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Abstract 

Gaussian random felds with Matérn covariance functions are popular models in spatial 
statistics and machine learning. In this work, we develop a spatio-temporal extension 
of the Gaussian Matérn felds formulated as solutions to a stochastic partial differential 
equation. The spatially stationary subset of the models have marginal spatial Matérn 
covariances, and the model also extends to Whittle-Matérn felds on curved manifolds, 
and to more general non-stationary felds. In addition to the parameters of the spatial 
dependence (variance, smoothness, and practical correlation range) it additionally has 
parameters controlling the practical correlation range in time, the smoothness in time, 
and the type of non-separability of the spatio-temporal covariance. Through the separa-
bility parameter, the model also allows for separable covariance functions. We provide 
a sparse representation based on a fnite element approximation, that is well suited for 
statistical inference and which is implemented in the R-INLA software. The fexibility of 
the model is illustrated in an application to spatio-temporal modeling of global tempera-
ture data. 
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4 A diffusion-based spatio-temporal extension of Gaussian Matérn felds 

1. Introduction 

1.1. Modelling spatio-temporal data 

Statistical models for spatio-temporal data have applications in areas ranging from the 
analysis of environmental data (Cameletti et al., 2013) and climate data (Wood et al., 
2004; Fuglstad and Castruccio, 2020), to resource and risk modeling (e.g., of wildfres, 
Serra et al. (2014)), disease modeling (Bhatt et al., 2015; Moraga, 2019), and ecology 
(Yuan et al., 2017; Zuur, Ieno and Saveliev, 2017). These models typically use spatio-
temporal random effects, defned as Gaussian spatio-temporal stochastic processes and 
rely on a large body of theoretical and methodological literature (Stein, 2012; Gelfand 
et al., 2010; Cressie and Wikle, 2011, and references therein). 

At best, this theory is carefully studied when the spatio-temporal model is con-
structed, so that the model with the most appropriate assumptions can be used. In prac-
tice, however, users of statistical software often choose a model based on convenience. 
If there are available code examples, the choices made in these will often be carried for-
ward into future analyses. For example, users of R-INLA (Rue, Martino and Chopin, 
2009, 2017; van Niekerk et al., 2021; van Niekerk and Rue, 2024; Gaedke-Merzhäuser 
et al., 2022; van Niekerk et al., 2023) construct space-time models through Kronecker 
products of a spatial Matérn model, and frst- or second-order autoregressive models in 
time, following the code examples in Krainski et al. (2019). This paper is aimed at im-
proving the general practice of space-time data analysis, by providing a new family of 
spatio-temporal stochastic processes for use as random effects in statistical software. 

We will mainly discuss stochastic processes u(s, t) that are stationary and spatially 
isotropic, i.e., the covariance function can be written as cov(u(s1, t1),u(s2, t2)) = 
R(hs,ht), where hs = ||s1 − s2|| and ht = |t1 − t2|, but will also extend these process 
models to spatial non-stationarity and processes on general manifolds. We consider 
these stochastic processes in the context of hierarchical models, as a latent model com-
ponent, observed through some measurement process, with no direct measurements of 
the stochastic process itself. Consider, for example, a model with a linear predictor 

m 
η(s, t) = ∑ Xi(s, t)βi + f1{z1(s, t)} + . . . + fk{zk(s, t)} + u(s, t), (1) 

i=1 

that is connected to the response y through some likelihood or loss function (Bissiri, 
Holmes and Walker, 2016) such that E{y(s, t)} = g{η(s, t)} for some fxed and known 
function g. Here Xi and z j are covariates that vary over both space and time, βi the 
regression coeffcient for the fxed effects, and f j(z j) are random effects. Typical exam-
ples are splines and latent Gaussian processes used to approximate the effect of altitude 
or distance to coastline. This common situation with a stochastic process as a model 
component impacts the methodological considerations we make. The predictor is also a 
spatio-temporal stochastic process, with a covariance function that can be deduced from 
the assumptions on the model components. However, properties of the predictor that we 
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may discover by investigating the covariance function of the predictor may not be shared 
by the spatio-temporal model component u because of the other factors. Hence, we may 
have little prior information about the covariance structure of the spatio-temporal model 
component, except that it should be physically realistic, and should mimic the depen-
dency structure in models of physical processes. 

Users of software for spatio-temporal modelling most often use separable models 
(see, e.g., Bakka et al. (2018); Krainski et al. (2019)), i.e., models where u has a co-
variance function of the form R(hs,ht ) = Rs(hs)Rt (ht ), for some spatial and temporal 
marginal covariance functions Rs(·) and Rt (·). This is typically not because this is a 
desired property, but since such models are readily available in statistical software, and 
there are many good arguments for why models should not be assumed separable, see 
Stein (2005), Cressie and Huang (1999), Fonseca and Steel (2011), Rodrigues and Dig-
gle (2010), Gneiting (2002), Sigrist, Künsch and Stahel (2015), Wikle (2015). 

1.2. The Matérn family of covariance functions 

The most well known family of covariance functions for stationary random felds on Rd 

is the Matérn covariance, 

σ2 
RM(h) = (κh)ν Kν (κh) , (2)

2ν−1Γ(ν) 

where ν ,κ > 0 are smoothness and scale parameters, σ2 is the variance of the corre-
sponding random feld, Kν is the Bessel function of the second kind of order ν , and 
Γ is the Gamma function. An important property of this covariance family is that it 
allows for explicit control of the differentiability of the corresponding stochastic pro-
cess through the parameter ν . It further allows for control of the practical correlation √ 
range r = 8ν/κ (Lindgren et al., 2011). The covariance function is usually attributed 
to Matérn (1960), and it was advocated early by Handcock and Stein (1993) and Stein 
(2012). See Guttorp and Gneiting (2006) for a historical account of the covariance func-
tion and its connections to various areas in physics. 

The goal of this paper is to extend the Matérn covariance function to a family of 
spatio-temporal covariance functions. One way of doing this would be to extend the 
covariance function to a spatio-temporal covariance. However, we argue that it is better 
to base the extension on some of the other equivalent mathematical representations, or 
views, of Gaussian Matérn felds. One such alternative representation is the stochastic 
partial differential equation (SPDE) representation by Whittle (1963). Specifcally, a 
Gaussian Matérn feld on Rd solves the SPDE 

(κ2 − ∆)α/2u = W, (3) 

where κ > 0, ∆ is the Laplacian, W is Gaussian white noise, and α = ν + d/2. Via 
the SPDE representation, we note that a Gaussian Matérn feld has precision operator 
Q = (κ2 − ∆)α . The precision operator (as well as the pseudo-differential operator (κ2 − 
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∆)α/2) are defned in terms of Fourier transforms (Lindgren et al., 2011), and informally, 
we get the Fourier transform of the precision operator by replacing derivatives with d-
dimensional wave-numbers w. For any precision operator which is a polynomial in the 
Laplacian, Q = Poly(−∆), such as the Matérn operator with α ∈ N, this results in a 
polynomial F(Q) = Poly(∥w∥2). This function is the reciprocal of the spectrum of the 
Gaussian process, illustrating why many common spectrums are the reciprocal of an 
even polynomial. In fact, Rozanov (1977) showed that a stationary stochastic process 
on Rd is Markov if and only if the spectral density is the reciprocal of a polynomial, 
and more generally, a stochastic process is Markov if the precision operator is a local 
operator, which is the case for integer powers of the Laplacian. For further details on 
the theory of the SPDE representation, see Kelbert, Leonenko and Ruiz-Medina (2005); 
Prévôt and Röckner (2007); Lindgren et al. (2011); Bolin and Kirchner (2020); Bolin 
et al. (2023). 

We could also represent a Gaussian Matérn feld as a stochastic integral with respect 
to white noise. For Gaussian Matérn felds, the kernel in the integral representation is the 
Green’s function of the differential operator (see, e.g., Bolin, 2014). This representation 
can be used to defne other valid covariance functions by replacing the Green’s function 
with some other kernel (see, e.g., Fuentes, 2002; Higdon, 2002; Rodrigues and Diggle, 
2010). 

The modeling approaches stemming from these different views of the Gaussian 
Matérn felds can be thought of as implicit and explicit. In implicit approaches such 
as the covariance-based representation, one does not have a direct formulation of the 
process itself, and properties of interest need to be derived from the covariance function. 
In explicit, or constructive, approaches one directly defnes the process through, e.g., an 
SPDE or a stochastic integral with the desired properties encoded. In this paper we fol-
low the explicit approach to construct a stochastic process based on diffusion processes. 
Other properties, such as covariance non-separability, are then merely consequences of 
the explicit construction. 

1.3. SPDE-based spatio-temporal generalisations of the Matérn 
covariance family 

There is a large literature on spatio-temporal covariance models see, e.g., Porcu, Fur-
rer and Nychka (2021) and the references within). Broadly, models for spatio-temporal 
Gaussian random felds can be divided into two categories; the implicit second-order co-
variance based models and explicit dynamical models (Cressie and Wikle, 2011; Roques, 
Allard and Soubeyrand, 2022). It should be noted that Porcu et al. (2021), contrary to this 
terminology, classifes the SPDE-based methods as implicit since they do not explicitly 
specify the covariance function. However, the covariance functions is merely a property 
of the process, and only indirectly defnes the process family, whereas dynamical mod-
els directly determine the spatial and temporal evolution of the process. As shown by 
Lindgren et al. (2011), the covariance does not have an inherent advantage over spectral 
and precision operator/matrix methods, for practical applications and computations. 
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The second-order model specifcations specify the Gaussian process properties by 
specifying its frst two moments, and are thus based on formulating valid spatio-temporal 
covariance functions. In dynamical model specifcations, the evolution of the Gaus-
sian process is explicitly described either by specifying the conditional distributions of 
the current state of the process given its past through conditional distributions (e.g., 
Storvik, Frigessi and Hirst, 2002), or by specifying the process as the solution to an 
SPDE (Cressie and Wikle, 2011). One of the advantages with the dynamical approach is 
that it avoids the diffculties with formulating fexible and yet valid spatio-temporal co-
variance functions that can possess features such as non-separability or non-stationarity. 
In this work we focus on dynamical models specifed through SPDEs, which makes 
extension to non-stationary felds and manifold models straightforward. 

Several papers have been using the SPDE view to suggest models for spatio-temporal 
stochastic processes. A common extension of Matérn covariance felds to space-time is 
to use it as the spatial component in a separable model. Jones and Zhang (1997) discuss 
how separable covariance functions can be understood through differential operators, 
written as L = LsLt , where Ls is a purely spatial operator and Lt is a purely temporal 
operator. In agreement with Jones and Zhang (1997), we note that these operators are 
almost never encountered when modeling physical reality, hence, separable models are 
typically not physically motivated models for the spatio-temporal process. 

Whittle (1963) considered a spatio-temporal stochastic process formulated as a so-
lution to 

∂ u 
+(κ2 − ∆)u(s, t) = ε(s, t), (4)

∂ t 

where ε(s, t) is a stationary spatio-temporal noise process. Whittle (1986) denoted the 
model as a “diffusion-injection model” since it is a diffusion process with stochastic 
variability “injected” through the noise process on the right-hand side. Despite being 
a natural spatio-temporal extension of the Matérn model (3) with α = 2, the model 
does not have any fexibility in terms of differentiability in space or time. Jones and 
Zhang (1997) proposed a generalization, with greater fexibility for the marginal spatial 
covariances, by considering the fractional SPDE � �

∂ � �α/2 
+ κ

2 − ∆ u(s, t) = dE(s, t), (5)
∂ t 

where dE is space-time Gaussian white noise. When requiring spatial operator order 
α > d, this SPDE has regular continous solutions. In order to allow smaller operator 
orders α , such as a dampened ordinary diffusion operator with α = 2 on R2, as in Whittle 
(1963), the driving noise process would need to have spatial dependence. We will make 
this precise in later sections. An advantage with (5) is that the spatial smoothness can be 
controlled, since the solutions on the spatial domain Rd have smoothness νs = α − d/2. 
The disadvantage is that the temporal smoothness also is determined by α . As we will 
see later, the marginal temporal differentiability of the solution is νt = (1 − d/α)/2. 
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A model with general differentiability in both space and time was formulated by 
Stein (2005), who considered Gaussian spatio-temporal models specifed through the 
spectrum 

2 2S(ws, wt ) = {c1(a1 +∥ws∥2)α1 + c2(a2 + |wt |2)α2 }−ν , (6) 
2 2where c1 > 0,c2 > 0,a1,a2 are scale parameters, a1 +a2 > 0, α1, α2 and ν are smooth-

ness parameters with further restrictions in order to obtain a model with fnite vari-
ance. For example, on a two-dimensional spatial and one-dimensional temporal domain, 
2/α1 + 1/α2 < 2ν is required. Stein’s model can also be stated as an SPDE driven by 
space-time white noise, 

˜ ° ˛α2 ̋
ν/2 

2 2 ∂ 2 

c1(a1 − ∆)α1 + c2 a2 − 
∂ t2 u(s, t) = dE(s, t), (7) 

see Krainski (2018) and Vergara, Allard and Desassis (2022). A related model based on 
spectral densities, which also has separable models as a special case, was considered by 
Fuentes, Chen and Davis (2008). 

The case α = 2 of (5) for general dimension was considered in (Lindgren et al., 
2011, Section 3.5), suggesting the generalisation 

° ˛
∂ 

+κ2 +m · ∇ − ∇ · H∇ u(s, t) = dEQ(s, t), (8)
∂ t 

where H is a constant diffusion matrix, m is an advection (transport) vector feld, and 
the innovation process dEQ(s, t) white noise in time but is suffciently smooth in space 
to generate regular solutions u(s, t); see Lindgren et al. (2011) and Sigrist et al. (2015, 
Sec 2.2). Physically, this model might be interpreted as a dampened advection-diffusion 
process, with the driving mechanism of the space-time feld, such as introducing new 
mass (or, particles) into the system, having positive spatial correlation. See also Liu, 
Yeo and Lu (2022); Clarotto et al. (2022). 

In this work, we introduce another generalisation of the models by Jones and Zhang 
(1997) and Lindgren et al. (2011) that intersects, but is otherwise distinct from, the Stein 
model family. 

