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Joint models for longitudinal counts and
left-truncated time-to-event data with applications

to health insurance
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Abstract

Aging societies have given rise to important challenges in the field of health insurance. Elderly pol-
icyholders need to be provided with fair premiums based on their individual health status, whereas
insurance companies want to plan for the potential costs of tackling lifetimes above mean expec-
tations. In this article, we focus on a large cohort of policyholders in Barcelona (Spain), aged 65
years and over. A shared-parameter joint model is proposed to analyse the relationship between
annual demand for emergency claims and time until death outcomes, which are subject to left
truncation. We compare different functional forms of the association between both processes,
and, furthermore, we illustrate how the fitted model provides time-dynamic predictions of survival
probabilities. The parameter estimation is performed under the Bayesian framework using Markov
chain Monte Carlo methods.
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1. Introduction and motivation

The developed world is experiencing significant growth in its elderly population, which
not only means people are living longer, but that they tend to face a greater number
of years affected by a range of health problems. In the context of health insurance, the
changing demographic structure of the population leads to a steady rise in demand for
medical services, while the increasing usage of health care systems, in turn, extends
longevity even further. This is especially true of private health insurance policyhold-
ers, as they are assumed to enjoy greater preventive care than the rest of the population
(see e.g., Dow et al., 2010; Chen et al., 2012). Given these circumstances, assessing the
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relationship between subject-specific medical history and time until death is of obvi-
ous interest for elderly policyholders, as they seek fair premiums. Likewise, insurance
companies share this interest, as the must determine the potential costs associated with
people living longer than mean expectations. Building on such a scheme, joint mod-
elling techniques are postulated as a proper way to relate the historical information on
medical records and the time-to-event outcomes.
The research is conducted on a real health insurance dataset of insured subjects aged

65 years and over, a cohort that requires critical medical care more frequently than their
younger counterparts, and, consequently, they have more difficulties in finding private
coverage at a reasonable price. Our data contain information both on their health care
use and lifespan, and we aim to explain, at subject-level, the underlying mortality risk
using the relationship between emergency medical services demanded and time until
death. Specifically, the variable of interest in the longitudinal part is the annual rate of
emergency claims, including ambulance services, hospitalizations, and non-routine vis-
its. The data only consider the subjects who reach the age of 65, defined in the study as
the pre-specified time zero. This assumption has two practical consequences: a) those
subjects who die before 65 years of age are not observed, and therefore their time-to-
event outcomes are not included, and b) all subjects entering the study after the age of
65 are considered as delayed entries, so their time-to-event data are left-truncated fur-
ther than the usual censorship (Uzunogullari and Wang, 1992; Klein and Moeschberger,
2003), and not all subjects present the same number of longitudinal measurements. In or-
der to avoid an overestimation of the survival probabilities, a proper consideration of the
left truncation issue in the mortality risk is achieved by using the subject’s age above 65
years as the particular time scale (Lamarca et al., 1998; Thiébaut and Bénichou, 2004).
The relationship between longitudinal and time-to-event processes can be properly

analysed using a shared-parameter joint model (JM), where the corresponding outcomes
are stochastically correlated by means of a common latent structure. Using this ap-
proach, longitudinal and event times are independent given the random effects, as are
repeated measurements in the longitudinal process. Complete overviews of the joint
modelling techniques can be found in Tsiatis and Davidian (2004) and Yu, Taylor and
Sandler (2008). An exhaustive explanation of the shared-parameter JM, with differ-
ent examples, is provided by Rizopoulos (2012). In the context of the application of
joint modelling techniques to health insurance studies, previous work can be found in
Piulachs et al. (2015), where the study focused on elderly policyholders and the counting
process was approximated by a log-transformation of the longitudinal outcome.
Given the discrete nature of emergency claims per year, the longitudinal response

must account for non-Gaussian data. Previous approaches of this kind have been pro-
posed. For example, Rizopoulos and Ghosh (2011) defined a Bayesian JM to relate
multiple longitudinal outcomes (discrete or continuous) to a time-to-event outcome.
Murawska, Rizopoulos and Lessaffre (2012) presented a two-stage JM where the lon-
gitudinal information was summarized by either a non-linear mixed-effects model or a
generalized linear mixed model (GLMM) in the first stage, while in the second the Em-
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pirical Bayes estimates of the subject-specific parameters were included as predictors
in the proportional hazards model. Viviani, Alfó and Rizopoulos (2012) implemented
an expectation-maximization algorithm to incorporate non-Gaussian data in the longi-
tudinal response, with particular attention to Poisson and binomial mixed models. More
recently, Ivanova, Molenberghs and Verbeke (2016) formulated a JM to handle differ-
ent types of responses, i.e., continuous, discrete and ordinal. Parameters were estimated
under a likelihood-based approach.
A common feature of the aforementioned extensions is that they do not account for

delayed entries in the time-to-event sub-model. In contrast, we consider here the lifetime
elapsed from the moment a subject is 65 until his or her death. As a consequence, left
truncation has to be accounted for in survival times of these subjects entering the study
above the age of 65. Additionally, most event times cease to be observed at administra-
tive closure of study, whereas some others are not completely observed due to dropout.
In order to simultaneously deal with left-truncated and right-censored event times, a
Cox proportional hazards model with time-dependent covariates is used for the survival
analysis. Our final goal is to assess, in a personalized manner, the relationship between
emergency claims per year and the time until death (i.e. subject’s mortality risk) by pos-
tulating an appropriate JM. In this regard, we investigate the role played by information
contained in medical records and identify a cumulative and fading effect, so that more
recent records have a greater influence than older records on the hazard of death. Finally,
we illustrate how the fitted JM can also be employed to obtain subject-specific survival
estimates. From a statistical perspective, this problem requires an innovative application
of a joint framework, where a pronounced dependency pattern between longitudinal and
time-to-event outcomes for the elderly is expected. From a methodological perspective,
the statistical analysis poses challenges in handling correlated counts in the longitudinal
response of the JM, and to incorporate the delayed entries in the survival outcome.
The remainder of the paper is organized as follows. Section 2 includes a description

of the study’s health insurance dataset, which consists of 5470 policyholders aged 65
years and over. Section 3 presents the specification, under the Bayesian framework,
of the proposed JM for longitudinal counts and left-truncated time-to-event outcomes.
Section 4 shows the application of the derived JM to our health insurance dataset, and
the results are commented. Section 5 illustrates how to obtain personalized and time-
dynamic predictions for survival from the fitted JM. Finally, Section 6 presents a final
discussion and some concluding remarks.

