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REsuMEN

En los dltimos afios ha cobrado cierta importancia el tema de la reduccién de
‘as ecuaciones cinéticas del transporte de neutrones a una forma indépendiente del
espacio y de la energia. También se ha discutido ampliamente la ecuacién de la
hora-inversa a que conduce aquella forma reducida. Entre otros autores, Ussa-
choff (1), Henry (2, 3, 4), Cohen (5), Gross y Marable (6) y recientemente Bec-
ker (7), han deducido rigurosamente de las ecuaciones generales otras en las que
la {inica variable independiente es el tiempo. El objeto del presente articulo es pre-
sentar un tratamiento general del problema en el que las funciones de peso pueden
ser funciones no negativas, cualesquiera dentro de ciertos limites, acaso dependien-
tes del tiempo. Los resultados mas importantes estan contenidos en un articu-
lo (8) que el autor presenté en la reunién del European-American Committee on
Reactor Physics celebrada en Hanke, Noruega.

ABSTRACT

‘ In recent years, the subject of reduction of the kinetic neutron transport equa-
tions to a space-energy independent form has become of some importance. The
related inhour equation has also been largely discussed. Rigurous derivations have
been provided, among other authors, by Ussachotf (1), Henry (2, 3, 4), Cohen (5),
Gross and Marable (6), and quite recently by Becker (7). The subject of the present
Pa'per is a general treatment of the problem, in which the weight density functions
H.Ug'ht be rather arbitrary non-negative functions and are allowed to depend on the
time. The main results were already contained in an earlier paper by the author (8)

Presented to the Hancoe Meeting of the European-American Reactor Physics Com-
ittee, )



I. NoTaTioN

The basic equations describing the time behaviour of the neutron
distribution for a reactor svstem with stationary fuel will be taken
to be the following:

1. B ) i
— B ) = oK F R ) (x w0 4 ; T fom (28) Com (X, £)

+Qx,u,7), [1.F], Cm (X, ) = _ K7 F (X, W,7) — hm G (X, 1), [1.C}
Jom (12) 2

where: F (x, u, t) is the directional flux density at the point (x, u)
of the phase space (u is the vector lethargy, u = # Q), and time ¢;
C. (x, t) is the concentration of the m-th group of delayed neutron
precursors (m=1, 2, ..., @), and X, is the precursor decay constant;
O (x, u, 1) is the external source density. The external source den-
sity for precursors is suppossed to be zero.

The linear operators I1,, Kj, Kpi, and K™y are defined as
follows:

IL,F:—-Q-gradF-—STF. [2]
K, F =de' x> )Fx W, 8, (U =dudQ) 9]
u
KeF= D@ - avrw e nFsw,y W
" u
K;’; F= Zf,,. (2) fs*’;f d U’ v* (u') x, #, ) F(x, v, ?), {5]
* u

Here 3 = Sc + Zp + =, is the total macroscopic cross-section;
S (x, w" > u, ) is the macroscopic cross-section for the scattering
process u —> u; X% (x, #, ¢) is the macroscopic fission cross-sec-
tion of the p-th fissionable nuclide (p. = 1, 2, ..., N), v* is the total



aumber of neutrons emitted from a fission of the p-th isotope,
f* (u) the corresponding spectrum (normalization:

. def“(u): 1);
u

g%, is the fraction of the total number of neutrons emitted frome
the m-th group of precursors due to a fission in nuclide w; fm (u)
is the spectrum of delayed neutrons from the m-th precursors (nor-
malization :

defm(u).—_—l).

u

The linear operator 11, is diagonal in (x, u) space. The scattering
and fission operators K,, Ky, and Km. are diagonal in x-space,
but integral operators in u-space. It will be convenient to introduce
the (total) fission operator

K=K, + Z K (6}
”t

as 'well as the operator

L=+ K +K,. (71

11. THE GENERAL WEIGHTING PROCEDURE

Let D be the domain of (x, u) space defined by the reactor sys-
tem, R, and the domain, U, of lethargy space, D = R x U, S the
(spatial) boundary of R. The directionai flux density F is a non-
negative function with domain D which must satisfy adecuate boun-
dary conditions on S (e. g., F(x,ut) =0 if x€S, n-2<0, n
being the outward normal vector on S at x) and continuity condi-
tions in R. Let {F} be the class of all functions with domain D which
satisfy the same boundary and continuity conditions as F, and {F+}
the class of all functions with domain D which satisfy the adjoint
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boundary conditions (e. g., Ftr(x,u,t) =0 if x€S, n-Q>0)
and the same continuity conditions as F. Finally, let W+ (x, u/¢) be
a non-negative function of class {F*}, depending parametrically on
the time ¢ in some interval 0 < ¢ << T. The function W+ defines a
linear functional on {F}.