1.4. Outline 

In Section 2 we introduce a new family of SPDE-based spatio-temporal stochastic pro-
cesses. Model properties such as spatial and temporal differentiability, and parameter 
interpretations, are presented in Section 3.We present a sparse basis function represen-
tation in Section 4, and an implementation in R-INLA (Rue et al., 2009) in Supple-
mentary Materials, which allows us to construct models with different likelihoods and 
several random effects in a generalised additive model context. In Section 5, we present 
a forecasting example that illustrates clearly the difference between separable models 
and non-separable diffusion-based models, and an application to a global temperature 
dataset. The article concludes with a discussion in Section 6. 
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2. A diffusion-based family of spatio-temporal stochastic 
processes 

In this section we defne a diffusion-based extension of the Gaussian Matérn felds to a 

family of spatio-temporal stochastic processes (abbreviated DEMF). The main property 

we aim for is that the process should be a Gaussian Matérn feld when considered for 

a fxed time point in Rd . That is, when the process is considered on the spatial domain 

D = Rd , the spatial marginalisations of the process have Matérn covariances. When the 

models are considered on a general (compact) manifold D, the spatial marginalisations 

are solutions to a generalised spatial Whittle-Matérn model on D (Lindgren, Bolin and 

Rue, 2022). 
2Consider the operator Ls = g − D, gs > 0, on a spatial domain D, including anys 

boundary conditions needed for compact domains. Let the precision operator for the 
2generalised Whittle-Matérn covariances be Q(gs,ge,a) = g La , corresponding to solu-e s 

tions v(s) to the spatial stochastic SPDE 

a/2 
geLs v(s) = W(s), s 2 D (9) 

where W is a spatial white noise process, as discussed by Whittle (1963) and Lindgren 

et al. (2011). When D = Rd , and a stationary condition is imposed, these processes are 

regular Matérn processes. We then defne a noise process dEQ(s, t) as Gaussian noise 

that is white in time but correlated in space, with precision operator Q = Q(gs,ge, ae) for 

some non-negative ae. For a > 0, the cumulative time-integral process 

Z a 
EQ(s,(0,a]) = dEQ(s, t) (10) 

t=0 

is a Q-Wiener process (Da Prato and Zabczyk, 2014), with spatial precision operator 

Q/a. 

The case of a separable covariance model with a Matérn covariance in space and an 

exponential covariance in time is obtained from the stationary solutions to 

� � 

¶ 
+ k u(s, t) = dEQ(s, t), (s, t) 2 D × R. (11)

¶ t 

This is a spatial generalisation of the Ornstein-Uhlenbeck processes. We aim to produce 

a space-time model with diffusive behaviour. For this, we replace the dampening coef-

fcient k in (11) with a power of the dampended diffusion operator Ls, defning a model 

family of the time-stationary solutions to iterated diffusion-like processes 

� �atd as/2 
gt + Ls u(s, t) = dEQ(s, t), (s, t) 2 D ×R. (12)

dt 

When D = Rd , the space-stationary solutions are used. For compact manifolds with 

boundary, the operators Ls and Q are equipped with suitable boundary conditions on ¶D. 
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In total, the model has three non-negative smoothness parameters (αt ,αs,αe) and three 
positive scale parameters (γt ,γs,γe). It is not immediately obvious how the defnition 
(12) would be interpreted for non-integer powers αt . However, by taking advantage of 
the spectral properties of the operators, we defne the following model, which has an 
operator that more clearly allows fractional powers αt , as 

� �αt /2 

−γ
2 u(s, t) = dEQ(s, t), (s, t) ∈ D × R. (13)t sdt 

d2

2 + Lαs 

Theorem 2.1. For D = Rd, as well as for other domains where Ls has well defned 
positive powers, the defnitions (12) and (13) of the Gaussian process u(s, t) coincide 
for αt ∈ N. 

Proof. This can be seen by applying the techniques developed in Vergara et al. (2022). 
Alternatively, the transfer function G(ωt ) (see Lindgren, 2012, Chapter 4) for the tempo-
ral linear flter defned by the operator in (12) is G(ωt ) = (iγt ωt + Lα 

s
s/2

)αt , well-defned 
for positive integers αt , and has |G(ωt)|2 = (γ2ωt 

2 + Lαs )αt . The transfer function H(ωt)t s 

for the temporal linear flter defned by the operator in (13) is H(ωt ) = (γ2ωt 
2 + Lαs )αt /2,t s 

well-defned for positive αt . We see that |G(ωt )|2 = |H(ωt )|2, so the spectral properties 
of the two process defnitions coincide for positive integer αt values. ■ 

It should be noted that it would be possible to give a more direct defnition of the 
model (12) with fractional αt , but this would require more sophisticated mathematical 
tools, which is outside the scope of this work. 

The two representations make it clear that the model with αe = 0 is a special case 
of the Stein (2005) model family, with a1 = 0 and α1 = 1 in (7), and that the model of 
Jones and Zhang (1997) is obtained by setting αe = 0 and αt = 1 in (12). 

The use of the same spatial operator Ls in the left hand side of (13) as in the precision 
operator on the right hand side is what causes the spatial marginalisation of the process 
to be Matérn felds in the simplest case, as will be shown in Section 3. The parameters 
αt , αs, and αe determine the differential operator orders involved in the SPDE operator 
and therefore also the smoothness properties of the process, as shown in Section 3. 

The model can be further generalised by allowing the γ parameters to vary across 
space. This is most straightforward for γs, since that only alters the Ls operator. For 
complex domains, as well as when Ls is generalised to vary across space, the resulting 
solutions are not space-stationary, but still have marginal spatial properties defned by 
powers of Ls. The practical precision construction in Section 4 can be generalised to 
separable non-stationarity, where γt is allowed to depend on time and γs and γe depends 
on space, since that retains commutativity between the temporal and spatial operators. 
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2.1. Compact domains and manifolds 

For compact domains, the model defnitions include some form of boundary conditions. 

These boundary conditions induce boundary effects near the domain boundary, and as 

shown in Lindgren et al. (2011), if such effects are undesirable, one can extend the 

domain by at least the spatial range. By taking advantage of a non-stationary spatial 

operator, the barrier method introduced by Bakka et al. (2019) can also be used to nearly 

eliminate boundary effects, as well as to obtain models that appropriately take complex 

geography into account. Similarly, all the common extensions onto curved manifolds, 

such as the globe, can be implemented using the same approaches as for Rd . This in-

cludes the fnite element methods used in Section 4, but also Fourier-like spectral basis 

function expansions given by the eigenfunctions of the Laplacian, either given in closed 

form, e.g., spherical harmonics on the globe, or obtained numerically from fnite element 

eigenfunction computations. See Lindgren et al. (2022) for an overview of the literature 

on these alternative methods. 

3. Parameter interpretations and model properties 

In this section we discuss marginal spatial and temporal properties of the diffusion-

based model (12). In order to simplify the exposition, we focus on the ordinary Matérn 

covariance case when the spatial domain is D = Rd . In this case, the space-time spectral 

density of the stationary solutions u(s, t) to (13) is 

1 
Su(ws,wt ) = , (14)

2 2(2p)d+1g2[gt w +(g2 + ∥ws∥
2)as ]at (g2 + ∥ws∥

2)ae 
e t s s 

for (ws,wt ) ∈ Rd 
× R. The space-time covariance function is given by the Fourier inte-

gral 
Z Z 

Ru(s, t) = exp[i(ws · s + wtt)]Su(ws,wt )ds dt (15) 
R Rd 

for spatial lags s and temporal lags t. 

3.1. Sample path continuity and differentiability theory 

For felds with Matérn covariance functions, the degree of differentiability is encoded in 

the smoothness index n . For models with space-time spectral density given by (14), the 

marginal covariance in time is not generally of the Matérn class, so we need to use more 

general conditions for determining the smoothness. 

The differentiability of a stationary process x(t), t ∈ R, is determined by the decay 

rate of its spectral density. If S(w) ∼ w−g for some g > 0 for large w , then the process 

is a times mean square differentiable for all a < g− 
2

1 
(Stein, 2005). 

For stationary Gaussian processes, stronger statements of almost sure sample path 

continuity of derivatives and Hölder continuity can be made. The technical details can 

be found in Section 9.3 of Cramér and Leadbetter (1967) and Scheuerer (2010), and are 
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summarised in Appendix A, including a more formal characterisation of the smooth-
ness index. The results show that Gaussian processes with spectral densities satisfying 
S(ω) ∼ ∥ω∥−2ν−d for some ν > 0 and large ∥ω∥ have smoothness index ν . This means 
that the sample paths have almost surely continuous derivatives of order up to and in-
cluding k = ⌈ν⌉− 1, and that the derivatives of order k are Hölder of index a for any 
0 < a < ν − k. Further, the sample paths are almost surely in the Sobolev spaces W b,2 

for any b < ν , on fnite subsets of Rd . Although these results are derived specifcally 
for Rd , it is clear that sample path properties of Whittle-Matérn felds on more general 
but smooth domains will have similar, and usually identical, local differentiability prop-
erties, based on the decay rate of the eigenspectrum of the Laplacian. In particular, the 
spectral Fourier representations on the 2D sphere S2 lead to series that converge under 
the same conditions as the continuous spectra on R2. 

The smoothness index ν can be interpreted as the smallest value for which some 
form of weak continuity does not hold. For a process on a multidimensional domain 
with potentially different smoothness in different directions, Theorem A.1 and smooth-
ness defnition in Appendix A will be applied to the one-dimensional marginals of the 
process. 

3.2. Properties of the spatio-temporal model 

We can now show that the spatial marginals of u(s, t), i.e. for fxed t, are Matérn co-
variance felds, given that the smoothness parameters are chosen appropriately. To keep 
some notational brevity, we frst defne the unit variance and range Matérn covariance 
function RM 

ν (t), 

RM 
ν (t) = 

1 
tν Kν (t), t ≥ 0, (16)

Γ(ν)2ν−1 

and the scaling constants 
Γ(α − d/2)

CRd = ,α 
Γ(α)(4π)d/2 , 

for d = 1,2,3, . . . and α > d/2. These appear as variance scaling constants for the 
regular Whittle-Matérn SPDE models. 

Proposition 3.1. Defne the effective spatial marginal operator order α = αe + αs(αt − 
1/2) and assume that α > d/2. Then the solution u(s, t) to (13) has marginal spatial 
covariance function 

cov(u(s1, t),u(s2, t)) = σ 2RM 
νs 
(γs∥s2 − s1∥) 

where νs = α − d/2 is the spatial smoothness index and 

CR,αtCRd ,α
σ

2 = . (17)
γ2γt γ

2α−d 
se 
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Proof. See Appendix D.1, that also includes a derivation of the marginal spatial cross-

spectra for different time lags. ■ 

Proposition 3.2. Assume at ,as,ae satisfy a > d/2. Then the temporal smoothness index 
h i 

of the solutions u(s, t) to (13) is nt = min at − 
1 , ns , and for d = 2, the marginal
2 as 

temporal spectrum is 

� � 

ae − 1 ae − 1 2 2St (wt ) µ 2F1 at , + at , + at + 1;−wt gt /gs 
2as , 

as as 

where 2F1 denotes the hypergeometric function. 

Proof. See Appendix D.2. ■ 

For integer values of the operator orders, the hypergeometric function can be ex-

pressed using elementary functions. When at = as = 2 and ae = 0 for d = 2, we obtain 

Z 

¥ 1 arctan(wet ) 1 
St (wt ) µ dv = − , (18)

2 3 2 2 
0 (we +(1+ v)2)2 2we 2we (we + 1)t t t t 

where e = wt gt /g ernwt 
as , showing that the marginal temporal covariance is not a Mat´ s 

covariance. The exception is the separable case, where the temporal covariance function 

is a Matérn covariance function with smoothness index at −1/2. 

Corollary 3.2.1. Assume that as = 0, at > 1/2, and ae > d/2. Then the stationary so-

lutions u(s, t) to (13) have a separable space-time covariance function where the spatial 

covariance is given by Proposition 3.1 and the marginal temporal covariance function 

is 
2 −1RMC(u(s, t1),u(s, t2)) = s (g |t2 − t1|),nt t 

where nt = at − 1/2 and s2 is given by (17) with a = ae. 

Proof. Follows directly from the product form of the space-time spectrum (14). ■ 

In Table 1, we summarise the general smoothness results, as well as some impor-

tant special cases. The special cases denoted diffusion are generalised analogues of the 

diffusion-injection model (4), and the special critical diffusion model is later used in 

Sections 4 and 5. The general conditions on the a parameters that give well defned so-

lutions are encoded in the spatial and temporal smoothness conditions ns > 0 and nt > 0, 

and can also be written as the conditions a = ae + as(at − 1/2) > d/2 and at > 1/2. 
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Table 1. Summary of the smoothness properties of the solutions u(s, t) for different values of 
the parameters at ,as,ae, together with some examples. Here nt and ns respectively denote the 
temporal and spatial smoothnesses of the process. 

at as ae Type nt ns 

at as ae General 
h i 

1 nsmin at − ,
2 as 

1 d ae + as(at − ) −
2 2 

at 

at 

at 

0 

as 

as 

ae 
d 
2 

0 

Separable 

Critical 

Fully non-separable 

1 at − 
2 
1 at − 
2 

1 d at − −
2 2as 

d ae − 
2 

1 as(at − )
2 

1 d as(at − ) −
2 2 

1 

1 

1 

2 

2 

2 

d ae > 
2 

d 
2 

d d
− 1 < ae <2 2 

Sub-critical diffusion 

Critical diffusion 

Super-critical diffusion 

1/2 

1/2 

ns/2 

d ae + 1 − 
2 

1 
dae + 1 − 
2 

1 

3/2 

2 

0 

2 

2 

2 

0 

0 

Separable 

Fractional diffusion 

Iterated diffusion 

1/2 
d1− 
4 

3 d
−

2 4 

d2− 
2 
d2 − 
2 
d3 − 
2 

3.2.1. Quantifying non-separability 

From Table 1 we can see that the ae parameter controls the type of non-separability. 

An important case is ae = 0, which we refer to as fully non-separable models. The 

spectral density for such models is a subfamily of the Stein (2005) spectral model family. 

The degree of non-separability can be quantifed by the relation between ae and the 

effective marginal spatial operator order a . We introduce the non-separability parameter 

bs = 1 − ae/a = 1 − ae/(ns + d/2) 2 [0,1], where bs = 0 gives a separable model, 

and bs = 1 gives a “maximally non-separable” model. Assuming given values for the 

temporal smoothness nt > 0, spatial smoothness ns > 0, and non-separability bs 2 [0,1], 
nswe can fnd the corresponding values of (at ,as,ae). Let b�(ns,d) = . Then ns+d/2 

� � 

bs 1 
at = nt max 1, + ,

b�(ns,d) 2 
� � 

ns bs 1 
as = min ,1 = min [(ns + d/2)bs,ns] , 

nt b�(ns,d) nt 

1 − bs 
ae = ns = (ns + d/2)(1 −bs). 

b�(ns,d) 

The critical branching point bs = b�(ns,d) motivates the term critical for such models. 

