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Fundamentals of convex optimization for 
compositional data 

Jordi Saperas Riera1, Josep Antoni Martı́n Fernández3 

and Glòria Mateu Figueras2 

Abstract 

Many of the most popular statistical techniques incorporate optimisation problems in 
their inner workings. A convex optimisation problem is defned as the problem of min-
imising a convex function over a convex set. When traditional methods are applied to 
compositional data, misleading and incoherent results could be obtained. In this paper, 
we fll a gap in the specialised literature by introducing and rigorously defning novel con-
cepts of convex optimisation for compositional data according to the Aitchison geometry. 
Convex sets and convex functions on the simplex are defned and illustrated. 
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1. Introduction 

Convex optimisation plays an important role in a wide range of scientifc felds where 
statistical methods are applied. Thus, it has become particularly relevant in the design 
of experiments (Coetzer and Haines, 2017), variable selection (Susin et al., 2020), ro-
bust statistics (Boogaart et al., 2021), cluster analysis (Wang et al., 2020), and principal 
components analysis (Campbell and Wong, 2022). 

In a broad sense, a convex optimisation problem in RD is defned as (Boyd and 
Vandenberghe, 2004) the problem of minimising a convex function (objective function) 
over a convex set (feasible region). The feasible region is the set of all possible val-
ues of variables that verify the constraints of the problem. Commonly, it is assumed 
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that the convexity of the objective function and the feasible region corresponds to the 
ordinary convexity concept in real space, RD . However, in statistics, one has to take 
into account the particular geometry of the sample space of the variables. Composi-
tional data (CoDa) (Aitchison, 1986) convey relative information because the variables 
describe relative contributions to a given total. These variables are called parts of a 
whole and are, usually, expressed in proportions, percentages or ppm. Historically 
(Aitchison, 1986), the sample space of CoDa is designed as the D-part unit simplex 
SD = {x ∈ RD : x j > 0;∑x j = 1; j = 1, . . . ,D}. The formal geometric framework for 
the analysis of CoDa was frst introduced in Pawlowsky-Glahn and Egozcue (2001) 
and Billheimer, Guttorp and Fagan (2001). It was called the Aitchison geometry, and 
it was later formally established in Barcelo-Vidal and Mart´ ı́n-Fernández (2016). Such 
geometry allows compositions to be expressed as coordinates on an orthonormal basis, 
formed by logratios and called olr-coordinates (Egozcue et al., 2003; Martı́n-Fernández, 
2019). In short, the analysis of CoDa involves the use of standard techniques in olr-
coordinates; what has been known as the principle of working on coordinates (Mateu-
Figueras, Pawlowsky-Glahn and Egozcue, 2011). 

Applications of the log-ratio methodology are increasingly found across a wide 
range of scientifc felds such as geosciences (Martı́n-Fernández et al., 2018), chemistry 
and physics (Halim et al., 2021), and health (Bates and Tibshirani, 2019; Dumuid et al., 
2020), among others. CoDa methods have become particularly relevant for the analy-
sis of time-use data, especially in relation to public health studies (Chastin et al., 2015; 
Dumuid et al., 2021; Kitano et al., 2020; Fairclough et al., 2018; Gupta et al., 2020). In 
time-use data, the parts are the time spent on different activities such as sleep, work, and 
a range of physical activities. Some optimisation problems of practical relevance can be 
formulated in this context. For example, one can be interested in deciding what com-
position of daily activities agreeing with some medical recommendations (constraints) 
optimises a particular health biomarker (objective function). Alternatively, given a time-
use composition of a patient not following some medical recommendation (feasible re-
gion), the question of interest is: what modifcation to the daily activity composition 
would enable a swift transition (objective function) into a healthy behaviour region? 

The aim of this work is to adapt the concepts related to convex optimisation for 
problems involving CoDa and considering the Aitchison geometry. These defnitions are 
essential to correctly identify and classify convex optimisation problems on the simplex. 
The paper is organised as follows. Section 2 summarises the basic concepts of CoDa. 
In Section 3, the concept of convex set on the simplex with the Aitchison geometry is 
defned. The basic sets on the simplex are analysed and their compositional convexity is 
studied. Section 4 develops the concept of compositional convex function and introduces 
the conditions to classify a problem as a compositional convex optimisation problem. 
These are illustrated in Section 5 through a case study based on time-use data. Finally, 
Section 6 concludes with some important remarks. 

The analyses discussed in this article were carried out in R (R-Core-Team, 2022) and 
using the package compositions (van den Boogaart and Tolosana-Delgado, 2008). 
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2. Basic elements of Aitchison geometry 

When analysing CoDa one assumes the property of scale invariance. That is, it is as-
sumed that each D-part composition w ∈ RD is a member of an equivalence class (Bar-+ 
celó-Vidal and Martı́n-Fernández, 2016). In other words, the information contained in 
w is the same as in any other composition k · C [w] for any real scalar k > 0, where C [w] 
is the closure operation defned by C [w] = [w1/∑w j,w2/∑w j, . . . ,wD/∑w j] = x ∈ SD . 

The perturbation operation, x⊕y = C [x1y1,x2y2, . . . ,xDyD], defned on SD ×SD, and 
α α αthe power transformation, α ⊙ x = C [x1 ,x2 , . . . ,xD], defned on R × SD, induce a vector 

space structure on the simplex SD (Pawlowsky-Glahn and Egozcue, 2001). Another 
important element is the logcontrast, a log-linear combination 

D D 

∑ βi lnxi, with ∑ βi = 0, βi ∈ R (1) 
i=1 i=1 

which plays the typical role of the linear combination of variables (Aitchison, 1986). 
Once we have a vector space structure, a metric structure is easily defned using the 

clr scores of a composition x (Aitchison, 1986): � � 
x1 xDclr(x) = ln , . . . , ln , 

g(x) g(x) 

where g(·) means the geometric mean. Note that the clr(x)k score, being a logcon-
trast that involves all the parts of a composition, provides information about the relative 
importance of part xk in the composition. The basic metric elements of the Aitchison ge-
ometry as inner product (< ·, · >A), norm (|| · ||A), and distance (dA(·, ·)) can be defned 
as: 

< x,y >A =< clr(x), clr(y) >E , ||x||2 =< x,x >A , dA(x,y) = ||x⊖ y||A,A 

where “A” means the Aitchison geometry, “E” means the typical Euclidean geometry, 
and “⊖” is the perturbation difference x ⊖ y = x ⊕ ((−1) ⊙ y). 

The metric elements are used to construct orthonormal basis and to calculate the cor-
responding log-ratio coordinates of a composition (olr(x)) (Egozcue et al., 2003; Martı́n-
Fernández, 2019). The expression of these olr-coordinates depends on the selected basis. 
For example, following Egozcue and Pawlowsky-Glahn (2005) one can defne particular 
olr-coordinates created through a sequential binary partition (SBP) of a complete com-
position x = (x1, . . . ,xD). In the frst step of an SBP, when the frst olr-coordinate is 
created, the complete composition x = (x1, . . . ,xD) is split into two groups of parts: one 
for the numerator and the other for the denominator. In the following steps, to create the 
following olr-coordinates, each group is in turn split into two groups. That is, in step k 
when the olr(x)k-coordinate is created, the rk parts (xn1k , . . . ,xnrk ) in the frst group are 
placed in the numerator; the s parts (xd1k , . . . ,xdsk ) in the second group will appear in the 
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denominator; and the rest of D − (rk + sk) parts are not involved in the logratio. As a 
result, the olr(x)k is r 

)1/rkrk · sk (xn1k · · ·xnrkolr(x)k = ln , k = 1, . . . ,D− 1. (2)
rk + sk (xd1 · · ·xdsk )

1/sk q 
rk·skwhere is the factor for normalising the coordinate. Note that r1 + s1 = D forrk+sk 

k = 1. The olr(x)k coordinate, being a logcontrast that involves two groups of parts of 
a composition, informs, on average, about the relative importance of one group of parts 
with regard to the other. 

3. Convexity on the simplex 

Following the basic defnitions of convexity on RD (Boyd and Vandenberghe, 2004), the 
counterpart defnitions of convexity on the simplex SD in a consistent manner with the 
Aitchison geometry (i.e. A-convexity) are: 

Defnition 1. Let x1, x2 be two D-part compositions. The A-segment x1x2 is the set 

x1x2 = {y ∈ SD|y = λ ⊙ x1 ⊕ (1 − λ ) ⊙ x2, λ ∈ [0,1]}. (3) 

An A-segment can be expressed in olr-coordinates as olr(x1x2) = {z ∈ R(D−1)|z = λ · 
olr(x1)+ (1 − λ ) · olr(x2), λ ∈ [0,1]}. That is the typical expression of a segment of a 
line on the real space. The defnition of a compositional segment (Eq. (3)) can be used 
in the defnition of a compositional convex set (A-convex set). 

Defnition 2. A set B ⊆ SD is an A-convex set if for all x1, x2 ∈ B, the compositional 
segment x1x2 is contained in B. That is, for any x1, x2 ∈ B and any λ ∈ [0,1], it holds 
that λ ⊙ x1 ⊕ (1 − λ ) ⊙ x2 ∈ B. 