2. Health insurance dataset

The motivating dataset was provided by a Spanish medical insurance company, and con-
sists of a cohort of 5470 policyholders (37.6% men and 62.4% women), aged 65 years
and above, living in the city of Barcelona (Spain). The data contain, for each subject,
historical information on emergency claims (use of ambulance services, hospitaliza-
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tions, and non-routine visits) from January 1, 2006 to February 1, 2014. We also know
the age of each subject upon entry into the study and their age at death or right cen-
soring, where the latter is assumed to be independent of all other survival and covariate
information.
A set of control points was fixed at the 31st of December each year throughout

the study period, and we collected, for each subject, subsequent measurements of the
amount of emergency claims demanded in a calendar year; this time unit is the one
used by most insurance companies, and, in general, in actuarial studies. Hence, instead
of directly working with the amount of observed counts, the main longitudinal out-
come in our study is defined in terms of count rates. In our case, for each subject we
observed repeated measurements of emergency claims per year. These measurements
were recorded at each of the control points covered by each of the subject-profiles. In
this regard, the entry of each subject into the study period was registered in their longi-
tudinal response by the measurement associated with the first control point reached by
his or her observed profile. We assumed a last observation carried forward approach for
handling the longitudinal information, i.e. an observed measurement within each sub-
ject’s profile remains constant between two subsequent control points. However, not all
subject-profiles started to be observed at the beginning of a specific calendar year. This
resulted in the first measurement of emergency claims having an exposure time less than
one year. We therefore needed to explicitly consider exposure effects in order to avoid
spurious effect estimates (Cameron and Trivedi, 1998). This procedure was carried out
by relating the amount of emergency claims observed at the end of a calendar year to the
corresponding exposure, i.e. counts/exposure, thus taking into account the real period-
at-risk in which the aforementioned amount was collected. Since this premise assumes
that the likelihood of a emergency claim is constant over time, very large (and there-
fore unrealistic) values of count rates could be obtained in case of very small exposures.
These cases were avoided by imposing a rule that each of the values registered for a
subject must have been obtained from an exposure above half a year.

Table 1: Descriptive statistics of observed emergency claims per year stratified by event indicator.

Death Subjects
Emergency claims per year summary

Mean SD Min Max % Zeros

No 4961 0.80 1.55 0 20 63.8
Yes 509 1.50 2.45 0 18 52.4

Overall 5470 0.84 1.63 0 20 63.1

The longitudinal outcome across all count rates ranges from 0 to 20 emergency
claims per year, and the overall mean and variance values are 0.84 claims/year and 2.66
(claims/year)2, respectively, suggesting a marked heterogeneity in the response (see Ta-
ble 1). A large number of zeros are exhibited in the longitudinal outcome, representing
63.1% of the overall measurements. Here, it must be pointed out that the Spanish health
system offers universal coverage, so a rate count of zero may occur either because insur-
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Figure 1: Subject-profiles of emergency claims per year across time (subject’s age) for 100 randomly
selected subjects who are still alive after their follow-up interval (top panel) and for 100 randomly selected
subjects whose death is observed (bottom panel).

ance coverage is used solely for routine medical care, or due to the fact that policyhold-
ers have only been treated in public medical centers. This circumstance is, in general,
an important source of overdispersion in the longitudinal response.
Figure 1 shows various subject-profiles of emergency claims per year, where mea-

surements collected for each subject are connected by line segments. The top panel
shows the trajectories for a random sample of 100 subjects alive after their follow-up in-
terval, while the bottom panel shows 100 randomly selected profiles of subjects whose
death event is recorded during the study period. Notice that the group of subjects who
died during the study presents, in average terms, higher longitudinal responses than
those presented by the subjects who remain alive.
Following the suggestions of Charpentier (2015), we also analysed the evolution of

the average demand for emergency claims per year according to policyholder’s age.
We fitted the average values by a generalized additive model (GAM) under the Poisson
(PO) and negative binomial (NB) distributions (see Figure 2), and a changing trend
was detected around the age of 90 years. Thus, our data show that the use of emergency
services in the health insurance company decreases among those subjects of an advanced
age. This may reflect the fact that a fraction of the elderly population have taken up
residence in nursing homes at older ages, and thus, receive personalized care, or it might
be a result of a preference for public over private treatment for severe conditions.
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Figure 2: Observed annual rates of emergency claims by age, with PO and NB GAM fittings. The 95%
confidence regions are presented.

Only policyholders living above the age of 65 are considered within the study pe-
riod 2006-2014, which means that 79.8% of subjects are registered as late entries. The
mean age of policyholders entering the study is 75.4 years (i.e., 10.4 years above the
pre-specified time zero), with an average follow-up of 5.1 years. Furthermore, a classic
right censoring mechanism arises, which is assumed to be independent of all other sur-
vival information. During the study period, death is recorded for a total of 509 (9.3%)
individuals, entailing that 4961 policyholders survive or are no longer under observation
at the end of the study, representing 90.7% of right censoring. Of these, 3429 (69.1%)
are alive at the administrative closure of study, on February 1, 2014. The remaining 1532
right-censored survival times (30.9%) are attributable to insurance cancellations caused
by different reasons not related to the event of death (e.g., dissatisfaction with the medi-
cal services, a change of company, or an unwillingness to pay), which in practice means
that the subject is no longer covered by the insurance policy. Figure 3 displays a non-
parametric survival curve estimate of the overall sample (on the left) and one stratified
by gender (on the right). Although higher survival estimates are registered for women,
the corresponding log-rank test does not suggest a significant improvement in women’s
survival when stratifying by gender (p= 0.242).
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Figure 3: Kaplan-Meier estimate of the survival function of time until death (with 95% confidence inter-
vals) for our overall health insurance dataset (left panel), and stratified by gender (right panel).

3. Joint model specification

3.1. Longitudinal approach to panel count data

Let us assume a panel data context with repeated measurements over time, where yi =
{yi(t), i = 1, . . . ,n} denote the observed responses for the i-th subject, recorded at a
fixed set of time points ti j, j = 1, . . . ,ni. Given the vector bi of random effects for the
i-th subject, we assume that the observed measurements on this individual derive from
a counting process generated by an exponential family (EF) distribution, yi(t) | bi ∼
EF{ψi(t), φ}, with probability mass function:

py{yi(t) |bi; ψi(t), φ}= exp
(
φ−1

[
yi(t)ψi(t)−b{ψi(t)}

]
+ c{yi(t), φ}

)
. (1)