Models with bs < b�(ns,d) are sub-critical and models with bs > b�(ns,d) are super-

critical. The critical models have at = nt +1/2, as = ns/nt , and ae = d/2. The diffusion 

models in Table 1 with at = 1 and as = 2 are of particular interest, as they arise from a 

basic heat equation. 
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Notably, the fully non-separable diffusion model (αt = 1,αs = 2,αe = 0) requires 
d = 1 to ensure νs > 0, whereas the fully non-separable twice iterated diffusion model 
(αt = 2,αs = 2,αe = 0) is valid for d ∈ {1,2,3,4,5}. 
3.2.2. Scale parameter interpretation 

To improve the interpretability of the scale parameters, we defne σ , rs, and rt via 

CR,αt CRd ,α
σ

2 = 
γ

2α−d
γt γ

2 
e s 

(19) 

p
rs = γ−1 8νss (20) p
= γtγ

−αsrt 8(αt − 1/2),s (21) 

where rs is the correlation range as in Lindgren et al. (2011), giving approximately cor-
relation of 0.13 at rs distance in space (keeping time fxed). Similarly, rt controls the 
temporal correlation range for the separable model. In the non-separable cases, it is the 
temporal correlation range for the evolution of the spatial eigenfunction corresponding 
to the smallest eigenvalue of the Laplacian, i.e. a constant function over space, evolving 
in time. Eigenfunctions for larger spatial eigenvalues have shorter temporal correlation 
range, so the combined effective range will typically be smaller than the nominal rt value 
would indicate. 

3.3. Examples 

Table 2. Four specifc DEMF models on R2 or S2 . 

Model αt αs αe Type νt νs 

A: DEMF(1,0,2) 1 0 2 Separable order 1 1/2 1 
B: DEMF(1,2,1) 1 2 1 Critical diffusion 1/2 1 
C: DEMF(2,0,2) 2 0 2 Separable order 2 3/2 1 
D: DEMF(2,2,0) 2 2 0 Iterated diffusion 1 2 

To simplify notation, we denote by DEMF(αt ,αs,αe) the model with given values 
for (αt ,αs,αe). The four models we will consider on R2 are defned in Table 2. For these, 
we choose γs, γe and γt , so that σ = 1, rs = 1 and rt = 1. This enables us to compare the 
non-Mat´ ern behaviour. ern behaviour of the temporal correlation to the spatial Mat´ 

In general, the covariances are not available in closed form, but since the temporal 
covariance for each spatial frequency is of Matérn type, the spatial cross-spectra (derived 
in Appendix D.1) can be inverted numerically to obtain the cross-covariance. Specif-
cally, the cross-covariance can be computed numerically with a 2D fast Fourier trans-
form (FFT) computation for each fxed temporal lag (see Appendix B). This technique is 
related to the half-spectral space-time covariance models from Horrell and Stein (2017). 
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There, they focus on models where the temporal spectrum is known for each spatial lo-

cation, FtR(s, t) = f (wt )g(s,wt ), but the theory also covers the case of known spatial 

spectrum for each time point, FsR(s, t) = f (ws)g(w s, t), that we use here. 

In Figure 1 we show the spatio-temporal covariance function for these four models, 

and the marginal spatial covariances are shown in Figure 2. There is a clear difference 

between the spatio-temporal covariances, even though the marginal spatial covariances 

are identical for the frst three models. 
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Figure 1. The space-time covariance functions for spatial dimension d = 2, for the four models 
in Table 2, Section 3.3. The grey overlayed curves are level curves of the relative decay of the 
spatial and temporal covariances in relation to the marginal covariances. The non-separable 
models have non-orthogonal decay. 

3.4. Spheres and other manifolds 

As noted earlier, the marginal spatial covariance properties of the DEMF models on 

general manifolds are rooted in the properties of the Whittle-Matérn operator, and de-

pend on the specifc geometry. However, the temporal structure is linked to each spatial 

frequency in the same way for every manifold, so we can focus on the effects on the 

spatial properties. Smoothness properties intuitively follow from the local properties of 

the differential operator on smooth manifolds, which locally behave like Rd , so that is 

not the main obstacle to determining the process properties. Instead, it is the effect of 

the manifold’s intrinsic curvature that prevents general closed form expressions for the 

covariance functions to be derived. On a compact manifold D, the covariance function 
2for models based on Ls 

a/2 
= (g − D)a/2 (where a = ae + as(at − 1/2) in the DEMFs 
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Figure 2. The marginal spatial and temporal covariances for spatial dimension d = 2, for the 
four models in Table 2, Section 3.3. The spatial correlation is approximately 0.13 when the 
distance equals the range rs. For the temporal correlations, that relationship to rt only holds 
for the contribution from the evolution of a spatial constant, and the effective range has a more 
complex structure, depending on the combined model parameter. 

models) takes the form 

¥ 

R(s, s ′ ) = å Ck 
1 

Ek(s)Ek(s ′ ), s ∈ D,
2(g + l 2)a 

k=0 s k 

where (lk,Ek) are the eigenvalue/function pairs of the −Ñ·Ñ (negated Laplace-Beltrami) 

operator on D, and Ck are scaling constants that depend on potential scaling of the eigen-

functions and multiplicity of eigenvalues. This was used in Lindgren et al. (2011) to 

show that the fnite element constructions for Whittle-Matérn felds work on general 

manifolds. On the sphere, the eigenfunctions are the spherical harmonics, with eigen-

values lk = k(k + 1) with multiplicity 2k + 1. With the spherical harmonic defnitions in 

Appendix C, the resulting covariance can be simplifed to 

¥ 2k + 1
′ RS2 ,a (s, s ;gs) = å Pk,0(s · s ′ ), (22)

4p[g2 + k(k + 1)]a 
sk=0 

2k+1where Pk,0(·) are Legendre polynomials of order k, and the factor 
4p comes from 

the eigenvalue multiplicity and Fourier-Bessel transform theory on the sphere (see Ap-

pendix C). It follows from the construction that the infnite series for the covariances 

of the process derivatives that the differentiability properties on the sphere are the same 
2k+1 as on R2, as the terms l a 
2 decay at the same rate as required for the smoothnessk [g +lk]a 
s 

criteria on R2 from Appendix A. 
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Due to the wraparound effects on the sphere, the spatial variance contribution to the 
2a−d overall feld variance is not the same as on R2, and the factor CRd ,a /gs in (17) needs 

to be replaced by a function of gs defned by 

¥ 2k + 1 
CS2 ,a (gs) = å 2 

, (23)
4p[g + k(k + 1)]a 

sk=0 

obtained from the spectral representation of a spherical Whittle-Matérn feld. The overall 
CR,atvariance can then be written as var[u(s, t)] = 
g2 CS2 ,a (gs), and the asymptotic behaviour 

e gt 

of CS2 (gs) as gs approaches 0 or ¥ is given by,a 

( 
1¥ 2k + 1 , gs → 0,

4pg2a 
sCS2 (gs) = ∼ ,a å 14p[g2 + k(k + 1)]a ,s 2a−2 gs → ¥.k=0 4p(a−1)gs 

This shows that for large gs, i.e. short spatial ranges, the variance of the feld u(s, t) on 

the sphere is the same as on R2, but for small gs, i.e. long spatial ranges, the spherical 

geometry leads to larger variance than on R2. For intermediate gs values, the upper tail 

of the infnite series can be bounded by tractable integrals, which also allows bounding 

the relative error in numerical covariance and variance evaluation, by replacing the upper 
R 

¥ 2k+1series tail from k = K by the integral dk. More details are given inK+1/2 4p[g2+k(k+1)]a 
s 

Appendix C.2. 

4. Hilbert space representation 

The discussion up to this point has focused on the general continuous domain properties 

of the proposed model class. We will now discuss aspects of numerical implementations, 

suitable for inclusion in generalised additive latent Gaussian models, as available in 

the INLA and inlabru packages for R. The general construction is applicable to a 

wide range of basis function representations. In practice, we will use the fnite element 

approach from Lindgren et al. (2011) due to its computational convenience, in particular 

in the unstructured spatial observation location and manifold domain contexts. 

4.1. Hilbert space approximation 

We consider general Kronecker product basis expansions 

ns nt 

u(s, t) = å å yi(s)f j(t)ui j, (24) 
i=1 j=1 

where {yi(s); i = 1, . . . , ns} and {f j(t); j = 1, . . . ,nt } are fnite basis sets for Hilbert 

spaces on a spatial domain D and a time interval [T0,T1] ⊂ R, respectively. We will 

show that projection onto the resulting Kronecker function space only involve integrals 
k/2 k/2 

of the form ⟨f j,f j′ ⟩, ⟨(−D)k/4f j,(−D)k/4f j′ ⟩, and ⟨Ls yi, Ls yi′ ⟩. This is possible due 
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to the lack of interaction in the individual model operators; the operator as a whole is 
non-separable, but each operator term is space-time separable. This also extends to the 
case of a non-stationary Ls operator, as mentioned in Section 2. 

Different choices of spatial and temporal basis functions have benefts and draw-
backs depending on the specifc modelling and data context. A natural choice for the 
spatial domain is local piecewise linear basis functions. Such functions were used in 
Lindgren et al. (2011) to construct model representations with sparse precision ma-
trix structure for the basis expansion coeffcients, via Gaussian Markov random felds 
(GMRF). This allows a large number of basis functions to be used, and pointwise geo-
referenced observations will not alter the sparseness of the posterior precision matrix, 
making this a versatile approach, that can also be used in combination with sparse ma-
trix solvers developed for ordinary deterministic PDE computations. For very smooth 
processes, the piecewise linear basis functions can in principle be replaced by higher 
order local polynomials (Liu, Guillas and Lai, 2016), but this can be diffcult to imple-
ment. For non-stationary Ls = γs(s) − ∆, the spatially varying γs(s) values only have a 
local infuence on the fnite element construction, so the additional computational com-
plexity lies mainly on the increased number of parameters needed to represent the spatial 
variation of γs(·). 

An alternative to piecewise linear basis functions are harmonic basis functions based 
on the eigenfunctions of the Laplacian. These can be very effcient on domains that 
admit fast Fourier inversion algorithms, such as Rd and partially on S2. However, the 
diagonal precision matrix structure implied by the basic models is broken by scattered 
georeferenced observations, as the resulting posterior precision matrix becomes dense, 
so the utility is greatest for very smooth processes that can cut off the harmonics at a long 
spatial range. So-called conditioning by kriging can also be applied in such cases, but 
this is computationally expensive for large numbers of observations unless the number of 
basis functions is kept small. A further complication on general domains and manifolds 
is the lack of closed form expressions for the harmonics. Computing them with fnite 
element methods, for example, is as expensive as applying the piecewise linear basis 
GMRF representations directly. They are also impractical for non-stationary operators, 
since the precision matrices will typically become dense instead of diagonal. 

A third alternative is Karhunen-Loève expansions, which yield better approxima-
tions for fewer basis functions than harmonic basis. They can handle non-stationary 
operators, but need recomputing the basis for each set of parameter values, making in-
ference expensive. For irregular data, the same problem exists of turning a sparse prior 
precision matrix into a dense posterior precision matrix. However, for given parame-
ters, it can in principle be applied to the posterior distribution instead. Unfortunately, 
the numerical computations for each eigenfunction is at least as expensive as computing 
the posterior expectation using the same numerical method (e.g., fnite elements) as in 
the GMRF computations, making the full computation much more expensive, and best 
suited to special cases such as computing a compact representation of a given, fxed, 
distribution. 
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Despite their practical numerical cost and other related problems, the harmonic basis 
and Karhunen-Loève e expansions are excellent tools for theoretical analysis, and their 
discrete domain formulations are essential in the theoretical proofs of the general dis-
cretisation construction below. See Lindgren et al. (2022) for further discussion on the 
relative merits of different basis choices. 

The above considerations largely apply to the temporal basis function choice as well, 
with a few useful differences. First, in addition to piecewise linear basis functions, B-
spline basis functions of higher order can readily be applied, and in particular second 
order B-splines (piecewise quadratic basis functions) provide immediate benefts with 
only minimal extra effort. Where piecewise linear basis functions require some form 
of mass lumping for operator order 2, second order B-splines can be applied with least 
squares fnite element projection, and the resulting discretised Laplacian operator matrix 
has the same non-sparsity as for piecewise linear basis functions. In addition, when ap-
plied to order 1 operators, temporal interpolation in the fnite-dimensional representation 
exhibits less quasi-deterministic fuctuations than for piecewise linear basis functions. 
Second, harmonic basis functions are useful for smooth cyclic processes, e.g. seasonal 
effects, but otherwise suffer from the same issues as in space. 

4.2. Precision matrix construction 

In this section we represent the stochastic processes DEMF(αt ,αs,αe) using general Kro-
necker basis Hilbert space representations. Defne u(s, t) on D × R, for some polygonal 
domain Ω ⊂ Rd , as the solution to (13) with some boundary conditions on ∂ D. The par-
ticular choice of boundary conditions does not matter much in what follows as long as 
they lead to a well defned precision operator for the solutions of the equation posed on 
the bounded domain. However, in most practical situations one would use homogeneous 
Neumann boundary conditions on the spatial domain. 

For implementations, we restrict the temporal domain to an interval, and we then 
also need to impose temporal boundary conditions. However, temporal boundary effects 
can be handled by direct calculations for the resulting AR(2) dependence structure for 
the temporal coeffcients in the approximation; see Appendix E. 

The projection of the solutions onto the fnite Hilbert space result in a discretised 
model where the coeffcients ui j in (24) have a precision matrix that is expressed as a 
sum of Kronecker products. As in Lindgren et al. (2011), the approximation properties 
of the discretisation is directly linked to the expressiveness of the fnite-dimensional 
Hilbert space spanned by the Kronecker basis {ψi(s)φ j(t), i = 1, . . . ,ns, j = 1, . . . ,nt }. 

We provide the following theorem that links the continuous domain DEMF models 
to fnite-dimensional Hilbert space representations. The theorem focuses on the link 
between the continuous domain precision operator and the precision matrix, necessarily 
assuming unique solutions with a unique covariance function. This makes it applicable, 
in principle, to more esoteric models involving various forms of intrinsic stationarity, i.e. 
non-stationary models with stationary properties with respect to some contrast flters. 
However, the details of such models are beyond the scope of the presentation. 
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Theorem 4.1. Let αt ∈ N and consider the equation � �αt /2 

−γt 
2 

∂

∂ 
t 

2

2 + Ls 
αs u(s, t) = dEγ2Lα 

s
e (s, t) on D × [T0,T1], (25)

e 

where [T0,T1] ⊂ R is a bounded interval, Ls is some spatial differential operator, and 
some boundary conditions on ∂ D and at T0 and T1 are assumed such that the preci-
sion operator for the solutions of (25) is well defned. Let {ψi(s), i = 1, . . . ,ns} and 
{φ j(t), j = 1, . . . ,nt} be bases for fnite-dimensional Hilbert spaces on D and [T0,T1], re-
spectively, chosen such that the product basis set {ψi(s)φ j(t), i = 1, . . . ,ns, j = 1, . . . ,nt}
form a basis for a fnite-dimensional Hilbert space Vh ⊂ V , and let u(s, t)= ∑i, j ψi(s)φ j(t) 
ui, j ∈ Vh be a fnite-dimensional representation of a solution to (25). Assume the follow-
ing two conditions: 

(i) Let v(t) = ∑n
j= 
t 

1 φ j(t)v j be a fnite-dimensional approximation of a solution to � �αt /2 

b1/2 −
∂

∂ 
t 

2

2 + κ2 v(t) = W(t), on [T0,T1], 

for some b > 0, κ > 0, and αt = 1,2, . . . , and the boundary conditions at T0 and 
T1. Assume that the precision matrix for the weights vector v = (v1, . . . ,vnt ) takes 
the form 

2αt 

b ∑ κ2αt −kJαt ,k/2 
k=0 

for some symmetric matrices Jαt ,0, Jαt ,1/2, to Jαt ,αt . 

