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Introducció

Si R és un anell, un R-mòdul per la dreta M es diu que és generador si qualsevol
.R-mòdul per la dreta és imatge homomòrfica d'una suma directa de còpies de
M. La noció de mòdul generador va ser introduïda l'any 1958 per Morita a [59]
i juga un paper preeminent en tota la seva teoria de dualitat.

Un mòdul generador és fidel però no tot mòdul fidel és generador (Morita
anomena als mòduls generador mòduls completament fidels). Motivat per aquest
fet l'any 1966 Azumaya a [4] inicia l'estudi dels anells tais que tot mòdul per la
dreta fidel és generador.

L'estudi dels anells i àlgebres de Probenius i quasi-Frobenius té el seu origen en
la teoria de respresentació de fc-àlgebres finitament generades. Nakayama l'any
1939 va introduir els anells quasi-Frobenius (QF) a [60] i [61], com els anells
artinians R que satisfan

r«(/fi(/)) = / i lR(rR(J}),

per tot ideal per la dreta / i tot ideal per l'esquerra J. Exemples d'anells QF
són els anells artinians semisimples i les àlgebres de grup de grups finits.

La teoria desenvolupada per Nakayama de les Jf-àlgebres QF en els articles
abans esmentats, demostra que aquestes tenen molt bones propietats dins de la
teoria de representació d'àlgebres. La definició intrínseca dels anells QF permet
demostrar algunes d'aquestes propietats de manera abstracta pels anells. Sembla
ser que el primer que va observar aquesta propietat del doble anul.lador va se
Hall [42], per anells artinians semisimples. El lector pot consultar el llibre de
Curtis i Reiner [20, pàg. 393 i 413] per tenir una informació complerta del tema.

L'any 1940 a [5], Baer introdueix els mòduls injectius i l'any 1951 Ikeda a [46],
caracteritza els anells Q F de Nakayama com els anells artinians autoinjectius1.

Resultats de l'any 1946 de Nesbitt i Thrall, cf. [62], mostran que els anells
QF són exemples d'anells tais que tots els seus mòduls finitament generats fidels
són generadors i per tant són exemples dels anells introduïts per Azumaya que
esmentàvem abans. Aquest fet motiva que posteriorment s'hagi anomenat a
aquest anell pseudo-Frobenius (PF).

El primer exemple d'un anell P F que no és Q F és degut a Osofsky i apareix
en l'article de l'any 1966 [63]. Els resultats dels articles d'Azumaya i Osofsky
ja esmentats, i els de Utumi [78], permeten donar una caracterització dels anells
P F per la dreta, com anells autoinjectius per la dreta amb sòcol per la dreta
essencial. Malgrat aquesta caracterització, saber si un anell PF per un costat

1 La caracterització de Ikeda és la que farem servir a la memòria com a definició d'anell QF
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2 Introducció

ho era també per l'altre va ser qüestió oberta durant un llarg temps. Dischinger
i Muller l'any 1986, a [24] donan el primer exemple d'un anell PF per la dreta
que no ho és per l'esquerra. Queda oberta però la qüestió de saber quan lluny
està un anell PF o en general un anell autoinjectiu de ser QF. El lector pot
consultar els survey de Faith [32] per obtenir una informació detallada sobre
aquesta qüestió i els resultats més importants fins ara obtinguts.

L'any 1967 Endo, cf. Q, considera anells tais que tots els seus mòduls per
la dreta finitament generats fidels són generadors. Més tard l'any 1969 a Q,
Tachikawa prova que un anell perfecte per l'esquerra que satisfà aquesta propietat
és PF per la dreta. Hi han desprès més treballs que de manera implícita o
explícita treballan amb anells que satisfan aquesta propietat, però és Faith qui els
hi dóna identitat pròpia i els anomena anells "finitely pseudo-Frobenius"(FPF).
Ademes dels anells PF, són exemples d'anells FPF els productes arbitraris
d'anells commutatius d'aquest tipus, anells commutatius injectius els dominis
de Prüfer entre altres. Un teorema de Faith demostra que els anells FPF
semiprimers commutatius són precisament els anells semihereditaris amb clàssic
de quocients injectiu.

El contingut de la memòries es situa dins del contexte dels anells FPF i ha
sigut motivat per diversos problemes dins de l'entorn d'aquesta àrea.

Una part del primer capítol està dedicat a l'estudi dels anells FPF semiprimers.
Dins s'aquesta lines apart dels resultats recollits a [33], cal esmentar els articles de
Burgess i Kobayashi, referències [11] i [52] respectivament. Burgess demostra que
els anells FPF per la dreta semiprimers tenen clàssic de quocients per l'esquerra
injectiu, aquest resultat serveix a Kobayashi per donar una caracterització dels
anells FPF per ia dreta semiprimers en termes de propietats de l'anell i del seu
maximal de quocients. Aquesta caracterització ens servirà per mostrar que els
anells FPF semiprimers en general no tenen perquè ser semihereditaris, la qual
cosa dóna resposta negativa a una pregunta de Faith i Page, cf. [33, Question
11].

Tant Burgess com Kobayashi inician un estudi "local" dels anells FPF per la
dreta semiprimers, mitjançant l'àlgebra de Boole associada a l'anell. En el primer
capítol estudiarem aquest problema i veurem que malgrat que els anells FPF
semiprimers tenen una gran quantitat d'idempotents centrals les stalks de Pierce
d'anells FPF no tenen perquè ser FPF, contestem així també negativament una
pregunta de Burgess, cf. [Il, pàg 1731].

Si R és un anell PF i G un grup finit aleshores RG també és PF. Un resultat
de Faith demostra que si R és un anell commutatiu injectiu (en particular FPF)
i G un grup finit aleshores RG és FPF. També en el primer capítol veurem
que aquest resultat s'estén a anells FPF commutatius i a un grup finit G amb
ordre invertible dins de l'anell. Val a dir que desprès Kitamura a [51], dóna una
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Introducció 3

nova demostració del nostre resultat que l'unifica amb resultats de Page sobre
àlgebres d'Azumaya FPF.

