete coordinate code WDSN 38. The inte
gral solution is achieved by the generation of collision probabilie-
ties for which the PIJ routine may be used. Having obtained the co-
llision probabilities, the next problem of course is to solve the re
sulting equations. These are solved numerically in the PIP 47 routi

ne which uses a successive overrelaxation method.

A5, Semi- analytic methods

There is a tendency in many laboratories to substitute se
mi-~analytic techniques for direct, "brute force" numerical methods
in reactor calculations. Although there is no sharp separation bet=
ween numerical and non-numerical methods, it should be stressed
that several different problems could be solved at a lower cost just
by simply pushing forward the analytical work as far as possible.Of
course, the right answer to the question could a given problem ac =~
tually be solved by analytic or semi-analytic methods at a lower
cost than by resorting to "brute force" numerical techniques is
strongly space- and time-depending. Here and now, the answer might
be in the affirmative, here and tomorrow, in the negative, etc. The
view has been expressed, for example, that even if the analytic me-
thod is conceptually feasible, the question ofwhether it is cheaper
to solve the problem this way asopposed to use of computers really
depends on the availability of specially skilled staff on the one
hand and computer time on the other. There are cases in which compu

ter time is cheaper. Another point going more deeply into the funda
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mentals is that of whetherin fact a problem of real practical signi
ficance is conceptually capable of being solved by analytic or semi
analytic methods, and whether there is any evidence which indicates
that these techniques are of benefit for real systems or for any

significant generality.

Whatever the answers to these questions might be -and per
haps, @8- has been said before, the answers are not unique, there are two
good examples of the semi-mnalytic approach, which were developed
quite recently: the multiple collision method and the Lie series me
thod.

. . s L8, g
The multiple collision method

is an analytical
approach based on a viewpoint different from that of the Boltzmann
equation, that is, the life-cycle (or random-walk) approach in con-
trast to the neutron-balance viewpoint. Physically significant solu
tions which, for example, describe reflection and transmission
through a subcritical slab are obtained analytically by making use
of expansions in spherical Bessel functions. Numerical results are
obtained from these expansions by truncating the series (the so ca-
1led j, approximation). As a result of the introduction of disconti
nuity factors, problems for finite systems can be dealt with in a
manner similar to those for an infinite system. The method has been
further developed and applied to neutron transport problems for a
bare spherical reactor (up to 18 "energy groups). In particular, it
has been shown that the j3 approximation gives results comparable
in accuracy to the Sh approximation of transport theory,

As to the Lie series method 50,51,52

y the basic idea might
be summarized as follows. Take for instance the multigroup-diffu -
sion or Pn approximation in cylindrical geometry. The computer would
use a power series expression for the Bessel functions in cylindri-

cal geometry. Since the solution is a linear combination of Bessel
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functions, the computer will numerically combine several power se -
ries into a single series with combined coefficients. In view of
this it seems justified to skip the intermediate step and to calcu-
late the final expression directly in terms of a single Lie series,
whose coefficients are generated by the basic differential equa -
tions of the problem. The coef cients are derived from algebraic re
cursion relationse. Thus, very brief computing times are needed to
determine solutions even if many terms in the series expansion have
to be kept. In most applications, the accuracy of the solution can
be controlled by an input parameter. Difficulties of convergence are

avoided by analytic continuation,

A.6. The Case method

Although the Case method should be considered an analytical
one, brief mention will be made of some applications of the method
of Case. In the one-group transport problem for slab geometry, the
general solution of the Boltzmann equation is expressed as a super-
position of eigenfunctions.A system of singular integral equations
is derived for the coefficients and the solution can be obtained ’
for example, by two methods, one based on the Hilbert problem
approach, and the other on the reduction to a Fredholm integral equa
tion of the second kind. The application of this method to the trans
port problem in a multi-region reactor of a slab geometry has been
reported 53. Another application is that to the solution of the
energy-dependent Boltzmann equation., It is known that under certain
assumptions the energy-dependent Boltzmann equation can be reduced
to a "one velocity" equation by means of a Fourier transformation
with respect to lethargy. When finite media problems are to be sol-
ved, the resulting "one-velocity" equation in the space variable
could be solved by the procedure suggested by Case, were it not be-
cause the number of secondaries in the one-velocity equation is now
a complex function of the transform variable instead of a real num-

ber. The method of Case has then to be extended to complex numbers



- 18 -

of secondaries, The process of work has been reported on this problem

For an infinite medium, however, the solution may readily be obtain
ed by a Fourier transform with respect to the space coordinate. The
exact result is a double Fourier inversion integral, which can be

calculated numerically.