(ii) Let w(s) = ∑n
i= 

s 
1 ψi(s)wi be a fnite-dimensional approximation of a solution to 

La/2 
s w(s) = W(s) on D, 

where Ls is equipped with the boundary conditions on ∂ D, for some a ≥ 0. Assume� �a 
C1/2 C−1/2K1C−1/2 C1/2that the precision matrix for w =(w1, . . . ,wns ) is Ka = 

for some symmetric positive defnite matrix K1. 

Assume additionally that the temporal precision construction in condition (i) is valid 
for all κ ≥ λ αs/2

/γt , where λ0 is the smallest eigenvalue in the generalised eigenvalue0 

problem K1e = Ceλ . Then, the precision matrix for the collected coeffcient vector 
u = (u1,1,u2,1, . . .) is given by 

2αt 

Qu = γe 
2 
∑ γt

kJαt ,k/2 ⊗ Kαs(αt −k/2)+αe . 
k=0 
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Proof. The result follows from discretising the spatial dimension, diagonalising the re-
sulting operator matrices, and applying the temporal precision structure condition to the 
resulting independent temporal equations. A detailed proof is given in Appendix D.3. 

■ 

The existence of fnite-dimensional representations fulflling conditions (i) and (ii) 
for certain choices of basis functions follows directly from the general constructions in 
Lindgren et al. (2011). 

For the regular Whittle-Matern´ operator Ls = γ2 − ∆ on D we have K1 = γ2C + G.s s 
For triangulated domains with local piecewise linear basis functions with ∑n

i= 
s 

1 ψi(s) ≡ 1 
on D, we can take C to be the diagonal mass lumped mass matrix with Ci,i = ⟨ψi,1⟩ and 
symmetric sparse structure matrix G with Gi, j = ⟨∇ψi,∇ψ j⟩. For domains where the 
orthogonal harmonic eigenfunctions of ∆ are available, such as rectangular subdomains 
of Rd and spherical harmonics on S2, the full mass and structure matrices C and G are 
both diagonal, with Ci,i = ⟨ψi,ψi⟩. 

In the temporal case, the same technique applies, but higher order B-spline basis 
functions are more easily applied, allowing, e.g., second order B-splines to be used 
without mass lumping. For temporal Neumann boundary conditions, Jαt ,k/2 = 0 for 
odd k = 1,3, . . . ,2αt − 1 and [Jαt ,k/2]i, j = ⟨(−∆)k/4φi,(−∆)k/4φ j⟩ (or non-conformal ap-
proximations for non-smooth basis functions) for even k = 0,2, . . . ,2αt . Lemma E.1 in 
Appendix E can be used for frst and second order B-spline basis functions for αt = 1 
and 2 to provide approximate stationary boundary conditions by modifying the Jαt ,k/2 
matrices for k = 0,1, . . . ,2αt . When such temporal boundary corrections are used, frac-
tional orders appear in Kαs(αt −k/2)+αe for odd k unless αs is an even integer. For the 
spatial piecewise linear fnite element constructions, this would break sparsity, but for 
orthogonal harmonic function representations, Ka is diagonal for all a ≥ 0, allowing the 
fractional powers to be used without loss of the diagonal property. 

In the proof of Theorem 4.1, we see that it is suffcient that the initial temporal 
= γαs/2precision structure is valid for κ ≥ κ0 s /γt . By taking a Taylor expansion for 

the boundary precision elements with respect to κ and κ0, the approximation would be 
improved, compared with taking the Taylor expansion at κ = 0, as the expansion would 
be closer to the exact expression for a wider range of relevant temporal frequencies. This 
improvement would however come at the expense of making the matrix constructions 
dependent on the γs and γt parameters directly. 

5. Applications 

5.1. Separable vs non-separable forecasting 

The difference between using separable and the non-separable models is most clearly 
seen when doing forecasting. To illustrate this, we simulated spatial data for time t = 0, 
and compute the posterior conditional expectation for t = 0, 1, and 2. For the simulation, 
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we used the four Matérn models defned in Table 2 with one percent (standard deviation) 
nugget effect added. The parameters were set to rs = 4.0, rt = 2.5 for the separable 
models and rt = 4.5 for the non-separable models, and σ = 1. The scaling difference for 
rt in the non-separable models compensates for the difference in parameter interpretation 
illustrated in Section 3.3. In the estimation, the nugget precision and the temporal range 
parameters rt were kept fxed, so that only the marginal standard deviation σ and the 
spatial range parameter rs were estimated for each model. 

Figure 3. Predictions from each model (A, B, C and D) when conditioned on a spatially dense 
dataset at t = 0, and no observations for t = 1 and t = 2. 

Figure 3 displays the predictions from the four models in Table 2. For t = 0, the 
results are similar for the four models, due to the highly informative data. For the pre-
dictions for t = 1 and t = 2, we see how the separable model A and C only reduce the 
felds point-wise towards zero, and that non-separable models B and D, exhibit spatial 
diffusion, as expected. This behaviour was part of the theoretical motivation of Whittle 
(1954, 1963), and also a major motivation for developing the DEMF family. It is also 
noteworthy that since the forecasts are conditional expectations based on a fnite set of 
observations, they are smoother than the process realisations. For the separable models, 
this effect is not visible, since there this effect only appears on smaller spatial scales 
than shown, but it is clearly visible for the non-separable model. In all four cases, the 
posterior process realisations however have their ordinary, lower, smoothness. This is 
important to take into account when considering probabilistic forecasts, in particular for 
prediction of non-linear functionals of the process. 
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Spatial mesh with 1251 nodes, and the 13581 stations.

Figure 4. Daily average temperature time series shown grouped near the corresponding loca-
tions (left), with colours based on the year average, for each station, from blue (cold), to red 
(warm). The locations (green) and the mesh used for the spatio-temporal model components v 
and u (right). The computational mesh is defned by spherical triangles directly on the globe 
surface, and triangles crossing the ±180◦ longitude curve are not shown in this Mollweide pro-
jection. 

5.2. Global temperature dataset 

This section presents some results analysing daily temperature data, where all the code 
for the data cleaning, model ftting and plots are included in the supplementary material. 

5.2.1. Data and model structure 

We used daily data for year 2022, using minimum (TMIN) and maximum (TMAX) daily 
temperatures, as described in Menne et al. (2012). We cleaned the data for inconsisten-
cies before the analysis. In particular, values beyond 7 standard deviations from the 
mean were treated as missing. We computed the mean of these two variables for each 
day at each one of 13567 stations world-wide, a total of 4951955 data entries. Figure 4 
(top) shows this data as time series grouped by location. 

The model includes an overall level µ , the elevation in kilometres E(s), a smoothed 
deviation from the overall mean jointly over latitude and time b(s, t), a spatio-temporal 
random feld v(s, t) varying slowly in time, and a spatio-temporal random feld, u(s, t), 
capturing the daily variability. The b(s, t) function is allowed to vary by latitude and 
time, but is fxed to zero at the equator. The linear predictor expression is 

η(s, t) = µ + αE(s)+ b(s, t)+ v(s, t)+ u(s, t). (26) 

Each observation yi is modelled with additive Gaussian noise with a common variance 
parameter, σe 

2, so that yi = η(si, ti)+ ei, where (si, ti) is observation i, i = 1, . . .n, and 
ei ∼ N(0,σ 2).e 

5.2.2. Model discretisation and estimation 

For the b(s, t) and v(s, t) functions in the predictor expression (26), we defned temporal 
basis functions 1, cos[(t − 1) · 2π/365], and sin[(t − 1) · 2π/365]. For b(s, t), these were 
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multiplied with two quadratic basis function in sin(latitude · π/180), which guarantees 
smooth behaviour with respect to the location, s, at the two poles, giving a total of 
six basis functions. For v(s, t), each of the three temporal basis functions were instead 
multiplied by stationary spatial Whittle-Matérn felds over the sphere forming a model 
term that captures the seasonal local deviation from the basic seasonal pattern described 
by b(s, t). 

The reported results were estimated using a spatial mesh with 1251 nodes (median 
node distance ∼ 587km), shown in Figure 4, both for the spatial coeffcients in v and for 
u. For u, we discretised the time domain with frst order basis functions with one knot 
per day. This setting gives a spatio-temporal model for u with size 456615. In vector 
form we have 

y = 1µ + Eα + BBbb + Avv+ Auu + e, 

where B is a six-column matrix of the evaluated basis functions for b(s, t) at the ob-
servation locations and times, and Av and Au contains the evaluated basis functions, 
respectively, for v(s, t) and u(s, t). The vectors b, v, and u contain the corresponding 
basis weights. 

We used independent priors for all the model parameters. We used a fat prior for 
µ and a Gaussian with mean zero and variance 100 for α and each element in b. The 
three spatial felds in v are assumed as independent realizations each one modelled using 
Eq. 3 with a common spatial range rv, and common marginal variance σv 

2. The u(s, t) 
term is a spatio-temporal feld using one of the four models in Table 2. In total, we have 
six variance/range parameters to estimate. We used penalized complexity priors for all 
these parameters (Simpson et al., 2017; Fuglstad et al., 2018), applied to the marginal 
properties of the models. 

To defne the PC-prior for σe we used Pr(σe ≥ 5) = 0.01 and the same for σv and σ . 
We used Pr(rv ≤ 1000km) = 0.01 for rv, Pr(rs ≤ 600km) = 0.01 for rs. For rt we used 
Pr(rt ≤ 1 days) = 0.01 in models A and C and Pr(rt ≤ 2 days) = 0.01 in models B and 
D. 

5.2.3. Model ftting results 

Attributing the relative contributions to each model component is non-trivial due to the 
posterior correlation between the components. However, a basic linear model variance 
decomposition, SQT = ∑i(yi − y)2 and SQR = ∑i(yi − E(ηi | y))2, can be obtained to 
defne R2 = 1− SQR/SQT. We have that the predictor model η(s, t) captures 97.18% of 
the variability with model B. Table 3 reports DIC, WAIC, and goodness-of-ft statistics 
for within-sample and leave-one-out assessment (leave-one-out log predictive density 
score, LCPO, see Held, Schrodle and Rue (2010), for each of the fve ftted models. 
For within-sample assessment, R2, mean squared error (MSE), and mean absolute error 
(MAE) assess the posterior mean and median only, whereas the log predictive density 
score (LPO), CRPS, and SCRPS assess the full predictive distribution (Gneiting et al., 
2005; Bolin and Wallin, 2023). The model M0 includes the fxed effects and v(s, t), 
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whereas models A, B, C and D all include u, using the four models in Table 2. When 
considering R2, LPO, MSE, MAE, CRPS and SCRPS model B performed a slightly 
better. When considering DIC, WAIC and LCPO model C was slightly better. 

Table 3. Summary statistics for each estimated model. The LCPO score is the average negated 
log-predictive density for leave-one-out predictions, and LOP is its within-sample version. The 
MAE, MSE, CRSP, SCRPS were all computed as within-sample scores based on a Gaussian 
approximation of the posterior predictive distribution for each data point. 

Model M0 A B C D 
R2 0.8649 0.9718 0.9718 0.9718 0.9718 
DIC 5.8103 4.3217 4.3222 4.3212 4.3222 
WAIC 5.8101 4.3123 4.3128 4.3118 4.3128 
LPO 2.9046 2.1332 2.1330 2.1335 2.1331 
LCPO 2.9051 2.1572 2.1574 2.1569 2.1574 
MSE 19.5151 4.1163 4.1136 4.1193 4.1155 
MAE 3.3236 1.4667 1.4657 1.4678 1.4661 
CRPS 2.4288 1.0947 1.0943 1.0952 1.0945 
SCRPS 1.7905 1.3947 1.3945 1.3949 1.3946 

Table 4. The posterior mean and standard deviation (in brackets) for each of the model param-
eters. 

A B C D 
σe 2.06 (0.001) 2.06 (0.001) 2.06 (0.001) 2.06 (0.001) 
rv 5402 (217) 15304 (10683) 5242 (266) 5346 (486) 
σv 8.5 (0.4) 20.9 (14.0) 7.9 (0.4) 8.3 (0.8) 
rs 1322 (6) 2079 (19) 1329 (7) 1365 (6) 
rt 5.60 (0.04) 42.07 (0.91) 3.92 (0.02) 6.94 (0.05) 
σ 2.73 (0.01) 3.67 (0.03) 2.63 (0.01) 2.80 (0.01) 

Figure 5. The posterior mean of the smoothed seasonal latitude effect b(s, t) for each model. 
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Figure 6. The posterior mean for v(s, t), at some time points, for each model. From left to 
right, models A, B, C, and D. From top to bottom, the time points are 46, 137, 228, and 319, 
corresponding to the day of year in 2022 as labelled at the top left of each plot. 

Figure 7. The posterior mean for u(s, t), at some time points, for each model. From left to 
right, models A, B, C, and D. From top to bottom, the time points are 46, 137, 228, and 319, 
corresponding to the day of year in 2022 as labelled at the top left of each plot. 
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For B (using model B for u(s, t)), the posterior mean for µ is 34.74 and for α 
is −4.70. The posterior mean of b(s, t) for all four models are shown in Figure 5, 
which displays the temperature over time and latitude. The seasonal pattern is clear, 
with summer and winter temperatures in the two hemispheres standing out, with in par-
ticular lower temperatures (blue) in each hemisphere’s respective winter. The model 
range/variance parameter estimates are summarised in Table 4. For the posterior mean, 
we have E(rs | y) = 2078.66 km and E(rt | y) = 42.07 days for model B, and smaller 
for the other models. In particular the temporal range estimates are much smaller for 
the other models, ranging from 4 to 7 days, which is more realistic. These values can 
be interpreted through Figure 2. The posterior mean for the spatio-temporal feld v(s, t) 
for some days in 2022 is shown in Figure 6. This term is intended to capture slowly 
temporally varying spatial variation from the overall mean, elevation effect and the basic 
seasonal latitude parts of the model. It is clear that the desired interpretation is con-
founded with the interpretation of b(s, t), shown in Figure 5. The posterior mean for the 
spatio-temporal feld u(s, t) for some days in 2022 is shown in Figure 7. This term cap-
tures the remaining spatio-temporal variation of the temperature feld around the other 
parts of the model. 

