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Transport systems analysis: models and data 

´1Jaume Barcelo 

Abstract  

Rapid advancements in new technologies, especially information and communication 
technologies (ICT), have signifcantly increased the number of sensors that capture 
data, namely those embedded in mobile devices. This wealth of data has garnered 
particular interest in analyzing transport systems, with some researchers arguing that 
the data alone are suffcient enough to render transport models unnecessary. However, 
this paper takes a contrary position and holds that models and data are not mutually 
exclusive but rather depend upon each other. Transport models are built upon estab-
lished families of optimization and simulation approaches, and their development aligns 
with the scientifc principles of operations research, which involves acquiring knowledge 
to derive modeling hypotheses. We provide an overview of these modeling principles 
and their application to transport systems, presenting numerous models that vary ac-
cording to study objectives and corresponding modeling hypotheses. The data required 
for building, calibrating, and validating selected models are discussed, along with exam-
ples of using data analytics techniques to collect and handle the data supplied by ICT 
applications. The paper concludes with some comments on current and future trends. 

MSC: 90B20, 90B10, 90-08, 90-C25, 90B06. 
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1.  Introductory  remarks  on  system  modeling  and  data  

Operations research (OR) has been a scientifc discipline since its inception, as noted by 
Blackett (1948), Ackoff, Gupta and Minas (1965), and it adheres to the methodologi-
cal principles of science. Barceló (2015) states that “systems are observed; observations 
consist of measurements that are data or, in other words, facts from which laws can be de-
rived and which can be articulated in the body of theories”. An epistemological chain in 
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which, for Mario Bunge (1960), the theories are usually formalized in terms of mathe-
matical models, representing parts of the reality, which can be descriptive or predictive. 

Barceló further elaborates that while a descriptive model explains what happens, a 
description is often insuffcient and it is typically necessary to delve into how things hap-
pen and, if possible, why. This gives rise to a need for predictive models. In other words, 
science usually aims to be predictive. To these epistemological foundations, especially 
in the case of OR, we could also add: “the recognition of uncertainty as an inherent 
component of observed reality, and the falsifability principle of Popper (1972), a cor-
nerstone of the scientifc method: the theories or models are true until further empirical 
evidence proves them false”. 

In accordance with Heavens, Ward and Natalie (2013), we adopt the perspective that 
“a model formally organizes what we know, or we think we know, about a system to pre-
dict how it might behave in the present, future or past, as well as how it might respond 
to external infuence” Furthermore, the frst methodological step in studying a system 
involves data acquisition, which is carried out in accordance with the study objectives 
and available technologies for making observations, specifcally through measurements. 
The underlying assumption of this step is that data contain information about the phe-
nomenon under study, for which the data must be suitably processed and analyzed in or-
der to fnd the necessary information. In other words, we can deduce how systems work 
by acquiring knowledge about them and translating this understanding into “laws” or 
modeling hypotheses, with the formal structure of these hypotheses defning the system 
model. In what follows, our present research on transport systems will employ mathe-
matical formalism in terms of equations while also relying on implicit representations 
such as simulation models. 

The model-building process consists of translating the modeling hypothesis, derived 
from the acquired knowledge, into appropriate formal terms that align with the study 
objectives. In the realm of operations research or similar perspectives adopted when 
analyzing transport systems, the models of analyzed systems serve a crucial purpose. 
Beyond acquiring knowledge about the studied system, their primary objective is to 
generate new insights by answering what-if questions regarding the system’s response 
to external infuences, such as transport policies that can impact its behavior. In other 
words, in the context addressed in this paper, a key objective of the modeling task is to 
utilize the model as the core component of a decision support system, aimed at facili-
tating optimal decision-making to enhance the system’s response. Figure 1 provides a 
conceptual diagram for visualizing this methodological process. 

Data have traditionally been scarce and costly, especially in the case of transport sys-
tems. However, this situation has dramatically changed with the advent and widespread 
adoption of new information and communication technologies (ICT), such that we are 
often overwhelmed by the deluge of data. This has led some to claim that the scientifc 
method is no longer necessary. As Anderson (2008) famously argued, “Petabytes allow 
us to say: ‘Correlation is enough.’ [. . . ] Correlation supersedes causation, and science 
can advance even without coherent models, unifed theories, or really any mechanistic 
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SYSTEM

DEFINITION OF 

OBJECTIVES & 

DATA 

COLLECTION

DATA 

PROCESSING        

(DATA 

ANALYTICS)

KNOWLEDGE 

ACQUSITION

TRANSLATION 
OF KNOWLEDGE 
INTO MODELING 

HYPOTHESIS

BUILDING AN AD 
HOC MODEL 

DEPENDING ON 
OBJECTIVES

KNOWLEDGE 
GENERATION 
FROM MODEL

DECISION 
MAKING

MODEL 
CALIBRATION 

& 

VALIDATION

KPIs 
EVALUATION

DATA COLLECTION & KNOWLEDGE ACQUISITION
K

N
O

W
LE

D
G

E EX
P

LO
ITA

TIO
N

 &
     

M
O

D
E

L B
U

ILD
IN

G

MODEL VALIDATION & USE: DECISION MAKING

Figure 1. Our methodological scheme for building and using models. 

explanation at all.” Nevertheless, it is essential to heed the advice of the International 
Transport Forum (ITF, 2015), among many others. In the specifc context of transport 
systems, ITF warns that the availability of massive and near real-time datasets can cre-
ate the illusion of mirroring reality and tempt us to assume that data alone provide an 
accurate representation of reality. Consequently, there is a perceived notion that we can 
dispense with classic statistical tests regarding bias, validity, explanatory theories, and 
models. However, numerous examples demonstrate that data analytics have failed to 
provide long-term robust predictive results. Therefore, there is a need for algorithms 
that consistently detect patterns and mitigate bias in the data. These techniques are well 
suited to discovering less obvious or even hidden correlations in the initial data. We 
must bear in mind not only that correlation does not imply causation, but that they are 
completely different. Although correlated variables may reveal a possible causal rela-
tionship in the data, they do not explain which correlations are meaningful or predictive. 
Even if a correlation proves to be robust over a given period, data analytics alone cannot 
provide insights into factors that may cause the correlation to break down or lead to the 
emergence of new patterns. 

The approach adopted in this paper assumes that both data and models are necessary. 
This notion is succinctly encapsulated by an anonymous quotation, which states that 
“Data without models are just numbers, but models without data are just stories.” 

The methodological approach summarized in Figure 1 highlights another relevant 
aspect: the objectives driving the analysis of the system. 

Figure 2. The Minsky triad. 
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These objectives serve as a guiding force for determining the relevant and necessary 
data to collect, as well as for constructing the system model. Thus, different models of 
the same system may exist, depending on the study objectives. Minsky’s proposal in 
1965 (Minsky, 1965) has come to be known as the Minsky triad of system, observer, and 
model (Figure 2), which we can summarize by saying that an object M is considered a 
model of a system S if it can provide valid answers to the questions posed by an observer 
O of that system. 

Consequence: There is no such a thing as the unique model of a system. 

This paper is structured as follows. Section 2 demonstrates how to apply the Min-
sky triad to transport systems, presenting a summary of the main alternative modeling 
approaches used in transport systems analysis. These approaches vary depending on the 
objectives and underlying modeling hypotheses. The section identifes the data require-
ments for each type of model and discusses the role played by data and the criteria for 
determining what makes a model useful. Section 3 provides some examples of the data 
needed to build these models, as well as how they are sourced through ICT applications 
and the necessary data analytics processes that render them usable. Section 4 summa-
rizes the main conclusions and recommendations drawn from the paper, along with an 
overview of current and future trends in transport modeling. 

2. Modeling transport systems 

The pervasive penetration of the automobile as a private motorized transportation mode 
was driven by the economic interests of major manufacturers in the 1930s and gained 
momentum following the Second World War, resulting in a profound social and urban 
transformation of cities and metropolitan areas. The phenomena of urban sprawl de-
scribed by Barceló (2019) emerged as a consequence of an unplanned and anarchic ex-
pansion due to a combination of factors: the relative affuence shifting from rural to city 
populations, lifestyle changes, and, particularly, advancements in individual motorized 
mobility. The latter factor led to a spatial separation of residential and working areas, 
made possible by the development of transportation systems that in turn led to the well-
known consequences that we call traffc congestion. 

The main consequence was a substantial demand for the expansion of road networks, 
thereby necessitating the development of appropriate tools for rational planning pro-
cesses to assist decision-makers in determining which infrastructures to develop and how 
to meet the growing demand. Almost at the same time, the escalating traffc congestion 
sparked interest in understanding the dynamics of traffc fows and causes of congestion. 
The hope was that better comprehension of these factors would improve management 
policies and possibly alleviate the negative impacts associated with congestion. 

Depending on the objectives, various models have been developed to analyze trans-
port systems. This section provides a concise overview of the primary models that re-
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fect a complementary understanding of transport systems, their associated modeling 
hypotheses, and their translation into mathematical models. Additionally, it provides 
insight into the data required to support these models, which are the following: 

a. Models aimed at understanding how travelers use the existing road transport net-
work to navigate from their origins to destinations in a given geographic area. 
These models support the long-term planning of transport infrastructures and are 
known as “static traffc assignment models.” 

b. Models for understanding the dynamics of traffc fows. 

• b.1 Macroscopic models based on traffc fow theory, with an aggregated perspec-
tive of fow dynamics. 

• b.2 Microscopic models that describe fow dynamics by considering the individual 
components constituting the fow. 

c. Models explicitly accounting for the dynamics of traffc fows. 

• c.1 Dynamic assignment models that explicitly account for time dependencies. 
These either analytically describe traffc fows or approximate their dynamics 
through simulation. 

• c.2 Microscopic simulation models that capture the individual dynamics of vehi-
cles within the traffc fow. 

Note: The following focuses solely on the traffc fows of passenger cars. Public 
transport requires a similar but distinct modeling approach with specifc features that are 
different from passenger cars. Including models for public transport in this paper would 
make it excessively long. 

2.1. Static traffc assignment models 

Transportation analysis typically revolves around understanding traffc patterns in a given 
geographic area, most frequently an urban or metropolitan area spanned by a transporta-
tion network. The goal is to gain insight into how the transport demand (i.e., the vol-
ume of trips in an area) uses the transport infrastructure under certain conditions. This 
transport demand is commonly defned in terms of an origin-to-destination (OD) matrix, 
X , whose entries (r,s) represent the number of trips from an origin r to a destination 
s. From a practical point of view, the study area is split into many transport analysis 
zones (TAZ) using well-established criteria that consider factors such as surface area 
and socioeconomic data obtained from various sources, for example, census tracts or 
population statistics (Ortúzar and Willumsen, 2011). 
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Figure 3. Conceptual diagram of the four-step model. 

Figure 3 conceptually summarizes the logic diagram of the conventional planning 
process approach known as the four-step model, which has become a standard in trans-
port modeling since the Second World War, due to a need to manage the consequences 
of post-war development and economic growth. It is based on the landmark study by 
Mitchell and Rapkin (1954), who applied analytical methods to establish a comprehen-
sive framework. However, this model has defciencies and limitations that have been 
widely discussed (McNally, 2000). The reasons for mentioning this model are manifold. 
First, it provides an overview of the modeling exercise described in Section 1, applied 
specifcally to transport systems. Second, it helps identify the comprehensive path of 
intermediate models that led to the targeted model in this paper, which is the traffc as-
signment model. Finally, it serves to highlight the data requirements and the type of data 
needed to render the model operational. 

In summary, assuming a homogeneous zonal splitting of the TAZ and using associ-
ated socioeconomic attributes such as population and economic activities, econometric 
models can be constructed to estimate the total number of trips Or generated by a given 
origin r within a specifc period (e.g., an average working day), considering all possi-
ble destinations within the other TAZ of that area. Similarly, equivalent attributes allow 
building econometric models to estimate the total number of trips Ds attracted by a given 
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destination s. Building such generation and attraction models for all origins and desti-
nations is the frst step. The second step consists of estimating the number of trips xrs 

leaving origin r for destination s, which yields an estimation of the origin to destination 
(OD) matrix M of the total number of trips between all OD pairs (r,s) without distin-
guishing which transportation mode is being used. The third step involves the modal 
split model, whose purpose is to discriminate among available transportation modes, 
such as passenger cars, public transport bus, or public transport metro. The modal split 
model typically relies on discrete choice models that consider the perceived utilities of 
the travelers, as discussed by Ben-Akiva and Lerman (1985), Ben-Akiva and Bierlaire 
(1999). In the case of passenger cars, the fourth step is the traffc assignment step. 

Traffc assignment refers to the process of allocating traffc demand, represented by 
an origin-destination matrix, onto the transportation network. This enables computing 
traffc fows on network links and offers insights into trip behavior and accessibility to 
activity locations. Figure 4 illustrates the four steps applied to the frst crown of the 
Metropolitan Area of Barcelona, where frst crown refers to the continuum of the 18 
most populated municipalities including the city. 

(1) Traffic Analysis Zones (TAZ) (2) Demand Model OD

(3) Supply Model – Transport Network (4) Traffic Assignment

Figure 4. (1) The partitioning of the frst crown into TAZ. (2) The correspondence between the 
centroids representing an origin-destination pair for the subarea corresponding to the central 
business district of the city and the associated OD matrix. (3) Highlighting of the main arterials 
of the road network of the frst crown. (4) The traffc fows resulting from a multimodal traffc 
assignment, with car traffc fows in red, bus fows in blue, and metro fows in orange. The 
thickness of the lines scales the intensity of the depicted fows. 

The underlying modeling hypothesis is that travelers move from origins to destina-
tions in the network by selecting available routes based on behavioral choices governed 
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by certain rules. The characteristics of a traffc assignment procedure are determined 
by this key modeling hypothesis that is based on the concept of user equilibrium, which 
assumes that travelers try to minimize their individual travel times by choosing what 
they perceive to be the shortest routes under prevailing traffc conditions. This modeling 
hypothesis is formulated in terms of Wardrop’s frst principle (Wardrop, 1952): 

The journey times on all the routes actually used are equal, and less than 
those which would be experienced by a single vehicle on any unused route. 

Traffc assignment models based on this principle are known as user equilibrium models, 
which differ from models whose objective is to optimize the total system travel time 
independently of individual preferences. For a more in-depth exploration that will not 
be considered here, see Sheff (1985), Florian and Hearn (1995), and Patriksson (1994). 
Florian and Hearn (1995) demonstrated that when the path fows xrsp from origin r to 
destination s along path p, with path costs ttrsp, they must satisfy: 

(ttrsp − θrs) xrsp = 0 ∀p ∈ Krs ∀(r,s) ∈ I (1) 

ttrsp − θrs ≥ 0 ∀p ∈ Krs ∀(r,s) ∈ I (2) 

ttrsp, θrs, xrsp ≥ 0 ∀p ∈ Krs ∀(r,s) ∈ I 

and the fow balancing equations: 

(3) 

∑ xrsp = Xrs, ∀(r,s) ∈ I 
∀p∈Krs 

(4) 

where θrs image1 is the cost of the shortest path from r to s, Krs is the set of all available 
paths from r to s, I is the set of all origin-destination pairs (r,s) in the network and Xrs 

is the demand (number of trips) from r to s. Then, these fows are in an equilibrium that 
satisfes Wardrop’s principle. Effectively, if path p from origin r to destination s carries 
a fow xrsp > 0, then the frst equation is satisfed only if the path cost ttrsp is equal to 
the minimum path cost θrs , that is, ttrsp − θrs = 0 for all paths from r to s, as required 
by Wardrop’s principle. Reciprocally, if the path cost ttrsp is greater than the minimum 
path cost θrs, that is ttrsp − θrs > 0, then satisfying the frst equation requires that the 
fow on path p from r to s be zero, which is in other words an unused path according to 
Wardrop’s principle. 

Constraints (4) determine when a fow is feasible or not in terms of fow balance. If 
Krs is the set of all paths for the (r,s) OD pair, then the sum of fows on paths for the 
(r,s) OD pair must be equal to the demand Xrs, which is the total number of trips for that 
OD pair. Applying some algebra (Florian and Hearn, 1995; Patriksson, 1994), the static 
traffc assignment model can be formulated in the space of the path feasible fows ℵ in 
terms of the following system of variational inequalities: 

T (X∗ )(X − X∗ ) ≥ 0, ∀X ∈ ℵ (5) 
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where T (X∗) is the vector of path fows, X∗ is the optimal path fow, and ℵ is the set of 
feasible path fows. 

ℵ = 

˜ 

xrsp 

°°°°° ∑ xrsp 

˛ 

= Xrs, ∀(r,s) ∈ I , xrsp > 0 (6) 
∀p∈Krs 

We assume that the road network is modeled in terms of a graph G = (N, A) with a set 
of nodes N representing either intersections or dummy nodes associated with the trans-
portation zones (usually referred to as centroids), and a set A of arcs used to model the 
infrastructure and the connections between centroids to the network. Thus, considering 
the relationships between path fows xrsp and link fows va, ∀a ∈ A, we have: 

˝ 
1 if arc a belongs to path p from r to s 

va = ∑ ∑ xrspδap where (7)
0 otherwise 

(r,s)∈I p∈Krs 

where δap are the entries of the link-path incidence matrix. Assuming that the relation-
ship between path costs ttrsp and link costs ca(ν), then: 

ttrsp = ∑ δapca(ν) (8) 
a∈A 

where the link cost of each arc a ca(ν), ∀a ∈ A is a function of the vector of feasible 
fows ν in all arcs. Again, after some algebra (Florian and Hearn, 1995; Patriksson, 
1994), the equivalent formulation of the model (5) in the space of link fows is: 

C (ν∗ ) [ν − ν∗ ]≥ 0, ν ∈ V (9) 
˛˜ 

V = ν : va = ∑ ∑ xrspδap , ∑ xrsp = Xrs, xrsp ≥ 0, ∀(r,s) ∈ I (10) 
(r,s)∈I p∈Krs ∀p∈Krs 

where V is the set of feasible fows. This the Smith’s (1979) variational inequality. It 
can be proven that there is no equivalent convex optimization problem unless the cost 
functions ca(ν) are separable, meaning their Jacobian is symmetric (Florian and Hearn, 
1995). The simpler separability condition holds when they depend only on the fow in 
the link: 

ca(ν) = ca (va) , ∀a ∈ A (11) 

and demands Xrs are considered constant, independent of travel costs. Thus, the varia-
tional inequality formulation has the following equivalent convex optimization problem 
(Patriksson, 1994; Florian and Hearn 1995): 

˙ 
Min C(v) =  ∑ 

va 

ca(x)dx 
0a∈A 

∑s.t. xrsp = Xrs, ∀(r,s) ∈ I (12) 
∀p∈Krs 

(xrsp ≥ 0 ∀(r,s) ∈ I, p ∈ Krs 

and the defnitional constraint of va (7). 