Here, b(·) and c(·) are known functions, and ψi(t) and φ are termed the canonical and
scale parameters, respectively. It can be shown straightforwardly that E{yi(t) |bi} =
μi(t) = b ′ {ψi(t)} and V{yi(t) |bi} = σ2i (t) = φ b ′′ {ψi(t)} (Molenberghs and Verbeke,
2005).
In many longitudinal studies, the subject-specific count responses are observedwithin

a pre-specified time interval, and can be implicitly interpreted as frequency rates. In such
cases, modelling the count rates is more relevant than working with the raw counts, thus
considering the expected longitudinal outcome μi(t) in terms of counts per time unit. In
our case, a calendar year is taken as the reference time frame during which emergency
claims uniformly occur, but a small percentage of subjects start to be observed after the
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beginning of a calendar year (i.e., their first longitudinal measurement is not recorded
for the duration of a whole year). With this data pattern, the set of observations for a
specific subject at their corresponding control points might have occurred during differ-
ent lengths of time, making it necessary to explicitly consider exposure effects. For the
i-th subject at time t, an exposure term ei(t) is included as a predictor variable of the ex-
pected longitudinal outcome μi(t). In addition, it is necessary to introduce a continuous
and differentiable link function g(·) in order to relate μi(t) to a linear combination ηi(t)
of a set of fixed and random covariates. The most common choice for modelling panel
count rates is a logarithmic link, g(·) = log(·)⇒ g−1(·) = exp(·), which ensures posi-
tive outcomes and provides a straightforward interpretation of the estimated regression
parameters:

{
log{μi(t)}= log{ei(t)}+ηi(t) = log{ei(t)}+xT

i(t)βββ+ z
T
i(t)bi

E{yi(t) |bi}= μi(t) = ei(t) exp{ηi(t)}, bi ∼ N(0,Dq+1) .
(2)

Note in the above equation that the exposure term is logged and included as an offset
variable, i.e., a predictor whose coefficient is fixed at one. If we move the exposure to
the left side of the equation, we evince the fact that our expected outcome is divided by
the length of time, μi(t)/ei(t), so we are effectively modelling the expected response in
terms of rate counts. The terms xT

i(t) and z
T
i(t) denote the row vectors of the fixed and ran-

dom design matrices, respectively, whileβββ = (β0,β1, . . . ,β p)
T and bi= (bi0,bi1, . . . ,biq)

T

are the corresponding fixed-effects and random-effects vectors. The random effects al-
low for the expression of individual deviations from the overall trend, and in most cases
they can be assumed to follow a multivariate normal distribution with zero mean and
unspecified variance-covariance matrix Dq+1.
The basic option for modelling panel counts in equation (2) is to consider a POmixed

model, defined as:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi(t) |bi ∼ PO{μi(t)} , μi(t)> 0
μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{xT

i(t)βββ+ z
T
i(t)bi}

py{yi(t) |bi; μi(t)}= exp{−μi(t)}μi(t)yi(t)
yi(t)!

E{yi(t) |bi}= V{yi(t) |bi}= μi(t).

(3)

The PO mixed model allows for robust parameter estimates, even if the underlying dis-
tribution is not true, provided that the expectation is correctly specified (Gourieroux,
Monfort and Trognon, 1984). However, the observed response usually has a variance
greater than the mean, so the longitudinal outcome is affected by overdispersion. This is
a common issue when dealing with counts or count rates, primarily due to missing infor-
mation, aggregate data, or even an excess of zeros in the longitudinal outcome (Harrison,
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2014). In such cases, the derived inference under the PO mixed model could lead to er-
roneous conclusions about parameter significance. A detailed discussion of this issue
can be found in Zuur et al. (2009) and Hilbe (2011).
Although there are several alternative models for dealing with the overdispersion re-

lated to correlated counts, the NB mixed model appears in the literature as being the
most natural choice; see, for example, Ismail and Jemain (2007), Greene (2008), and
Hilbe (2011). The NB distribution for longitudinal data can be easily derived from the
PO distribution by placing a multiplicative gamma random noise εi in the conditional
mean response. Specifically, such a latent variable is defined in terms of shape and rate
parameters by εi ∼ G(κ,κ) , κ > 0, with E(εi) = 1 and V(εi) = 1/κ, so that the longitu-
dinal counts are modelled by yi(t) |bi ∼ PO{εiμi(t)}. This Poisson-gamma mixture has
a closed-form solution, leading to a NB mixed model with dispersion parameter κ:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi(t) |bi ∼ NB{μi(t),κ} , μi(t)> 0, κ > 0
μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{xT

i(t)βββ+ z
T
i(t)bi}

py {yi(t) | bi; μi(t), κ}= Γ{κ+ yi(t)}
Γ(κ)yi(t)!

μi(t)yi(t) κκ

{μi(t)+κ}κ+yi(t)
E{yi(t) |bi}= μi(t); V{yi(t) |bi}= μi(t)+μi(t)2/κ,

(4)

where Γ(·) denotes the gamma function.
The NB distribution has the general canonical form of the exponential family equa-

tions for any fixed κ. Because of the quadratic expression for the variance, it is some-
times referred to as NB type 2 in the literature. Note that the NB distribution can actually
be understood as an extension of the PO distribution when overdispersion is accounted
for by parameter κ, since it can be proven that NB converges to PO as κ→ ∞. This
result is well-documented by Lawless (1987) and Hinde and Demétrio (1998); see also
Boucher, Denuit and Guillén (2008) for a numerical application in the field of insurance
studies.

3.2. Joint model for counts and delayed entries

Assuming the age above 65 years as our particular time scale, let T ∗
i be the true event

time for the i-th subject. We define an independent random variable τi ≥ 0 as the time
at which a policyholder enters the study after the age of 65, giving rise to left-truncated
event times for those subjects whose τi > 0. In addition, once a subject enters the study,
the event time is affected by the usual right censorship mechanism, denoted by a po-
tential censoring time Ci. This means we can only know the observed survival time for
the i-th recruited individual, Ti =min{T ∗

i , Ci} > τi, and a dichotomous event indicator
δi= I(T ∗

i ≤Ci). We use a time-dependent proportional hazards model to simultaneously
account for left truncation and right censoring in the time-to-event sub-model. Conse-
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quently, the probabilistic distribution of the event times has to be defined according to
the proportion of subjects living beyond time point t, and is conditional on their be-
ing older than the corresponding left truncation time, S(t | τ) = Pr(T ∗ > t |T ∗ > τ) =

Pr(T ∗ > t) / Pr(T ∗ > τ) = S(t)/S(τ).
Building on the longitudinal analysis considered in section 3.1, repeated count rates

and time-to-event responses can be coupled by assuming independence between both
processes given the shared random effects (conditional independence hypothesis). The
JM for the i-th subject, i= 1, . . . ,n, is expressed by means of a relative risk model where
the hazard of death at time t takes into account the expected longitudinal response until
t, Mi(t) = {μi(s), 0≤ s≤ t}:

hi {t |Mi(t),wi}= h0(t)exp
[
γγγTwi+αF{μi(t)}

]
. (5)