5.2.4. Forecast evaluation 

As was already apparent from the diagnostic scores in Table 3, despite the temporal 
range parameters being different for the four models, particularly for model B, they are 
nearly indistinguishable with respect to direct and leave-one-out prediction distributions. 
Since the space-time non-separability effect is unclear in the leave-one-out setting, we 
extend the assessment by computing multi-horizon temporal predictions. We used the 
frst 14 days of the data from each month to predict the following 7 days. These forecasts 
were done while keeping the covariance parameters and the long term spatio-temporal 
components b(s, t) and v(s, t) fxed to their posterior modes from the full joint model 
estimates, so that only the short-term spatio-temporal feld u(s, t) was reestimated for 
each scenario. This generated forecasts for each model for 12 different weather and 
seasonal conditions over the year. 

Figure 8(top) shows the mean absolute error (MAE), mean squared error (MSE), 
mean Dawid-Sebastiani (DS, equivalent to log-score for Gaussian predictions, see Gneit-
ing et al., 2005), and mean SCRPS summarized for each prediction horizon (1–7 days) 
for each of the 12 scenarios. Figure 8(bottom) shows the difference between the scores 
for each model to those of model D, to more clearly highlight the differences between the 
models. The prediction errors all exhibit increasing variability for longer forecast hori-
zons, as well as a generally increasing trend, that mostly levels off around 6 days, which 
is compatible with the estimated temporal correlation length parameter rt for models A, 
C, and D. For 1-day ahead forecasts, model D achieved the lowest scores, and it appears 
more stable than the other models for longer forecast horizons. Model B has large score 
variability, and is doing worse than the other three models for long forecast horizons, in 
particular for the scores that take forecast uncertainty into account. For more details see 
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Figure 8. Top: Multi-horizon (1–7 days) and multi scenario (one for each month of year 2022) 
forecast scores for predicting one week ahead. Lower scores indicate a better forecast. Bottom: 
The differences in scores compared with model D. 

Appendix F, where one can see that the scores are generally worse in the start and end 
of the year, indicating an unmodelled aspect of seasonality, e.g. in weather variability. 

6. Discussion 

We have developed a spatio-temporal extension of the Gaussian Matérn felds based on a 
fractional and stochastic version of the physical diffusion equation considered by Whittle 
(1954, 1963). We named the new family the diffusion-based extension of the Matérn 
feld (DEMF), and showed that it has several useful properties: The spatial marginals are 
Gaussian Matérn felds; the family contains Markovian diffusion processes with clear 
physical interpretations; and we can control the smoothness in space and in time, the 
degree of non-separability, and interpret all the parameters. The family can also be 
extended to non-stationary models and be defned on curved manifolds. 
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The DEMF family contains several important subfamilies; 1) separable models, 2) 
Markov models, 3) partially separable models, 4) a fully non-separable subfamily of 
the Stein (2005) family, and 5) spatially non-stationary model dynamics. This provides 
a rich outset for studying the practical and methodological impacts these assumptions 
have. 

An important special case in the DEMF family is the DEMF(1,2,1) model, which in 
two-dimensional space, is the closest stochastic process analogue to the diffusion equa-
tion (see (4)), and hence a natural default choice for spatio-temporal model components. 
The non-separable DEMF(1,2,1) model has the same smoothness in space and in time as 
the separable DEMF(1,0,2) model, which has a covariance function that is a Kronecker 
product of a Matérn covariance in space and an exponential covariance in time. Of par-
ticular interest is also the non-separable DEMF(2,2,0) model which can be viewed as an 
iterated diffusion model. 

Although the proposed model family includes non-separable models, which in itself 
might be desirable from considerations about covariance properties, another view-point 
is that the non-separability here arises as a direct and natural consequence of the physics-
inspired dynamical diffusion construction. Most importantly, the results shed light on 
which types of non-separability would occur naturally under certain assumptions on the 
spatio-temporal dynamics and properties of the driving noise process. Although there 
are strong arguments in the literature against using a separable model, the space of non-
separable models is vastly larger than the space of separable models. Hence we need to 
consider which types of non-separable models are more, and which are less, appropriate 
than the separable alternatives. As illustrated by the practical example in Section 5.2, 
it is important to assess models in a context relevant to the intended use case. In par-
ticular, non-separability is unlikely to make a difference for space-time interpolation, as 
assessed by e.g. leave-one-out cross-validation, but can make a difference in full space-
time forecasting settings. 

It is natural to view the model class as an example of building models via building 
blocks with precision operator space-time separability. The most basic form of sepa-
rability is functional separability, where a spatial and temporal processes are added or 
multiplied, which can be viewed as having S + T degrees of freedom, where S and T 
are the spatial and temporal effective dimensions of the functions. The next form is 
covariance separability, where the model is formed from a sum of covariances (giv-
ing the same as functional separability) or a product of covariances, where the latter 
gives S · T degrees of freedom. These covariance product models are covariance sep-
arable but functionally non-separable. For precision models, plain products are equiv-
alent to covariance separable models, but sums of precision products give covariance 
non-separability. In both the covariance and precision cases, non-stationarity in the 
spatial and temporal operators can be introduced, as long as the operator separability 
is kept. This distinguishes this type of non-separability from fully non-separable non-
stationary models that cannot be written as precision sums and products. The key is to 
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retain commutativity between the spatial and temporal operators within each product: 
(Qt ⊗ Is)(It ⊗ Qs) = (It ⊗ Qs)(Qt ⊗ Is) = Qt ⊗ Qs. 

With the GMRF representation presented herein, the computational costs of the sep-
arable and non-separable models are similar, as the sparsity structure of posterior pre-
cisions, given irregularly spaced observations in generalised latent Gaussian models, is 
only marginally affected by the non-separability, and can even be more sparse in the non-
separable cases; the separable precision neighbourhood structures are space-time prisms, 
whereas the non-separable neighbourhood structures are double-cones. Together with 
interpretable parameters, this makes the non-separable models as practically accessible 
as the separable models. In the supplementary materials we provide an implementation 
with examples in R-INLA. 

In this paper we mainly focused on stationary felds, but also showed how very little 
in the theory and computational construction changes for models with curved manifolds 
or spatially non-stationary operators, as already discussed by Lindgren, Rue and Lind-
ström (2011). Although the initial practical implementation only covers a subset of the 
general model class, we believe that the general results can and will be applied in more 
general contexts in the future. 

Supplementary Material 

R code for the examples: The examples were computed with the INLAspacetime 
package, using the cgeneric method from the R-INLA software for compu-
tationally effciency, via the inlabru interface Bachl et al. (2019). See also 
Niekerk et al. (2021) for a similar example. Code for the fgures and exam-
ples is available at https://github.com/fnnlindgren/spacetime-paper-code, and the 
INLAspacetime R package (https://github.com/eliaskrainski/INLAspacetime) 
implements a subset of the models. 
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Appendices 

A. Almost sure sample path continuity 

We start by rephrasing the main theorem of Section 9.3 of Cramer´ and Leadbetter (1967), 

and giving a formal defnition of the smoothness index. 

Defnition A.1 (Cramér and Leadbetter, Section 2.5, generalised). A stochastic process 

x(t) on some domain D, is equivalent to another process y(t) on D, if for each fxed 

t 2 D, x(t) = y(t), with probability one. This means that x differs from y on at most a set 

with measure zero, and that they have the same fnite dimensional distributions. 

This technical defnition allows us to view equivalent processes as an equivalence 

class that encapsulates some of the fner details of probabilistic measure theory for sam-

ple path continuity of stochastic processes. 

Theorem A.1 (Cramer´ and Leadbetter, Section 9.3). Let S�(w) be the spectral measure 

of a stationary Gaussian process x(t) on t 2 R, and let 

Z 
¥ 

Ia,b = w 2a [log(1+ w)]b 
dS�(w) 

0 

for a, b � 0. For spectral measures that admit a spectral density S(w), replace dS�(w) 

in Ia,b with S(w)dw . 

1. If Ia,b < ¥ for some b > 3 and some a in the range [k,k + 1) for some k 2 N, 

then x(t) is equivalent to a process y(t) that has a continuous sample derivative of 

order k, with probability one. 

2. If Ia,1 < ¥ for some a in the range (k,k + 1] for some k 2 N, then x(t) is equivalent 

to a process y(t) whose sample derivative of order k is Hölder continuous with 

exponent a− k 2 (0,1], with probability one. 

For the case k = 0, the sample derivative of order zero refers to the sample path of the 

process itself. 
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Proof. The results follow directly from the main theorem of Section 9.3 of Cramér and 

Leadbetter (1967). ■ 

Results from Scheuerer (2010) show that under a similar condition for d-dimensional 

domains, 

Z 
∥w∥ 2a [log(1 + ∥w∥)]b 

dS ∗(w) < ¥, 
Rd 

for all a < n and some b > 1, the sample paths on Rd belong to any Sobolev space 

W a,2 of order a < n , on any bounded subdomain, with probability one. For isotropic 

spectra, this translates to Ia,b < ¥ for all a < n and some b > 1, when applied to the 

one-dimensional marginal spectra. 

The integral criteria above motivate the following characterisation of the smoothness 

index n , in particular when applied to models with power law spectral density tails. 

Defnition A.2. The smoothness index n of a stationary Gaussian process x(t), t ∈ R, is 

n = sup {a; Ia,1 < ¥}, where Ia,1 is defned as in Theorem A.1.a 

B. Numerical evaluation of covariances 

When spatio-temporal spectral density is available in closed format on Rd 
× R, the co-

variance function can be obtained to close numerical accuracy using fast Fourier trans-

formation (FFT). In order to reduce the memory requirements for isotropic models on 

high-dimensional spatial domains, the marginal space-time spectrum along a single spa-

tial dimension can be evaluated frst. For general models, evaluating spatial FFT trans-

formations for each time lag further reduces the memory footprint if only some of the 

covariances are stored. 

The idea is construct the folded spectrum resulting from spatial/temporal discretisa-

tion, and then discretise it onto a fnite regular lattice. The resulting integral approxima-

tions can be evaluated with standard FFT implementations, and the numerical approxi-

mation error in the covariance evaluation is determined by the frequency resolution and 

smoothness of the spectral density. The brief theory behind the construction presented 

below is based on Lindgren (2012). 

B.1. Spectral folding 

The exact spectral representation of the covariance evaluated on a discrete infnite lattice 

can be derived from the continuous domain representation. For simplicity, assume the 

same lattice spacing h in each direction. A stationary covariance function R(s) evaluated 
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at lattice points jjh, j ∈ Zd is given by 
˜ 

R(s) =  exp(iω · s)S(ω)dω, 
Rd ˜ 

R( jjh) =  exp(iω · jjh)S(ω)dω 
Rd ˜ 

= ∑ exp(i(ω +2π k/h) · jjh)S(ω +2π k/h)dω 
[−π/h,π/h)d 

k∈Zd ˜ 
° = exp(iω · jjh)S(ω)dω, (27) 

[−π/h,π/h)d 

where 

°S(ω) =  ∑ S(ω +2π k/h), ω ∈ [−π/h, π/h)d . 
k∈Zd 

If instead the spatial discretisation should be interpreted as the cell averages (which is 
the more usual case for PDE discretisations and e.g. satellite data, rather than pointwise 
values), the spectrum is altered by a multiplicative frequency flter with a squared sinc 
function: ˛ ˝2d sin[(ωl +2πkl/h)/2]°S(ω) =  ∑ S(ω +2π k/h)∏ , ω ∈ [−π/h, π/h)d . 

(ωl +2πkl/h)/2
k∈Zd l=1 

B.2. Discrete Fourier transformation 

To approximate the integral in (27) with FFT, choose a positive integer M . This gives a 
numerical integration approximation 

ˇd ˆ ˇˆ π 
˘ 

2π 
� 

π
Ṙ( jjh) =  ∑ exp ikk · j S° k , j ∈ [−M,M)d , (28)

hM 2M hM
k∈[−M,M)d 

which is of the form that can be evaluated using FFT. 

B.2.1. Sampling 

With the above theory, sampling from the model can be expressed as an integral with re-
spect to continuous domain complex valued white noise process, dZ(ω), with conjugate 
symmetry: 

˜ 
x( jjh) =  exp(iω · jjh)S° (ω)1/2 dZ(ω), j ∈ Zd , 

[−π/h,π/h)d 

where dZ(−ω) = dZ(ω), Cov(dZ(ω),dZ(ω ′ )) = δ (ω − ω ′ )dω . This can be discre-
tised with a lattice of frequencies in much the same way as for computing the covariance� π 

�dfunction, with noise variances equal to the cell area/volume hM of each frequency lat-
tice point. When the outer pairwise opposing cells are discretised, the combined complex 
noise contributions are real, and should be assigned to the −M indices, which ensures 
that the resulting feld has no non-zero imaginary components. 
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C. Spherical harmonics 

C.1. Defnition and standard properties 

In R2, the harmonic functions, sine and cosine, play an important role as basis functions 

in spectral representations of functions and random felds. On the sphere, this role is 

instead taken by the spherical harmonics. This section presents the basic results needed 

for spectral representation theory for stationary processes on the sphere. 
h i

⊤ 
Defnition C.1. The spherical harmonic Yk,m(u), u = u1,u2,u3 ∈ S2 

⊂ R3 , of order 

k = 0,1,2, . . . and mode m = −k, . . . ,k is defned by 


√ 
 

s
 2sin(mf)Pk,−m(cosq ) −k ≤ m < 0, 
 
(k −|m|)! 

Yk,m(u) = (2k + 1) · · Pk,0(cosq) m = 0,
(k + |m|)!  

√ 
 
 2cos(mf)Pk,m(cosq) 0 < m ≤ k, 

where f is the longitude and q = arccos(u3) is the colatitude, and Pk,|m|(u3) are as-

sociated Legendre functions (Pk,0(u3) are Legendre polynomials). Note that sinf = 
q q 

2 2 2 2u2/ u + u2, cosf = u1/ u + u2, and cosq = u3.1 1 

Standard property results for spherical harmonics, following Wahba (1981), building 

the basis of spherical Fourier theory: 

1. The spherical harmonics form an orthogonal basis for functions on the unit sphere, 

S
2: 

( 
′ k ′ 

⟨Yk,m,Yk′ ,m ′ ⟩S2 = 
0, otherwise. 