A.7. Monte Carlo methods

Monte Carlo methods are among the most powerful techni -
ques available for solving the transport equation. In fact, there
are given areas where the space and energy detailed to bé studied
is enormous and where Monte Carlo techniques provide the only feasi
ble tool. But the application of these techniques is by no means

straightforward.

It is known that the main drawback of Monte Carlo methods
is the great amount of computer time it takes, the large number of
arithmetical operations involved and the statistical errors one
gets from the results. There are also the convergence problems in
the Monte Carlo approach resulting from either insufficient or ina-
dequate sampling procedures. The question of errors other than sta=-
tistical errors (round-off errors) is important too, and due atten-
tion has to be paid to the question of stability. To the usual pos~-
sibility of the growth of round-off errors adds the possibility
that statistical errors may contribute to errors which grow with ti

me.

An important part of any Monte Carlo calculation is esti-
mating the variance of the quantities which are being averaged over
the population of histories. The feasibility of the calculation
hinges on a sample size sufficiently large to produce an adequate
number of successful events to permit a statistically valid result.
Were this to be done in a straightforward manner (using the exact
physical analog), this sample size would be so large tc preclude

its use in any reasonable length of time, even on the most sophisti

54
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cated digital computers.

Consider, for example, the transmission of particles
through a shield. If one could exclude from the sample all those
particles which have little or no chance of producing a successful
eventy he would reduce this sample from some enormous number to one
for which the calculation is quite feasible (biasing). The parti -
¢cles remaining in the sample, however, must be assigned statisti =~
cal weights so as to preserve the expected values of the results .
The most obvious effect of biasing, therefore, is in this case to
increase the sample size of the escaping particles (per unit of com
putation time). What is less obvious is that it matters significap
tly exactly how this increase is obtained. Merely getting more par=-
ticles to escape does not ensure satisfactory results, and using
techniques which do this can yield very misleading information.What
will, in general, be satisfactory is a procedure which will empha=-
size those random~walks which produce the greatest comtribution to

55,

the escape probability in the true problem

It should also be borne in mind that the average event
taking place in the biased calculation bears little resemblance to
the average event taking place in the actual (unbiased) situation .
If, therefore, one were to compute the variance, as well as the re-
sult, in a biased calculation as means of establishing confidence
limits on the result, such confidence limits would be highly ques =
tionable and, in extreme cases, would be meaningless. A technique
has been reported 56 for evaluating the quality of the confidence
limits obtained in a standard manner from a set of estimates of a
given result. This technique has been used with success and can be
considered a step in the right direction. It does not, however,pres
cribe a method for obtaining good results but rather is a method

for warning when the results obtained are poor,

Variance reduction techniques, therefore, are among the
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most powerful means of bringing down the machine time required to
solve a given problem by a Monte Carlo calculation. Although the im
provement in convergence resulting from optimization of a given
biasing technique can be quite impressive, it requires, in general,
a time consuming study in itself. However, it has been shown 27
that it is possible to develop empirical or semi-empirical rela -
tionships for obtaining nearly optimum biasing in deep penetration
problems in a nearly geometry independent manner. Incorporation of
such a relationship into a large Monte Carlo shielding code should
eliminate any anomalous or misleading results which are sometimes

obtained.,

Many other devices for improving the efficiency of the sam
pling technique are being developed in many laboratories as well
as a number of codes to be used to exploit the advantages of the
Monte Carlo method. For example, a number of variance reducing sam
pling techniques have been incorporated into the TIMOC code 58 for
the calculation of characteristic reactor parameters in three-dimen
sional assemblies. The splitting of the integral form of the Boltz-
mann equation into neutron generations reflects the actual calcula-
tion mechanism of the Monte Carlo techniques used in the present ca
se. As to the variancereducing methods, the "standard" weight esti-
mator, the method of fractionally generated neutrons, the method of
expected leakage probability, as well as the semi-systematic sam -

pling and the double sampling have all been used in the new versions
of the TIMOC code 59.

