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A contingency table approach based on nearest
neighbour relations for testing self and mixed

correspondence
Elvan Ceyhan∗

Abstract

Nearest neighbour methods are employed for drawing inferences about spatial patterns of points
from two or more classes. We introduce a new pattern called correspondence which is motivated
by (spatial) niche/habitat specificity and segregation, and define an associated contingency table
called a correspondence contingency table, and examine the relation of correspondence with
the motivating patterns (namely, segregation and niche specificity). We propose tests based on
the correspondence contingency table for testing self and mixed correspondence and determine
the appropriate null hypotheses and the underlying conditions appropriate for these tests. We
compare finite sample performance of the tests in terms of empirical size and power by extensive
Monte Carlo simulations and illustrate the methods on two artificial data sets and one real-life
ecological data set.
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1. Introduction

The spatial point patterns in natural populations (in R
2 and R3) have received consid-

erable attention in statistical literature. Among the frequently studied spatial patterns
between multiple classes/species are segregation and association (Dixon, 2002a), and
niche specificity pattern (Primack, 1998). Pielou (1961) proposed various tests based
on nearest neighbour (NN) relations in a two-class setting, namely, tests of segregation,
symmetry, and niche specificity, and also a coefficient of segregation. Inspired by niche
specificity and segregation, we introduce new multi-class patterns called self and mixed
correspondence in the NN structure. We use the NN relationships for testing these pat-
terns. In this article, we only use the first NN (i.e., 1-NN) of any point so NN always
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refers to the 1-NN. Furthermore, the terms “class” and “species” are used interchange-
ably and refer to any characteristic of the subjects such as gender, age group, health
condition, etc.
We also propose tests for the spatial patterns of self and mixed correspondence in

the NN structure. These tests are based on a contingency table called a correspondence
contingency table (CCT) which is constructed using the NN relations in the data. A
base-NN pair (or simply the NN pair) is the pair of points (p1, p2) in which p2 is a
NN of p1, and p1 is called the base point and p2 is called the NN point. The NN pair
(p1, p2) is called a self pair, if both p1 and p2 are from the same class, while it is called
a mixed pair, if p1 and p2 are from different classes. Self correspondence in the NN
structure occurs when there is a tendency for points from a class to be NNs to points
from the same class. That is, self correspondence occurs when self NN pairs are more
abundant than expected. On the other hand, mixed correspondence occurs when there
is a tendency for points and their NNs to be from different classes, i.e., mixed NN pairs
are more abundant than expected.
There are many methods available for testing various types of spatial patterns in

literature. These spatial tests include Pielou’s test of segregation (Pielou, 1961), Ripley’s
K-function (Ripley, 2004), or J-function (van Lieshout and Baddeley, 1999), and so
on. Some of these methods are based on nearest neighbour (NN) relations between the
points in the data set (Dixon, 2002b). For example, Clark and Evans (1954) use the
mean distance of points to their NNs in a spatial data set to measure the deviations of
plant species from spatial randomness and compare the deviations for multiple species.
However, in this article, we base our analysis on the class labels of NN pairs as was
done in Pielou (1961) and Dixon (1994). An extensive survey for the tests of spatial
point patterns is provided by Kulldorff (2006) who categorized and compared more
than 100 such tests. These tests are for testing spatial clustering in a one-class setting or
testing segregation of points in a multi-class setting. The null hypothesis is some type
of spatial randomness and is usually fully specified, but the alternatives are often not
so definite, in the sense that for most tests the alternatives are presented as deviations
from the null case are of interest as in pure significance tests of Cox and Hinkley (1974);
only a few tests specify an explicit alternative clustering scheme. Most of the tests for
multiple classes deal with presence or lack of spatial interaction usually in the form of
spatial segregation or association between the classes. However, none of the numerous
tests surveyed by Kulldorff (2006) are designed for testing correspondence; and the
pattern of correspondence and the associated tests are introduced in this article. The
tests for assessing the self and mixed correspondence in the NN structure are based on
the CCT which can also be constructed by collapsing the nearest neighbour contingency
table (NNCT). See Ceyhan (2010, 2008a) for an extensive treatment of NNCT and tests
based on it.
We provide the description of correspondence and related patterns, the list of nota-

tions and two motivating (artificial) examples in Section 2. A list of abbreviations used
in the article is provided in Table 1. We propose the pattern of correspondence together
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with the associated tests and the contingency table (i.e., CCT) and the benchmark and
the null patterns for correspondence in Section 3 where the asymptotic distributions of
the cell counts in the CCT and of the tests based on them are also derived. We prove con-
sistency of the tests in Section 3.3, and provide an extensive empirical size and power
analysis by Monte Carlo simulations in Section 4. We also illustrate the methodology
on one ecological data set in Section 5 and provide some discussion and guidelines in
Section 6.

Table 1: A list of abbreviations used in the article.

CSR: Complete Spatial Randomness
NN: Nearest Neighbour
NNCT: Nearest Neighbour Contingency Table
RL: Random Labelling
CCT: Correspondence Contingency Table

2. Preliminaries

2.1. Spatial Correspondence and Related Patterns

We first introduce the motivating patterns of niche specificity and segregation and then
discuss their connection with correspondence.

Niche/habitat specificity is the collection of biotic and abiotic conditions favouring
the development, hence existence and abundance of a species on a spatial scale (Ranker
and Haufler, 2008). That is, niche specificity is the dependence of an organism on an en-
vironment (i.e., niche or habitat). In literature, niche/habitat specificity is also discussed
within the context of species diversity under the title of habitat association of two or
more species (Primack, 1998). Niche specificity is a broad concept and is determined
by partitioning of the niche space. Furthermore, niche space has non-spatial coordinates
amenable for niche partitioning; e.g., Fargione and Tilman (2005) uses different phe-
nologies resulting in temporal partitioning of the niche space and Werner and Gilliam
(1984) incorporate ontogenetic changes (i.e., changes as an individual develops in size)
to partition the niche space. However, in this article, we are mainly concerned with the
spatial aspect of multi-class interaction patterns.
In a multi-species setting, segregation of a species is the pattern in which members

of a species occur near members of the same species (Dixon, 1994). Conversely, asso-
ciation of a species to another is the pattern in which members of the former species
tend to occur near the members of the latter. That is, under segregation, the members of
a class or species enjoy the company of the conspecifics, hence form one class clumps
or clusters, while under association they tend to coexist with members of other class(es)
and form mixed clumps or clusters (see, e.g., Ceyhan, 2008a for more detail).
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Niche specificity can be viewed as a factor that accounts for segregation which can
account for self correspondence. In a multi-species setting, if each species were con-
fined to its own support/niche, we would expect one-species clumps (which would tend
to exclude other species). So if (spatial) niche specificity is in effect for all species in
the study region, self correspondence would occur (i.e., self NN pairs would be more
abundant than mixed pairs). On the other hand, if niche specificity is in effect for one
species, then that species would exhibit segregation from the rest of the species. Self
correspondence is much closer to the concept of segregation compared to niche speci-
ficity, as self correspondence and segregation are both based on the spatial proximity of
the conspecifics. Self correspondence in the NN structure pertains to the NN pair types
as self or mixed for each class among all base-NN pairs and thus to a supra-species
characteristic. However segregation is a pattern at the species level, in the sense that
one can only talk of segregation of a species from another or others. That is, in a multi-
class or multi-species setting, self correspondence refers to the NN preference of species
for all species combined and so it is intended to measure whether species prefer their
conspecifics in a cumulative fashion, i.e., for all species taken into account together.
Thus, segregation is defined at species level, while self correspondence is defined at
multi-species level; and the two patterns are related but different in the sense that, e.g.,
all species together might exhibit self correspondence without significant segregation
for any of the species. But segregation of all or most species will usually substanti-
ate the presence of self correspondence, hence segregation can be viewed as a factor
that accounts for self correspondence. Lack of segregation might indicate mixed corre-
spondence, which may or may not imply association, since for association one needs to
consider each pair of species separately and test the interaction between the two species
in the pair. Lack of segregation is guaranteed to imply presence of association in the
two-class setting only.

2.2. Notation

For convenience to the reader, following the example of Vichi and Saporta (2009), we
provide the notation and terminology used in the article below.

X and Y class labels (interchangeably 1 and 2, respectively);
Xn and Ym a data set of size n from class X and a data set of size m from class Y ;
Wn represents the combined data set for the CSR setting, and the background

points for the RL setting;
Dn the set of ordered pairs (Wi,Li), where Wi stands for the location of the

point and Li stands for the corresponding class label;
Si the number of self base-NN pairs for class i;
Mi the number of mixed base-NN pairs with base point being from class i;
S andM sum of the first column (for self pairs) i.e. S =

∑k
i=1 Si and sum of the

second column (for mixed pairs) i.e. M =
∑k

i=1Mi in the CCT;
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Ni j the observed frequency of category (i, j) in the NNCT, i.e., the num-
ber of (base,NN) pairs in which base class is i and NN class is j;