W+{ﬁ]=f\v+(x,u/t)dv dULvF(X,u, ?) (8)

a

which will be called the total weight of the neutron population,
Nx,u, t) = Lv F (x,u, t), at the time ¢ (*), W+ [F] is positive

for all non-negative F, and W+ (x, u/¢) is called the directional
weight density or, simply, the neutron weight. The local destruc-
tion rate of neutron weight at (x, u) is obviously given by

— WHx,u/)1l,F(x,u,?)

and the scattering creation rate by

WH(x,u/f)K, F (x,u,7).

Therefore, for the total destruction rate of neutron weight we find

pw—:fw*'dVdU(Q- grad -+ Z, ) F -

D

+fF(x, w,4dVdu de' S X0 -, )| WHx, w8 — WHx, u/n!  [9)]
D u

Thus, only for those weight function which are wu-independent
the destruction rate can be characterized by the operator Q - grad +
+ I, that is, by leakage and absorption. This result is triviai from
the physical point of view, for only when W+ does not depend on u

(*) To avoid unnecessary details it is supposed that all the mathematical ob-
jects concerned do exist, in particular that the integrals do exist and the opera-
tions are valid.



the scattering process is irrelevant for the weighting procedure. In
particular, by taking W* =1 (¥) the total weight reduces to the
total number of neutrons in R, and since the scattering process does
fiot modify the neutron number, the characteristic destruction ope-
rator is defined by @ - gradi+ .. ' v

Now, let us suppose we are given a weight W*. In general, W+
will depend on the time. The directional flux density F (x, u, ¢) can
always be factorized into a function ¢ (x, u, £) and a function T (),
and this is an infinity of manners. But, for a given W* (non-nega-
tive) the function T (t)-and, therefore, ¢ (x, u, t)- is uniquely de-
termined by the conditions

(w+. %q;) ~0, T@O)=1, 110]
where (g%, f) represents the inner product (in D) (¥*):

(g*.f)=fg+(x,u)dVde(x,u).

D

To prove this, we observe from the first condition [10] and
F = ¢ T that

T(w+,-1—ir)—_—1"(w+,iF),
v v
and since (W*'-:’—F) > 0 for all values of ¢t » 0, we shall have

1 .
. + o
T_(W'vF)

v

*) W+=1, wt+eg {F+}. means: a) W+ =1 in R, all u; b) W+ = 1(0) 6n
S and for those u = u Q such that n- Q<0 n-Q>0).
{(**) Al functions are supposed to be real.

REV. DE LA REAL AcApEMIA DE CIENCIAS.—1969.



_So_.

Therefore

T ()= exp dt ———— 11838

wr,— i)
v
L]

(W+, 1z
v

It is important to observe that this expression for T (f) is invariant
under any gauge transformation of the form

Wt ot (#) W, F->aP, [12}

where ' () is any positive function of ¢ and a is an arbitrary
constant. '

The factorized form of F(x,u,t) = ¢(x, u,t) T #), with
v (%, u, #) defined by

F (x. u,?)

'p(X,\l, 7) =
and T (#) given by [11], will be called the normalized shape of
F (x, u, 1) ‘with respect to the weight W+, and T (¢) will be called
the normalized amplitude.

