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Granger causality and time series regression 
for modelling the migratory dynamics of infuenza 

into Brazil 
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Abstract 

In this work we study the problem of modelling and forecasting the dynamics of the in-
fuenza virus in Brazil at a given month, from data on reported cases and genetic diver-
sity collected from previous months, in other locations. Granger causality is employed as 
a tool to assess possible predictive relationships between covariates. For modelling and 
forecasting purposes, a time series regression approach is applied considering lagged 
information regarding reported cases and genetic diversity in other regions. Three dif-
ferent models are analysed, including stepwise time series regression and LASSO. 
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1. Introduction 

Caused by the infuenza virus, the fu is one of the most prevalent diseases in Brazil 
and worldwide, infecting about 10% of the world’s population every year and causing 
a toll between 250,000 and 500,000 deaths annually (Barr et al., 2010; Rambaut et al., 
2008). It is characterized by an acute infection of the respiratory system. Common 
symptoms are cough, fever, headaches, throat and muscle pain (Eccles, 2005; Rambaut 
et al., 2008). Due to its severity, the World Heath Organization (WHO) actively surveys 
the virus through the Global Infuenza Surveillance and Response System (GISRS) Net-
work. The patterns of infuenza incidence are infuenced by seasonality and the emer-
gence of new variants – new types of virus that infect humans for the frst time thus 
managing to spread further due to reduced immunity in the population. According to the 

1 Programa de Pos-Graduac´ ¸ao˜ em Estatı́stica - Universidade Federal do Rio Grande do Sul. 
2 Corresponding author. 

Received: January 2022 
Accepted: May 2022 



162 Granger causality and time series regression for modelling the migratory... 

WHO, extensive vaccination against infuenza is the most effective measure for its pre-
vention (Barr et al., 2010). Public vaccination policies, therefore, become a fundamental 
agent in preventing serious epidemics and reducing the death toll from infuenza. 

Severe infuenza cases require hospitalization and intensive care, including the need 
for artifcial respirators. With the emergence of COVID-19, such precious assets have 
become scarce in many countries. Thus, moving forward, the forecast of infuenza cases 
can help guide public health care systems in allocating resources and planning for sea-
sonal concomitance of the two diseases. 

A global dispersion process is responsible for seeding new variants that drive yearly 
infuenza epidemics through most of the world. A frequent pattern is that new lineages 
affect the northern hemisphere frst during the winter season. These variants tend to 
arrive latter in regions of the southern hemisphere such as South America and Oceania 
(Lemey et al., 2014; Petrova and Russell, 2018). This movement, if mathematically well 
described and statistically well modelled, has the potential to allow for predictions for 
the incidence of infuenza, as well as the description of the strains expected to circulate 
in Brazil from data collected in Europe, Asia, and the United States during the winter 
season in the northern hemisphere. Such a forecast could be of great value for planning 
and implementation of public vaccination policies to reduce potential epidemics and 
minimize deaths due to infuenza in Brazil. 

In this paper, we study the problem of forecasting the number of infuenza cases in 
Brazil at a given time t from data on infuenza cases, as well as data related to genetic 
diversity, collected in other regions of the globe in preceding months. 

2. The infuenza virus 

There are three common types of infuenza viruses, infuenza A, B and C, the frst two 
being responsible for seasonal epidemics. The evolutionary dynamics of infuenza A 
is composed by rapid mutation, natural selection and frequent rearrangement (Rambaut 
et al., 2008). Of the three types of viruses, type A is the one with the highest replication 
capacity in humans. Most of its cases occur in winter and in countries with temperate 
climates. 

Infuenza A type is subdivided into subtypes according to their surface proteins 
hemagglutinin (H1, H2 and H3) and neuraminidase (N1, N2). In this study, our goal 
is to investigate the behaviour of the two most recurrent subtype of infuenza A, H1N1 
and H3N2. 

The H1N1 subtype appeared in 1918 causing the Spanish fu pandemic, one of the 
most deadly pandemics in history, affecting about a quarter of the world’s population 
and responsible for tens of millions of deaths (Garten et al., 2009). The H1N1 fu virus 
reappeared in 1977 and subsequently its epidemics showed lower mortality rates when 
compared to the H3N2 epidemics (Rambaut et al., 2008). Then, in 2009 a pandemic of 
H1N1 occurred, widely known as the swine fu pandemic. The virus was frst reported 
in Mexico, spreading across the world in the following months and infecting anywhere 
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between 700 million and 1.4 billion of people (Rambaut and Holmes, 2009). After 
the 2009 pandemic, the H1N1 virus continued circulating, being responsible for annual 
seasonal outbreaks with high mortality rates in Brazil. The new phylogenetic groups (of 
origin) of the H1N1 virus, seem to appear in the northern hemisphere, arriving in Brazil 
only in the seasonal outbreak of the following year (Silva, 2015). 

The H3N2 subtype emerged in 1968 as the third pandemic of the 20th century called 
the Hong Kong fu and has dominated seasonal infuenza A virus epidemics in recent 
years (Ibiapina, Costa and Faria, 2005). Born et al. (2016) found that the strains of 
the seasonal infuenza A(H3N2) epidemics in South America are powered by a continu-
ous introduction of viral variants from other geographic regions, especially from North 
America, and an extensive viral exchange among South American countries. They also 
found that the subtype tends to arrive in Brazil from neighbouring countries in South 
America, mainly through its south-east region. 

2.1. Migratory dynamics 

The source-sink model for global fu circulation states that tropical regions are the origin 
of new seasonal mutations. Genetic diversity is generated in these original populations, 
and then advances to the northern and southern hemispheres. Additionally, China is 
identifed as the most likely epicentre of the fu A virus (Rambaut et al., 2008). More 
recent phylogeographic studies have found that there is substantially more viral fow 
between locations, and that the pattern does not adhere strictly the source-sink model. 
However the trunk of the phylogenetic tree, which represents the viral lineage that per-
sists over time, was placed reliably, most of the time, in China, Southeast Asia and India. 
Viruses circulating in other locations do not usually last more than a season or two before 
being replaced by new lineages originating from the trunk (Petrova and Russell, 2018; 
Lemey et al., 2014; Bedford et al., 2010). Furthermore, strains are generally frst spread 
to North America and Europe and only later to South America (Russell et al., 2008). 