On the other hand, the feasibility of Monte Carlo critica
lity calculations has also been established by the application of a
recently developed ccode 60 to critical experiments, criticality ha-
zards problems and to the HWOCR lattice analysis. Convergence of k
to better than one per cent was obtained in ten minutes on a IBM
7094 computer in the latter case. The speed of the code has been

attributed to careful attention to the specific problems considered,
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in contrast to the extreme generality usually incorporated into

such codes. Comparison runs on identical problems were made between
this code and other Monte Carlo codes of a more general nature which
make an indiscriminating and abundant use of region and energy de -
pendent importance sampling. Comparable statistics were obtained with
the "tailored" code in about one-fifth of the computation time,in
dicating that biasing in criticality and reactor analysis problems

should be used sparingly and with extreme care.

This is a good example of a well known conflicting situa=-
tion. On the one hand, the usefulness of Monte Carlo methods for
practical problems may be greatly extended by improving the effi -
ciency of the sampling techniques. In fact, some problems can be
handled with present computers only by suitable weighting, But, on
the other hand, indiscriminate use of variance reduction can result
in a poor statistical analysis and in excessive computational ti -
mes. It is by no means exceptional that a given variance reduction
technique works well for one problem, whereas it may actually increa
se the variance in another problemeIn other words, the variance re-
duction device, the problem to be solved and the computer on which
the calculations are performed are all closely interrelated.Now, it
is not easy to decide which of several variance reduction techniques
is the most efficient, in the sense that it leads to the smallest
computing time when applied to the solution of a given problem on a
given computer. For the time beiné} it is in these areas where Monte

Carlo techniques offer challenging new problems,

Summarizing, it may be said that much effort is going in -
to, and has been concentrated on improving the computer time impli -
cations of Monte Carlo techniques, variance estimates, etc. It has
been pointed out that such techniques as those of source superposi =-
tion and adjoint methods can reduce the variance of Monte Carlo me -

thods in an unbiased manner and produce valuable results for speci -
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fic problems.

A.8., Error analysis

Finally, there is another important and difficult problem :
that of estimating the errors of all types present in a given nume-
rical procedure. Let us take, for example, the discretization of a
given continuous model. How to estimate the discretization error for
an approximate solution of a partial differential equation?.In fact,
only in a few cases reliable estimates for the error are obtainable.
As a éonsequence, numerical experiments, comparisons between numeri
cal and analytical results for single problems are necessary, and
such procedures will remain among the better practical means for
testing the accuracy of the approximations involved. Development of
iteration independent error analysis will be extremely useful. For
each somehow calculated approximate solution a procedure should be
available to estimate the error. Such a procedure would be extreme=~
ly valuable for flux synthesis techniques and for iterative methods

with an incomplete understanding of the convergence behaviour.

B. DO SOME PROGRAMMES SHOW A "PATHOLOGICAL' BEHAVIOUR %.

There appears to be some kind of a general agreement in
that usual programmes do not show any really "pathological! beha =
viour if properly used. "rathological'" behaviour lhere means
an unexpected, abnormal, or wrong behaviour -e.g., lack of conver -
gence in asupposedly convergent iterative procedure. Nevertheless ,
that codes are all intrinsically '"well-behaved" sounds somewhat

strange. In fact, they sometimes incorporate procedures that sre
still waiting for a more rigorous foundation. Thus, basic numeri-
cal processes are being used without exactly knowing whether they would
work correctly or not in a given particular case. Although this si
tuation poses many unanswered mathematical questions of numerical

analysis, it is not the first time in history when mathematics in
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Their applications to physics proceeds without raying too much atten=~

tion to their rigorous foundation.

