On best affine unbiased covariance-preserving prediction of factor scores

Heinz Neudecker*
University of Amsterdam, The Netherlands

Abstract

This paper gives a generalization of results presented by ten Berge, Krijnen, Wansbeek \& Shapiro. They examined procedures and results as proposed by Anderson \& Rubin, McDonald, Green and Krijnen, Wansbeek \& ten Berge. We shall consider the same matter, under weaker rank assumptions. We allow some moments, namely the variance Ω of the observable scores vector and that of the unique factors, Ψ, to be singular. We require $T^{\prime} \Psi T>0$, where $T \Lambda T^{\prime}$ is a Schur decomposition of Ω. As usual the variance of the common factors, Φ, and the loadings matrix A will have full column rank.

MSC: 62H25, 15A24
Keywords: Factor analysis, factor scores, covariance-preserving, Kristof-type theorem

1 Introduction

We consider the factor model $y=\mu_{y}+A f+\varepsilon$, where y is a $p \times 1$ vector of observable random variables called «scores», f is an $m \times 1$ vector of non-observable random variables called «common factors», A is a $p \times m$ matrix of full column rank whose elements are called «factor loadings» and ε is a $p \times 1$ vector of non-observable random variables called «unique factors». The usual moment definitions and assumptions are

$$
E(\varepsilon)=0, \quad E(f)=0, \quad E(y)=\mu_{y}, \quad D(\varepsilon)=\Psi, \quad D(f)=\Phi, \quad C(f, \varepsilon)=0 .
$$

[^0]This yields the moment structure

$$
\Omega=A \Phi A^{\prime}+\Psi,
$$

where $\Omega=D(y)$ and Ψ can be singular, Φ and A have full column rank.
Notice that

$$
\begin{equation*}
\mathcal{M}(A) \subset \mathcal{M}(\Omega) . \tag{1.1}
\end{equation*}
$$

The following additional assumption is made:

$$
T^{\prime} \Psi T>0 .
$$

It is inspired by the Schur decomposition $\Omega=T \Lambda T^{\prime}$, with $T^{\prime} T=I_{r}$ and diagonal $\Lambda>0$. Obviously $p \geqslant r>m$.

In two recent publications Krijnen, Wansbeek \& ten Berge (1996) and ten Berge, Krijnen, Wansbeek \& Shapiro (1999) studied the problem of best linear prediction of f given y, subject to the constraint $E \hat{f} \hat{f}^{\prime}=E f f^{\prime}$, where $\hat{f}=B^{\prime} y$ is their predictor function. Vectors f and y have a simultaneous distribution. The two expectations are taken with respect to this distribution.

The constraint $E \hat{f} \hat{f}^{\prime}=E f f^{\prime}$ is mistakenly referred to as «correlation-preserving». We shall call it «covariance-preserving», although at face value only the RHS expression is a variance matrix. We shall use an affine predictor function $\hat{f}=a+B^{\prime} y$. It will be shown that $a+B^{\prime} \mu_{y}=0$. Hence the predictor function will become $\hat{f}=B^{\prime}\left(y-\mu_{y}\right)$ which is linear and unbiased. Consequently the LHS expression will become a variance matrix.

In their article ten Berge et al. (1999) examine three prediction procedures, due to McDonald (1981) -who generalized a procedure proposed by Anderson \& Rubin (1956) - Green (1969) and Krijnen et al. (1996), respectively.

We shall consider the same three procedures. The second and third are based on the mean-squared-error matrix $M=E(\hat{f}-f)(\hat{f}-f)^{\prime}$. Where Green minimizes its trace, tr M, Krijnen et al. minimize its determinant, $|M|$. McDonald uses a different though related criterion $\operatorname{tr} \Psi^{-1} E\left(y-\mu_{y}-A \hat{f}\right)\left(y-\mu_{y}-A \hat{f}\right)^{\prime}$ which he minimizes. Note that these authors assume $\Psi>0$, hence $\Omega>0$. ten Berge et al. conclude that McDonald's and Krijnen et al.'s solutions for B coincide.

