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Fifty years later: new directions in Hawkes 
processes 

John Worrall1,2, Raiha Browning1,2, Paul Wu1,2 and Kerrie Mengersen1,2 

Abstract 

The Hawkes process is a self-exciting Poisson point process, characterised by a con-
ditional intensity function. Since its introduction ffty years ago, it has been the subject 
of numerous research directions and continues to inspire new methodological and the-
oretical developments as well as new applications. This paper marks half a century 
of interest in Hawkes processes by presenting a snapshot of four state-of-the-art re-
search directions, categorised as frequentist and Bayesian methods, other modelling 
approaches and notable theoretical developments. A particular focus is on nonparamet-
ric approaches, with advances in kernel estimation and computational effciencies. A 
survey of real world applications is provided to illustrate the breadth of application of this 
remarkable approach. 
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1. Introduction 

Events occur in the world with frequencies fuctuating over time and space, but often 
these events are not isolated and their occurrence increases the likelihood of further 
events. A mathematical model introduced by Hawkes (1971) describes the sequential 
arrival of these events as a non-Markovian process with a self-exciting nature. The 
Hawkes process (HP) has wide application in areas such as seismology (Ogata, 1981; 
Rasmussen, 2013); crime analysis (Yang et al., 2018; Zhuang and Mateu, 2019); traffc 
incidents (Kalair, Connaughton and Di Loro, 2021; Li, Cui and Chen, 2018); terrorism 
(Porter and White, 2010; White, Porter and Mazerolle, 2012); fnance (Bacry, Mastro-
matteo and Muzy, 2015); infectious diseases (Kelly et al., 2019; Browning et al., 2021); 
and social media trends (Hall and Willett, 2016; Zhang, Walder and Rizoiu, 2020b). 
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In a HP, the self-exciting nature of the data is modelled through the conditional inten-
sity function which governs the expected arrival rate of events. An important character-
istic of this intensity function is the triggering kernel. There has been much research in 
learning these triggering kernels, including investigation of the underlying assumptions 
defned through simple parametric functions such as power laws, multiple exponential 
distributions, and Gaussian, Rayleigh and Weibull functions (Chen, Hawkes and Scalas, 
2021; Chiang, Liu and Mohler, 2021). Further studies consider approaches to adapting 
these parametric models (Kobayashi and Lambiotte, 2016; Du et al., 2016), extending 
to the multidimensional setting and improving scalability of estimation by low-rank ap-
proximation (Zhou, Zha and Song, 2013; Bacry et al., 2020) and mean-feld theory 
(Bacry et al., 2016a). 

More fexible approaches to learning the kernel include representing the function as 
piecewise constant on a fnite grid. Seminal work by (Lewis and Mohler (2011); Bacry, 
Dayri and Muzy (2012) provides a nonparametric framework for estimation that is also 
being actively explored. Bayesian nonparametric approaches are also emerging, with 
leading work in the area including (Donnet, Rivoirard and Rousseau, 2020; Zhou et al., 
2020b; Zhang et al., 2020b). However, relaxing assumptions and increasing the expres-
siveness of functions comes at a cost: there is a requirement either for discretisation of 
the input domain or improved computational requirements to meet increasing practical 
demands. 

These requirements have motivated new research into effcient algorithms for the 
analysis of HPs, and concomitant investigation of the characteristics of these algorithms. 
For example Achab et al. (2018) encodes causality of a multivariate process via a mo-
ment matching method ftting to second and third order cumulants. Work by Zhang 
et al. (2020b) takes advantage of latent branching structure and stationarity assumptions 
to reduce computational complexity and to effciently infer a fexible representation of 
the kernel using Gaussian processes. In another very promising direction, Yang et al. 
(2017) focus on sequential (online) learning by approximating the function in a repro-
ducing kernel Hilbert space. New Bayesian perspectives are lending themselves readily 
to handling the sheer volume and scalability in online learning (Broderick et al., 2013; 
Chérief-Abdellatif, Alquier and Khan, 2019; Markwick, 2020). 

Another direction for Bayesian nonparametric approaches is in extending HPs to 
also cluster events via Dirichlet processes (Du et al., 2015). In these examples the form 
of the triggering kernel is generally parametric, and interest lies in the clustering of the 
events themselves. 

Other recent directions of research into HPs arise from the perspective of graphs 
(Liu, Yan and Chen, 2018), stochastic differential equations (SDEs) (Lee, Lim and Ong, 
2016; Kanazawa and Sornette, 2020) and neural networks (Zhang et al., 2020a; Du et al., 
2016). These frameworks aim to provide more fexibility and less bias, while taking ad-
vantage of the techniques made available from a rapidly growing statistical data science 
community. 
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Figure 1. Structure of paper. 

In addition, there has been considerable and signifcant research in theoretical prop-
erties and guarantees of HPs. Recent bodies of work include advances in estimating 
higher order statistical properties (Jovanović, Hertz and Rotter, 2015; Cui, Hawkes and 
Yi, 2020), asymptotic properties of the Markovian class of HPs (Gao and Zhu, 2018b; 
Zhu, 2015) and developments around nonlinear generalisation (Torrisi, 2016; Gao and 
Zhu, 2018a; Sulem, Rivoirard and Rousseau, 2021). 

This paper aims to provide a review of these new directions in the modelling and 
analysis of HPs, with an emphasis on nonparametric Bayesian approaches and brief 
reference to the underpinning theory. We preface the review with a brief overview of 
notation, defnitions and properties of HPs, and close the paper by presenting a survey of 
recent applications and some substantive applications in crime, fnance and social media. 
The structure of the paper is illustrated in Fig 1. 

1.1. Defnitions and basic properties 

This section provides a brief summary of mathematical defnitions, properties and the 
general form of the HP which will be used throughout the remaining sections. 

Defnition 1.1 (Poisson process). 
A nonhomogeneous Poisson process with time varying arrival rate λ (t) is defned as a 
counting process, N (t) : t ≥ 0 which satisfes t ∈ R+ , with associated history Ht : t ≥ 

0, such that probability is given by  λ (t)h + o(h) m = 1 
P (N (t + h) − N (t) = m|Ht ) = o(h) m > 1 (1) 1 − λ (t)h + o(h) m = 0. 

Of particular interest in the study of nonhomogeneous Poisson processes is the HP 
N(t) where λ (t) : R+ → R+ . 

The time intervals between events (shown in Fig 2 as t1, t2 . . . , t7) are described as 
inter-arrival event times (Rasmussen, 2018). The point process can be characterised by 
the distribution function of the next arrival time conditioned on the past. Thus the con-
ditional cumulative density function F(t|Hµ ) of next arrival time Tk+1 can be expressed 
in terms of the conditional density function f (s|Hµ ), Z t Z t 

F(t|Hµ ) = P(Tk+1 ∈ [s,s+ ds]|Hµ ) ds = f (s|Hµ )ds. 
µ µ 
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Figure 2. Point process with stochastic realisation {t1, t2 . . .} and counting process N(t). 

where Hµ is the history of the process until the last arrival (Ozaki, 1979). Where the 
conditional distribution is given using the law of total probabilities, 

n 
f (t1, t2, . . . , tn) = ∏ 

i=1 

Defnition 1.2 (Conditional intensity function). 

f (ti|Hµ )). 