We now proceed to establish another important property. We
have just seen that T (#), and therefore the normalized shape, is
invariant under the gauge transformation W+ - wt (£) W+, As a
consequence, we shall prove that it is always possible to choose
wt (t) in such a way that the weight W,+ = wt (£) W+ satisfies
the identity

(W:,-—:}—Q)=0. (14]

For, if we substitute the product w' (¢) W+ in [14], the condition:
that the equation should be satisfied becomes '

w (\V"’, %— r‘o) 4wt (W*. -:)— cp) =0.
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1t follows that the condition to be satisfied reduces to

. 1
wt (W+' T(‘a)
wt + 1
(W)
Hence
T
_ (w+,—1-‘?)
wt(f)=exp d= 'I; {15}
o=

The weight W, = wt () W+, with w* (f) given by [15], will be
called the normalized weight with respect to the flux density F.
From the relations [10] and [14] it follows at once that:

The total normalized weight of the neutron population distribu-
ted according to the normalized shape is a constant of the motion.

For, differentiating (W:.—:—ap) with respect to the time, we get

d 1 : 1 1.
ar (W)= (Vg o)+ (W Sé) = el
This is the result which had to be proved,
Consequently, we see that theé total normalized weight of the
neutron population —}J— F (x, u, t) depends on the time ¢ only through
the normalized amplitude T (#) defined by [11]:

(W+ ): (W* —?) T (#), (171

with (W:,—:—J—(p)z Const. The relations [16] and [17] generalize

the conservation requirement postulated by Henry (2, Eq. 5) to the
case of a general, time depending weight density.

. Now, let P,* (x/t) be g non-negative functions (m = 1, 2, ..., g)
with domain R, depending parametrically on the time ¢ (0 < t < T)
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and satisfying in R the usual continuity conditions. The linear func-
tional

P [Cw] =fpjn (X{t) dV Cm (X, 1) {18]

R

will be called the total weight of the m-th group of delayed neutron
precursors population at the time {. The same as W+ [F], the to-
tal weigth P,*[C,] is positive for ali non-negative C,, and
Pt (x/t) is called the weight density of the m-th group of delayed
neutron precursors, or simply the m-precursor weight. The weights
Pn* {x/t) are for the moment quite arbitrary,given functions, If we
represent the inner product (in R) by

gt £ =fg+ ® 2V / (x),

R
the linear functional [18] may be writtea
P! [C] = ; Pl Gl (18]

The notions of normalized shapes and normalized amplitudes
may now be extended to cover the precursor concentrations. Thus,
we will have the normalized amplitudes ¢, () defined by (cf. equa-
tion [117)

3

f { P G
em{t)=exp | dve —— [19]
0

P Cn |

and the normalized shapes

{m (X, ) = Cm (X, 1) [20]

1
Em (1)
all with the same properties as T (t) and ¢ (x, u, £), respectively. In
particular, the amplitudes ¢, (¢) are invariant under any gauge trans-
formation (cf. Eq [12])

p* ’_’}’,‘: (t) P:,' Co— am Cm, [2‘]

”m



where p,t (t) is any positive function of ¢ and a» a constant (m = 1,
2, ..., g). As a consequence, to each given set of precursor weights

corresponds a set of wnormalized precursor weights P . such that

3?,:_,,, im} = 0. [22]

III. THE GENERAL KINETIC EQUATIONS

We are now able to proceed to establish the basic formulation
of the space-lethargy independent kinetic equations. The characteris-
tic reactor operators are supposed to depend on the time, as well as

the weight density, in general. We write the first Boltzmann equa-
tion [17 in the form

S F=LF = STKREF4 3 Gt Q, | (23]

where L is the linear operator defined in [7]. Taking the inner pro-
duct of W,* with the Eq. [13], we get

dT (W, Lo (W, K 9)
e e s e
W+ +
(\Vn’—;q)) m (W,”'—’;"?)
(W7, fm Com) wHhQ

+§ (W:’_:_(P) + (W*-;—w) : [24]

Let the magnitudes 5, 8, and I be defined by the relations

(W Lg) LML)

e e (25]
+ l g+ L
(\V".TQ) (\V”, v¢)

It is convenient to observe that: a) the ratios g/l and 8,/I depend
only on the shape ¢ and on the weight W+, being independent of
the normalization factor w* (#); b) in fact the validity of the re-



duction of the first transport equation [1]} to the space-energy in-
dependent form [24] depends only on [10]. The same is true for
the magnitudes