To illustrate the defnition of an A-convex set, 3-part compositions were selected 
in S3 for creating a compositional triangle using the Defnition (1) of an A-segment 
(Fig.1(a)). By construction, a compositional triangle is an A-convex set. On the upper 
right, Fig.1(b) shows a typical strip (blue area). A compositional segment (red line) not 
entirely contained in the set shows the lack of the A-convexity of the strip. Figure 1(b) 
shows how sets that look like convex sets in the simplex from a typical Euclidean point 
of view, are not compositional convex sets with the Aitchison geometry, and vice versa 
(Fig.1(a)). Figures 1(c) and (d), respectively, show the representation of Figures 1 (a) 
and (b) in olr-coordinates. In these fgures, one recognises the typical form of a triangle 
and the shape of a non-convex set on the real space. 

3.1. Convex hull on the simplex 

The simplex endowed with the induced Euclidean geometry does not have the same 
structure and properties as the simplex with the Aitchison geometry. This difference 
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(a) (b) 

(c) (d) 

Figure 1. Triangle and strip in S3: (a) A-triangle (green area); (b) Strip (blue area) with an 
A-segment (red line); (c) The A-triangle (green area) in olr-coordinates ; and (d) The strip (blue 
area) with the A-segment (red line) in olr-coordinates. 

between geometries has implications on the statistical techniques such as the peeling, 
which is a descriptive statistical technique based on the concept of convex hull (Causs-
inus, Ettinger and Tomassone, 2012; Small, 1990). Peeling can be described as an it-
erative algorithm that consists of removing layers of points. Each layer is formed by 
the points which form the border of the convex hull of the set of remaining points. The 
convex hull of a set of points {x1, . . . ,xn} in RD is the set 

n 
convE (X) = {z ∈ RD|z = λ1x1 + . . . + λnxn, ∑ λi = 1, λi ≥ 0, i = 1, . . . ,n}, 

i=1 

This defnition is used by Tolosana-Delgado, von Eynatten and Karius (2011) for CoDa 
vectors. Among other applications, peeling allows us to graphically represent the centre 
of a set of points in the last internal layer and can be used for outlier detection (Harsh, 
Ball and Wei, 2016, chapter 4). 

We propose the corresponding defnition of the convex hull on the simplex in terms 
of Aitchison geometry: 
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Defnition 3. The A-convex hull of the set of compositions X = {x1, . . . ,xn} ∈ SD is 
n 

convA(X) = {y ∈ SD|y = λ1 ⊙ x1 ⊕ . . . ⊕ λn ⊙ xn, ∑λi = 1, λi ≥ 0, i = 1, . . . ,n}. 
i=1 

Note that the compositional triangle created in Fig. 1(a) is the most simple exam-
ple of an A-convex hull using the minimum number of compositions. The usefulness 
of this concept can be illustrated by means of a more complex example in S3. Let 
X = {x1, . . . ,x20} ∈ S3 be a set of compositions randomly generated using a normal dis-
tribution on the simplex (Mateu-Figueras, Pawlowsky-Glahn and Egozcue, 2013). Fig-
ure 2 compares the A-convex hull convA(X) (on the left) to the Euclidean convex hull 
convE (X) (on the right). Figure 2(a) shows the successive layers created when peeling 
is applied to X using the A-convex hull. The last internal layer (i.e., the smallest convex 

1hull) is close to the compositional centre of X, g(X) = 20 ⊙ (⊕20 
i=1xi) (green dot), the 

column-wise geometric mean (e.g., Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 
2015). On the other hand, the typical Euclidean centre of X, the arithmetical mean 

1X = 20 ∑
20 
i=1 xi (red dot) is far from the last external layer of the peeling, suggesting a 

potential outlier. Fig. 2(b) shows the layers of the peeling using the E-convex hull. In 
this case, the Euclidean centre of X (red dot) is inside the last layer, whereas the com-
positional centre g(X) (green dot) is far from it. In addition, when comparing the frst 
external layers (i.e., the largest convex hull) in both geometries, one concludes that the 
A-convex hull fts better with the common arch shape of a normally distributed CoDa 
set. 

(a) (b) 

Figure 2. Peeling applied to a CoDa set X ∈ S3: (a) with A-convex hull; (b) with E-convex hull. 
Geometric centre g(X) (green dot) and arithmetic centre X (red dot) of CoDa set are plotted. 

3.2. Some basic compositional sets 

The most common sets in convex optimisation in areas such as, among others, design 
of experiments (DOE), optimisation with mixtures, or time-use data are defned by con-
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straining some parts of the composition x: {0 < li ≤ xi ≤ ui < 1; i = 1, . . . ,D} (Chen 
xiet al., 2010) or by constraining the ratio of two parts: {0 < li j ≤ ≤ ui j; i ̸= j = x j 

1, . . . ,D}(Lo Huang and Huang, 2009). 

3.2.1. Constraining the ratios between parts: a logcontrast 

The equation { xi = k ,1 ≤ i ̸= j ≤ D; k > 0} is equivalent to the logcontrast {lnxi − x j 

lnx j = lnk; 1 ≤ i ≠ j ≤ D}. This equation describes an affne subspace of dimension 
D − 2 on the simplex with the Aitchison geometry (Egozcue, Pawlowsky-Glahn and 

xiGloor, 2018). Consequently, l ≤ xi or ≤ u defne closed half-spaces of the simplex, x j x j 

and both sets, Π+ = {x ∈ SD|l ≤ xi } and Π− = {x ∈ SD| xi ≤ u}, verify the condition of x j x j 

being an A-convex set (Defnition 2). 
In general, affne subspaces such as A-lines, A-planes or A-hyperplanes are defned 

by logcontrasts (Eq. (1)) (Egozcue et al., 2018). A logcontrast splits the simplex into two 
closed half-spaces, Π+ = {x ∈ SD|∑D

j=1 β j lnx j ≥ k} and Π− = {x ∈ SD|∑D
j=1 β j lnx j ≤ 

k}. By construction, both half-spaces are A-convex sets (Defnition 2). Figure 3 shows 
four different logcontrasts (blue lines) whose intersection determines a quadrilateral 
(green area). Because the intersection of convex sets is a convex set (Boyd and Van-
denberghe, 2004) it follows that the quadrilateral is an A-convex set. 

Figure 3. An A-convex quadrilateral in S3 (green area) determined by the intersection of four 
half-spaces defned by logcontrasts (blue lines). 

3.2.2. Constraining the parts of a composition 

Despite the fact that an equation such as {xi = k, k ∈ (0,1)}, for any i = 1, . . . ,D, cannot 
be expressed in terms of a logcontrast, this type of equation also splits the simplex into 
two sets: the upper set Σ+ = {x ∈ SD|xi ≥ k, k ∈ (0,1)}, and the lower set Σ− = {x ∈ 
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SD|xi ≤ k, k ∈ (0,1)}. However, in this case, the two sets are different with regard to 
their compositional convexity. 

Proposition 1. For any i = 1, . . . ,D, the set Σ+ = {x ∈ SD|xi ≥ k, k ∈ (0, 1)} is an 
A-convex set. 

Proof. See Appendix. ■ 

In contrast, the lower set Σ− is not an A-convex set as is illustrated in Fig. 4(b). Figure 4 
shows an example in S3 of the type Σ+ (blue area) and its complementary set, Σ− (grey 
area), for part x1 with k = 0.4. For each set, two compositions were selected and the 
corresponding A-segment plotted (red line). Because the red A-segment on Fig. 4(b) is 
not entirely contained in the set Σ− (grey area), this set is not an A-convex set. 

(a) (b) 

Figure 4. A 3-part composition constrained for i = 1 and k = 0.4: (a) The set Σ+ (blue area); 
(b) The set Σ− (grey area). The red line represents the A-segment for two compositions in each 
set. 

The sets Σ+ and Σ− can be generalised as follows: 

Σ
+ 
i (α) = {x ∈ SD|α1x1 + . . . + αDxD ≥ 0,αi > 0,α j ≤ 0, 1 ≤ j ̸= i ≤ D} 

Σ
− 
i (α) = {x ∈ SD|α1x1 + . . . + αDxD ≤ 0,αi > 0,α j ≤ 0, 1 ≤ j ̸= i ≤ D} 

Note that Σ+ 
i (α) and Σ− 

i (α) for α = (−k, . . . ,−k,(1 − k),−k, . . . ,−k), k ∈ (0,1), be-| {z }
i 

come the sets Σ+ and Σ− , respectively. Importantly, an analogous proof to Propo-
sition 1 states that a set Σ

+ 
i (α) is A-convex. On the other hand, Σi 

−(α) is not an 
A-convex set. To illustrate these properties, Figure 5 shows the set Σ

+ 
1 (α) = {x ∈ 

S4|x1 − 23 x2 − 23 x3 − 3
1 x4 ≥ 0} (blue area) in S4, which generalises a set of type Σ+ = 

{x ∈ SD|x1 ≥ k, k ∈ (0,1)}. 
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Figure 5. The A-convex set Σ+ 
1 (α) = {x ∈ S4|x1 − 3

2 x2 − 23 x3 − 3
1 x4 ≥ 0} (blue area) in S4 . 