In the present paper we shall again consider the above-mentioned procedures, under weaker rank assumptions. We shall show that the MSE matrix M is positive definite. Minimization of the trace and the determinant of M yields immediately $a+B^{\prime} \mu_{y}=0$. Minimization of McDonald's criterion function yields the same result. As mathematical methods we use a Kristof-type theorem and a matrix inequality developed by Zhang (1999). Finally we show that 1) \hat{f}_{G}, the Green predictor and \hat{f}_{K}, the Krijnen et al. predictor coincide when Φ and $A^{\prime} \Omega^{+} A$ commute, 2) \hat{f}_{M}, the McDonald predictor and \hat{f}_{K} coincide when Ψ and $A \Phi A^{\prime}$ commute.

2 A Kristof-type theorem

Two of the three criterion functions can be seen to belong to the class $\operatorname{tr} P^{\prime} X$, where P and X have dimension $p \times m$. The constant matrix P has rank q. The variable matrix X satisfies the constraint $X^{\prime} X=I_{m}$. The aim is to maximize $\operatorname{tr} P^{\prime} X$ subject to $X^{\prime} X=I_{m}$. Define then the Lagrangean function

$$
\varphi(X)=\operatorname{tr} P^{\prime} X-\frac{1}{2} \operatorname{tr} L\left(X^{\prime} X-I_{m}\right)
$$

where L is a symmetric matrix of multipliers. Symmetry of L is vital. It is justified, of course, by the symmetry of the constraint.

The differential of the function, namely

$$
d \varphi=\operatorname{tr} P^{\prime} d X-\operatorname{tr} L X^{\prime} d X=\operatorname{tr}(P-X L)^{\prime} d X
$$

has to be zero. This yields the equations

$$
\begin{gather*}
P=X L \tag{2.1}\\
X^{\prime} X=I_{m} \tag{2.2}
\end{gather*}
$$

From these we obtain

$$
\begin{gather*}
P^{\prime} P=L^{2} \tag{2.3}\\
P=X\left(P^{\prime} P\right)^{\frac{1}{2}} \tag{2.4}
\end{gather*}
$$

Which square root will be selected is still undecided. Consider equation (2.4). As

$$
P\left(P^{\prime} P\right)^{+\frac{1}{2}}\left(P^{\prime} P\right)^{\frac{1}{2}}=P
$$

it is consistent. The symbol «+» denotes the Moore-Penrose inverse. The symbols «+» and « $\frac{1}{2}$ » are interchangeable in $\left(P^{\prime} P\right)^{+\frac{1}{2}}$. The general solution of (2.4) is

$$
\begin{equation*}
X_{\circ}=P\left(P^{\prime} P\right)^{+\frac{1}{2}}+Q-Q\left(P^{\prime} P\right)^{\frac{1}{2}}\left(P^{\prime} P\right)^{+\frac{1}{2}}, \quad Q \text { arbitrary } \tag{2.5}
\end{equation*}
$$

When we use the singular-value decomposition $P=F_{1} \Gamma_{1}^{\frac{1}{2}} G_{1}^{\prime}$, with $F_{1}^{\prime} F_{1}=G_{1}^{\prime} G_{1}=I_{q}$ and (diagonal) $\Gamma_{1}^{\frac{1}{2}}>0$, we can write the solution as

$$
\begin{equation*}
X_{\circ}=F_{1} G_{1}^{\prime}+Q\left(I_{m}-G_{1} G_{1}^{\prime}\right) \tag{2.6}
\end{equation*}
$$

It follows from (2.5) that

$$
\begin{equation*}
\operatorname{tr} P^{\prime} X_{\circ}=\operatorname{tr}\left(P^{\prime} P\right)^{\frac{1}{2}} \tag{2.7}
\end{equation*}
$$

As we look for a maximum, we have to take the positive definite square $\operatorname{root}\left(P^{\prime} P\right)^{\frac{1}{2}}$. The solution X_{\circ} is not unique, unless $q=m$. In that case it can be written as

$$
\begin{equation*}
X_{\circ}=P\left(P^{\prime} P\right)^{-\frac{1}{2}}=F_{1} G_{1}^{\prime} \tag{2.8}
\end{equation*}
$$