       

            
                   

             
             
             

                
               

              
               

                
               

        
               

               
             

 
 

   
     

 

              
                 
             

               
   

            
          
                  

 

              
             

              
             

           
             

  
  

     
 

                    
     

 
            

         
   
        

 
           
   

 
     

12 Transport systems analysis: models and data 

Assuming that the separability conditions hold and that therefore the link cost func-
tions of each link a depend only on the volume va in that link, a critical aspect of the 
model-building process is determining the specifc form of the functions ca (va). This as-
sumption is also relevant for numerically solving the model’s algorithms. The link cost 
functions (ca (va), also known as volume delay functions (VDF), quantify the variation 
in travel time within a link a according to the traffc volume va. This refects the depen-
dencies between a link’s travel time and its traffc fow, although the link cost functions 
can also include additional factors indicating the cost (or impedance) of using a link, 
such as toll fares in urban pricing systems. In such cases, the functions represent the 
generalized costs of using the link, and they can be interpreted as indicators of the level 
of service provided by the link. Empirical studies suggest that these costs play a crucial 
role when users decide which routes to take. 

The frst form proposed for the VDF functions was that introduced by the Bureau of 
Public Roads in 1964 and has since become widely known as BPR functions, which are 
still widely used in the current transportation modeling practice. They take the analytical 
form:   βa 

a va ca (va) =  t0 1 +αa (13)
κa 

where ta represents the minimum time to traverse link a, which traffc engineers call0 
the free fow time, which represents the time it takes for a to travel freely through the 
link without competing with other vehicles for the available capacity. κa represent the 
capacity or maximum fow of link a; and αa and βa are link-specifc parameters that 
must be calibrated. 

Although BPR functions are appealing for their simplicity and relative ease of cal-
ibration, they nevertheless exhibit anomalous behavior in certain circumstances. For 
example, when the βa is large, it provides abnormal values for those links with va > 1 in κa 

the frst iterations of the assignment algorithms. This delays the convergence due to the 
anomalous overload of those links. Additionally, for links with traffc loads well below 
their capacity, the link travel time remains nearly equivalent to the free fow time regard-
less of the actual fow. These shortcomings prompted the search for more sophisticated 
functions that overcome these drawbacks. One well-known family of functions, widely 
used in practice, is the family of conical functions proposed by Spiess (1990): 

      2 va va 2αa − 1 
ca (va) = ta 2 − βa − αa 1 − + α2 1 − +β 2 , βa = , αa > 10 a aκa κa 2αa − 2 

(14) 
Akcelik (1991) proposes an alternative family of VDF that explicitly accounts for 

the delays incurred by traffc lights at signalized intersections: 
      2 T  va va 8Ja va ca (va) = ta 1 +0.25 − 1 + − 1 + .  (15)0  at0 κa κa κaT κa  
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where T is the duration of the calibration interval, and Jais the delay factor for link a, as 
defned by: 

d
Ja = 

1 + κaT 

where d is a delay parameter whose value is d = 1 for exponential arrivals, and d = 0.5 
for uniform arrivals. In all cases, the proposed VDF depends on parameters that must be 
calibrated, which requires observational data (Petrik, Moura and Abreu e Silva, 2014; 
Bessa, de Magalhães and Santos, 2021). 

One common characteristic of all the proposed VDFs is that they are convex. Con-
sequently, the symmetric static traffc assignment problem in user equilibrium, defned 
by (11), is a non-linear convex optimization problem. The properties of the convexity 
can provide benefts for the algorithmic approaches to solving the problem numerically. 

Although the traffc assignment problem is a specifc case of the non-linear multi-
commodity network fows problem and can be solved by any of the methods used for 
solving such problems, more effcient algorithms have been developed (LeBlanc, Morlok 
and Pierskalla, 1975; Florian and Nguyen, 1976) by adapting the linear approximation 
method of Frank and Wolfe (1956). Other effcient algorithms (Hearn, Lawphonpanich 
and Ventura, 1987; Lawphongpanich and Hearn, 1984) are based on the restricted sim-
plicial approach, which exploits the properties of the convex polyhedron of feasible so-
lutions defned by the constraints outlined in equation (10). Additionally, the parallel 
tangents method (PARTAN) introduced by Florian, Guelat and Spiess (1987) has proven 
to be effective. This version of the model is preferred by the main professional software 
platforms for transport planning because of its algorithmic ability to computationally 
deal effciently with large road networks, particularly those found in large metropolitan 
areas. Consequently, research efforts have focused on improving these algorithms for 
solving the problem. Other contributions include those analytical approaches inspired 
by the gradient projection methods of Rosen (1960), which exploit the properties of the 
polytope defned by constraints (4) and combine them with the effcient shortest paths 
algorithms. Notable examples of these contributions can be found in Bar-Gera (2002), 
Dial (2006), and Florian and Constantin (2009). 

Criticism of the symmetric traffc assignment problems arises from their inability 
to properly answer more demanding modeling requirements, due to the inaccuracies 
induced by the oversimplifed separability assumptions in the VDF. This may happen, 
for instance, when dealing explicitly with delays at unsignalized intersections or when 
the generalized costs in multiclass planning models depend on vehicle class interactions 
that induce asymmetries. To address these issues, is necessary to develop alternative 
formulations that account for the asymmetries in either the space of the path fows (as 
in equations (5) and (6)) or in the space of the link fows (as in equations (9) and (10)). 
These models, known as asymmetric traffc assignment (ATA) in user equilibrium, are 
more appropriate for tackling the problem. 

Equations (5), (6), (9), and (10) are typical variational inequality (VI) formulations 
in fnite dimension spaces that correspond to an equilibrium principle. In essence, they 
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can be described as follows (Codina, Ibáñez and Barceló, 2015): Given a closed convex 
set X ∈ Rn of candidate solutions in which a continuous function F(·) : X → Rn is 
defned, we look for a special point x such that the projection x − αF(x), for any α > 0, 
onto X results in the point x itself. In other words, if PX [·] is the projection operator on X 
defned by ˜° ˛ ˝˙˛PX [z] = argmin ∥z − x∥2˛x ∈ X2 

then a solution x of the VI verifes the fxed-point relationship 

x = PX [x − F(x)] 

which is equivalent to stating that the solutions to VI problems satisfes the condition 

F(x)T (y − x)≥ 0, ∀y ∈ X 

Rewriting (7) in vector form, we have v = ∆X , and the VI (9) can thus be rewritten 
(Florian and Hearn, 1995) as: 

C (∆X∗ ) [∆X − ∆X∗ ]≥ 0, X ∈ ℵ 

That is 
∆TC (∆X∗ )(X − X∗ )≥ 0, X ∈ ℵ (16) 

which can be solved by the projection algorithm: 
ˆ ° ˝ˇ 

Xl+1 Xl − ρQ−1∆TC ∆T Xl = PQ,ℵ 

and is equivalent to the convex optimization problem: 
° ˝ ° ˝ ° ˝ 

MinX∈ℵ X − Xl C(X)+  
1 

X − Xl Q X − Xl (17)
2ρ 

With C(X) = ∆TC ̆
 
∆Xl

� 
, and Q a block-diagonal symmetric defnite positive matrix 

(Codina et al., 2015), we have: 

Q = diag [. . .Qrs . . . ; (r,s) ∈ I] 

With each block Qrs corresponding to an OD pair (r,s): 

Qrs rsp = diag (. . .q . . . ; p ∈ Krs) 

Then, (17) can be decomposed into the sequence of quadratic optimization problems, 
one for each OD pair: 

° ˝ ° ˝ ° ˝2
l−1 l−1 l−1Min ∑ xrsp − xrsp Crsp xrsp + 

2α 

1 

p 
xrsp − xrsp (18)−1 

p∈Krs 

s.t. ∑ xrsp = Xrs, xrsp ≥ 0 
p∈Krs 
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Jaume Barceló 15 

With αp = q 
δ 
rsp and δ a scaling parameter. Algorithms for numerically solving the 

subproblems proceed iteratively by generating new paths at each iteration while working 
in the sub-polytope of polytope ℵ of the already identifed paths and path fows. Codina 
et al. (2015) discuss the pros and cons of the alternative formulations of ATA in terms 
of VI, as well as the various algorithmic approaches for numerically solving them. 

2.2. Dynamic traffc assignment models 

With the emergence of intelligent transport systems (ITS), advanced traffc management 
systems (ATMS), and advanced traffc information systems (ATIS) as the most relevant 
ITS applications, planners need dynamic models that capture the time-dependent nature 
of changing traffc fows and traffc demand. The dynamic traffc assignment (DTA) 
problem can thus be considered an extension of the traffc assignment problem described 
above. DTA can determine time-varying links and path fows, and thus the temporal 
and spatial evolution of traffc fow patterns in the network (Mahmassani, 2001). The 
problem can be formulated as a dynamic user equilibrium problem built on the dynamic 
version of Wardrop’s principle (Friesz et al., 1993; Smith, 1993; Ran and Boyce, 1996): 

If, for each OD pair at each instant of time, the actual travel times expe-
rienced by travelers departing at the same time are equal and minimal, the 
dynamic traffc fow over the network is in a state of travel-time-based dy-
namic user equilibrium (DUE). 

Similarly to the translation of the static Wardrop’s principle in into the variational in-
equalities (5) and (6), the DUE approach can also be implemented by solving the fol-
lowing mathematical model: 

[ttrsp(t)− θrs(t)]xrsp(t) = 0, 

ttrsp(t)− θrs(t)≥ 0, 

ttrsp(t), θrs(t), xrsp(t)> 0, 

∀p ∈ Krs(t), ∀(r,s) ∈ I, t ∈ [0,T ] 

∀p ∈ Krs(t), ∀(r,s) ∈ I, t ∈ [0,T ] 

∀p ∈ Krs(t), ∀(r,s) ∈ I, t ∈ [0,T ] 

(19) 

and the fow balancing equations 

, ∀(r,s) ∈ I, t ∈ [0,T ]∑ xrsp(t) = Xrs(t) 
∀p∈Krs(t) 

(20) 

where, as before, xrsp(t) is the fow on path p from r to s, departing origin r at time 
interval t; ttrsp(t) is the actual path cost from r to s on route p at time interval t; θrs is 
the cost of the shortest path from r to s, departing from origin r at time interval t; Krs(t) 
is the set of all available paths from r to s at time interval t; I is the set of all origin-
destination pairs (r,s) in the network, and Xrs(t) is the demand (number of trips) from r 
to s, departing r at time interval t. 

This is equivalent to solving a fnite-dimensional variational inequality problem for 
fnding a vector of path fows x* and a vector of path travels times τ , such that: 

[x − x ∗ ]
T τ ≥ 0, ∀x ∈ ℵ (21) 



       

          

  

 

  
 

           
 

                
         

 
      

 

   
 

              
           

       

                
             

             
  

         
              

             
          
             

             
              

               
            

              
            

            
         

          
           

             
         
                  

               
                 

                 
   

16 Transport systems analysis: models and data 

where ℵ is the set of feasible fows defned by: 

ℵ = 

˜ 

xrsp(t) 

°°°°° ∑ 
˛ 

xrsp(t) = Xrs(t), ∀(r,s) ∈ I, t ∈ [0,T ] , xrsp(t)> 0 (22) 
∀p∈Krs(t) 

Wu et al. (1991), Wu, Chen and Florian (1998a), and Wu et al. (1998b), prove that 
this is equivalent to solving the discretized variational inequality: 

∑ ∑
˝ ∗ ˙ 

ttrsp(t) xrsp(t)− xrsp (t) ≥ 0 (23) 
t∈[0,T ] p∈R 

where R = ̂
 
(r,s)∈I Krs is the set of all available paths. This can be solved numerically 

with ad hoc projection algorithms, which are described in these references. 

2.3. Models based on traffc fow theory 

The approaches described so far are treat a trip as an analytical unit associated with an 
individual while also assuming that the two are separate and independent. Although path 
and link fows result from aggregating these trips, the proposed models implicitly ignore 
their nature. 

However, an alternative hydrodynamic perspective views the temporal propagation 
of traffc fows as analogous to a fuid fowing through the network. This alternative 
modeling perspective aligns with Minsky’s statement that a system can be modeled in 
different ways according to various approaches and the modeler’s objectives. 

This hydrodynamic analogy can be approached in two ways. One takes an aggregate 
perspective that focuses on the overall state of the fuid using aggregate macroscopic 
variables for density, volume, and speed. The other delves into the dynamics of the 
fuid by taking a fully disaggregated point of view that aims to describe the fuid pro-
cess in terms of its constituent individual particle dynamics (the vehicles). Complete 
descriptions of these approaches can be found in Barceló (2010) or in Chapters 7 (Hy-
drodynamic and Kinematic Models of Traffc) and 6 (Car Following and Acceleration 
Noise) in the monograph Traffc Flow Theory, by Gerlough and Huber (1975). 

Two independent papers published almost simultaneously (Lighthill and Whitham, 
1955; Richards, 1956), introduced the fundamental principles of the hydrodynamic anal-
ogy for modeling traffc fows. This approach, known as the Lighthill–Whitham–Richards 
(LWR) model, considers a motorway with two counting stations, CS-1 and CS-2, as de-
picted in Figure 5, separated by a distance ∆X . 

Let us frst assume that traffc fows in the direction of the arrow, and that N1 and N2 

represent the number of vehicles counted during the time interval ∆t at CS-1 and CS-2, 
respectively. Then, if N1 > N2, there is an accumulation N2 − N1 = ∆N of cars between 
the two counting stations during time interval ∆t, as there are no sources or sinks of cars 
in that segment. 
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Figure 5. 

The traffc fows are defned as volumes q1and q2 passing through counting stations 
CS-1 and CS-2 during time interval ∆t, using: 

N1 N2 
= q1 and = q2 (24)

∆t ∆t 

Assuming that the density k (the number of cars per unit distance) is homogeneous in 
the space between the counting stations during the considered time interval, its variation 
over the distance between them is given by: 

−(N2 − N1) −∆N
∆k = = 

∆x ∆x 

and thus 
∆k · ∆x = −∆N (25) 

Similarly, the fow variation ∆q = q2 − q1 during time interval ∆t while taking into 
account (24) will lead to 

∆q · ∆t = ∆N (26) 

Assuming the modeling hypothesis of the conservation of cars, that is the fow con-
servation, it follows from (25) and (26) that 

∆q ∆k 
+ = 0 (27)

∆x ∆t 

Since the medium can be considered as a continuum, then we can take infnitesimal 
intervals to express equation (27) as: 

∂ q ∂ k 
+ = 0 (28)

∂ x ∂ t 

which is the continuity equation for a fuid. 
A simple model for a highway stretch splits it into contiguous sections and models 

the dynamics of the traffc fow in each one using equation (28). The resulting discretized 
model, shown in Figure 6, discretizes the traffc state variables–density k and fow q–in 
space and time, such that ki

jand qi
jrepresent, respectively, vehicle density per kilometer 

and vehicle fow per hour for cell i at instant j. The upper and lower rows respectively 
describe the states of the discretized cells at two consecutive instants, j and j + 1. The 
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Figure 6. Discretization of model (28). 

fow balance in cell i at time j +1, assuming that the infow is equal to the outfow, can 
be expressed as: 

k j+1 j j∆x = ki
j∆x +qi−1∆t − qi ∆t (29)i 

This simpler model can be extended to highway sections with on- and off-ramps, like 
the one in Figure 7. These ramps serve as sources of incoming and outgoing traffc fows 
that are characterized by, respectively, rates r(t) and s(t). Thus, the continuity equation 
(28) (Michalopoulos, Beskos and Lin, 1984) becomes: 

∂ q ∂ k 
+ = r(t)− s(t) = g(x, t) (30)

∂ x ∂ t 

Figure 7. 

Figure 8. Discretization to numerically solve the continuum motorway model. 

Defning g(x, t) as the generation/dissipation function that balances the entry/exit 
fows, Michalopoulos (1984) generalized this model for motorways, as shown in Fi-
gure 8. 

The time-space discretization of the model can be represented by the following set 
of difference equations: 

˜ ° ˜ ° ˜ ° 
k j+1 1 

k j j ∆t j j ∆t j j= − + , ∀i ∈ I (31)i i+1 + ki−1 qi+1 − qi−1 gi+1 − gi−12 2∆x 2∆x 

where I is the set of cells. 



   

            
        

 
 

 
 
 

              
            

        
           

           
           
              

               
           

        

                
               

              
             
                

                 
              

                
  

 
 

  
 

 
 

 
 

 
 

   
  

Jaume Barceló 19 

This discretized form of the conservation equation is completed by an equation re-
lating fows and densities, usually taking the form: 

˜ ° 
q j = Qi k j (32)i i 

The set of equations (31) and (32) is usually known as the frst-order macroscopic 
traffc fow model. For stability reasons, the time-space discretization in these models 
must satisfy the condition ∆xi > u f ∆ti. 