Note that the intersection of sets of type Σ+ or Σ+(α) is an A-convex set. However, 
when an optimisation problem includes a set of type Σ−(α) the feasible region might 
be a non A-convex set. In such a case, one should be cautious when applying convex 
optimisation techniques. 

4. Convex functions on the simplex 

The defnition of a convex function in the Euclidean space can be adapted to the Aitchi-
son geometry following the schema introduced in Luenberger and Ye (2008) and in Boyd 
and Vandenberghe (2004). 

Defnition 4. Let W ⊂ SD be an A-convex set. A function f : W → R is an A-convex 
function if for all x1, x2 ∈ W and λ ∈ [0, 1]: 

f ((1− λ ) ⊙ x1 ⊕ λ ⊙ x2) ≤ (1− λ ) f (x1)+ λ f (x2) 

Defnition 5. Let W ⊂ SD be an A-convex set. A function g : W → R is an A-concave 
function if f = −g is an A-convex function. 

Note that, as expected, a constant function f (x) = k, with k a real number, is simul-
taneously an A-convex and A-concave function. 

Importantly, the classifcation of convex function through the gradient or the Hessian 
matrix also applies for CoDa. That is, the common rule A twice differentiable function 
of several variables is convex on a convex set if and only if its Hessian matrix of second 
partial derivatives is positive semidefnite on the interior of the convex set can be used to 
classify A-convex functions by means of the basic concepts of compositional differential 
calculus (Barceló-Vidal, Martı́n-Fernández and Mateu-Figueras, 2011) working in olr-
coordinates. Whereas, using the A-gradient, one has to check the usual expression 

f (x) ≥ f (y)+ ∇A( f )(y)(ln(x) − ln(y)) 
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for all x, y ∈ W , where ∇A( f ) is the A-gradient vector in clr-coordinates Barceló-Vidal 
et al. (2011). 

The following two propositions show that the sum of functions and product by a 
scalar are basic operations for creating more complex A-convex functions. 

Proposition 2. Let f1 and f2 be two A-convex functions on the A-convex set W ⊂ SD. 
The function f1 + f2 is A-convex on W. 

Proof. See Appendix. ■ 

Proposition 3. Let f be an A-convex function on the A-convex set W ⊂ SD. For any 
a ≥ 0, the function a f is A-convex on W 

Proof. This proof is immediate from the defnition of convex function. ■ 

Using the two previous propositions, it follows that a positive linear combination of 
A-convex functions is an A-convex function. That is, given a set of A-convex functions 
f1, ..., fn on the A-convex set W ⊂ SD, then the function a1 f1 + . . .+an fn is an A-convex 
function for any a j > 0, j = 1, . . . ,n. This property is useful for creating more complex 
A-convex functions using basic functions (see Section 4.1). 

In addition, the following results state that the sublevel sets of an A-convex function 
on the simplex verify the usual properties as regard to the convex sets. 

Proposition 4. Let f be an A-convex function on the A-convex set W ⊂ SD. The sublevel 
set G− = {x| x ∈ W, f (x) ≤ α} is A-convex for any real number α .α 

Proof. See Appendix. ■ 

Even though for any A-convex function, its sublevel sets G− 
α are A-convex sets, the 

converse is not true. This fact motivates the following defnitions. 

Defnition 6. A function f : SD → R is an A-quasiconvex function if its domain and 
all its sublevel sets, G− = {x| x ∈ dom( f ), f (x) ≤ α} are A-convex sets for any real α 

number α . 

Defnition 7. A function f : SD → R is an A-quasiconcave function if its domain and 
all its superlevel sets, G+ = {x| x ∈ dom( f ), f (x) ≥ α} are A-convex sets for any real α 

number α . 

As with convex optimisation problems in the Euclidean space when defning the 
feasible region (Boyd and Vandenberghe, 2004), it is recommended to represent the sub-
levels of an A-quasiconvex function (or the superlevels of a A-quasiconcave function) 
through inequalities of A-convex functions. Therefore, an A-quasiconvex function f , 
should be expressed by means of A-convex functions, Φα such that, 

f (x) ≤ α ⇐⇒ Φα (x) ≤ 0. 
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4.1. Some basic functions on the simplex 

With the following examples, the A-convexity of some popular functions on SD is re-
viewed. 

xiExample 1. The function f (x) = x j 
, 1 ≤ i, j ≤ D is an A-convex function over its 

domain, dom( f ) = SD . 

Proof. See Appendix. ■ 

Example 2. For any i = 1, . . . ,D, the function f (x) = xi is an A-quasiconcave function 
over its domain, dom( f ) = SD . Moreover, using the A-convex function 

D x j
Φα (x) = α ∑ − 1 , 

xij=1 

a superlevel G+ = {x ∈ SD| xi ≥ α} for any α ∈ (0, 1) can be represented by means ofα 

Φα (x) ≤ 0. 

Proof. See Appendix. ■ 

Example 3. For any x0 ∈ SD, the function squared Euclidean distance f (x)= dE 
2 (x,x0)= 

∑
D
j=1(x j − x0 j)

2 is not A-convex. 
Figure 6(a) shows the contour lines of the function f (x) = dE 

2 (x,x0) on S3 for x0 = 
(47,10,43) . The sublevel sets are not A-convex sets, and therefore, the function f (x) 
is not an A-convex function (Proposition 4). Because it may be diffcult to see the lack 
of convexity of a set on the ternary diagram, Figure 6(b) shows the sublevel sets in 
olr-coordinates. 

(a) (b) 

Figure 6. Contour lines of the function f (x) = dE 
2 (x,x0) on S3 for x0 = (47,10,43): (a) Ternary 

diagram; (b) olr-coordinates. 
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Note that the function Euclidean distance and the function (squared) dE 
2 (x,x0) share 

the same contour lines. Consequently, the function (non-squared) dE (x,x0) is not A-
convex. The lack of convexity means that the Euclidean distance does not satisfy the 
triangular inequality, that is, it is not a distance function on the simplex endowed with 
the Aitchison geometry. 

Example 4. For any x0 ∈ SD, the function squared Aitchison distance f (x)= d2 (x,x0)= A 

dE 
2 (clr(x),clr(x0)) is A-convex. 

Proof. The proof is immediate because the function squared Euclidean distance is con-
vex on the Real space. ■ 

4.2. Convex optimisation on the simplex 

In a broad sense, a convex optimisation problem in RD is defned as (Boyd and Vanden-
berghe, 2004): 

minimise f0(x) 
sub ject to f j(x) ≤ 0 j = 1, . . . ,m (4) 

gk(x) = bk k = 1, . . . ,n 

where x ∈ RD , f0, . . . , fm : RD → R are convex functions and g1, . . . ,gn : RD → R are 
linear functions. 

For CoDa, the above defnition is adapted as: 

Defnition 8. An A-convex optimisation problem in standard form is defned as 

minimise f0(x) 
subject to f j(x) ≤ 0 j = 1, . . . ,m 

β
T 

k lnx = bk k = 1, . . . ,n 

where x ∈ SD , f0, f1, . . . , fm are A-convex functions and βT 

k lnx are logcontrasts, that 
is, ∑D

j=1 βk, j = 0, k = 1, . . . ,n. 

An important case of convex optimisation problems is that of linear programming, 
that is, when the objective and all constraining functions are linear. For CoDa, an A-
linear programming problem is defned in terms of logcontrasts as follows: 

β
Tminimise 0 lnx 

β
Tsubject to k lnx ≤ bk k = 1, . . . ,m 

β
T 

k lnx = bk k = m+ 1, . . . ,n 

where ∑D
j=1 βk, j = 0, k = 0, . . . ,n. 



Jordi Saperas Riera, Josep Antoni Martı́n Fernandez and Gl ` 335´ oria Mateu Figueras 

5. Case Study 

The example we present here is based on data from Aitchison (1986) and only serves for 
illustrative purposes. We consider a 3-part time-use composition of mutually exclusive 
and exhaustive parts: non-sedentary time (NSed), sedentary time (Sed), and sleeping 
time (Sleep). Table 1 shows the 3-part time-use compositions of a university associate 
professor with unhealthy physical activity habits. Figure 7 shows the data set in the 
ternary diagram (Fig. 7a) and in the olr-space (Fig. 7b), where the olr-basis used isq√ √ 

2 ln NSed 2 NSed·Sed olr1(x) = and olr2(x) = 3 ln .2 Sed Sleep 

Table 1. 3-part time-use composition over 20 days. 