Infuenza epidemics in temperate regions of the northern hemisphere typically oc-
cur between the months of November and March and in the southern hemisphere from 
May to September. Seasonality patterns in the tropics vary more according to loca-
tion (Petrova and Russell, 2018). In Brazil, Almeida, Codeço and Luz (2018) identifed 
that different regions have varying seasonality patterns, with stronger seasonality sig-
nals closer to the coast, peaks happening earlier towards the north of the country and 
later in the year in the southern region. Born (2013) studied the phylogeography of in-
fuenza in Brazil, identifying as unlikely that the origin of a new variant be located in 
Brazil. Additionally the main gateway for the H3N2 fu virus in the country would be 
the Southeast region followed by the South and Northeast regions. The existence of such 
global patterns which are repeated somewhat consistently throughout the years can be 
seen as motivation for seeking to forecast Brazilian incidence as a function of reported 
cases in other countries in the previous months. 
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3. Methods 

3.1. Granger causality 

In this study, the Granger causality method will be used to study the migratory dynam-
ics of infuenza (Granger, 1969). This method aims to determine the causal direction 
between two variables, stipulating that Xt Granger-causes Yt if past values of Xt help to 
predict the present value of Yt , and may provide better results than considering only the 
past Yt . More specifcally, it is a way of verifying whether a time series helps in pre-
dicting another series through VAR modelling. To use this method, the series need to be 
matched. 

3.1.1. Vector Autoregressive Models (VAR) 

The vector autoregressive model (VAR) is an extension of the autoregressive models 
(AR) and its objective is to model a vector time series considering only their past values 
(Sims, 1980). Mathematically, a k-dimensional Y t stochastic process is said to be a 
VAR(p) process if it can be written as 

Yt = c+ A1Y t−1 + A2Y t−2 + · · · + ApY t−p + ε t , 

where c ∈ Rk is a vector of constants (intercepts), A1, · · · ,Ap are k × k matrices and ε t is 
a k-dimensional error term. 

3.1.2. Granger causality 

The idea behind Granger causality (for univariate time series) is to consider the model 

k m 
Yt = β0 +∑ βiYt−i + ∑ α jXt− j + ε t , (1) 

i=1 j=1 

where ε t denotes white noise. We say that Xt Granger-causes Yt if past values of Xt help 
to predict the Yt . In view of (1), to test whether Xt Granger-causes Yt the following test 
can be performed: 

H0 : α1 = · · · = αm = 0 vs. H1 : αs ̸= 0, for at least one s ∈ {1, · · · ,m}. 

In the above test, rejection of the null hypothesis is considered evidence that Xt Granger-
causes Yt . 

3.1.3. Granger Causality and Stationarity 

Before applying the Granger causality method, it is necessary to check whether the se-
ries are stationary or not. A preliminary graphical analysis can assist in this matter. 
The absence of visible deterministic trends and/or apparent seasonality are indications 
of stationary behaviour. However, they are usually not enough for decision making, 
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which should preferably be done through appropriate tests such as the widely applied 
Augmented Dickey-Fuller (Dickey and Fuller, 1979) or the Phillips-Perron (Phillips and 
Perron, 1988) test. In these tests, the null hypothesis is that the time series has at least 
one unit root (i.e., the series is non-stationary) and the alternative hypothesis is the ab-
sence of unit roots. In this way, the time series will be considered stationary if the null 
hypothesis is rejected. 

3.1.4. Granger causality for non-stationary series 

One way to apply the Granger causality method if the series are not stationary is to use 
the Toda and Yamamoto procedure, introduced by Toda and Yamamoto (1995), which 
comprises the following steps: 

1. Check whether the series cointegrate. Two series cointegrate if they have the same 
integration order, say m, and if the residual of regression from one series to the 
other are stationary, which can be determined using a test such as the Phillips-
Perron. 

2. Adjust a VAR(p) model. 

3. Apply the Wald Test. In order to do so, it is necessary to ft a VAR(p + m) model 
to the data. This model will certainly present several non-signifcant variables, 
given the previous steps, but this is not a problem since this model will not be 
used directly - it is only a device to guarantee the asymptotic theory. Rejection of 
the null hypothesis is evidence towards the existence of Granger causality in the 
tested direction. 

Granger causality is a concept applied in many felds. In economics, Farias and 
Sáfadi (2010) employed Granger causality to study the relationship among the main 
stock exchanges in the world, showing how markets behave with each other and ana-
lyzing whether a market has a strong infuence on the others. In agronomy, Diniz et al. 
(2009) studied whether certain agricultural and socio-economic variables (such as cattle 
and demographic density) Granger-cause deforestation in the Amazon. In biology, Chen 
et al. (2018) study the causal relationship between cases of infuenza in humans and air 
pollution in Taiwan. The results indicated that pollution Granger-causes fu cases in the 
elderly group (over 64 years old). 

3.2. Variable selection in regression models 

Variable selection is a central topic in regression models involving many covariates. In 
this section we review some of the available techniques for variable selection which will 
be used here. 
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3.2.1. Stepwise regression 

Stepwise regression is an automatic tool that aims to select the most infuential indepen-
dent variables in a given model. It is an iterative method that adds or removes variables 
according to a given selection criterion. The most popular types of stepwise regression 
are the forward-stepwise and backward-stepwise. In this paper, the backward-stepwise 
selection method was preferred due to the model size. We consider the p-value based 
stopping criterion, which selects variables according to their Wald statistics, eliminat-
ing non-signifcant terms based on the magnitude of their p-values (higher p-values are 
preferred in removing terms), in order to obtain a model for which all variables are sig-
nifcant. 