= = [26]

pee] e

n' g

In other words, the subscript #n can be dropped in: Eqs. [24], [25],
and [26].
Let us introduce

u
and
W el = [ W a0 U fn ). (28]
u

Given the neutron weight W+, Eq. [28] defines a family of precur-
sor weights —the precursor weights associated to the given neu-
tron weight W+. A clue to the significance of W, (x/t) can be
obtained by consideration of the equations to which obey the ad-
joint precursor concentrations (*). As is well known, in the absence
of an importance source for the sm-group of delayed neutron emit-
ters (m-precursor), the adjoint precursor concentration C,* satis-
fies the adjoint equation

) = — Doy [F+ (%, u/8) dU fm () + A CL (X, 2),

u

where T+ (x, u, #) is the adjoint flux (the importance). For the
time-independent problem, therefore, we can write

Cl (x) =fF+(x, WAU ().

u

(*) Concerning the adjoint equations in nuclear reactor theory, see, for exam-
ple, refs. (9) (12).



From the comparison with Eq. [28] it follows that the m-precursor
weight associated to the given neutron weight W+ (x, u/f) might
be formally interpreted as the «adjoint» m-precursor concentration
determined by the neutron «importancen W+ (x, u/t) at the time ¢.
Of course, since W+ (x, u/tf) is not in general a solution of the

time independent adjoint problem, the interpretation is only a for-
mal one.

In terms of the associated precursor weights, the magnitudes
<'m, Eq. [26], may be written

i @) =0bm (&) cm (F), [29]

where the b, (t) are defined by

with the normalized shapes ¢ and ym, and the normalized amplitudes
cm given by Eq. [19].

Now, denote by » the common value of the ratios

2 Bon
(W+, 21, ?) (WH, L o) (WH, K;'z_@)

The magnitudes I, ¢ and §, are not determined by the weight and
the shape only, and are altered hy changes in r. On the other hand,
the kinetic equation [24] is not r-depending and can be written in
the quasi-conventional form

- p—B
T{#)=—T Mont Bsre Cone . 32
@) 7 + Em Cm ¢ [32]

The kinetic equation [28] differs from the conventional form due
to the presence of the factors b,. in general a function of time.



For a given reactor system, and given the neutron weight and
the shape, the vaiue of r can be defined only by independently defi-
ning one of the magnitudes involved, for instance, the reactivity e.

In terms of —E, we get

1
(W*,——- 90) (WH, K7 )
- = v ~ = F, _
/: e = ————————————— T p‘ ) 3
P W L) b=~ g Z}L P (33}
with

- Wt

LI zv'"lN‘“g B [34]

{ +

(\V . (P)

These are the general expressions for the «formal» lifetime T and
m-th delayed neutron fraction, n independent of the weight nor-
malization,

We have hitherto considered only the first Boltzmann equa-
tion [11 and its reduction to the (quasi) conventional form [28].
We proceed now to find the reduced form of the m-th equation for
the second set of transport equations [1.C]. Taking the inner pro-
duct (in R) of P,t (x/t) (the given m-precursor weight) with the
Eq. [1.C], we get

}P:—n' Tm ‘ Cm (f):‘ [Z } P:‘, Np,} g,l‘n]'r(t)——)‘msprn"fm fcm(f),
w

or defining

1
w+ L
&) = ;P:”Nuz ( ,qu)

PPhym] JWI N 1531

od

T
tm (1) = [ > Bl_"' o ] T (2) = how O (2). [36]

fr

As in the case of the first reduced kinetic equation [32], the ki-
netic Fq. [36] differs from the conventional one due to the presence



of some extra factors —in the present case, the coefficients g,.
It is interesting to note that the definition Eq. [35] considerably
simplifies in the important case in which we take P,t = Wt It is
then easily seen that g*, does not depend on g, and that gn b, =1
for all values of #i:

="l= Sm. [373

Equation [36] may then be put in the quasi-conventional form

Cm (F) = i:”— emT{) - Dmcml?). [38}
Z

Under the same assumption (P,* = W,%), suppose that the time
dependence of W+ (x, u/#) is separable,

WH(x, uft) = f () WE (x, u). [39]

The normalized weights will then reduce to the following time-in-
dependent expressions :

WH=W}(xuw, P} =W (xu).
From the definition of normalized weights it then follows that the
coefficients b,, and g, (= bn~?) will be constants. These constants
may always be taken equal to unity, that is, Eqgs. [32], [38] reduce

to the conventional form. A particular case of Eq. [39] is that in
which W+ does not depend on time,