El segon capítol el dediquem a l'estudi de subanells de Galois i centres d'anells
FPF. A[33] Faith i Page prguntatn si el centre d'un anells FPF és necessàriament
FPF. Una resposta negativa a aquesta pregunta està implícita a [), on ????
construeixen exemples anells QF tais que el centre no ho és. Seguint les idees
d'aquest article donem exemples que demostran que l'anell fix d'un anell FPF
no té perquè heretar aquesta propietat. Un resultat positiu en aquesta direcció
és que si R és un anell FPF commutatiu reduït i G un subgrup finit dels
automorfismes de R aleshores l'anells fix és també FPF. Els nostres exemples
ilustran i limitan el camp a possibles generalitzacions d'aquest resultat.

Per anells FPF semiprimers, fent ús de mètodes deguts a Bergman i Cohn, cf
[, Section 6.2] o [7], podem demostrar que tot domini commutatiu íntegrament
tancat es pot posar com a centre d'un domini de Bezout FPF. En general
demostrarem que el centre d'un anell FPF semiprimer és íntegrament tancat
dins del seu maximal de quocients, per tant els nostres resultats caracteritzan
els centres d'anells FPF primers.

A [6], Bergman estén les construccions que ja hem esmentat de [7] a anells
semiprimers, conseguint d'aquesta manera caracteritzar els centres d'anells here-
ditaris i semihereditaris. Això ens va fer pensar que fàcilment podriem estendre
les nostres construccions d'anells FPF primers amb centres prefixats a anells
semiprimers, i així podriem caracteritzar els centres dels anells FPF semiprimers
com els anells commutatiu reduïts íntegrament tancats al seu maximal de quocients.
Un resultat positiu en aquesta direcció és comprovar que la definició de Bergman
dóna a [6] d'una valoració sobre un anell commutatiu, ens permet veure fàcilment
els anells commutatiu reduïts íntegrament tancats dins del seu maximal de
quocients com intersecció d'anells de valoració del maximal de quocients. Però
la construcció d'anells FPF semiprimers implica la construcció d'anells amb
clàssic de quocients injectiu i els mètodes de Bergman i Cohn estan basats en
construir l'anell de Kronecker a partir de les valoracions que determinan l'anell
commutatiu C inicial. Això implica adjuntar a C una colla d'indeterminades i
en el nostre cas ho hem de fer de manera que aconseguim un anell amb clàssic de
quocients injectiu. En general s'ens planteja la qüestió de com, donat un anell
comutatiu C, podem construir un anell R tal que C[x] C R i l'anell clàssic de
quocients de R sigui injectiu. Trobar una resposta a aquesta qüestió ha sigut
una de les motivacions principals al llarg de la resta de la memòria.

Pillay, cf. [69], va provar que l'anell clàssic de quocients per l'esquerra d'un
anell R és QF si i només si l'anell de polinomis R[x] també té clàssic de quocients
Q F si i només si per qualsevol conjunt X l'anell clàssic de quocient de R[X] és
QF. En el tercer capítol de la memòria veurem que en molts casos a l'imposar
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4 Introducció

condicions d'injectivitat sobre Ql
ci(R[X}), ja implica que aquest anell té que ser

artinià. Els nostres resultats en aquest sentit són plenament satisfactoris en el
cas de un conjunt infinit X. Podem demostrar en aquest cas que que el fet de que
Ql

d(R[X\) sigui injectiu per la dreta o per l'esquerra és equivalent a que R tingui
clàssic de quocients per l'esquerra QF. Si suposem que X és un conjunt no buit
arbitrari, per arribar a la mateixa conclusió tenim que suposar que Ql

cl(R[X]) és
autoinjectiu pels dos costats. En la mateixa línea també provarem que Q^(.R[X|)
és injectiu com a 72[^]-mòdul per la dreta si i només si R té clàssic de quocients
pels dos costats i aquest és QF. Aquests resultats ens permeten caracteritzar eis
anells diferents de zero, commutatius o semiprimers, tais que l'anell de polinomis
és FPF com els anells artinians semisimples.

Una pregunta implícita en aquesta mena de resultats és saber si l'existència
de l'anell clàssic de quocients de R implica l'existència de l'anell clàssic de
quocients de l'anell de polinomis. No coneixem cap resultat que confirmi, ni
que desmenteixi aquest fet de manera general. Tampoc és clar que l'existència
del clàssic de quocients de l'anell de polinomis impliqui l'existència del clàssic de
quocients de R.

Els resultats que hem esmentat de Small, Shock i Pillay, que donen resposta
afirmativa a aquestes qüestions en alguns casos, són resultats obtinguts a partir
de l'estructura de l'anell i de l'anell de polinomis. En aquesta línea provarem
que si R[x] té clàssic de quocients per l'esquerra semilocal i és satisfà que
J(Ql

ci(R[x})) n R[x] = I [x], per un cert ideal J de R, aleshores el clàssic de
quocients per l'esquerra de R existeix i és semilocal. De fet aquest resultat és
una fàcil generalització de les tècniques de Small per ordres en anells artinians
semisimples, que gràcies a la condició que imposem sobre el radical de Jacobson
estenen a anells semilocals.

Es un resultat d'Amitsur ben conegut , cf. [1], que el radical de Jacobson de
l'anell de polinomis és de la forma N[x] on N és un nilideal de R. Provarem que
aquesta situació, en molts casos, s'estén a l'anell clàssic de quocients de l'anell
de polinomis.Veurem que si R és un anell commutatiu o 2"1 e <3c/(-ñ[x]) o Z(R)
conté una arreli senar de l'unitat, aleshores J(Ql

cl(R[x])) n R[x] — I[x]. Per
tant en aquests casos és cert el resultat d'ordres en anells semilocals del paràgraf
anterior.