3.2.2. LASSO 

The LASSO (least absolute shrinkage and selection operator) regression is a penalty 
method that aims to provide smaller and more parsimonious models (Hastie, Tibshirani 
and Friedman, 2009). The penalty is applied to the coeffcients to decrease the number 
of parameters and, consequently, reduce the dimension and uncertainty in the model. It 
is a regression method that aims to reduce the dimensionality and improve the accuracy 
of the forecast and the interpretability of the resulting model. 

4. Data 

In this section we provide detailed information regarding the data used in our study. The 
Supplementary Material presents a detailed exploratory analysis of the data. 

4.1. Number of positive fu cases 

The data for number of positive fu cases was taken from FluNet, an online tool main-
tained by the World Health Organization (WHO, 2020) whose objective is to aggre-
gate infuenza virological surveillance data, launched in 1997. FluNet data comes from 
weekly country reports of the number of tested cases, the number of positive cases and 
the type of virus. Typically the reported data refer to data collected in a few reference 
centres in each country, and do not represent the actual fu incidence data. Since the 
number of positive cases are expected to correlate with infuenza incidence, for the pur-
pose of this paper it is considered as a proxy for incidence. Thus, such data will be 
referred to here as infuenza incidence data. For this project, data from H1N1 and H3N2 
infuenza were collected from January 2008 to November 2019, but due to missing data 
problems in 2008, the data used in the analysis cover the period from October 2008 to 
November 2019. However, for modelling purposes, we only use data from October 2008 
to December 2018, which yields a sample size n = 123, while data from January 2019 
to November 2019 is reserved for out-of-sample forecasting purposes. 
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Table 1. Aggregated regions. 

Region Countries 

Europe 
Belgium, Switzerland, Spain, Estonia, Germany, Ireland, Israel, Italy, 
Latvia, Netherlands, Norway, Poland, Russian Federation, Slovenia, Swe-
den, Turkey, Denmark, United Kingdom of Great Britain, Northern Ireland 

North America 
South America 

Canada and United States 
Argentina, Bolivia, Chile, Colombia, Ecuador, French Guiana, Paraguay, 
Peru 

Central America 
Costa Rica, Cuba, Dominican Republic, El Salvador, Guatemala, Hon-
duras, Jamaica, Mexico, Nicaragua, Panama 

South Asia India, Thailand, Indonesia, Bangladesh, Bhutan, Nepal, Sri Lanka 

Western Pacifc 
China, Japan, Australia, Republic of Korea, Singapore, Malaysia, Vietnam, 
New Caledonia, Philippines, Cambodia, Lao People’s Democratic Republic 

Figure 1. Map with the regions considered in the study. 

For simplicity, we aggregate data geographically into regions based on WHO re-
gions, with the exception of Brazil which is the focus of this study. The following loca-
tions were considered: Brazil, North America, South America (without Brazil), Central 
America, Europe, South Asia and Western Pacifc. Note that each region is composed of 
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a certain number of countries, responsible for reporting their data in the database. How-
ever, due to local characteristics, several countries had a high amount of missing data, 
often above 50%, resulting in useless local data for our purposes. In order to make the 
analysis feasible, all countries presenting more than 50% missing data were excluded in 
the construction of the database for the respective region. Table 1 and Figure 1 present 
the confguration of each region after applying this criterion. 

The time series techniques that we used require that the time series do not contain 
any missing data. To resolve this, we applied an imputation method, which aims to fll 
in the missing data using the following criteria: multiply the average regional number 
of positive fu cases of the respective week by the proportion that the respective country 
represents in the region. In some cases, however, it happened that the week had missing 
data in all countries, and this was resolved by imputing it through the average between 
the previous and subsequent weeks. After imputation, the data were aggregated monthly. 

4.2. Genetic diversity 

For the genetic diversity data, viral RNA sequences were collected from the NCBI In-
fuenza Virus Database, which compiles a comprehensive assortment of infuenza se-
quences generated by research groups around the world (NCBI, 2020). The genetic 
dataset was assembled considering all complete chromosome 4 (hemagglutinin gene) 
sequences from human infuenza A viruses in the database, from all continents and in 
the interval from October 2008 to September 2019. The data were retrieved in March 08, 
2020. This resulted in a total of 16,008 H1N1 sequences and 15,418 H3N2 sequences. 
As the goal was to measure genetic diversity of viral populations, H1N1 and H3N2 
sub-types were treated separately. Infuenza B sequences were excluded from this study 
because of insuffcient data at many time points. 

Genetic diversity is a population measure that seeks to quantify viral variability, al-
lowing for comparisons over time or between populations. For the sake of simplicity, 
throughout this paper let the genetic diversity of a viral population be defned as the 
average genetic distance between all sequences in the population. The distance mea-
sure considered here is the K80 distance (Kimura, 1980), which is based on nucleotide 
substitutions, thus the sequences must be aligned so that individual mutations can be 
identifed. Due to the size of our dataset, the online tool MAFFT (Yamada, Tomii and 
Katoh, 2016) was used to generate the alignments. 

The aligned sequences were then used to build a distance matrix between individual 
sequences in the dataset. This resulted in a symmetric n × n matrix D with entries di, j 

denoting the genetic distances between the sequences i and j, where i, j ∈ {1, · · · ,n}. 
Finally, genetic diversity was computed for temporally and geographically defned 

sub-populations, by averaging over all relevant entries in the distance matrix. As sug-
gested in Jesus (2018), virus diversity was assessed using a quarterly moving average 
scheme, since a three-month window size best captured smooth diversity fuctuations 
over time for these data. This calculation was made for each month in the range from 
October 2008 to September 2019, separately for H1N1 and H3N2, and for the following 
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regions: Asia, North America and global (all continents). Other regions were not consid-
ered due to insuffcient data. See the Supplementary Material for a list of the countries 
comprising each region. Similarly to the incidence data, for modelling purposes we only 
consider data from October 2008 to December 2018 (n = 123), while data from January 
2019 to November 2019 are reserved for out-of-sample forecasting purposes. All code 
was written in R (version 4.0.0, R Core Team, 2020) and is available (along with the 
relevant data) at github.com/AlineFoersterGrande/Flu Paper. 