As in the standard proportional hazards model, h0(t) in equation (5) denotes the base-
line risk function, wi the subject’s baseline survival covariates, and γγγ the vector of the
corresponding regression parameters. The functional form F(·) specifies a proper man-
ner in which the longitudinal information provided by μi(t) is accounted for in survival.
Because μi(t) > 0 in a counting process, F(·) is positively defined and increases with
t. The parameter α quantifies the strength of association between the particular lon-
gitudinal evolution until time t, and the corresponding mortality risk. Specifically, the
quantity exp(α) returns the hazard ratio for a one-unit increase in the value F{μi(t)} at
time snapshot t.
Although h0(t) traditionally remains unspecified in the Cox proportional hazards

model, this constraint is usually lifted when using joint modelling techniques. In partic-
ular, the logarithm of baseline hazard function can be approximated using penalized B-
splines. As a preliminary step, we define a knot sequence ξξξ of Q increasing and equally-
spaced knots, ξ1 < · · · < ξQ, over the time range [0,Tmax]. Accordingly, the baseline
hazard on the log-scale is approximated through a linear combination of d-th degree
B-splines:

log{h0(t)}=
R∑
r=1

γh0,r Bd,r (t,ξξξ) , (6)

where {Bd,r (t,ξξξ) , r = 1, . . .,R} denotes the set of d-th degree B-spline basis functions,
γγγh0 = (γh0,1, . . . ,γh0,R)

T is the vector of B-spline coefficients (also called control points),
and R = Q+ d− 1. The r-th B-spline function is locally defined on a support spanned
by the d+2 adjacent knots, and, to achieve boundary conditions of a B-spline curve, the
original knot vector is extended so that the end-knots ξ1 and ξQ have multiplicity d+1
(the total number of knots will be Q+2d). A major concern at this point is the number
Q of knots that should be employed. A too-small number of knots (and, consequently, of
the number R of B-spline basis functions) could lead to biased results, while too many
knots might result in an overly flexible curve with random fluctuations (small “wig-
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gles”). Following the indications of Eilers and Marx (1996), a relatively large number
of knots should be used, and the potential overfitting problems can be circumvented by
considering a roughness penalty based on finite differences of adjacent B-spline coeffi-
cients, i.e., by means of a P-splines regression. A complete overview of recent research
in P-splines can be found in Eilers, Marx and Durbán (2015).
A standard approach to relate longitudinal rate counts to survival is undertaken by

associating the current expected longitudinal outcome with the hazard of an event using
the identity function: F{μi(t)} = Id {μi(t)} = μi(t). However, instead of taking just a
single time point, in some cases it may be more relevant to consider the whole path of
the longitudinal outcome. In particular, an extension of the basic option is to include the
entire background previous to the measurement at time t (Abrahamowicz, Beauchamp
and Sylvestre, 2011). Furthermore, we assume that historical effects of subject’s health
fade over time, so the more distant history is less relevant than the more recent. Thus,
F(·) transformation can be defined to account for the recency-weighted cumulative effect
of the longitudinal outcome:

F{μi(t)}=
∫ t

0
ω(t− s)μi(s)ds, s≤ t, (7)

where ω(·) is the selected average weighting function. Due to the importance of the most
recent information for explaining the current health status, we introduced an exponential
function with rate parameter ν in order to assign different weights for each of the past
observed longitudinal values: ω(t− s) = ν exp{−ν(t− s)} , ν > 0.

3.3. Bayesian estimation for the JM

Let θθθ = (θθθy,θθθt ,θθθb)
T be the JM full parameter vector that collects the longitudinal pa-

rameters, the survival parameters, and the parameters for the random effects covariance
matrix, respectively. In addition, let Dn = {(yi,τi,Ti,δi), i = 1, . . . ,n} denote the infor-
mation from our original dataset with n policyholders. Taking advantage of the condi-
tional independence assumption, the overall joint likelihood conditioned on the random
effects bi can be properly formulated to tackle left truncation as

p(Dn |bi,θθθ) =
n

∏
i=1

ni

∏
j=1

py{yi(ti j) |bi,θθθ} pt (Ti,δi |bi,θθθ)
Pr(Ti > τi |bi,θθθ) , (8)

where py(·) is the conditional probability mass function to handle longitudinal rate
counts, and pt(·) is the conditional probability density function for the event times.
The mean estimates of parameters and random effects are then derived by Markov

chain Monte Carlo (MCMC) algorithms, which enable inferences to be made by effi-
ciently drawing a sample from the posterior distribution of (θθθ,bi) conditioned on the
observed data:
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π (θθθ,bi |Dn) ∝ p(Dn |bi,θθθ)π(θθθ,bi) = p(Dn |bi,θθθ) pb (bi |θθθ) π(θθθ), (9)

where pb(·) is the conditional probability density function of the random effects, and
π(θθθ) is the prior distribution of θθθ.
The models’ fitting was performed using a Bayesian approach, with non-informative

priors being used whenever possible. Specifically, for the longitudinal analysis, we used
independent univariate vague normal priors for the fixed effects, defined in terms of
mean and precision parameters, {β0,β1,βt90} ∼ N

(
μβ = 0,τβ = 10−3

)
. In the time-to-

event sub-model, the log-baseline hazard was approximated by using third-degree B-
splines and Q= 15 knots, uniformly allocated over the time range [0, Tmax = 38.5]. The
joint prior for the baseline hazard coefficients was assumed to be normally distributed,
γγγh0 ∼ N(μμμγγγh0

= 0, Tγγγh0 = τBsMγγγh0
), whereMγγγh0

is an appropriate penalty matrix to con-
trol the amount of roughness in the precision parameter τBs ∼ G(aBs,bBs). In general, the
penalty matrix is defined asMγγγh0

=ΔΔΔT

KΔΔΔ K+10−6 I, where ΔΔΔ K is the difference matrix
of order K, whereas the term 10−6 I introduces a small “ridge penalty” to avoid a lin-
early dependent system. A common choice for cubic B-splines is K = 2, while for the
hyper-prior parameters of τBs we used aBs = 1 and bBs = 0.005 as a standard choice for a
non-informative prior. The subject’s gender was included in the time-dependent propor-
tional hazards model as a dichotomous baseline covariate, wgi (man= 0, woman= 1),
and we made the assumption that the corresponding coefficient follows an improper
normal distribution, γg ∼ N

(
μg = 0,τg = 10−3

)
.

For the constant association parameter, we assumed α ∼ N
(
μα = 0,τα = 10−3

)
.

When considering the functional form to link the recency-weighted area under the ex-
pected longitudinal profile to the time-to-event outcome, a flat prior was assumed for
the rate parameter of the exponential weighting function, ν ∼ U(aν ,bν). Because ν > 0,
we set aν = 0, while for the second hyper-parameter it is common to set a large enough
positive value to express the uncertainty around ν, say bν = 20.
Finally, for the random effects, we used a bivariate standard normal distribution as

a prior function, (bi0, bi1)
T ∼ N(0,D2), where the terms of the 2× 2 unstructured co-

variance matrix are summarized by D2[1,1] = σ2b0 , D2[1,2] = D2[2,1] = ρσb0 σb1 , and
D2[2,2] = σ2b1 . We assumed that the inverse matrix follows a standard Wishart distri-

bution, D−1
2 ∼ W(I2,kw), where the degrees of freedom were established at kw = 3. In

the particular case of considering 1 RE, we have bi1 = σb1 = 0, assuming that bi0 ∼
N(μb0 ,τb0) with μb0 = 0 and τb0 ∼ G

(
10−3,10−3

)
.