For the connaisseurs we shall examine the second differential

$$
\begin{equation*}
d^{2} \varphi=-\operatorname{tr}(d X) L(d X)^{\prime} \tag{2.9}
\end{equation*}
$$

When this expression is negative for all $d X \neq 0$ satisfying $(d X)^{\prime} X \circ+X_{\circ}^{\prime} d X=0$, a maximum has been found. The choice $L=\left(P^{\prime} P\right)^{\frac{1}{2}}>0$ guarantees this.

3 The Green procedure

As stated we use the MSE matrix $M=E(\hat{f}-f)(\hat{f}-f)^{\prime}=\left(a+B^{\prime} \mu_{y}\right)\left(a+B^{\prime} \mu_{y}\right)^{\prime}+$ $B^{\prime} \Omega B+\Phi-B^{\prime} A \Phi-\Phi A^{\prime} B$. Obviously $a+B^{\prime} \mu_{y}=0$, as we have to minimize $\operatorname{tr} M$. As a consequence $E \hat{f} \hat{f}^{\prime}=B^{\prime} \Omega B$. Imposition of the constraint $E \hat{f} \hat{f}^{\prime}=E f f^{\prime}$ yields then $M=2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B$. Green (1969) defines the problem:

$$
\min _{B} \operatorname{tr}\left(2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B\right) \quad \text { subject to } B^{\prime} \Omega B=\Phi .
$$

We introduce $C^{\prime}=\Phi^{-\frac{1}{2}} B^{\prime} \Omega^{\frac{1}{2}}$. Clearly $C^{\prime} C=I_{m}$. This yields the equivalent problem

$$
\max _{C} \operatorname{tr} \Phi^{\frac{3}{2}} A^{\prime} \Omega^{+\frac{1}{2}} C \quad \text { subject to } C^{\prime} C=I_{m}
$$

We used: $A^{\prime} \Omega^{+\frac{1}{2}} C \Phi^{\frac{1}{2}}=R^{\prime} \Omega^{\frac{1}{2}} \Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}} B=R^{\prime} \Omega^{\frac{1}{2}} B=A^{\prime} B$, with $A=\Omega^{\frac{1}{2}} R$ due to (1.1).
Application of the Kristof-type theorem gives the solution

$$
C_{G}=\Omega^{+\frac{1}{2}} A \Phi^{\frac{3}{2}}\left(\Phi^{\frac{3}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{3}{2}}\right)^{-\frac{1}{2}},
$$

from which follows the solution

$$
B_{G}=\Omega^{+} A \Phi^{\frac{3}{2}}\left(\Phi^{\frac{3}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{3}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}}+\left(I_{p}-\Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}}\right) Q, \quad Q \text { arbitrary } .
$$

The arbitrary component disappears in the predictor expression $B_{G}^{\prime}\left(y-\mu_{y}\right)$, because $\left(I_{p}-\Omega^{\frac{1}{2}} \Omega^{+\frac{1}{2}}\right)\left(y-\mu_{y}\right)=0$ with probability one (w. p. 1).

Hence we get as predictor

$$
\hat{f}_{G}=\Phi^{\frac{1}{2}}\left(\Phi^{\frac{3}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{3}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{3}{2}} A^{\prime} \Omega^{+}\left(y-\mu_{y}\right) .
$$

The reader can verify that $A^{\prime} \Omega^{+} A>0$.
An alternative expression is

$$
C_{G}=F_{2} G_{2}^{\prime},
$$

where we have used the singular-value decomposition

$$
\Omega^{+\frac{1}{2}} A \Phi^{\frac{3}{2}}=F_{2} \Gamma_{2}^{\frac{1}{2}} G_{2}^{\prime},
$$

with $F_{2}^{\prime} F_{2}=G_{2}^{\prime} G_{2}=G_{2} G_{2}^{\prime}=I_{m}$. Use was made of the fact that $\Omega^{+\frac{1}{2}} A$ has full column rank (m).