Let the conditional density be f (t|Htn ) and the corresponding cumulative distribution 
function F(t|Htn ) for any t > tn. Then λ ∗(t) is the conditional intensity or hazard func-
tion (Cox, 1955). The notation ∗ borrowed from (Daley and Vere-Jones, 2003) is used to 
represent conditioning on the history up to time t. A more intuitive defnition of the con-
ditional intensity function (Daley and Vere-Jones, 2003) is its expected rate of arrivals 
conditioned on the associated history, 

f ∗(t) E[N(t + h) − N(t)|Ht ]
λ ∗ (t) = = lim .

1 − F∗(t) h→0 h 

Hawkes (Hawkes, 1971) introduced a class of self-exciting process to model conta-
gious processes, characterised by this conditional intensity function. 

Defnition 1.3 (HP). 
jLet D ∈ N+ and {(ti )} j=1,...,D be a D-dimensional point process, with associated count-

ing processes Nt = (Nt 
1 , . . . ,ND). A multidimensional Hawkes process (MHP) is defned t 

with intensities λi 
∗(t), i = 1, . . . ,D given by 

D Z t 
λ ∗ i (t) = µi + ∑ 

0j=1 
φi j(t − s)dNj(s) (2) 
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Figure 3. Conditional intensity function of the HP, with exponential decay. 

where µi > 0 is the non-negative background intensity of process i and φi j(·) : (0,∞) → 
(0,∞] is the excitation function from process j onto process i. When D=1, the univariate 
HP is expressed as Z t 

λ ∗ (t) = µ + φ (t − s)dN(s). (3)
0 

The self-excitation term within the expression of the HP is designed to capture the 
infuences of all previous events in the current conditional intensity value. In multidi-
mensional cases the self-exciting and mutually-exciting terms are, respectively, φii(·) 
and φi j(·), i ̸= j. A popular kernel choice is the exponential decay, � � 

−βi j(t−s)
φi j(t − s) = αi je (4)

i, j=1,...,D 

where each arrival in the system instantaneously increases the arrival intensity by αi j 

and over time the arrivals infuence the decay at rate βi j (Fig 3.) 
The standard temporal HP can be extended to include spatial dependence, thereby 

capturing the clustering behaviours of the process through time and space. The process 
has an analogous description to the temporal HP. 

Defnition 1.4 (Spatio-temporal HP). 
j j jLet D ∈ N+ . Let {(ti ),(xi ),(yi )} j=1,...,D be a D-dimensional point process, with an 

associated counting process Nt = (Nt 
1 , . . . ,ND). A multidimensional spatio-temporalt 

Hawkes process is defned with intensities λi 
∗(·), i = 1, . . . ,D given by 

D Z t Z Z 
λi 
∗ (t,x,y) = µi + ∑ φi j(t − s,x − u, y− v)dNj(s)dNj(u)dNj(v). (5)

0 X Yj=1 
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Further generalisations 

In the past ffty years, there have been several popular types of generalisations of the 
conditional density. Three more common approaches are described in reference to the 
following univariate case equation,� � 

g λ ∗ (t) = µ(t)+ ∑φ(t − s,ξi) (6) 
t>s 

1. Generalisations of the baseline process, µ(t), as a function of time effects on ex-
ogenous activity; 

2. The Marked HP, where marks (ξi) associated to events (ti) have different effects 
on intensity; � � 

3. Nonlinear processes, where g λ ∗(t) is a nonlinear function with support in R+ . 

Regardless of the assumed background and triggering function forms, the ftness of the 
HP model is typically measured via the likelihood (Daley and Vere-Jones, 2003). 

Defnition 1.5 (Likelihood of HP). 
Let N(·) be a regular point process on [0,T ] for some fnite positive T , and let t1, ..., tn 

denote a realisation of N(·) over [0,T ]. Then, the likelihood function L is expressible in 
the form " # � � n Z T 

λ ∗L(t1 . . . , tn | µ,φ) = ∏λ ∗ (ti) exp − (u)du . (7) 
0i=1 

A condition in ensuring the estimated model is stable and has access to most proper-
ties of the HP is stationarity. 

Defnition 1.6 (Stationarity of HP). 
Let N(·) be a multivariate HP on [0,T ] for some fnite positive T , where N(·) is stationary 
if a translation in time does not change its distribution. Let Φ be a D × D matrix with 
entries given by, Z 

∞ 
Φi j = φi j(u)du. 

0 

A suffcient condition for stationarity is that ρ(Φ) < 1, where ρ(Φ) is spectral radius of 
Φ given as 

ρ(Φ) = max |x| (8) 
x∈S(Φ) 

where S(Φ) is a set of all eigenvalues of Φ. 

A number of simulation procedures are available for ensuring stationarity and other 
stochastic properties of the HP. The generation of synthetic data sets from these methods 
ensures statistical equivalence to the real population of interest and is an invaluable tool 
in supporting model design and development. 
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1.2. Simulating a HP 

Concerning the experimental aspects of a self-exciting process, two synthetic generation 
algorithms are popular. 

The frst of these is the thinning method, a standard approach to producing nonhomo-
geneous Poisson processes. The intuition of the algorithm is to combine two generated 
homogeneous Poisson processes of different rates and to remove points probabilistically, 
so the remaining points satisfy a time-varying intensity λ (·) . For the Ogata modifed 
algorithm Ogata (1981), the intensity has no asymptotic upper bound, although it is 
common to set non-increasing periods without any arrival. 

Simulation of a HP may also be represented as an immigration-birth process, leading 
to a branching simulation procedure (Fig 4). Here immigrants are generated via a homo-
geneous Poisson rate λ , conditioned on K immigrants with arrival times uniformly i.i.d 
in time window (0,T ]. Each immigrant descendant forms a nonhomogeneous Poisson 
process with intensity (α/β ) giving arrival times [Ii + E1, Ii + E2, . . . , Ii + EDi ]. 

Algorithm 1 Simulating univariate HP by thinning 

Require: (λ ∗(·),T ) 
Initialisation P ← [], t ← 0,ε ← 10−10 

while t < T do 
Set upper bound M ← λ ∗(t + ε) 
Generate candidate point E ← Exp(M) 
t ← t + ε 
Set with probability U ∼ Unif(0,1) 
if t < T and U ≤ λ ∗(t) then 

P ← [P, t] 
end if 

end while 
return P 

1.3. Parametric models for HPs 

There is a rich literature on parametric methods for modelling HPs. These approaches 
have many uses, particularly when the parametric form of the process is obvious. They 
are often simple to implement and can provide useful insights into the behaviour of 
these processes. A brief summary of parametric methods is provided here, covering 
some of the most popular forms for the triggering kernel and inference techniques for 
these models. 
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Algorithm 2 Simulating univariate HP by clusters 

Require: (T,λ ,α,β ) 
Initialisation P ← [], i ← 1 
Generate immigrants K ∼ Pois(λ T ) 
I1, I2, .., IK ∼ Unif(0,T ) 
Generate descendants D1,D2, ..,DK ∼ Pois(α/β ) 
while i < K do 

if Di > 0 then 
E1,E2, ..,EDi ∼ Exp(β ) 
P ← P ∪ [Ii + E1, Ii + E2, .., Ii + EDi ] 

end if 
Set i = i + 1 

end while 
Remove invalid descendants (0,T] P ← (Pi : Pi ∈ P,Pi ≤ T ) 
Add immigrants P ← Sort(P ∪ [I1, I2, .., In]) 
return P 

Figure 4. HP immigrant-birth representation (squares indicate immigrants and circles indicate 
offspring/descendants). 