It has to be recognized, however, that the situation is
particularly obscure with respect to the fundamental problem on we-
ther any given numerical technique produces a solution which conver
ges to the "true'" solution. There are two questions involved here.
The first refers to the discretization process: given a finite dif-
ference representation of an analytic equation, does the solution
of the finite difference scheme approach the solution of the‘analy-
tic equation as the maximum distance between neighbouring mesh points
tends to zero?. If so, as the maximum mesh spacing tends to zero,
does the approximate solution tend to the analytic solution uniform
ly throughout the region?. The second question refers to the finite
difference equations proper: do the convergence and iteration pro -

cedures used produce a solution of the finite difference system?.

The basic difficulty, from the practical point of view,in
answering the first question is the lack of analytic solutions in
all but the most elementary problems. As a consequence, one is for-
ced to compare numerical solutions with other numerical solutions .
For example, it has been reported that a method using time integra-
tion of the few-group, one-dimensional Sn.equations is presently un
der development at Atomics International primarly as a check on the
results obtained by synthesis. To facilitate in a general way the
comparison process the Mathematics and Computation Division of the
ANS commissioned a sub-committee to formulate a library of "bench -
mark'" problems and solutions. These problems would be designed so
that a user of the library could solve a standard problem by whate-
ver method he chose and compare his results with results obtained
by a variety of methods. The problem would be of varying degrees of
complexity so that, in elementary problems results might be compa ~

red with analytic solutions, and in more complex problems with other
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numerical results. A report of this committee was given last Novem -
ber at the Pittsburgh ANS meeting 61. Some of the items for discus -
sion were the classification of reactor calculations, the format for
the problem presentation, intended use of the benchmark problems,and

suggestions for a collection of benchmark experiments.

As mentioned above, a prevalent views on the abnormal beha
viour of a code is that in most cases it has to be traced to a care-
less use of the programme, and that a more thorough effort to make
the code’s limits and assumptions clear could be a remedy. In other
words, it is quite probable that for any code it will normally be po
ssible to find a problem on which the code will break down or fail
in some sense. In many cases it will be possible to define the area
in which success is guaranteed but certainly not in all cases. On
the other hand, pathological behaviour would sometimes be due to the
failure to anticipate, at the time the programme is designed and co=-
ded, the full range of the variables which may occur during the numg
rical solution process. A third reason for code problems is that,
occasionally, "almost trivial" mathematical errors exist in the code
formulation. These errors give no difficulties to the test problenms,
but propagate into large errors in other classes of problems for

which the correct theory should be valid.

As a first example take a two-dimensional diffusion code

(1ike PDQ2) based on difference methods and a certain iterative tech
nique. It has been reported that if the mesh spacing is pathological
ly non-uniform, or the diffusion constant has large discontinuities,
the method has a very very slow convergence behaviour, and a semi -
convergence with completely wrong results can appear to an unexpe =~
rienced user. A similar behaviour shows a two-dimensional multigroup
diffusion code that essentially uses the Equipoise method for criti-
cality problems. In this particular code, however, the iterates Xt
are defined by

N = AP, Age) (3)

(?t)rcpt)
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where ( . ) denotes scalar product, instead of being defined
by the more conventional formula

- (@)A¢{,)

¢ @ Fop) (&)
where e is the vector with all components equal to unity. In cases
of divergence , the programme gradually switehes over to the always
converging power method. However, since the convergence is often
rather slow, in some cases the programme assumes divergence and

stops, although it should not.,.

Another potential source of troubles possible with itera
tive processes is the selection of the initial guess. In some ca -
ses, it has been proved that the iteration method used is a conver
gent process and, independently of the initial guess, converges to
the right solution. Unfortunately, there are other cases in which
convergence depends on the initial guess being an element of a cer
tain set, and it may demand a very complicated analysis to determi
ne precisely the class of the elements admissible as initial gues -
ses. On the other hand, even when the process is convergent from a
theoretical point of view, its use may be severely limited in prac-
tice by bad starting guesses and, in general, by the problem of
round-off. It is well known, for example, that the question of the
growth of rounding errors is very important when using Wielandt me-
thod, and that this method can conceivably lead to instabilities .
Some instability characteristics have been also reported in the ca-
se of the ADI method when using a 4-point acceleration factor, al -

though convergence is obtained with a 16-point acceleration factor.,

Other examples somewhat akin to the just mentioned are

the effects of poor trial functions in synthesis methods.