Non-sedentary Sedentary Sleep 

D1 0.04234 0.77218 0.18547 
D2 0.03772 0.75235 0.20993 
D3 0.04807 0.69388 0.25805 
D4 0.05705 0.59596 0.34699 
D5 0.04306 0.76733 0.18961 
D6 0.03592 0.75916 0.20493 
D7 0.03797 0.67973 0.28231 
D8 0.03959 0.76519 0.19522 
D9 0.04321 0.70868 0.24811 

D10 0.04000 0.70886 0.25114 
D11 0.04060 0.75101 0.20838 
D12 0.04148 0.62683 0.33169 
D13 0.04003 0.64864 0.31133 
D14 0.04357 0.77365 0.18277 
D15 0.04488 0.73273 0.22239 
D16 0.04665 0.73483 0.21853 
D17 0.03873 0.65937 0.30190 
D18 0.03282 0.73313 0.23405 
D19 0.03552 0.65058 0.31390 
D20 0.04231 0.57445 0.38324 

The centre or mean (x0) of a CoDa set is the vector of geometric means of its 
parts, scaled to sum 1 in order to obtain its representative on the unit simplex. There-
fore, on dayly average, the associate professor engages in physical activity for one 
hour, exhibits sedentary behaviour for seventeen hours, and sleeps for six hours, x0 = 
(1/24,17/24,6/24) (see the red point in Figure 7). 

The location and spread of a compositional data set are summarised in the variation 
array (Table 2) through pairwise logratios of parts. The elements above the frst diagonal 
are the pairwise log-ratio variances, whereas the elements below it are the arithmetic 
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(a) (b) 

Figure 7. (a) 3-part time-use compositions on the ternary diagram (small triangle). The large 
17 6triangle zooms in on the data set region. In red, the centre of the data set x0 = ( 1 

24 ); (b) 24 , 24 , 
the data set and its centre in the olr-space. 

means. As suggested by the ternary diagram (Fig. 7a), the largest log-ratio variance 
corresponds to {Sed,Sleep}, whereas the smallest value is Var(ln NSed 

Sed ) = 0.0265. In 
this case, because the estimate of the log-ratio expectation is E(ln Sed 

NSed ) = 2.8332, on 
average, sedentary time is approximately 17 times (≈ exp{2.8332}) the non-sedentary 
time, as the centre x0 of the data set indicates. 

Table 2. Variation array of the 3-part time-use compositional data. 

Pairwise log-ratio variance 
NSed Sed Sleep 

NSed 0.0265 0.0561 
Sed 2.8332 0.0949 

Sleep 1.7918 -1.0415 
Pairwise log-ratio arithmetical mean 

The data set shown in the ternary diagram (Fig. 7a) suggests that the farthest point 
from the centre is the point located further down on the simplex: D20 = (0.04231, 
0.57445, 0.38324), with the smallest value in the part NSed (Table 1). At frst glance, 
this point may be considered a potential outlier. Moreover, when representing the data 
set in olr-coordinates (Fig. 7b), the outermost point is the point located further to the 
right: olr(D4) = (−1.659, −0.516). This fact is corroborated by the peeling using the 
A-convex hull (3). Figure 8b suggests that each layer has an elliptical shape, the typical 
shape of a normal probability distribution. A multivariate Anderson-Darling test con-
frms that one can fail to reject normality (A2 = 0.7760; p − value = 0.2199). Indeed, 
under this assumption, the χ2 atipicality index indicates that the sample D4 is a poten-
tial outlier (χ2 percentile = 98.75%), whereas the sample D20 is not (χ2 percentile = 
86.87%). 
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(a) (b) 

Figure 8. Peeling with the Aitchison geometry of the 3-part time-use compositions: (a) on the 
ternary diagram (small triangle). The large triangle zooms into the data set region. The centre 
of the data set is represented in red colour; (b) in the olr-space. 

The professor was recommended to increase non-sedentary time up to, on average, 
at least 13 hours per day. The question is how to distribute the time for the rest of the 
activities (i.e., sedentary and sleeping). One criterion may be to move from the centre of 

= {x ∈ SD|x1 ≥ 13the data set (x0) to the closest point in the A-convex set Σ+ 
24 }, whereas 

the spread is preserved. This is one of the simplest examples of convex optimisation 
problem: to fnd the minimum distance from a given point x0 ∈ SD to a convex set Σ+ . 

From a Euclidean approach, the E-convex optimisation problem is: 

2minimise dE 
2 (x0,x) = ∑3 

j=1 (x j − x0 j) 
subject to x1 ≥ 13/24 (5)

x1 + x2 + x3 = 1 
x j ≥ 0, j = 1, . . . ,3 

Figure 9(a) shows that the solution of the E-convex optimisation problem (Eq. 5) is 
(13 11x = 24 , 0), where the proposed movement is x−x0 =(12/24,−6/24,−6/24). That24 , 

is, in order to increase the fraction of non-sedentary time in 12 
24 , the Euclidean approach 

subtracts from the rest of the parts (non-sedentary and sleeping time) the same amount of 
time, 6 hours. Note that the sleeping time has to be zero, a solution that is not realistic 24 
in practice. 

In this situation, one could consider applying an analogous procedure using the 
Aitchison geometry. That is, perturb by 13 the non-sedentary time 24

1 to verify that x1 = 1 
13/24, while perturbing the other two parts ({Sed,Sleep}) by the same factor to preserve 
its relative information. Following this idea, when the centre x0 = (1/24,17/24,6/24) 
is perturbed by the vector p = (13/1,11/23,11/23) the composition obtained is x = 
(13/24,8.13/24,2.87/24), which verifes the constraint x1 ≥ 13/24 (see fgure 9 (b)). 
When one calculates the (squared) Aitchison distance from x0 to the new centre x the re-
sult is 7.271. To confrm whether this distance is the minimum value one must formulate 
the convex optimisation problem using the Aitchison geometry: 
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� �2x j x0 jminimise d2 (x0,x) = ∑3 
j=1 ln − lnA g(x) g(x0) (6) 

x1 ≥ 13subject to 24 

whose standard form is (Example 2) � �2x j x0 jminimise d2 (x0,x) = ∑3 
j=1 ln − lnA g(x) g(x0) 

subject to 13 − 1 ≤ 024 ∑
3 
j=1 

x j 

x1 

Figure 9(b) shows that the solution to the A-convex optimisation problem (Eq. 6)� �13 6.87 4.13is x = . Note that, the Aitchison approach has a reasonable behaviour 24 , 24 , 24 
because the largest part of the initial composition (i.e., sedentary time) contributes more 
to increase the non-sedentary time. The way that the other parts contribute to increase the 
non-sedentary time is not proportional in any sense. In this case, the (squared) Aitchison 
distance from x0 to the new centre x is 6.989, smaller than the distance obtained when 
the new centre is created by perturbation. Importantly, the ratio Sed is not preserved Sleep 
when moving from x0 to the solution of the optimisation problem (x). That is, using this 
approach, the parts {Sed, Sleep} are not perturbed by the same factor. 

(a) (b) 

17 6Figure 9. Time-use optimisation for the composition x0 = ( 1 
24 ) (red dot). The dark grey 24 , 24 , 

= {x ∈ S3|x1 ≥ 13area is the set Σ+ 
24 }. The red diamond x ∈ Σ+ is the closest point to x0. The 

dashed red line is the contour line for the corresponding distance. (a) Euclidean geometry: x = � � 
( 13 11 0 13 6.87 4.13 

24 ); (b) Aitchison geometry: x = . Dashed blue line is the perturbation 24 , 24 , 24 , 24 , 24 
= ( 13 8.13 2.87direction from x0 to x 24 ) ∈ Σ+ (blue diamond) 24 , 24 , 

In the optimisation problem, the movement from x0 to x is explained by the perturba-
tion difference x⊖ x0 = (13/1,6.87/17,4.13/6). Figure 10 shows how the original data 
set (grey) is moved to the data set perturbed (black) by x⊖x0 = (13/1,6.87/17,4.13/6), 
preserving the data spread. The centre of the perturbed data set fulfls the condition 
x1 ≥ 13 

24 . With the Aitchison geometry approach, the solution is more realistic. 
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Figure 10. Resolving the optimisation problem on the ternary diagram: the original data set 
(grey) is perturbed by x ⊖ x0 = (13/1,6.87/17, 4.13/6) for becoming the new data set (black). 
The dashed segment is the border of the set x1 ≥ 13 

24 . The centre of each data set is shown in red. 

6. Conclusions and fnal remarks 

The adequate defnitions of convex set, convex hull and convex function in a compatible 
manner with the Aitchison geometry play an important role in the analysis of CoDa. 
The most popular statistical techniques include optimisation problems that are sensitive 
to the geometry of the sample space. We have compared the Euclidean geometry to 
the Aitchison geometry when solving a convex optimisation problem for CoDa. While 
the Euclidean approach found inconsistent solutions, the Aitchison geometry provided 
more satisfactory results. This concludes that, despite the fact that any method may give 
a reasonable solution in some scenarios, it is advisable to use methods that are consistent 
with the geometry of the sample space. 

With basic concepts of constrained convex optimisation for CoDa on hand, a revision 
of some statistical techniques should be carried out. The pending challenge is to inves-
tigate the implications in popular techniques such as, among others, outlier detection, 
experimental design of mixtures, or Lasso regression. 
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Appendix: Proofs 

Proposition 1 For any i = 1, . . . ,D, the set Σ+ = {x ∈ SD|xi ≥ k, k ∈ (0,1)} is an 
A-convex set. 

Proof. Let x1 = (x11, . . . ,x1D), x2 = (x21, . . . ,x2D) be two D-part compositions in Σ+ . 
We have to check that for any λ ∈ [0, 1] it holds that 

(1 − λ ) ⊙ x1 ⊕ λ ⊙ x2 ∈ Σ+ . 