1.3.1. Choice of triggering kernel 

Although the structure of the conditional intensity function is quite fexible, the most 
common triggering kernel is parameterised as an exponential decay 

−β (t−s)
φ(t − s) = αe . 

Here α represents the overall strength of excitation and β denotes the infuence 
decay rate of the arrivals. Hawkes (1971) used this parametric form to derive theoretical 
properties of the covariance density function and Bartlett spectrum, via the frequency 
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domain. The Laplace transform is given as 

αµ (2β − α)
L{·}(s) = (9)

2(β − α)(s + β − α) 

where s ∈ C. Evaluating the power spectral density (defned in terms of the covariance 
density) of a HP provides a set of useful tools in discriminating and ftting between 
models and access to other techniques from the spectral theory feld. 

In addition, the exponential decay has several other advantageous properties, such 
as straightforward computation of the expected value of an arbitrary function on N(t), 
direct simulation, and effcient computation of the likelihood. Most of these properties 
descend from the Markov property, where the intensity and the pair (λ (t),N(t)) are 
Markovian, in the following form, 

dλ (t) = −βλ (t)dt + αβ dN(t) (10) 

Several other parametric kernel forms have also become popular. These include the 
power law, sinusoidal, Gaussian and rectangular functions supporting different types of 
interactions among events. In almost all realistic applications, however, it is not obvi-
ous which parametric form of the excitation function for HPs is the most appropriate. 
This has generated a great deal of recent interest in nonparametric specifcation of the 
kernel function. Under this representation, traditional assumptions about the triggering 
kernel can be relaxed to capture the complexities and subtleties of the excitation effects 
retrieved from the data. Before moving to a more comprehensive discussion of non-
parametric directions in Sections 2 and 3, we complete the introduction to HPs with an 
overview of spatio-temporal approaches and matters of inference. 

1.3.2. Spatio-temporal approaches 

A number of authors propose spatio-temporal self-exciting processes. Generally, the 
triggering kernel is constructed in a separable fashion, where the temporal and spa-
tial dependence can be decomposed (Mohler et al., 2011; Schoenberg, 2016; Reinhart, 
2018). A popular parameterisation for the respective kernels is exponential decay in time 
and Gaussian decay in space. Several Bayesian approaches have also been introduced to 
model spatio-temporal HPs. These include Holbrook, Ji and Suchard (2022), who model 
the outbreak of Ebola in West Africa and extend the standard spatio-temporal Hawkes 
model to learn the evolutionary history of the virus which informs the characteristics 
for each variant of the virus. Holbrook et al. (2020) also account for uncertainty in the 
location of events by placing a prior on the spatial position of events. 

A popular case of the spatio-temporal HP, originally introduced as a marked, purely 
temporal process, is an adaption of the Epidemic-Type Aftershock Sequence (ETAS) 
model (Ogata, 1988) to incorporate spatial dynamics (Ogata, 1998). The spatial ETAS 
model was introduced in the context of modelling earthquakes through the baseline pa-
rameter, and their corresponding aftershocks represented by the triggering kernel. The 



12 Fifty years later: new directions in Hawkes processes 

marks are denoted by m and correspond to the magnitude of the earthquake. Thus, the 
intensity function can be written in the form, 

λ ∗ (t) = µ(x,y)+ ∑φm(t − s,x − u,y − v) (11)m 
t>s � �2 2(p − 1)cp−1 1 x + y

φm(t,x,y) = κm × × · f ( ) , (12)
(t + c)p πσm σm 

where κm is the expected number of aftershocks for an earthquake of magnitude m, σmR 
∞is a scale factor, f is a function such that f (x)dx = 1 holds, and p and c are global0 

constants. The second and third terms of φ represent the temporal and spatial decay 
functions respectively. 

1.4. Inference 

A range of inference approaches have been used for estimating the parameters of these 
parametric models. A common procedure is that of maximum likelihood estimation, 
where the likelihood function is maximised to obtain the set of parameter values that 
produce the highest likelihood. 

Other approaches are based on the branching representation of the HP which al-
lows the likelihood to be decomposed into conditionally independent immigrant and 
offspring processes. Due to this latent structure, inference methods such as Expectation-
Maximisation (EM) and Variational Inference (VI) can be used to integrate over this 
latent space. A detailed explanation of the EM algorithm for HPs is provided in Laub, 
Lee and Taimre (2021) and a similar construction is used when performing VI for these 
models. These inference techniques that utilise the latent structure of HPs are discussed 
further in the subsequent sections of this review. Effcient Gibbs samplers have also been 
developed, using the decomposition of the likelihood and placing conjugate priors on the 
parameters of the model. 

We turn now to four general directions of research that illustrate current activity 
in HPs. These include frequentist nonparametric kernel adaptation and presentation, 
Bayesian nonparametric approaches, other approaches (stochastic differential equations, 
graphs and neural networks) and theoretical aspects of HPs. This is intended to be a 
canvas rather than an exhaustive review of all research directions. 

2. Direction 1: Frequentist nonparametric kernel adaptation 
and estimation 

There is now a large literature on various directions of research into nonparametric ker-
nels for HPs. The following discussion focuses on a selection of these directions, based 
on their novelty, currency and interest to the authors. The focus is initially on several 
frequentist approaches, followed by effcient estimation methods and fnally sequential 
or online models. 
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2.1. Discretised scheme 

A frequentist approach to estimating the excitation and/or baseline function is defned 
by approximating the function as a binned grid, where function values are piecewise 
constant within each bin and the width of each bin is selected optimally to model local 
variations of the excitation. 

2.1.1. Stochastic declustering 

Early work by Zhuang, Ogata and Vere-Jones (2002) supports this approach by attempt-
ing to differentiate between ‘true’ background events and triggered events. Such dif-
ferentiation using the probability for background events, pii, is called stochastic declus-
tering. Motivated by this work, Model Independent Stochastic Declustering (MISD) 
was introduced as a nonparametric HP with homogeneous background rate (Marsan and 
Lengliné, 2008) and later extended for the more general case of varying µ(t) (Lewis and 
Mohler, 2011). This method makes use of the branching structure to reduce both base-
line and triggering kernel into a density estimation problem. The augmented likelihood 
of observations D and branching structure B with two independent components is then 
given by � �N N i−1 N Z T

bi j u(ti)bii exp(−uT ) φ(ti − t j)∏ 
i 1=| 

u(t) φ(t) 

(13) 

The recovered parameters are then updated via an expectation step, where bi j is replaced 
by the expectation E[bi j] = pi j, representing the probability that event i is caused by 
event j 

kφ k (ti − t j) u 
pk , pk . (14)i j = ii = 

uk + ∑i
j 
− 
= 

1
1 φ

k (ti − t j) uk + ∑i
j 
− 
= 

1
1 φ

k (ti − t j) 

This allows for the construction of a matrix Pk , giving events caused by the back-
ground rate (diagonal elements) or another event (non-diagonal elements). The maximi-
sation step then updates parameters given the current matrix of probabilities such that, 

n 

∏∏ ∏p(D,B|u(t),φ (τ)) = exp − φ(τ)dτ· 
0i=2 j=1 i=1| {z{z } } 

1 1k+1 pk 
φ k+1 

ii, m = pk 
i j (15)∑ ∑u = 

δ tT j=1 i> j∈Am 

where δ t is a discretisation parameter controlling the bin grid and Am is the set of pairs 
of events. 