4p, = k,m = m, 

2. The addition formula for spherical harmonics is 

k 
⊤(v) = (2k + 1)Pk,0(u v).å Yk,m(u)Yk,m 

m=−k 

3. The spherical harmonics are eigenfunctions to the Laplacian on S2, 

DYk,m(u) = −k(k + 1)Yk,m(u). 

4. Let f(u) be a square-integrable function on S2. Then f(u) has series expansion 

¥ k 

f(u) = (F−1fb)(u) = å å fb(k,m)Yk,m(u), 
k=0 m=−k 

1 
bwith Fourier Bessel coeffcients f (k,m) = (Ff)(k, m) = ⟨f(u),Yk,m(u)⟩4p S2(du). 

Also, ⟨f ,1⟩
S2 = 4pf(0,0) and ⟨f ,f ⟩

S2 = 4p åk,m f(k,m)2.b b 
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C.2. Spherical variance approximation 

Defne 

b 2k + 1 
Fa,b = ,å 

4p[g2 + k(k + 1)]a 
sk=a 

so that F0,¥ gives the variance in (23). With 

Z b 2x + 1 
Ia,b = dx 

a 4p[g2 + x(x + 1)]a 
s 

� � 

1 1 1 
= − ,

4p(a − 1) [g2 + a(a + 1)]a−1 [g2 + b(b + 1)]a−1 
s s 

choose K so that the terms in the sum (23) are decreasing for k ≥ K. This holds for any 
˘

q 

ˇ 

g2−1/4 1sK ≥ K0, where K0 = 0 if gs ≤ 1/2, and K0 = − for gs > 1/2. Then the full
2a−1 2 

sum F0,¥ can be bounded by a partial sum F0,K and tail integrals: 

F0,K + IK+1,¥ ≤ F0,¥ ≤ F0,K + IK,¥. 

Tighter bounds can in principle be obtained for the approximation F0,¥ ≈ F0,K +IK+1/2,¥. 

Let fx denote the integrand for Ia,b. Then a second order Taylor expansion around each 

x = k gives the error bound 

¥1 ′′ 
F0,K + IK+1/2,¥ − F0,¥ = IK+1/2,¥ − FK+1,¥ ≤ å sup fx . 24 

k=K+1 x∈(k−1/2,k+1/2) 

It may be possible to construct a bound for this series using another integral bound, but 

the practical utility of doing so is unclear. 

D. Collected proofs 

D.1. Proof of Proposition 3.1 

The covariance function for spatial lag s = s2 − s1 and temporal lag t can be written as a 

nested integral, 

Z Z 

cov[u(0,0),u(s, t)] = exp[i(s · ws + twt )]Su(ws,wt ) dwt dws 
Rd R 

ˆ ˙ 

Z Z 

= exp(iss · ws) exp(itwt )Su(ws,wt )dwt dws. 
Rd R 

Z 

= exp(iss · ws)Su(ws; t)dws, 
Rd 

where the inner integral Su(ws; t) is the marginal spatial cross-spectrum for time lag t. 
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2 2Let l = g + ∥ws∥
2 and k2 = l as /gt . Then, integrating over wt , we gets 

Z itwt1 e 
; t) =Su(ws 2 2

dwt 
(2p)d g2l ae g 2at 

R 2p(wt + l as /gt )
at 

e t 

1 CR,at RM = (kt)
2at k2(at −1/2) at −1/2

(2p)d g2l ae ge t 
ˆ ˙ 

q

CR,at 1 
= RM t g2 + ∥ws∥

2/gt ,
2 2 at −1/2 s g gt (2p)d (g + ∥ws∥

2)a 
e s 

where RM(t) is the standard Matérn correlation with smoothness n , defned in (16),n 
and the additional scaling was given in Lindgren et al. (2011). For t = 0, the temporal 

constribution factor is 1, and we recognize the resulting expression as the spectral den-

sity corresponding to a spatial Mat´ andern covariance function with range parameter gs 
2smoothness parameter ns = a −d/2, and marginal variance equal to the sought value s 

in the proposition. We then also know that the marginal spectrum for t = 0 in any single 
2 2)−ns+1/2spatial dimension is proportional to (g + w , which shows that the conditionss 

on a in Theorem A.1 are fulflled if and only if a < ns, so ns is the smoothness index. 

D.2. Proof of Proposition 3.2 

Let nt be the smoothness index for the marginal temporal process u(s, t). We need to 
R 

¥ 2aidentify for which values of a the integral Ia,1 = w log(1 + wt )Su(wt )dwt in Theo-0 t 
rem A.1 is fnite. We start by integrating out the spatial spectral dimensions and repa-

rameterising the resulting integral: 

Z 

2 2 2 2Su(wt ) µ [gt wt +(gs + ∥ws∥ 2)as ]−at (gs + ∥ws∥ 2)−ae dws 
Rd 

Z 

¥ 
2 2 2 2 

µ rd−1[g w +(g + r 2)as ]−at (g + r 2)−ae drt t s s 
0 

Z 

¥ 
2 

µ v(d−2)/2(1+ v)−ae (we +(1 + v)as )−at dv (29)t 
0 

2where we in the second step changed to polar coordinates and in the third set v = r 2/gs 
and wet = wt gt /gas . The integral (29) is fnite for all wet when ae +asat > d/2. Assumings 
a < nt , we can then write the integral in the smoothness criterion as 

Z 

¥ 
2aIa,1 = w log(1 + wt )Su(wt )dwtt 

0 
� � 

Z Z

¥ as ¥ 
e2a s 2 = C0 we log 1 + 
wt g 

v(d−2)/2(1+ v)−ae (we +(1 + v)as )−at dvdwett t 
0 gt 0 

� � 

aswet gs 2efor some constant C0. Let e > 0 such that a + e < nt . Then log 1 + ≤ Cewe fort 

all wet > 0 for some Ce > 0. We can then bound Ia,1 and change the order of integration 

gt 
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since the integrands are positive: 
˜ ∞ ˜ ∞ 

ω2(a+ε) (d−2)/2(1 + v)−αe (ω°2Ia,1 ≤ C0Cε ° v +(1 + v)αs )−αt dvdω° tt t 
0 0 

˜ ∞ ˜ ∞ ω2(a+ε)° t =C0Cε v(d−2)/2(1 + v)−αe dω° t dv. 
0 0 (ω°2 +(1 + v)αs )αtt 

ω° tThe change of variables w = in the inner integral gives 
(1+v)αs/2 

˜ ∞ ˜ ∞ 2(a+ε)(1 + v)(a+ε−αt )αsw
Ia,1 ≤ C0Cε v(d−2)/2(1 + v)−αe (1 + v)αs/2 dwdv 

0 0 (w2 +1)αt 

˜ ∞ ˜ ∞ w2(a+ε) 
(d−2)/2(1 + v)−αe−αs(αt −a−ε−1/2)=C0Cε v dwdv. 

0 0 (w2 +1)αt 

In this expression, the inner integral is a fnite constant, Cw, when 2αt −2a−2ε > 1, i.e., 
when a + ε < αt − 1/2. Since ε can be chosen arbitrarily small, we can make Cw fnite 
for all a < αt − 1/2. The remaining integral has an integrable singularity at v = 0 for 
d = 1, and the integral is fnite when αe +αs(αt − a − ε −1/2)− (d −2)/2 > 1. Solving 
for a and again recognising that ε can be chosen arbitrarily small, we have now shown 

αe+(αt −1/2)−d/2that Ia,1 < ∞ when both a < αt − 1/2 and a < = νs hold. Therefore the αs αs 

temporal smoothness is given by νt = min(αt − 1/2, νs ).αs 

We now turn to the special case d = 2, where we can derive an explicit expression 
for the spectral density. Let B(x,y) be the beta function, 

˜ 1 
B(x,y) =  tx−1(1 − t)y−1 dt. 

0 

Making the change of variables 1+x = (1 +v)αs in (29) the marginal temporal spectrum 
becomes 

˜ ∞ 
(1 + x)− αe−1 −1Su(ωt ) ∝ αs (ω°2 +1 + x)−αt dx [formula 3.197.9 in G&R (p317)]t 

0̨ ˝ ˛ ˝
αe − 1 αe − 1 αe − 1

∝ B +αt ,1 2F1 αt , +αt , +αt +1;−ω°2 ,tαs αs αs 

because αe−1 +αt = νs + 2
1 > 0. Finally we verify that this spectrum yields the smooth-αs αs 

ness parameter implied by the general dimension result. Assuming that a − b is not an 
integer, the hypergeometric function 2F1(a,b;c,z) for large values of z behaves like 

−a −b −b−1)2F1(a,b,c, z)∼ c1z + c2z +O(z−a−1)+O(z 

as z → ∞. If a − b is an integer we have to multiply z−a elyior z−b with log(z) (Erd´ 
(1953) volume 1, section 2.3.2, page 76). This extra logarithmic factor will not make a 
difference for the fnal smoothness. Thus, we may write 

˛ ˝ ˛ ˝ 
−2( αe−1 +αt ) −2(αt + 1 min(0,αe−1))αs αsSt (ωt ) = O(ω−2αt )+O ω = O ωtt t 
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for large wt . This decay rate is such that the conditions in Theorem A.1 are if and only 

if a < nt with 

1 � �

2(at + min(0,ae − 1)) − 1 1 1 1 nsas nt = = at + min(0,ae − 1) − = min at − , , 
2 as 2 2 as 

which completes the proof. 

D.3. Proof of Theorem 4.1 

Defne the eigenvector matrix V and the eigenvalue (diagonal) matrix L = diag(l1, . . . ,lns ) 
solving the generalised eigenvalue problem K1V = CV L. Since K1 and C are symmet-

ric and K1 is positive defnite, the eigenvectors can be chosen so that V ⊤CV = I. For 

C−1general a = 0,1,2, . . . , Ka+1 = Ka K1, so that Ka+1V = KaV L. Recursion shows 

that KaV = CV La , which also holds for general a ≥ 0, and V ⊤ KaV = La . 

For at = 1, the temporal evolution of the spatial Hilbert space discretisation of (25) 

is determined by 

� � 
¶ 

gtC + K /2 u(t) = C dEg2 (t), t ∈ R.as e Kae¶ t 

A multivariate change of variables u(t) = V z(t) and multiplication by V ⊤ on both sides 

gives 

� � 
¶ 

gt I + Las/2 
z(t) = V ⊤C dEg2 (t) = dEg2 L

ae (t), 
e Kae e¶ t 

where the precision of the driving noise process follows from 

� �

−1 
2 V ⊤ 2V −1C−1 C−1V −⊤ ge CK−1CV = ge Kaeae 

2V ⊤ 2
L

ae= g Kae
V = g .e e 

For at = 2, the same technique yields 

� � 
¶ 2 

2 
−gt C + Kas

u(t) = C dEg2 (t)
e¶ t2 Kae 

and 

� � 
¶ 2 

2
−g I + Las z(t) = dE L

ae (t).t g2 

¶ t2 e 

Using the solutions for at = 1 and 2 as the driving noise processes on the right hand 

side, the recursive construction technique from Lindgren et al. (2011) gives the general 
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spatial discretisations � �αt /2
∂ 2 

−γt 
2C u(t) = C dEγ2 (t),

∂ t2 + Kαs e Kαe � �αt /2 

−γt 
2I 

∂

∂ 
t 

2

2 + Λαs z(t) = dEγe 
2 Λαe (t), 

for any αt = 1, 2, . . . . Since the evolution of z(t) is independent between the vector 
components, we get � �αt /2

∂ 2 1 −γ
2 

∂ t2 + λ αs zi(t) = Wi(t), for i = 1, . . . ,ns,t i 
γeλ

αe/2 
i 

where λi is the i:th generalised eigenvalue of K1, and Wi(·) are white noise processes, 
independent across all i. Rearranging factors, we get � �αt /2

∂ 2 
γeλi 

αe/2
γt 

αt −
∂ t2 + γt 

−2
λi 

αs zi(t) = Wi(t), for i = 1, . . . ,ns. 

Applying the temporal condition of the theorem with bi = γ2λ
αe γ

2αt and κi = λ αs/2
/γte i t i 

then gives a the temporal discretisation precision for each zi(t) as 

2αt 

biκ
2αt −kQzi 

= ∑ i Jαt ,k/2. 
k=0 

Collecting the processes gives the joint precision as 

2αt 2αt 

t Jαt ,k/2 ⊗ Λαe+(2αt −k)αs/2Qz = ∑ Jαt ,k/2 ⊗ diag(biκi 
2αt −k) = γ2 

∑ γk .e 
k=0 k=0 

The joint discretisation vector in the original parameterisation is given by u = (I ⊗ V )z, 
with covariance Q−1 = (I ⊗V )Q−1(I ⊗V⊤). We note that V−⊤ 

Λ
aV−1 = Ka, so that theu z 

joint precision matrix becomes 

2αt 

Qu = (I ⊗ V−⊤)Qz(I ⊗ V−1) = γe 
2 
∑ γt

kJαt ,k/2 ⊗ Kαe+(αt −k/2)αs , 
k=0 

which completes the proof. 

E. Temporal GMRF representation with stationary boundary 
conditions 

We present precision matrices for stationary AR(2) (autogregressive order 2) processes, 
and then show how this can be used to construct stationary boundary conditions for 
GMRF representations of 1st and second order Whittle-Matérn type stochastic differen-
tial equations. 
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Lemma E.1. Let uk be a stationary AR(2) process with evolution 

a0uk + a1ut−k + a2uk−2 = ek, 

with a0 > 0 and ek independent, ek ∼ N(0,1). Then, the precision matrix Q for (u1, . . . , un) 

is quint-diagonal, and, except for the upper left and lower right 2 × 2 corners, Q has 

2 2 2diagonal elements q0 = a + a + a and off-diagonal elements q1 = a1(a0 + a2) and0 1 2 

q2 = a0a2. Further, the corner elements are given by 

2 2 2Q0,0 = Qn,n = a0, Q1,1 = Qn−1,n−1 = a0 + a1, 

Q0,1 = Qn,n−1 = a1a0, Q1,0 = Qn−1,n = a1a0. 

Conversely, if the inner elements q0, q1, and q2 are known, the a0, a1, and a2 values 

can be recovered, and hence the corner elements be constructed: Defne the constants 

p p b++ b− 
b+ = q0 + 2q1 + 2q2, b− = q0 − 2q1 + 2q2, bs = . 