Els resultats de Capítol 3, sobre la injectivitat del clàssic de quocients de
l'anell de polinomis, i les seves demostracions ens van fer pensar que els anells
de sèries formals, sota condicions no tan restricictives com les que surten amb
l'anell de polinomis, si prodrien tenir clàssic de quocients injectiu. En un principi
pensàvem que pot ser si R era un anell amb clàssic de quocients injectiu aleshores
/Z[x]també. Amb una certa sorpresa vam descobrir que això només era veritat
a mitges. En el quart capítol explicarem aquests fets. Veurem que si R és un
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anell commutatiu, regular i autoinjectiu aleshores R[x] té clàssic de quocients
injectiu, però també veurem exemples fàcils d'anells commutatius de Baer amb
clàssic de quocients injectiu, tais que l'anell de sèries formals no és injectiu. De
fet en aquest cas l'únic que podem provar és una condició de No-injectivitat. No
en tenim prou amb considerar sèries de longitud numerable per obtenir anells
amb clàssic de quocients injectiu. Haurem de pensar en sèries formals de longitud
més llarga, amb sèries de longitud tant o més llarga que la dimensió de Goldie
de l'anell.

Anells de sèries formals amb longitud prefixada van ser considerats per Malcev
i Neumann, cf. [67, pàg. ???], per posar àlgebres de grup sobre grups ordenats
dins de cossos. També Kaplansky va construir exemples d'un cert tipus d'anells
basant-se en aquests mètodes, cf. []. Exemples de Lévy de dominis de Bezout
tais que els seus quocients són injectius, cf. [54], són anells de sèries formals amb
longitud prefixada però més llarga del numerable.

Aquests treballs ens serveixen de model per construir anells de sèries prou
llargues, perquè quan considerem aquestes sèries sobre un anell de Baer commutatiu,
puguem provar que tenen clàssic de quocients injectiu. A partir d'aquest résultai
és fàcil veure que el maximal de quocients de l'anell de polinomis sobre un anell
de Baer commutatiu, es pot veure com el clàssic de quocients d'un subanell
adequat d'aquests anells de sèries formals.

En el capítol quart també veurem algunes construccions d'anells FPF a partir
d'anells de sèries formals. Aquestes construccions, juntament amb els resultats
d'injectivitat haurien de ser l'ingredient principal en el problema de construir
anells FPF semiprimers amb centre prefixat. Per poder realitzar aquesta construcció
ens quedarà però una qüestió important per resoldre, com estendre les valoracions
a aquests anells de sèries formals?.

Les tècniques que fem servir per treballar amb anells de sèries formals estan
basades en un article de Brewer, Rutter i Watkins [10], els resultats del qual
estan recollits al llibre de Brewer [9]. En l'article abans esmentat s'obté una
caracterització dels anells de sèries formals (de longitud numerable) sobre anells
commutatius, que són anells de Bezout o semihereditaris. En el capítol cinquè de
la memòria estendrem aquests resultats a anells no necessàriament commutatius.

Si R és un anell commutatiu aleshores R[x] és un anell semihereditari o Bezout
si i només si R és regular. Per anells de sèries formals la situació és una mica
més complicada, R\x\ és un anell de Bezout si i només si R és regular NQ-
injectiu i R\x\ és semihereditari si i només si R és regular No-injectiu i NQ-
continu. Per anells no necessàriament commutatius la situació és bastant més
complicada. No és cert en general que l'anell de polinomis sobre un anell regular
sigui un anell de Bezout o un anell semihereditari. De fet no és coneguda una
caracterització dels anells tais que els anells de polinomis són anells de Bezout o



I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

6 Introducció

anells semihereditaris. Es poden trobar resultats en aquesta direcció en treballs
de Goursoud [], Menai [58], Moncasi i Goodearl \\ i Dicks i Schofield [22].

En el capítol cinquè demostrarem que els anells de sèries formals sobre anells
regulars No-injectius per l'esquerra són anells de Bezout per la dreta. Aquest
resultat contrasta amb la situació per l'anell de polinomis, ja que en aquest cas
s'estén, al menys parcialment, el resultat del cas commutatiu. A l'intentar buscar
un recíproc s'ha de tenir en compte que un anell R no commutatiu pot satisfer
que R®R = R, aleshores és clar que tant l'anell de polinomis com l'anell de sèries
són anells de Bezout, sense cap necessitat de que l'anell compleixi alguna altra
hipòtesi adicional, com ser regular o No-injectiu. Aquest fet fa que per estudiar
els anells de polinomis o de sèries formals que són Bezout calgui imposar alguna
condició de finitut sobre l'anell, anàlogament a com fa Menai a [58] la condició
de finitut que imposarem serà que l'anell sigui directament finit. Sota aquesta
hipòtesi podrem provar que si l'anell de sèries formals és un anell de Bezout per
la dreta aleshores R és un anell regular, però no podrem provar que R sigui NO-
injectiu més que afegint, una hipótesi adicional relacionada amb les projeccions
d'ideals contablement generats, hipòtesi que es satisfà automàticament en anells
regulars commutatius.

Amb aquests resultats ataquem el problema dels anells de sèries semihereditaris,
i en aquest cas també podem provar que els anells de sèries formals sobre
anells regulars Ko-injectius per l'esquerra i No-complets també per l'esquerra
són semihereditaris per la dreta. Tornem a trobar doncs una altra vegada
què els resultats del cas commutatiu s'estenen parcialment. Les dificultats ens
apareisen a l'intentar provar un recíproc, en aquest sentit veurem que sobre un
anell directament finit els anells de sèries formals són semihereditaris (pels dos
costats) si i només si l'anell és regular Ko-injectiu i No-complet.

Acabem el cinquè capítol demostrant que els idempotents de l'anell de sèries
formals són conjugats d'idempotents de l'anell. Aquest resultat és bastant sor-
prenent perquè si hom pensa amb els idempotents de l'anell de polinomis la
situació és caòtica. Però cal fer un parell de reflexions, la primera és que en un
anell de sèries formals hi han moltes unitats i la segona és que els problemes que
plantegem, en general implican la resolució de sistemes d'equacions sobre l'anell
de coeficients. En el cas de polinomis aquestes solucions han de ser polinomis,
és a dir han de ser sumes finites la qual cosa implica no sols trobar la solucició si
no també trobar un cert n del grau de la solució, en realitat el que hom té no és
un sol sistema si no un sistema per cada grau posssible de la solució i d'aquesta
família de sistemes s'ha de decidir quin o quins són resolubles. En anells de sèries
formals no apareix aquesta dificultat deguda al grau, es clar que es paga el preu
d'estar treballant sempre amb sistemes infinits.