Ci sum of column j in the NNCT;
R and Q twice the number of reflexive pairs and the number of points with

shared NNs, which occurs when two or more points share a NN;
Ql the number of points that serve as a NN to other points l times;
ZSi and ZS the test statistics for cell (i,1) in the CCT and for sum of the self

column, S;
Zii the cell-specific tests for cell (i, i) in the NNCT analysis;
S the vector of combined Si values (i.e., the self column in the CCT),

i.e., (S1,S2, . . . ,Sk);
ΣS the variance-covariance matrix of S;
XC the (quadratic form) test statistic for the correspondence;
XD the overall segregation test due to Dixon;
N and ΣN the vector of entries of NNCT concatenated row-wise and its covari-

ance matrix;
A− the generalized inverse of a matrix A;
χ2ν,α the 100αth percentile of χ2 distribution with ν degrees of freedom;
Nmc the number of Monte Carlo samples generated for the empirical size

and power comparison of the tests;
α̂T the empirical size estimate of a test statistic, T , at level α= 0.05;
α̂T1,T2 the proportion of agreement in rejecting the null hypothesis between

test statistics T1 and T2;
U (A) the uniform distribution on region A;
MatClust(κ,r,μ) Matérn cluster process with Poisson parameters κ and μ and radius

r;
β̂T the empirical power estimate of a test statistic, T , at level α= 0.05;
pasy the p-value based on the asymptotic approximation (i.e., asymptotic

critical value);
prand the p-value based on Monte Carlo randomization of the labels on the

given locations;
pmc the p-value based on 10000 Monte Carlo replication of the CSR in-

dependence pattern in the study region

2.3. Motivating Examples

To motivate the patterns of self/mixed correspondence and how they can be different
from segregation/association, we use two artificial data sets, each of which has three
classes (representing tree species) say, X , Y and Z in a square study region. We could
also choose examples with two classes, but with two classes only one of the newly intro-
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Figure 1: The scatterplots of the locations of three classes (representing three tree species) in our artificial
data set 1 (left) and artificial data set 2 (right). There are 40 points in each class/species.

duced tests provide new information compared to the existing segregation tests and there
are more possibilities of different types of pairwise interactions between classes with
three or more classes. Hence it would be more informative to discuss the differences
between the tests and patterns of self/mixed correspondence and segregation/association
with three or more classes. We generate 40 points for each class and the locations of
the points are plotted in Figure 1. The scatter plot for artificial data set 1 on the left is
suggestive of mild self correspondence and segregation with number of self NN pairs
being 54 and number of mixed NN pairs being 66. The scatter plot for artificial data set
2 on the right is suggestive of mild mixed correspondence and a lack of segregation with
number of self NN pairs being 34 and number of mixed NN pairs being 86. However,
these claims are not assessed rigorously yet to attach any significance (or lack of it) to
them. We will illustrate the correspondence and segregation patterns and the associated
tests using these examples in the following sections.

3. Correspondence in the NN Structure and the Associated
Contingency Table

3.1. Benchmark and Null Patterns for Multivariate Spatial Interaction

In this article, we are concerned with the (spatial) interaction between two or more
classes of points, particularly with correspondence. For multivariate spatial data analy-
sis, the benchmark pattern is usually complete spatial randomness (CSR) independence
or random labelling (RL) (Diggle, 2003) depending on the context. The distinction
between CSR independence and RL could be very important in practice. Under CSR
independence the (locations of the) points from two classes are a priori the result of
different processes (for instance, individuals of different species or age cohorts). On
the other hand, under RL, some processes affect the individuals of a single population
a posteriori (for instance, diseased versus non-diseased individuals of a single plant
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species) (Goreaud and Pélissier, 2003). Under CSR independence, the points from each
class are independently uniformly distributed in the region of interest conditioned on
the class sizes. That is, the points from each class are independent realizations from
a Homogeneous Poisson Process (HPP) with fixed class sizes (i.e., they are indepen-
dent realizations from a binomial process). On the other hand, under RL, class labels
are independently and randomly assigned to a set of given locations which could be a
realization from any pattern such as HPP or some clustered or regular pattern.
For simplicity, we describe the benchmark patterns for the two-class case. Extension

to multi-class case is straightforward. In a two-class setting, we label the classes as X
and Y (or interchangeably 1 and 2, respectively). Let Xn1 be a data set of size n1 from
class X andYn2 be a data set of size n2 from classY . Then under CSR independence, we
haveXn1 = {X1,X2, . . . ,Xn1} and Yn2 = {Y1,Y2, . . . ,Yn2} which are independent and are
both random samples from U (S), the uniform distribution on the common support S ⊂
R
d for classes X and Y where Rd is the d-dimensional Euclidean space. Unless stated

otherwise, for simplicity and practical purposes, we take d = 2 (i.e., consider planar
data) throughout the article. We combine Xn1 and Yn2 into one data set Wn = Xn1 ∪
Yn2 = {W1,W2, . . . ,Wn} where n = n1+ n2. In fact, we consider labeled data points as
Dn= {(Wi,Li) for i= 1,2, . . . ,n}where Li ∈ {0,1} or {X ,Y} are the class labels. Notice
that under CSR independence, the randomness is in the locations of the points Wi and
the class label is a fixed deterministic characteristic of the point. Under the RL pattern,
the class labels or marks are assigned randomly to points whose locations are given. The
spatial pattern generating these point locations is referred to as the background pattern
henceforth. Then Wn is the given set of locations for n points from the background
pattern. We have the pair of observations (Wi,Li)where Li ∈ {1,2} or {X ,Y} is the class
label of the pointWi for i= 1,2, . . . ,n. Then n1 (resp. n2) of theseWi points are assigned
as class X (resp. class Y ) randomly; i.e., the labels Li are 1 or X approximately with
probability n1/n (resp. 2 or Y with probability n2/n) independently for i = 1,2, . . . ,n.
Under RL, the locations of the points are fixed but the randomness is in the label, Li,
associated with these points.
There are two major types of interaction pattern types as deviation from these bench-

mark patterns in the multivariate spatial pattern analysis. These interaction patterns are
segregation and association. Segregation/association, niche specificity and correspon-
dence are related but different concepts (see Section 2.1), and hence the corresponding
null hypotheses are different. Niche specificity might account for or explain the self
correspondence or segregation patterns. In particular, if niche specificity occurs at sig-
nificant levels for each species, then there will be significant segregation for each species
and significant self correspondence for all species combined. But if niche specificity oc-
curs for some species (but for other species niche specificity is not significant or these
other species exist in mixed groups/clumps or scattered around the study region haphaz-
ardly), segregation is operating for these species, while self correspondencemay or may
not be in effect (e.g., segregation of species may not be strong enough to render self
pairs significantly larger than expected, or the associated pairs might hinder the occur-
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rence of self correspondence). Hence self correspondence and segregation are different
patterns with substantial overlap, but one is not the subset of the other. We provide the
explicit forms of the corresponding null hypotheses in the subsequent sections.

3.2. Tests of Correspondence and Their Relation to Segregation

The null case for self or mixed correspondence is that the entries for self (or mixed) pair
types in the CCT are as expected under RL or CSR independence.
For a species to exhibit self (resp. mixed) correspondence in the NN structure, self

(resp. mixed) NN pairs would be more abundant than expected under RL. To detect
such type of pattern, we construct a contingency table where NN pairs are classified as
self or mixed for each class. Let Si be the number of self NN pairs for class i, and Mi

be the number of mixed NN pairs with base point being from class i. For simplicity, we
assume there are no ties in the NN relations, which occurs with probability one, if Wn is
a random sample from a continuous distribution. Then

Si =
n∑

j �=i, j=1

n∑
i=1

I(Zj is a NN of Zi)I(Li = Lj),

and

Mi = ni−Si =
n∑

j �=i, j=1

n∑
i=1

I(Zj is a NN of Zi)I(Li �= Lj).

Then the resulting contingency table is a k× 2 contingency table for k classes with
first column (called self column) comprising of Si and the second column (called mixed
column) comprising ofMi values. See also Table 3 (left). Notice that row sums are class
sizes (i.e., sum of row i is ni), and sum of the self column is S =

∑k
i=1 Si and sum of the

mixed column is M =
∑k

i=1Mi.

Remark 3.1. Ties in the NN Structure. If there are ties in the NN structure, which can
happen, e.g., due to truncation of the coordinates of the observations when recording,
we can adjust the above formulas for Si and Mi by inserting a weight term for ties. For
instance, we can write 1

Nnni
I(Zj is a NN of Zi) to account for the ties where Nnn

i is the
number of NNs of point Zi. Note that Nnn

i = 1 with probability 1 when Wn is a random
sample from a continuous distribution. �

The k× 2 CCT is closely related to the k× k nearest neighbour contingency table
(NNCT) based on the same data. Here we provide a brief description of NNCTs (for
more detail, see, e.g., Ceyhan, 2008a). NNCTs are constructed using the NN frequencies
of classes. Let ni be the number of points from class i (assumed fixed) for i∈{1,2, . . . ,k}
and n =

∑k
i=1 ni. If we record the class of each point and its NN, the NN relationships

fall into the following k2 categories:
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(1,1), (1,2), . . . ,(1,k); (2,1), (2,2), . . . ,(2,k); . . . ,(k,k)

where in category or cell (i, j), class i is called the base class, and class j is called the NN
class. Denoting Ni j as the observed frequency of category (i, j) for i, j ∈ {1,2, . . . ,k},
we obtain the NNCT in Table 3 (right). Then,

Ni j =
n∑

j′ �=i′, j′=1

n∑
i′=1
I(Zj′ is a NN of Zi′)I(Li′ = i)I(Lj′ = j).

The number of self pairs for class i is same as the number of base-NN pairs with both
base and NN classes are from class i. Hence Si = Nii andMi = ni−Nii.

Table 3: The CCT (left) and the NNCT (right) for k classes.

pair type
self mixed total

class 1 S1 M1 n1
class 2 S2 M2 n2

base ...
...

...
...

class
class k Sk Mk nk
total S M n

NN class
class 1 . . . class k total

class 1 N11 . . . N1k n1
base ...

...
. . .