Due to ∑D
j=1 x1 j = ∑D

j=1 x2 j = 1 then the equations x1i ≥ k and x2i ≥ k are respectively 
equivalent to 

x1i ≥ k(x11 + . . . + x1D) and x2i ≥ k(x21 + . . . + x2D). 

Using this equivalence, ∀λ ∈ [0, 1] it holds 

D D 
1−λ λx x2i ≥ k(x11 + . . . + x1D)

1−λ (x21 + . . . + x2D)
λ = k(∑ x1 j)

1−λ (∑ x2 j)
λ ,1i 

j=1 j=1 

where, with Hölder’s inequality, the last term of the expression holds 

D D D 
1−λ λk(∑ x1 j)

1−λ (∑ x2 j)
λ ≥ k ∑ x1 j x2 j. 

j=1 j=1 j=1 

That is, it holds that 
D 

1−λ λ 1−λ λx1i x2i ≥ k ∑ x1 j x2 j. (7) 
j=1 

Finally, writing Eq. (7) in terms of the ith part of the composition (1− λ ) ⊙ x1 ⊕ λ ⊙ x2: 

1−λ λx x1i 2i((1 − λ ) ⊙ x1 ⊕ λ ⊙ x2)i = ≥ k,1−λ λ
∑

D xj=1 x1 j 2 j 

that is, (1 − λ ) ⊙ x1 ⊕ λ ⊙ x2 ∈ Σ+ . ■ 

Proposition 2 Let f1 and f2 be two A-convex functions on the A-convex set W ⊂ SD. 
The function f1 + f2 is A-convex on W. 

Proof. Let x1, x2 be two D-part compositions in W . For any λ ∈ [0,1] it holds that 

f1((1 − λ ) ⊙ x1 ⊕ λ ⊙ x2)+ f2((1 − λ ) ⊙ x1 ⊕ λ ⊙ x2) ≤ 

(1 − λ )[ f1(x1)+ f2(x1)] + λ [ f1(x2)+ f2(x2)]. (8) 

■ 
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Proposition 4 Let f be an A-convex function on the A-convex set W ⊂ SD. The sublevel 
set G− = {x| x ∈ W, f (x) ≤ α} is an A-convex set for any real number α .α 

Proof. Let x1, x2 be in G− 
α and λ ∈ [0, 1], 

f ((1− λ ) ⊙ x1 ⊕ λ ⊙ x2) ≤ (1− λ ) f (x1)+ λ f (x2) ≤ α. 

Consequently, (1− λ ) ⊙ x1 ⊕ λ ⊙ x2 ∈ G− 
α . ■ 

xiExample 1 The function f (x) = x j 
, 1 ≤ i, j ≤ D is an A-convex over its domain, 

dom( f ) = SD . 

Proof. Let x1, x2 be two D-part compositions and for any λ ∈ [0, 1], � �1−λ � �λ x1i x2if ((1− λ ) ⊙ x1 ⊕ λ ⊙ x2) = . 
x1 j x2 j 

We apply Young’s inequality, a1−λ bλ ≤ (1 − λ )a + λ b for any a,b ≥ 0 and λ ∈ [0, 1], 
x1i x2ito the values a = and b = , 
x1 j x2 j 

� �1−λ � �λ x1i x2if ((1− λ ) ⊙ x1 ⊕ λ ⊙ x2) = ≤ 
x1 j x2 j 

x1i x2i
(1 − λ ) + λ = (1 − λ ) f (x1)+ λ f (x2). (9)

x1 j x2 j 

■ 

Example 2 For any i = 1, . . . ,D, the function f (x) = xi is an A-quasiconcave function 
over all its domain, dom( f ) = SD . Moreover, using the A-convex function 

D x j
Φα (x) = α ∑ − 1 , 

xij=1 

a superlevel G+ = {x ∈ SD| xi ≥ α} for any α ∈ (0, 1) can be represented by means ofα 

Φα (x) ≤ 0. 

Proof. Through proposition 1, the set G+ = {x ∈ SD| xi ≥ α} is A-convex for any real α 

number α . 
Because x ∈ SD , the equality ∑D

j=1 x j = 1 holds. So, xi ≥ α ⇐⇒ α ∑D
j=1 

x
xi

j ≤ 1. 
x jAnd the function Φα (x) = α ∑D

j=1 − 1 is A-convex because it is a positive linear xi 

combination of A-convex functions x j . ■ xi 
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	The aim of this work is to adapt the concepts related to convex optimisation for problems involving CoDa and considering the Aitchison geometry. These definitions are essential to correctly identify and classify convex optimisation problems on the simplex. The paper is organised as follows. Section 2 summarises the basic concepts of CoDa. In Section 3, the concept of convex set on the simplex with the Aitchison geometry is defined. The basic sets on the simplex are analysed and their compositional convexity
	The analyses discussed in this article were carried out in R (R-Core-Team, 2022) and using the package compositions (van den Boogaart and Tolosana-Delgado, 2008). 

	2. Basic elements of Aitchison geometry 
	2. Basic elements of Aitchison geometry 
	When analysing CoDa one assumes the property of scale invariance. That is, it is assumed that each D-part composition w ∈ Ris a member of an equivalence class (Bar
	-
	D 
	-

	+ 
	cel´o-Vidal and Mart´ın-Fern´andez, 2016). In other words, the information contained in w is the same as in any other composition k · C[w] for any real scalar k > 0, where C[w] is the closure operation defined by C[w]=[w/∑wj,w/∑wj,...,wD/∑wj]= x ∈ S. The perturbation operation, x⊕y = C[xy,xy,...,xDyD], defined on S×S, and 
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	αα α
	the power transformation, α ⊙ x = C[x,x,...,x], defined on R × S, induce a vector space structure on the simplex S(Pawlowsky-Glahn and Egozcue, 2001). Another important element is the logcontrast, a log-linear combination 
	1 
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	DD βi lnxi, with βi = 0, βi ∈ R (1) i=1 i=1 
	∑ 
	∑ 

	which plays the typical role of the linear combination of variables (Aitchison, 1986). Once we have a vector space structure, a metric structure is easily defined using the clr scores of a composition x (Aitchison, 1986): 
	 
	x
	x
	1 
	xD

	clr(x)= ln ,...,ln , 
	g(x) g(x) 
	where g(·) means the geometric mean. Note that the clr(x)k score, being a logcontrast that involves all the parts of a composition, provides information about the relative importance of part xk in the composition. The basic metric elements of the Aitchison geometry as inner product (< ·,· >A), norm (|| · ||A), and distance (dA(·,·)) can be defined as: 
	-
	-

	< x,y >A =< clr(x), clr(y) >E , ||x||=< x,x >A , dA(x,y)= ||x⊖ y||A,
	2 

	A 
	where “A” means the Aitchison geometry, “E” means the typical Euclidean geometry, and “⊖” is the perturbation difference x ⊖ y = x ⊕ ((−1) ⊙ y). 
	The metric elements are used to construct orthonormal basis and to calculate the corresponding log-ratio coordinates of a composition (olr(x)) (Egozcue et al., 2003; Mart´ınFern´andez, 2019). The expression of these olr-coordinates depends on the selected basis. For example, following Egozcue and Pawlowsky-Glahn (2005) one can define particular olr-coordinates created through a sequential binary partition (SBP) of a complete composition x =(x,...,xD). In the first step of an SBP, when the first olr-coordina
	The metric elements are used to construct orthonormal basis and to calculate the corresponding log-ratio coordinates of a composition (olr(x)) (Egozcue et al., 2003; Mart´ınFern´andez, 2019). The expression of these olr-coordinates depends on the selected basis. For example, following Egozcue and Pawlowsky-Glahn (2005) one can define particular olr-coordinates created through a sequential binary partition (SBP) of a complete composition x =(x,...,xD). In the first step of an SBP, when the first olr-coordina
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	denominator; and the rest of D − (rk + sk) parts are not involved in the logratio. As a result, the olr(x)k is 
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	rk · sk 
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	olr(x)k = ln , k = 1,...,D− 1. (2)
	rk + sk (xd1 ···xds)k 
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	rk·sk
	rk·sk

	where is the factor for normalising the coordinate. Note that r+ s= D for
	1 
	1 

	rk+sk 
	k = 1. The olr(x)k coordinate, being a logcontrast that involves two groups of parts of a composition, informs, on average, about the relative importance of one group of parts with regard to the other. 