Finalment ens resta dir que els resultats dels capítols 1 i 2 de la memòria estan
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™ recollits a [44]. Els resultats de les seccions 1,3 i 4 del capítol tercer són part
d'un treball fet conjuntament amb P. Pillay i es poden trobar a [45].
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Sigui R un anell amb
M i G un grup.

Qri(R)
QÍi(R)
Qd(R)
Q T f T)\

\ ·*l· /

/~)l f D\

Q max (R)

Mn(R)
mod — R
RG
R*G
R[x]
R[X]
7í|xJ
Rlx; al
J(R)
Sing (M)
Soc(M)
M*
tr(Af)
Z(R)
N<eM)
FPF
PF
QF
M1

MW
TR(S)
IR(S)
(M: N)
N
Z
Q

Notació i abreviacions

unitat, M un R mòdul per la dreta N un submòdul de

Anell clàssic de quocients de R per la dreta.
Anell clàssic de quocients de R per l'esquerra.
Anell clàssic de quocients de R pels dos costats.
Anell maximal de quocients de R per la dreta.
Anell maximal de quocients de R per l'esquerra.
Anell maximal de quocients R pels dos costats.
Anell de les matrius n x n sobre R.
Categoria dels .R-mòduls per la dreta.
Anell de grup.
Producte creuat.
Anell de polinomis sobre la indeterminada x a coeficients a i
Anell de polinomis sobre el conjunt X a coeficients a R.
Anell de sèries formals en la indeterminada x a coeficients a
Anell de sèries formals skew.
Radical de Jacobson de l'anell R.
Submòdul singular de M.
Sòcol de M.
Homomorfismes de M a R.
Ideal traça de M.
Centre de l'anell R.
N és un submòdul essencial de M.
Finitely pseudo-Frobenius.
Pseudo-Frobenius .
Quasi- Frobenius.
Producte cartesià de M / vegades.
Suma directa de M I vegades.
[r e R \ Sr = 0}.
{r e R \ rS = 0}.
{r e R \ Mr Ç N}.
Els naturals.
Els enters.
Els racionals.
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Capitol 1.

Anells FPF

1.1. Mòduls generadors.

En aquesta secció introduïm el concepte de mòdul generador i algunes propietats
bàsiques. Els resultats que presentem són ben coneguts i és poden trobar recollits
als primers capítols de [33] o [34].

En aquest treball els anells que considerem són associatius i amb unitat. Si R
és un anell, denotarem per mod-R la categoria de tots els .R-mòduls per la dreta.
Si M i ./V són dos ^2-mòduls per la dreta, direm que M genera N si N és imatge
homomòrfica d'una suma directa de còpies de M. Direm que M és generador de
la categoria mod-R o bé simplement generador, si M genera tots els .R-mòduls
dreta. Un exemple obvi de generador és el mateix anell R. Es clar que si M és
un generador una condició necessària i suficient per a que N ho sigui és que N
generi M.

Si denotem per M* el mòdul dual de M, és a dir

M* = HomR(M, R)

podem considerar l'ideal tr#(M) de R, anomenat traça de M:

trfî(M) = /(M) .

Per les remarques anteriors M és generador si i només i tr#(M) = R.

Resumim aquests fets en la següent Proposició:

PROPOSICIÓ 1.1. Signi R un anell i M un R-mòdul per la dreta. Aleshores les
següents afirmacions són equivalents:

(1) M és un generador
(2) Existeix un R-mòdul dreta X i un enter n > 1 tal que Mn = R © X
(3) R = tiR(M)
(4) Existeixen /i, /2, • • • , fn £ M* i mi, m2, ... , mn € M tais que

10
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1.1. Mòduls generadors 11

Si M és un .R-mòdul per la dreta (esquerra) i S un subconjunt de M, denotarem
Yanul.lador per la dreta (esquerra) de S com rn(S) (In(S)). Direm que M és
fidel per la dreta (esquerra) si rji(M) = 0 (//z (M) = 0). Cal observar que si M
és un generador aleshores en particular M ha de ser fidel.

Sigui M un í?- mòdul per la dreta, considerem l'anell H = End(M#). Aleshores
M es pot veure com un .íf-mòdul per l'esquerra. Tenim definida de manera
natural l'aplicació

p: R — * End(tfM)
r i — > f

on (m) f = m • r per qualsevol element m de M.

TEOREMA 1.2 (MORITA). Sigui R un anell i M un R-mòdul per la dreta.
Aleshores M és generador si i només si satisfà les dues condicions següents:

(1) M és projectiu finitament generat com a H -mòdul per l'esquerra.
(2) p és isomorfisme d'anells.

DEMOSTRACIÓ: Suposem que M és generador. Aleshores per l'apartat (2) de la
Proposició 1.1 Mn = R@N, per tant

Hom(M£, MR) ** Kom(R, M) 0 Hom(fí, N)

i tenim
Hn = HM®HN,

podem concloure doncs que M és finitament generat i projectiu com a .íf -mòdul
esquerra.

Si M és generador aleshores és fidel i per tant p és injectiva. Per l'apartat (4)
de la Proposició 1.1

n

per certs mi, . . . , mn e M, fi,... , fn € M*, aleshores si m e M tenim

n

Per qualsevol i, m¿ és un element de H, en conseqüència si / è End(//M).

n n

/(mJ-gm/.·/ímd-mg/.í/Cn^-mr
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on r = SILi /t(/(mt)) € R- Per tant p és també exhaustiva.
Suposem ara que M satisfà (i) i (ü). Per (i) tenim que existeix un enter n tal

que Hn = HM © //TV, per tant

I
I
I
I
I
I
I
™ LEMA 1.3. Siguí R un anell commutatiu i M un R-mòdul fidel finitament

generat. Si I és un ideal de R tal que MI = M aleshores I = R.