For nonsingular Ω the solution becomes that given by ten Berge et al. (1999) in their presentation, namely between (6) and (7).

4 The McDonald procedure

This approach is based on the weighted-least-squares function

$$
\operatorname{tr} \Psi^{+} E\left(y-\mu_{y}-A \hat{f}\right)\left(y-\mu_{y}-A \hat{f}\right)^{\prime}
$$

Clearly

$$
\begin{aligned}
& E\left(y-\mu_{y}-A \hat{f}\right)\left(y-\mu_{y}-A \hat{f}\right)^{\prime}=\left(I_{p}-A B^{\prime}\right) \Omega\left(I_{p}-B A^{\prime}\right)+ \\
& \quad+A\left(a+B^{\prime} \mu_{y}\right)\left(a+B^{\prime} \mu_{y}\right)^{\prime} A^{\prime} .
\end{aligned}
$$

Again we find that $a+B^{\prime} \mu_{y}=0$, now having to minimize

$$
\operatorname{tr} \Psi^{+} E\left(y-\mu_{y}-A \hat{f}\right)\left(y-\mu_{y}-A \hat{f}\right)^{\prime}
$$

Notice that $A^{\prime} \Psi^{+} A>0$.
Imposition of the constraint $E \hat{f} \hat{f}^{\prime}=E f f^{\prime}$ leads to the problem of minimizing

$$
\operatorname{tr} \Psi^{+}\left(I_{p}-A B^{\prime}\right) \Omega\left(I_{p}-B A^{\prime}\right) \quad \text { subject to } B^{\prime} \Omega B=\Phi
$$

Using $C^{\prime}=\Phi^{-\frac{1}{2}} B^{\prime} \Omega^{\frac{1}{2}}$ we define the problem:

$$
\max _{C} \operatorname{tr} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega^{\frac{1}{2}} C \quad \text { subject to } C^{\prime} C=I_{m}
$$

Application of the Kristof-type theorem yields the solution

$$
C_{M}=\Omega^{\frac{1}{2}} \Psi^{+} A \Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}}
$$

from which follows the solution

$$
B_{M}=\Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}} \Psi^{+} A \Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}}+\left(I_{p}-\Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}}\right) Q, \quad Q \text { arbitrary. }
$$

Finally the predictor turns out to be

$$
\hat{f}_{M}=\Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}\left(y-\mu_{y}\right)
$$

Again we used

$$
\left(I_{p}-\Omega^{\frac{1}{2}} \Omega^{+\frac{1}{2}}\right)\left(y-\mu_{y}\right)=0 \quad \text { w.p.1. }
$$

The reader can verify that $A^{\prime} \Psi^{+} \Omega \Psi^{+} A>0$, using

$$
A^{\prime} \Psi^{+} \Omega \Psi^{+} A=A^{\prime} \Psi^{+}\left(A \Phi A^{\prime}+\Psi\right) \Psi^{+} A=A^{\prime} \Psi^{+} A \Phi A^{\prime} \Psi^{+} A+A^{\prime} \Psi^{+} A
$$

An alternative expression is

$$
C_{M}=F_{3} G_{3}^{\prime},
$$

where

$$
\Omega^{\frac{1}{2}} \Psi^{+} A \Phi^{\frac{1}{2}}=F_{3} \Gamma_{3}^{\frac{1}{2}} G_{3}^{\prime},
$$

with $F_{3}^{\prime} F_{3}=G_{3}^{\prime} G_{3}=G_{3} G_{3}^{\prime}=I_{m}$.
For nonsingular Ω the solution becomes that given by ten Berge et al. (1999) in their presentation, namely between (4) and (5).

5 The Krijnen et al. procedure

Like Green's this approach uses the MSE matrix M of \hat{f}. Instead of $\operatorname{tr}\left(2 \Phi-B^{\prime} A \Phi-\right.$ $\left.\Phi A^{\prime} B\right)$, Krijnen et al. use $\left|2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B\right|$ which has to be minimized. The first thing to do is to prove that $2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B>0$.