The interest in investigating the relationships between fows and densities arise si-
multaneously with the development of early traffc fow theories. These relationships 
came to be better understood by both measurement-based empirical evidence and theo-
retical analysis, such as Edie’s (1963) seminal work. Let us assume a time-space diagram 
like the one depicted in Figure 9, where the traffc fows in spatially and homogenous 
conditions. The blue lines represent the vehicle trajectories in these conditions. 

Figure 9. Vehicle trajectories in the time-space diagram. 

Let us assume that one counting station is located at position xi and the next counting 
station downstream is located at a distance ∆x, corresponding to the location xi +∆x. Let 
us also assume that ∆t is the detection time resolution. Then, consecutive detectors and 
the detection time resolution defne a discrete time-space Eulerian region A. Each vehicle 
(the n-th vehicle) follows a trajectory highlighted in red along a distance dn during a time 
τn within this region. If |A| is the surface of the region (in kilometers x hours), d(A) is 
the total distance traveled by all vehicles crossing the region, and t(A) represents the 
total time spent in the region by vehicles crossing it (in vehicles × hour). Defning the 
following quantities: 

˛ ˝ 
vehicles d(A)

Traffc Flow q(A) =
hour |A|˛ ˝ 

vehicles t(A)
Density k(A) =

kilometer |A|˛ ˝ 
kilometers d(A)

Mean spatial speed u(A) =
hour t(A) 



       

             
   

   

             
             

           
              

     
  

           
               

                
             

   
            

               
  

   
   

 

                  
             

 
   

          
 

           
               

          
             

              
           

            
        

      

               
         

       
     

       

20 Transport systems analysis: models and data 

the main relationship that emerges is q(A) = u(A) · k(A) or in the general form proposed 
by Daganzo (1997): 

q = uk (33) 

which is known as the “fundamental traffc diagram”. In the assumed stationary and 
homogeneous traffc conditions, it is further assumed that the mean spatial speed or 
equilibrium speed, denoted as ue(k) (Kotsialos and Papageorgiou, 2001) is a decreasing 
function of the density, which, combined with (33), leads to an equilibrium fow qe(k) 
that can be defned as: 

qe(k) = kue(k) (34) 

This corresponds to the steady state fow and homogeneous conditions. The funda-
mental diagram is a function that exhibits zeros at two extreme values of the density: 
k = 0 and k = kjam, where the latter represents the jam density. This function has a 
unique maximum at the critical density k = kcr, which corresponds to the maximum 
fow (capacity) qMax. 

Many mathematical expressions have been proposed for the function ue(k), based on 
either theoretical or empirical grounds. One of the most general is defned by the family 
of functions: ˜ ° ˛α ̋ βk 

ue(k) = u f 1 − (35)
kjam 

where u f is the free fow speed and α and β are parameters that must be calibrated. In 
this case, the complementary equations (32) of the frst-order model for each section 
become: ˙ ˆ ˇα ̆ β 

k j
j j jqi = ki

jui → ui = u f 1 − i (36)
kjam 

Macroscopic models of traffc fows also provide additional examples of alternative 
models for the same system. First-order models can be extended to what is known as 
second-order models. These models, proposed by Papageorgiou and Kostsialos (2001) 
and TRB (2001), consider the mean speed as an independent variable and, therefore, 
require an extra equation for the speed dynamics, known as the momentum or speed 
equation. This introduces an additional modeling assumption that drivers respond to 
downstream traffc conditions with a corresponding reaction time, τ . Thus, the mean 
speed adjusts to the traffc density according to: 

u(x, t + τ) = ue [k(x +∆x, t), t] (37) 

where ∆x is the space increment. The expression (37) can be expanded using a Taylor 
series and, after rearranging the terms appropriately, we obtain: 

˜ ˝
∂ u ∂ u 1 υ ∂ k 

+u = ue(k)− u − (38)
∂ t ∂ x τ k ∂ x 



   

               
  

              
              

  
    

   

                   
    

  

         
 

   

  
  

               
            

            
           

              
           

         

   

             
              

              
             

               
               
               

                 
               

              
           

               
          
           

             
     

  

                
             
   

   

21 Jaume Barceló 

uewhere υ is a parameter whose value, according to Payne (1971), should be υ =−0.5 ∂ .∂ k 
This parameter υ is usually interpreted in terms of viscosity. To solve equation (38) 
numerically, as with other models, it can be discretized in both time and space: 

        υ∆t ki
j 
+1 − k j ij+1 j ∆t j ∆t j j jui = ui + ue ki

j − ui + ui ui−1 − ui −   (39)
τ  ∆x k j τ∆x i +κ 

Papageorgiou, Blosseville and Hadj-Salem (1990) propose including the term: 
  

j jδ ∆t ri ui 
∆x k j 

i +κ 

To model the impact of the entering on-ramp fows, δ and κ are additional model 
parameters whose values are estimated in the calibration process. The numerical solution 
to the second-order model is determined by equations (31), (36), and (39). 

A variety of numerical methods for solving these macroscopic traffc fow mod-
els were developed between the 1970s and 1990s (Payne, 1971; Stock et al., 1973; 
Payne, 1979; Michalopoulos et al., 1984; Michalopoulos, 1984; Michalopoulos, Yi and 
Lyrintzis, 1993; Papageorgiou, Blosseville and Hadj-Salem, 1989; Papageorgiou, 1998). 

2.4. Microscopic approaches 

Continuing with the modeling exercise, we note here that transport and traffc systems 
offer fascinating examples of systems that can be modeled in various ways, depending on 
the objectives and underlying hypotheses. Let us now consider the traffc streams from a 
different perspective: a fully disaggregated standpoint aiming to explain the fow of the 
fuid in terms of its constituent individual particle dynamics. In the case of traffc fows, 
the individual particles are cars. One of the frst attempts to describe fow dynamics in 
this way was the analysis conducted by Pipes (1953), who considered a line of traffc 
composed of n vehicles, as depicted in Figure 10, where Lk denotes the length of the k-th 
car and xk its position. The modeling hypothesis is that the movement of several vehicles 
is controlled by a law of separation, which mandates that each vehicle must maintain 
a prescribed following distance from the preceding vehicle. This prescribed following 
distance, denoted as b, is proportional to the velocity of the following vehicle plus the 
minimum distance of separation when the vehicles are at rest. 

Under this modeling hypothesis, the relationships between the positions of the con-
secutive vehicles, specifcally the leader (vehicle k) and the follower (vehicle k+ 1) at 
time t are given by: 

xk(t) = xk+1(t)+ [b+T vk+1(t)]+Lk (40) 

where T is a time constant whose value is such that T vk+1(t) satisfes the law of sep-
aration. From (40), the frst derivative with respect to time provides the relationships 
between the speeds: 

ẋk(t) = ẋk+1(t)+T v̇k+1(t)→ vk(t) = vk+1(t)+T v̇k+1(t) (41) 
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……. 
bb 

n n-1 n-2 ………………… k    k-1………………… 2 1 

Ln Ln-1 

xn xn-1 xn-2 xk xk-1 x2 x1 

Figure 10. Pipes’ postulated line of traffc with n vehicles. 

which are the dynamical equations of the vehicle systems. Applying Laplace transform 
L and making Lvk(t) =Vk(p), this becomes the set of algebraic equations: 

(T p  +1)Vk+1(p) =Vk(p)+T pvk(0) (42) 

If the velocity of the leader vehicle changes over time, then according to v1(t)=F(t), 
the velocity of vehicle k + 1 is given by: 

˜ 
T −k °˛ t ˝ ˙u 

vk+1(t) =  uk−1 exp − F(t − u)du (43)
(k − 1)! 0 T 

These dynamical equations are based solely on physical considerations without tak-
ing into account that cars are driven by humans and are thus subject to certain conditions. 
This model tries to replicate the dynamic behavior of a vehicle stream, where vehicles 
follow one another and adjust their acceleration or deceleration in order to maintain 
a prescribed separation distance for safety reasons. However, no assumptions are made 
regarding how drivers and vehicles achieve this objective. Newell (1961) adopts a differ-
ent perspective that will later be incorporated into a more generalized approach, in which 
empirical evidence leads to assuming a nonlinear relationship between a car’s velocity 
at time t and the spatial headway a short time before (i.e., at time t − ∆). Additionally, 
families of velocity–headway relationships align well with experimental data for steady 
fows. Building upon these observations, Chandler, Herman and Montroll (1958), Her-
man, Montroll and Potts (1959), and Gazis, Herman and Potts (1959) used empirical 
observations in the well-known General Motors experiments to lay the foundations of 
the car-following theory to model the dynamics of both vehicle and driver, which can be 
summarized as follows. 

• The study of traffc is a combination of experimental and observational science. 

• It adopts the perspective of the theory of servomechanisms, a branch of applied 
mathematics. 

• It aims to clarify the role and interaction of the three components of the traffc 
system: 

– Road topology, which includes the number of lanes, nature of intersections, 
signals, warning signs, and other related factors. 
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– Vehicle characteristics, encompassing speed, acceleration and deceleration 
qualities, and other relevant attributes. 

– Driver behavior, such as the range of perception and the lags between per-
ception and response. 

– In order to develop a theory of stable car-following, a traffc element should 
be considered as a servomechanism. The conceptual conditions for such a 
theory are displayed in Figure 11 (from Rothery, 2001). 

DRIVER 

PERCEPTION & 

INFORMATION 

COLLECTION 

DECISION 

MAKING & 

EXECUTION 

VEHICLE 

DYNAMICS 

Following 

Vehicle 

State 

Feedback Loop 

+ 
Lead 

Vehicle 

State 

Errors 

Output 

Commands 

Figure 11. Block diagram of the linear car-following model (Rothery, 2001). 

The main modeling hypotheses can be summarized as follows. 

• Modeling assumption: Each driver reacts in a specifc manner to stimuli from the 
preceding car(s), as stated by Gazis, Herman and Rothery (1961). 

• Discrete cars move in continuous space and time. 

• The laws of motion for each vehicle model driver behavior use differential-difference 
equations, which express the idea that each driver responds to a given stimulus ac-
cording to a relationship defned by the following expression: 

RESPONSE = SENSITIVITY × STIMULUS 

• The stimulus is a function of car positions, their time derivatives, and possibly 
other parameters. 

• The response corresponds to the vehicle’s acceleration or deceleration, as the 
driver has direct control through the gas and brake pedals. 

Let us consider a situation like the one depicted in Figure 12, where various variables 
are defned as follows: xn identifes the position of the n-th vehicle, ẋn(t) = vn(t) denotes 
its velocity at time t, and ln its length. Additionally, sn(t) = xn−1(t)− xn(t) represents 
the spacing or space headway between the leader n − 1 1 and the follower n at time t, 
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which is also called the effective length of vehicle n (vehicle length + safety distance). 
The relative velocity at time t between a leader-follower pair, i.e. n (leader) and n +  1 
(follower), can be calculated as ∆vn+1(t) = vn(t)− vn+1(t) = ẋn(t)− ẋn+1(t) = ṡn+1(t). 
The acceleration of vehicle n at time t is denoted by an(t) = ẍ n(t). 

Figure 12. Leader-Follower relationships. 

The car-following theory is based on the empirical observation that a strong correla-
tion exists between a driver’s response and the relative speed between their vehicle and 
the one ahead. The main modeling hypothesis is that the stimulus for a driver is the rela-
tive speed between each leader-follower pair, and the resulting mathematical model is a 
stimulus-response equation that describes the motion of the (n +1)-th car following the 
n-th car. In other words, the driver of the (n +1)-th vehicle observes variations in vn(t) 
or sn(t) and then accelerates or brakes to keep from lagging behind or getting too close 
to the leader. The mathematical model translating this hypothesis into formal terms is: 

dvn+1(t) 
= F {vn+1(t); f1 [vn(t)− vn+1(t)] ;sn+1(t)} (44)

dt 
d2xn+1(t) 

˜ 
dxn(t) dxn+1(t) 

° 

= λ − 
dt2 dt dt t−τ 

Or, equivalently: 
ẍ n+1(t + τ) = λ [ẋn(t)− ẋn+1(t)] (45) 

This is a law for acceleration in a linear system, where λ represents the sensitiv-
ity of the control mechanism and τ is the time-lag of the driver-car system, which can 
be interpreted as the driver’s reaction time. Integrating the model allows us to obtain 
the velocity of the n +  1-th vehicle, which represents the velocity of the traffc stream. 
Assuming that s = xn -xn+1 is the average spacing (s = 1/k) and when velocity u = 0, 
then spacing sjam = jam spacing = 1/kjam, and kjam = jam density. The integration of 
equation (45) yields: 

u = λ 

˜ 
1 
k 
− 

° 
1 

kjam 
and q = uk = λ 

˜ 

1 − 

° 
k 

kjam 
(46) 

which is the Greenshields, Gerlough, and Huber (1975) fundamental diagram of traffc. 
A detailed analysis of the model (44) reveals that the model is inconsistent with real data 
measurements. However, equation (46) indicates that it is conceptually consistent with 
the postulates of traffc fow theory. 
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Looking to improve the car-following model, Gazis et al. (1959) assume that the 
sensitivity λ varies with the distance between vehicles, as λ . In other words, the model sn+1 

takes into account that drivers’ reactions will be quicker for denser traffc. Consequently, 
the updated model is as follows: 

˜ ° 
ẋn(t) − ẋn+1(t)ẍ n+1(t + τ) =  λ (47)
xn(t) − xn+1(t) 

which also exhibits inaccuracies. However, by integrating the equation once again to 
obtain the velocity of the n +  1-th vehicle (velocity of the traffc stream), and assuming 
that the stream velocity u is u = 0 for k = kjam, the integration yields: 

˛ ˝
kjamu = λ ln (48)

k 

That is Greenberg’s fundamental diagram. Despite its inaccuracies, the car-following 
model (47) remains consistent with the fundamental principles of traffc fow theory. In 
seeking to improve car-following models, Edie (1963) proposed a modifed model in 
which the sensitivity λ will depend on the square of the spacing and the current speed, 
resulting in: 

ẋn+1(t)ẍ n+1(t + τ) =  λ [ẋn(t) − ẋn+1(t)] (49) 
[xn(t) − xn+1(t)]

2 

which can be integrated to give us 
˛ ˝ 

k 
u = u f exp − (50)

kjam 

It should be emphasized that the pursuit of more accurate car-following models is 
always rooted in the formal hypothesis of (44), which assumes that the follower’s ac-
celeration is a function of speeds, relative speeds, and spacings. This component of the 
model goes beyond physical considerations, since it tries to replicate human behavior, 
thereby increasing the complexity of the vehicle-driver system. 

To conclude this non-exhaustive overview of car-following models based on the 
stimulus-response modeling hypothesis, two notable models that follow a similar tra-
jectory are the Gazis-Herman general model and the Ahmed model. The Gazis-Herman 
model, proposed by Gazis et al. (1961) is given by: 

[ẋn+1(t)]
m 

ẍ n+1(t + τ) =  λ [ẋn(t) − ẋn+1(t)] (51) 
[xn(t) − xn+1(t)]

l 

where l and m are parameters without physical meaning (in order to better ft the obser-
vations). 

A generalized version of this model has been proposed by Ahmed (1999) and as-
sumes an acceleration rate given by: 

β ∓ 

n+1ẍ n+1 (t + τ) =  α∓ ẋ 
γ∓ [ẋn (t) − ẋn+1 (t)] (52) 

gn+1 



       

           
                

                 
              

            
 

            
          

      
 

 
        

 

                
               
           

       

              
              

               
      

  
 

 
  

     
  

 

  
   

 
 

  
             

          
              

 
             

 
  

   
  

              
              

            
              

            
             

           
             

        

    

26 Transport systems analysis: models and data 

These models assume different driver behaviors in following vehicles, depending on 
whether they are in the acceleration or braking phase. The model parameters α+ ,β + ,γ+ 

are used for acceleration when ẋn(t)≥ ẋn+1(t), and α− ,β − , γ− are used for deceleration 
when ẋn(t) ≤ ẋn+1(t). Here, ln is the vehicle’s length, and gn+1 = xn(t)− xn+1(t)− ln 

represents the gap distance from the leading vehicle (sometimes called the “effective 
distance”). 

In parallel to these developments other researches have sought a unifed functional 
framework for car-following models. Newell (1961) explicitly expresses the dynamics 
in terms of a velocity-headway function: 

˜ ° ˛˝
λ 

ẋn+1(t) =V 1 − exp − (xn(t)− xn+1(t))− d (53)
V 

where λ and d are constants (calibration parameters) and V is the top velocity. Bando et 
al. (1995), Bando et. al (1998), and Treiber and Kesting (2013) propose a variant known 
as the “Optimal Velocity Model” (OVM), based on the dynamic equation: 

ẍ n+1(t + τ) = α [V (sn+1)− ẋn+1(t)] (54) 

Here, α is an acceleration constant, τ is a time-lag (which could represent the reac-
tion time), and V (sn+1) is a velocity-headway function with sn+1 as the headway. One 
of the most widely used models within this family is the Intelligent Driver Model (IDM) 
by Kesting, Treiber and Helbing (2010): 

˙ ˘ˆ ˇδ ° ˛2 ẋn+1(t) s ∗ (ẋn+1(t),∆vn+1(t))ẍ n+1(t + τ) = a 1 − − (55)
v0 sn+1(t) 

and 
ẋn+1(t)∆vn+1(t)s ∗ (ẋn+1(t),∆vn+1(t)) = s0 + ẋn+1(t)T + √ (56)

2 ab 
Here, T represents an anticipation time that also takes into account the velocity dif-

ference ∆vn+1(t) = vn+1(t)− vn(t) = ẋn+1(t)− ẋn(t), that is, the approaching rate to 
the leading vehicle. The IDM combines a free fow acceleration function of the speed � �δ � s ∗ �2 
a f (v) = a 1 − v with a braking strategy to decelerate ab = −a . This strategy v0 s 

becomes relevant when the gap between the follower and the leader is not signifcantly 
larger than the “effective gap” s ∗(v,∆v). The desired speed, v0, is a behavioral param-
eter that differentiates drivers, and maximum acceleration is denoted by the parameter 
a, which also allows differentiating vehicles, meaning that the vehicles are not clones of 
each other. Finally, parameter δ characterizes how the acceleration changes with speed. 
Parameters a and b can be measured and calibrated (Kesting et al., 2010). 