2 

Then, 

� � � � 

1 
q 

b+ − b− 1 
q 

a0 = bs + b2 − 4q2 , a1 = , a2 = bs − b2 − 4q2 .s s2 2 2 

Proof. Follows by direct computation. ■ 

Let Ft = {f1(t), ...,fNt 
(t)} be a set of piecewise linear basis functions in time, on a 

regular grid, and consider precision matrices on the coeffcients for a linear combination 

of these basis functions. We want to obtain a GMRF representation of a stationary 

process Ornstein-Uhlenbeck process z(t), such that 

d 
kz(t)+ z(t) = b−1/2 e(t), t ∈ R (30)

dt 

where e is white noise. However, we can instead use the equivalent stochastic process 

model 

� �1/2 
d2 

k2 
− z(t) = b−1/2 e(t), t ∈ R. (31)

dt2 

Under stationarity, these two models are equivalent in the sense that they have the same 

covariance function. Let M0 = (⟨fi,f j⟩) , M2 = (⟨Ñfi,Ñf j⟩) . Assuming Neumann
i, j i, j 

boundary conditions on a fnite interval, and (31), the precision matrix is Q = b(k2 M0 + 
M2), see Lindgren et al. (2011, Sec 2.3). This matrix does not represent a stationary 

process on the fnite interval. However, it is quint-diagonal, and can be corrected to give 
p 

a stationary GMRF by adding bk 1 + h2k2/4 ≈ bk , to the frst and the last entries of 
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the matrix Q, per the previous lemma. Here, h is the step-size in the mesh, and we 
assume that hκ is small. Let M1 be a matrix of zeroes, except the frst and last elements 
which are 1/2. We then have a stationary GMRF representation of the process (31) with 
precision matrix 

b(κ2M0 + 2κ M1 + M2). (32) 

For second order B-spline basis functions, a similar adjustment can be made to the 
initial and fnal 2-by-2 blocks of the matrix. In both cases, Taylor expansion of the 
boundary correction at a specifc κ0 > 0 is likely preferable when the temporal construc-
tion is applied to the space-time construction in Theorem 4.1. 

F. Application details 

We performed the computations for the temperature case study on a single node ma-
chine with 52 cores (26 dual-socket Intel Xeon Gold 6230R CPU) and 755 GB of main 
memory. After preliminary model ftting with lower resolution spatial mesh we ftted 
the model with 1251 mesh nodes. The parallel computations were performed with 
inlabru (version 2.10.0), INLAspacetime (version 0.1.7) via R-INLA (version 
23.11.26) with the PARDISO library, using 4 parallel evaluations of the posterior log-
density, each one using 8 threads. The average time per function evaluation were 52.94 
seconds, 67.96 seconds, 92.06 seconds and 186.05 seconds, respectively for models A, 
D, C and D. The respective number of evaluations of the posterior density were 479, 
1114, 333 and 607, and the total computing time 7.12 hours, 21.09 hours, 8.58 hours 
and 31.45 hours. The real memory peak were 114.75 GB, 178.78 GB, 219.25 GB and 
211.43 GB, respectively. These timings can be signifcantly reduced by using a different 
parallelization strategy along with better starting values. Starting values can be set from 
fts of each one of these models but using lower resolution meshes which allows faster 
computations. 

The computed results were used for the within-sample and leave-one-out prediction 
scores in Table 3, as well as for the multi-horizon forecast assessment in Section 5.2.4. 
Details of the multi-horizon forecast scores are shown in Figures 9 and 10, including the 
mean error (ME, estimated forecast bias), mean absolute error (MAE), mean squared 
error (MSE), mean Dawid-Sebastiani scores (DS), mean continuous ranked probability 
score (CRPS), and scale-invariant CRPS (SCRPS). 

https://23.11.26
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Figure 9. Mean error and prediction score averages for each model, for each forecast horizon 
(1–7) and each month of the year, for the multi-horizon multi-scenario setting. 
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Figure 10. Prediction score averages for each model with the scores for model D subtracted, 
for each forecast horizon (1–7) and each month of the year, for the multi-horizon multi-scenario 
setting. 
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We congratulate the authors on their spatio-temporal extension of the Matérn spatial 
process. As outlined in this comprehensive paper, the connection between the Matérn 
covariance function and its SPDE representation remains of foundational importance to 
the understanding and construction of geospatial stochastic processes. This paper joins 
the authors’ previous efforts in increasing the awareness (and ease of use) of so-called 
“constructive” approaches to spatial modeling, most notably their SPDE approach for 
Gaussian felds (Lindgren, Rue and Lindström, 2011) and its implementation via INLA 
(Rue et al., 2017). We share the belief that such constructive approaches typically func-
tion best when relevant physical processes are incorporated in the model, often to the 
beneft of the theorist and practitioner alike. Furthermore, the extension from a purely 
spatial to spatio-temporal model is both elegant and (at least conceptually) simple: spec-
ify a dynamical system in the SPDE construction. It is surprising, then, that until Jones 
and Zhang’s (1997) specifcation of a stationary space-time process via a fractional dif-
fusion equation, this approach received so little attention after its introduction by Heine 
(1955) and Whittle (1963). Indeed, Jones and Zhang (1997) was ahead of its time; it is 
nice to see that work getting the attention it deserves and that it has helped to motivate 
the extension to spatio-temporal Matérn processes presented here. We have little to add 
in this regard beyond what is said in the paper. Instead, we will focus our brief discussion 
on the broader SPDE modeling approach. 

One interesting question, which might be overlooked upon a frst reading of this pa-
per, is whether there is a distinct advantage to specifying the dynamical system in contin-
uous, rather than discrete, time. For example, Cressie and Wikle (2015, Chap. 6) compare 
the space-time covariance from the diffusion-injection SPDE model of Heine (1955) and 
the marginal space-time covariance implied by the associated conditional discrete-time 
dynamic spatio-temporal model (DSTM). Not surprisingly, they are nearly indistinguish-
able except near the space and time origins. Thus, one obvious advantage of the marginal 
SPDE approach is the adaptability of the continuous-time model to irregularly observed 
and/or high-frequency data, although the exact scope of the advantage would depend 
on the number of observations and the complexity of the specifed SPDE. Yet, when 
the data are reasonably considered to be discrete in time, the conditional DSTM may 
provide much greater fexibility in deep hierarchical frameworks as it allows parameters 
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that control the advection, diffusion, and injection processes to themselves be specifed 
as dependent processes (or conditioned on spatio-temporal covariates). This deep con-
ditional modeling, motivated by mechanistic and stochastic parameter processes, is the 
foundation for the physical-statistical modeling approach pioneered by Mark Berliner 
and colleagues (e.g., Berliner, 2003; Wikle and Hooten, 2010). 

Perhaps a less obvious advantage of continuous SPDE representations in general, 
and the addition of the temporal smoothness parameter in the model presented here 
specifcally, is its potential adaptability to changes in temporal support. For example, 
spatial data may represent observations from a time-averaged or aggregated dynamic 
process (e.g., monthly precipitation totals, annual average pollution concentrations, etc.). 
In such cases, the SPDE approach can suggest novel marginal spatial dependence struc-
tures for the aggregated observations: defne the relevant continuous-time process and 
integrate the solution over the observational time span. This idea has been considered 
for advection-diffusion processes with certain simplifying assumptions (see Wikle et al. 
(2022) or Hanks (2017) for a similar approach). However, to our knowledge this has not 
been attempted with the more general fractional diffusion-like processes considered in 
this paper. Such an approach may yield relevant marginal spatial dependence structures 
beyond the fxed-time Gaussian Matérn felds considered here, and continues the broader 
trend of relating conditional spatial models to relevant spatio-temporal processes found 
elsewhere in the geospatial literature. We recall D.R. Cox’s comment to the classic Besag 
(1974) work on Markov random felds (MRFs): 

Nevertheless, understanding of the conditional models may be helped by 
relating them to temporal-spatial models, and in particular to their station-
ary distributions. It would be interesting to know what general connections 
can be established between Mr Besag’s auto-models and stationary distri-
butions of simple temporal-spatial processes. (Besag, 1974, p.225) 

Another exciting avenue suggested by the present work concerns extensions to non-
linear spatio-temporal processes. Most biological/environmental/geophysical processes 
are, at least at some temporal scale, nonlinear. That is, there are explicit interactions 
between spatio-temporal scales of variability that lead to nonlinear phenomena (density-
dependent growth, fronts, predator-prey dynamics, disease spread, etc.). Given that such 
processes imply higher-order marginal dependence, the constructive approach may mo-
tivate new statistical models for such processes. Wikle and Hooten (2010) present a 
discrete time DSTM approach for quadratic nonlinear processes motivated by PDEs, but 
the resulting models can be limited by the curse of (parameter) dimensionality and com-
putational tractability. These are the same issues one faces with nonlinear deep neural 
approaches for modeling nonlinear spatio-temporal processes (see the recent review in 
Wikle and Zammit-Mangion, 2023). Whether the SPDE approach can overcome these 
issues is unclear, but it provides, at least, a possible connection (or alternative) to the in-
creasingly popular physically-informed neural network approaches (e.g., Cuomo et al., 
2022; Ren et al., 2023). 
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Another area of future research motivated by the present work is to expand the gen-
eral manifold ideas herein to suggest new general classes of dependence models for 
graphical models such as those motivated by time-varying networks (e.g., Ghosh et al., 
2022). Indeed, the well-known connection between MRFs and graphical models, and 
the similar connection between SPDE models and MRF-based implementation methods 
championed by the authors, suggests a potential to provide mechanistically-motivated 
process dependence models for time-varying networks, both in their classical represen-
tation and in graph neural methods (e.g., Zhou et al., 2020). 

In conclusion, we thank the authors for a well-written and important extension of 
their SPDE/INLA approach to fexible spatio-temporal processes. Not only does this 
provide a useful suite of models for many real-world data sets, but it has suggested to us 
several interesting connections and possible extensions to our own work. 
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The authors are to be congratulated on a valuable and thought-provoking contribution in 
the rapidly developing feld of space-time modelling with tangible grounds in statistics, 
mathematics and computer sciences. Since the frst INLA proposal, thousands of sci-
entifc contributions have appeared in the literature, using, adapting and enhancing this 
Bayesian-based inference framework, starting with spatial contexts, and lately extending 
this paradigm into space-time in combination with more complex developments. In this 
context, we underline the undoubtful fact that Gaussian random felds with Matérn co-
variance functions are not only popular (as written by the authors) but necessary building 
block models in spatial statistics and machine learning. These two scientifc communi-
ties are coming together to solve joint problems that time ago were solved separately. 

This paper extends the Matérn covariance function to a family of spatio-temporal 
covariance functions, and the way the authors have chosen their way is through the alter-
native mathematical representation of stochastic partial differential equations (SPDE), 
rather than following analytical representations of covariance functions. By doing this, 
this paper enhances, and builds upon, existing SPDE developments and are able to de-
lineate and defne the process with desired properties already encoded in the process. 

We acknowledge this diffusion-based extension of the Gaussian Matérn felds to a 
family of spatio-temporal stochastic processes (DEMF) for a number of reasons, very 
much in particular for the possibilities of improving existing methodologies in the feld 
of spatio-temporal point processes. Our discussion centres around two main points as 
follows. 

1. Applications to point processes 

We have found the sentence ‘In practice, however, users of statistical software often 
choose a model based on convenience. If there are available code examples, the choices 
made in these will often be carried forward into future analyses.” particularly true in 
applied contexts, and it highlights the importance of having accessible code for complex 

mailto:francesco.serafini@ncl.ac.uk
mailto:mateu@uji.es
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models. An interesting class of models that is not mentioned in the paper but that is 
already implemented in inlabru (Bachl et al., 2019) is the Log-Gaussian Cox Process 
(LGCP) model. LGCP models are implemented using the methodology described in 
Simpson et al. (2016) and we believe there is no problem in combining the new class of 
random effects illustrated in the paper with this point process methodology. Having the 
ability to use non-separable spatio-temporal GMRFs as random effects in LGCP models 
is appealing in a number of different applied contexts. In this section, we will provide 
examples of interesting applications and use of the proposed class of random effects. 
Most of these examples concern earthquake occurrence but can be used to illustrate 
different problems. 

A frst application that comes to mind regarding earthquakes modelling and forecast-
ing is concerned with the magnitude distribution. Two widely popular choices consist in 
setting a magnitude of completeness M0, and assuming that the observed magnitudes 
m ≤ M0 follow an exponential distribution; this corresponds to the standard Gutenberg-
Richter law (Gutenberg and Richter, 1956), or a truncated Pareto distribution on the 
seismic moment (Kagan, 1991). In this context, there is great interest in determining 
whether the parameters of the magnitude distribution are varying over time and space 
(Herrmann, Piegari and Marzocchi, 2022; El-Isa and Eaton, 2014; Kamer and Hiemer, 
2015). These variations are usually estimated partitioning the space-time domain and 
producing different estimates for each element of the partition. The ability of expressing 
the parameters as a Gaussian Markov random feld (GMRF) with non-separable covari-
ance functions and with a physical interpretation could be very relevant in this context. 
This will not only be useful in testing more complex hypothesis on the magnitude distri-
bution but also to build better performing models in terms of their operational capabilities 
(Hiemer and Kamer, 2016). Still in the context of the magnitude distribution, it would be 
very interesting to express the magnitude threshold M0 using a spatio-temporal GMRF. 
This would be important because the magnitude of completeness changes over time and 
space depending on the quality of the seismographic network and, therefore, it would be 
appropriate having a non-separable, possibly non-stationary, random effect. 

The combination with LGCP models can prove fruitful for modelling long (years, 
decades) and short (days, weeks, months) term seismicity. Regarding long-term seis-
micity, Bayliss et al. (2020, 2022) used the SPDE approach and inlabru to build 
models for earthquakes occurrence incorporating covariates and using the random effect 
to explain the spatial correlation due to unobserved phenomena. Having easy access to 
non-separable spatio-temporal random effects could greatly improve this type of models. 
Indeed, these effects would refect the spatial and temporal change in long-term seismic-
ity, which are mainly due to the variables changing over time and space, such as distance 
from faults, the level of stress accumulated in the earth crust, and heat fow. 