	3. Convexity on the simplex 
	3. Convexity on the simplex 
	Following the basic definitions of convexity on R(Boyd and Vandenberghe, 2004), the counterpart definitions of convexity on the simplex Sin a consistent manner with the Aitchison geometry (i.e. A-convexity) are: 
	D 
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	Definition 1. Let x, xbe two D-part compositions. The A-segment is the set 
	1
	2 
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	x
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	= {y ∈ S|y = λ ⊙ x⊕ (1 − λ ) ⊙ x, λ ∈ [0,1]}. (3) 
	x
	1
	x
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	D
	1 
	2

	An A-segment can be expressed in olr-coordinates as olr()= {z ∈ R|z = λ · olr(x)+(1 − λ ) · olr(x), λ ∈ [0,1]}. That is the typical expression of a segment of a line on the real space. The definition of a compositional segment (Eq. (3)) can be used in the definition of a compositional convex set (A-convex set). 
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	Definition 2. A set B ⊆ Sis an A-convex set if for all x, x∈ B, the compositional segment is contained in B. That is, for any x, x∈ B and any λ ∈ [0,1], it holds that λ ⊙ x⊕ (1 − λ ) ⊙ x∈ B. 
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	To illustrate the definition of an A-convex set, 3-part compositions were selected in Sfor creating a compositional triangle using the Definition (1) of an A-segment (Fig.1(a)). By construction, a compositional triangle is an A-convex set. On the upper right, Fig.1(b) shows a typical strip (blue area). A compositional segment (red line) not entirely contained in the set shows the lack of the A-convexity of the strip. Figure 1(b) shows how sets that look like convex sets in the simplex from a typical Euclide
	3 

	3.1. Convex hull on the simplex 
	3.1. Convex hull on the simplex 
	The simplex endowed with the induced Euclidean geometry does not have the same structure and properties as the simplex with the Aitchison geometry. This difference 
	The simplex endowed with the induced Euclidean geometry does not have the same structure and properties as the simplex with the Aitchison geometry. This difference 
	(c) (d) 

	(a) (b) 
	Figure 1. Triangle and strip in S: (a) A-triangle (green area); (b) Strip (blue area) with an A-segment (red line); (c) The A-triangle (green area) in olr-coordinates ; and (d) The strip (blue area) with the A-segment (red line) in olr-coordinates. 
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	between geometries has implications on the statistical techniques such as the peeling, which is a descriptive statistical technique based on the concept of convex hull (Caussinus, Ettinger and Tomassone, 2012; Small, 1990). Peeling can be described as an iterative algorithm that consists of removing layers of points. Each layer is formed by the points which form the border of the convex hull of the set of remaining points. The convex hull of a set of points {x,...,xn} in Ris the set 
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	n convE (X)= {z ∈ R|z = λx+ ... + λnxn, λi = 1, λi ≥ 0,i = 1,...,n}, i=1 
	D
	1
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	This definition is used by Tolosana-Delgado, von Eynatten and Karius (2011) for CoDa vectors. Among other applications, peeling allows us to graphically represent the centre of a set of points in the last internal layer and can be used for outlier detection (Harsh, Ball and Wei, 2016, chapter 4). 
	We propose the corresponding definition of the convex hull on the simplex in terms of Aitchison geometry: 
	Definition 3. The A-convex hull of the set of compositions X = {x,...,xn}∈ Sis 
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	n convA(X)= {y ∈ S|y = λ⊙ x⊕ ... ⊕ λn ⊙ xn, λi = 1, λi ≥ 0,i = 1,...,n}. i=1 
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	1 
	1 
	∑

	Note that the compositional triangle created in Fig. 1(a) is the most simple example of an A-convex hull using the minimum number of compositions. The usefulness of this concept can be illustrated by means of a more complex example in S. Let X = {x,...,x}∈ Sbe a set of compositions randomly generated using a normal distribution on the simplex (Mateu-Figueras, Pawlowsky-Glahn and Egozcue, 2013). Figure 2 compares the A-convex hull convA(X) (on the left) to the Euclidean convex hull convE (X) (on the right). 
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	1
	hull) is close to the compositional centre of X, g(X)= ⊙ (⊕xi) (green dot), the column-wise geometric mean (e.g., Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015). On the other hand, the typical Euclidean centre of X, the arithmetical mean 
	20 
	20 
	i=1

	1
	= ∑xi (red dot) is far from the last external layer of the peeling, suggesting a potential outlier. Fig. 2(b) shows the layers of the peeling using the E-convex hull. In this case, the Euclidean centre of X (red dot) is inside the last layer, whereas the compositional centre g(X) (green dot) is far from it. In addition, when comparing the first external layers (i.e., the largest convex hull) in both geometries, one concludes that the A-convex hull fits better with the common arch shape of a normally distrib
	X 
	20 
	20 
	i=1 
	-

	Figure
	(a) (b) 
	Figure 2. Peeling applied to a CoDa set X ∈ S: (a) with A-convex hull; (b) with E-convex hull. Geometric centre g(X) (green dot) and arithmetic centre (red dot) of CoDa set are plotted. 
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	3.2. Some basic compositional sets 
	3.2. Some basic compositional sets 
	The most common sets in convex optimisation in areas such as, among others, design of experiments (DOE), optimisation with mixtures, or time-use data are defined by con
	The most common sets in convex optimisation in areas such as, among others, design of experiments (DOE), optimisation with mixtures, or time-use data are defined by con
	-

	straining some parts of the composition x: {0 < li ≤ xi ≤ ui < 1; i = 1,...,D} (Chen 

	xi
	xi

	et al., 2010) or by constraining the ratio of two parts: {0 < li j ≤≤ ui j; i ̸= j = 
	xj 
	1,...,D}(Lo Huang and Huang, 2009). 
	3.2.1. Constraining the ratios between parts: a logcontrast 
	3.2.1. Constraining the ratios between parts: a logcontrast 
	The equation { = k ,1 ≤ i ̸= j ≤ D; k > 0} is equivalent to the logcontrast {lnxi − 
	x
	i 

	xj 
	lnxj = lnk;1 ≤ i ≠ j ≤ D}. This equation describes an affine subspace of dimension D − 2 on the simplex with the Aitchison geometry (Egozcue, Pawlowsky-Glahn and 
	xi
	xi

	Gloor, 2018). Consequently, l ≤ or ≤ u define closed half-spaces of the simplex, 
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	xj xj and both sets, Π= {x ∈ S|l ≤ } and Π= {x ∈ S| ≤ u}, verify the condition of 
	+
	D
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	xj xj 
	being an A-convex set (Definition 2). 
	In general, affine subspaces such as A-lines, A-planes or A-hyperplanes are defined by logcontrasts (Eq. (1)) (Egozcue et al., 2018). A logcontrast splits the simplex into two closed half-spaces, Π= {x ∈ S|∑βj lnxj ≥ k} and Π= {x ∈ S|∑βj lnxj ≤ k}. By construction, both half-spaces are A-convex sets (Definition 2). Figure 3 shows four different logcontrasts (blue lines) whose intersection determines a quadrilateral (green area). Because the intersection of convex sets is a convex set (Boyd and Vandenberghe,
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	Figure
	Figure 3. An A-convex quadrilateral in S(green area) determined by the intersection of four half-spaces defined by logcontrasts (blue lines). 
	3 


	3.2.2. Constraining the parts of a composition 
	3.2.2. Constraining the parts of a composition 
	Despite the fact that an equation such as {xi = k, k ∈ (0,1)}, for any i = 1,...,D, cannot be expressed in terms of a logcontrast, this type of equation also splits the simplex into two sets: the upper set Σ= {x ∈ S|xi ≥ k, k ∈ (0,1)}, and the lower set Σ= {x ∈ 
	Despite the fact that an equation such as {xi = k, k ∈ (0,1)}, for any i = 1,...,D, cannot be expressed in terms of a logcontrast, this type of equation also splits the simplex into two sets: the upper set Σ= {x ∈ S|xi ≥ k, k ∈ (0,1)}, and the lower set Σ= {x ∈ 
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	S|xi ≤ k, k ∈ (0,1)}. However, in this case, the two sets are different with regard to their compositional convexity. 
	D


	Proposition 1. For any i = 1,...,D, the set Σ= {x ∈ S|xi ≥ k, k ∈ (0, 1)} is an A-convex set. 
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	Proof. See Appendix. ■ 
	In contrast, the lower set Σis not an A-convex set as is illustrated in Fig. 4(b). Figure 4 shows an example in Sof the type Σ(blue area) and its complementary set, Σ(grey area), for part xwith k = 0.4. For each set, two compositions were selected and the corresponding A-segment plotted (red line). Because the red A-segment on Fig. 4(b) is not entirely contained in the set Σ(grey area), this set is not an A-convex set. 
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	Figure
	(a) (b) 
	Figure 4. A 3-part composition constrained for i = 1 and k = 0.4: (a) The set Σ(blue area); 
	+ 

	(b) The set Σ(grey area). The red line represents the A-segment for two compositions in each set. 
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	The sets Σand Σcan be generalised as follows: 
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	(α)= {x ∈ S|αx+ ... + αDxD ≥ 0,αi > 0,αj ≤ 0, 1 ≤ j ̸= i ≤ D} 
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	D
	1
	1 