5. Results 

In this section we present the results of our analysis. We separate the different analyses 
by technique. 

5.1. Granger causality 

5.1.1. Positive infuenza counts 

In this section we present a Granger causality analysis of the number of positive fu 
cases in Brazil considering data from the other regions. Our main interest is to verify if 
the number of cases in Brazil can be explained by the recent historical data from other 
regions. In all situations, the data were considered non-stationary due to the clear sea-
sonal pattern present (the time series plots are presented in the Supplementary Material). 
The global task resulted in 66 comparisons. The p-values presented in this section were 
corrected for false discovery rate, implemented through the function p.adjust in R 
(R Core Team, 2020). On performing step 2 of Toda and Yamamoto’s procedure, we 
consider p = 6 as the maximum lag to adjust the VAR(p) model to the data. 

Table 2. Granger causality results for the number of fu cases - Brazil case. 

Null hypothesis p-value Lag 
North America Region does not Granger-cause Brazil 0.84 − 

European Region does not Granger-cause Brazil 0.10 3 
Central America Region does not Granger-cause Brazil 0.99 − 

South America Region does not Granger-cause Brazil 0.05 2 
South Asia Region does not Granger-cause Brazil 0.78 − 

Western Pacifc Region does not Granger-cause Brazil 0.98 − 

Table 2 presents the results of the Granger causality analysis. We conclude that 
among all regions, only Europe (at 10% signifcance) and South America (at 5% signif-
cance) Granger-cause Brazil. This result suggests that the historical data on the number 
of cases of fu in the European and South America Regions are helpful in predicting the 
present value of the incidence in Brazil. 

As presented in Section 2.1, the trunk of the phylogenetic tree and source of most 
seasonal variation for infuenza is associated to the Asian continent, particularly China, 

https://github.com/AlineFoersterGrande/Flu_Paper
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from where the virus frequently migrates to the northern hemisphere. With this in mind, 
we perform a Granger causality analysis to verify if the Western Pacifc Region (the 
region that contains the majority of the data from Asia), Granger-causes the regions in 
the northern hemisphere. 

Table 3 presents the signifcant cases. We fnd that the Western Pacifc Region 
Granger-causes the regions of Europe and South Asia. Therefore, it can be said that 
the historical data related to the number of fu cases in the Western Pacifc Region helps 
to predict the present incidence of the South Asian and European Regions. 

Table 3. Granger causality results for the number of fu cases - Western Pacifc case. 

Null hypothesis p-value Lag 
Western Pacifc does not Granger-cause South Asia 0.05 3 
Western Pacifc does not Granger-cause Europe 0.04 3 

Note that, although there is no direct evidence that the number of fu cases in the 
Western Pacifc Region Granger-causes the incidence in Brazil, there is an indirect ef-
fect of the Pacifc Region in Brazil, since the Pacifc Granger-causes the European Re-
gion which in turn, Granger-causes the incidence in Brazil. This indirect effect was not 
directly detected because the Granger causality analysis is not transitive. Finally, we 
investigate whether any region Granger-causes another region. The results are presented 
in Table 4. 

Table 4. Granger causality results for the number of fu cases - all regions. 

Null hypothesis p-value Lag 
Central America does not Granger-cause Europe 0.05 3 
Central America does not Granger-cause Western Pacifc 0.00 3 

Note that the results in Table 4 indicate that the incidence in Central America Granger-
causes the incidence of the European and Western Pacifc Regions. The most likely jus-
tifcation for the Granger causality of Central America in other regions is the occurrence 
of the swine fu (H1N1) in the years 2009 and 2010. Mexico is considered the origin of 
the swine fu pandemic, which justifes the increase in the incidence of infuenza frst in 
the Central America and then in the other regions. 

5.1.2. Genetic diversity 

In this section, the data described in subsection 4.2 (genetic diversity) are used to ex-
amine the infuence among different regions under the prism of Granger causality. The 
initial interest is to verify whether the number of fu cases in Brazil can be explained by 
the past genetic diversity data from other regions. Granger causality tests were used to 
assess whether H1N1 and H3N2 genetic diversity in North America, Asia and around 
the globe (termed All) affect Brazilian incidence. The results are shown in Table 5. 
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Table 5. Granger causality results considering genetic diversity data as covariate and number 
of cases in Brazil as response. 

Null hypothesis p-value 
North America (H1N1) does not Granger-cause Brazil 0.85 
All (H1N1) does not Granger-cause Brazil 0.84 
Asia (H1N1) does not Granger-cause Brazil 0.84 
North America (H3N2) does not Granger-cause Brazil 0.69 
All (H3N2) does not Granger-cause Brazil 0.42 
Asia (H3N2) does not Granger-cause Brazil 0.76 

It can be seen that no genetic diversity Granger-causes Brazil, that is, the measure-
ment of genetic diversity does not help in predicting the present value of the incidence 
of infuenza in Brazil. Given these results, a second analysis was performed to verify 
whether the incidence of other regions can be explained by the genetic diversity data. 
Table 6 presents the all statistically signifcant results. 

Table 6. Granger causality results considering the genetic diversity data as covariate and num-
ber of cases or genetic data in other regions as responses. 

Null hypothesis p-value Lag 
North America (H1N1) does not Granger-cause South Asia (cases) 0.05 3 
Asia (H1N1) does not Granger-cause Central America (cases) 0.00 6 
North America (H1N1) does not Granger-cause Asia (H1N1) 0.01 2 
All (H1N1) does not Granger-cause North America (H1N1) 0.00 2 
All (H1N1) does not Granger-cause Asia (H1N1) 0.00 2 

We conclude that the genetic diversity of Asia (H1N1) helps in predicting the inci-
dence of infuenza in the Central American Region. Furthermore, it shows that North 
American genetic diversity (H1N1) Granger-causes the South Asian cases and H1N1 
diversity on Asia. 

5.2. Time series regression approach 

In this section we present time series regression analysis of the data presented in Sec-
tions 4.1 and 4.2. A classical ARMA approach to model incidence data is presented in 
the Supplementary Material. 