We have

$$
\begin{aligned}
2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B & =\Phi^{\frac{1}{2}}\left(2 I_{m}-\Phi^{-\frac{1}{2}} B^{\prime} A \Phi^{\frac{1}{2}}-\Phi^{\frac{1}{2}} A^{\prime} B \Phi^{-\frac{1}{2}}\right) \Phi \\
& =\Phi^{\frac{1}{2}}\left(2 I_{m}-\Phi^{-\frac{1}{2}} B^{\prime} \Omega^{\frac{1}{2}} \Omega^{+\frac{1}{2}} A \Phi^{\frac{1}{2}}-\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}} B \Phi^{-\frac{1}{2}}\right) \Phi^{\frac{1}{2}} \\
& =\Phi^{\frac{1}{2}}\left(2 I_{m}-C^{\prime} V-V^{\prime} C\right) \Phi^{\frac{1}{2}} \\
& =\Phi^{\frac{1}{2}}\left[(C-V)^{\prime}(C-V)+\left(I_{m}-V^{\prime} V\right)\right] \Phi^{\frac{1}{2}}
\end{aligned}
$$

where

$$
V=\Omega^{+\frac{1}{2}} A \Phi^{\frac{1}{2}} \quad \text { and hence } \quad V^{\prime} V=\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}} .
$$

We shall show that all eigenvalues of $V^{\prime} V$ are positive and less than unity. Pre-(post-) multiply the moment structure $\Omega=A \Phi A^{\prime}+\Psi$ by $\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+}\left(\Omega^{+} A \Phi^{\frac{1}{2}}\right)$. This leads to $\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}=\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{2}+\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} \Psi \Omega^{+} A \Phi^{\frac{1}{2}}$, hence

$$
\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}>\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{2},
$$

as $\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} \Psi \Omega^{+} A \Phi^{\frac{1}{2}}>0$, and $\lambda_{i}>\lambda_{i}^{2}$ where λ_{i} is any eigenvalue of $\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}$. This proves the property. Hence $I_{m}-V^{\prime} V>0$. As $(C-V)^{\prime}(C-V) \geqslant 0$ we have shown that $2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B>0$.

Hence $\left|2 \Phi-B^{\prime} A \Phi-\Phi A^{\prime} B\right|>0$. Consider then the positive definite matrix $2 I_{m}-$ $C^{\prime} V-V^{\prime} C$. We use (7.18) in Zhang (1999) which yields

$$
C^{\prime} V+V^{\prime} C \leqslant 2 U^{\prime}\left(V^{\prime} C C^{\prime} V\right)^{\frac{1}{2}} U
$$

where U is an orthogonal matrix.
As $C^{\prime} C=I_{m}$ we have $C C^{\prime} \leqslant I_{p}$. This in its turn leads to $V^{\prime} C C^{\prime} V \leqslant V^{\prime} V$. The latter inequality gives $\left(V^{\prime} C C^{\prime} V\right)^{\frac{1}{2}} \leqslant\left(V^{\prime} V\right)^{\frac{1}{2}}$. See Theorem 2.5.5 in Wang \& Chow (1994).

Finally, we have

$$
C^{\prime} V+V^{\prime} C \leqslant 2 U^{\prime}\left(V^{\prime} V\right)^{\frac{1}{2}} U
$$

or equivalently

$$
2 I_{m}-C^{\prime} V-V^{\prime} C \geqslant 2\left[I_{m}-U^{\prime}\left(V^{\prime} V\right)^{\frac{1}{2}} U\right]
$$

From this we derive

$$
\left|2 I_{m}-C^{\prime} V-V^{\prime} C\right| \geqslant\left|2\left[I_{m}-U^{\prime}\left(V^{\prime} V\right)^{\frac{1}{2}} U\right]\right|=\left|2\left[I_{m}-\left(V^{\prime} V\right)^{\frac{1}{2}}\right]\right|
$$