I DEMOSTRACIÓ: Siguin mi , . . . ,rnn els generadors de M. Si MI = M tenim
que existeix un element A € Mn(I) tal que

I

, HM) = Hom(tfM, HM] © Hom(HN, HM)

Si apliquem (ü) obtenim la descomposició de .R-mòduls per la dreta:

Mn ^ R © Rom(HN, HM)

i per l'apartat (2) de la Proposició 1.1 podem concloure que M és generador. I

mi

mn ,

on ln denota la matriu identitat n x n.
• Multiplicant per la matriu adjunta de ln — A, obtenim que per qualsevol i,

i = 1, . . . , n, det(ln — A)m,i = O, on det(ln — A) denota el determinant de la

I
matriu ln — A. Com que M és fidel det(ln — A) = O, però det(/ — A) = 1 — r
per un cert r G /, per tant I — R. I

COROL·LARI 1.4. Sigui R un anell commutatiu i N un R-mòdul fidel finitament
generat. Aleshores N genera els mòduls simples.

DEMOSTRACIÓ: Sigui M un ideal maximal de R. Pel Lema 1.3 el n/M-mòdul
M/M N é
R/M. I

I
I Mj M'N és diferent de zero. Per tant N/M N genera R/M i aleshores N genera

•
COROL·LARI 1.5 (TEOREMA D'AZUMAYA). Sigui R un anell commutatiu i P
un mòdul projectiu fidel finitament generat. Aleshores P és un generador.

I DEMOSTRACIÓ: Si P és un mòdul projectiu és clar Ptrn(P) = P. Pel Lema 1.3
tr#(P) = R i per tant per la Proposició 1.1 P és generador. I

I
És ben conegut que el Teorema d'Azumaya no s'estén a anells no commutatius.

Per exemple, si K és un cos, podem considerar la X-àlgebra R = K(x, e\e2 = e).

I

I

I
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1.1. Mòduls generadors 13

Aleshores és clar que P = eR és un mòdul projectiu finitament generat fidel però
ÍTR(R) = ReR ¿ R.

En el capítol 2 veurem la conclusió del Teorema d'Azumaya és certa quan
considerem ideals projectius generats per elements centrals.

Si R és un anell i / és un ideal bilàter de R, anomenem TT a la projecció natural:

•n: R — > R/I

LEMA 1.6. Sigui R un anell. Si P és un mòdul projectiu per la dreta i I un
ideal bilàter contingut a r#(P). Aleshores tr#//(P) = 7r(trfí(P)).

DEMOSTRACIÓ: És clar que 7r(tr#(P)) Ç tr#//(P). Suposem que tenim

/: P - R/I.

Aleshores com que P és projectiu existeix /: P — > R, tal que TT o / = /. Per tant
trfí//(P) Ç 7r(trfí(P)), tal com volíem veure. I

En general per un anell commutatiu R tenim que la traça d'un mòdul projectiu
finitament generat és un sumand directe de R.

COROL. LARI 1 . 7. Sigui R un anell commutatiu i P un mòdul projectiu finitament
generat. Aleshores R = tr#(P) © r(P).

DEMOSTRACIÓ: Pel Teorema d'Azumaya (Corol.lari 1.5), tenim que

trfí/r(P)(P) = JR/r(P).

Per tant pel Lema 1.6 R = trfl(P) 4- r(P). Això implica que tr#(P) n r(P) =
trfl(P) • r(P) = 0 i per tant R = trn(P) © r(P). I

El Teorema d'Azumaya té un recíproc parcial, en el sentit que si R és un
anell commutatiu aleshores els ideals finitament generats que són generadors
són també projectius. Enunciarem aquest resultat en un contexte una mica
més general per un anell R no necessàriament commutatiu i ideals generats per
elements del centre de R.

PROPOSICIÓ 1.8. Sigui R un anell i I un ideal finitament generat per elements
del centre de R. Si I és generador com a R-mòdul dreta aleshores és projectiu
com a R-mòdul dreta.
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DEMOSTRACIÓ: Pel la Proposició 1.1 i per estar / generat per elements centrals
r i , . . . , rn , existeixen elements /i , . . . , /„ e /* tais que /i (x\ ) + ... + fn (xn) = 1.
Aleshores per qualsevol r € /, r = ri/i(r) + . . . + rn/n(r). Per tant 7 és projectiu
per la dreta. I

En el capítol 2 veurem que de fet aquest resultat també és cert sense tenir que
suposar / finitament generat.

1.2. Mòduls generadors i cancel·lació de potències.

Sigui R un anell i M un R- mòdul per la dreta. Es diu que M cancel·la de les
sumes directes si per a tots /2-mòduls per la dreta A i B tais que M® A = M@B
aleshores A = B. Es diu que M satisfà cancel·lació de potències si M® A = M@B
implica An = B" . per algun enter n > 1.

Goordearl a [39] va provar que si R és un anell commutatiu i M, A, B són
R- mòduls projectius finitament generats, aleshores M ® A = M © B implica
An = Bn per algun enter n > 1. En aquesta secció donarem una demostració
inèdita d'aquest resultat deguda a P. Menai que simplifica considerablement la
de Goordearl.

La connexió entre la propietat de cancel·lació de potències i els mòduls gene-
radors ve donada a través del següent lema que és una adaptació de P. Menai
d'un argument degut a Blackadard [8].

LEMA 1.9 (BLACKADARD-MENAL). Sigui R un anell, M un R-mòdul per la
dreta projectiu f • g. Siguin A i B mòduls per la dreta generadors de mod-R,
tais que M © A = M ® B, aleshores existeix un enter n > 1 tal que An = Bn.

DEMOSTRACIÓ: Per ser A generador, sabem que existeix un morfisme exhaustiu
/: An — >• M, per un cert enter n > 1. Donat que M és projectiu, existeix un
mòdul per la dreta X tal que An = M ® X. Si fem el mateix argument amb B
tenim que existeix un enter n > 1 tal que:

per un certs mòduls per la dreta X e Y. Per tant

An ® B ^ M © X © B SE M e X © A ̂  An+1

i de la mateixa manera A © Bn = Bn+í. Podem concloure doncs que A2n =
An®Bn= B2n, tal com volíem veure. I
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TEOREMA 1.10 (GOORDEARL [39]). Sigui R un anell commutatiu i M, A, B
R-mòduls projectius finitament generats, tais que M © A = M ffi B. Aleshores
existeix un enter n > 1 tal que An = Bn.