Ward and Wilson (2011) and Wilson (2011) formulate a common functional frame-
work for car-following models, where a follower’s reaction in terms of acceleration or 
deceleration depends on speeds, spacings, and relative speeds: 

an+1(t) = ẍ n+1(t)= F [sn+1(t),∆vn+1(t),vn+1(t)] (57) 
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27 Jaume Barceló 

These models have “uniform fow” steady solutions (equilibria) if, for each s ∗ > l, 
there is a v ∗ = V (s ∗) > 0 such that F (s ∗ ,0,v ∗) = 0. Here, V (s ∗) represents the equilib-
rium speed-spacing relationship that leads to a fundamental diagram, thus ensuring that 
the car-following model is consistent with traffc fow theory. The general functional 
approach F serves a special interest by also laying the foundation for analyzing the sta-
bility of car-following models in terms of the partial derivatives, as outlined by Treiber 
and Kesting (2013). These derivatives must satisfy the conditions: 

Fs > 0, F∆v > 0, Fv < 0 (58) 

To conclude this summary overview of these car-following models as alternatives 
to modeling the behavior of traffc fows, we will deal strictly with the main modeling 
aspects and discuss the family known as “collision avoidance” models (Gerlough and 
Huber, 1975; Barceló, 2010). These models assume that a follower driver will attempt 
to maintain a safety distance sn(t) from the lead vehicle, such that in the event of an 
emergency stop by the leader, the follower will come to a stop without colliding with the 
lead vehicle. The safe deceleration-to-stop diagram in Figure 13 (Gerlough and Huber, 
1975; and Mahut, 1999) illustrate how this concept works. 

xn+1(t) 

Stopping distance for vehicle n Sdn =fn[vn(t),bn(t)] 

Stopping distance for vehicle n+1 Sdn+1=fn+1[vn+1(t),bn+1(t)] ln(t)d

Positions of Follower (n+1) and Leader n at time t when leader starts to break 

Position of the follower 

when starts to break at 

time t+

Safe stopping positions of 

leader and follower at time T 

P
os

it
io

n
 

nt 

t+

xn+1(t+ ) Xn(t) 

n+1 

T 

xn+1(T) xn(T) 

nn+1 

Time 

Figure 13. Safe to stop diagram. 

This time-space diagram, as discussed in Barceló (2010), shows the positions of the 
leader n at time t, beginning with the initiation of braking until coming to a complete stop 
at time T. The follower n + 1 perceives the leader’s braking with a delay τ , representing 
the reaction time. During this delay, the follower travels a distance dτ , which covers the 



       

                 
               
               

               
            

             
            

   
 

                
             

          
       

     

       

 
         

 

               
 

      

               
             

           
             

   
   

  

             
              

     

  
  

          
 

 
              

           

28 Transport systems analysis: models and data 

position from the initiation of braking to coming to a safe stop. If Sdn is the stopping 
distance for vehicle n, that is, the distance required to stop when traveling at speed 
vn(t) =  ẋn(t) at time t, and the driver brakes with a deceleration function bn(t), then 
Sdnis given by Sdn = fn [vn(t),bn(t)]. This function depends on the current speed vn(t) 
and the applied deceleration bn(t). Similarly, the stopping distance for the follower 
vehicle is given by Sdn+1 = fn+1 [vn+1(t),bn+1(t)]. Then, the desired spacing sn(t) =  
xn(t)− xn+1(t) at time t for a safe deceleration-to-stop is given by: 

sn(t) = xn(t)−xn+1(t)=ẋn+1(t) ·τ +Sdn+1 [vn+1(t),bn+1(t)]+ℓn(t)−Sdn(t) [vn(t),bn(t)] 
(59) 

where dτ =ẋn+1(t) · τ is the distance traveled by the follower during the reaction time τ , 
and ℓn(t) is the minimum safety distance (i.e., the distance between bumpers at rest). As-
suming steady-state conditions with equal deceleration functions bn(t) =  bn+1(t), equal 
speeds, and, therefore, Sdn+1 = Sdn, we have: 

xn(t)− xn+1(t)=ẋn+1(t + τ) · τ + ℓn(t) 

Differentiating with respect to t, we obtain: 

1 
ẋn(t)− ẋn+1(t) = τ ẍ n+1(t + τ) → ẍ n+1(t + τ) =  [ẋn(t)− ẋn+1(t)]τ 

which is the elementary form of the response to a stimulus model (45). Rewriting (59) 
as 

xn(t)+Sdn(t) [vn(t),bn(t)]− ℓn(t)≥xn+1(t)ẋn+1(t) · τ +Sdn+1 [vn+1(t),bn+1(t)] (60) 

we can interpret this equation as a safety constraint that becomes active when it is 
satisfed as an equality, thus activating the braking action from the follower. Assuming 
steady-state conditions with ℓn(t) =  ℓn and constant deceleration functions bn(t) and 
bn+1(t) for a period, the respective distances to stop can be expressed as: 

2ẋ2(t) ẋ +1(t + τ)n nSdn(t) =− and Sdn+1(t) =− (61)
2bn 2bn+1 

From equation (60), Mahut (1999) and Barceló (2010), we replace the Gipps speed 
bof the follower during the deceleration phase, denoted as vn+1(t + τ) (Gipps, 1981) and 

can thus be derived as: 

°̃ ˝ ˙ ° (vn(t))
2 

bvn+1(t + τ) = bn+1τ˛b2 
n+1τ − bn+1 2{xn(t)− ℓn − xn+1(t)}− vn(t)τ − 

bn 

(62) 
This includes a change proposed by Gipps (1981), which is based on empirical and 

consistency analyses. It replaces the leader’s braking deceleration bnwith an estimated 
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Jaume Barceló 29 

value b̃n because the follower does not have precise knowledge of the leader’s decelera-
tion. Furthermore, a safety margin is included to allow the follower a possible delay θ 
(e.g., θ = τ ) when traveling at vn+1(t + τ) before reacting to the braking of the vehicle 2 
ahead, thus satisfying: 

2 ° ˛ 2[vn+1(t + τ)] τ vn+1(t)τ (vn(t))− +vn+1(t +τ) + θ −[xn(t) − ℓn − xn+1(t)]+ + ≤ 0
2bn 2 2 2b̃n 

The so-called microscopic traffc models described in Barceló (2010) aim to repli-
cate the propagation of traffc fows in a road network. The process, known as network 
loading, models the dynamics of car-following, lane-changing, and gap acceptance as 
vehicles travel from origins to destinations following route choice algorithms that mimic 
drivers’ decisions. Microscopic traffc models have an advantage over continuum fow 
models because they handle traffc fow interruptions naturally, since car-following ex-
plicitly accounts for the possibility of the leader stopping. Consequently, these models 
can explicitly include traffc lights at signalized intersections to accurately represent the 
detailed phasing and timings. Figure 14 provides a graphical summary of the model-
building process and its components. 

Figure 14. Scheme of the microscopic model building process and the model components. 

2.5. Mesoscopic traffc models 

DTA models have always been appealing due to two key characteristics. Firstly, they 
can handle large road networks, similar to the static assignment models used in transport 
planning. Secondly, they can account for time variations in transport demand and their 
impacts on the road network. However, their initial analytical approaches to solving 



       

             
          

           
           

           
           

 

             
           

          
 

            
            
 

            
            

            
              

             
             
           

         
           

              
           

  
             
                

          
   
            

               
            

           
          

             
  

             
                 

               

30 Transport systems analysis: models and data 

the DTA formulation in (21), (22), and (23) proved to be computationally challenging. 
This generated interest in exploring alternative traffc simulation-based approaches that 
can provide approximate heuristic solutions. Florian, Mahut and Tremblay (2001) and 
Florian, Mahut and Tremblay (2002) proposed a conceptual framework that integrates 
both analytical and simulation-based approaches, as illustrated in Figure 15 (Barcelo,´ 
Ros-Roca and Montero, 2022). The framework consists of two main interdependent 
components: 

• A method for determining path-dependent fow rates on the network paths, which 
can be approached using various algorithms, ranging from the exact projection 
methods mentioned earlier to approximations like the Method of Successive Av-
erages. 

• A Dynamic Network Loading (DNL) method, which determines how these path 
fows translate into time-dependent arc volumes, arc travel times, and path travel 
times. 

In the most successful practical implementations, the DNL method is usually based 
on a mesoscopic simulation model (Barceló, 2010) that emulates the fow propagation 
through the network under the current conditions. The resulting assignment depends on 
how the convergence criterion and iterative process are implemented. It can be a DTA 
or a dynamic user equilibrium (DUE) (Chiu et al., 2011). A mesoscopic traffc sim-
ulation model of traffc fow dynamics is a simplifed representation that captures key 
aspects of microscopic simulation while being less data demanding and computationally 
more effcient than microscopic models. Mesoscopic approaches combine microscopic 
and macroscopic aspects of traffc fow dynamics, providing an alternative approach de-
pending on the modeling objectives and hypotheses. In this paper, we will focus on 
approaches where fow dynamics are determined by the simplifed dynamics of individ-
ual vehicles. 

One such approach is the cell transmission model proposed by Daganzo (1994) and 
(1995a), which solves an ad hoc version of the frst order traffc fow model using a 
simplifed fow-density relationship known as the triangular (or trapezoidal) fundamental 
diagram (Daganzo, 1995b). 

This basic model and its many variants, although widely used, exhibit limitations, 
namely in the case of urban networks, since they only account for fow dynamics in 
links and do not explicitly deal with intersections, most notably the signalized inter-
sections commonly found in urban networks. To overcome these drawbacks, various 
extensions have been proposed to incorporate intersection modeling. One notable ex-
ample is the general link transmission model (GLTM) developed by Gentile (2010) and 
Gentile (2015). 

Another modeling alternative involves splitting the link into two parts, as shown in 
Figure 16. The frst is the running part, where vehicles are not yet delayed by the queue 
spillback at the downstream node. The second is the queueing part, where the capacity is 
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Figure 15. Conceptual algorithmic framework for DTA. 

limited by stop signs, give-way signs, or traffc lights. Nodes are the interactions between 
traffc fows at intersections, and they can be modeled using either node transfer modules 
or a queue server approach that explicitly considers traffc lights and the delays they 
cause (Mahmassani et al., 1994). The fow dynamics in the running part are simplifed 
in terms of macroscopic speed-density relationships by using variants of (36), such as: 

 α 

ut
i = (u f − u0) 1 − 

kt
i +u0 (63)

kjam 

This equation, proposed by Jayakrisham, Mahmassani and Yu (1994), relates the 
mean speed ut

i and density kt
i in section i at time step t. The parameters u f and u0 are the 

mean free speed and the minimum speed, kjam is the jam density, and α is a parameter 
that captures speed sensitivity to density. Alternatively, Ben-Akiva et al., (2001), and 
(2010), propose the following speed-density relationship: 

  u f if k < kMin   α βu = (64)k−kMin u f 1 − otherwisekjam 

including a lower bound limiting density, kMin, and a second parameter β to capture 
speed sensitivity to concentration. Vehicle dynamics in the queueing part are then gov-
erned by the queue discharging process. The boundary between the running part and 
the queueing part is dynamic and varies according to the queue spillback and queue 
discharge processes. 

A completely different approach is taken by Mahut and Florian (2010), who propose 
a simulation model that moves vehicles individually using a simplifed car-following 
model. In this model, the position xn+1(t) of the follower vehicle (n+1) at time t relative 
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Figure 16. Link model. 

to the position xn(t − T ) of the leader vehicle (n) is estimated according to: 

xn+1(t) = Min [xn+1(t − ε)+ εu f ,xn(t − T )− le f  f  ] (65) 

where T is the reaction time, u f the free-fow speed, le f  f  , is the effective vehicle length, 
and ε is an arbitrarily short time interval. The frst term inside the minimizing operator 
represents the farthest position downstream that the vehicle can reach at time t based on 
the follower’s position at time (t − ε) under the constraints of the maximum speed u f . 
The second term inside this operator represents the farthest downstream position that 
can be attained based on the trajectory of the next vehicle downstream in the same lane, 
according to a simple collision-avoidance rule proposed by Mahut (1999) and Mahut 
(2001). This simplifed model depends only on the free-fow speed and does not account 
for accelerations. It can be considered a lower-order model, since it determines the 
position of each vehicle in time, rather than their speed or acceleration. 

The solution to the car-following relationship (65) for time can be expressed as: 
 

δ 
tn+1(x) = Max tn+1(x − δ )+  , tn (x + le f  f  )+T (66)

u f 

This relationship allows for an event-based simulatiaon-4mm approach, as it enables 
calculating the link entrance and exit times for each vehicle by means of the following 
expression in Equation (67): 

  
L1 le f f  L2tn+1 (L1) = Maxtn+1(0)+  , tn (L1)+T +   , t L2 (L2)+  T  (67)
u1 n+ 

f Min u1 
f ,u

2 le f f  le f f  
f 

where L1 and L2 are the lengths of two sequential links with speeds u1 
f and u2 

f , respec-
tively. The vehicle attributes le f  f  and T are assumed to be identical throughout the entire 
traffc stream, and each vehicle adopts the link-specifc free-fow speed when traversing 
a given link. The link lengths are assumed to be integer multiples of the vehicle length, 
le f  f  . As shown by Mahut (2000), this model yields the triangular fundamental fow-
density diagram proposed by Daganzo (1994). The main events that change the state of 
the model include vehicle arrivals at links, link departures, and transfers between links 
based on turning movements at intersections. 



   

          
  

              
            

             
               
            

                
                
              

           
               

               
              

            
              

            
        

             
          

             
               
                

            

              
          

           
           
              

             
             

         

         

               
            

              
            

            
           

33 Jaume Barceló 

2.6. Models, valid models, and the data requirements for validating trans-
port models 

There is a common argument that emphasizes the abundance of data and suggests that 
models are becoming less necessary. Proponents of this view often strengthen their 
argument by quoting George Box’s statement, “All models are wrong.” Box, who is 
considered to one of the founding fathers of modern statistics and an expert in modeling 
recognizes, seemingly implies that models are useless. Although Box indeed made that 
assertion in 1976, the full context is often overlooked by those who quote him, as he 
later added an important caveat in the book by Box and Draper (1987), where he added 
“but some are useful,” which, to the best of my knowledge, is frequently omitted. 

Models as formal representations of systems are only approximations. As such, 
one should never forget that a representation of a system is not the actual system. Fur-
thermore, when taking the Minsky triad perspective of building a model of a system, the 
modeler must ensure they are asking the right question and that the modeling hypotheses 
align with the objectives. As demonstrated in the previous sections discussing various 
modeling alternatives for traffc and transport systems, the goal is to highlight the diverse 
options available. Hence, considering Box’s statement that some models are useful, the 
key question becomes: What makes a model useful? 

The answer to that question is proper model validation and calibration, which are 
defned by Barceló (2010) and MULTITUDE (2014) as the following. 

• Calibration is the process of determining model parameter values based on feld 
data in a specifc context. Parameters for the transport model in one city will differ 
from those for another city, and the nature of the parameters depends on the type of 
model and the objectives of the decision-making process supported by the model 

• Validation aims to provide a quantitative answer to the question of whether model 
predictions faithfully represent reality. According to Rouphail and Sacks (2003), 
validation is determined formally by the probability that the difference between 
the “reality” and the “model prediction” falls within a tolerable difference thresh-
old, denoted as d. This threshold measures the model’s proximity to reality or, in 
other words, the error incurred when substituting the reality with the model. The 
level of assurance, denoted as a, measures the degree of certainty when making 
this substitution. The validation process satisfes the following criterion: 

P{|reality − “model prediction”| < d} > a (68) 

It is the responsibility of the modeler conducting the study to defne the criteria for 
model validation and acceptance. These criteria determine the values of parameters a 
and d, which assess the suitability and acceptability of the model. Figure 17 summarizes 
the methodological processes for calibrating and validating models, along with the data 
requirements for these processes. Looking at equation (68), in essence, the validation 
and calibration processes involve a statistical comparison between the observed ”reality” 
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Figure 17. Methodological scheme of model calibration and validation processes. 

and ”predicted” values of relevant variables that defne the state of the system (e.g., 
speeds, fows, travel times). Usually, after identifying the variables to be used in the 
process, the corresponding data must be collected and processed using appropriate data 
analysis techniques. This includes cleaning the data, removing outliers and erroneous 
measurements, mitigating biases, and addressing missing values. Samples of observed 
data are usually split into independent subsets for various uses, such as calibrating model 
parameters, conducting statistical comparisons between observed and predicted data to 
validate the model, and, in some cases, generating inputs for the model. 

All the models mentioned so far require the determination of parameter values and 
the calibration of data inputs, which are highly dependent on the specifc system under 
study. Below are some examples. 