Regarding short-term seismicity models, Serafni, Lindgren and Naylor (2023) adap-
ted the technique used for LGCP to approximate Hawkes process models (Hawkes, 
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1971), which have intensity of the form 

λ (x|Hx) = µ(x)+ ∑ g(x − xi), (1) 
xi∈Hx 

where x is a point in space-time and possibly equipped with one or more marks (e.g., 
magnitude, depth), and Hx is the history of the process up to x. The Hawkes process 
can be seen as the superposition of a background Poisson process µ(x) representing 
events occurring spontaneously, and different offspring processes g(x − xi) represent-
ing the points induced by observation xi. In this context, having non-separable, possi-
bly non-stationary, spatio-temporal random effects may be useful in various ways. First 
of all, similarly to long-term seismicity, it can be used for the background rate µ(x). 
This is usually considered constant in time but varying in space and it is factorised as 
µ(x) = µν(x), where ν(x) is just the spatial variation integrating to one over the spa-
tial domain. This is usually estimated independently from µ and the parameters of the 
triggering function (g(x − xi)) (Ogata, 2011). Therefore, a natural frst extension would 
be to use an LGCP model for ν(x) with non-separable spatio-temporal effects to have 
a spatio-temporally varying background rate. Another important application would be 
to use such random effects to defne the parameters of the triggering function. As be-
fore, this is usually done by partitioning the observations. In contrast, having this type 
of diffusion models would frst provide a more mathematically appealing formulation 
of models with triggering functions that have spatio-temporally varying parameters, and 
secondly, will likely provide more capable models in terms of forecasting future oc-
currences. In general, providing accessible code to implement these random effects in 
combination with LGCP models will enable many applied researchers to formulate and 
test more complex hypotheses on the earthquake generation process with the potential 
of shedding light on new aspects of the process, and improve forecasting models used 
for operational purposes. 

Another potential feld of application is cosmology and research devoted in study-
ing the evolution of the spatio-temporal correlation between galaxies locations (Ker-
scher, 2001; Simon, 2007; Friedrich et al., 2021). Indeed, they also use LGCPs to model 
the locations of galaxies and, therefore, having a non-separable spatio-temporal process 
would be useful in this context as opposed to the separable models that are in use now. 
The problems that cosmologists face are similar to the distance sampling problem de-
scribed on the inlabru website1. One caveat would be that they usually are interested 
in covariance functions defned as power laws of the distance between galaxies. For this 
feld, it would be useful to know if there are special settings of the DEMF parameters 
able to approximate a power law, and if there is the possibility to generalising the ap-
proach proposed in the paper to obtain such covariance functions. Even if this would not 
be possible, providing accessible code for LGCP to be used in combination with DEMF 
random effects would be benefcial for this feld for two reasons, the frst one is having 
the ability to use non-separable models, and secondly, it can leverage the advantages in 

1https://inlabru-org.github.io/inlabru/articles/2d lgcp distancesampling.html 

https://inlabru-org.github.io/inlabru/articles/2d_lgcp_distancesampling.html
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computational time provided by inlabru. Indeed, their data are usually composed of 
petabytes of recordings which usually makes the use of MCMC or similar techniques 
unfeasible. 

2. Non-Euclidean spaces, and anisotropy 

Although mathematically very convenient, Euclidean spaces (and Euclidean distances) 
are arguably not always the best option, and many times they are not even correct in 
certain contexts. Spatial data living on networks is gaining importance with the develop-
ment of technology able to provide such type of data. This applies to all types of spatial 
data, in particular to geostatistical and point pattern data. Linking with the previous sec-
tion, space-time point pattern models such as LGCPs and Hawkes processes living on 
networks require accurate while fast inferential frameworks to be able to provide real 
and helpful solutions to events living on networks. 

A number of papers have dealt with the analysis of crime data using self-exciting 
point process theory, after the analogy drawn by Mohler et al. (2011) between after-
shock ETAS models and crime. Zhuang and Mateu (2019) proposed a spatio-temporal 
Hawkes-type point process model, which includes a background component with daily 
and weekly periodisation, and a clustering component that is triggered by previous 
events. However, as crime events are naturally constrained to occur on the streets struc-
ture of a city, we advocate the use of point processes on linear networks. A network, or a 
graph, is a collection of vertices joined by edges. A linear network is a union of fnitely 
many line segments in the plane where different edges only possibly intersect with each 
other at one of their vertices. 

Statistical analysis of network data presents severe challenges (Baddeley et al., 2021). 
A network is not spatially homogeneous, which creates geometrical and computational 
complexities and leads to new methodological problems, with a high risk of methodolog-
ical error. Real network data, as crime data, can also exhibit an extremely wide range of 
spatial scales. These problems pose a signifcant challenge to the classical methodology 
of spatial statistics based on stationary processes, which is largely inapplicable to data 
on a network. Note also that the choice of distance metric on the network is pivotal in 
the theoretical development and in the analysis of real data. 

As commented above, a Hawkes process can be interpreted as a generalised Poisson 
cluster process associating to centres, of rate µ , a branching process of descendants. The 
spatio-temporal Hawkes process has a conditional intensity of the form 

λ (x,y, t) = µ(x,y, t)+ ∑ g(x − xi,y − yi, t − ti), (2) 
ti;ti<t 

where µ(x,y, t) is the background rate, and g(x,y, t) is the rate of occurrence triggered by 
an event at time 0 and location at the origin. The triggering density governs the spatio-
temporal distance of triggered events from their antecedent events and is usually mod-
elled to decay with distance from the origin over time and space. 
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Although inlabru makes good progress on ftting Hawkes point processes, there is 
yet a gap in providing a strong framework when network data comes into play. Adapting 
the diffusion approach proposed in this paper to enhance inlabru with ftting capabil-
ities on networks would be welcome by the research community. 

Also in this network context, there are some further points to be considered. One is 
the possibility to generalise equation (24) in the main paper with different basis func-
tions that support processes on non-continuous, non-Euclidean spaces (e.g., processes 
on networks). Piece-wise linear basis functions, Harmonic basis functions or Karhunen-
Loève expansions are still to be extended to these supports, opening theoretical avenues 
of research. Another aspect is the idea of latent embeddings of point process excitations. 
When specifc events seem to spur others in their wake, marked Hawkes processes enable 
us to reckon with their statistics. The under-determined empirical nature of these event-
triggering mechanisms hinders estimation in the multivariate setting. Spatio-temporal 
applications alleviate this obstacle by allowing relationships to depend only on relative 
distances in particular (non-)Euclidean spaces; in this case, we can embed arbitrary event 
types in a new latent space following the idea of diffusion maps (DM). We might posit a 
diffusion process across event types. Random walk methods yield approximate manifold 
embeddings, proven helpful in deep representations. Constructed as graph affnities, the 
triggering infuences guide a Markovian random walk of which diffusion maps may be 
approximated via spectral decomposition. Indeed, asymmetrical DM embeddings serve 
as an adequate initial condition, but are not always conducive to stable learning in con-
junction with dynamic kernel bases; this approximation builds the DM approach. 

A fnal aspect needed in the context of LGCPs or Hawkes processes is how to ex-
ploit inherent properties of existing main directions in the events leading to a clear 
anisotropic spatial or space-time structure. The paper on discussion focuses on sepa-
rability and provides a unifed framework to deal with separable covariance functions 
as well as non-separable ones, depending on the value of the parameters. In doing so, 
the covariance functions they report (e.g. Preposition 3.1, Corollary 3.2.1, Figure 1) are 
always isotropic. Formulating anisotropic covariance functions is a known exercise and 
these could drive anisotropic LGCPs. However, using the diffusion-based representation 
might help in getting deeper the process structure itself while providing comprehensive 
and fexible anisotropic structures. If, in addition, this can be implemented for network-
support point processes, we will be able to handle and model a larger body of more 
complex problems. 
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Rejoinder 

We thank the discussants for their insightful comments and suggestions. We will address 
some of the points raised, by topic. 

As noted by Wikle & Wikle in their comment, an important aspect of the DEMF 
models presented in the paper is their physical interpretability. In addition to provid-
ing a straightforward method for defning valid space-time stochastic processes without 
requiring direct access to the resulting covariance function, the continuous defnition 
allows them to form building blocks of complex models. Hierarchical models with mul-
tiple observation sources and types of data are easily defned, and the same hierarchical 
model can involve point-referenced measurements as well as spatially and temporally 
aggregated information. Moreover, just as in the spatial case handled in Simpson et al. 
(2016) and extended by Bachl et al. (2019), the processes can be used as building blocks 
for log-Gaussian Cox process observation models, by constructing numerical integration 
schemes based on the basis functions used to numerically represent or approximate the 
theoretical process realisations. 

In their comment, Wikle & Wikle also raise the question of whether the increased 
fexibility of time-discrete models may be advantageous. While such fexibility can be 
useful in specifc situations where the processes exhibit variation and structure on a 
shorter time scale than the numerical representation can handle in a continuous-time ap-
proach, in general we believe that the greater interpretability of time-continuous models 
outweighs this; see also Simpson, Lindgren and Rue (2011) for a related discussion. 
One reason is that some of the fexibility of valid time-discrete models constitutes non-
physical behaviour that is sensitive to changes in the temporal resolution. In addition, 
the possibilities for time-discrete models that do have physical meaning, such as advec-
tion, diffusion, and injection processes, are equally applicable in the time-continuous 
setting. The only real obstacle to such extensions, including allowing the model param-
eter themselves to be spatial, temporal, or spatio-temporal processes, is the practical 
numerical implementation and inference, both in terms of computational cost and the 
need for suffcient amounts of information in the available data. Indeed, the comment 
mentions that the curse of dimensionality also affects the time-discrete approaches. In 
practice, the modeller needs to decide what temporal spatial resolution, and structural 
fexibility is needed for any given problem. 

Both discussion comments bring up the idea of extending the models beyond Rd and 
S2. One advantage of the SPDE approach to defning stochastic processes and using fnite 
elements or related methods for practical computation is that extensions to curved spaces 
is relatively straightforward. For suffciently smooth manifolds, much of the theory and 
practical implementation details remain the same. The only real difference is the need 
to defne the differential operators in terms of the metric of the manifold. For purely 
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spatial felds, this was covered for Whittle-Matérn felds in Lindgren, Rue and Lindström 
(2011), allowing models to be defned on curved compact manifolds (Coveney et al., 
2020). As can be seen by the proof of the precision structure construction in the paper, 
both non-stationary and manifold extensions of the DEMF models are straightforward, 
as each term in the precision matrix sum only involves Kronecker products of separable 
time and space operators; See Kirchner and Willems (2023) for recent theoretical results. 
We agree that it would be interesting to consider extensions of the proposed models to 
networks or graphs, and this is a topic that we are currently investigating, and we discuss 
this in further detail below. 

In their comments, both Mateu & Serafni and Wikle & Wikle touch upon different 
aspects of either extending the models to non-linear behaviour or to use them as building 
blocks in other models, such as Hawkes point process. Continuing the theme of taking 
inspiration from physics, we note that even in the deterministic case, non-linear PDE 
models can be extremely challenging, both from a theoretical and practical point of view. 
For example, the Navier-Stokes equations still lack a general existence and smoothness 
theory. However, a potentially fruitful avenue may be to extend linearisation techniques 
to the stochastic setting, by considering linear SPDEs whose solutions approximate the 
statistical properties of the original non-linear models. 

When it comes to using the models as building blocks, such as modelling spatio-
temporally varying parameters of a Hawkes process excitation kernel, the need for non-
separable models is less clear. In point process settings, the observations generally are 
only weakly informative about the model parameters, and the non-separability would 
likely only be a higher-order effect that cannot be reliably estimated or used, and that 
covariance product separable models are likely to be suffcient. The main utility of the 
DEMF models is likely to be as primary models in a hierarchical model where the param-
eters are modelled in a more parsimonious way, ideally in combination with observed 
covariates with at least qualitatively known impact on the processes. 

We agree with Mateu & Serafni that there are exciting opportunities to create new 
models by fnding SPDE operators that generate felds with other properties than those 
of the Whittle-Matérn class, such as power law covariance functions. Spatially oscillat-
ing felds have already been constructed without direct reference to the wave equation 
Lindgren et al. (2011), but directly adapting the wave equation could have useful applica-
tions and increased interpretability, including intermediate models between the heat and 
wave equations. Another possibility is to exploit the same technique as used by Bolin, 
Simas and Xiong (2023) and Sørbye, Myrvoll-Nilsen and Rue (2019) to approximate 
Whittle-Matérn models with fractional exponents. In this approach, the target model is 
approximated by a sum of just a few high-order Markov processes, but the resulting 
processes are non-Markovian. 

We now turn our attention to the issue of how to defne space-time processes on 
networks or graphs. A suitable space to introduce this extension on is a metric graph 
Γ, which is defned in terms of a set of vertices V and a set of edges E connecting the 
vertices. The difference to a regular graph is that the edges are defned as rectifable 
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Figure 1. Simulated LGCP on a metric graph and estimate of log-intensity based on R-INLA and 

curves, and a position s ∈ Γ can be represented as (e, t), where e ∈ E denotes an edge, 
and t is a position on that edge. Thus, these spaces contain linear networks as a special 
case. 

Recently, we introduced Whittle–Matérn felds on metric graphs as the solution to 

(κ2 − ∆Γ)
α/2(τu) = W, on Γ (1) 

where α > 1/2, W is Gaussian white noise on Γ and ∆Γ is the so-called Kirchhoff 
Laplacian on Γ, which is an operator that acts as the second derivative on the edges 
(Bolin, Simas and Wallin, 2023a). 

This model is well-posed for any compact metric graph, and α controls the sample 
path regularity of the solutions in the same way as it does when the model is posed on 
Euclidean domains. Thus, the model can be used to defne differentiable Gaussian pro-
cesses on general metric graphs, and this is as far as we know, the only construction 
that can do so. Further, if α ∈ N, these models are Markov random felds (Bolin, Simas 
and Wallin, 2023b) and this can be used to perform exact and computationally effcient 
likelihood-based inference (Bolin, Simas and Wallin, 2023d). For fractional α , and for 
generalised Whittle–Matérn felds where κ and τ are spatially varying, FEM approx-
imations can be used to obtain computationally effcient approximations (Bolin et al., 
2023). 

These spatial models are implemented in the R package MetricGraph (Bolin, Simas 
and Wallin, 2023c), which also contains an implementation of LGCPs on metric graphs. 
An example of a simulated point pattern based on a Whittle–Matérn feld with α = 2, 
and an estimate of the log-intensity using R-INLA can be seen in Figure 1. 

the MetricGraph package. 

We are working on the extension of the spatio-temporal models introduced in this 
work to the setting of metric graphs. In this case, it is important to consider an extension 
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of the model which includes an advection term, 

(γt
d 
+(κ2 + ρ ds − ∆Γ)

αs/2)αt u = dEQ, on Γ × [0,T ], (2)
dt 

because many datasets on metric graphs, such as river systems, have a clear transport 
direction. It should be noted that even though the spatio-temporal models considered 
in this work result in isotropic covariances when posed on Rd , this is not the case for 
the metric graph setting: Even if ρ = 0 in (2), the model is anisotropic on general metric 
graphs. Thus, we agree that isotropy typically is not a realistic property on metric graphs. 

Finally, there are indeed close connections between graphical models and Whittle– 
Matérn felds on metric graphs, because certain models based on the graph Laplacian can 
be viewed as fnite difference approximations to (1) (Bolin et al., 2023d). Finding sim-
ilar connections between the spatio-temporal model (2) and spatio-temporal graphical 
models is an interesting topic for future work. 
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