DEMOSTRACIÓ (P. MENAL): Suposem primer que A és un mòdul finitament
generat projectiu tal que M © A = M. Anem a veure que aleshores -4 = 0, i.e.
M és directament finit. Si sumen un mòdul adequat, de fet tenim Rn ®A = Rn.
Sigui v? l'isomorfisme de Rn a Rn © A. Aleshores considerem

Rn -Z+ Rn © A -^ Rn

on 7T és la projecció natural. Aleshores TT o (p és un endomorfisme de Rn exhaustiu,
com que R és commutatiu també és injectiu. Per tant A = 0.

Suposem que A i B són mòduls finitament generats projectius tais que M® A =
M © B. Pel Corol.lari 1.7 existeixen dos idempotents de R, e i / tais que
rn(A) — eR i rR(B) = f R. Aleshores tenim:

(1 - e)(l - f)M ® (1 - e)(l - f)A = (1 - e)(l - f)M © (1 - e)(l - f)B

(1 - e] f M © (1 - e) f A ̂  (1 - é) f M

e(l - f)M s* e(l - f)M © e(l - f)B

pel que hem demostrat abans (1 — é)fA = O i e(l — f)B = 0. Si considerem
l'anell (1 — e)(l — f)R i apliquem el Teorema d'Azumaya, podem suposar sense
perdre generalitat que A i B són generadors tais que M © A = M © B, aplicant
ara el Lema 1.9, tenim que existeix un enter n > 1 tal que An = Bn. I

A partir de la demostració del Teorema i Lema anteriors, obtenim una cota
superior del n tal que An = Bn. Si A és un mòdul generador, generat per r
elements, M és projectiu i està generat per s elements, com que R és un anell
commutatiu, per la Proposició 1.1 tenim:

Ar's ^ M © X .

Per tant en la situació M © A = M ffi B, si n és el número de generadors de
A, r2 el número de generadors de B i s el número de generadors de M. Agafem
r = max(ri, r%) i tenim que

/\2r-s £,./ r>2r'S

1.3. Anells introduïts mitjançant la noció de mòdul generador.

Un anell R és diu que és Pseudo-Frobenius per la dreta (PF per la dreta) si
tot /2-mòdul per la dreta fidel és generador de la categoria mod-/î. De manera
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similar es defineixen els anells PF per l'esquerra. Direm que un anell és PF si
ho és pels costats.

Sigui M un .R-mòdul per la dreta, aleshores es defineix el sòcol de M, que
denotarem (Soc(M)), com la suma de tots els submòduls simples de M. En el
cas de l'anell R podem considerar un sòcol per la dreta i un per l'esquerra que
denotarem com Socr(R) i Soc¡(R) respectivament.

Si M és un Jfï-mòdul per la dreta, direm que un submòdul N és essencial dins
de M i escriurem N < eM, si tot submòdul diferent de zero de M té intersecció
diferent de zero amb N.

Sigui R un anell i J(R) el seu radical de Jacobson. R es diu que és semiperfecte
si R/J (R) és artinià semisimple i els idempotents pugen mòdul J (R).

Els anells PF per la dreta es podem caracteritzar en termes de l'anell de la
següent manera.

TEOREMA 1.11. [30, 24.32 pàg.213] Sigui R un anell. Aleshores les següents
afirmacions són equivalents.

(1) R és P F per la dreta.
(2) R és semiperfecte, autoinjectiu per la dreta i Socr(R) és essencial a R. II

En particular tenim que un anell commutatiu R és PF si i només si és un
producte finit d'anells locals autoinjectius RÍ tais que cadascun satisfà

Soc(-Ri) <e RÍ i Soc( JR í)
2=0.

Un altre tipus d'exemple d'anells P F són els anells quasi-Frobenius. Recordem
que un anell és quasi-Frobenius (QF), si és artinià i autoinjectiu. Cal remarcar
que QF és una propietat simètrica, de fet un anell artinià (per la dreta o per
l'esquerra) i autoinjectiu (per la dreta o per l'esquerra) és QF.

Condicions de cadena més restrigindes que la de artinià també impliquen que
un anell autoinjectiu sigui QF.

Un anell R és diu que satisfà condició de cadena ascendent per anul.ladors
per la dreta si per qualsevol família numerable de subconjunts de R, {5i}¿±0

tal que rfi(Si) Ç rfl(Sj+i), existeix n tal que rR(Sn) = rR(Sn+k) per qualsevol
k > 0. Similarment es defineix la condició de cadena ascendent per anul.ladors
per l'esquerra.

TEOREMA 1.12. Faith, [77,Theorem XIV.3.5] Sigui R un anell autoinjectiu per
la dreta o per l'esquerra. Si R satisfà a més condició de cadena ascendent per
anul.ladors per la dreta o per l'esquerra aleshores R és QF. I
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1.3. Anells introduïts mitjançant la noció de mòdul generador 17

Altres tipus de condicions de cadena també impliquen que un anell autoinjectiu
sigui QF. En el trebal de P. Ara i J. K. Park [3] i les seves referències es poden
trobar resultats d'aquest estil.

Hem comentat ja que a través de la caracterització del Teorema 1.11 es pot
veure que tot anell QF és PF pels dos costats. De fet el primer exemple d'un
anell PF que no és QF és degut a Osofsky, cf. [63]. L'exemple d'Osofsky es pot
emmarcar dins del següent esquema de construcció d'anells.

Sigui R un anell i M un bimòdul sobre R. Aleshores s'anomena extensió trivial
de R per M, E(R,M), a l'anell format per parelles (r, m), r E R i m e M. On
la suma està definida component, a component i el producte

(7*1, 77li)(r2, 77Ï2) = (riT2, ri77l2 + 77lir2) .