In examining the MISD model, we illustrate in Fig 5 a synthetic exponential kernel 
(red) compared with the estimated kernel (blue) from the MISD model with varying 
discretisation parameters. 
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Figure 5. Kernel estimate (blue) on synthetic exponential kernel, increased bin size 10,50,100 
(left to right). 

Results highlight empirically the sensitivity of the chosen discretisation parameter δ 
to the structure of the kernel φ . Incorrect choice of the number of bins leads to underft-
ting (left) and overftting (right). This motivates future work that improves on bandwidth 
choice and boundary effects, which are unavoidable topics of kernel estimation. 

Another approach to defning the excitation function on a grid or set of grids is 
through exploiting relations in the model in the frequency domain between second order 
statistics and the triggering kernel. 

2.1.2. Wiener-Hopf integral 

Bacry and Muzy (2016) showed that the kernel matrix of a MHP can be estimated by 
relating the jump correlation matrix of event processes to a series of Wiener-Hopf equa-
tions. This relationship between the frst and second order characterisation properties, 
triggering kernel and background rate of a HP is exploited in the frequency domain to 
satisfy a unique causal solution. Given this unique solution, the unknown kernel may 
be solved by a discretised system of linear equations via quadrature and inversion. The 
triggering kernel matrix function and conditional expectation g(t) satisfy the following 
Wiener-Hopf equation, 

g(t) = Φ(t)+ Φ(t) ∗ g(t) ,∀t > 0 (16) 

where ∗ represents convolution (Bacry et al., 2015). 
The numerical approximation requires selecting a grid and quadrature scheme for 

g(t), computing frst the estimated ge (Jovanović et al., 2015). Considering the univariate 
case, where Nt jumps are all size 1 and stationary, the frst order property (mean event 
rate) is 

µ
Λdt = E(dNt ) = R dt 

1− φ (τ)dτ 

with second order statistic are summed up by infnitesimal covariances, 

Cov(dNt1,dNt2) = E(dNt1 dNt2) − E(dNt1)E(dNt2) 
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under assumption Nt has stationary increments, Cov(dNt1,dNt2) only depends on τ = 
t2 − t1 this part of this covariance is can be written as 

v(τ)dτ = E(dN0 dNτ ) − E(dN0) E(dNτ ) . 

where the second order statistic can be rewritten in terms of conditional expectations, 

g(τ)dt = v(τ)dτ /Λ = E(dNτ |dN0 = 1) − Λdτ . 

details of proof in Bacry and Muzy (2016). 
Approximation of the equation is commonly given via the Gaussian quadrature method 

for discretised Wiener-Hopf systems on the interval [tmin, tmax] and is shown as 

D K 
gei j(tn) = φei j(tn)+ ∑ ∑ wk geil (tn − tk)wkφei j(tn) , ∀n ∈ [0,K], i, j ∈ [0,D]. (17) 

l=1 k=1 

Inverting the obtained linear systems results in estimation of the matrix kernel at quadra-
ture points φei j and lastly estimating µ using the frst order cumulant. 

In the example below we again consider a simulated exponential decay kernel and 
approximate Wiener-Hopf equation with optimal bandwidth given by the MSE with re-
spect to grid size. 

Figure 6. Kernel estimates with actual in red (left) and mean square error (MSE, middle) with 
varying width(h). Optimum kernel estimate (right). 

The more expressive bin grid approach compared to parametric methods requires a 
larger sample size and is restricted to non-Markovian regimes, thus a larger computa-
tional cost. This has led to a body of work focusing on computational effciencies. 

2.2. Improved estimation scalability and effciency 

Achab et al. (2018) decreases computational costs by replacing estimation of kernels 
through matching cumulants (or moments). This strategy relates the branching structure 
of an MHP to Granger causality, estimating cumulative values to quantify the causal 
relationship among each node by estimating the matrix, Z Z 

∞ 
Φ(t) dt = φi j(t) dt ≥ 0 for 1 ≤ i, j ≤ d. (18)

0 
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It frst computes from sequences moments, up to the third estimates, M̂ and min-
imises the L2 error between these estimates and actual moments Mtrue (uniquely deter-
mined from ||Φ(t)||) where 

||Φ̂ (t)|| = arg min ||M(||Φ(t)||) − M̂ ||2 , (19) 
||Φ(t)|| 

where the matrix R is given as 

R = (Id − Φ̂ ())−1 . 

The explicit relationships between the matrix and cumulants are then defned as the 
following identities Λ,C,K. Estimation is given from general formulae for the integral of 
cumulants of an MHP in Jovanović et al. (2015), where 3rd order statistics are connected 
to skewness of Nt (Achab et al., 2018), shown as � � 

Ki jkdt = E dNt
i(∆HNt

j − 2HΛ
j)(∆HNt

k − 2HΛ
k) (20) � � 

− dt ΛiE (∆HNt
j − 2HΛ

j)(∆HNt
k − 2HΛ

k) 

where ∆HNi = Nt
i 
+H − Nt

i 
−H with frst and second moments given as t 

1 ∗
Λ

idt = E(dNt
i) = lim λi (t) = (I − ||Φ||)−1

µi 
n→∞ T 

Ci jdt = E(dNt
i(∆HNt

j − 2HΛ
j)) 

and with Λ̂ ,ĈK̂ to be incorporated in the estimator R̂ = argminR L(R)) such that 

L(R) = (1 − k)||Kc(R − K̂c)||22 + k||C(R) −Ĉ||22, 

where Kc is the tensor contraction of tensor K, and the coeffcient k is used to scale the 
two terms 

||K̂c||2 
2k = . 

||K̂c||22 + ||Ĉ||2 
2 

Inverting (19) leads to the recovered matrix 

Φ̂ (t) = (Id − R̂ )−1 . 

In the univariate case, the Φ̂ can be estimated from the second order statistics, whereas 
in higher dimensions the third order or skewness is required for unique Φ̂ (t). 

The nonparametric cumulant method outperforms the previously discussed MISD 
and Wiener-Hopf algorithms, given its reduced complexity. The recovered matrix also 
provides a quantifable degree of endogeneity in a system and the causality structure of 
a network. 