	Σ
	Σ
	− 

	(α)= {x ∈ S|αx+ ... + αDxD ≤ 0,αi > 0,αj ≤ 0, 1 ≤ j ̸= i ≤ D} 
	i 
	D
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	Note that Σ(α) and Σ(α) for α =(−k,...,−k,(1 − k),−k,...,−k), k ∈ (0,1), be
	+ 
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	-

	  
	i 
	come the sets Σand Σ, respectively. Importantly, an analogous proof to Proposition 1 states that a set Σ(α) is A-convex. On the other hand, Σ(α) is not an A-convex set. To illustrate these properties, Figure 5 shows the set Σ(α)= {x ∈ S|x− x− x− x≥ 0} (blue area) in S, which generalises a set of type Σ= {x ∈ S|x≥ k, k ∈ (0,1)}. 
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	Figure
	Figure 5. The A-convex set Σ(α)= {x ∈ S|x− x− x− x≥ 0} (blue area) in S. 
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	Note that the intersection of sets of type Σor Σ(α) is an A-convex set. However, when an optimisation problem includes a set of type Σ(α) the feasible region might be a non A-convex set. In such a case, one should be cautious when applying convex optimisation techniques. 
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	4. Convex functions on the simplex 
	4. Convex functions on the simplex 
	The definition of a convex function in the Euclidean space can be adapted to the Aitchison geometry following the schema introduced in Luenberger and Ye (2008) and in Boyd and Vandenberghe (2004). 
	-

	Definition 4. Let W ⊂ Sbe an A-convex set. A function f : W → R is an A-convex function if for all x, x∈ W and λ ∈ [0, 1]: 
	D 
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	f ((1− λ ) ⊙ x⊕ λ ⊙ x) ≤ (1− λ ) f (x)+ λ f (x) 
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	Definition 5. Let W ⊂ Sbe an A-convex set. A function g : W → R is an A-concave function if f = −g is an A-convex function. 
	D 

	Note that, as expected, a constant function f (x)= k, with k a real number, is simultaneously an A-convex and A-concave function. 
	-

	Importantly, the classification of convex function through the gradient or the Hessian matrix also applies for CoDa. That is, the common rule A twice differentiable function of several variables is convex on a convex set if and only if its Hessian matrix of second partial derivatives is positive semidefinite on the interior of the convex set can be used to classify A-convex functions by means of the basic concepts of compositional differential calculus (Barcel´o-Vidal, Mart´ın-Fern´andez and Mateu-Figueras,
	-

	f (x) ≥ f (y)+ ∇A( f )(y)(ln(x) − ln(y)) 
	for all x, y ∈ W, where ∇A( f ) is the A-gradient vector in clr-coordinates Barcel´
	o-Vidal et al. (2011). The following two propositions show that the sum of functions and product by a scalar are basic operations for creating more complex A-convex functions. 
	Proposition 2. Let fand fbe two A-convex functions on the A-convex set W ⊂ S. The function f+ fis A-convex onW. 
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	Proof. See Appendix. ■ 
	Proposition 3. Let f bean A-convex function on the A-convex set W ⊂ S. For any a ≥ 0, the function af is A-convex on W 
	D

	Proof. This proof is immediate from the definition of convex function. ■ 
	Using the two previous propositions, it follows that a positive linear combination of A-convex functions is an A-convex function. That is, given a set of A-convex functions f,..., fn on the A-convex set W ⊂ S, then the function af+...+an fn is an A-convex function for any aj > 0, j = 1,...,n. This property is useful for creating more complex A-convex functions using basic functions (see Section 4.1). 
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	In addition, the following results state that the sublevel sets of an A-convex function on the simplex verify the usual properties as regard to the convex sets. 
	Proposition 4. Let f bean A-convex function on the A-convex set W ⊂ S. The sublevel set G= {x| x ∈ W, f (x) ≤ α} is A-convex for any real number α.
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	α 
	Proof. See Appendix. ■ 
	Even though for any A-convex function, its sublevel sets Gare A-convex sets, the converse is not true. This fact motivates the following definitions. 
	− 
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	Definition 6. A function f : S→ R is an A-quasiconvex function if its domain and all its sublevel sets, G= {x| x ∈ dom( f ), f (x) ≤ α} are A-convex sets for any real 
	D 
	− 

	α 
	number α. 
	Definition 7. A function f : S→ R is an A-quasiconcave function if its domain and all its superlevel sets, G= {x| x ∈ dom( f ), f (x) ≥ α} are A-convex sets for any real 
	D 
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	α 
	number α. 
	As with convex optimisation problems in the Euclidean space when defining the feasible region (Boyd and Vandenberghe, 2004), it is recommended to represent the sublevels of an A-quasiconvex function (or the superlevels of a A-quasiconcave function) through inequalities of A-convex functions. Therefore, an A-quasiconvex function f , should be expressed by means of A-convex functions, Φα such that, 
	-

	f (x) ≤ α ⇐⇒ Φα (x) ≤ 0. 
	4.1. Some basic functions on the simplex 
	4.1. Some basic functions on the simplex 
	With the following examples, the A-convexity of some popular functions on Sis reviewed. 
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	xi
	xi

	Example 1. The function f (x)= ,1 ≤ i, j ≤ D is an A-convex function over its 
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	domain, dom( f )= S. 
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	Proof. See Appendix. ■ 
	Example 2. For any i = 1,...,D, the function f (x)= xi is an A-quasiconcave function over its domain, dom( f )= S. Moreover, using the A-convex function 
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	Φα (x)= α − 1, 
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	xi
	j=1 
	a superlevel G= {x ∈ S| xi ≥ α} for any α ∈ (0, 1) can be represented by means of
	+
	D

	α 
	Φα (x) ≤ 0. 
	Proof. See Appendix. ■ 
	Example 3. For any x∈ S, the function squared Euclidean distance f (x)= d(x,x)= ∑(xj − xj)is not A-convex. 
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	Figure 6(a) shows the contour lines of the function f (x)= d(x,x) on Sfor x= (47,10,43) . The sublevel sets are not A-convex sets, and therefore, the function f (x) is not an A-convex function (Proposition 4). Because it may be difficult to see the lack of convexity of a set on the ternary diagram, Figure 6(b) shows the sublevel sets in olr-coordinates. 
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	Figure
	(a) (b) 
	Figure 6. Contour lines of the function f (x)= d(x,x) on Sfor x=(47,10,43): (a) Ternary diagram; (b) olr-coordinates. 
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	Note that the function Euclidean distance and the function (squared) d(x,x) share the same contour lines. Consequently, the function (non-squared) dE (x,x) is not Aconvex. The lack of convexity means that the Euclidean distance does not satisfy the triangular inequality, that is, it is not a distance function on the simplex endowed with the Aitchison geometry. 
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	Example 4. For any x∈ S, the function squared Aitchison distance f (x)= d(x,x)= 
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	d(clr(x),clr(x)) is A-convex. 
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	Proof. The proof is immediate because the function squared Euclidean distance is convex on the Real space. ■ 
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	4.2. Convex optimisation on the simplex 
	4.2. Convex optimisation on the simplex 
	In a broad sense, a convex optimisation problem in Ris defined as (Boyd and Vandenberghe, 2004): 
	D 
	-

	minimise f(x) subjectto fj(x) ≤ 0 j = 1,...,m (4) gk(x)= bk k = 1,...,n 
	0

	where x ∈ R, f,..., fm : R→ R are convex functions and g,...,gn : R→ R are linear functions. 
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	For CoDa, the above definition is adapted as: 
	Definition 8. An A-convex optimisation problem in standard form is defined as 
	minimise f(x) subject to fj(x) ≤ 0 j = 1,...,m 
	0

	β
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	lnx = bk k = 1,...,n 
	k 

	where x ∈ S, f, f,..., fm are A-convex functions and βlnx are logcontrasts, that is, ∑βk, j = 0, k = 1,...,n. 
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	An important case of convex optimisation problems is that of linear programming, that is, when the objective and all constraining functions are linear. For CoDa, an Alinear programming problem is defined in terms of logcontrasts as follows: 
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	minimise lnx 
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	subject to lnx ≤ bk k = 1,...,m 
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	lnx = bk k = m+ 1,...,n 
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	where ∑βk, j = 0, k = 0,...,n. 
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	5. Case Study 
	5. Case Study 
	The example we present here is based on data from Aitchison (1986) and only serves for illustrative purposes. We consider a 3-part time-use composition of mutually exclusive and exhaustive parts: non-sedentary time (NSed), sedentary time (Sed), and sleeping time (Sleep). Table 1 shows the 3-part time-use compositions of a university associate professor with unhealthy physical activity habits. Figure 7 shows the data set in the ternary diagram (Fig. 7a) and in the olr-space (Fig. 7b), where the olr-basis use
	P
	√√ 
	NSed 2 
	2 
	ln 
	NSed·Sed 

	olr(x)= and olr(x)= ln .
	1
	2
	3

	Sed Sleep 
	2 

	Table 1. 3-part time-use composition over 20 days. 
	Table
	TR
	Non-sedentary 
	Sedentary 
	Sleep 