...
...

class
class k Nk1 . . . Nkk nk
total C1 . . . Ck n

Table 4: The CCT (left) and the NNCT (right) for the three classes in our artificial data set 1.

pair type
self mixed total

class 1 18 22 40
base

class 2 18 22 40
class

class 3 18 22 40
total 54 66 120

NN class
class 1 class 2 class 3 total

class 1 18 13 9 40
base

class 2 11 18 11 40
class

class 3 8 14 18 40
total 37 45 38 120

Table 5: The CCT (left) and the NNCT (right) for the three classes in our artificial data set 2.

pair type
self mixed total

class 1 7 33 40
base

class 2 19 21 40
class

class 3 8 32 40
total 34 86 120

NN class
class 1 class 2 class 3 total

class 1 7 15 18 40
base

class 2 10 19 11 40
class

class 3 18 14 8 40
total 35 48 37 120

We present the CCTs and NNCTs for the artificial data sets 1 and 2 in Tables 4 and 5,
respectively. For artificial data set 1, the CCT suggests presence of self correspondence
with self column entries being higher than expected. Equivalently, the NNCT diagonal
entries are higher than expected suggesting presence of segregation of the classes. For
artificial data set 2, based on the CCT, we observe that there seems to be mixed cor-
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respondence (with NN pairs in which base points are from classes 1 or 2). Likewise,
NNCT suggests that classes 1 and 3 are associated with each other, and there is a lack
of segregation for these classes, and class 2 points seem to be segregated from points of
other classes.
Under RL, we can determine the exact expected values, variances, and asymptotic

distributions of the cell counts in the CCT. In particular,

E[Si] = E[Nii] = ni(ni−1)/(n−1) and E[Mi] = E[ni−Nii] = ni(n−ni)/(n−1). (1)

Furthermore,

Var[Si] = Var[Nii] = (n+R)pii+(2n−2R+Q)piii+(n2−3n−Q+R)piiii−n2p2ii (2)

and since ni are fixed

Var[Mi] = Var[ni−Nii] = Var[Nii] = Var[Si].

In Equation (2), pxx, pxxx, and pxxxx are the probabilities that a randomly picked pair,
triplet, or quartet of points, respectively, are the indicated classes and are given by

pii =
ni (ni−1)
n(n−1) , piii =

ni (ni−1)(ni−2)
n(n−1)(n−2) , piiii =

ni (ni−1)(ni−2)(ni−3)
n(n−1)(n−2)(n−3) , (3)

and R is twice the number of reflexive pairs and Q is the number of points with shared
NNs, which occurs when two or more points share a NN. Then Q = 2(Q2+ 3Q3+
6Q4+ 10Q5+ 15Q6) where Ql is the number of points that serve as a NN to other
points l times. Since ni are fixed, the covariances of the cell counts can also be obtained
as

Cov[Si,S j] = Cov(Nii,Nj j) = (n2−3n−Q+R)pii j j−n2pii p j j

and
Cov[Mi,Mj] = Cov(ni−Nii,n j−Nj j) = Cov(Nii,Nj j)

where pii j j =
ni (ni−1)n j (n j−1)
n(n−1)(n−2)(n−3) . The covariance of cell counts in different columns is

Cov[Si,Mj] =

{
Cov[Nii,ni−Nii] =−Var[Nii] if i= j,

Cov[Nii,n j−Nj j] =−Cov[Nii,Nj j] if i �= j.
(4)

See Dixon (1994, 2002a) for the derivation of the above variance and covariance terms.
In a CCT, deviations of Si or Mi from their expected values under RL or CSR inde-

pendence can be assessed. Since Si = Nii, for cell (i,1) of the CCT, we have

ZSi =
Si−E[Si]√
Var[Si]

=
Nii−E[Nii]√
Var[Nii]

(5)
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for i= 1,2, . . . ,k. Notice that ZSi = Zii where Zii is the cell-specific tests for cell (i, i) in
the NNCT analysis (see, Dixon, 1994 and Ceyhan, 2008a for more details). Notice also
that the mixed column entries carry the same information as the self column entries, and
they will yield the test statistic with negative sign. That is, (Mi−E[Mi])/

√
Var[Mi] =

−ZSi for each i, hence the test statistics with mixed column entries are omitted. For large
ni, ZSi approximately has N(0,1) distribution (Dixon, 2002a).
The test statistics for the self cells of the CCT are as follows: For artificial data

set 1, we have ZS1 = Z11 = ZS2 = Z22 = ZS3 = Z33 = 1.4409 which is in agreement
with our observation in the CCT that all classes exhibit mild segregation. For artificial
data set 2, ZS1 = Z11 =−1.8033, ZS2 = Z22 = 1.7388, and ZS3 = Z33 =−1.5081 which
is in agreement with our observation in the CCT that classes 1 and 3 exhibit lack of
segregation at a moderate level while class 2 exhibits mild level of segregation.
One can combine the Si values (i.e., the self column in the CCT) into a vector S =

(S1,S2, . . . ,Sk) = (N11,N22, . . . ,Nkk). So E[S] is the vector of expected values of the en-
tries of S. The variance-covariancematrix of S, denoted ΣS, is the k×kmatrix with entry
(i, i) being Var[Si] =Var[Nii] and entry (i, j) with i �= j being Cov[Si,S j] = Cov[Nii,Nj j].
With the self column as the vector S, we have the quadratic form

XC = (S−E[S])TΣ−1
S (S−E[S]). (6)

where Σ−1
S is the inverse of ΣS. For large ni, XC approximately has a χ2k distribution.

Observe that the test statistic XC is obtained similar to the overall segregation test as
described in Ceyhan (2008a). Briefly, the overall segregation test due to Dixon is

XD = (N−E[N])TΣ−
N(N−E[N]) (7)

where N is the vector of entries of NNCT concatenated row-wise and ΣN is the covari-
ance matrix of N and A− is the generalized inverse of a matrix A (Searle, 2006).
For the artificial data set 1, we have XC = 5.0761 (p = 0.1664) and XD = 7.1274

(p = 0.3092). Notice that neither test is significant, although the correspondence test
yields a lower p-value. This suggests lack of significant deviations from the expected
cell counts in either contingency table. On the other hand, for the artificial data set 2,
we have XC = 9.4670 (p = 0.0237) and XD = 9.7879 (p = 0.1339). Notice that the
overall segregation test is not significant at the .05 level, which suggests that the cell
counts do not deviate significantly from their expected values. On the other hand,XC is
significant, which is suggesting significant deviation in the first column of CCT (or the
diagonal of NNCT). However, to determine the direction of correspondence, we assess
the cell counts in the CCT and conclude that there is an abundance of self pairs for class
2, while there is a lower number of self pairs (or there is an abundance of mixed pairs)
for the other classes. Together with the column sums in the CCT, we observe that there
is evidence for mixed correspondence compared to self correspondence.
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Alternatively, we could also concatenate self and mixed columns of CCT to obtain
the vector SII = (N11,N22, . . . , Nkk,n1−N11,n2−N22, . . . ,nk−Nkk) with the test statistic
XII = (SII −E[SII])′Σ−

II(SII −E[SII]), but this version is highly unstable due to severe
rank deficiency (see Ceyhan, 2014). Thus we employ the first form of the test statistic,
XC, which is the χ2 test for the self column and omitXII in our further discussion.
WhenXC is significant, it implies the presence of significant deviation of some of the

cell counts Si than expected under Ho in Equation (9) or small deviations of cell counts
in positive or negative direction might accumulate in the quadratic form in Equation (6)
and cause a significant result for XC. Furthermore, if some significant deviation exists
for some cell(s), this deviation could be toward significant segregation or lack of seg-
regation for a class, or significant association of this class with some other class(es). If
additionally, the deviations of cells are all toward positive direction (i.e., segregation) or
deviations of some cells toward segregation are strong enough, then the self pairs might
be more abundant indicating presence of self correspondence. So with XC to infer self
or mixed correspondence, one needs to check the direction and magnitude of deviation
for each class (after a significant XC), hence should look at the sign and magnitude
of the cell-specific Z tests (i.e., the diagonal cell-specific tests) in Equation (5). Thus
this process tests self or mixed correspondence by a two-step approach which may be
somewhat a subjective assessment of magnitude of the deviations. For example, in our
artificial data set 2, the correspondence test statistic is significant, but by itself, does not
indicate it is self or mixed correspondence. To determine the type of correspondence,
we either look at the CCT or the sign and magnitude of the tests for the cells in the self
column of the CCT. In particular, in this data set, we observe that the correspondence is
of mixed type due to large negative values for the ZS1 and ZS3 .
As an alternative approach, we propose a test based on the sum of the self column,

S, in the CCT. That is,

ZC =
S−E[S]√
Var[S]

. (8)

Here

E[S] = E

[
k∑
i=1

Nii

]
=

k∑
i=1

E[Nii] =
k∑
i=1

ni(ni−1)
n−1

and

Var[S] = Var

[
k∑
i=1

Nii

]
=

k∑
i=1

Var[Nii]+
k∑
i�= j

Cov[Nii,Nj j].

Observe that Var[S] is the sum of entries of Σsel f , the covariance matrix of S. As ni
values tend to infinity, ZC converges in law to N(0,1) distribution. Large (positive)
values of ZC indicate that self pairs are more abundant than expected under RL or CSR
independence, hence indicate presence of self correspondence, while smaller (negative)
values of ZC indicate presence of mixed correspondence.
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For artificial data set 1, ZC = 2.2529 (p= 0.0123) which indicates that the self col-
umn sum is significantly larger than its expected value. Since each cell count deviates
in the same direction, this constitutes evidence for self correspondence in the NN struc-
ture. Notice that although segregation is mild (and not significant) for each class, their
cumulative effect makes the number of self NN pairs significantly higher than expected
yielding a significant self correspondence. As for artificial data set 2, ZC = −0.8137
which implies the self column sum in the CCT is not significantly different from its ex-
pected value. However, this is not a contradiction with our finding of significantXC, as
the deviations in the first column are in opposite directions, hence cancel each other out
in the summation.
Although the test statistics, XC, Zii, and ZC are all related to correspondence and

segregation, they test different null hypotheses. The null hypothesis for correspondence
is

Ho : self (or mixed) NN pairs are as expected under RL and CSR independence. (9)

Hence, by construction, the cell-specific test Zii tests the hypothesis

Ho : E[Zii] =
ni(ni−1)
n−1 (10)

andXC tests the hypothesis

Ho : E[Zii] =
ni(ni−1)
n−1 for all i= 1,2, . . . ,k (11)

and ZC tests the hypothesis

Ho : E[S] =
k∑
i=1

ni(ni−1)
n−1 . (12)

The right (resp. left) sided alternative for Ho in Equation (12) will imply self (resp.
mixed) correspondence, and the right sided alternative forHo in Equation (10) will imply
segregation of species i from others. On the other hand, the left sided alternative for Ho

in Equation (10) will imply lack of segregation of species i from others (in a two-class
setting, this is equivalent to association of the species with the other, but in a multi-class
setting, this may or may not imply association).
For k= 2 classes,XC is equivalent to the overall test of segregation of Dixon (1994),

XD, since the CCT and NNCT convey the same information and both tests are effec-
tively based on N11 and N22 only. In particular, N11 and N22 constitute the first column
of the CCT and the diagonal entries of the NNCT and N12 and N21 constitute the sec-
ond column of the CCT and the off-diagonal entries of the NNCT. But for k > 2, the
information conveyed by the NNCT and CCT are different and theXC depends only on



138 A nearest neighbour approach for testing correspondence

Si = Nii values in CCT, while the overall segregation test depends on all Ni j values in
NNCT.