3.4. Bayesian model assessment

To compare both the different longitudinal models and joint models, we focused on
the analysis of the Bayesian deviance term, which in generic form can be expressed
as D(θθθ,bi) = −2∑n

i=1 log{p (Dn |bi,θθθ)}. In particular, we assessed the goodness-of-
fit of a specific model by using the deviance information criterion (DIC) suggested by
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Spiegelhalter et al. (2002). This criterion evaluates the fit of a model by balancing model
adequacy with model complexity:

DIC(θθθ,bi) = D(θθθ,bi)+2pD, (10)

where D(θθθ,bi) = −2∑n
i=1 log{p(Dn | bi,θθθ)}, and the term pD = D(θθθ,bi)−D(θθθ,bi) is

the effective number of parameters, calculated as the difference between the posterior
mean of the deviance and the deviance at the posterior means of the JM parameters. The
aforementioned criterion can be reformulated as DIC(θθθ,bi) = D(θθθ,bi)+ pD, thus rein-
forcing the idea that this criterion takes into account both the adequacy of the model,
assessed through the posterior mean estimate of the deviance, and the number of param-
eters required, assessed through the penalty term pD. The score provided by DIC serves
in general as the basis for ranking the fitted models, where lower scores correspond to
a better model fit. To conclude this section, it is important to point out that the DIC
score obtained for a specific model is not a fixed value, but it can be subject to a certain
amount of random variability due to its dependency on the MCMC output of the model.
Consequently, it will become a key point to get a DIC value derived from a relatively
large number of iterations in the MCMC process before reaching convergence in each
of the JM parameters.

4. Results from the health insurance dataset

4.1. Longitudinal data analysis

The fixed effects of the longitudinal outcome were set at {β0,β1,βt90}, respectively
motivated by the intercept term, the observation time (directly linked to the subject’s
age), and a binary variable which takes into account the observed downward trend of
medical emergency demand after the age of 90, t90 = I(t ≥ 25). The longitudinal mea-
surements were fitted using PO and NB mixed models, testing these models with ran-
dom intercepts (1 RE) and with ρ-correlated random intercepts and random slopes in
time (2 RE). In all cases, the general expression for the expected response can be writ-
ten as μi(t) = ei(t)exp{ηi(t)}= ei(t)exp{β0+bi0+(β1+bi1) t+βt90 I(t ≥ 25)}, with
(bi0, bi1)

T ∼ N(0,D2).
Setting θθθ� = (θθθy,θθθb)

T
=

(
β0,β1,βt90 ,κ,σb0 ,σb1 ,ρ

)T
, we approximated the posterior

distribution π(θθθ�,bi | yi) by using the Bayesian software JAGS (Plummer, 2003), ver-
sion 4.2.0. We ran two parallel chains of 25,000 iterations, with a burn-in period (here
included in the total number of iterations) of 10,000 iterations. We then kept every
15-th iteration from each chain in order to reduce the autocorrelation in the samples
from the posterior distribution, resulting in 2000 total samples. We checked that the
chains had a good mixing, and also their convergence to the stationary distribution. For
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each model, the DIC was calculated by means of the corresponding Bayesian deviance
D(θθθ�,bi) =−2∑n

i=1 log p(yi |bi,θθθ�).
Table 2 provides the posterior summaries of the parameters’ distribution for each

longitudinal model fitted, and also the corresponding values of DIC. In the case of the
two PO mixed models, the DIC provides a lower score for the option which considers
2 RE in the linear predictor. On the other hand, the NB mixed model with 2 RE also
provides evidence of an improvement in the DIC score in comparison with the model
using 1 RE. Therefore, it is preferable to use a random intercept and a random slope to
summarize subjects’ profiles. Along with the PO results, the estimates obtained from the
NB mixed model with 2 RE highlight the importance of the variability around the inter-
cept fixed effect compared to fluctuations in the slope. Hence, accounting for baseline
heterogeneity indeed plays a much more important role to explain the subject’s particu-
larities. This could lead us to consider the extent to which the introduction of a random
slope is necessary in this case (i.e., when a linear trend is assumed in the specification
of ηi(t)).

Table 2: Posterior summaries of all parameters for PO and NB mixed models with a different number of
random effects. Mean, standard error, 95% credible interval, and DIC are sampled for each parameter from
the corresponding posterior distribution.

PO mixed model 1 RE NB mixed model 1 RE

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

β0 −1.085 0.0007 −1.147 −1.026 −0.976 0.0015 −1.041 −0.910
β1 0.032 0.0001 0.029 0.036 0.031 0.0001 0.027 0.035
βt90 −0.117 0.0008 −0.193 −0.045 −0.189 0.0023 −0.298 −0.086
κ – – – – 0.998 0.0004 0.948 1.050
σb0 1.075 0.0004 1.045 1.107 0.963 0.0006 0.929 0.996

DIC(θθθ�,bi) 76961 74201
PO mixed model 2 RE NB mixed model 2 RE

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

β0 −1.158 0.0009 −1.240 −1.075 −0.974 0.0009 −1.049 −0.900
β1 0.035 0.0001 0.029 0.040 0.029 0.0001 0.024 0.034
βt90 −0.190 0.0022 −0.281 −0.103 −0.197 0.0015 −0.328 −0.071
κ – – – – 1.058 0.0007 1.003 1.120
σb0 1.750 0.0011 1.662 1.848 1.157 0.0015 1.074 1.239

σb1 0.112 0.0001 0.106 0.118 0.074 0.0001 0.069 0.079

ρ −0.796 0.0003 −0.818 −0.773 −0.614 0.0007 −0.671 −0.547
DIC(θθθ�,bi) 74993 74095

The overall comparison between the fitted models suggests that the NB mixed mod-
els are more adequate to capture the characteristics of the longitudinal data. This re-
sult is unsurprising since the two NB mixed models account for response heterogene-
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ity through parameter κ, whose mean estimate exhibits strong evidence for overdisper-
sion for both one and two random effects, κ1 RE = 0.998 (95% CI: 0.948, 1.050) and
κ2 RE = 1.058 (95% CI: 1.003, 1.120). In particular, the NB mixed model with 2 RE is
the one which presents the lowest DIC score among the tested options. Consequently,
we decided to include the effect of random slope when overdispersion is accounted for.
In what follows, the longitudinal approach in our JM framework is carried out using

a count mixed model with two random intercepts per subject, one for the intercept and
the other for the slope. Additionally, the longitudinal analysis will be carried out using
either a PO or a NB mixed model, thus allowing us to directly assess how the goodness-
of-fit changes when considering the overdispersion effect.