/ \/ 7* 777 \
L'anell E (R. M) es pot veure com l'anell de les matrius 2 x 2 de la forma I » jv ' V 0 r J

\ /

on r e R i m E M. S'identifica R amb un subanell de E(R, M) via la inclusió
f r 0\ . , , . , , , ,, . /O m\

r — > _ i el bimòdul M via m — > „ _ .
V 0 r J V ° ° /\ / \ /

TEOREMA 1.13. (Faith [27]) Sigui R un anell local i sigui M ^ 0 un R bimòdul.
Aleshores E(R, M) és PF per la dreta si i només si

(1) MR és l'envolcall injectiva de l'únic R-mòdul dreta simple.
(2) R ̂  End MR. I

L'exemple d'Osofsky [63], s'obté agafant R = Zp (els enters p-àdics) i M =
/

Z (p00), on Zp actua sobre Z(p°°) de la manera natural. Es conseqüència del
teorema anterior que E (R, M) és PF i en canvi no és QF.

Altres exemples d'anells PF que no són Q F són deguts a Levy [54]. De fet
els exemples de Levy eren per construir anells de Bezout no noetherians tais que
els seus quocients són anells autoinjectius. Faith va fer notar a [27] que alguns
d'aquests quocients són PF però no QF.

A [24] Dischinger i Muller donan el primer exemple d'un anell PF per l'esquerra
que no ho és per la dreta. Aquest exemple també està basat en la tècnica de
construir anells PF mitjançant extensions trivials.

Seguint a Carl Faith, cf. [34] ó [33], definim dins d'aquest context els anells
FPF (finitely pseudo-Frobenius) per la dreta com els anell tais que tot mòdul
finitament generat fidel és generador de la categoria mod- .R. De manera similar
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18 Capitol 1. Anells FPF

és defineix FPF per l'esquerra. Direm que un anell és FPF si ho és per la dreta
i per l'esquerra.

Exemples d'anells FPF per la dreta, són els anells PF per la dreta i els anells
QF. Però els anells FPF formen una classe més amplia que els PF, tal com
prova el següent resultat.

TEOREMA 1.14. ([34, Theorem 2.2]) Si R és un anell commutatiu autoinjectiu
aleshores R és FPF.

DEMOSTRACIÓ: Sigui M = Y%=i miR un -R-mòdul finitament generat fidel.
Podem definir l'aplicació,

f: R —> Mn

r i—> (mi ,m 2 , . . . ,mn)r

/ és un .ñ-monomorfisme i com que R és injectiu tenim que Mn = R © X i per
la Proposició 1.1, M és generador. |

Carl Faith va caracteritzar els anells FPF commutatius de la següent manera:

TEOREMA 1.15. (Faith, [34, pàg. 26]) Si R és un anell commutatiu, R és FPF
si i només satisfà:

(1) Els ideáis finitament generats fidels són projectius.
(2) L'anell clàssic de quocients de R és autoinjectiu. I

Un anell R es diu que és semihereditari per la dreta si tot submòdul finitament
generat d'un mòdul per la dreta projectiu és projectiu, o equivalentment si
tot ideal per la dreta finitament generat és projectiu. De manera anàloga es
defineix semihereditari per l'esquerra. Direm que un anell és semihereditari si és
semihereditari pels dos costats.

Recordem que un anell R es diu semiprimer si l'únic ideal de quadrat nul és
el zero.

A partir del Teorema 1.15 és clar que els anells commutatius FPF semiprimers
són precisament els anells semihereditaris amb clàssic de quocients injectiu.

1.4. Caracterització dels anells FPF semiprimers.

Seguint a Chatters i Hajarnavis [14] direm que un anell R és acotat per la
dreta si tot ideal per la dreta essencial de R conté un ideal (bilàter), que és
essencial com a ideal per la dreta. Volem remarcar que el terme acotat per la
dreta també es fa servir al llibre de Faith i Page, [33], però amb un significat una
mica diferent.
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Si R és un anell denotarem per Qlnax(K) l'anell maximal de quocients per
la dreta de R i per Ql

rnax(R) l'anell maximal de quocients per l'esquerra. Si
aquests dos anells coincideixen aleshores seguirem la notació Qmax(R}- Per
Q'd(R) denotarem l'anell clàssic de quocient per la dreta de R i per Ql

cl(R)
l'anell clàssic de quocients per l'esquerra. Si el clàssic pels dos costats existeix
aleshores el denoterem com Qci(R). Per Sing(M) volem dir el submòdul singular
del .R-mòdul per la dreta M. En el cas d'un anell R denotarem per Singr(/2)
(Sing{(.n)) el submòdul singular per la dreta (esquerra) de R.

Si R és un anell semiprimer FPF per la dreta, aleshores un teorema de Page
[33,Theorem 3.12] diu:

(A) Qmax(R) és regular i llis com R-modul dreta i l'aplicació

f- Qrmax (R) ®R Qrmax (R) — Qrmax (R)

definida com f (r <8> s) — r s és un isomorfisme d'anells.
Per [35, Theorem 5.17] (A) implica:
(A') Tot R-mòdul dreta finitaments generat es pot incloure en un R-mòdul

dreta lliure.
La següent propietat d'un anell FPF per la dreta semiprimer és també ben

coneguda:
(B) R és acotat per la dreta(cï. [11, Proposition 2.2], [48, Proposition 1]).
En general si R és un anell no singular per la dreta, per [52, Lemma 2], (B)

implica:
(B') Un R-mòdul per la dreta M és fidel si i només si M/Sing(M) és fidel.
De la definició d'anell FPF per la dreta tenim:
(C) Tot ideat dreta finitament generat fidel de R és un generador de mod-R .

Primer donarem una caracterització dels anells FPF semiprimers, aquest
resultat és degut a S. Kobayashi. La nostra prova és potser més simple que
l'original.

TEOREMA 1.16. (Kobayashi, [52, Theorem 1]) Sigui R un anell semiprimer.
Aleshores R és FPF per la dreta si i només si R satisfà les condicions (A), (B)
i (C).

DEMOSTRACIÓ: Pel que hem dit anteriorment n'hi ha prou amb demostrar que
si R és un anell semiprimer què satisfà (A), (B) i (C) aleshores R és FPF per la
dreta.