Remark 3.2. Relation of Null Hypotheses with CSR Independence and RL. The
above null hypotheses in Equation (10)-(12) in terms of the expected values can result
from a more general setting. In particular, these null cases follow provided that there
is randomness in the NN structure in such a way that the probability of a NN of a
point being from a class is proportional to the relative frequency of that class. This
assumption holds, e.g., under CSR independence or RL of the points from each class.
Both CSR independence and RL patterns imply that there is no correspondence in the
NN structure. In fact, it is conceivable that other independence patterns (in which all
classes are independently generated from the same process or distribution) can yield the
same null hypothesis, but we restrict our attention to RL and CSR independence as they
are considered to be the benchmark patterns in spatial data analysis. �

Remark 3.3. Status ofQ and R under RL andCSR independence. Note the status of
the quantitiesQ and R under CSR independence and RL models. Under RL,Q and R are
fixed, while, under CSR independence, they are random. Hence the tests in Equations
(5)-(8) are conditional on the observed values ofQ andR under CSR independencewhile
no such conditioning is required under RL. The variance and covariance terms in Section
3.2 and all the corresponding tests also depend on Q and R. Hence these expressions are
appropriate for the RL pattern, but for the CSR independence pattern, they are variances
and covariances conditioned on Q and R. The unconditional variances and covariances
can be obtained by replacing Q and R with their expectations. Under HPP in the infinite
plane, Cox (1981) computed E[R/n]→ .6215 and Cuzick and Edwards (1990) computed
E[Q/n]→ .633 as n→ ∞. However, these results are assuming an infinite plane, and
our CSR independence case requires a bounded support (e.g., the unit square) and fixed
number of points which renders their computation for exact and asymptotic settings an
arduous task (due to, e.g., the edge effects). Alternatively, the expected values of Q and
R can be empirically approximated and used in the expressions. For example, for the
binomial process on the unit square, E[Q/n] tends approximately to .6324 and E[R/n]
tends approximately to 0.6219 (estimated empirically based on 1000000 Monte Carlo
simulations for increasing values of n). Notice that these estimates are pretty close to
the results under HPP. Hence one could also replace Q and R with 0.63n and 0.62n,
respectively and obtain the so-called QR-adjusted tests but we use the observed values
of Q and R in computing our test statistics even when assessing their behavior under
CSR independence. As shown in Ceyhan (2008b), QR-adjustment does not improve on
the unadjusted NNCT-tests. �

Remark 3.4. Recommended Strategy for k > 2 Classes. In the multi-class case with
k> 2, we recommend the following strategy for the practical implementation of the cor-
responding tests: PerformXC and ZC to check presence of self or mixed correspondence
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or any deviation in the self column and then perform the cell-specific tests to determine
which species (if any) exhibit segregation or lack of it. �

3.3. Consistency of Tests

A reasonable test should have more power as the sample size increases, so, we prove
the consistency of the tests in question under appropriate hypotheses. Let χ2ν,α be the
100αth percentile of χ2 distribution with ν degrees of freedom.

Theorem 3.5. Let the CCT be constructed from completely mapped spatial data under
RL. Then
(i) the one-sided (hence the two-sided) cell-specific tests using Zii given in Equation
(5) rejecting Ho in Equation (10) are consistent,

(ii) the test rejecting Ho in Equation (11) forXC >χ2k,1−α withXC as in Equation (6)
is consistent,

(iii) the one-sided (hence the two-sided) tests using ZC given in Equation (8) rejecting
Ho in Equation (12) are consistent.

Proof. (i) In the k class case, let Tn,i =
Si/n−E[Si/n]√

Var[Si/n]
= Nii/n−E[Nii/n]√

Var[Nii/n]
, then Tn,i = Zii for i =

1,2, . . . ,k. Consistency of Zi j was proved in Ceyhan (2010) for all i, j which includes the
special case of i= j, but we still present it here for the sake of completeness. Under RL,
E[Tn,i] = E[Zii] = 0 and Zii = (Nii−E[Nii])/

√
Var[Nii] are approximately distributed as

N(0,1) for large ni for i= 1,2, . . . ,k. Under the right sided (resp. left sided) alternative
Ha, for any i ∈ {1,2, . . . ,k}, we have E[Zii|Ha] = εi > 0 (resp. E[Zii|Ha] = εi < 0) where
εi is a parameterization of the alternative for class i for i = 1,2, . . . ,k. Let R(εi) and
Q(εi) be the numbers of reflexive pairs and shared NNs, respectively, pii(εi), piii(εi), and
piiii(εi) be the counterparts of pii, piii, and piiii in Equation (3). Then under Ha, we have
Var[Nii/n] = (1/n+R(εi)/n2)pii(εi)+(2/n−2R(εi)/n2+Q(εi)/n2)piii(εi)+(1−3/n−
Q(εi)/n2+R(εi)/n2)piiii(εi)− (pii(εi))2. So, under Ha, it follows that Var[Nii/n]→ 0
as ni → ∞. Hence the test using Zii is consistent for the right-sided (resp. left sided)
alternative. Consistency for the two-sided alternative follows similarly.

(ii) Let�ε = (ε1, . . . ,εk), then we have Ha :�ε �= 0, with 0 being the vector of k zeros.
Also let λ(�ε) be the non-centrality parameter of χ2k distribution for XC under Ha. The
α-level test based onXC is consistent, sinceXC is a quadratic form based on Zii values,
i.e.,XC ∼ χ2k(λ(�ε)) for some λ(�ε)> 0. Furthermore, for large n, the null and alternative
hypotheses are equivalent to Ho : λ = 0 versus Ha : λ = λ(�ε) > 0. Then by standard
arguments for the consistency of χ2 tests, consistency follows.

(iii) Let Tn,sc =
S/n−E[S/n]√
Var[S/n]

=
∑k

i=1Nii/n−E[
∑k

i=1Nii/n]√
Var[

∑k
i=1Nii/n]

, then Tn,sc = ZC. Under RL,

E[Tn,sc] =E[ZC] = 0 and ZC=(S−E[S])/√Var[S] is approximately distributed asN(0,1)
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for large n. Under right-sided (resp. left sided) alternative Ha, we have E[S|Ha] = ε > 0
(resp. E[S|Ha] = ε < 0) where ε is a parameterization of the alternative with ε > 0
(resp. ε < 0) characterizing self (resp. mixed) correspondence. Let R(ε) and Q(ε)
be the numbers of reflexive pairs and shared NNs, respectively, pii(ε), piii(ε), and
piiii(ε) be the counterparts of pii, piii, and piiii in Equation (3). Then under Ha, we have
Var[Nii/n] = (1/n+R(ε)/n2)pii(ε)+ (2/n− 2R(ε)/n2+Q(ε)/n2)piii(ε)+ (1− 3/n−
Q(ε)/n2+R(ε)/n2)piiii(ε)− (pii(ε))2 and Cov[Nii/n,Nj j/n] = (1− 3/n−Q(ε)/n2+
R(ε)/n2)pii j j− pii p j j. So, underHa, it follows that Var[Nii/n]→ 0 and Cov[Nii/n,Nj j/n]
→ 0 as ni → ∞. Hence Var[S]→ 0 as ni → ∞. Thus the test using ZC is consistent for
the right-sided (resp. left sided) alternative. Consistency for the two-sided alternative is
similar. �

4. Empirical Size and Power Analysis

In this section we investigate the finite sample performance of the tests under RL or
CSR independence and under various alternatives via Monte Carlo simulations.

4.1. Empirical Size Analysis

To determine empirical size performance of the tests, we use CSR independence and
RL as our null hypotheses. Under these patterns, correspondence would occur at ex-
pected levels. That is, under these patterns we have E[Si] = ni(ni− 1)/(n− 1) for all
i = 1,2, . . . ,k as in Equation (11) and E[S] =

∑k
i=1 ni(ni− 1)/(n− 1) as in Equation

(12).
We estimate the empirical sizes (i.e., significance levels) based on the asymptotic

critical values. For example, let T be a test with a χ2d f distribution asymptotically, and
let Ti be the value of test statistic for the sample generated at ith Monte Carlo repli-
cation for i = 1,2, . . . ,Nmc. Then the empirical size of T at level α = 0.05, denoted

α̂T is computed as α̂T = 1
Nmc

∑Nmc
i=1 I

(
Ti ≥ χ2d f ,0.95

)
. Furthermore, let Z be a test with a

N(0,1) asymptotic distribution, and let Zi be the value of test statistic for ith sample gen-
erated. Then the empirical size of Z for the left-sided (resp. right-sided) alternative at
level α= 0.05, denoted α̂Z is computed as α̂Z = 1

Nmc

∑Nmc
i=1 I(Zi≤ z0.05 =−1.645) (resp.

α̂Z =
1
Nmc

∑Nmc
i=1 I(Zi ≥ z0.95 = 1.645)). The empirical size for the two-sided alternative

is computed as α̂Z = 1
Nmc

∑Nmc
i=1 I(|Zi| ≥ z0.975 = 1.96).