Another approach to improving the computational bin grid process is by updating 
parameters in a single pass. 
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2.3. Sequential and online approaches 

Yang et al. (2017) proposed an online procedure where the triggering function belongs 
to a Reproducing Kernel Hilbert Space (RKHS). Assume that there exists a function 
K : X × X → R such that there is a positive defnite kernel, 

n n 

∑∑ cic jK(xi,x j) ≥ 0 
i=1 j=1 

where n ∈ N,c ∈ R and that for any x ∈ X, the evaluation functional is bounded as 

f (x) = ⟨ f ,K(x, ·)⟩H ≤ C|| f ||H 

for some constant C. Suppose that f (x) satisfes the decreasing tail property with tail 
function ε f (·) if 

∞

∑ 
k=m 

(tk − tk−1) sup | f (x)| ≤ ε f (tm−1),∀m > 0, (21) 
x∈(tk,tk−1] 

where ε f (·) is a bounded and continuous function such that limt→∞ ε f (t) = 0. Then 
the assumed triggering function belongs to a RKHS where similarities among high-
dimensional and complex distributions are mapped onto lower-dimensional ones. The 
process then takes the log-likelihood function and optimises over a discretised version, Z 

χkD M(t) 

∑∑Li(λ ) = λd(s)ds− yd,k logλd(tk)
χk−1d=1 k=1 

D 

∑ ∆Ld,i(λd)= 
d=1 

where partitioning {0, χ1...χM(t)} on the interval [0,T ] is defned as 

χk+1 = min{ι ∗⌊χk/ι⌋ + ι , ti}
ti>χk 

for some small ι > 0. The discretised version is then expressed as Z 
χkD M(t) 

∑∑L(λ ) = (χk − χk−1) − λd(χk) − yd,k log(λi(χk)) 
χk−1d=1 k=1 

D 

∑ ∆Ld,t (λd). (22)= 
d=1 

To perform fast evaluation, the optimisation algorithm processes each partition and 
employs the following three properties. The frst is a truncation of the intensity function 
that considers arrivals within a recent window [t − z, t) as 

p Z t 
λ z 

i (t) =µi ∑ 1{t − τ < z} fi j(t − τ)dNj(τ). (23) 
0i=1 
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The second is Tikhonov regularisation over the baseline and triggering kernel, adding 
weight terms to the loss function and keeping the resultant values small. The third is 
enforcing positivity through the projection steps in the optimised triggering function 
part. By reducing complexity through the RKHS and by exploiting inter-arrival MHP 
properties, the resulting nonparametric algorithm recovers estimates over a single pass 
with comparable computation cost of alternative parametric online learning algorithms. 

2.4. Summary 

Nonparametric HPs comprise a major direction of current research. Notwithstanding the 
advantages of a nonparametric framework, such as the enablement of a more expressive 
triggering function, the approach induces a number of challenges. Firstly, the discreti-
sation approach employed in ftting the nonparametric model requires a larger sample 
size compared to more traditional parametric methods that ft better on shorter and fewer 
arrival sequences. However, they may underft on longer sequences. This is easily seen 
when relating the bin division grid concept to a histogram of inter-arrival times. Sec-
ondly, computational loads for estimation and inference become much larger, given the 
above-mentioned sample size requirements and as the binning process is a sequential 
process that cannot take account of the Markovian property given in the exponential 
function. 

Several research directions to address these challenges have been discussed. The 
frst is an improved computational estimation method in matching cumulants. The sec-
ond is a reduction in computational complexity though some assumptions on the kernel 
(belonging to RKHS) to estimate parameters given a single pass on some discretised 
time domain. 

3. Direction 2: Bayesian nonparametric approaches 

Bayesian approaches inherit the usual benefts of more fexible hierarchical modelling 
and probabilistic inference. A number of Bayesian nonparametric approaches to mod-
elling HPs have been proposed in the literature. In particular, the majority of methods 
discussed in this section estimate either the baseline rate, triggering kernel, or both, us-
ing either a nonparametric histogram kernel or Gaussian processes. Also of interest in 
the Bayesian nonparametric literature for HP is using the self-exciting properties of HPs 
to determine the clustering of events using Dirichlet processes. 

3.1. Histogram kernel 

A drawback of the binning based methods for estimating a histogram function discussed 
in Section 2 is that they require a priori selection of the grid size. This often leads to 
models that are either overftted or underftted. Donnet et al. (2020) propose a Bayesian 
nonparametric approach for modelling HP that eases this choice. 

The authors derive posterior concentration rates for HPs, and exemplify these results 
through a nonparametric histogram representation of the triggering kernel. This form 
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of kernel is motivated in the neuroscience context, mimicking the behaviour of action 
potentials to model the interaction between neurons in the brain. The resulting histogram 
kernel defned on the compact set (0,A) with J components, change points at s = (s0 = 
0,s1, ...,sJ−1,sJ = A) and respective heights w = (w1, ...,wJ) such that ∑J

j=1 w j = 1, has 
the form, 

J w j
φ(t|J,w,s) = δ ∑ 1t∈(s j−1,s j). (24)

s j − s j−1j=1 

where δ ∼ Bern(p) is an indicator variable that determines whether the histogram func-
tion is active with probability p, or whether the heights for all components is zero. The 
parameters of this model are inferred using Reversible-jump Markov chain Monte Carlo 
(RJMCMC), which proves to be a costly procedure. RJMCMC (Green, 1995) is a trans-
dimensional approach to Bayesian inference that allows the model to move between 
different parameter spaces. In this example the various parameter spaces are determined 
by the possible values of J. A drawback of RJMCMC, as found in this study, is that 
it is computationally expensive and experiences slower mixing that more standard ap-
proaches. 

3.2. Gaussian processes 

To circumvent the issue of slow inference, several authors have proposed effcient algo-
rithms by instead estimating the model parameters as fexible functions using Gaussian 
processes. A common feature in all of these approaches is the augmentation of the 
branching structure to decompose the likelihood function into conditionally independent 
processes. 

Zhang et al. (2019) suggest a practical direction for improvement by proposing a 
fexible triggering kernel represented as a quadratic transformation of a Gaussian process 
f (·) given by, 

φ (t) = 
1 

f 2(t). (25)
2 

This form is selected as it has certain analytical advantages. With a conjugate Gamma 
prior on the baseline parameter µ , the adapted Laplace method (Walder and Bishop, 
2017) approximates the posterior conditioning on the branching structure, resulting in 
scalable estimates of theoretical linear time complexity, O(n). An approximated sam-
pling structure (Halpin, 2013) is used to reduce computation by considering only high-
probability triggering relationships; this is achieved by assuming that the probability for 
extremely unlikely triggering relationships is very close to zero. The model is estimated 
through an EM implementation of both a block Gibbs sampler and MAP estimator. The 
approach maintains conjugacy relationships due to the decomposition of the likelihood 
to facilitate a closed form in computation of sequential updates to the model. 

In a similar style, Zhou et al. (2021) uses Gaussian processes to represent both the 
baseline rate and triggering kernel. They also perform a quadratic transformation of a 
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Gaussian process and further employ a sparse GP approximation (Titsias, 2009) to re-
duce complexity and avoid costly optimisation procedures. These authors also decouple 
the baseline rate and triggering kernel by augmenting the branching structure, thereby 
introducing a fast EM style mean-feld variational Bayes algorithm. 