• Static traffc assignment models: 

– BPR volume-delay functions for each link a (or class of links): t0 
a free fow 

travel time, κa link capacity, function parameters αa, βa 

– Conic functions, the additional delay factor Ja 
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– ∆ = [δap] the link-path incidence matrix that depends on the network topol-
ogy 

– X = [Xrs] number of trips from origin r to destination s for each OD pair (r,s) 

• Dynamic assignment models 

– Time-dependent path cost functions ttrsp(t) 

– Time-dependent (dynamic) OD matrices: X(t) = [Xrs(t)] 

• Traffc fow theory models. The models described earlier involve various sets of 
parameters, depending on the order of the model: 

• First-order models: the main parameters to calibrate determine the fundamental 
diagram, such as free fow speed u f , the jam density kjam, and the parameters ? 
and ? in equation (36). 

• The second-order models in (38) will additionally require estimations of the equi-
librium speed ue and the viscosity v. 

• Microscopic traffc models. These depend on a vast number of parameters and, 
as already mentioned, many aspects of the model-building process is automated 
in terms of importing road maps from GIS and setting the controls using original 
fles, to name but two examples. For the purposes of this paper, let us focus here 
on car-following models and the parameters of the simulation engine: 

• The Herman-Gazis car-following model (52): Parameters to fne-tune include val-
ues for the gap distance gn between the leader and the follower as a function 
of the leader’s length ℓn, as well as the acceleration and deceleration parameters 
α∓ , β ∓ , γ∓ . 

• The Gipps car-following models (62): Parameters to consider include deceleration 
rates bn, reaction time τ , adjustment factor θ , and others. 

It is worth noting that other car-following models, such as IDM (Kesting et al., 2010), 
the Wiedemann psycho-physical car-following model (Wiedemann, 1974), Fritzsche’s 
car-following model (Fritzsche, 1994), or Krauss’s car-following models (Krauss, Wag-
ner and Gawron, 1997) are among the most widely used in the current traffc simulation 
software platforms. 

Additionally, microscopic traffc simulation models, which involve vehicles travel-
ling across the network from origins to destinations along paths, share certain require-
ments with DTA models. These include the calibration of time-dependent link travel 
times, time-dependent OD matrices X(t) = [Xrs(t)], and path choice models that are typ-
ically based on discrete choice theory. Their utility functions may depend on factors 
like the value of time, which needs to be calibrated. Although controversial, path choice 
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models are essential in capturing the behavioral aspects and topology of transportation 
modeling, especially in urban networks where the phenomenon of sharing links is com-
mon. To illustrate the nature of the problem, let us consider the following notation: 
Krs(t) is the set of paths from origin r to destination s at time t, p(r,s, t) denotes the 
path p ∈ Krs(t), and Γp(r,s,t) = {e1, . . . ,em} is the set of links of path p(r,s, t). If la is 
the length of link a, and Lp(r,s,t) is the total length of path p, the commonality factor 
(Cascetta et al., 1996; Ben Akiva and Bierlaire, 1999) is a measure of the fraction of 
path p that is shared with all other paths h connecting origin r with destination s at time 
interval t. It is given by: 

   

  CFp(i. j.t) = 
1 ∑ 

la log ∑ (δaht + 1) (69)
µCF Lp(i, j,t)a∈Γp(,i, j,t) h∈Krs(t) 

where δaht indicates whether link a also belongs to path h ∈ Krs(t) or not. The path choice 
proportion Pp(i, j,t)for each path on the set Krs(t) is calculated as a discrete choice model 
that uses the commonality factor within the OD pair and time. CFp(r,s,t) is a penalization 
factor added to current travel times (Bovy, Bekhor and Prato, 2008; Janmyr and Wadell, 
2018): 

exp[µPp (−ttp(r,s,t) −CFp(r,s,t )]Pp(r,s,t) = (70)
exp[µPp (−tth(r,s,t) −CFh(r,s,t))]∑h∈Krs(t) 

where ttp(r,s,t) is either the average travel time on the path p ∈ Krs(t) or the estimates of 
the average travel time value, and µCF and µPp are parameters that must be calibrated. 

• Mesoscopic traffc models depend on the set of values identifed in equations (65)– 
(67), which must obviously be calibrated. Their relationships with the triangu-
lar fundamental diagram proposed by Daganzo (1994) must be explicitly con-
sidered. However, looking at the methodological computational scheme in Fig-
ure 15, we can see that they require inputs such as time-dependent OD matrices 
X(t) = [Xrs(t)] and path choice functions similar to equations (68) and (69), which 
they have in common with the microscopic simulation models. 

3. Data collection and analysis 

The introductory remarks in this section emphasize the interdependence between data 
and models. It is essential to have data for the model-building process, and the overall 
model-building and utilization processes are illustrated in Figure 1. In Section 2.6, the 
conditions that render models useful are established through the model calibration and 
validation processes, which also need data, as depicted in the methodological scheme 
in Figure 17. Figure 18 summarizes a methodological approach that combines the key 
concepts outlined in Figures 1 and 17, incorporating elements from the OECD/ITF report 
(2015). 
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Figure 18. Data collection and processing: A methodological approach for model construction, 
calibration, and validation. 

The steps in the process, which appear in the boxes of the methodological diagram 
are the following: 

A. The frst step, outlined in Section 1 of this paper, establishes a fundamental method-
ological principle for using models in analyzing transport systems. It emphasizes 
that different modeling approaches can be employed based on the objectives and as-
sociated modeling hypotheses. Therefore, the frst step in using models to analyze 
transport systems is to identify the study objectives and determine the most suitable 
modeling approach to achieve them. 

B. The second step, described in Section 2 of this paper, provides an overview of the 
most common modeling approaches for transport systems, depending on the objec-
tives. These range from strategic approaches that employ either static or dynamic 
traffc assignment to the macro, meso, or micro approaches suitable for operational 
analysis or other purposes. Section 2.6 identifes the main parameters that must be 
calibrated for proper model building and use, along with the data needed for that pro-
cess. Once the necessary data have been identifed, the analysis must also ascertain 
the available technologies (Guerrero-Ibáñez, Zeadally and Contreras-Castillo, 2018) 
for data collection and determine the appropriate procedures. 

B.1 Point detection with discrete time resolution: This includes inductive loop de-
tectors, radars, etc., placed at specifc positions, as depicted in Figure 19, which 
also indicates whether they are single or double loop detectors. They provide 
aggregated measures, with a ∆t time resolution of: 

• Average traffc fows in vehicles/hour 
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• Average occupancies: percentage of time a vehicle is over the detector with 
respect to the aggregation time ∆t 

• Average spot speeds (speeds measured at the detection point) in km/hour 
• Traffc mix: percentages of light and heavy vehicles 

B.2 Point detection with continuous time resolutions: This also occurs at specifc 
positions, either on the road (e.g., inductive loops like magnetometers, as illus-
trated in Figure 19) or as roadside units (e.g., Bluetooth/Wi-Fi antennas, elec-
tronic TAG readers, CCTV image processing, etc.). 

• Magnetometers measure the time in / time out of a vehicle passing over the 
detector and provide count fows, spot speeds, occupancies, and traffc mix, 
which can also be aggregated accordingly. 

• Bluetooth/Wi-Fi and TAG readers identify the corresponding device onboard 
the vehicle and reidentify it downstream. They count only the fows of equipped 
vehicles (a non-representative sample of the whole population) and the time 
differences between two successive detection devices. Considering that the 
positions are well known and time differences are highly accurate, they pro-
vide a good sample of travel times or speeds between specifc pairs of loca-
tions. 

• CCTV image processing devices located at specifc positions identify a ve-
hicle by reading its license plate (license plate recognition) and reidentify it 
downstream. They have the advantage of detecting all vehicles, allowing mea-
surement of point traffc fows and travel times between camera locations. If 
properly located, the cameras can also provide an estimate of OD matrices, 
with the origin being the point where the vehicle is frst detected and the des-
tination where it is last detected. 

B.3 Continuous time-space detection, enabled by mobile devices that can be tracked 
along their trajectories, provides: 

• In the case of GPS devices: waypoints with the detection time-tag; the ve-
hicle’s location (automatic vehicle location, AVL), consisting of the x, y and 
z coordinates (as shown in Figure 19); and, if the mobile device allows, the 
point speed at the detection time and heading. 

• Mobile phones provide data from the call detail records, which can be pro-
cessed to extract movements between origins and destinations. In some cases, 
inferences can be made about the routes used. 

• Connected vehicles provide similar information about origins-destinations, 
travel times, speeds, locations, etc., either directly or via roadside units. In 
some cases, they can also provide additional similar data about the surround-
ing cars. 
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B.4 Public transport: Contactless cancellations provide a rich amount of data about 
passenger usage and transfers in public transport. Additionally, other ICT appli-
cations can provide passenger counting data aboard vehicles, etc. Bus monitor-
ing systems provide detailed tracking information on schedule adherence, bus 
speeds, arrival times at stops, etc. 

B.5 Shared vehicles: Data recorded by shared services vary depending on the com-
pany, type of vehicle (car, bike, etc.), and the equipment installed on the vehicle. 
Currently, there is no standard common type of data recorded. What is recorded 
may range from time and location of the service’s origin and end, and in some 
cases a track of the route used. 

Note: One subject of intense research has been optimizing the placement of point de-
tectors, inductive loops, magnetometers, CCTV cameras, Bluetooth antennas, and other 
devices to provide measurements of partial path travel times, OD estimation, and oth-
ers. This interesting optimization problem concerns the coverage problem in networks 
and the observability of the traffc system when measurements are used to estimate the 
system’s state. Although the analysis of these models is beyond the scope of this pa-
per, interested readers can fnd comprehensive overviews in Barceló et al. (2012) and 
Castillo et al. (2008). 

Figure 19. Examples of data collection technologies. 
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B.6 Other data sources 

• Other ICT sources, such as social networks (e.g., WIZE, Moovit) or Google, 
can also provide data. However, these data often require specifc treatment 
before being used in conjunction with other sources. 

• Non-ICT networks: The summary overview of transportation modeling ap-
proaches highlights the key role played by traffc analysis zones (TAZ) and 
modal splitting in the four-step modeling approach. These models typically 
require socioeconomic and other data, such as information of transportation 
mode usage. No such data are currently available from TIC applications, al-
though research efforts are actively addressing this gap. Furthermore, when 
dealing with transport mobility patterns represented by OD matrices, the usual 
ICT data sources only provide partial samples (e.g., from a subpopulation 
of vehicles equipped with a specifc technology) that cannot be extrapolated 
to the whole population without complementary data. These complementary 
data sources are usually census tracts or carefully designed household surveys. 

C. Third step: conventional data collection technologies such as those based on mag-
netic loops have historically provided limited and frequently scarce point observa-
tions at detection station locations. However, the emergence of new information and 
communication technologies (ICT) has dramatically changed the situation by grant-
ing access to large volumes of data, primarily spatial data, which necessitated proper 
storage using big data techniques (OECD/ITF, 2015). This vast and heterogeneous 
raw data is initially stored in unstructured data lakes, with an emphasis on acquiring 
it quickly, particularly for real-time operations. 

D. Fourth step: Cleansing, fusion, and aggregation. Regardless of the quality of detec-
tion technologies, they are nevertheless prone to errors induced by temporal detection 
malfunctions or external factors affecting the detection quality (e.g., limited accuracy 
of GPS signals in certain urban areas). Therefore, the collected data must be prop-
erly cleansed before being used in transport models. This involves a series of data 
processes for identifying and fltering outliers to mitigate the risk of inducing unde-
sirable biases, as well as completing missing data caused by outlier removal or lack of 
detection during a certain period. The objective of this step is to get clean, consistent, 
and complete data series. 

However, these clean and consistent data cannot be directly utilized since they origi-
nate from diverse data sources. For example, speeds measured by Bluetooth, CCTV 
cameras and inductive loop detectors may need to be fused. Similarly, generating 
modal split distributions may require combining data from mobile phones and house-
hold surveys. Data fusion techniques are employed to homogenize and harmonize 
these heterogeneous datasets to generate unique and consistent inputs. 
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Different models, depending on their specifc use, may require different levels of 
data aggregation. For example, when dealing with OD matrices, time aggregation 
differs between static assignment models, dynamic assignment models, and dynamic 
traffc models. Therefore, depending on the model requirements, the data must be 
appropriately aggregated. 

E. Fifth step: These clean, consistent, and structured datasets are then stored in databases 
that are specifcally designed for data retrieval, tailored to the needs of different trans-
port models. 

F. Sixth step: Traffc data analysis and visualizations. 

• This step involves generating the inputs required by the transport models, 
which will be elaborated upon in the subsequent sections. 

• Additionally, advancements have been made in graphical techniques, which 
allow for data visualization and heat maps depicting degrees of congestion on 
network links or paths. These advances also highlight the attraction and gen-
eration capacities of the TAZs, such as in depicting travel patterns from origin 
to destination. Such descriptions of the system are useful for understanding 
the state of the system and assisting in the decision-making process. 

G. Seventh step: Input to traffc models. The data for the transport model used in the 
study must formatted appropriately as input for the subsequent steps: calibration, 
validation and, once the model is validated, the production runs corresponding to the 
various scenarios to be analyzed and compared for decision-making purposes. 

3.1. Notes on data cleaning 

To illustrate some of the techniques used for data cleaning, including outlier removal, 
replacement of missing values, and correction of erroneous values, we will discuss two 
specifc cases: the application of the Kalman flter to handle series of travel time mea-
surements between two consecutive Bluetooth antennas; and using a map matching pro-
cess to determine the correct position of a GPS waypoint within a network link. 

3.1.1. Using a Kalman flter to clean time series of bluetooth travel time measurements 

The Kalman flter, introduced by Kalman (1960) and further developed by Dailey, Harn 
and Lin (1996), is a state space model used to estimate the dynamics of a system. In 
this model, the state of the system at time instant k is defned by a set of unobservable 
state variables, represented by the vector xk ∈ Rp (where p is the number of state vari-
ables). The evolution of the system state transitions over time is governed by the linear 
stochastic equation in differences: 

xk = Φ · xk−1 + wk (71) 
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where Φ is the transition matrix and wk represents the process noise, which is assumed 
to be white Gaussian noise with zero mean and covariance matrix Q. The system is 
observed at time k with measurements denoted as yk ∈ Rq (where q is the number of 
observations). The relationship between the measurements and the state variables is 
given by the linear measurement equation: 

yk = A · xk + vk (72) 

where A is the measurement matrix with measurement noise vk, which we also assume 
to be white Gaussian noise with zero mean and covariance matrix R. The process and 
measurement noises are assumed to be independent, with covariance matrices Q and R 
that can change at each step. The discrete Kalman flter cycles recursively between a 
temporal update and an estimation step. The temporal update projects the immediate 
future of the current state, and the covariance estimation provides an a priori estimate 
from steps k-1 to k, all by means of the following: 

−x̃k = Φ · x̃k−1 
(73)

P− = Φ · ΦT +Qk Pk−1 · 
The measurement update adjusts the projection of the estimate by incorporating the 

measurements available at that moment. It begins by calculating the Kalman gain, Gk, 
which is used to generate a posteriori estimates by incorporating the measurements ykat 
that instant. The a posteriori estimate of the error covariance is also calculated: 

° − AT − AT 
˛−1Gk = Pk · · A ·Pk · +R 

° ˛− −˜ = x̃  yk −A · x̃  (74)xk k +Gk · k 

−Pk = (I −Gk ·A) ·Pk 

The process of fltering the observations of travel times, denoted as tt j, is applied 
to the test day d (Barceló et al., 2010), as depicted in Figure 20. It uses the predictions 
− −x̃  and their variances, Pk , calculated by the Kalman flter (73) at each step k. Thisk 

helps in selecting only valid observations, denoted as OV kd . From the valid observations, 
the implemented algorithm calculates the representative observations, yk, for the current 
step k by applying the statistic EST ∈ {mean,median, .....} to these observations: 

˝ ˙ ˆ ˆ ˇ˙ − P− − P−OV k = tt j∈Ok ˙ x̃  + α · ≥ tt j ≥ x̃  − α · d k k k kd (75) 
yk = EST( tti∈OV k )

d 

Here, OV kd is a set of observations for the test day d obtained in the time interval k. 
The Kalman flter uses the values yk to calculate from the current state x̃k, based on 

equation (74). This updated state estimate will be used in the subsequent predictions of 
(74) as part of the continuous fltering process. To flter the observations, limits have 
been calculated. These limits are derived from the Kalman flter’s prediction by adding 
and subtracting α times the deviation considered in the same Kalman flter, thus obtain-
ing the upper and lower limits. 
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Figure 20. An example of applying the Kalman flter to identify and remove outliers in 1-minute 
measurements of travel times between consecutive Bluetooth antennas on a specifc test day. The 
outliers are then replaced with values that are consistent with observed data. 

3.1.2. Dealing with GPS data: map matching procedures 

Commercial GPS data providers usually supply suitably processed data that is tailored to 
specifc business models and applications. While the processing is a logical and natural 
part of their workfow, it often renders the data invalid for other general transport mod-
eling approaches. However, unless the analyst is capable of designing their own data 
collection process and directly accessing the raw data, the most advantageous situation 
occurs when the transport analyst can obtain access to the waypoints generated by GPS. 
The left side of Figure 21 displays the most common and simple commercially available 
waypoints. Each waypoint consists of an arbitrary identity assigned by the provider to 
the mobile device in order to preserve the owner’s identity, the date and timestamp of 
data collection, and the latitude and longitude corresponding to the tracked vehicle’s po-
sition at that moment. The GPS data provider defnes the collection policies and they can 
be collected at regular time intervals, after the vehicle has traveled a certain distance, at 
random times, and so on. The accuracy of GPS positioning can depend on various fac-
tors, such as the number of accessible satellites, signal intensity, whether the device is in 
an open or an urban area, and other variables. In urban areas, the accuracy is usually less 
than desired due to obstructions from buildings, signal interference, poor signal quality, 
and other factors. This can lead to erroneous positioning, as shown in the picture on the 
right side of Figure 21, where some waypoints are misplaced with respect to the network 
links, and a few may even be located on buildings. 