It is easy to see that $C_{K}=V\left(V^{\prime} V\right)^{-\frac{1}{2}}$ leads to the equality

$$
\left|2 I_{m}-C_{K}^{\prime} V-V^{\prime} C_{K}\right|=\left|2\left[I_{m}-\left(V^{\prime} V\right)^{\frac{1}{2}}\right]\right|
$$

Hence C_{K} solves the problem. It is not clear whether the solution is unique.
In fact, C_{K} also solves the related problem

$$
\max _{C} \operatorname{tr} V^{\prime} C \quad \text { subject to } C^{\prime} C=I_{m}
$$

The (unique) solution is C_{K} by the Kristof-type theorem.
Application of Zhang's (7.18) yields

$$
2 \operatorname{tr} V^{\prime} C=\operatorname{tr}\left(C^{\prime} V+V^{\prime} C\right) \leqslant 2 \operatorname{tr} U^{\prime}\left(V^{\prime} V\right)^{\frac{1}{2}} U=2 \operatorname{tr}\left(V^{\prime} V\right)^{\frac{1}{2}}
$$

which again has solution C_{K}. We then get the solution

$$
B_{K}=\Omega^{+} A \Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}}+\left(I_{p}-\Omega^{+\frac{1}{2}} \Omega^{\frac{1}{2}}\right) Q, \quad Q \text { arbitrary }
$$

From this follows the unique predictor

$$
\hat{f}_{K}=\Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}} A^{\prime} \Omega^{+}\left(y-\mu_{y}\right)
$$

For nonsingular Ω the solution C_{K} coincides with that given by ten Berge et al. (1999), namely in (9).

6 Equality of \hat{f}_{G} and \hat{f}_{K} when Φ and $A^{\prime} \Omega^{+} A$ commute

ten Berge et al. (1999) showed that $C_{G}=C_{K}$ under their assumptions when Φ and $A^{\prime} \Omega^{-1} A$ commute. We shall prove that $\hat{f}_{G}=\hat{f}_{K}$ under our milder conditions.

When Φ and $A^{\prime} \Omega^{+} A$ commute we have $\Phi=S M S^{\prime}$ and $A^{\prime} \Omega^{+} A=S N S^{\prime}$, where M and N are positive definite diagonal matrices and S is orthogonal. Hence

$$
\begin{aligned}
\Phi^{\frac{3}{2}}\left(\Phi^{\frac{3}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{3}{2}}\right)^{-\frac{1}{2}} & =S M^{\frac{3}{2}} S^{\prime}\left(S M^{\frac{3}{2}} S^{\prime} S N S^{\prime} S M^{\frac{3}{2}} S^{\prime}\right)^{-\frac{1}{2}} \\
& =S M^{\frac{3}{2}} S^{\prime}\left(S M^{3} N S^{\prime}\right)^{-\frac{1}{2}}=S M^{\frac{3}{2}} S^{\prime} S\left(M^{3} N\right)^{-\frac{1}{2}} S^{\prime} \\
& =S N^{-\frac{1}{2}} S^{\prime}=\left(A^{\prime} \Omega^{+} A\right)^{-\frac{1}{2}}
\end{aligned}
$$

Further This yields

$$
\begin{aligned}
& \Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}}=\left(A^{\prime} \Omega^{+} A\right)^{-\frac{1}{2}} \\
& \hat{f}_{G}=\hat{f}_{K}=\Phi^{\frac{1}{2}}\left(A^{\prime} \Omega^{+} A\right)^{-\frac{1}{2}} A^{\prime} \Omega^{+}\left(y-\mu_{y}\right)
\end{aligned}
$$

7 Equality of \hat{f}_{M} and \hat{f}_{K} when Ψ and $A \Phi A^{\prime}$ commute

ten Berge et al. (1999) showed that $C_{M}=C_{K}$ under their assumptions when Ψ is nonsingular. Essential is the expression

$$
\Omega^{-1}=\Psi^{-1}-\Psi^{-1} A \Phi^{\frac{1}{2}}\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{-1} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{-1}
$$