Zhou et al. (2020a) instead adopt a sigmoid transformation of a Gaussian process for 
the baseline rate and triggering kernel, again using a sparse GP approximation. These 
functions have the form, 

µ(t) = λµ 
∗
σ( f1(t)), φ(t) = λφ 

∗
σ( f2(t)) (26) 

where λµ 
∗ and λ

φ 
∗ are upper bounds of µ and φ respectively, σ(·) is the sigmoid function 

and f1(·) and f2(·) are generated from a Gaussian process. In addition to augmenting 
the branching structure, several other processes are introduced to allow for conjugate in-
ference. Several effcient inference schemes are also proposed, namely a Gibbs sampler, 
an EM algorithm and a mean-feld variational inference algorithm. In this experiment 
all three algorithms performed comparatively well. In this work the sigmoid function is 
defned as a Gaussian representation, with Polya-Gamma augmentation (Polson, Scott 
and Windle, 2013), Z 

∞ 
h(ω,z)

σ(z) = 
ez/2 

= e pPG(ω|b,0) dω (27)
2 cosh(z/2) 0 

where h(ω,z) = z/2 − z2ω/2 − log2 and PG is the Polya-Gamma distribution. 
Data augmentation provides a mechanism that eliminates the need to evaluate the 

high dimensional integral, allowing for effcient conjugate inference. This augmentation 
strategy with the polya-gamma technique is an interesting development as the likeli-
hood becomes conjugate for the GP prior, thereby allowing for speed compared to other 
augmentation techniques, and it is an effective method for posterior inference. Malem-
shinitski, Ojeda and Opper (2022) extend the process further by allowing nonlinear and 
inhibitory effects in the kernel, ensuring that the intensity is non-negative via a sigmoidal 
link function. This approach is also computationally effcient, given the new likelihood 
form and mean-feld variational inference; however, it does not rely on the commonly 
used branching structure. 

3.3. Dirichlet approaches 

Yet another popular direction Bayesian nonparametric modelling is in incorporating the 
dynamics of HPs into Dirichlet processes to inform event clustering. This enables cap-
ture of the diversity of event types, while the self-exciting process describes the temporal 
dynamics. The framework of the Dirichlet process means that the number of clusters 
grows as the complexity of the data increases. 

An example of this is the Dirichlet-Hawkes (DHP) model proposed by Du et al. 
(2015). The authors cluster streams of data, such as news articles and social media con-
tent, using a Dirichlet process augmented with a temporal HP to determine the intensity 
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of arrivals. The overarching idea of this work is to determine related actions of me-
dia platforms given a particular occurrence of a highly impactful event, through word 
content and time of occurrence. 

The model is a generalisation of the Dirichlet process. Generally, the probability of 
joining an existing cluster or a new cluster is proportional to the number of observations 
currently in each cluster or the concentration parameter respectively. The authors instead 
specify these probabilities as counts that are temporally weighted by the triggering kernel 
φθk (t − ti) for each existing cluster, or the baseline rate µ for new customers. Hence the 
baseline rate acts as the concentration parameter in the Dirichlet process. 

Let θk be the parameters of the bag-of-words document content model for the kth 
cluster and wv be the vth word in the nth document. Then the model is given by, n 

vw ∼ Multinomial(θk)n 

θk ∼ DHP(µ,G0) 

G0 ∼ Dirichlet(θ0) 

where θ0 is the concentration parameter for the base distribution in the Dirichlet process. 
The choice of algorithm for parameter inference is motivated by the streaming con-

text. A Sequential Monte Carlo framework is used which allows the authors to reuse 
previous samples. When necessary, duplicate timestamps are resampled as this is a vio-
lation of the assumptions of a point process. A Gibbs sampler similar to Neal (2000) is 
embedded within this framework to sample the cluster labels in the following way. For 
event at time tn with cluster allocation sn, 

• Remove tn from cluster sn. 

• Calculate the probability of tn belonging to cluster j,   φθk (tn−ti) if j occupied, 
p(sn = j|tn, rest) = µ+∑tn>ti φθk (tn−ti) (28)

µ otherwise.
µ+∑tn>ti φθk (tn−ti) 

• Sample cluster allocation for tn from (28). If j is unoccupied draw θ j from G0. 

Blundell, Heller and Beck (2012) present another extension on Dirichlet processes 
for HP. The authors combine HPs with the infnite relational model (IRM) (Xu et al., 
2006; Kemp et al., 2006), a graph based approach to modelling the relationship between 
entities given previously declared relationships. In this model events are represented as 
vertices on a graph and are clustered according to a Chinese restaurant process (CRP) 
(Aldous, 1985). Each pair of clusters (in both directions) has a corresponding HP with 
a parametric form for the conditional intensity function. Let V be the set of events or 
vertices, π denote the partition of events, and n j be the number of immigrant events in 
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cluster n j. For λ ∗ (t) the model then has the form, pq 

π ∼ CRP(α) Z t 
λpq 
∗ (t) = µpqnpnq + φpq(t − s)dNj(s) ∀p,q ∈ range(π) 

0 

Npq(·) ∼ HP(λpq 
∗ (·)) 

Nuv(·) ∼ Thinning(Nπ(u)π(v)(·)) 

where α is the concentration parameter of the CRP and the thinning process Nuv(·) de-
termines the edges of the directed graph by thinning, or distributing, all events in both 
clusters among the edges such that Npq = ∑u,v Nuv(·). Parameter inference is performed 
using Markov chain Monte Carlo methods as there is no conjugate prior available for this 
likelihood. The partition of the individuals in the model is updated via a Gibbs sampler, 
in a similar fashion to Du et al. (2015) with modifcations for their model. The remaining 
model parameters are updated using a slice sampler. 

A natural extension of the above approaches is the hierarchical Dirichlet. The in-
clusion of hierarchies facilitates description of a wide range of phenomena in the data 
and system under inspection. For example, a hierarchical Dirichlet HP proposed by 
Markwick (2020) is applied to 5 minute foreign exchange trade data, that is grouped 
daily for individual day HPs whilst allowing pooling of information where there is less 
data. The model is able to learn seasonality in trading events simultaneously, with the 
nonparametric background rate shown as, 

µd(t) ∼ µ0 · fD(t) , (29)Z 
fD(t) ∼ k(t|θ )dGD(θ), 

GD ∼ DP(αD,G0) 

G0 ∼ DP(ν ,H) 

where µ0 and fD are the amplitude and density of controlling events on a day, respec-
tively, with individual days d grouped by Days, D. The individual Dirichlet process 
model GD with base measure for mixing kernel k (beta distributions) is, 

µυ 
T −1 

(T − yi)
υ(1− T 

µ −1)yik(yi|θ ) = Beta(yi|µ,υ ,T ) = 
B(T 

µ ,υ(1 − T 
µ ))T υ−1 

with non-conjugate prior for the mixture kernel, 

G0(µ,υ |T,α0,β0) = U(µ|[0,T ])Inv-Gamma(υ |α0,β0) 

and the global Dirichlet process learnt from the data. Augmenting the latent structure 
and selecting conjugate priors for the model parameters lead to a fully-Gibbs sampling 
algorithm. The model benefts from the ability of trades being updated in real time 
(online) and modelling the days of week’s trades whilst sharing data amongst all groups 
with dynamic forecasts. 
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3.4. Summary 

A number of non-parametric Bayesian inference procedures for the HP were reviewed. 
Computational improvements were highlighted with approximation and estimation strate-
gies giving linear time complexity. Other approaches provided important improvements 
in fexibility and uncertainty in modelling the kernel. Finally, a scalable online cluster-
ing method in Dirichlet Process allows for the number of samples to grow with the HP, 
while the hierarchical approach supports pooling information and aiding where limited 
data size is available. 