5.2.1. Number of positive fu cases 

We start by considering the data described in Section 4.1 (number of positive fu cases) 
to represent the fu incidence in Brazil (denoted by Bt ), in Europe (Et), in North America 
(At ), in Central America (Ct ), in South America (St), in South Asia (st ) and in Western 
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Pacifc (Wt ) at time t. We applied historical data of the regions considered in the last 
11 months (lags), denoted by Bt−1, · · · ,Bt−11 for Brazil, At−1, · · · ,At−11 for the North 
America and similarly for other regions. We also considered a covariate µt representing 
the monthly average number of positive fu cases in Brazil at time t, t ∈ {1, · · · ,123}, 
calculated as 

µt = 
1 

∑ Bk,#It k∈It 

where, It denotes the set of time indexes in {1, · · · ,123} corresponding to the same 
month as t and #It denotes the cardinality of It . Notice that only observed values were 
used to calculate µt . For modelling purposes, Bt was the response variable, while lagged 
data from Brazil and all other regions were used as covariates. 

5.2.2. Modelling 

Due to the large number of explanatory variables, we considered three different methods 
to ft the data, chosen because of their ability to perform variable selection. The frst one 
was the stepwise backward regression method based on p-values with signifcance level 
0.1, denoted simply by Stepwise model. We also applied the LASSO model consider-
ing two main schemes for model selection: frst, based on cross-validation (leave-one-
out), denoted LASSO CV, which yielded a model with 13 covariates plus the intercept; 

Table 7. Estimation results for the ftted Stepwise, LASSO 5 and LASSO CV models. 

Variables Stepwise LASSO 5 LASSO CV 
Intercept -0.843 60.821 44.089 
Bt−1 0.84700 0.52843 0.68871 
Bt−2 -0.34248 − -0.15364 
At−2 -0.00414 − − 

At−4 − 0.00019 0.00086 
Ct−1 0.01515 − 0.00095 
Ct−3 -0.02490 − -0.01308 
Et−1 0.00535 − 0.00180 
Et−2 0.01117 0.00548 0.00650 
Et−3 − 0.00242 0.00084 
Et−4 0.00642 − 0.00230 
Et−8 0.00255 − − 

µt − 0.01431 − 

st−4 − − -0.00173 
st−9 − − 0.00066 
Wt−7 − − -0.00158 
Wt−9 − − 0.00138 
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and second, since this model is somewhat large, a more parsimonious alternative using 
the “one-standard-error” rule (Hastie et al., 2009, section 7.10), selecting a model with 
fve variables denoted by LASSO 5. Table 7 presents the covariates selected by each 
model and their ftted values. The intercept was always kept. 

Notice that variables Bt−1 (number of positive cases in Brazil at time t − 1) and Et−2 
(number of positive cases in Europe at time t − 2) are the only variables present in all 
ftted models. Another way of interpreting the results is by analysing the coeffcients of 
each variable present in the fnal model. It shows the direction of the impact that the 
explanatory variables have on the response variable Bt . For example, the explanatory 
variable Bt−1, which is included in all models, has a positive coeffcient. This indicates 
that as the number of cases in Brazil at time t −1 increases/decreases, so does the number 
of cases in Brazil at time t. Also noteworthy is that the variable µt appears only in the 
LASSO 5 model. 

5.2.3. Forecast 

After modelling, we perform an in-sample and out-of-sample forecast exercise for the 
data considering each ftted model. Data from October 2008 to December 2018 were 
used for modelling purposes, while data from January 2019 to November 2019 were 
reserved for out-of-sample comparison. Hence, the forecast horizon in all cases is h = 11 
steps ahead. 

Notice that, since we are using a time series regression approach with several past 
values of regressors entering in the fnal model, these values must be updated if out-
of-sample forecast values are to be obtained (that is, in order to obtain future values of 
the response variable, we need future values for the covariates as well). In order to do 
that we employed two approaches. The frst approach employed is known as h one-step 
ahead forecast. In this case, for each incremental step ahead we updated the covariates 
with their observed values. This is only useful for small forecast horizons or to forecast 
short run dynamics, as in the case of fu data. 

In the second approach, known simply as h-steps ahead forecast, we did not use any 
knowledge about future values of the covariates. Instead we forecasted their values us-
ing some plausible method. Of course, there are several ways to do that. We forecasted 
future values of the covariates by using their monthly average calculated from the ob-
served data, including Brazil. This second approach can be employed for forecasting 
in practice. Figures 2 to 4 show both, the in-sample and out-of-sample (for h = 11) 
one-step ahead forecast values (the regressor values are updated at each step, including 
out-of-sample) compared to the observed ones (in black). 

It can be seen that both in-sample and out-of-sample predictions appear to be rea-
sonable for all models, except in a few epochs, such as the year 2011, where the models 
predicted a peak that did not occur, or the frst half of 2015, where the peak was overes-
timated by all models. Since we are using a non-restricted time series approach to model 
the data, we obtain a few negative values for the incidence, located at the valleys. These 
negative values are not considered a problem because the main focus of the study of fu 
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Figure 2. In-sample and out-of-sample one-step ahead forecasts for the LASSO 5 model. 
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Figure 3. In-sample and out-of-sample one-step ahead forecasts for the LASSO CV model. 
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Figure 4. In-sample and out-of-sample one-step ahead forecasts for the Stepwise model. 
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pandemics are the peaks of the curve, not its valleys. Table 8 presents in-sample and 
out-of-sample mean square error (MSE) and mean absolute percentage error (MAPE) of 
forecasting. The best results in each case are highlighted in red. 

Table 8. Mean square error and mean absolute percentage error of the in-sample and 11 one-
step ahead forecasts for each of the 3 ftted models. 

Measures/Models Stepwise LASSO 5 LASSO CV 
MSE (in-sample) 31586.7 52788.1 38354.5 
MSE (out-of-sample) 43228.2 21805.3 25860.9 
MAPE (in-sample) 91.2 105.2 81.5 
MAPE (out-of-sample) 81.2 64.3 68.7 

The Stepwise model and the LASSO CV were the best performers in-sample, while 
for out-of-sample, the LASSO 5 model performed best both in terms of MSE and MAPE. 
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Figure 5. 11-steps ahead forecasts for the different ftted models compared to the observed 
values (in black). 