Under our assumptions $I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}$ is nonsingular because $A^{\prime} \Psi^{+} A>0$ which follows from $T^{\prime} \Psi T>0$ and (1.1). When we additionally assume that Ψ and $A \Phi A^{\prime}$ commute we can establish the equality

$$
\Omega^{+}=\Psi^{+}-\Psi^{+} A \Phi^{\frac{1}{2}}\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}
$$

Proof. When Ψ and $A \Phi A^{\prime}$ commute we have $\Psi=S M S^{\prime}$ and $A \Phi A^{\prime}=S N S^{\prime}$ where M and N are positive definite diagonal matrices and $S^{\prime} S=I_{m}$. Further $A \Phi^{\frac{1}{2}}=S N^{\frac{1}{2}} T^{\prime}$, with orthogonal T, a singular-value decomposition. Hence

$$
\begin{aligned}
\Psi^{+} & -\Psi^{+} A \Phi^{\frac{1}{2}}\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \\
& =S M^{-1} S^{\prime}-S M^{-1} S^{\prime} S N^{\frac{1}{2}} T^{\prime}\left(I_{m}+T N^{\frac{1}{2}} S^{\prime} S M^{-1} S^{\prime} S N^{\frac{1}{2}} T^{\prime}\right)^{-1} T N^{\frac{1}{2}} S^{\prime} S M^{-1} S^{\prime} \\
& =S M^{-1} S^{\prime}-S M^{-1} N^{\frac{1}{2}} T^{\prime}\left(I_{m}+T M^{-1} N T^{\prime}\right)^{-1} T M^{-1} N^{\frac{1}{2}} S^{\prime} \\
& =S M^{-1} S^{\prime}-S M^{-1} N^{\frac{1}{2}} T^{\prime} T\left(I_{m}+M^{-1} N\right)^{-1} T^{\prime} T M^{-1} N^{\frac{1}{2}} S^{\prime} \\
& =S M^{-1} S^{\prime}-S M^{-1} N^{\frac{1}{2}}\left(I_{m}+M^{-1} N\right)^{-1} M^{-1} N^{\frac{1}{2}} S^{\prime}
\end{aligned}
$$

Further $\Omega=A \Phi A^{\prime}+\Psi=S(M+N) S^{\prime}$, and $\Omega^{+}=S(M+N)^{-1} S^{\prime}$. It is easy to see that

$$
(M+N)^{-1}=M^{-1}-M^{-1} N^{\frac{1}{2}}\left(I_{m}+M^{-1} N\right)^{-1} M^{-1} N^{\frac{1}{2}}
$$

This yields the result.

Recall that

$$
\hat{f}_{M}=\Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}\left(y-\mu_{y}\right)
$$

and

$$
\hat{f}_{K}=\Phi^{\frac{1}{2}}\left(\Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}} A^{\prime} \Omega^{+}\left(y-\mu_{y}\right)
$$

Consider

$$
\begin{aligned}
& \Phi^{\frac{1}{2}} A^{\prime} \Omega^{+} A \Phi^{\frac{1}{2}}=\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}-\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \\
& \times \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}} \\
&=\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}} \\
&=\left(I_{m}+E\right)^{-1} E, \\
& \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \Omega \Psi^{+} A \Phi^{\frac{1}{2}}=\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}} \\
&=\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}+\left(\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{2} \\
&=E+E^{2}, \\
& \Phi^{\frac{1}{2}} A^{\prime} \Omega^{+}=\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}-\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \\
&=\left(I_{m}+\Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} A \Phi^{\frac{1}{2}}\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+} \\
&=\left(I_{m}+E\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}, \\
& \hat{f}_{K}=\Phi^{\frac{1}{2}}\left[\left(I_{m}+E\right)^{-1} E\right]^{-\frac{1}{2}}\left(I_{m}+E\right)^{-1} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}\left(y-\mu_{y}\right), \\
& \hat{f}_{M}=\Phi^{\frac{1}{2}}\left(E+E^{2}\right)^{-\frac{1}{2}} \Phi^{\frac{1}{2}} A^{\prime} \Psi^{+}\left(y-\mu_{y}\right) .
\end{aligned}
$$

Clearly

$$
\left[\left(I_{m}+E\right)^{-1} E\right]^{-\frac{1}{2}}\left(I_{m}+E\right)^{-1}=\left(E+E^{2}\right)^{-\frac{1}{2}} \quad \text { as } E>0
$$

This establishes the equality of \hat{f}_{K} and \hat{f}_{M}.