4.2. JM analysis

The JM that we propose is summarized by:

⎧⎪⎪⎨
⎪⎪⎩

μi(t) = ei(t)exp
{
β0+bi0+β1 t+bi1 t+βt90 I(t ≥ 25)

}
hi {t |Mi(t), wgi}= h0(t)exp

[
γgwgi+αF{μi(t)}

]
(bi0, bi1)

T ∼ N(0,D2).

(11)

The starting point to carry out the JM fits under a Bayesian approach was the R pack-
age JMbayes (Rizopoulos, 2016), taking advantage of the structure of the function
jointModelBayes (·). However, the code to fit the different joint models in this arti-
cle was finally written in JAGS software, and executed within the R-environment. Set-
ting θθθ = (θθθy,θθθt ,θθθb)

T = (β0,β1,βt90 ,κ,ν,γγγh0 ,γg,α,σb0 ,σb1 ,ρ)
T, the posterior distribution

π(θθθ,bi |Dn) was approximated by running the MCMC algorithm for 2 parallel chains
with a total of 35,000 iterations each, with the first 15,000 discarded as the burn-in pe-
riod. We kept every 20-th iteration from each chain, resulting in 2000 total samples from
the posterior distribution of (θθθ,bi). A good mixing and convergence of the 2 chains were
assessed, and no autocorrelation was detected in the lag plots.
First, the estimation of JM parameters was conducted by quantifying the degree of

association between the current expected value of emergency claims per year at any time
t, denoted by μi(t) =E{yi(t) |bi}, and the mortality risk at the same t. The results (given
in Table 3) point to a strong association between the annual rate of emergency claims
and survival, so each unit increase in the current value of the emergency claims per year
involves a exp(αV,PO) = 1.47-fold increase (95% CI: 1.41, 1.54) in the policyholder’s
mortality risk under the PO longitudinal sub-model, whereas this association parameter
leads to a exp(αV,NB) = 1.59-fold increase (95% CI: 1.49, 1.71) if we assume a NB
longitudinal sub-model. Thus, we have an increasing relationship between the frequency
of use of emergency medical services and the corresponding mortality risk. From a
goodness-of-fit perspective, the comparison between the fitted joint models is performed
using the DIC, where the use of the NB distribution provides a better fit.
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Table 3: Posterior summaries of all parameters for the JM when accounting for the current value of emer-
gency claims per year. Mean, standard error, 95% credible interval, and DIC are sampled for each param-
eter from the corresponding posterior distribution.

JM with PO sub-model JM with NB sub-model

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

Longitudinal
β0 −1.174 0.0010 −1.254 −1.085 −1.000 0.0008 −1.072 −0.920
β1 0.036 0.0001 0.030 0.041 0.031 0.0001 0.026 0.037
βt90 −0.130 0.0010 −0.212 −0.043 −0.117 0.0018 −0.236 −0.004
κ – – – – 1.067 0.0004 1.012 1.125
σb0 1.780 0.0011 1.685 1.872 1.169 0.0019 1.080 1.247

σb1 0.115 0.0001 0.109 0.121 0.076 0.0001 0.070 0.081

ρ −0.800 0.0003 −0.821 −0.775 −0.611 0.0002 −0.626 −0.595
Survival
γg −0.287 0.0018 −0.449 −0.132 −0.326 0.0019 −0.483 −0.164
Association
α 0.387 0.0005 0.342 0.431 0.464 0.0011 0.397 0.534
Goodness-of-fit
DIC(θθθ,bi) 93050 86938

Table 4: Posterior summaries of all parameters for the JM when accounting for the recency-weighted area
under the expected profile of emergency claims per year. Mean, standard error, 95% credible interval, and
DIC are sampled for each parameter from the corresponding posterior distribution.

JM with PO sub-model JM with NB sub-model

Parameter Mean SE q2.5% q97.5% Mean SE q2.5% q97.5%

Longitudinal
β0 −1.166 0.0010 −1.250 −1.089 −1.002 0.0015 −1.068 −0.936
β1 0.035 0.0001 0.030 0.041 0.031 0.0001 0.026 0.036
βt90 −0.129 0.0016 −0.212 −0.044 −0.116 0.0020 −0.234 −0.003
κ – – – – 1.066 0.0005 1.011 1.124
ν 9.572 0.0218 8.154 11.060 9.691 0.0275 8.246 11.218
σb0 1.770 0.0016 1.698 1.846 1.175 0.0014 1.096 1.261

σb1 0.114 0.0001 1.110 1.119 0.076 0.0002 0.071 0.082

ρ −0.798 0.0003 −0.820 −0.774 −0.607 0.0003 −0.647 −0.561
Survival
γg −0.269 0.0019 −0.433 −0.092 −0.298 0.0021 −0.489 −0.124
Association
α 0.398 0.0005 0.354 0.443 0.480 0.0010 0.422 0.537
Goodness-of-fit
DIC(θθθ,bi) 92983 86892

One of the more interesting features of the JAGS software is its flexibility in choosing
the structure association F(·) that captures the relationship between the longitudinal and
time-to-event sub-models. The JM estimates in Table 4 were conducted by associating
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the recency-weighted area under the expected longitudinal profile with the mortality
risk. Specifically, an exponential weighting function was employed, again showing a
strong relationship between both processes, so that a exp(αW,PO) = 1.49-fold increase
(95%CI: 1.42, 1.56) in the policyholder’s mortality risk is inferred for each unit increase
in the exponentially-weighted area under the expected profile of emergency claims per
year with the PO distribution, and a exp(αW,NB) = 1.62-fold increase (95% CI: 1.53,
1.71) if we assume an underlying NB distribution. The estimated mean rates of the
exponential weighting functions for the PO and NB longitudinal outcomes are ν PO =

9.57 (95% CI: 8.15, 11.06) and ν NB = 9.69 (95% CI: 8.25, 11.22), respectively. Thus,
in practice, it is shown that only the 0.25 years (i.e., three months) prior to t are strongly
related to the current mortality risk. In this regard, note the broad similarity between
the association parameters of these results and those obtained in Table 3 for the current-
value association structure, thus emphasizing that only the most recent past emergency
claims have a real influence on the survival. Once again the DIC indicates that a more
accurate claims distribution is achieved under the NB longitudinal sub-model.
Among all the fitted joint models presented in this section, the results indicate that the

lower DIC scores are obtained for the functional form which links the recency-weighted
area under the expected longitudinal outcome with survival. This becomes an adequate
manner to capture the fading effect of emergency medical demand on mortality risk. In
particular, the JM which considers a NB longitudinal outcome is the one which provides
the lowest DIC score of all, since it includes the overdispersion effect.