IV. SOME PARTICULAR CASES

As we have seen, the values of T and 8, (Eq. [33]) depend on

the definition of the «reactivityn . We chall take as standard value
for ¢ the value

- A—1




where %, is the so called static multiplication factor, i. e., the value

of k for which the boundary value problem

2

(IL—{—K,———;;KF)F—:O‘ (41]

Fx,m)=0 if X€S and n - <0,

has a non-negative solution, We shall represent this solution by F,.
According to this definition, between ¥, and the standard reactivity
¢ there exists the relation

LF":PKF Fo, [42]

with L. defined as in [7]. The corresponding solution, F,*, for the
adjoint problem is such that

LtF, =pK F}. [42+)

The standard definition of the multiplication factor depends only on
the instantaneous characteristics of the reactor system, not on the
actual neutron population.

On the other hand, let o, be the dominant period for the instan-
taneous characteristics of the reactor. This period is the greatest
value of o for which the boundary value problem

o o
Lo={— — K} g, 43
¢ (,, +Z Yom 4 @ Fr)(P (43]
p{(x,m)=0 if x€S and p. Q<0,

has a non-negative solution, p,. The corresponding solution, g,*,
for the adjoint problem is such that

o,

lo Wo m
D Ksr*)'p:- [43)
” ! ?

+ pt =
L Pa _"(



From the comparison between [42] and [43] it follows that in
Eq. [43] the operator

o o

— - K7

v +Z‘ ?\m+0) F,
m

plays a role similar to that plaid by ¢ K, in {42]. In particular, we
have the relation

P (7, K00 =) —@0)+Zk+ S )

We next proceed to consider some particular forms of density
weight.

1. Wt = constant.

The expressions [31] and [33] reduce to

dea'Uiv(p dedUK;"'g

3 Bm:\o_ﬂ—_‘Q
dedULq: dedUch

where ¢ is the (standard) reactivity. Let k, be the dynamic multipli-
cation factor (Ref. (5), Eq. [44])

T=p [45]

dedUKFcp
kal= ~ , [46]
jdVdU(HaJrKs)cp
and ¢, the dynamical reactivity
dedUch
0a = ka’k—-l - ] [47]
4 /dVdUKF:p
Defining
1
dedUT? dedUKF,tp
*
I*=~— y Bm='—‘—“—“‘\ [481
dedU(Ha—l—Ks)q) dedUKF(p
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we get the following relations:

il B =L g*
'éd ! B"‘_ pd 5m' [49}

T=-£_

pd

It is of some interest to point out that, although the definitions

Eqs. [46]-[48] are formally the same as those of Gross and Mara-

ble, they differ form the latter in that the shape o (x, w, t) is, in

general, a function of time . Now, suppose that ¢ = ¢, corres-
ponds to the dominant period «,. Then we shall have

s w
te=to = (4 X ) el
”
and therefore
7* Wo ﬁ:,
P = uw—i—Zm [51]

or, from Eq. [49],
p="7wm, - Z% (521

Equation [51] is the inhour equation derived from the gross neu-
tron conservation condition by Gross and Marable (5). To take
W+ = const. is essentially equivalent, in fact, to define the weight
of the neutron population by the total number of neutrons in the
system. Althongh Eqs. [51] and [52] are exact relations, they have
been derived from the two assumptions W¥ == const.,, and stable
period behaviour of the system. As we shall see, the same form of
inhour equation holds under more general assumptions.

2. Wt = Ft+x, u),

© » - .
Iet L characterize some standard, time-independent reactor con-

- . =] . . . »
figuration and let F+ be the neutron importance in this configura-
tion, 1. e., the non-negative solution of

L+ F+ = p, RFFH. 53]
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With B+ as a weight, to compute 7 and B, we only need the ex-

pression for (%‘*, L o). Now,
(F+ Loy =(F[L+3L)9),
with 3 L = L — .. Therefore (cf. Eq. [53])
(F, L) = (L4 B, )+ (F1, 3 L) = po (F5, K, 9) 4 (FH,3 L ) [54]

Following Cohen ((4), Eq. [42]), let us introduce the reactivity
relative to the standard configuration