4.1.1. Empirical Size Analysis under CSR Independence

We consider the two-class and three-class cases. For the three-class case, we have
classes X , Y , and Z (or classes 1, 2, and 3) of sizes n1, n2, and n3 respectively. Under
Ho, at each of Nmc = 10000 replications, we generate n1 X points Xn1 = {X1, . . . ,Xn1},
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n2 Y points Yn2 = {Y1, . . . ,Yn2}, and n3 Z points Zn3 = {Z1, . . . ,Zn3} independently of
each other and iid from U ((0,1)× (0,1)) and combine X , Y and Z points as Wn =

Xn1 ∪Yn2 ∪Zn3 = {W1,W2, . . . ,Wn}. For the two-class case, we only generate points
from classes X and Y and combine them as Wn = Xn1 ∪Yn2 = {W1,W2, . . . ,Wn}. We
consider four cases for CSR independence:

CSR Case 1 (with 2 classes) : n1 = n2 = n= 10,20,30,40,50

CSR Case 2 (with 2 classes) : n1 = 20 and n2 = 20,30, . . . ,60.

CSR Case 3 (with 3 classes) : n1 = n2 = n3 = n= 10,20,30,40,50

CSR Case 4 (with 3 classes) : n1 = 20, n2 = 40, and n3 = 40,40, . . . ,80.

In CSR cases 1 and 3, the sample sizes are equal and increasing, to determine the
influence of the increasing balanced sample sizes on the empirical levels of the tests. On
the other hand, CSR cases 2 and 4 are designed to determine the influence of differences
in the sample sizes (i.e., differences in relative abundances of classes) on the empirical
levels of the tests.
The empirical significance levels for the tests under CSR independence are presented

in Table 6, where α̂Z11 , α̂Z22 , and α̂Z33 are for the cell-specific tests for cells (1,1), (2,2),
and (3,3) (for segregation); (see, e.g., Dixon, 1994 and Ceyhan, 2008a for details on the
cell-specific tests); α̂XC is for the χ

2 testXC, testing the self column in CCT; α̂ZC is for
ZC, testing the sum of the self column; α̂XD is for Dixon’s overall segregation test; and
α̂XC ,ZC is the proportion of agreement in rejecting the null hypothesis for XC and ZC;
α̂XD,XC is the proportion of agreement for XD and XC; and α̂XD,ZC is the proportion
of agreement for XD and ZC. For Nmc = 10000 replications, an empirical size estimate
is deemed conservative, if smaller than .0464 while it is deemed liberal, if larger than
.0536 at .05 level (based on binomial critical values with n= 10000 trials and probability
of success 0.05).
In the two-class cases (i.e., CSR cases 1 and 2), we do not present Dixon’s overall

test of segregation as it is identical to XC for two classes. Under CSR case 1, XC and
ZC are slightly conservative for smaller sample sizes. Under CSR case 2, XC and Z11
are conservative (with the latter being more so) when sample sizes are unbalanced (i.e.,
the relative abundance ratio, n2/n1, gets larger than two). Note also that ZC seems to be
robust to differences in relative abundance of the classes. The proportion of agreement
in rejecting the null hypothesis by XC and ZC is significantly smaller than .05, which
implies these tests have significantly different rejection/acceptance regions (i.e., they are
testing substantially different hypotheses).
Under the three-class cases of CSR cases 3 and 4, we also present Dixon’s overall

test of segregation as it is different from XC for more than two classes. Under CSR
case 3, all tests are slightly conservative for smaller sample sizes and cell-specific tests
are slightly liberal for larger sample sizes. Under CSR case 4, Z11 is conservative for
all sample size combinations (since it has the smallest sample size in this case where
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Table 6: The empirical significance levels of the tests under CSR independence cases 1-4 with Nmc= 10000
at α= .05. α̂Z11 , α̂Z22 , and α̂Z33 are the empirical significance levels for the cell-specific tests for cells (1,1),
(2,2), and (3,3) (for segregation); α̂XD

for Dixon’s overall segregation test, XD; α̂XC
for the χ2 test XC;

α̂ZC for ZC; and α̂XC ,ZC is the proportion of agreement in rejecting the null hypothesis for XC and ZC;
α̂XD,XC

is the proportion of agreement for XD and XC; and α̂XD,ZC is the proportion of agreement for
XD and ZC. Size estimates larger than .0536 (resp. smaller than .0464) are liberal (resp. conservative)
and are superscripted with 
 (resp. c).

CSR case 1

n α̂XC
α̂ZC α̂XC ,ZC α̂Z11 α̂Z22

10 .0432c .0439c .0216 .0454c .0465

20 .0457c .0443c .0207 .0517 .0522

30 .0485 .0462c .0237 .0573 .0493

40 .0501 .0545
 .0254 .0507 .0525

50 .0472 .0468 .0215 .0454c .0472

CSR case 2

n2 α̂XC
α̂ZC α̂XC,ZC α̂Z11 α̂Z22

20 .0437c .0448c .0197 .0482 .0517

30 .0480 .0493 .0253 .0521 .0479

40 .0489 .0521 .0237 .0313c .0455c

50 .0427c .0526 .0219 .0295c .0478

60 .0452c .0465 .0233 .0395c .0495

CSR case 3

n α̂XD
α̂XC

α̂ZC α̂XD,XC
α̂XD ,ZC α̂XC,ZC α̂Z11 α̂Z22 α̂Z33

10 .0421c .0425c .0491 .0179 .0084 .0312 .0277c .0283c .0250c

20 .0408c .0438c .0481 .0180 .0094 .0293 .0332c .0283c .0318c

30 .0465 .0473 .0496 .0204 .0110 .0320 .0530 .0526 .0549


40 .0455c .0495 .0461c .0205 .0092 .0320c .0509 .0558
 .0595


50 .0474 .0497 .0504 .0229 .0120 .0329 .0605
 .0588
 .0564


CSR case 4

n3 α̂XD
α̂XC

α̂ZC α̂XD,XC
α̂XD,ZC α̂XC ,ZC α̂Z11 α̂Z22 α̂Z33

40 .0490 .0509 .0492 .0233 .0126 .0342 .0418c .0551
 .0510

50 .0412c .0443c .0450c .0187 .0100 .0297 .0344c .0460c .0489

60 .0488 .0466 .0528 .0212 .0123 .0354 .0238c .0543
 .0492

70 .0528 .0496 .0498 .0261 .0156 .0344 .0458c .0520 .0517

80 .0509 .0492 .0518 .0228 .0116 .0302 .0333c .0431c .0522

there is substantial class imbalance) whereas Z33 has the best size performance as it
corresponds to the class with the largest samples. The proportions of agreement by the
tests in rejecting the null hypothesis are all significantly smaller than .05, which implies
these tests have significantly different rejection/acceptance regions (with XC and ZC
having the largest overlap (i.e., these statistics are testing more similar hypotheses) and
XD and ZC having the smallest overlap in rejection regions (i.e., these statistics are
testing more different hypotheses compared to other pairs).
For unbalanced or small sample sizes, the tests are usually conservative (especially

for the cell-specific tests for the smaller samples), so we recommend the use of the
Monte Carlo randomized versions or the use of Monte Carlo critical values for the cell-
specific test for the smaller class. A Monte Carlo critical value is determined as the
appropriately ranked value of the test statistic in a certain number of generated data sets
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from the distribution under the null hypothesis. The class sizes are said to be balanced,
if the relative abundances of the classes are close to one, and they are called unbalanced,
if the relative abundances deviate substantially from one.

4.1.2. Empirical Size Analysis under RL

Under the RL pattern, the class labels or marks are assigned randomly to points whose
locations are given. Recall that Wn = {w1,w2, . . . ,wn} is the given set of locations for n
points from the background pattern. For two classes, at each background realization, n1
of the points are labeled as class 1 or X and the remaining n2 = n−n1 points are labeled
as class 2 or Y . Similarly, for three classes, at each background realization, n1 of the
points are labeled as class X , n2 of the points are labeled as class Y , and the remaining
n3 = n− (n1+n2) points are labeled as class Z.

Types of the Background Patterns (Two Classes)

RL Case 1: The background points are a realization of Zi
iid∼ U ((0,1)× (0,1)) for

i= 1,2, . . . ,n. That is, the background points,Wn, are generated iid uniform in the
unit square (0,1)× (0,1). We consider n1 = n2 = 10,20, . . . ,50.

RL Case 2: The background points, Wn, are generated as in case 1 above with
n1 = 20 and n2 = 20,30, . . . ,60.

RL Case 3: The background points, Wn, are generated from a Matérn cluster pro-
cess, MatClust(κ,r,μ) (Baddeley and Turner, 2005). In this process, first “parent”
points are generated from a Poisson process with intensity κ. Then each parent
point is replaced by N ∼ Poisson(μ) new points which are generated iid inside the
circle of radius r centered at the parent point. Each background realization is a
realization of Wn and is generated from MatClust(κ,r,μ). Let n be the number
of points in a particular realization. Then n1 = n/2� of these points are labeled
as class 1 where x� stands for the floor of x, and n2 = n− n1 as class 2. In our
simulations, we use κ = 2,4, . . . ,10, μ = 100/κ�, and r = 0.1. That is, we take
(κ,μ) ∈ {(2,50),(4,25) . . . ,(10,10)} so as to have about 100 background points
on the average with about half of them being from class 1 and the other half being
from class 2.