In a second moment, we analyze the out-of-sample h-steps ahead forecast ability of 
the ftted models, for h ∈ {1, · · · ,11}. Figure 5 presents the forecasted values of each 
ftted model along with the observed values (in black). From Figure 5 we observe that 
all models overestimate the number of positive cases until May/April, missing the peak 
that occurred in June and underestimating the number of cases from June to October. For 
comparison purposes, Table 9 presents the mean square error for h-steps ahead forecasts 
for each model. The best results in each forecast horizon are highlighted in red. The 
model presenting the overall best performance was the LASSO 5, which presented the 
lowest MSE in 7 out of the 11 forecast horizons considered, followed by the Stepwise 
which presented overall smallest MSE in the remaining 4 forecast horizons. Interest-
ingly, the LASSO 5 uniformly outperforms the LASSO CV in all forecast horizons. 
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This poor forecasting performance of the LASSO CV may be attributed to overftting. 
Stepwise and LASSO CV presented similar performances. 

Table 9. Mean squared error of the h-steps ahead forecast for each ftted model. The best 
forecast in terms of MSE for each horizon is presented in red. 

Horizon/Models Stepwise LASSO 5 LASSO CV 
1-step ahead 5904.13 6346.41 7417.52 
2-steps ahead 2958.38 5712.86 7110.19 
3-steps ahead 8736.86 8895.71 11549.42 
4-steps ahead 12323.75 7305.05 12114.87 
5-steps ahead 10129.28 6349.04 9697.23 
6-steps ahead 21543.97 21599.59 21646.22 
7-steps ahead 23130.21 23092.44 23917.95 
8-steps ahead 21381.31 20206.98 21442.05 
9-steps ahead 20962.64 18254.56 20149.43 
10-steps ahead 18934.49 16485.37 18134.53 
11-steps ahead 17653.39 15798.62 17005.14 

5.2.4. Genetic diversity 

In this section we consider both the number of positive fu cases and the genetic diversity 
data (described in sections 4.1 and 4.2) to characterize the fu incidence in Brazil. We 
apply similar notation to Section 5.2.1. The genetic diversity in North America at time 
t is denoted by Nt for the H1N1 subtype and nt for the H3N2 subtype, in Asia by Pt 

for the H1N1 subtype and pt for the H3N2, and Mt (H1N1) and mt (H3N2) denote the 
global genetic diversity. Again the response variable is taken as Bt while lagged variables 
related to other regions, including genetic data, will be used as covariates. 

We aim to explain the incidence of infuenza in Brazil at time t (Bt) by using the 
historical incidence and genetic diversity data of the regions considered in the last 6 
months (lags). The same three methods of Section 5.2.1 were considered. Table 10 
presents the selected covariates and their respective coeffcients, for each model. 

From Table 10, we observe that the incidence variables that appear in all three models 
are Bt−1 (number of positive cases in Brazil with one lag), Et−2 (number of positive cases 
in Europe with two lags) and At−4 (number of positive cases in North America with four 
lags). Furthermore, when analyzing the variables related to genetic diversity, we observe 
that the covariates Pt−4 (genetic diversity of the H1N1 fu in Asia with four lags) and Pt−5 
(genetic diversity of the H1N1 fu in Asia with fve lags) appear in two of the tree models. 
After model ftting, we proceed with an in-sample and out-of-sample forecast analysis 
similar to the one presented in Subsection 5.2.3. To perform the out-of-sample analysis, 
it is necessary to forecast future values of covariates entering the model. Covariates 
related to incidence are forecasted in the same way as in Subsection 5.2.1. The genetic 
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Figure 6. In-sample and out-of-sample one-step ahead forecasts for the LASSO 5 model. 
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Figure 7. In-sample and out-of-sample one-step ahead forecasts for the LASSO with cross-
validation model. 
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Figure 8. In-sample and out-of-sample one-step ahead forecasts for the Stepwise model. 
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Table 10. Estimation results for the ftted Stepwise, LASSO 5 and LASSO CV models. 

Variables Stepwise LASSO 5 LASSO CV 
Intercept 38.789 54.872 55.460 
Bt−1 0.85717 0.50499 0.60024 
Bt−2 -0.34293 − -0.03383 
Bt−3 − − -0.04411 
At−4 0.00286 0.00037 0.00166 
Ct−2 0.02204 − − 

Ct−3 -0.03545 − -0.00946 
St−2 0.02604 − − 

Et−1 − − 0.00161 
Et−2 0.00893 0.00535 0.00609 
Et−3 − 0.00219 0.00086 
Et−4 − − 0.00053 
st−4 − − -0.00957 
Wt−6 − − -0.00094 
µt − 0.07586 0.05940 
Mt−5 − − -837.80 
Pt−4 6482.74 − 3827.28 
Pt−5 -9221.79 − -3156.14 

diversity time series, however, do not present any evident trend or seasonality, as in 
the incidence data (see the time series plots presented in the supplementary material). 
Hence, the same approach of considering monthly averages is not adequate for the ge-
netic diversity data. To overcome this diffculty, we consider a static approach: future 
values of genetic data are forecasted considering the average of the respective data ob-
served from January to December, 2018. Figures 6 to 8 show the one-step ahead fore-
casted values in and out-of-sample for each model along with the observed values (in 
black). 

Table 11. Mean square error and mean absolute percentage error of forecast for each model. 

Measures/Models Stepwise LASSO 5 LASSO CV 
MSE (in-sample) 34567.0 55306.2 42026.3 
MSE (out-of-sample) 47623.4 27781.2 36757.7 
MAPE (in-sample) 91.2 110.9 89.8 
MAPE (out-of-sample) 66.5 53.1 66.7 

Note that, in general, the in-sample and out-of-sample predictions appear to be rea-
sonable for all considered models. Some peaks, such as the ones in years 2013, 2016 and 
2018, are underestimated by the models, while others, such as 2011 and 2015 are overes-
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timated. To compare the models regarding their predictive abilities, Table 11 presents the 
MSE and MAPE for the one-step ahead forecast for each model, in and out-of-sample. 
The best results in each case are highlighted in red. 