4.3. Residual diagnostics and model assessment

After fitting the joint models, it is a primary step to validate all the necessary model
assumptions before performing inference. To achieve this validation, we need plots of
residuals for each of the two components of the JM, i.e. the longitudinal and the time-
to-event sub-models.
For the longitudinal part, the analysis of the plots of residuals is focused on the

non-Gaussian mixed models assumed for the joint models with a recency-weighted cu-
mulative effect. We will consider both PO and NB distributions in order to compare
their results. However, a direct graphical interpretation of the residuals under these dis-
tributions is usually difficult, since the normality and homoscedasticity of the residuals
derived from a count model is, in general, not expected. When longitudinal response
takes a limited number of low count rates, the scatterplot of the residuals versus the
fitted values typically shows a non-homogeneous configuration, the data being grouped
on a set of quasi-parallel and curvilinear traces of points according to distinct response
values. In such circumstances, it becomes difficult to evaluate the residual plot, even if
the model is correctly specified. To solve this limitation, we can obtain continuously
distributed residuals by taking advantage of the idea of randomized quantile residuals
(Dunn and Smyth, 1996). The underlying idea is based on applying a transformation
scale to the original residuals that standardizes them to continuous values between 0
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and 1, so that the residuals are obtained by finding the equivalent standard normal devi-
ate for each subject-specific observation in the original data. By delving deep into this
work scheme, the quantile residuals can also be directly obtained through a simulation-
based approach. In particular, this task has been recently implemented in the R package
DHARMa (Hartig, 2017), which standardizes the residuals to uniformly distributed values
in the unit interval. As a first step, from JM results we use the fitted longitudinal sub-
model py{yi(t) |bi,μi(t),κ} to simulate a relatively large numberM of new longitudinal
datasets, {ỹ (m)

i }M
m=1. Then, for a particular subject-specific observation yi(t) in the origi-

nal data, we have a set ofM simulated values {ỹ (1)
i (t), . . . , ỹ (M)

i (t)}, allowing us to obtain
its corresponding empirical cumulative distribution function, P̃y{ỹi(t) |bi,μi(t),κ}. Fi-
nally, the quantile residual associated with the original observation yi(t) is calculated
as:

rqi (t) = P̃y{yi(t) |bi,μi(t),κ}= Pr{ỹ (m)
i (t)≤ yi(t)} ∈ (0,1). (12)

Recall that, if the longitudinal model is correctly specified, there will be no difference
between the original dataset and the M simulated datasets, so all the values in the em-
pirical cumulative distribution will have the same probability. In such a case, this would
lead to a uniform distribution of the residuals, regardless of the longitudinal model em-
ployed to fit the data. Once the described process has been repeated for each of the
original observations, a residual analysis can easily be carried out, detecting deviations
from the uniform distribution, residual dependency on a predictor, or overdispersion.

Figure 4: Randomized quantile residuals for the longitudinal sub-model of the joint models with a recency-
weighted cumulative effect, for both PO longitudinal sub-model (left panel) and NB longitudinal sub-model
(right panel).
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Figure 4 depicts the randomized quantile residuals derived from both PO and NB
longitudinal sub-models in the fitted JM with a recency-weighted cumulative effect pa-
rameterization, where M = 500 datasets were simulated for each sub-model. The quan-
tile residuals of the estimated PO longitudinal sub-model show clear evidence of lack
of fit, exhibiting a quadrature pattern, probably due to the overdispersion effect. In or-
der to confirm this trend, we also plotted the residuals against the time predictor, and
again a systematic deviation quadrature was obtained in the corresponding Q-Q plot.
By contrast, the quantile residuals of the NB sub-model are almost perfectly uniformly
distributed, lying approximately on the diagonal line. These graphical results strongly
suggest the adequacy of the NB longitudinal sub-model.
To check the quality of the survival model’s predictions, the analysis of martin-

gale residuals (Barlow and Prentice, 1988) is a very common graphical method. Let
Ri(t) = I (Ti ≥ t) be the indicator that the i-th subject is at risk at time t, and Ni(t) be
the corresponding cumulative number of events until time t. In general, the martingale
residuals for subject i at time t is defined by the mean estimates (θθθ,bi) as

rmi (t) = Ni(t)−
∫ t

0
Ri(s)hi{s |Mi(s),θθθ}ds, rmi (t) ∈ (−∞,1]. (13)

Here, hi {s |Mi(s),θθθ}= h0(s)exp
[
γgwgi+αF{μi(s)}

]
, where h0(·) is the estimated

baseline hazard function of the relative risk model, and μi(s) = ei(s)exp{β 0 + bi0 +
β 1 s+bi1 s+β t90 I(s≥ 25)}. The martingale residuals are calculated, for each subject-
specific measurement, as the difference between the observed number of events

Figure 5: Martingale residuals derived from the joint models with a recency-weighted cumulative effect.
The left panel shows the martingale residuals versus the subject-specific values fitted with the PO longi-
tudinal sub-model, and the right panel shows the results obtained with the NB longitudinal sub-model. In
both plots, a loess function has been overlaid to determine the trend.
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(0 or 1) and the number of events expected to happen. This implicitly allows for the
identification as outliers of those cases where the survival function predicts an event
either too early (values near 1) or too late (extreme negative values). Using an adequate
model specification, these residuals should be uncorrelated with one another and have a
zero mean, even though they are not symmetrically distributed around zero value.
Taking the results of the JM approach with a recency-weighted cumulative effect, we

have calculated the martingale-based residuals for both PO and NB longitudinal sub-
models. Figure 5 shows the corresponding plots of the martingale residuals versus the
fitted values for the emergency claims per year. In general, these residuals are skewed
towards negative values, and for this reason it is very useful to superimpose a loess
function (solid line) to better assess the shape of the relationship between the residuals
and the fitted values. In the JM with the PO longitudinal sub-model, the loess trend
deviates from zero as the fitted value increases. By contrast, in the plot for the JM with
NB longitudinal response, the loess curve shows almost no evidence of a trend across
all the fitted values.

5. Individualized survival predictions

Using the Bayesian joint framework, personalized and dynamically-updated survival
predictions can be obtained by considering each subject-specific longitudinal profile
(Proust-Lima and Taylor, 2009; Rizopoulos, 2012; Serrat et al., 2015). Let us consider
a new subject, denoted by k = i+ 1, not included in the original dataset but sampled
from the target population. If emergency claims per year are recorded until time t, we
implicitly know that this new subject is alive at least until t, thus providing a historical
set of observed measurements, Yk(s) = {yk (sk j) , τk ≤ sk j ≤ t, j = 1, . . . ,nk}, as well
as a specific value for gender factor wgk. From this information, we want to predict
the conditional subject-specific survival probabilities at any future time u > t, given
survival up to t: p̃k(u | s) = pt (T ∗

k ≥ u |T ∗
k > s,Yk(s),wgk,Dn). This prognosis task can

be carried out quite straightforwardly by adopting a Bayesian strategy. LetΩΩΩ = (θθθ,bk)
denote the full vector of uncertainties in the joint model and the random effects of the
new subject. Then, the the conditional survival probability can be estimated from the
posterior predictive distribution of the observed data:

p̃k(u |s) =
=

∫∫
ΩΩΩ
pt (T

∗
k ≥ u |T ∗

k > s,Yk(s),wgk,bk,θθθ)π (θθθ |Dn)dbk dθθθ (14)