F+, L g F+, 5 L
GRS TR AL L [55]
(F*,K; o) (FX K0

and the magnitudes I and 7, defined by

o 1 .
(F+, — (?) i (F+, K':r %)
J=—— " b= [56]
-] ] Q
(F+, K ¢ (F+, KF )

From Eqs. [55] and [56], and from Eq. [33] it follows that

T=

p T P
5, Bm=—p". [57]
po i pe eff

In particular, for stable period behaviour we have o = ¢,, with ¢,
non-negative solution of Eq. [50], and therefore

° -] 1 Wo o
F+ — 4 — — (F*, K" ¢
( ,ch)-—u),,(F ' c?a) E T (F .K,,r?a)v

that is

o, B"‘ﬂ
Pe= “’a’-l-Z'H'_*_eT (58]
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or
T ®y B
=w, /4 E W [59]

It is not surprising that every time the shape is related to a sta-
ble period condition we arrive at an inhour equation, either for
W+ < const.,, or W+ = Ft(x, u). One can easily see that the in-
hour equation holds, whatever the weight, when the flux is on a
stable period. This follows inmediately from Eq. [43], taking the
inner product of this equation with the generai weight W+, and from
Eq. [33]:

(W+; K;":_ (?”)

— (\V+, L '.Pg) —_ W,
e T ‘”°+Zx+m 1 ’
(W", — tpn) m ° (W+, — @ )
v . v
and therefore
_ W, B
p==Tw,4 D' 2 [60)

e

All the weights considered thus ifar were time independent
weights. We will now consider two cases of, in general, time-depen-
dent weights. Let L be the characteristic operator, Eq. [7], for the
actual reactor. All reactor linear operators will depend on time. At
every time ¢ these operators define a particular virtual reactor which
is stationary in time by virtue of the (static) multiplication factor
k,. Let F, be the directional flux density. There is then a sequence
of virtually critical reactors in correspondence with the values ¢ of
the time. Similarly, we can associate at every time ¢ a static, real
reactor the characteristic operators of which are the same as those
of the actual reactor. Let ©, be the stable flux shape. Both F, and
v, depend parametrically on time, F, = F, (x, u/t), 9, = ¢, (x, u/t),
and the same holds for the adjoint solutions, F,* and ¢,* (cf. equa-
tions [42+] and [43*]) and for the multiplication factor, k,.



Now suppose we choose W+ = F+ (x, u/#). Then ] and 'Em take
the simple form

1 w
(FZ'»-;’?) _ (FLET )

T=a ' B .
(F, Ke 9) (FH K

[61]

The two expressions are similar to the magnitudes defined by Hen-
ry (2), Egs. [9] and [10}, There are some differences, though. First,
the latter refer to a fixed reactor and, therefore, depend on time
only through the shape o (x, u, t). Second, the weight chosen by
Henry is not Fj*, but the integral [ F* (x,u)d Q. On the other

hand, 7 and B, Eq. [61], depend on time not only through the
shape, but through the parametric dependence of ¥+ on t. Because

of their twofold time dependence, the magnitudes ; and §, might

vary with time more slowly than do those defined in the con-
ventional manner,

Finally, suppose we chosse W+ = ¢t (x, u/t). Then, the inner
product

(W Lg) = (¢, Lo

takes exactly the same form as if the actual reactor were on a stable-
period o,:

(?:v d)= (L+ -@) = w, ((P,, y ) + Z )\m . K;"r @) (62]

But from Eq. [33],

and therefore

p="Tu, + Z k:ﬁ’:j (63F



with

+ _I_F + pom
I Lottt B (0} K7 Fo)
(¢, K Fo) (7, Kg Fo)

Here F, (x, u/t) is the directional flux density for the virtual reac-
tor associate to the actual reactor at time ¢. For a given reactor
system, the magnitudes 7, and B, defined by [64] are independent of
the state of the neutron population. Only the physical structure of
the system determines the values of 7, 8, and p. We are therefore
let to the following statement:

The inhour equation

— ‘Do_gm
p—/uja-f-;m

holds: a) for any weight, if the actual reactor is on a stable period
(Eq. [60]); b) for any shape, if the weight is taken equal to the
persistent importance ¢,F in the associate reactor at each time ¢

(Eq. [63]).
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