Map-matching refers to the process of matching the geographical coordinates of 
waypoints to a model of the real world, such as a model of the road network in the case 
of tracking vehicles. The problem usually consists of relating the waypoints to the edges 
of the road network, which are provided by a geographic information system (GIS). 



       

              
          

           
           

            
            

             
        

        

           
             

            
            

               
                

             
          

              
    

 
 

    

              
              

                
        

 
 

      

             
               

              
            

ID Date Timestamp Latitude Longitude 
4261353 20 19-11-30 07:43:58 45.445988 9.1244048 
4261353 2019-11-30 07:44 11 45.445496 9.1241952 

4261353 2019-1 1-30 07:45 :08 45.444767 9. 11 92517 .... 
4261355 2019-11 -30 07:45:02 45.445980 9.1247048 
4261355 2019-11-30 07:45 23 45.445574 9.1192821 

.... 
........ ....... ...... .... .... ....... 

4261355 2019-11 -30 07:46:56 45.444767 9. 11 97541 
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Due to its practical interest, map-matching is a widely studied problem. Kubicka et al. 
(2018) conducted a comparative study and application-oriented classifcation of selected 
vehicular map-matching methods covering the past two decades. The authors further 
provided guidelines for selecting a particular method, emphasizing that selection should 
be guided by the specifc requirements of the application, distinguishing between offine 
and real-time applications. The particular case discussed in this section, as described 
by Cluet (2021), corresponds to a set of waypoints with high-rate positioning sampling, 
which will be processed using offine map-matching methods. 

Figure 21. Examples of waypoints and their misplacements. 

Geometric approaches were among the earliest used to solve the map-matching prob-
lem, due to the similarities between network link points and waypoints. A geometric 
map-matching algorithm uses the geometric information of the spatial road network data 
and primarily considers the shape of the links while disregarding their connectivity. 

Given a trajectory s, geometric methods look for the most similar route in the map 
by using a shape similarity metric, δ . The most used similarity measures are based on 
distances (Hausdorff, Kim, and McLean, 2013; Fréchet, 1906), which aim to provide a 
good ft for the geometric aspect of the matching process. 

The one-sided Hausdorff distance from curve A to curve B, as defned by Cluet 
(2021), is given by: 

δH 
′ 
(A,B) = Maxa∈A Minb∈Bd(a, b) (76) 

where d(a,b) represents the Euclidean distance between points a and b. This is also 
known as the great circle or geodesic distance, which refers to the shortest distance 
between a and b on the Earth’s surface. The Hausdorff distance δH is defned as the 
maximum value among the two one-sided Hausdorff distances: 

˜ ° 
δH = Max δH 

′ 
(A,B),δH 

′ 
(B,A) (77) 

As pointed out by Kubicka et al. (2018), the Hausdorff distance has some shortcom-
ings, such as failure to account for differences between routes that use the same road 
segment in opposite directions. In general, any two curves occupying the same area will 
have a small Hausdorff distance, even when they differ signifcantly in shape. 
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A more popular distance metric is the Fréchet distance, proposed by Fréchet in his 
1906 thesis. 

δF ( f ,g) = inf Maxt∈[0,1]d { f [α(t)] ,g [β (t)]} (78)
α,β 

In this equation, f ,g are parametrizations of curves, f ,g : [0,1] → R2, while α,β are 
continuous, monotone, increasing parametrization functions α,β [0,1] → [0,1]. These 
parametrization functions are introduced to enforce continuous and monotonically in-
creasing parameters for f and g. 

Map matching methods based on both Hausdorff and Fréchet distance metrics are 
sensitive to outliers in GPS positioning observations 

Probabilistic approaches aim to estimate the probability that a point belongs to a 
single segment. One of the most common approaches is to model it in terms of a hid-
den Markov chain, where the transition probability represents the likelihood of a point 
moving from one segment to another within a given time. In urban networks with com-
plex topology, the geometric map-matching frequently fails to provide a unique road 
segment solution. Therefore, combining it with a probabilistic approach, such as the 
Viterbi algorithm (Viterbi, 1967) is often necessary. The Viterbi algorithm is a dynamic 
programming algorithm for obtaining the maximum a posteriori probability estimate of 
the most likely sequence of hidden states that results in a sequence of observed events, 
specifcally in the context of hidden Markov models. 

For the practical purposes of modeling the road network with OpenStreetMap (OSM) 
and PostGIS, there are several built-in functions available for calculating the distance 
between a waypoint and a link, which corresponds to the initial step in the geometric 
approach. This OSM and PostGIS computational environment also allows us to work 
with pgMapMatch, an open-source Python implementation of a map-matching algorithm 
developed by Millard-Ball, Hampshire and Weinberger (2019). 

3.2. Fusing mobile phones, GIS data, and other sources for estimating OD 
matrices 

3.2.1. Dealing with mobile phone data 

Travel demand modeling, which encompasses travel patterns and transportation mode 
usage, has been traditionally conducted using household techniques, as discussed in 
Section 1 in the summary description of the four-step model. However, the emergence 
of mobile smartphones with location capabilities has led to the development of novel 
approaches based on mobile technologies. Among them is the idea of digital diaries, 
which enable recording people’s behaviors in urban spaces by means of probe person 
technology. In their seminal paper, Asakura and Hato (2004) introduce the fundamen-
tal concepts and methodologies for using smartphones to conduct tracking surveys of 
individuals in urban areas. While these survey techniques allow for the collection of 
detailed trip and traveler information, they unfortunately suffer from drawbacks, such 
as limitations on sample size and requiring active participation from each individual in 
the sample. To overcome these drawbacks, Asakura and Hato (2009) propose additional 
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technological developments aimed at passive data collection, later on explored by Hato 
(2010). Itoh and Hato (2013) suggest improvements in sampling techniques. 

However, because the widespread adoption of mobile phones has made them ubiq-
uitous and technological advancements has led to them becoming effective sensors, an 
alternative line of research has emerged, one which exploits call detailed records (CDR) 
of phone calls and text messages (SMS) exchanged between customers. These records 
are automatically collected by mobile phone service providers and offer a cost-effective 
and frequently updated source of data consisting of timestamps and antenna IDs. Call 
positions are identifed according to the connected antenna, whose position is given as 
longitude and latitude. The time stamps can be aggregated into time intervals that align 
with the study’s objectives. Ratti et al. (2006) were among the frst to develop and uti-
lize these techniques, and Gonz´ ´alez, Hidalgo and Barabasi (2008) conducted the frst 
large-scale data evaluation of mobile phone data. Since then, this feld of research has 
fourished in relation to the modeling and analysis of travel demand (Alexander et al., 
2015; Toole et al., 2015). Moreover, the research has been applied to traffc analysis and 
transport models (Jiang et al., 2016; Ç olak, Lima and González, 2016). These develop-
ments have progressed to the point where commercial products are now available and 
being exploited by companies for use in transportation projects (Garcı́a-Albertos et al., 
2018; Bassolas et al., 2019). 

As with any other kind of observation, the huge amount of data recorded from CDR 
requires careful cleansing to flter out noise caused by errors in assigning mobile phones 
to cell towers, particularly during the tower-to-tower balancing performed by the mobile 
service provider. This crucial initial step is necessary to reliably extract activities and 
trips from CDR data. Many of the abovementioned papers dedicate specifc sections to 
the wide variety of fltering procedures that can be applied. Subsequently, mobile phone 
trajectories are analyzed using data mining procedures to identify trips, represented by 
their start/end locations and departure times. 

For such reliable inferences of activities and trips, we must distinguish between lo-
cations where users stay (where activities occur) and their moving pass-by locations (en 
route displacements). The conventional methods for making such distinctions are based 
on the agglomerative clustering algorithm proposed by Hariharan and Toyakama (2004). 
These methods identify points that are close in space but distant in time, along with ad-
ditional criteria such as those proposed by Levinson and Kumar (1994), Schafer (2000), 
and Alexander et al. (2015). Essentially, these methods consist of identifying a stay 
point as a sequence of consecutive mobile phone records based on spatial and tempo-
ral thresholds. The spatial thresholds are set up in terms of a roaming distance, which 
is a parameter that must be calibrated according to network topology, phone cell den-
sity, signal quality, the accuracy of location positioning technology, and other relevant 
considerations. 

The temporal thresholds are defned in terms of the minimum length of the stay 
time, which is a parameter that needs to be calibrated. This measure is calculated as 
the time difference between the timestamps of the frst and last records at each stay 
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point. Users’ visited locations and stay points can be categorized into types such as 
home, work, frequently visited places (e.g., shopping centers), and infrequently visited 
places. This categorization can be based on using rationale and historical evidence to 
record stay durations during weekdays, such as being at home between 9 pm and 8 am 
and at work between 9 am and 6 pm (Jiang et al., 2016). Figure 22 presents a generic 
situation adapted from Jiang et al. (2016), and it shows that stay points can also be 
clustered into stay regions. For example, in the context of defning trips based on mobile 
phone observations provided by CDR, let us assume that movements start from the home 
location in the morning and end at the home location in the evening, unless the user’s 
distance to the home exceeds a threshold value denoted as dMax. A threshold value dMin 
defnes a minimum movement distance to identify successive records. 

Figure 22. pi represents the i-th observation of a mobile phone, and st j, denotes the j-th stay-
point (home sp1, shopping center sp2, work place sp3 . . .). Mobile records p4, p5, and p6 are 
clustered into stay point sp2. Circles identify the thresholds. 

The trip generation algorithm (Gundelgård et al., 2015, 2016) shown in Exhibit 1 
uses CDR observations and consists of three functions. The main function (Algorithm 
1) is called main() and loops through all available CDR observations for each user and for 
each day. It scans each observation, invoking the detect trip start() function (Algorithm 
2) to determine whether the trip start condition is met. This condition is satisfed if the 
distance from the ending point of the previous trip (line 33 of the pseudocode) or from 
the home position for the frst trip of the day (line 19) exceeds the value dMax. While 
a trip is in progress, the detect trip end() function (Algorithms 3) is invoked for every 
observation. The algorithm considers a trip has ended if the user arrives at home (line 
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37), work (line 45), or if two consecutive events have the same position (line 41). When 
a trip has ended, the main() function repeats the process and tries to detect the user’s 
next trip start by calling detect trip start(). 

Additionally, it is possible to extract stay locations with durations exceeding a certain 
threshold (a parameter defned by the analyst, depending on the context). If the obser-
vation period is suffciently long, all frequently visited stay locations can be identifed. 
Trips can also be fltered and aggregated into time intervals to estimate dynamic OD ma-
trices. During these periods, origins and destinations can be estimated by identifying the 
most common positions and associating them with TAZs, particularly when the origin 
zone differs from the destination zone. Identifying the area of study presents another 
signifcant consideration when generating OD matrices from mobile phone data. Urban 
databases typically store socioeconomic, population, and other related data at the level 
of census tracts. The travel patterns defned by OD matrices correspond to traffc analy-
sis zones (TAZ), as discussed in Section 1. Determining how to defne TAZ splitting is 
not a trivial task and usually takes into account the socioeconomic characteristics of the 
studied region, which aligns with considerations about the underlying causes of mobility 
(Ortuzar Willunsen, 2011). TAZs are usually well-balanced in terms of population and 
demand analysis criteria, and they are frequently formed by aggregating census tracts 
through a clustering process that covers the entire territory. Finally, the cellular cells 
associated with each mobile phone antenna form the third layer covering the territory, 
which may not have a direct correspondence with the other two partitions covering the 
territory. 

Consequently, in order to avoid signifcant errors caused by misalignments and in-
consistencies between the three coverings, careful design is necessary (Zhang et al., 
2010; Iqbal et al., 2014; Montero et al., 2019). For example, Bassolas et al. (2019) pro-
pose a heuristic to overcome the lack of exact correspondence between Voronoi cells. 
Their method assigns residents located in a given Voronoi cell to one of the intersecting 
census tracts or neighboring areas. The assignment probability is directly proportional to 
the square of the population of the census tract and inversely proportional to the square 
of the number of users already assigned to that tract. This assignment process ensures a 
local homogeneous sample density among neighboring census tracts. Figure 23 (adapted 
from Gundelgård et al., 2015, 2016) depicts an example of Voronoi tessellation modeling 
the phone cells and assignments of trips to TAZs. These TAZs are the result of aggre-
gating Voronoi polygons based on mobile phone data for Senegal, which was obtained 
from the mobile operator Orange (de Montjoye et al., 2014). The data comprises call 
detail records (CDR) of phone calls and text exchanges (SMSs) between customers in 
Senegal, collected between January 1, 2013, and December 31, 2013. 

The data used in Gundelgård et al. (2015, 2016) consists of 1666 antenna IDs and 
their corresponding locations, as well as mobility data for a year. The mobility data 
is based on a rolling two-week basis and comprises approximately 300,000 randomly 
sampled users. 
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Figure 23. Example of Voronoi tessellation and trip assignments to TAZ. 

Figure 24 summarizes the described methodological process. The upper part of the 
logic diagram represents the processing of the CDR. It is important to note that the 
proposed process produces a global OD matrix, which includes all trips regardless of 
the transportation mode used. In other words, there is no distinction between trips by 
car, bus, or any other public transport mode such as metro or railway. However, as 
discussed in Section 2 when describing the inputs to various models (particularly DTA 
and microscopic models), the required input is a dynamic time-dependent OD matrix 
X(t) = [Xrs(t)] specifc to each transport mode. For example, in the practical cases 
addressed in this paper, separate OD matrices are needed for car trips. Therefore, an 
additional step is needed to generate such OD matrices. 

The most common solution to this problem is depicted in the conceptual diagram in 
the lower part of Figure 24. It consists of integrating the ODCDR, which was initially 
estimated from the CDR processing, with other data sources that explicitly account for 
modal splitting. The most typical source is the household transport survey, which has 
long been used in transport demand analysis. Household surveys have the disadvantage 
of representing a small sample of the whole population and providing a kind of snapshot 
that is valid only for the time when the survey was conducted. However, they offer 
the advantage of being produced by carefully designed samples using well-established 
statistical sampling techniques that ensure being able to reliably extend the sample to 
the whole population. The fusion of this (possibly outdated) historical ODH with the 
more accurate and updated ODCDR is then used to derive a set of mode-specifc matrices 
(ODmode). This can be achieved by establishing correspondences between the splitting 
rates of the initial OD and assuming that they will prevail in the second (Montero et al., 
2019). Alternatively, historical data can be used to calibrate a discrete choice model (as 
discussed in Section 2.1) and apply it to the ODCDR to estimate the modal ODs. 

Once a modal OD has been obtained, such as the ODcar for car trips, it can be re-
fned if additional data sources are available. The most usual case is when conventional 
traffc data, link fows, and speeds, are accessible available from the traffc management 
system operating in the corresponding area. The estimation of OD matrices from avail-
able traffc measurements to generate inputs to transport models is a notably problem 
that has garnered substantial attention from researchers. This attention has been driven 
by its relevance for practical applications, especially in recent years with the growing 
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Figure 24. Methodological diagram of the procedures for generating OD matrices from CDR. 

demand for dynamic models that require dynamic inputs (see Antoniou et al., 2016 for 
an overview). 

The basic assumption is that, given an OD matrix X, an equilibrium assignment (as 
described in Sections 2.1 and 2.2) provides estimates of the link fows Y and, in some 
cases (e.g., dynamic assignments), estimates of other traffc variables such as paths, 
partial paths, and travel times. The reciprocal problem, as discussed by Cascetta (2001), 
can be formulated as follows: Assuming that Ỹ  is a set of observed link fows in a subset 
of links in the network, the goal is to fnd the OD matrix X̃ whose equilibrium assignment 
onto the network will generate the observed fows. Mathematically, the problem is highly 
underdetermined and challenging, but acceptable solutions can be found by imposing 
additional constraints (Cascetta, 2001; Antoniou et al., 2016). It can be formulated as a 
nonlinear optimization problem in various forms, such as the following highly suitable 
bilevel optimization problem: 

° ˛ 
Min Z(X) = F X , X̃ ,Y,Ỹ  

° ˛ 
s.t. Ỹ  = assignment X̃ , X̃ ∈ Ω (79) 
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where F is typically a distance function that measures the difference between a target 
or historical matrix X and the estimated matrix Xb, as well as between the observed link 
fows Y and the estimated fows Yb. The feasibility dominion Ω is usually determined by 
additional constraints (Djukic, 2014; Antoniou et al., 2016). To enhance computational 
effciency, the most effcient linearization approaches are often employed to approximate 
the assignment used in (79). This is especially true in dynamic cases, when the OD 
matrix is time-dependent and replaces the assignment mapping with: 

lt ylt = ∑ai jrxi jr → Y = A(X)X (80) 
i jr 

lt Here, ai jr is known as the assignment matrix and represents the proportion of the OD 
fow departing from origin i at time r and going to destination j, crossing link l at time 
t ≥ r. Various linearization approaches have been proposed in practice, such as those 
presented by Toledo and Kolechkina (2013), Frederix, Viti and Tampère (2013), and 
Ros-Roca et al. (2022). Several algorithmic approaches have been proposed to solve the 
model, such as those by Toledo et al. (2013), Antoniou et al. (2016), and Ros-Roca et 
al. (2022). There are variants of the simultaneous perturbation stochastic approximation 
(SPSA) method originally proposed by Spall (1992) that are explored in Antoniou et al. 
(2016) and Ros-Roca, Montero and Barceló (2020), among others. Another noteworthy 
approach is simulation-based optimization, as described by Osorio (2019), which is well 
suited to dynamic cases involving a simulation-based approach. 