The existing two-dimensional, Sn -type transport codes
offer a very interesting example of an inter-relation between the

physical and the mathematical aspects of a problem which could ex -

37

plain some observed anomalies + An unsatisfactory feature of the-
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se codes is that at times the discrete ordinates angular representa
tion gives rise to '"ray effects" in certain highly absorbing media,
that is, the iterates and final flux solution show abnormal peculia
rities in shape. This solution is, however, the solution to the dif
ference equations and the trouble is simply that the difference
equations do not adequately represent the physical problem, that is,
typically, too few discrete ordinates are chosen. From a slightly
different point of view, it can be said that discrete ordinates me=-
thod is to be regarded as a neutron grouping technigque and not as a
method which selects and treats isolated neutron directions. This
means that the flaw here lies in the mathematical model 37.

Multi- or few-group neutron diffusion calculations some -
times show a "pathological' behaviour as well., One reason for this
can be the appearance of negative flux values. During the iterative
process it is entirely possible that negative fluxes will occur,spe
cially during the early iterations. If these are not detected and
corrected, they will be used in the calculation of the neutron sour
ce and will thus propagate the error. The problem will be aggrava -
ted by the extrapolating schemes used to accelerate convergence. It
is therefore necessary to include in diffusion and transport calcu=-
lations means of detecting and eliminating negative fluxes. It has
been pointed out, however, that one needs that any correction or
elimination of negative fluxes does not destroy conservation proper

ties such as neutron balance.

Some anomalies have been encountered in using a programme
based on a calculation of multigroup flux shapes from first-flight
collision probabilities (integral transport theory) 62 « This pro -
gramme extends the methods of integral transport theory to the epi-
thermal neutron energy region, utilizing the numerical methods of
the MUFT programmes to treat energy dependence. This same programme
extends the homogenized cell migration area by Fourier-transform

methods to the thermal neutron energy region. In the process of
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checking out this programme, oscil lations were noted in the spatial
dependence of the epithermal cell flux at the boundary of a non-mo-
derating, source-free material. Although the condition for stabili=-
ty was not known, the situation can be remedied by introducing the
small moderation which actually exists for heavy regions and,on the
other hand, it does not arise for codes like THERMOS which do not
rely on a differential treatment of the slowing down operator. The-
refore, this last mentioned approximation seems to lie at the root

of the difficulty.

One other difficulty has been discovered. Although fhe
equations of integral transport theory for thermal neutron spectra
(THERMOS) appear to be unconditionally stable for isotropic scatte-
ring, introducing the transport correction for hydrogen as a negati
ve diagonal element of the scattering overator leads to spectra
which are numerically divergent, and which are not everywhere posi-
tive. This behaviour has been attributed to the negative elements
of the scattering operator, since the difficulty vanishes if the

transport approximation is not employed.

It is thought that these iast two difficulties are proba=-
bly related, and that undoubtedly could both be understood if a ge-
neral treatment of the convergence criteria for the integral trans-
port equation were available which encompassed the usual forms of

the energy transfer operator.

In fact, from a general point of view it can be said that
some techniques currently being used do not fulfill the presently

known theoretical requirements for assuring a convergent process.

Finally, a few quite concrete anomalies will be pointed
out. Two centres have reported that some Sn-type codes develop osci
llatory behaviour, and lead to contradictory and even unacceptable

results when applied to the thermal region. It has also been pointed
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out that the two-dimensional Sn code SNARG2D has a tendency to pre-
dict negative fluxes at interfaces. At the same laboratory,the CRAM
code in RE6 geometry with a coarse @ mesh was found to be unstable.
With up-scattering, convergence in RZ geometry was extremely slow
and during the first 25 hours of IBM-7090 time indicated alternating
divergence, On the other hand, the EXTERMINATOR code showed no signs
of converging for the EBWR plutonium core loading, whereas the PDQ

shows no such difficulty.