=
∫∫

ΩΩΩ
pt (T

∗
k ≥ u |T ∗

k > s,bk,θθθ) pb (bk |T ∗
k > s,Yk(s),wgk,θθθ)π (θθθ |Dn)dbk dθθθ

=
∫∫

ΩΩΩ

Pr(T ∗
k ≥ u |Mk(u),bk,θθθ)

Pr
(
T ∗
k > s |Mk(s),bk,θθθ

) pb (bk |T ∗
k > s,Yk(s),wgk,θθθ)π (θθθ |Dn)dbk dθθθ.
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Using the previous result and the MCMC sampling information from π (θθθ,bi |Dn)

for a particular JM fit (we assume that the inclusion of a new subject does not entail the
updating of θθθ), a simulation scheme can be applied to obtain a Monte Carlo estimate
of p̃k(u | s). By way of an example, let us consider a male and female policyholders,
both aged 70 years upon entering the study (τk = 5), and not included in the original
dataset. The same number of emergency claims per year is assumed for them during the
next decade, those being observed annually between the ages of 70 and 80, providing
{Yk(s), s = 5, . . . ,15}. Moreover, we assume a NB counting sequence within the JM
approach with a recency-weighted cumulative effect. We first focus on estimating the
survival probability of both subjects at 90 years of age, conditioned on their being alive
at s, p̃k (u= 25 |s). The results are obtained by adapting the code of survfitJM (·) func-
tion from the JMbayes package, and they show how the Monte Carlo estimates update
dynamically as new longitudinal information is considered (Table 5). Time-dynamic
updating of this kind emphasizes the need for a well-characterized follow-up for each
policyholder when we aim for personalized decisions and an accurate prediction of the
insurance capital needed to cover the corresponding health insurance plan.

Table 5: Time-dynamic probabilities of being alive at 90 years for a man and a woman with the same
longitudinal information collected between the ages of 70 and 80. The results are estimated from the JM
with a recency-weighted cumulative effect parameterization and a NB longitudinal sub-model.

Age (yr.) Emergency claims
per year, yk(s)

Man’s survival at 90 yr. Woman’s survival at 90 yr.

Mean q2.5% q97.5% Mean q2.5% q97.5%

70 0 0.783 0.478 0.864 0.796 0.509 0.871
71 0 0.804 0.601 0.868 0.817 0.628 0.874
72 1 0.790 0.550 0.863 0.803 0.563 0.872
73 0 0.806 0.635 0.868 0.818 0.647 0.874
74 2 0.776 0.556 0.854 0.790 0.585 0.863
75 0 0.793 0.616 0.861 0.807 0.632 0.871
76 0 0.807 0.660 0.867 0.822 0.682 0.875
77 8 0.671 0.359 0.812 0.692 0.367 0.826
78 1 0.690 0.404 0.816 0.708 0.410 0.829
79 2 0.688 0.406 0.812 0.706 0.414 0.827
80 0 0.719 0.479 0.825 0.736 0.501 0.839

We conclude that there is an increasing probability of being alive at the age of 90
when no emergency claims are observed, whereas this probability decreases sharply
when a large number of emergency claims are annually reported. The survival proba-
bilities for the female are higher than those for the male policyholder, since the gender
regression coefficient indicates that ceteris paribus males have a higher mortality risk
than females. Hence, by the age of 80, the survival estimate at 90 years of age for the
male policyholder is p̃k,m(u = 25 | s = 15) = 0.719, whereas a woman with the same
demand presents an estimate of p̃k,w(u= 25 |s= 15) = 0.736.
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Table 6: Time-dynamic probabilities of being alive above 80 years for a man and a woman with the same
longitudinal information collected between the ages of 70 and 80. The results are estimated from the JM
with a recency-weighted cumulative effect parameterization and a NB longitudinal sub-model.

Age (years)
Man’s survival above 80 yr. Woman’s survival above 80 yr.

Mean q2.5% q97.5% Mean q2.5% q97.5%

80 1.000 1.000 1.000 1.000 1.000 1.000
82 0.972 0.945 0.983 0.974 0.945 0.985
84 0.934 0.871 0.960 0.939 0.875 0.964
86 0.882 0.773 0.929 0.890 0.779 0.935
88 0.812 0.640 0.884 0.824 0.655 0.896
90 0.719 0.479 0.825 0.736 0.501 0.839

If we know for certain that both subjects from the previous example remain alive
when they are 80 years old, then we can also assess their future survival from the infor-
mation contained in our dataset of policyholders above the age of 80. Table 6 provides
the survival estimates of these two subjects. Recall that logically the last row in this
table provides the same results as those in Table 5, since both survival estimates at the
age of 90 are performed under the same assumptions.

6. Conclusions

Health insurance companies have access to a valuable source of information for use in
follow-up studies, as they keep records of the medical claims made by each of their
policyholders, in what is a discrete counting process. In this article, we have assessed
the degree of relationship between an elderly policyholder’s annual demand of medical
emergency claims (as a longitudinal discrete response) and his or her time until death.
We defined elderly people as those with a chronological age of 65 years or above, so the
event times are left-truncated for all subjects whose observation time starts after this age
threshold.
A correct statistical analysis of the association between the longitudinal and time-

to-event outcomes entails a joint modelling approach. The longitudinal analysis was
carried out using either a PO or a NB mixed model, whereas for the survival analy-
sis, a time-dependent Cox model was used. The JM for annual rate counts and delayed
entries was fitted under the Bayesian paradigm via JAGS software, entailing the chal-
lenging task of applying it to a large dataset. First, we examined the influence of the
current longitudinal outcome on mortality risk. Then, in a second stage, we considered
the effect of the recency-weighted area under the longitudinal profile on survival. In both
cases, the results show that relatively high cumulative demand for ambulance services,
hospitalizations, and non-routine visits is positively related to a deterioration in the sub-
ject’s health status and, consequently, it entails higher mortality risk (i.e., lower survival
probabilities). The most interesting conclusion is that the most recent critical medical
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demand has the greatest impact on the current survival. This is what the JM is able to
capture by means of the functional form which relates the recency-weighted area under
the expected longitudinal profile with the time-to-event outcome, this approach being
preferable to the one which only takes into account the effect of the current expected
longitudinal value. Moreover, the results confirm the adequacy of assuming a NB distri-
bution in the longitudinal sub-model as a first step to account for overdispersion in the
longitudinal response. However, further extensions in the longitudinal part can be con-
sidered to specifically deal with zero inflation, such as different versions of zero-inflated
and Hurdle models. To conclude, subject-specific survival predictions have been ob-
tained as an example of the enormous potential of joint analysis as a predictive tool.
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