4. Direction 3: Other approaches 

This section presents a brief review of three other directions in HP research. These 
include stochastic differential equations, graphs and neural networks. 

In the frst direction, Lee et al. (2016) extended the HP model to include randomness 
of the triggering kernel and introduced contagion parameters to control the levels of ex-
citation. Each level of the excitation function is a stochastic process and is solved using 
a stochastic differential equation that follows a Geometric Brownian Motion and Expo-
nential Langevin dynamics, inferred through Bayesian methods. The model attempts 
to better approximate applications where self-excitation intensities are accelerated with 
correlated levels of contagion. 

The second direction points to graph-based approaches. This allows the user to 
determine the interaction between components within multivariate HPs by recovering the 
latent network structure. Generally, this is achieved by estimating the infectivity matrix, 
for which the i jth element describes the expected number of offspring events expected 
in dimension i given an event in dimension j. Several authors have introduced sparse 
and low-rank approximations to the matrix to control interactions within the network 
and improve computational effciency. 

An early example is given by Linderman and Adams (2014). The authors combine 
HPs with random graph models by decomposing the infectivity matrix into a binary 
adjacency matrix representing network sparsity, and a weight matrix to model interaction 
strength. A parallelisable Gibbs sampler is used to infer the model parameters. Guo et al. 
(2015) augment this approach for uncovering the latent network with a new Bayesian 
language model to study the evolution of dialogue within a social network over time. 
Linderman, Wang and Blei (2017) focus on inferring the latent structure of a social 
network when the data is not fully observed, where several types of missing data are 
considered. A new sequential Monte Carlo approach is proposed to recover the missing 
data. Liu et al. (2018) exploit MHP spatio-temporal properties by introducing a graph 
regularisation method, in which a penalisation term from the proximity of the infectivity 
matrix to a spatial connection matrix learns the infuence among MHP characteristics. 

Bacry et al. (2015) provide an extension by introducing a sparsity and low-rank 
induced penalisation, resulting in an excitation matrix of few non-zero and independent 
rows. This enhances scalability and improves estimation of the kernel. In a similar vein, 
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Zhou et al. (2013); Bacry et al. (2020) perform inference for higher dimensional HPs by 
modelling the excitation function as a low-rank approximation with regularised objective 
functions. The sparsity introduced in the infectivity matrix ensures that individuals are 
only impacted by a small number of users in the network while a small fraction of hubs 
can have wide-spread infuence. Similarly, the Mean-Field Hypothesis as described by 
Bacry et al. (2016a) improves computational effciency when recovering parameters in 
higher dimensions, given fuctuations of stochastic intensity are small. 

In a third direction, the nonlinearity of the intensity function can be modelled as a 
neural network. Recurrent neural networks encode sequences of input states and output 
states, where each state is determined by the preceding state and the hidden state captures 
other past states. The parameters are ftted by an optimisation procedure on a nonlinear 
function, such as a sigmoidal or hyperbolic tangent. 

Improving on the recurrent neural network issues, long short-term memory (LSTM) 
architecture mitigates the vanishing gradient problem, extending memory by modelling 
HP intensities of multiple events trained through ‘forget gates’ to control infuences of 
past events on the current state (Mei and Eisner, 2017). Some other neural network ap-
proaches are the self-attentive/transformer models (Zuo et al., 2020; Zhang et al., 2020a) 
and graph convolution networks (Shang and Sun, 2019), showing computational effcien-
cies and improved prediction accuracy. 

Several approaches have also been proposed to model spatio-temporal HPs using 
neural networks. Okawa et al. (2021) construct the intensity function for HPs to accept 
images as input by combining convolutional neural networks with continuous convolu-
tion kernels to output a multiplicative factor that infuences the process in addition to 
the standard temporal and spatial triggering kernels. An alternative model that relies on 
neural networks to approximate the conditional intensity function of the HP is proposed 
by Du et al. (2021). The authors introduce a framework that learns the graph structure 
of the process which is then combined with temporal and spatial information. There are 
numerous other variations in neural network approaches as this is a signifcant body of 
active research in this area. 

4.1. Summary 

In this section we presented and discussed three further approaches, namely stochastic 
differential equations, graphs and neural networks. Although these related felds do not 
conveniently ft in the previous sections, they highlight the breadth of HPs in different 
research areas and show signifcant recent growth. 

5. Direction 4: Theoretical guarantees and statistical properties 

There is an emerging deep literature on theoretical aspects of HPs. Here we touch on 
three of these, namely developments in statistical properties, the special case of Marko-
vian HPs, and nonlinear representation of self exciting processes. 
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With respect to developments in statistical properties, defnitions past the frst and 
second order statistics are possible given weakly stationary state conditions (Daley and 
Vere-Jones, 2003), but they become less intuitive and tractable as their statistical or-
der increases. By introducing a combinatorial formula, Jovanović et al. (2015) allow 
the integral of cumulants (and consequent moments) to be calculated of arbitrary or-
der for HPs. Specifcally, given a set of s ∈ {1, ...,D} components and one of times 
ts = {t1, ..., t|s|}, the cumulant density of a HP is defned as * + 

k(Ns) = dt−|s|∑(|π|− 1!)(−1)|π|−1
∏ 

πB∈ 
∏dNi 

t , (30) 
π i∈B 

where the sum runs over all partitions |π| in s, | · | denotes the number of blocks and B 
labels individually the blocks of π . Moments in terms of cumulants are expressed as * + 

∏dNt
i
i 

dt−|s| = ∏∑ k(NB). (31) 
i∈s π B∈π 

Jovanović et al. (2015) represent HPs as a cluster process, showing how to express (30) 
as a sum of integral terms by enumerating all possible rooted trees. The contribution of 
enumerating these ‘family trees’ that represent the complex interactions between point 
events, can be performed systematically and thus ease computational costs. 

In an alternative approach to fnding moments, Cui et al. (2020) used elementary 
derivations of self-exciting processes, setting the objective function to evaluate proba-
bilistic arguments that yield a differential equation for the required moment. 

Some other progress made in the direction of asymptotic results is in the study of 
a special class of HPs that is Markovian. For instance, when the exciting function is 
exponential, the joint process (Nt ,λ t) is then Markovian (10). In the paper by Gao and 
Zhu (2018b), the functional law of large numbers and central limit theorems are derived 
for the linear HP where the initial intensity and time are large, defned as Z t Z t 

−β t
λ (t) := = αe−β (t−s)dN(s) = λ0 · e + αe−β (t−s)dN(s) as λ0 = n → ∞ 

−∞ 0 

where the process λ is Markovian given dλ (t) = −βλ (t)dt + αdN(t). Such limit theo-
rems (details in Gao and Zhu (2018b)) provide insight into macroscopic behavior of large 
initial intensity asymptotics of HPs. Furthering the Markovian HPs towards the nonlin-
ear case, a proof for large deviation was obtained by Zhu (2015), where the exciting 
function is both exponential and a sum of exponentials. More recent work by Kanazawa 
and Sornette (2020) provides a theoretical framework to embed non-Markovian kernels 
as Markovian, with the aim of tackling more general and complex derived HP models. 
This process of introducing auxiliary feld variables via a master equation provides a for-
mulation in terms of linear stochastic partial differential equations that are Markovian. 