Analogously to the results obtained in Section 5.2.1, analyzing the MSE we observe 
that the Stepwise model and the LASSO CV are the best perform in terms of in-sample 
forecast while the LASSO 5 is the best performer out-of-sample. Again, the main source 
of forecast error are a few peaks in the data not very well identifed by any of the models, 
more noticeably, 2011, 2015 and 2017. 
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Figure 9. 11-steps ahead forecasts for the different ftted models compared to the observed 
values (in black). 

Table 12. Mean squared error of the h-steps ahead forecast for each ftted model. The best 
forecast in terms of MSE for each horizon is presented in red. 

Horizon/Model Stepwise LASSO 5 LASSO CV 
1-step ahead 3512.23 5701.45 7945.86 
2-steps ahead 3428.68 5255.09 8122.44 
3-steps ahead 9823.78 9153.06 13233.38 
4-steps ahead 17825.10 8076.48 14200.18 
5-steps ahead 14567.40 6721.95 11384.56 
6-steps ahead 26605.43 20228.37 22796.37 
7-steps ahead 26475.39 21693.13 23918.67 
8-steps ahead 23179.94 18985.19 21037.13 
9-steps ahead 21671.71 17174.71 19696.15 
10-steps ahead 19556.80 15509.01 17726.74 
11-steps ahead 18847.90 14851.20 16581.80 

In a second step, we analyse the models’ predictive capabilities considering forecast 
horizons from 1 to 11-steps ahead, in the same spirit as in Subsection 5.2.1. Figure 9 
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presents the forecasted values for the different models, as well as the observed values 
(in black). We observe that all models overestimate the number of positive cases until 
May/April, missing the peak that occurred in June and underestimating the number of 
cases from June to October. A comparison between the models is presented in Table 12, 
where we present mean squared error for each considered h-steps ahead forecast. The 
results show that no model uniformly outperforms all others. The model with the best 
results was the LASSO 5, which displayed the lowest MSE in 9 out of the 11 forecast 
horizons considered. Again the LASSO CV is uniformly outperformed by LASSO 5, 
while compared to Stepwise, the LASSO CV wins in middle to long horizons. 

5.2.5. Comparison of forecasts 

We now compare the results presented in Subsections 5.2.1 and 5.2.4. The interest lies 
in comparing the models with only incidence data with the models with incidence and 
genetic diversity data, regarding their predictive power. In the graphs below, the term 
“Incidence” will be used for models containing only incidence data while the term “Ge-
netic” will be used for models considering incidence and genetic diversity data. Figure 
10 shows the MSE obtained in the out-of-sample forecast for all models. It can be 
seen that in all cases the models based on “Incidence” presented more accurate forecasts 
(lower MSE). Furthermore, the LASSO 5 proved to be the overall best model in terms 
of prediction capabilities in all cases. 
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Figure 10. Comparison of the mean squared errors (MSE) between the incidence data and the 
genetic data in the 11 one-step ahead forecasts. 

Figure 11 presents time series plots of the MSE for h-steps ahead forecast for each 
model considering the incidence and genetic data. For the Stepwise model, the out-of-
sample forecasts produced using the incidence data present smaller MSE in all horizons 
but h = 1. For the LASSO, the models based on the genetic data presented smaller MSE 
in the long run, that is, for all horizons h ≥ 6 for the LASSO 5 and h ≥ 7 for the LASSO 
CV. In the short run, for the LASSO CV, the model based on incidence data performs 
best, while there is no clear pattern in the case of the LASSO 5 model. Ultimately, this 
indicates that including genetic diversity data, at least as measured here, does not seem to 
add much predictive value to the models. However, there are many other approaches to 
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assess genetic diversity that can be explored and might prove more valuable for incidence 
modelling. 
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Figure 11. Comparison of the h-steps ahead forecasts mean squared errors between the inci-
dence and genetic data for the Stepwise (upper panel), LASSO 5 and LASSO CV (lower panel) 
models. 

5.3. Residual analysis 

Residual analysis is of paramount importance in time series analysis, being performed 
after model identifcation and ftting. In this section we present a residual analysis re-
lated to the models ftted in the previous sections, focusing mainly in portmanteau and 
normality tests. Observe, however, that the only model that actually requires a residual 
analysis is the Stepwise, as it is the only one based on p-values. Nevertheless, for the 
sake of exploration, we shall proceed with the residual analysis for all models. To assess 
the presence of correlation in the residuals, we perform the widely applied Ljung-Box 
test (Ljung, 1986). Recall that the null hypothesis for the Ljung-Box test is that all cor-
relations up to a specifed lag m are null. In this analysis we consider m = 20. We also 
test the residuals for normality by using Shapiro-Wilk’s test (Shapiro and Wilk, 1965), 
for which the null hypothesis is that the tested sample comes from a normally distributed 
population. 

The Ljung-Box test’s results for the residuals of all models presented in Sections 
5.2.1 (fu incidence) and 5.2.4 (genetic data) are presented in Table 13. From the results 
we conclude that in all cases the residuals present no correlation up to lag m = 20, at any 
reasonable signifcance level. 
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Table 13. p-values of the Ljung-Box test applied to the ftted models’ residuals with m = 20. 