To reduce the influence of a particular background realization on the size perfor-
mance of the tests, we generate 100 different realizations of each background pattern.
For each case, the RL scheme described is repeated 1000 times for each (n1,n2) combi-
nation at each of 100 different background realizations. So we have Nmc = 100000. In
RL cases 1 and 2, the points are from HPP in the unit square with fixed n1 and n2 (i.e.,
from binomial process), where RL case 1 is for assessing the effect of equal but increas-
ing sample sizes on the tests, while RL case 2 is for assessing the effect of increasing dif-
ferences in sample sizes of the classes (with one class size being fixed, while the other is
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increasing). On the other hand, in the background realizations of RL case 3, centers and
numbers of clusters are random. On the average, with increasing κ, the cluster sizes tend
to decrease and the number of clusters tend to increase (so as to have fixed class sizes
on the average). Hence in RL case 3, we investigate the influence of increasing num-
ber of clusters with randomly determined centers on the size performance of the tests.
The empirical size estimates of the tests for two classes under RL cases 1-3 are

presented in Table 7. For Nmc = 100000 replications, if all the Monte Carlo replications
were independent, an empirical size estimate would have been deemed conservative, if
smaller than .04887 while it would have been deemed liberal, if larger than .05113 at .05
level (based on binomial critical values with n= 100000 trials and probability of success
0.05). This approach is like providing critical values for a two-sided hypothesis test.
Equivalently, one might construct a confidence interval (say 95 %) for the proportion
of rejections (i.e., empirical size estimate) and check whether it contains the nominal
level of .05 or lies completely at one side of .05. However, under our RL scheme, the
Monte Carlo replications are not independent as 100 replications are performed at each
of 100 background realizations, hence within sample independence is violated rending
both the critical value and the confidence interval approaches are not appropriate. But
we can account for dependence due to the use of same background realization for 100
of the realizations, at each of which 1000 Monte Carlo replications are performed, by
using a linear mixed effects model. In particular, in the “lme4” package in R, we can
employ “lmer” command with properly declaring the error structure for dependence
in the background realization. For example, let “bg” stand for the background factor
(i.e., takes the same value for each Monte Carlo replication at the same background
realization). Then we can apply a mixed modeling with “lmer” command by declaring
the error structure as “(1|bg)” and construct a 95 % confidence interval for the size
estimate value. We mark the empirical sizes not significantly different from .05 with an
asterisk.
Under RL case 1, tests are either slightly conservative or liberal (with more con-

servative for smaller samples), and under RL case 2, cell-specific tests for the smaller
sample is moderately conservative, and the other tests are slightly conservative or lib-
eral. The tests have sizes about the nominal level under RL case 3, since in this case,
the class sizes are about 50, which seems large enough for the normal approximation to
take effect. Moreover, the size performance of the tests does not depend on the number
and size of the clusters in the background pattern and the more important factor is the
sample sizes.

Types of the Background Patterns (Three Classes)

RL Case (i): Same as in RL Case 1 of the two class setting with n1 = n2 = n3 =
10,20, . . . ,50.

RL Case (ii): Same as in RL Case 2 of the two class setting with n1 = 20, n2 = 40
and n3 = 40,50, . . . ,80.
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RL Case (iii): Same as in RL Case 3 of the two class setting with n1 = n2 = n/3�
points are labeled as classes 1 and 2 and n3 = n− (n1+ n2) as class 3. In our
simulations, we use κ = 2,4, . . . ,10, μ = 150/κ�, and r = 0.1. That is, we take
(κ,μ) ∈ {(2,75),(4,37) . . . ,(10,15)} so as to have about 150 background points
on the average with about a third of them being from each of classes 1-3.

Table 7: The empirical significance levels of the tests for two classes under RL cases 1-3 with Nmc =
100000 (1000 replications for each of 100 background realizations) at α= .05. The empirical size labeling
for the tests is as in Table 6. Size estimates not significantly different from .05 are marked with an asterisk.

RL case 1

n α̂XC
α̂ZC α̂Z11 α̂Z22

10 .04281 .04276 .04513 .04625

20 .04511 .04612 .05349 .05209

30 .04862* .04616 .05220 .05258

40 .04782 .05398 .05232 .05217

50 .04942* .04932* .04740 .04642

RL case 2

n2 α̂XC
α̂ZC α̂Z11 α̂Z22

20 .04602 .04670 .05479 .05414

30 .04735 .04783 .05050* .04886*

40 .04551 .05357 .03375 .04358

50 .04611 .05649 .03456 .04893*

60 .04395 .04670 .04042 .04749

RL case 3

κ α̂XC
α̂ZC α̂Z11 α̂Z22

2 .04700 .04957* .04734 .04577

4 .04804 .04959* .04901* .04860*

6 .04905* .05023* .05103* .04926*

8 .04859 .04983* .05096* .04914*

10 .04869* .05011* .05042* .05097*

The empirical size estimates of the tests for three classes under RL cases (i)-(iii)
are presented in Table 8. Under all cases XD and XC are slightly conservative (with
the former being more conservative), and ZC is closest to the nominal level. Under RL
case (i) cell-specific tests are conservative for smaller samples, under RL case (ii), cell-
specific tests for the smaller samples are conservative, while larger samples are close to
the nominal level. Under RL case (iii) all Z tests are at about the desired level.
Based on the empirical size performance of the tests under CSR independence and

RL, we observe that the new tests XC and ZC are more appropriate for both balanced
or unbalanced sample sizes (with the latter being more robust to the imbalance in class
sizes).

4.2. Empirical Power Analysis

To compare the empirical power performance of the tests, we consider various alterna-
tive cases with the two and three classes for deviations from the null case in the NN
structure. The empirical power estimates are computed at α= .05 as in the size estima-
tion in Section 4.1.
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Table 8: The empirical significance levels of the tests with three classes under RL cases (i)-(iii) with Nmc =
10000 at α= .05. The notation is as in Table 6. Size estimates not significantly different from .05 are marked
with an asterisk.

RL Case (i)

n α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
10 .03879 .03957 .04964* .02536 .02585 .02528

20 .04479 .04571 .05043* .03293 .03364 .03175

30 .04558 .04756 .05151 .05292 .05365 .05370

40 .04628 .04773 .04789 .05328 .05231 .05280

50 .04797 .04877* .05009* .05855 .05804 .05823

RL Case (ii)

n3 α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
40 .04701 .04728 .04674 .04048 .05155* .04995*

50 .04674 .04736 .05120* .03374 .04592 .05375

60 .04696 .04578 .05006* .02355 .05240 .05036*

70 .04870* .04881* .04689 .04483 .05102* .04662

80 .04798 .04970* .05085* .03427 .04768 .04747

RL Case (iii)

κ α̂XD
α̂XC

α̂ZC α̂Z11 α̂Z22 α̂Z33
2 .04692 .04728 .04940* .05081* .05069* .04764*

4 .04650 .04836 .04878* .04752 .04813* .04886*

6 .04860 .04900* .04927* .04825* .04878* .04959*

8 .04743 .04836 .04736 .04994* .04923* .04833*

10 .04693 .04791 .04868* .04918* .04881* .05032*

4.2.1. Empirical Power Analysis for Two Classes

For the two classes, we consider five alternative cases.

Case I: For this class of alternatives, we generate Xi
iid∼U ((0,1)×(0,1)) for i= 1, . . . ,n1

and Yj
iid∼ BVN(1/2,1/2,σ1,σ2,ρ) for j = 1, . . . ,n2, where BVN(μ1,μ2,σ1,σ2,ρ) is the

bivariate normal distribution with mean (μ1,μ2) and covariance

[
σ1 ρ

ρ σ2

]
. In our

simulations, we set σ1= σ2= σ and ρ= 0. We consider the following three alternatives:

H1
I : σ = 1/5, H2

I : σ = 2/15, and H3
I : σ = 1/10. (13)

The classes 1 and 2 (i.e., X and Y ) have different distributions with different local inten-
sities. In particular, X points are a realization of uniform distribution in the unit square,
while Y points are clustered around the center of the unit square (1/2,1/2) where the
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level of clustering increases as σ decreases. This suggests a high level of niche speci-
ficity for Y points around the center of the unit square compared to X points, which in
turn implies segregation of Y points from X points. Furthermore, self NN pairs would
be more likely to occur compared to mixed NN pairs, hence self correspondence is ex-
pected to be observed.
The empirical power estimates under the alternatives, H1

I −H3
I , with n1 = n2 = 40

are presented in Table 9, where β̂XC is power estimate for the χ
2 test for the self col-

umn, XC; β̂Z11 and β̂Z22 are for the cell-specific tests for cells (1,1) and (2,2) (for
segregation), and β̂ZC is for the Z test for the sum of self column, ZC. Under the case I
alternatives, the power estimates increase as σ decreases. In particular, the self column
test,XC, and the right-sided cell-specific tests for cells (1,1) and (2,2) have high power
estimates, which indicates segregation of Y points from X points and vice versa. Since
segregation occurs for both classes, andXC has high power implies self correspondence.
Also, the right-sided Z test for the sum of the self column has high power, confirming
self correspondence in this case. Notice that the ZC has the highest power estimates.

Case II: For this type of alternatives, first, we generate Xi
iid∼ U ((0,1)× (0,1)) for i =

1,2, . . . ,n1 and for each j = 1,2, . . . ,n2, we generate Yj around a randomly picked Xi
with probability p in such a way that Yj = Xi+Rj (cosTj,sinTj)t where vt stands for
transpose of the vector v, Rj ∼ U (0,mini�= j d(Xi,Xj)) and Tj ∼ U (0,2π) or generate
Yj uniformly in the unit square with probability 1− p. In the pattern generated, Yj are
more associated with Xi. The three values of p constitute the following alternatives:

H1
II : p= .25, H2

II : p= .50, and H3
II : p= .75. (14)

Table 9: The power estimates under the case I-III, and V alternatives in Equations (13)-(15), and (17) with
Nmc = 10000, n1 = n2 = 40 at α = .05. β̂Z11 and β̂Z22 are is power estimates for the cell-specific tests for
cells (1,1) and (2,2) (for segregation), β̂XC

is for XC, testing deviations in the self column, and β̂ZC is
for ZC, testing the sum of self column. The “>” (resp. “<”) sign in the superscript implies the power is
estimated for the right-sided (resp. left-sided) alternative.