Another direction in theoretical work is the study of nonlinear HPs. For example, 
Torrisi (2016, 2017) derive explicit bounds in the Gaussian and Poisson approximations 
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on nonlinear HPs using Stein’s method and Malliavin calculus. Gao and Zhu (2018a) 
present a study of a new asymptotic regime and its relation to the mean feld limit for 
higher dimensions. Finally, from the perspective of asymptotic frequentist properties 
of Bayesian estimators, Donnet et al. (2020) consider nonparametric MHP posterior 
concentration rate εt around the true parameter θ ∗ , � � 

Eθ ∗ ∏(d(θ ,θ ∗ ) > εt |Nt ) = o(1) as T → ∞ (32) 

in understanding infuential features of the prior. The prior models are defned as a 
piecewise constant function and a mixture of Beta distributions that is given by, �Z 1 

� 
Γ(α/ (ε(1 − ε))) α α −1

εφi j(·) = ρi j gαi jε dMi j(ε) , gαε (x) = x 1−ε −1(1 − x) 
0 Γ(α/ε) Γ(α/(1− ε)) 

(33) 

where Mi j are bounded signed measures on [0,1] such that |Mkl| = 1. The asymptotic 
posterior concentration rates are derived in stochastic terms and L1 distances d(θ , θ ∗). 
Sulem et al. (2021) furthers theoretical guarantees on estimation methods by consider-
ing nonlinear and inhibition effects of MHPs, obtaining the concentration rates of the 
posterior distribution on the parameters. 

5.1. Summary 

The theory of HPs is extensive with numerous areas of development. It is not our goal 
to give a detail account here, rather to provide the reader with three interesting current 
challenges that researchers are tackling. First we show approaches to nth order cumulant 
density formula derived in terms of Poisson cluster processes, secondly a number of 
derived theorems from a special class of the HPs (Markovian) and fnally explicit bounds 
and posterior concentration rates for nonlinear HPs. 

6. Real-world cameos 

As noted in the Introduction, a key aspect of HP modelling is its suitability to real world 
applications. Many of the papers discussed in this review motivated and illustrated their 
methods with substantial examples. Tables 1 and 2 provide a scan of these applications 
and the corresponding fndings, categorised by the estimation and numerical methods 
described in previous sections. A small number of cameos are described in further detail 
below. 

6.1. Cameo 1: Crime 

The issue of refning the parametric form of the triggering kernel is circumvented by 
a nonparametric approach to parameter estimation. Mohler et al. (2011) introduce a 
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spatio-temporal model for burglaries in Los Angeles. The model, inspired by the ETAS 
model developed to model seismic activity, is given by Z t Z Z 

λ (t,x,y) = µt (t)µb(x,y)+ φ(t − s,x − u,y − v)dN(s)dN(u)dN(v) (34) 
−∞ X Y 

where µt (t) and µb(x,y) are temporal and spatial baseline functions, respectively. Model 
parameters are estimated via variable-bandwidth Kernel Density Estimation (KDE). 

A recent extension of this work is the semi-parametric spatiotemporal model em-
ployed by Zhuang and Mateu (2019), which describes complexities of criminal behav-
iors by incorporating their biological clock and periodic social activity. The conditional 
intensity is defned as 

λ (t,x,y) = µ0µt (t)µd(t)µw(t)µb(x,y)+ Z t Z Z 
A φ1(t − s)φ2(x− u,y− v)dN(s)dN(u)dN(v) (35) 

−∞ X Y 

where relaxation coeffcients A and µ0 stabilise the estimation process via maximisation 
likelihood, giving the model a semiparametric component. The other terms extend the 
nonparametric MISD model, where the baseline periodicity is estimated via residual 
analysis with daily/weekly terms µd and µw, average trend µt and spatial background 
µb(x,y) all normalised to 1. The triggering kernels, both temporal φ1 and spatial φ2, are 
then normalised as density functions. The introduction of periodic terms and estimation 
of their relative contributions is used to model crime rates in Castellon, Spain. In addition 
to uncovering daily and weekly patterns in robberies, the authors’ analysis reveals the 
high infuence of the background rate compared to the clustering effect which explains 
roughly 3% of the overall intensity. 

6.2. Cameo 2: Finance 

Kirchner (2017) shows the close relation of HPs to an Integer Auto-Regression (INAR) 
where the distribution of the resulting bin count sequence is approximated as a multi-
variate INAR(p). Fitting a mutually exciting bivariate HP to trades and limit orders on 
S&P 500, Kirchner (2017) determines an asymmetric relationship between both incom-
ing orders exciting limit order and market orders, and fnds that market order has barely 
an effect on incoming limit order. 

In further support of high frequency applications, the Hawkes Graphs approach by 
Embrechts and Kirchner (2018) effciently fts dozens of event streams. This method 
also provides a natural approach to studying connectivity and causality. 

The suitability of the nonparametric HP method to very large datasets was also 
demonstrated by Bacry, Jaisson and Muzy (2016b). In the approach taken by these 
authors, a series of Wiener-Hopf equations is solved by Gaussian quadrature to estimate 
the kernel matrix, where market orders of two future assets on EUREX were shown to 
closely ft a power law function. Rambaldi, Bacry and Lillo (2017) couples this non-
parametric kernel estimation with a MHP to successfully show the complex interactions 
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between time of arrival of orders in limit order books (LOB) and their size. Their work 
highlights the fact that high frequency orders on EUREX exchange are not suitable to be 
described with a simple model assuming independence between volume and time. 

6.3. Cameo 3: Online content 

The model proposed by Du et al. (2015), summarised in Section 3.3, was applied by the 
authors to a stream of news articles for a 35 day period at the beginning of 2011. The 
aim of the model is to identify emerging news stories by clustering related news articles 
based on the terms used in each article. 

To determine the words included in the vocabulary of the model, named entities 
are identifed and words that do not add information to the text are pruned, leaving a 
vocabulary of terms consisting largely of named entities, nouns, verbs and adjectives. 
The triggering kernel is made up of a linear combination of known radial basis function 
kernels. These kernels assign mass to the excitation function based on the distance 
between particular reference time points and the time elapsed for a pair of events. In this 
study the reference time points range from 30 minutes to 168 hours, capturing a range 
of both short and long time excitation effects. A number of meaningful news stories 
were identifed as clusters, including the 2011 shooting in Tuscan, the release of the 
flm ’Dark Knight Rises’, the space shuttle Endeavour’s last mission and cyclone Yasi in 
Queensland, Australia. A key outcome for this work is the ability to track the trend of 
each of these stories through examining both the form of the triggering kernel and the 
level of overall excitation. 
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7. Conclusion and Challenges 

The past ffty years has seen the HP embedded as a staple methodology in the statistical 
literature. The growth in research directions inspired by the HP is itself a HP! Even 
after half a century, this pursuit continues through new theoretical, methodological and 
computational developments and new applications. The papers referenced in this review 
were selected to highlight some of the current directions in these areas and to provide a 
broad overview for new readers in the feld. A range of research directions, in particu-
lar parametric, nonparametric, online and Bayesian approaches, were highlighted along 
with a number of real-world applications. The quantity and quality of the work reviewed 
here, and the large body of literature that was unfortunately not included, are a portent 
for another ffty years of exciting research related to HPs. 
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