Dataset 
Stepwise 

Models 
LASSO 5 LASSO CV 

Incidence 0.9561 0.2096 0.8212 
Genetic 0.9922 0.3805 0.4770 

As for the Shapiro-Wilk test, it is clear from the in-sample forecasts (Figures 2 to 4 
and Figures 6 to 8) that the residual will present outliers due to underestimation of peak 
values. These outliers may substantially affect the Shapiro-Wilk test. To minimize this 
effect, we removed some of the outliers by using two hard thresholds: we eliminate any 
points with magnitude larger than 400 (threshold 1) and 200 (threshold 2), in absolute 
value. Table 14 summarizes the results by presenting the p-values of the Shapiro-Wilk 
test with and without the removal of outliers, along with the number of outliers removed 
in each case. From the results we observe that the residuals of all models reject the null 
hypothesis in the Shapiro-Wilk test with very small p-values. The Stepwise model for 
the incidence data is the only one that do not reject the null hypothesis in the Shapiro-
Wilk’s test after applying threshold 1, which trimmed out only 5 points. The LASSO CV 
model for all data and Stepwise with genetic data did not reject at the 0.05 signifcance 
level the null hypothesis in Shapiro-Wilk’s test after applying threshold 2, at the cost 
of removing several points. The Shapiro-Wilk’s test applied to the residuals from the 
LASSO 5 model rejected the null hypothesis in all cases. 

Table 14. p-values for the Shapiro-Wilk test applied to the complete residuals and upon remov-
ing points with magnitude greater than 400 and 200, in absolute value. The number of points 
removed for each threshold applied is presented in parenthesis. 

Dataset Threshold 
Models 

Stepwise LASSO 5 LASSO CV 

Incidence 
complete 

400 
200 

< 0.0001 
0.3012(5) 

− 

< 0.0001 
< 0.0001(9) 
0.0089(23) 

< 0.0001 
0.0003(5) 
0.1881(19) 

Genetic 
complete 

400 
200 

< 0.0001 
0.0046(4) 
0.2357(26) 

< 0.0001 
< 0.0001(9) 
0.0015(28) 

< 0.0001 
< 0.0001(6) 
0.0952(25) 

Finally, another important diagnostic is the homoscedasticity of the residuals for the 
ftted Stepwise model, the only one of our procedures that relies on distributional as-
sumptions for model selection. Figure 12 presents simple time series plot and observed 
vs. ftted values for the residuals obtained from the Stepwise model considering the In-
cidence and Genetic data. From the time series plot we observe a clear increase in vari-
ance in both residuals, also evident in the residual versus ftted models. These fndings 
are corroborated by Breusch-Pagan and White’s tests (see Greene, 2012, section 11.4) 
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(not shown). The presence of heteroscedasticity in the model’s residuals may affect the 
p-values obtained from Wald’s test, implying that the ftted model may be incorrectly 
specifed in the sense that the procedure may have excluded important variables, in-
cluded unimportant ones, or both. This, however, does not diminish its applicability as 
a predictive model. 
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Figure 12. Time series plot (left panel) and observed vs. ftted value (right panel) for the resid-
uals obtained from the ftted Stepwise model. Plots related to incidence are shown in the upper 
panel while genetic ones are shown in the lower panel. 

6. Discussion 

In this paper we considered the problem of modelling and forecasting the incidence of 
infuenza virus in Brazil at a given month t. Here, FluNet positive fu counts were used 
as a proxy for incidence. The objective is to use temporal information (fu historical time 
series data) to model the number of cases in Brazil based on recent data on the number 
of cases and the genetic diversity observed in other regions. Incidentally, the study also 
sheds light on the migratory dynamics of the infuenza virus from North America and 
Europe to Brazil. 

In Section 5.1 (Granger causality analysis) we found evidence that past values of 
infuenza incidence in the European and South American Regions help to predict the 
present value of infuenza incidence in Brazil. We also discovered evidence of an indirect 
effect of the Western Pacifc Region and Central America in Brazil. These results are 
intriguing when considering updating vaccines in Brazil with data related to strains from 
Europe from previous seasons. 

As for the time series regression approach (Section 5.2), it was found that only two 
variables are present in all considered models, namely: Bt−1 (number of positive fu 
cases in Brazil with one lag), and Et−2 (number of positive cases in Europe with two 
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lags), while At−4 (number of positive cases in North America with four lags) was present 
in fve out of six models. It is interesting to note that most predictors from northern 
hemisphere regions appear with lags of 3–5, possibly capturing seasonal properties of 
the dynamic. Additionally, while Asian genetic diversity measures appear as relevant 
predictors, the global genetic diversities do not. 

The proposed models were also evaluated regarding their forecast capabilities. Con-
sidering h-steps ahead out-of-sample forecast, in both analysis of Sections 5.2.1 and 
5.2.4, the model that overall best predicted the incidence of infuenza in Brazil (in terms 
of MSE) in the short run was the Stepwise and in the middle to long run, the LASSO 
with 5 variables. The LASSO CV model performed poorly in all cases. This might be a 
consequence of overftting since the LASSO CV is the one with most variables included 
among the considered models. 

The Covid19 pandemic has largely impacted human global circulation and, conse-
quently, the global dynamics of infuenza transmission. Some lineages have remained 
present in local circulation and others have all but disappeared (such as B/Yamagata). 
Overall, the FluNet numbers of positive cases have drastically decreased. It is expected 
that once circulation returns to prepandemic levels infuenza cases will rise again, how-
ever it is still unclear to what degree the previous transmission patterns will be reestab-
lished or if we will see new dynamics. It has even been argued that we might see more 
severe infuenza epidemics due to changes in immunity related to low circulation periods 
(Dhanasekaran et al., 2021). 

Ultimately, it is likely that infuenza incidence will once more be largely determined 
by a global dynamic, and thus modelling the Brazilian cases based on the number of 
cases in other regions will remain relevant. Furthermore, this same approach might 
prove valuable to other countries, particularly those in the global south, similarly placed 
in the global dynamics. 

Overall, our results for short and long run forecasts (h = 1 and h = 11 steps ahead) 
were fairly good. Together with the relationships outlined by the Granger-causality anal-
ysis they help shed light on the global determinants of infuenza incidence in Brazil. 
Time will tell if the particular predictors selected here will remain relevant, and in this 
sense, this work can be seen as historical record to be compared with the postpandemic 
dynamics. Nevertheless, the overall approach highlights a modelling concept which can 
potentially be useful in the development of public health policies regarding epidemic 
management and immunizations. 
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