	D1 
	D1 
	0.04234 
	0.77218 
	0.18547 

	D2 
	D2 
	0.03772 
	0.75235 
	0.20993 

	D3 
	D3 
	0.04807 
	0.69388 
	0.25805 

	D4 
	D4 
	0.05705 
	0.59596 
	0.34699 

	D5 
	D5 
	0.04306 
	0.76733 
	0.18961 

	D6 
	D6 
	0.03592 
	0.75916 
	0.20493 

	D7 
	D7 
	0.03797 
	0.67973 
	0.28231 

	D8 
	D8 
	0.03959 
	0.76519 
	0.19522 

	D9 
	D9 
	0.04321 
	0.70868 
	0.24811 

	D10 
	D10 
	0.04000 
	0.70886 
	0.25114 

	D11 
	D11 
	0.04060 
	0.75101 
	0.20838 

	D12 
	D12 
	0.04148 
	0.62683 
	0.33169 

	D13 
	D13 
	0.04003 
	0.64864 
	0.31133 

	D14 
	D14 
	0.04357 
	0.77365 
	0.18277 

	D15 
	D15 
	0.04488 
	0.73273 
	0.22239 

	D16 
	D16 
	0.04665 
	0.73483 
	0.21853 

	D17 
	D17 
	0.03873 
	0.65937 
	0.30190 

	D18 
	D18 
	0.03282 
	0.73313 
	0.23405 

	D19 
	D19 
	0.03552 
	0.65058 
	0.31390 

	D20 
	D20 
	0.04231 
	0.57445 
	0.38324 


	The centre or mean (x) of a CoDa set is the vector of geometric means of its parts, scaled to sum 1 in order to obtain its representative on the unit simplex. Therefore, on dayly average, the associate professor engages in physical activity for one hour, exhibits sedentary behaviour for seventeen hours, and sleeps for six hours, x= (1/24,17/24,6/24) (see the red point in Figure 7). 
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	The location and spread of a compositional data set are summarised in the variation array (Table 2) through pairwise logratios of parts. The elements above the first diagonal are the pairwise log-ratio variances, whereas the elements below it are the arithmetic 
	Figure
	(a) (b) 
	Figure 7. (a) 3-part time-use compositions on the ternary diagram (small triangle). The large 
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	the data set and its centre in the olr-space. 
	means. As suggested by the ternary diagram (Fig. 7a), the largest log-ratio variance corresponds to {Sed,Sleep}, whereas the smallest value is Var(ln 
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	)= 0.0265. In this case, because the estimate of the log-ratio expectation is E(ln 
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	)= 2.8332, on average, sedentary time is approximately 17 times (≈ exp{2.8332}) the non-sedentary time, as the centre xof the data set indicates. 
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	Table 2. Variation array of the 3-part time-use compositional data. 
	Pairwise log-ratio variance 
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	Sleep 
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	Pairwise log-ratio arithmetical mean 


	The data set shown in the ternary diagram (Fig. 7a) suggests that the farthest point from the centre is the point located further down on the simplex: D20 =(0.04231, 0.57445, 0.38324), with the smallest value in the part NSed (Table 1). At first glance, this point may be considered a potential outlier. Moreover, when representing the data set in olr-coordinates (Fig. 7b), the outermost point is the point located further to the right: olr(D4)=(−1.659, −0.516). This fact is corroborated by the peeling using t
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	Figure 8. Peeling with the Aitchison geometry of the 3-part time-use compositions: (a) on the ternary diagram (small triangle). The large triangle zooms into the data set region. The centre of the data set is represented in red colour; (b) in the olr-space. 
	The professor was recommended to increase non-sedentary time up to, on average, at least 13 hours per day. The question is how to distribute the time for the rest of the activities (i.e., sedentary and sleeping). One criterion may be to move from the centre of 
	D
	= {x ∈ S
	|x
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	the data set (x) to the closest point in the A-convex set Σ}, whereas the spread is preserved. This is one of the simplest examples of convex optimisation problem: to find the minimum distance from a given point x∈ Sto a convex set Σ. 
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	From a Euclidean approach, the E-convex optimisation problem is: 
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	E 
	2 
	0
	3 
	j=1 
	0 
	1 

	(5)
	x+ x+ x= 1 xj ≥ 0, j = 1,...,3 
	1 
	2 
	3 

	Figure 9(a) shows that the solution of the E-convex optimisation problem (Eq. 5) is 
	11
	(
	13 

	x = , 0), where the proposed movement is x−x=(12/24,−6/24,−6/24). That
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	is, in order to increase the fraction of non-sedentary time in 
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	, the Euclidean approach subtracts from the rest of the parts (non-sedentary and sleeping time) the same amount of time, hours. Note that the sleeping time has to be zero, a solution that is not realistic 
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	in practice. 
	In this situation, one could consider applying an analogous procedure using the Aitchison geometry. That is, perturb by the non-sedentary time to verify that x= 
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	24
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	13/24, while perturbing the other two parts ({Sed,Sleep}) by the same factor to preserve its relative information. Following this idea, when the centre x=(1/24,17/24,6/24) is perturbed by the vector p =(13/1,11/23,11/23) the composition obtained is x = (13/24,8.13/24,2.87/24), which verifies the constraint x≥ 13/24 (see figure 9 (b)). When one calculates the (squared) Aitchison distance from xto the new centre x the result is 7.271. To confirm whether this distance is the minimum value one must formulate th
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	Figure 9(b) shows that the solution to the A-convex optimisation problem (Eq. 6)
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	13 6.87 4.13
	is x = . Note that, the Aitchison approach has a reasonable behaviour 
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	because the largest part of the initial composition (i.e., sedentary time) contributes more to increase the non-sedentary time. The way that the other parts contribute to increase the non-sedentary time is not proportional in any sense. In this case, the (squared) Aitchison distance from xto the new centre x is 6.989, smaller than the distance obtained when the new centre is created by perturbation. Importantly, the ratio is not preserved 
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	when moving from xto the solution of the optimisation problem (x). That is, using this approach, the parts {Sed, Sleep} are not perturbed by the same factor. 
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	In the optimisation problem, the movement from xto x is explained by the perturbation difference x⊖ x=(13/1,6.87/17,4.13/6). Figure 10 shows how the original data set (grey) is moved to the data set perturbed (black) by x⊖x=(13/1,6.87/17,4.13/6), preserving the data spread. The centre of the perturbed data set fulfils the condition 
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	With the Aitchison geometry approach, the solution is more realistic. 
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	Figure
	Figure 10. Resolving the optimisation problem on the ternary diagram: the original data set (grey) is perturbed by x ⊖ x=(13/1,6.87/17, 4.13/6) for becoming the new data set (black). The dashed segment is the border of the set x≥ 
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	. The centre of each data set is shown in red. 
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	6. Conclusions and final remarks 
	6. Conclusions and final remarks 
	The adequate definitions of convex set, convex hull and convex function in a compatible manner with the Aitchison geometry play an important role in the analysis of CoDa. The most popular statistical techniques include optimisation problems that are sensitive to the geometry of the sample space. We have compared the Euclidean geometry to the Aitchison geometry when solving a convex optimisation problem for CoDa. While the Euclidean approach found inconsistent solutions, the Aitchison geometry provided more 
	With basic concepts of constrained convex optimisation for CoDa on hand, a revision of some statistical techniques should be carried out. The pending challenge is to investigate the implications in popular techniques such as, among others, outlier detection, experimental design of mixtures, or Lasso regression. 
	-
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	Proposition 1 For any i = 1,...,D, the set Σ= {x ∈ S|xi ≥ k, k ∈ (0,1)} is an A-convex set. 
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	Proof. Let x=(x,...,xD), x=(x,...,xD) be two D-part compositions in Σ. We have to check that for any λ ∈ [0, 1] it holds that 
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	(1 − λ ) ⊙ x⊕ λ ⊙ x∈ Σ. 
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	older’s inequality, the last term of the expression holds 
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	Finally, writing Eq. (7) in terms of the ipart of the composition (1− λ ) ⊙ x⊕ λ ⊙ x: 
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	that is, (1 − λ ) ⊙ x⊕ λ ⊙ x∈ Σ. ■ 
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	Proposition 2 Let fand fbe two A-convex functions on the A-convex set W ⊂ S. The function f+ fis A-convex onW. 
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	Proof. Let x, xbe two D-part compositions in W. For any λ ∈ [0,1] it holds that 
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	Proposition 4 Let f bean A-convex function on the A-convex set W ⊂ S. The sublevel set G= {x| x ∈ W, f (x) ≤ α} is an A-convex set for any real number α.
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	f ((1− λ ) ⊙ x⊕ λ ⊙ x) ≤ (1− λ ) f (x)+ λ f (x) ≤ α. 
	1 
	2
	1
	2

	Consequently, (1− λ ) ⊙ x⊕ λ ⊙ x∈ G. ■ 
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	Example 1 The function f (x)= ,1 ≤ i, j ≤ D is an A-convex over its domain, 
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	We apply Young’s inequality, ab≤ (1 − λ )a + λ b for any a,b ≥ 0 and λ ∈ [0, 1], 
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	Example 2 For any i = 1,...,D, the function f (x)= xi is an A-quasiconcave function over all its domain, dom( f )= S. Moreover, using the A-convex function 
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	a superlevel G= {x ∈ S| xi ≥ α} for any α ∈ (0, 1) can be represented by means of
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	Proof. Through proposition 1, the set G= {x ∈ S| xi ≥ α} is A-convex for any real 
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	Because x ∈ S, the equality ∑xj = 1 holds. So, xi ≥ α ⇐⇒ α ∑≤ 1. 
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	And the function Φα (x)= α ∑− 1 is A-convex because it is a positive linear 
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