Power estimates under

case I alternatives

β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

H1I .2226 .4167 .2648 .3320

H2I .8523 .9599 .8403 .9164

H3I .9929 .9994 .9887 .9972

Power estimates under

case II alternatives

β̂XC
β̂<
ZC

β̂<
Z11

β̂<
Z22

H1II .1469 .3998 .2658 .2330

H2II .4051 .7788 .5625 .4054

H3II .5393 .9003 .7373 .3366

case III alternatives

β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

H1III .4196 .6812 .5141 .5134

H2III .9247 .9876 .9437 .9439

H3III .9999 1.000 .9999 .9997

case V alternatives

β̂XC
β̂<
ZC

β̂<
Z11

β̂<
Z22

H1V .1795 .3499 .2160 .3867

H2V .4384 .7081 .5562 .6280

H3V .6808 .8937 .7937 .7795
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In this case, X points constitute a realization of the uniform distribution in the unit
square, while Y points are clustered around the X points, and the level of clustering
increases as p increases. The empirical power estimates under the alternatives, H1

II −
H3
II, with n1 = n2 = 40 are presented in Table 9. Notice that XC implies significant
deviations in the self column, but Z11 and Z22 have high power estimates for the left-
sided alternative, which implies significant association between the classes. Z11 having
higher power for the left-sided alternative is due to severe lack of segregation of class
X points from class Y points (or class Y points being significantly associated with class
X points), and Z22 has smaller power since Y points are clustered around X points,
which also causes slight clustering of Y points. Furthermore, ZC has high power for the
left-sided alternative, which implies mixed NN pairs are more abundant, hence there is
significant mixed correspondence in the NN structure.

Case III: For this class of alternatives, we consider Xi
iid∼ U ((0,1− s)× (0,1− s)) for

i= 1, . . . ,n1, andYj
iid∼U ((s,1)×(s,1)) for j= 1, . . . ,n2. The three values of s constitute

the following alternatives;

H1
III : s= 1/6, H2

III : s= 1/4, and H
3
III : s= 1/3. (15)

Notice that these alternatives are the segregation alternatives considered for Monte Carlo
simulations in Ceyhan (2010). The empirical power estimates under the segregation
alternatives H1

III −H3
III are presented in Table 9. The tests have high power which in-

creases as s increases. There is significant segregation (at the same level for both classes
by construction), and the cell-specific tests are also significant for the right-sided alter-
natives. Furthermore, XC indicates significant deviations in the self column, and ZC
has high power for the right-sided alternative, indicating self correspondence in the NN
structure.

Case IV: We also consider alternatives in which, by construction, self-reflexive pairs

are more frequent than expected under CSR independence. We generate Xi
iid∼ S1 for

i= 1, . . . ,n1/2� and Yj iid∼ S2 for j = 1, . . . ,n2/2�. Then for k = n1/2�+1, . . . ,n1, we
generate Xk = Xk−n1/2� + r (cosTj,sinTj)t and for l = n2/2�+ 1, . . . ,n2, we generate
Yl =Yl−n1/2�+ r (cosTj,sinTj)t where r ∈ (0,1) and Tj ∼ U (0,2π). Appropriate small
choices of r will yield an abundance of self-reflexive pairs. The three values of r we
consider constitute the self-reflexivity alternatives at each support pair (S1,S2). Then
the nine alternative combinations we consider are given by

(i) H1IV : S1 = S2 = (0,1)× (0,1), (a) r = 1/7, (b) r = 1/8, (c) r = 1/9,

(ii) H2IV : S1 = (0,5/6)× (0,5/6) and S2 = (1/6,1)× (1/6,1), (a) r = 1/7, (b) r = 1/8, (c) r = 1/9,
(16)

(iii) H3IV : S1 = (0,3/4)× (0,3/4) and S2 = (1/4,1)× (1/4,1) (a) r = 1/7, (b) r = 1/8, (c) r = 1/9.
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Table 10: The power estimates under the case IV alternatives with Nmc = 10000, n1 = n2 = 40 at α= .05.
The empirical power labeling and superscripting for “<” and “>” are as in Table 9.

Power estimates under
the case IV alternatives

r β̂XC
β̂>
ZC

β̂>
Z11

β̂>
Z22

1/7 .8671 .9572 .8866 .8848

H1IV 1/8 .9377 .9834 .9455 .9436

1/9 .9735 .9949 .9746 .9743

1/7 .9440 .9885 .9522 .9523

H2IV 1/8 .9740 .9949 .9769 .9779

1/9 .9890 .9982 .9895 .9908

1/7 .9930 .9990 .9925 .9932

H3IV 1/8 .9973 .9996 .9967 .9973

1/9 .9991 .9999 .9984 .9989

In this case, under H2
IV and H

3
IV , by construction, there is segregation of the classes

due to the choices of the supports. The empirical power estimates under the alternatives
H1
IV −H3

IV are presented in Table 10. Notice that the tests all have very high power es-
timates. Furthermore, there is significant segregation (at the same level for both classes
at each alternative by construction), and the cell-specific tests are also significant for the
right-sided alternatives. Furthermore, XC has high power estimates indicating signifi-
cant deviation in the self column and ZC has high power for the right-sided alternative,
indicating self correspondence in the NN structure. The power estimates for these tests
increase from H1

IV to H
3
IV and they also increase as r decreases from (a) to (c) at each

(S1,S2) combination. Hence the power estimates increase as the levels of segregation
increases.

Case V: In this case, first, we generate Xi
iid∼ U ((0,1)× (0,1)) and then generate Yj as

Yj = Xi+ r (cosTj,sinTj)t where r ∈ (0,1) and Tj ∼ U (0,2π). In the pattern generated,
appropriate choices of r will cause Yj and Xi more associated; that is, a Y point will be
more likely to be the NN of an X point, and vice versa. The three values of r we consider
constitute the three association alternatives;

H1
V : r = 1/4, H2

V : r = 1/7, and H
3
V : r = 1/10. (17)

These are also the association alternatives considered for Monte Carlo simulations in
Ceyhan (2010).
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The empirical power estimates under H1
V −H3

V are presented in Table 9. Notice that
XC has high power estimates indicating significant deviations in the self column, and
the cell-specific tests have high power estimates for the left-sided alternatives indicating
presence of significant association of the classes. Furthermore, ZC has high power for
the left-sided alternative indicating that there is significant mixed correspondence in the
NN structure. The power estimates for these tests increase as r decreases.

4.2.2. Empirical Power Analysis for Three Classes

For the three classes, we consider two cases. We generate n1= n2= n3= 40 points from
classes X , Y and Z.

Case 1: For this class of alternatives, we generate X andY points as in Case III of power
analysis for two classes of Section 4.2.1, and Z points as Y points in Case I of Section
4.2.1. We consider the following two alternatives:

H1
1 : s= 1/6, σ = 1/5, and H2

1 : s= 1/4, σ = 2/15. (18)

The classes 1 and 2 (i.e., X and Y ) are segregated with shifted supports and class 3
is clustered around (1/2,1/2). Furthermore, by construction a higher level of niche
specificity for Z points exists around the center of the unit square compared to X and Y
points, which in turn implies segregation of Z points from X and Y points as well.
The empirical power estimates under the alternatives, H1

1 and H
2
1 , with n1 = n2 =

n3 = 40 are presented in Table 11, where β̂XD is power estimate for Dixon’s overall test
of segregation; β̂Z33 is for the cell-specific test for cell (3,3) (for segregation), the other
notation is as in Table 9. Under the case 1 alternatives, the power estimates increase as
σ decreases and s increases. In particular, Dixon’s overall test and the self column test,
XC have high power estimates, and the right-sided cell-specific tests for cells (1,1),
(2,2) and (3,3) have high power, which indicate segregation of each class from the
others. Also, the right-sided Z test for the sum of the self column, ZC, has high power,
implying self correspondence is operating as well. Notice that the ZC has the highest
power estimates.

Case 2: For this class of alternatives, we again generate X and Y points as in Case III
of Section 4.2.1, and Z points as Y points in Case V of Section 4.2.1. We consider the
following two alternatives:

H1
2 : s= 1/6, r = 1/7, and H2

2 : s= 1/4, r = 1/10. (19)

The classes 1 and 2 (i.e., X and Y ) are segregated with shifted supports and class 3 is
clustered around X and Y points.
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Table 11: The power estimates under the case 1 and 2 alternatives with Nmc = 10000, n1 = n2 = n3 = 40
at α = .05. β̂XD

is the power estimate for Dixon’s overall segregation test, β̂Z33 is for the cell-specific test
for cell (3,3). The other notation and superscripting for “<” and “>” are as in Table 9.

Power estimates under

case 1 alternatives

β̂XD
β̂XC

β̂>
ZC

β̂>
Z11

β̂>
Z22

β̂>
Z33

H11 .3297 .4453 .6453 .5186 .5254 .1951

H21 .9527 .9809 .9958 .9606 .9570 .6985

case 2 alternatives

β̂XD
β̂XC

β̂>
ZC

β̂>
Z11

β̂>
Z22

β̂<
Z33

H12 .2620 .2289 .0539 .1877 .1834 .2954

H22 .6514 .4818 .1032 .3488 .3433 .4099

The empirical power estimates under the alternatives, H1
2 and H

2
2 , with n1 = n2 =

n3 = 40 are presented in Table 11. Under the case 2 alternatives, the power estimates
increase as r decreases and s increases. In particular, Dixon’s overall test and the self
column test, XC have high power, and the right-sided cell-specific tests for cells (1,1)
and (2,2), and left-sided test for cell (3,3) have high power, which indicate segregation
of X and Y points from other classes, and lack of segregation of Z points from X and Y
points which might be association of Z points with one or both of classes X and Y . To
determine the specifics one needs to check the off-diagonal cell specific tests in row 3
of the corresponding NNCT. Also, the right-sided Z test for the sum of the self column
is mildly significant, implying a mild level of self correspondence is operating as well.
Notice also that the ZC has the lowest power estimates.
In alternative cases I-V the classes are either both segregated or associated (i.e., the

direction of the deviation in each diagonal cell is same for both classes). Hence this
cumulative effect is better captured by ZC which has the highest power estimates under
all these cases. Similarly, in alternative case 1, by construction, each class is segregated
from others (although the type and level of segregation is different for class Z compared
to X andY ), hence the direction of the deviation in the self column in CCT (i.e., diagonal
cells in NNCT) is same for all classes, thereby rendering ZC the most powerful test again.
However, in alternative case 2, while X and Y are segregated, Z is associated with both
classes. Hence direction of deviation in the self column cells are positive for X and Y
and negative for Z. So this sign difference tends to nullify the deviations from the null
case, which causes ZC have the lowest power estimates.
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5. Real-Life Example Data Set

To illustrate the methodology, we use an example data set with 6 classes: the Lansing
Woods data which is available in the spatstat package in R (Baddeley and Turner, 2005).
The Lansing Woods data contains locations of trees (in feet (ft)) and botanical clas-

sification of trees according to their species in a 924 ft × 924 ft (19.6 acre) plot in
Lansing Woods, Clinton County, Michigan, USA (Gerrard, 1969). The data set com-
prises of 2251 trees together with their species as hickories, maples, red oaks, white
oaks, black oaks and miscellaneous trees. In our analysis, we consider each species as
a class and miscellaneous trees as another class. The scatterplot of these tree locations
are presented in Figure 2.
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Figure 2: The scatterplot of the locations of hickories (circles ◦), maples (triangles�), white oaks (pluses
+), red oaks (crosses ×), black oaks (diamond shapes �), and other species (inverse triangles �) in the
Lansing Woods, Clinton County, Michigan, USA.