3.2.2. OD Estimation and GPS data 

An emerging trend enabled by the accessibility of GPS traces is the development of so-
called “data-driven” models in which the parameters of the mathematical model of the 
transport system are directly estimated from ICT measurements. These approaches rely 
on large samples of vehicle data collected over a suffciently long period. The frst step 
in the process, as discussed in Section 3.1.2, consists of obtaining individual vehicle 
trajectories from GPS records and map-matching these waypoints onto the graph of the 
transportation network by means of specialized map-matching algorithms suitable for 
the available sample, whether it has low or high sampling rates. Assuming that the frst 
record corresponds to the start of the trip and the last to its end, and considering the 
information recorded in the waypoints (date, time tag, longitude, and latitude), then the 
corresponding trajectory can be associated with a specifc departure zone and destination 
zone for a given day and time. 

This zone assignment yields a primary set of OD matrices for each day and time, 
although these OD matrices correspond to segments of the total population and are 
strongly biased, since they represent only users of the GPS technology utilized to col-
lect the data. Thus, the sample is not necessarily representative and there are no clear 
methods for expanding it to the whole population. However, the identifed paths in the 
network can be clustered and analyzed using techniques such as machine learning tech-
niques (Lopez et al., 2017a, 2017b) to identify the paths used and the proportion of their 
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usage for each OD pair. Path choice models like those in (69) can empirically estimate 
their parameters from the recorded data (Krishnakumari et al., 2019; Ros-Roca et al., 
2022). Furthermore, when an equipped vehicle crosses a link and generates a waypoint 
and correctly map-matches it to the corresponding link, the processed data provides in-
formation such as link identity, the time of crossing the link, the origin of the trip, the 
departure time (time-tag of the frst waypoint recorded), and the trip destination. With 
this information, it is possible to estimate an empirical assignment matrix that allows a 
reformulation of (80) in order to relate the estimated traffc count to the OD fows: 

t 
ℓtyℓt = ∑ ∑ ā i jrxi jr (81) 

(i, j)∈N r=1 

where ylt represents the estimated fow in link l at time t; xi jr is the fow departing origin i 
ltto destination j at time interval t ∈ T ; and ai jr is the estimated assignment matrix, which 

is the fraction of trips from origin i to destination j, departing from i at time interval 
r reaching link l at time t, estimated from the GPS traces. In other words, this data-
driven approach reformulates the OD calibration problem by replacing the analytical 
approaches for estimating the model parameters with empirical estimations from ICT 
applications. Behara (2019) proposes an alternative approach based on estimating partial 
path travel times from Bluetooth measurements obtained suitably located antennas in the 
network. 

Nevertheless, all these approaches by Krishnakumari et al. (2019), Mitra et al. 
(2020), Behara (2019), and Ros-Roca et al. (2022) still complete the model formulation˜ ˛ ° °in (79) by optimizing the value of an objective function F X ,X ,Y,Y that minimizes 

° a distance measure between the estimated X of the OD matrix and a target OD matrix 
°X , as well as between the estimated link fow counts Y (obtained from (81)) and the 

observed link fow counts Y (or the estimated and measured partial path travel times). 

3.3. Extracting traffc data from image processing 

In 2001 the Federal Highway Administration (FHWA) initiated an intense debate about 
the validity and application of traffc simulation models for traffc analysis. Conse-
quently, in 2002, the FHWA Traffc Analysis Tool Program (https://ops.fhwa.dot.gov/ 
traffcanalysistools/ngsim.htm) was launched to address the questions raised and to es-
tablish a methodological framework for the construction and utilization of transport 
models. The FHWA acknowledged (Alexiadis, Colyar and Halkias, 2007) that micro-
scopic traffc simulators can help evaluate complex scenarios by intricately modeling 
real-world transportation networks, a task that is challenging using more conventional 
methods. Moreover, advancements in computer technologies have enabled these sim-
ulators to model larger and more complex transportation systems, thereby supporting 
associated decision-making processes. 

From the very beginning, the stakeholders involved in the program unanimously 
agreed on the premise put forth in this paper: Microscopic models need data, particu-
larly detailed microscopic data that are not easily obtained and not always available. A 

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
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comprehensive understanding of microscopic traffc fow and car following behavior is 
crucial for advancing traffc fow theory. This understanding is essential for constructing 
traffc simulation models, and the most effective means of acquiring such knowledge is 
by collecting empirical data and providing it as evidence. Consequently, a companion 
program called the next generation simulation (NGSIM) program (https://ops.fhwa.dot. 
gov/traffcanalysistools/ngsim.htm) was launched with the aim of developing driver be-
havior algorithms for microscopic modeling by collecting detailed, high-quality traffc 
datasets. Multiple data collection sites were equipped, and the collected datasets are 
freely available at the corresponding websites. Notable among them are Interstate I-80 
Highway (https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm) 
and US Highway 101 (https://www.fhwa.dot.gov/publications/research/operations/07030/ 
index.cfm). 

The I-80 Highway location is shown in Figure 25. According to the dataset pro-
vided in the website’s NGSIM Fact Sheet, “the NGSIM program collected detailed ve-
hicle trajectory data on eastbound I–80 in the San Francisco Bay area in Emeryville, 
CA, on April 13, 2005. The study area was approximately 500 meters (1,640 feet) in 
length and consisted of six freeway lanes, including a high-occupancy vehicle (HOV) 
lane. An onramp also was located within the study area. Seven synchronized digital 
video cameras, mounted from the top of a 30-story building adjacent to the freeway, 
recorded vehicles passing through the study area. NG-VIDEO, a customized software 
application developed for the NGSIM program, transcribed the vehicle trajectory data 
from the video. This vehicle trajectory data provided the precise location of each vehi-
cle within the study area every one-tenth of a second, resulting in detailed lane positions 
and locations relative to other vehicles. A total of 45 minutes of data are available in 
the full dataset, segmented into three 15-minute periods: 4:00 p.m. to 4:15 p.m.; 5:00 
p.m. to 5:15 p.m.; and 5:15 p.m. to 5:30 p.m. These periods represent the buildup of 
congestion, or the transition between uncongested and congested conditions, and full 
congestion during the peak period. In addition to the vehicle trajectory data, the I–80 
dataset also contains computer-aided design and geographic information system fles, 
aerial orthorectifed photos, freeway loop detector data within and surrounding the study 
area, raw and processed video, signal timing settings on adjacent arterial roads, traffc 
sign information and locations, weather data, and aggregate data analysis reports”. 

Video image processing for traffc analysis remains more of an art than a science. 
While automated tools can provide an initial approximation, it is no easy task to achieve 
the level of precision required for extracting suffciently accurate empirical vehicle tra-
jectories to develop traffc fow models. Because even the best image processing tools 
cannot overcome the inherent complexities of projection errors, occlusions, shadows, the 
non-rectilinear shapes of real vehicles, and vehicles with colors similar to the pavement, 
signifcant human intervention is still required if traffc fow theory is to advance. Figure 
26 depicts the propagation of shockwaves collected from the trajectories at the US101 
site. 

https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm
https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm),US
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/07030/index.cfm
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Figure 25. The aerial photograph on the left shows the extent of the I–80 study area rela-
tive to the building where the video cameras were mounted, along with the coverage area for 
each of the seven video cameras. The schematic drawing on the right shows the number of 
lanes and location of the Powell Street onramp within the I–80 study area. Source: Public Do-
main “Federal Highway Administration Research and Technology” https://www.fhwa.dot.gov/ 
publications/research/operations/06137/ index.cfm. 

The detailed microscopic data collected by NGSIM were expected to serve as valu-
able resources for validating traffc simulation models by comparing the values of vari-
ous vehicle kinematic variables, which include the time and space headways that could 
be measured, speed distributions, accelerations, and changes in acceleration (jerks). By 
analyzing these data, we anticipated being able to estimate the parameters of the car-
following and lane change models, enabling them to accurately reproduce the observed 
values. 

https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm
https://www.fhwa.dot.gov/publications/research/operations/06137/index.cfm
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Figure 26. Shockwave Characteristics (NGSIM, I-80 Dataset, 5:00–5:15 pm, Lane 2). 

Figure 27. Hypothetical reconstruction of vehicle trajectories from video processing. 

To summarize the process of extracting information from the trajectories using a 
hypothetical example, Figure 27 represents a few trajectories obtained through suitable 
processing of the video data recorded at constant time intervals ∆t = ti+1 − ti (∆t = 0.1 
seconds for the NGSIM data). The red trajectory corresponds to the n-th vehicle, and 
the red dots along the trajectory indicate the vehicle’s positions at each instant ti, i = 
1, . . . ,T . 

For a given instant ti, the relative positions of two consecutive vehicles, a leader n and 
its follower n + 1, are denoted by xn (ti) and xn+1 (ti), respectively. The space headway 
between them can be calculated as: 

sn+1 (ti) = xn (ti) − xn+1 (ti) (82) 



       

             
             
   

 
 

 

     

 
 

 

             
               
              

           
            
              
              

            
              

               
           

   
  

   

    
             
           

              
              

             
    

           
                
             

           
            
             

             
              
               

             
            

              

56 Transport systems analysis: models and data 

For each trajectory, the corresponding time series of speeds can be calculated. For 
instance, Coifman and Li (2017) propose using the mean difference over multiple time 
intervals as follows: 

xn (ti+p)− xn (ti−p)ṽn (ti) =  (83)
2p∆t 

Similarly, accelerations can be derived: 

ṽn (ti)− ṽn (ti−1)ãn (ti) =  (84)
2∆t 

Additionally, the jerks (the time change of the acceleration) can be calculated. These 
and other values can be used to calibrate the parameters of car-following models and test 
their quality. One early example can be found in Yeo and Skabardonis (2007), who de-
velop, calibrate, and test an improved car-following model based on empirical observa-
tions of NGSIM trajectories. Another example is Bevrani and Chung (2011), who mod-
ifed the Gipps car-following model to enhance its capabilities for safety studies. In the 
frst case, they use the analysis of the trajectories to estimate the probability distribution 
of space headways estimated from equation (1) and the speed distribution from equa-
tion (2). In the second case, the study primarily focuses on the enhanced car-following 
model’s ability to predict the expected time to collision (TTC), a critical indicator of a 
given traffc situation. TTC for the follower vehicle n + 1 is calculated as: 

xn (ti)− xn+1 (ti)− lnT TCn+1 (ti) =  (85)
ṽn+1 (ti)− ṽn (ti) 

where ṽn+1 (ti)> ṽn (ti). 
The analysis of the I-80 NGSIM data conducted by Yeo and Skabardonis (2007) 

revealed that the probability distribution of space headways under congested conditions 
follows a lognormal distribution. The mean of the distribution was found to be 4.24 
meters, with a variance of 14.6035 (see Figure 28). A similar distribution was found 
for the shockwave speeds, and Bevrani and Chung (2011) also found similar lognormal 
distributions for the TTC. 

The theoretical expressions for space headways (82), speeds (83), accelerations (84), 
and TTC (85), as well as other derived estimates such as jerks or shockwave speeds, are 
used to estimate empirical values that are later employed for the calibration and val-
idation of car-following models. These expressions implicitly assume that either the 
empirical values are error-free or their errors have been minimized. However, this as-
sumption is unfortunately not always met. As already discussed in this paper, errors 
can affect the observed points regardless of the technique used to collect vehicle posi-
tions. In the case of the trajectories recorded after processing the video images, these 
points may be dispersed in the vicinity of the actual physical path followed by the ve-
hicle. These measuring errors can substantially impact the analysis of a follower’s and 
leader’s consecutive vehicle behaviors (Punzo, Borzacchiello and Ciuffo, 2011). If f̃  n(t) 
is the trajectory function of vehicle n, measurement errors introduce noise into f̃  n(t), 
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Figure 28. Lognormal probability distributions of space headways for I80. 

which is magnifed by differentiation when calculating speeds, accelerations, and jerks. 
These quantities represent the physical variations in acceleration over time and can be 
considered as random components in the traveled space. 

Direct use of raw data reveals unacceptable accelerations and physically unreliable 
jerks. For example, analyzing the acceleration distribution over the entire datasets re-
veals unfeasible extreme values and anomalous shapes in the distributions, which Punzo 
et al. (2011) interpret as clear indications of problems in the data collection. They also 
prove that their analytical evidence shows a positive bias in f̃  n(t), due to a systematic 
error component that they believe is inherent to this type of measurement. However, this 
bias is not self-evident when looking at the trajectory of a single vehicle but becomes 
apparent when examining the trajectories of consecutive vehicle pairs. Their paper pro-
vides analytical evidence of the bias propagated in the vehicle trajectory functions, for 
which they propose consistency requirements. In a later paper, Montanino and Punzo 
(2015) refne the procedures for properly reconstructing trajectories, minimizing errors, 
and making the data useful for the intended purposes. They propose a systematic error 
analysis based on geometrical and physical considerations, combined with fltering and 
smoothing techniques. Specifcally, they apply Gaussian kernel smoothing to the posi-
tion data for each trajectory to reduce the impact of noise resulting from data reduction. 

Lu and Skabardonis (2007), in a companion paper to Yeo and Skabardonis (2007), 
also identify the disturbances in the trajectories from NGSIM data due to measurement 
noise that must be corrected before being used for traffc studies. They apply a Butter-
worth low pass flter, as proposed by Butterworth (1930). 

Many other researchers have identifed these limitations of NGSIM datasets and pro-
posed various error fltering and data smoothing techniques to correct them. However, 
other researchers such as Coifman and Li (2017) claim that “the NGSIM errors are be-
yond anything that could be corrected strictly through cleaning or interpolation of the 
reported NGSIM data.” In analyzing NGSIM trajectories, they found that their tracking 
of vehicles quite frequently results in vehicular collisions. Consequently, they system-
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atically remove the NGSIM trajectories to generate a subset of different trajectories that 
are free of blatant errors. They also employ similar fltering and smoothing techniques, 
particularly those that use the Savitzky-Golaydigital flter (Savitzky and Golay, 1964). 
The techniques aim to enhance the precision of the data without distorting its underly-
ing trends, and they involve using a convolutional process that fts successive subsets 
of datasets in a way similar to a sliding window with a low-degree polynomial. Other 
authors employ spline ftting methods, resulting in a new dataset that Coifman (2017) 
has made publicly available for research purposes. He asserts that these cleaned NGSIM 
data can now serve as a benchmark for assessing the quality of trajectory data. 

4. Concluding remarks and insights into some current trends 

The main thesis held in this paper is that a proper understanding of a complex system can 
be achieved by acquiring adequate knowledge about the system and translating it into a 
modeling hypothesis. The hypothesis should serve as the foundation for explaining how 
the system works and formally representing it through a model. Models, therefore, be-
come a scientifc tool for better understanding a system and supporting rational decisions 
by providing insights into how the system will behave under other conditions. In other 
words, models provide answers to what-if questions about the system. As emphasized 
in Section 1, the system, the observer, and the model form a unit known as the Minsky 
triad, in which questions are asked about the system and its objectives in order to support 
rational decision-making. Thus, no unique model of a system exists but instead multiple 
models that depend on the specifc questions asked by the observer. This general model-
ing theory, outlined in Section 1, applies to various types of systems and specifcally to 
transport systems, which is the focus of this paper. 

Transport systems belong to a family of complex systems that can be analyzed using 
the Minsky triad. Section 2 provides brief examples of the three main families of trans-
port models based on the modeler’s perspective regarding the questions that the models 
aim to answer and the corresponding modeling hypotheses that align with the charac-
teristics of the system that are relevant for answering these questions. Each modeling 
approach, whether macro (static or dynamic), micro, or meso, is summarized in a subsec-
tion that describes the underlying modeling hypotheses and how they are translated into 
a mathematical formal representation. The models resulting from each approach identify 
the parameters on which they depend, and the numerical values these parameters must 
be estimated based on the data. 

Another key thesis of this paper holds that data required by models are not in them-
selves information but instead carry information that requires specifc processing. This 
establishes a two-way interaction between models and data. Models need data, and data 
can provide only limited useful information without the aid of models. Models are essen-
tial for bridging the gap between descriptive and predictive capabilities, as they provide 
an understanding of the system. 
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For models to be truly valuable, calibration and validation are necessary. This en-
tails ensuring that the model’s parameter values are accurate, thereby establishing the 
validity of the model and its ability to faithfully reproduce the system’s behavior. Sec-
tion 2 concludes by providing an overview of the calibration and validation processes, 
emphasizing the pivotal role of data in these processes. 

Considering the signifcant role of data in modeling approaches and the fact that 
data alone do not inherently reveal their embedded information, it becomes imperative 
to address critical issues pertaining to data availability, its characteristics based on the 
employed data collection technology, and the appropriate data processing techniques 
required to extract the relevant information about each phenomenon generated by this 
data. This information is crucial for parameter estimation during the calibration pro-
cess, as well as for comparison during the validation process, ultimately enabling the 
utilization of the model to answer what-if questions. 

Section 3 addresses these topics be establishing a methodological framework for 
data processing. It provides a general overview of the various types of data and their 
characteristics, depending on the available technologies. The section also illustrates the 
use of this methodological framework with a few selected examples based on some of 
the most recent data collection technologies, namely those supported by ICT applications 
like Bluetooth, CDR and GPS from mobile devices, and video image processing. 

However, this section begins by emphasizing that datasets, regardless of the technol-
ogy used, always contain errors, missing data, and other faws that need to be corrected 
and completed to ensure data completeness and consistency. This is achieved through 
the application of fltering techniques, one example of which is the powerful Kalman 
flter, which measures travel times by tagging two consecutive antennas used by mobile 
Bluetooth devices. The Kalman flter not only identifes and removes outliers, but it also 
replaces them with the most likely values to obtain a complete and consistent dataset. 