8 Comments

1. ten Berge et al. (1999) claim that the McDonald method is undefined when Ψ is singular. This is unjustified. What matters is the nonsingularity of $T^{\prime} \Psi T$. We make that assumption. It implies that $A^{\prime} \Psi^{+} A>0$ which we use several times.
2. Application of Zhang's result shows immediately that C_{G} and C_{M} yield the maximum. The Kristof-type theorem shows the unicity of the solutions.

Acknowledgement

The author is grateful to Götz Trenkler for drawing his attention to Zhang's result (7.18) which was fruitfully applied in Section 5 . The reasoning why $B^{\prime} \mu_{y}+a$ should be equal
to zero in all three procedures is due to Albert Satorra. This yields $\hat{f}=B^{\prime}\left(y-\mu_{y}\right)$, an unbiased predictor.

9 References

Anderson, T. W. \& Rubin, H. (1956). Statistical inference in factor analysis. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Vol. V, 111-50. University of California Press, Berkeley and Los Angeles.
ten Berge, J. M. F. (1993). Least Squares Optimization in Multivariate Analysis. DSWO Press, Leiden, Netherlands.
ten Berge, J. M. F., Krijnen, W. P., Wansbeek, T. \& Shapiro, A. (1999). Some new results on correlationpreserving factor scores prediction methods. Linear Algebra Appl., 289, 311-8.
Green, B. F. (1969). Best linear composites with a specified structure. Psychometrika, 34, 301-18.
Krijnen, W. P., Wansbeek, T. J. \& ten Berge, J. M. F. (1996). Best linear predictors for factor scores. Communications in Statistics: Theory and Methods, 25, 3013-25.
Kristof, W. (1970). A theorem on the trace of certain matrix products and some applications. Journal of Mathematical Psychology, 7, 515-30.
Löwner, K. (1934). Über monotone Matrixfunktionen. Mathematische Zeitschrift, 38, 177-216.
Magnus, J. R. \& Neudecker, H. (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics. Revised Edition. Wiley, Chichester, England.
McDonald, R. P. (1981). Constrained least squares estimators of oblique common factors. Psychometrika, 46, 337-41.
Wang, S. G. \& Chow, S. C. (1994). Advanced Linear Models: Theory and Applications. Marcel Dekker, New York.
Zhang, F. (1999). Matrix Theory. Basic Results and Techniques. Springer, New York.

Resum

Es dóna una generalització dels resultats presentats per ten Berge, Krijnen, Wansbeek and Shapiro . Aquests autors examinen mètodes i resultats basats en Anderson i Rubin. Mc Donald, Green i Krijnen, Wansbeek i ten Berge. Considerarem el mateix plantejament però sota condicions de rang més dèbils. Així suposarem que alguns moments, com les matrius de covariàncies Ω del vector de mesures observades dels factors comuns $\mathrm{i} \psi$ dels factors únics, siguin singulars. Imposem la condició $\mathrm{T}^{\prime} \psi \mathrm{T}>0$, essent $T \Lambda T^{\prime}$ la descomposició de Schur de Ω. Com és usual, suposem que tenen rang màxim per columnes les matrius de covariàncies Φ dels factors comuns i la matriu A del model factorial.

MSC: 62H25, 15A24
Paraules clau: anàlisi factorial, mesures de factors, preservació de la covariància, teorema tipus Kristof

[^0]: *Address for correspondence: Oosterstraat, 13. 1741 GH Schagen. The Netherlands. Postal address: NL 1741 GH 13. E-mail: H.Neudecker@uva.nl

 Received: December 2001
 Accepted: September 2003