The CCT for this data is presented in Table 12. Notice that some cell counts in
the contingency tables are not integers, since there are ties in the NN relations. For
self correspondence, the abundance proportions for the species is hickories:maples:whit
oaks:red oaks:black oaks:other ≈ 6 : 70 : 4.90 : 4.27 : 3.30 : 1.29 : 1.00 and the propor-
tions of the entries in the self column is ≈ 14.14 : 9.70 : 5.50 : 4.20 : 1.08 : 1.00, which
seems to be much different than the abundance proportions, suggesting significant pres-
ence of self correspondence.
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Table 12: The CCT for the Lansing Woods data.

pair type
self mixed total

hickory 353.5 349.5 703
maple 242.5 271.5 514

white oak 137.5 310.5 448
red oak 105 241 346base species
black oak 27 108 135
other 25 80 105
total 890.5 1360.5 2251

Table 13: The test statistics and the p-values for Lansing Woods data. Zii are cell-specific tests for cells
(i, i) for i= 1,2, . . . ,6, XD is Dixon’s overall test of segregation. ZC, and XC are as defined in the text; TS
stands for the test statistic, pasy, pmc, and prand stand for the p-values based on the asymptotic approxima-
tion, Monte Carlo simulation, and randomization of the tests, respectively.

Test statistics and p-values for Lansing Woods data

XD XC Z>S Z>11 Z>22 Z>33 Z>44 Z>55 Z>66

TS 376.8609 325.9750 16.4759 9.4622 11.0934 4.7895 6.3717 5.5085 7.4514

pasy < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

prand < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

pmc < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001

We compute Q = 1560 and R = 1400. Again the more appropriate null hypothesis
is the CSR independence pattern, since the locations of the tree species can be viewed a
priori resulting from different processes (Goreaud and Pélissier, 2003). We present the
test statistics and the associated p-values in Table 13, where in this table pasy stands for
the p-value based on the asymptotic approximation (i.e., asymptotic critical value), prand
is based on Monte Carlo randomization of the labels on the given locations of the trees
10000 times and pmc is the p-value based on 10000 Monte Carlo replication of the CSR
independence pattern in the region plotted in Figure 2. Notice that pasy, prand and pmc are
similar and highly significant for all tests. The cell-specific tests are all significant for the
right-sided alternative, and the χ2 test for the self column,XC, is significant, implying
significant self correspondence for these species, and hence significant segregation of
the species (from each other). Similarly, ZC is significant confirming significant self
correspondence for all species combined.

6. Discussion and Conclusions

In this article, we introduce the correspondence in the NN structure pattern for multiple
classes/species and tests for it based on a contingency table called correspondence con-
tingency table (CCT) which can also be derived from the associated nearest neighbour
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contingency table (NNCT). These tests are a χ2 test of correspondence for the first
column of CCT (called self-column),XC, and a Z test for the sum of the self column of
CCT, ZC. We show that in the two class case, the CCT and the NNCT contain the same
information (but in different order in their entries), and the corresponding quadratic test
for the self column,XC and Dixon’s overall test of segregation,XD, are equivalent. For
more than two classes, these tests are different and hence provide different information.
On the other hand, regardless of the number of classes, ZC is different fromXC andXD

(i.e., ZC provides new information not provided by the segregation tests for two or more
classes) whereas ZSi and Zii are identical (i.e., they always give the same information).
For k ≥ 2 classes, NNCT is of dimension k× k and the corresponding CCT is of

dimension k×2, where the entries in the first column (i.e., self column) are the diagonal
entries of the NNCT and each entry in the second column (i.e., mixed column) of CCT is
the sum of off-diagonal entries at each row of NNCT. Overall segregation test based on
NNCT measures any deviation in the entries of the NNCT and a cell-specific test based
on NNCTmeasures the deviation in the corresponding entry of the NNCT (Dixon, 1994,
2002b). On the other hand, the tests based on the CCT are a χ2 test for the self column
and a Z test for the sum of the self column. The former test is based on deviations of the
frequencies of the self NN pairs, and the latter is based on the sum of these frequencies.
Both tests might indicate presence of self or mixed correspondence which can not be
tested directly in the NNCT, hence the need to introduce CCT.
We show that XC provides information on the overall deviations jointly in the self

column (or in the mixed column) in CCT, ZC provides information on the abundance
of self pairs when all classes are combined. Hence to determine the level and type of
correspondence as self or mixed,XC should be employed together with the cell-specific
tests Zii (see Equation (5)) so that whenXC is significant cell-specific tests will provide
the direction and significance of the deviations for each diagonal cell in the NNCT (or
each cell in the self-column of CCT). If they are all or mostly in the positive (resp.
negative) direction, the pattern would be segregation (resp. lack of segregation) for the
classes corresponding to the positive (resp. negative) significant Zii values and self (resp.
mixed) correspondence for all classes combined. On the other hand, for ZC we do not
need to confer to the cell-specific tests, as it by itself is sufficient to indicate that the
correspondence is of type self or mixed. Another advantage of ZC is that it is more
robust to differences in relative abundances of the classes (i.e., to the class imbalance
problem).
Among the tests considered, ZC is more powerful if all or most classes are segregated.

The same holds if all or most class pairs are associated. But if the pattern is mixed (i.e.,
some classes are segregated while some pairs are associated) the deviations in the self
column tend to cancel each other in the sum, rendering ZC perform rather poorly. In
such a case,XC (together with the cell-specific tests) provide a more accurate picture of
the patterns in the data and are more powerful.
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Based on our simulations and example data sets, we recommend to perform both of
the tests ZC andXC, and if any of them is significant, then the cell-specific tests can be
performed (to determine segregation or lack of it at the class/species level). When the
cell counts in the self column of CCT are all larger than 10, it is safe to employXC with
the asymptotic approximation, and if some cell count is 5 or less, it is better to useMonte
Carlo randomized version of the test. If some cell counts are between 5 and 10, both
versions (i.e., asymptotic approximation andMonte Carlo randomization) can be used to
reach more reliable conclusions. Since ZC is the sum of the self column, the cell counts
are not that relevant as long as column sum is 20 or larger (even 10 or larger seems to
work in practice). We recommend randomization version of ZC if column sum is 10 or
less, and for sum between 10 and 20, one can employ both asymptotic approximation
and randomization versions for more reliable conclusions.
Throughout this article, we assume the total sample size and class sizes are all fixed.

If it is desired to have the sample size be a random variable, we may consider a spatial
Poisson point process on the region of interest instead of the binomial process. In fact,
this case is also a realistic situation for data collection schemes in plant ecology. That is,
in the region of interest, one can examine each subject, determine its species and that of
its NN. In this framework, all margins of the NNCT and CCT would be random. The ef-
fect of such randomness on the behavior (e.g., distribution), size and power performance
of the tests is a topic of prospective research. For the cases where CSR independence
is the appropriate benchmark (see Section 3.1), this framework might be more realis-
tic, but for the cases where RL is the appropriate benchmark, then our approach in this
article is more realistic.
We have discussed the patterns of segregation and (self and mixed) correspondence

mostly in the context of plant ecology. However, the patterns and the associated tests
can be applied in other contexts as well. For example, one can apply them in an epi-
demiological or a social context by using the residences of people as their location. In
the epidemiological context, the question of interest could be the distribution (i.e., clus-
tering or lack of it) of a disease. In disease clustering, significant segregation of disease
cases can have further implications (e.g., one can then search for the reasons of such
clustering which can help in controlling the spread of the disease or curing the diseased
people). In the social context of racial distribution of residences, segregation of any
particular race would imply their clustering in certain neighbourhoods; self correspon-
dence would mean that all racial groups tend to live in clumps or clusters of same race
residents (i.e., there is lack of local diversity in the region) On the other hand, mixed
correspondence of racial status of residents would imply that the society is diverse at the
local level as people of different races live side by side in a mixed neighbourhood and
there is no preference of the residents to live by people of the same race.
In the literature, usually NN relationships are based on the distance metrics. For

example, in this article, Euclidean distance in R2 is the only metric used. The NN rela-
tions based on dissimilarity measures is an extension of NN relations based on distance
metrics. In such an extension, NN of an object, x, refers to the object with the minimum
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dissimilarity to x. We assume that the objects (events) lie in a finite or infinite dimen-
sional space satisfying the lack of any inter-dependence which implies lack of self or
mixed correspondence in the NN structure. Under RL, the objects’ locations are fixed
yielding fixed interpoint dissimilarity measures, but the labels are assigned randomly to
the objects. Although our correspondence tests are constructed assuming data are in R2,
the extension to higher dimensions is straightforward.
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