The subsequent steps demonstrate the utilization of data provided by two preva-
lent ICT applications to generate dynamic OD matrices, which serve as crucial inputs 
for microscopic and mesoscopic traffc models. Dynamic OD matrices reveal the time-
dependent traffc patterns, which can be identifed by techniques that either track the 
CDRs of mobile phones associated with phone cells corresponding to the antennas along 
their paths or record the GPS waypoints that track the trajectory of mobile devices. In 
both cases, ad hoc fltering procedures are necessary to remove erroneous records or en-
sure the validity of the records. This involves ensuring correct matching between CDR 
and geographic coverage of TAZs and phone cells for mobile phones, as well as map 
matching between waypoints and their physical locations on the road network. These 
specifc fltering processes are briefy discussed and illustrated. However, the OD esti-
mates in both cases have limitations. They may either provide global estimates of trips 
without distinguishing the mode of transport used, or they only correspond to a specifc 
mode, such as cars, for which only a subsample is available (i.e., equipped vehicles). 
Consequently, additional information from other sources is required in both scenarios, 
either to split the OD into the various transport modes or to fnd a way to extend the 
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sample to the whole population. The most commonly used sources are prior informa-
tion from conventional surveys in the form of target OD matrices and link fow counts 
from conventional detection stations that serve as reference ground truth. This section 
of the paper indicates how specifc optimization techniques can be used to achieve the 
objectives. 

Finally, Section 3 concludes with a representative example of using video image 
processing to extract traffc information, specifcally from the FHWA’s NGSIM project, 
aimed at providing traffc datasets for testing traffc simulation models, particularly car-
following models that are fundamental to microscopic simulation engines. The section 
describes the datasets, their processing, and the fltering techniques employed, while also 
highlighting the controversy surrounding the datasets since their inception. This example 
effectively demonstrates the advantages and disadvantages associated with certain uses 
of technologies in extracting valid data and how these challenges have been overcome. 

We could conclude here, as these remarks have highlighted how the thesis stated 
at the beginning of the paper has been demonstrated through signifcant examples. By 
identifying the hypotheses underlying the key transport models and illustrating the in-
terdependence between models and data, it is evident that each relies on the other and 
neither can replace or render the other unnecessary. However, ending at this point may 
leave a sense of incompleteness. It is important to provide a glimpse of current trends 
and what lies ahead. 

Numerous avenues of exploration can be identifed, but two dominant themes emerge, 
considering that models used to analyze transport systems are also tools for analyzing 
the mobility they facilitate. These themes seek to offer insights into the question: What 
factors can determine the urban mobility of the future? 

4.1. Scenarios dominated by technological developments: the case of 
connected and autonomous vehicles 

For those who believe that the future of mobility will be fundamentally determined by 
technology such as connected and autonomous vehicles (CAV), electric vehicles, and in-
formation and communication technologies (ICT), understanding the future of mobility 
requires models that take into account the infuence of these technologies. This per-
spective implicitly assumes that technology will enable people to travel from origins to 
destinations for the same reasons as today while selecting the most convenient paths, but 
with the advantage of CAVs making choices based on data collected from other CAVs 
in addition to conventional information. The key modeling challenge then becomes how 
car-following models will function, not only for pairs of vehicles but also for groups 
or platoons of interconnected vehicles traveling in a coordinated manner. It is crucial to 
determine the conditions under which the dynamics of the platoon will remain stable. To 
provide a comprehensive overview, it is worth mentioning a seminal work inspired by the 
car-following approaches discussed in Section 2. Building upon the general modeling 
approach proposed by Ward and Wilson (2011) and Wilson (2011), which formulates 
car-following models in terms of a functional framework modeling the follower’s re-
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action in terms of acceleration or deceleration based on speeds, spacings, and relative 
speeds: 

an+1(t) =  ẍ n+1(t)= F [sn+1(t),∆vn+1(t),vn+1(t)] (57) 

These models have “uniform fow” steady solutions (equilibria) if, for each s ∗ > l, 
there is a v ∗ = V (s ∗) > 0 such that F (s ∗ ,0,v ∗) =  0, where V (s ∗) is the equilibrium 
speed-spacing relationship that leads to a fundamental diagram. Researchers such as 
Wagner (2016) and Talebpour and Mahmassani (2016) deem this functional framework 
to be a suitable starting point for studying the behavior of autonomous vehicles, due to its 
generic approach that does not assume specifc driver characteristics and can therefore 
capture interactions among autonomous vehicles with nonhuman drivers. 

Ward and Wilson (2011) defne the string stability of a platform in terms of the 
response to a leader suddenly braking and the decaying perturbation as it propagates 
upstream within the platoon. In this case, the car-following model is considered pla-
toon stable. Then the analytical conditions string stability can be expressed in terms 
of the partial derivatives Fs, F∆v, Fv of the functional F [s(t),∆v(t),v(t)], evaluated at 
(s ∗ ,0,v(s ∗)), as follows: 

˜̃
˜̃
 
˜̃
˜̃
 
˜̃
˜̃
 

∂ F (sn,∆vn,vn)
Fn = s ∂ sn (s ∗ ,0,v(s ∗)) 

(s ∗ ,0,v(s ∗)) 

∂ F (sn,∆vn,vn)
Fn 

∆v (85)= 
∂ ∆vn 

∂ F (sn,∆vn,vn)
Fn = v ∂ vn (s ∗ ,0,v(s ∗)) 

and: ° ˛°  ˛22Fn 
v∑ m∏ Fs− Fn Fn − Fn 

∆v v s (86)
2n m=n 

where the index n covers the set of vehicles in the platoon. In the case of Talebpour and 
Mahmassani (2016), string stability is evaluated in terms of the intelligent driver model 
(IDM) developed Kesting et al. (2010) and defned by equations (55) and (56), where 
each vehicle in the platoon will have specifc model parameters associated with it. 

Considering that the autonomous vehicles are equipped with monitoring capabilities 
for all vehicles in their vicinity, their time lags and anticipation times can be estimated 
in terms of sensing and mechanical delays. The speeds of autonomous vehicles in the 
platoon should allow them to come to a full stop when the leader initiates maximum 
deceleration by braking. 

They analyze the string stability of the proposed model following the approaches of 
Ward (2009), Ward and Wilson (2011), and Treiber and Kesting (2013) for a homoge-
neous platoon of vehicles. The partial derivatives (86) are calculated to evaluate it in 
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terms of equation (87). 

22a 
˜ 

s0 +T v(s ∗) 
° 

Fs = ∗ ∗ s s ˛ ˜ ° 
v(s ∗) a s0 +T v(s ∗)

F∆v =− (87)∗ ∗ s b s 
˜ ° ˜ °˜  ° δ −1 ∗)aδ v 2aT s0 +T v(s 

Fv =− − ∗ ∗ v0 v0 s s 

The resulting partial derivatives are expressed as functions of the vehicle speed v, the 
equilibrium gap s ∗, and the equilibrium speed v(s ∗). These expressions can be simplifed 
using the equilibrium relationships proposed by Treiber and Kesting (2013): 

s0 + vT 
s ∗ (v) = ˛ (88)˝ ˙δ 

v1 − v0 

From this, Talebpour and Mahmassani (2016) conduct an analysis of stable and un-
stable scenarios based on the parameter values governing the model, taking into account 
the suggested values from empirical evidence of cruise control studies. This example 
is selected to be consistent with the models discussed in Section 2, which can only 
be studied analytically or through simulation, since the real systems are not yet imple-
mented. It illustrates how models can assist in the design and testing of new systems. 
Furthermore, considering that time-lags can mainly depend on sensing delays, which are 
strongly infuenced by telecommunication technologies, modeling approaches that also 
include telecommunication aspects have been explored. One early example is Talebpour, 
Mahmassani and Bustamante (2016), and a more recent one is Dai et al. (2022). Let us 
close these comments by mentioning other types of modeling approaches to car follow-
ing models, such as those inspired by reinforced learning processes (Wu et al., 2017). So 
far, these approaches can only be tested through simulations due to the lack of observed 
data. 

4.2. Scenarios dominated by other factors: urban forms, accessibility, 
etc. 

For those who acknowledge the infuence of non-technological factors, such as urban 
forms and their impact on the temporal and spatial distribution of activities, the future 
of mobility is intertwined with the evolution of cities and the complex relationships 
between mobility, urban forms, and transport systems. This perspective assumes that 
technology enables new possibilities like telecommuting, which eliminates the need for 
physical displacement to overcome physical distances, or the concept of the ”15-minute 
city,” where urban areas are designed to reduce the necessity of extensive travel by pri-
oritizing non-motorized modes of transportation over motorized ones. Consequently, 
alternative models are required to explore these aspects. What are these models? 
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We need to shift our mindset, as suggested by Barceló (2019), from a conventional 
reductionist approach to a complex dynamic systems approach. In this perspective, a 
complex system is a system composed of a large number of interacting components 
that, as a whole, exhibit properties that are distinct from the properties of the individual 
components. This implies taking a holistic view of the whole as different from the sum 
of the parts. Thus, the transport system comprises various interconnected networks for 
different modes of transportation, such as cars, buses, metro, and railways, which need 
to be integrated to accurately capture their interactions. This paradigm shift challenges 
the traditional modeling approach focused solely on trips and their purposes, and instead 
seeks to understand the underlying causes and consequences. Central to this perspective 
are the activities that drive mobility, including economic, leisure, and shopping activities. 
Accessibility to these activities becomes the key factor in explaining the need for people 
and goods to travel, bridging the spatial separation of activities resulting from the urban 
spatial structure determined by land use. The transport infrastructure plays a crucial role 
in providing the physical connectivity required to bring people to their desired activities. 

Figure 29. The complex systems and components of the city. 

However, a holistic perspective cannot overlook the fact that the transport system 
is reliant on energy, particularly when considering sustainability and the associated en-
ergy consumption and emissions from transportation. Shifting towards more sustainable 
transport technologies, such as replacing fossil fuel-powered vehicles with electric vehi-
cles, necessitates the inclusion of energy grids as part of the system. Figure 29 schemat-
ically depicts this approach, presenting the city as a complex system comprising key 
components: urban form, land use, energy, road network, public transport networks, and 
the logistics system, which is responsible for ensuring goods reach activity locations but 
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is often overlooked in conventional approaches. The interactions of these components 
shape the functioning of the overall system. 

This paradigm shift changes the standard modeling approaches and calls for the tran-
sition from individual transport system models (e.g., private, public, urban logistics) to 
a comprehensive model of the city that incorporates urban form, land use, integrated 
transport networks, energy systems, and charging grids. In recent years, various model-
ing tools have been developed to support this new approach. One such tool is UrbanSim, 
an open-source platform designed by Waddell (2011), Waddell (2015), and Waddell et al. 
(2018). It can integrate with transport planning modeling software like SATURN (Hall, 
Van Vliet and Willumsen, 1980) and Visum (PTV AG, 2020). Transport modeling has 
progressed beyond the basic four-step model described in Section 2, which assumes that 
trips originating from one TAZ and destined for other TAZs are solely determined by the 
socioeconomic characteristics of the TAZs, implicitly depending on land use. Conse-
quently, changing land use characteristics will also change the number of trips generated 
in the TAZ. Land use transport integrated (LUTI) models developed by Wegener and 
Fürst (1999), Acheampong and Silva (2015), and van Wee (2015) explicitly account for 
these interdependencies. The integration of transport planning software into UrbanSim 
represents a notable advance in this modeling direction, and early examples can be found 
in reports from the EU project SIMBAD (Nicolas and Zuccarello, 2011; Dasigi, 2015). 

Figure 29, adapted from SIMBAD Project, depicts the conceptual diagram and the 
fow of information and data between the various modules in this integrated framework, 
which also includes an urban freight model that addresses the previously overlooked 
freight traffc fows in conventional models. 

A more recent and more powerful software platform for city modeling that inte-
grates ad hoc models for each component is SimMobility (Adnan et al., 2016; Zhu et al., 
2018). This software is described on the MIT SimMobility website (https://mfc.mit.edu/ 
simmobility) as follows: “SimMoblity is the simulation platform of the Future Urban 
Mobility Research Group at the Singapore-MIT Alliance for Research and Technology 
(SMART) that aims to serve as the nexus of Future Mobility research evaluations. It in-
tegrates various mobility-sensitive behavioral models with state-of-the-art scalable sim-
ulators to predict the impact of mobility demands on transportation networks, services, 
and vehicular emissions. 

intelligent transportation The platform enables the simulation of the effects of a port-
folio of technology, policy, and investment options under alternative future scenarios. 
Specifcally, SimMobility encompasses the modeling of millions of agents, from pedes-
trians to drivers, from phones and traffc lights to GPS, from cars to buses and trains, 
from second-by-second to year-by-year simulations, across entire countries”. As this 
presentation highlights, SimMobility offers the additional advantage of being an activity-
based approach that fully integrates urban freight transport (Sakaia et al., 2020). 

Upon analyzing the dynamics of transportation, it becomes apparent that it is signif-
icantly more intricate than the typical simplifcations employed in four-step trip-based 
models. In these models, the trip serves as the fundamental unit of analysis, treating in-

https://mfc.mit.edu/simmobility
https://mfc.mit.edu/simmobility
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Figure 30. Conceptual diagram of integrating UrbanSim with the Visum transport model and an 
urban freight model. 

dividual trips as independent and separate entities. However, when considering the daily 
schedules of individuals and their activities, we must look at them in terms of sequential 
chains, like the one illustrated in Figure 31, where a sequence is defned as a series of 
time points where a person transitions from one discrete state (activity) to another. 

In the generic example in Figure 31, the person starts at origin O (home, for exam-
ple) and travels to activity Ai, perhaps taking their children to school by walking. The 
duration of this activity is ti. The person then travels for a duration of τi j by a transport 
mode such as a bus from the location of activity Ai to the location of activity A j, say, to 
work during duration t j. He or she then travels by a transport mode that may be the same 
as or different from the location of activity A j to the location of activity Ak (say, shop-
ping) over a duration that is τ jk time units. After tk time units, activity Ak is completed 
and the individual moves to another destination, D. 

From this description, it is clear that the conventional four-step trip-based models 
lack the necessary structure to represent either a journey’s sequential decisions, which 
now appear as an intermodal chain, or their interrelationships. 
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Figure 31. Examples of activity sequences in a daily schedule. 

The new approach, exemplifed by models such as SimMobility and MATSim (Horni, 
Nagel and Axhausen, 2016), focus on replicating actual traveler decisions by thoroughly 
understanding the motivations and processes behind them. These models aim to compre-
hensively represent various interrelated aspects, such as the types of activities individuals 
engage in, the locations and timing of these activities, and the modes of transportation 
used to reach them. This entails not only the ability to generate and schedule the activi-
ties, which provides insights into the activities people participate in, but also to generate 
tours and trips with specifc destinations and modal choices for reaching them. By con-
sidering these factors, the models can identify the routes and modes individuals will 
utilize, leading to the subsequent network assignment. 

Generating the schedule of activities, as depicted in Figure 31, consists of identifying 
the number and type of activities, their sequential order, the start time and duration of 
each activity, the modal choices, and the routes taken. 

This analysis is conducted through an agent-based simulation, in which individuals 
are represented as agents whose behaviors are modeled by the decision processes gener-
ated through an activity-based approach. Agent-based simulation explicitly incorporates 
multimodality by simulating the available transportation modes such as cars, buses, and 
metros, allowing agents to switch between modes according to their schedules. 

Additionally, agent-based simulation can effectively address urban freight transport 
by considering feets of vehicles and agents in order to schedule their activities as se-
quences of visits for pickups and deliveries. 

Figure 32 depicts the logical diagram of agent-based simulation supported by the 
activity-based approach. In terms of structural components, it shares similarities with the 
assignment, mesoscopic, and microscopic models discussed in Section 2. This is because 
the network supply model, which includes the networks of all available transportation 
modes, must be built using the same data sources (i.e., GIS and all complementary urban 
information) that are typically used in transport modeling. 

Activity-based models require a huge amount of data, since they must generate in-
formation by combining socioeconomic (census tracts) and land-use data with survey 
data by employing specifc sampling techniques like Gibbs sampling to generate syn-
thetic populations, which will in turn be used to generate agents and their activity plans. 
A seminal work on these applications to agent-based simulation can be found in Farooq 
et al. (2013), and a more comprehensive overview of available methods can be found 
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Figure 32. Activity- and agent-based simulation models. 

in Chapuis, Taillandier and Drogoul (2022). One example of applying MATSim using 
available data for Barcelona, which was previously discussed in Section 3.2.1 regard-
ing the use of mobile phone data, can be seen in the work of Bassolas et al. (2019). 
The logic diagram in Figure 30 describes the simulation process as an iterative process, 
where the performance is evaluated using suitable indicators. Models like SimMobility 
and MATSim provide sets of indicators, and changes are introduced accordingly, such as 
adjustments in route or modal choices based on discrete choice models, thereby aiming 
to achieve some form of equilibrium while emulating individual behaviors. 

Funding: This research project has been funded by Spanish R+D Programs, specifcally 
under Grant PID2020-112967GB-C31. 
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(MSc thesis). University of Linköping, Department of Science and Technology, LiU-
ITN-TEK-A–18/020-SE. 

Jayakrisham, R., Mahmassani, H.S. and Yu, T.Y. (1994). An Evaluation Tool for Ad-
vanced Traffc Information and Management Systems in Urban Networks. Trans-
portation Research Part C: Emerging Technologies, 2C(3), 129-147. 

Jiang, S., Yanga, Y., Gupta, S., Veneziano, D., Athavale, S. and González, M. C. (2016). 
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Département d’Informatique et de Recherhe Opérationelle, Université de Montréal. 
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