In conclusion, it might be said that, even if programmes
were intrinsically '"sound", nevertheless their use can lead, and in
fact do sometimes lead to strange situations and surprising re
sults for which no explanation is known at present. To find a more
rigorous foundation for the basic numerical processes is a challen-
ging problem which deserves a large amount of effort. It should be
extremaly valuable to attain a basic understanding to remedy
the present situation in which many questions can be answered on

1y by numerical experimentation.

C. DIRECTIONS OF POSSIBLE IMPROVEMENTS

Although there is no obvious direction which will lead to
a break-through, it is generally believed that continued effort
should be spent in the development of faster, more reliable analyti
cal and numerical methods for sclving reactor mathematics problems.
The trouble is that many problems encountered are such that an accu
rate analysis is necessary case by case. Nevertheless, the situa -
tion is not so obscure as to preclude the presentation of some gene

ral trends.

It may be worth pointing out that some difficulties are
not to be attributed to the mathematical methods proper, but to the
nature itself of the problem to be solved. For example, the Cauchy

problem for elliptic equations, or the Fredholm equations of the first
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kind when treated by’ordinary numerical methods usually lead to the
problem of solving ill-conditioned linear systems. In such cases,
instead of trying to adjust the numerical method to the proposed pro
blem it may be more convenient to reformulate the latter by substi=-
tuting for it another properly posed problem, the solution of which

approximaﬁe that of the initial problem (fegularisation methodé).

One main problem is to obtain satisfactory agreement bet-
ween the solution of the finite difference equations and those of
the differential equations, without putting undue requirements to
the computer. Methods have been established to choose the mesh size
in such a manner as to minimize the requirements to computer space

and time for any permissible deviation.

The opinion has also been expressed that it might be appro
priate to look, not for mew methods, but for o0ld methods which we -
re not practical on desk calculators and therefore are not used, In
other words, it should be possible to gain considerable advantage
by redoing old investigations with a broadepr scope of numerical me-
thods in mind. In any case, as improvements are made in basic nu -
clear data and in theoretical models, and as computers of increased
speed and versatility become available, numerical methods may beco-

me a weak link in our ability to perform reactor calculations.

One of the most importanf areas of need is in reactor ki-
netics. There is no entirely satisfactory calculational tool availa
ble at the present time for space dependent kinetic calculations .
But even more basic than that, it is not even clear what numerical
methods are best to use in space independent kinetic work. The exis
ting codes use anywhere from the simplest first order Euler procedu
re to higher order methods such as fourth order Runge-Kutta. The
63. It is

not clear under what conditions the use of the more sophistica -

Lie series method has also been applied to this problem
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ted methods 1is necessary or justified.

Another somehow related outstanding problem is that of nu
merical integration of non-linear ordinary differential equations,.
These normally arise when one isconsidering the kinetic or dynamic
behaviour of systems and one needs to integrate the equa =
tions with respect to time. Traditionally this sort of work has
been on an analog computer because this is very suitable for per-
forming time integrations and provides engineers with the sort of
man/machine interaction which they find desirable. This last point
can now be provided on digital computers y» and the
question therefore arises as to whether the integration of these
equations might not be performed more efficientlyon a digital com=-
puter. The problems here are essentially those of stability and con
vergence =-especially when the equations contain small time cons -
tants. What is required are improved algorithms relating to the in-
tegration of these equations so that theymay be performed in reaso-

nable amounts of computer time.

It is also important to bear in mind that the optimiza -
tion of the performance of a reactor, taking into account the com -
plex nature of the processes involved, poses many difficult mathema
tical problems. A particular example of this is found in the field
of fuel management, where the problem is to devise an optimum or
near optimum, strateg& for movingﬁfuel and absorbers in a reactor
for the whole life of a reactor. The algorithms of dynamic: pro -
gramming have been looked at, but it was found that these are not
sufficiently powerful to deal with this sort of problem. At present
it is possible to operate on a fairly heuristic basis by attempting
to eliminate at each stage practically all the possibilities on
fairly crude physical arguments. It is felt that what is needed is
a2 new mathematical basis for optimising a path through such a com-

plex problem,
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Another important problem is that most of the large, mul
ti- or few-group diffusion and transport codes were written keep -
ing in mind the limitations of yesterday'’s computers, which are
now being replaced by a new generation of machines. The numericalv
schemes and the calculational strategy were closely related to the
relative speeds of the arithmetic using in-core data and of the
speed at which data could be transferred from tape to core. The ob
jetive was to keep the arithmetic unit busy even with somewhat was
teful calculations while the next set of data were transferred in-
to the core memory. The situation is quite different on the compu-

ters now becoming available, for the following reasons:

1) Larger fast memories are available,
2) The data transfer rate to the fast memory is improving,
and most important,

3) Multi-programming capability is available.

The last improvement mentioned above means that the com-
puter has the ability to work on several programmes at the same ti
me. While one of the programmes is waiting for additional data
being transferred into the fast memory, the arithmetic unit is kept bu-
By with other programmes. It may therefore become possible to per-
form the calculations in a more straightforward and efficient man-
ner. It will take a substantial amount of study and effort to make

full use of the new computers.

On the other hand, generality and automation have been
considered to be one of the most important requirements in the de-
velopment of new methods for the solution of the reactor theory
equation, in particular of the transport equation. Generality
means. here the ability to sclve very complicated problems under ve~

ry different possible conditions. For example, a transport code would
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be general if it were able to solve the three dimensional, time de-
pendent transport equation in a variety of geometries, with a va-
riety of angular representations, and with a variety of scattering
approximations. By automation it is meant that the solution technigque
should not require participation of the user for a sétisfactory s50-
lution. That is, if a particular mesh scheme angular representa-
tion, trial function, etc. is to be used, depending on the charac-
teristics peculiar to the problem at hand, the selection should be
made automatically by the code and not by the user.

Another aspect of automation offers a broad field of ac-
tivity into which much effort is going nowadays. Thus, there have
been a number of attempts to automate computer usage in regard to
performance of a sequence of inter-related calculations such as are
commonly required in reactor physics studies. It has been point-
ed out that the KARE65 system of KAPL and ANL MACHI66 system
which are early attempts in this direction suffer from some serious
drawbacks. In particular, it is difficult to extend these systems,
and many aspects of reactor theory are not incorporated in these

rather specialized code packages.

The KAPL NOVA system is an attempt to eliminate these pro-
blems. An analogous system is being developed at Argonne and has
been designated as the Argonne Reactor Computation System (ARC Sys-
tem67). It is intended for use on a next generation computer and
represents a complete break with traditional computer methods in
essentially all respects. This system consists of a collection of
highly modular computation modulus which operate under the direc-

tion of a Central Operating System on an automated and unified man-

ner.

As does NOVA, the ARC System uses a DATAPOOL which con-

tains all external inputs, the computational modules, and the re-
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sults generated by all of the computational modules. The storage
and retrieval of data from the DATAPOOL is accomplished by the ope
rating system. The route to be taken through ARC may be determined
by selecting a previously Catalogued Standard Path, or by genera -
ting a non-Standard Path at run time, In the latter case, the full
capability of the FORTRAN compiler is brought to bear on setting
up the current ARC run., There is no limit to the complexity of the
route to be taken through ARC other than imposed by the ingenuity
of the user. The ARC System is open ended and can be extended inde

finitely.

Finally, one particular direction of improvement is the
use of computers with many parallel working arithmetical units. No
doubt, today the data transfer speed (from tapes, discs or drums)
is the limiting factor in case of large reactor problems, and pa =-
rallel computing certainly‘is not helpful here. However, the use
of large size bulk storage together with such multi-arithmetic
unit processors seems to be worth considering. The sequential orde
ring of the arithmetical operations, at present used in most nume-
rical schemes, is not required for such a computer with multi-arith
metic unit processors. Therefore, the development of completely
different numerical schemes might be necessary. On the other hand,
it has been pointed out that supporting the idea of the potential
utility of parallel arithmefic machines is the matrix algebra for-
mulation of the overwhelming fraction of all reactor problems. The
reactor field might support the development of limited flexibility

computers designed specifically for matrix inversion.
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