Suposem què M és un .R-mòdul per la dreta fidel i finitament generat. Com
que Qnax(R) és regular, R és no singular per la dreta i aplicant (B') podem
suposar sense perdre generalitat que M és no singular. Aleshores per (A') existeix
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un ñ-monomorfisme (<£!,•••> (pn}'.M — > ®".ñ. Aquest indueix un epimorfisme
Mn — > 0"=i VíC^O- Com que M és fidel, també ho és 0"=1 <¿>¿(M). Per tant
Z)?=i Vií-M") Ç -R és fidel. Ara per (C) Y^=i Vt(-W) és un generador. Com
que hi ha un epimorfisme Mn — >• ^™=1 <¿>¿(M) podem concloure que M és un
generador. |

Gràcies a aquesta caracterització podem obtenir informació dels anells entre
un anell FPF semiprimer R i Q^nax(R).

En general és una pregunta oberta si el maximal de quocients d'un anell FPF
semiprimer coincideix amb el clàssic de quocients, cf. [33, Question 6]. Burgess
va donar resposta afismativa a aquesta pregunta en el cas dels anells FPF per
la dreta semiprimers.

TEOREMA 1.17. [11, Theorem 1.3] Sigui R un anell FPF per la dreta semipri-
mer. Aleshores Ql

cl(R) existeix i coincideix amb <3roQI(-R)- 1

LEMA 1.18. Sigui R un anell semiprimer i siguin a i b elements de Q^nax(R)- Si
aRb = 0 aleshores aQ^ai(72)6 = bQr

max(R)a = 0.

DEMOSTRACIÓ: N'hi ha prou amb provar que 6Q™ax(-R)a = 0. Considerem
l'ideal dreta de R, I = bQr

max(R)aR D R. Aleshores

I2 Q Qr
rnax(R)aRbQr

mai(R) = 0.

Per ser R semiprimer / — 0 i com que R <e Q'^nax(R} obtenim que

bQr
max(R)a = 0.

•
LEMA 1.19. Sigui R un anell semiprimer. Si R satisfà la condició (C) i té anell
clàssic de quocients Qci(R), aleshores tot anell S entre R i Qci(R) satisfà (C).

DEMOSTRACIÓ: Sigui / un ideal per la dreta fidel i finitament generat de S.
Podem escollir un no divisor de zero b a R tal que bl = Y^iLi r¿^ Per fi E R
adequats. Si definim J = ^^Ll riR, aleshores és clar que JS = I com a
S— mòdul dreta. Per tant aplicant el Lema 1.18 J és R— fidel. Per (C) existeix
n > 1 i un R— epimorfisme tp: Jn — >• R. Com que Qci(R) és R— llis per
l'esquerra J<8>RQci(R) = JQd(R)- Per tant (p indueix un Qci(R)— epimorfisme
0: (JQd(R))n — > Qd(R). Òbviament £(Jn) = R i per tant v((JS)n) = S.
Tenim doncs que / = JS genera mod— S. Per tant S satisfà (C). I
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COROL·LARI 1.20. Sigui R un anell semiprimer, d'Ore per la dreta i FPF per
la dreta. Si S és un anell acotat per la dreta entre R i Qr

max (R) aleshores S és
FPF per la dreta.

DEMOSTRACIÓ: Pel Teorema 1.17 Q^nax(R) és l'anell clàssic de quocients de R.
Ara si combinem el Teorema 1.16 i el Lema 1.19 obtenim el resultat que volem.

Es una pregunta oberta si els anells FPF per la dreta semiprimers són també
FPF per l'esquerra, cf. [33, Question 5]. Una resposta a aquesta pregunta en
el cas no necessàriament semiprimer està implicita en l'exemple de Dischinger i
Muller, cf [24] d'un anell PF per un costat que no ho és per l'altre.

Un exemple pel cas semiprimer podria passar per trobar un anell FPF per
la dreta que no fos acotat per l'esquerra. Si pensem en dominis de Bezout la
propietat de ser acotat és equivalent a ser FPF tal com prova el següent resultat,
ara immediat a partit de Teorema. 1.16.

TEOREMA 1.21. [33, Theorem 4.13] Un domini de Bezout és FPF per la dreta
si i només si es acotat per la dreta. I

Lenagan va provar a [53] que un anell Noetherià primer semihereditari és o bé
acotat pels dos costats o bé primitiu pels dos costat. En particular tenim que
no és possible trobar un domini d'ideals principals acotat per un costat i per
l'altre no. Jategaonkar a [47] dóna un exemple d'un domini d'ideals principals
per la dreta que és acotat per la dreta i no per l'esquerra. Aquest exemple però,
no és FPF per la dreta perquè no té clàssic de quocients per l'esquerra, fet que
contradiu el Teorema 1.17.

Per altra banda Cohn a [18] estudia els dominis de Bezout que són principals
per un costat. Dels seus resultats es desprèn que aquests anells també són o bé
acotats pels dos costats o be primitius pels dos costats. Queda però pendent
la pregunta de si en un domini de Bezout també es torna a repetir la mateixa
situació o bé pot ser que sigui només acotat per un costat.

1.5. Els anells FPF semiprimers en general no són semihereditaris.

Hem vist a la Secció 3 que els anells FPF semiprimers commutatius eren
semihereditaris. Aquesta era una qüestió oberta en el cas no commutatiu, cf. [33,
Question 11]. En aquesta secció la respondrem negativament donant un exemple
d'un anell FPF semiprimer que no és semihereditari. El següent resultat serà
l'ingredient més important per obtenir un tal contraexemple.



1
1
1
1
•

1
•

1
•
1
•

1
•

1
1

1
1
1

¿®fe
t'?
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PROPOSICIÓ 1.22. Sigui T un subanell d'un anell S i sigui R el subanell de
Y[N S de les successions (xn) tal que xn € T per tot n € N llevat d'un nombre
finit. En aquesta situació tenim:

(i) Si R és semihereditari aleshores també ho és T.
(ü) Suposem que T satisfà:

(1) S — Qmax(T) = Qd(T) i S és regular autoinjectiu amb índex de
nilpotència acotat.

(2) Existeix una funció f: N — > N, tal que per tot ideal per la dreta
fidel I de T generat per m elements, T és sumand directe de /-^m) .

Aleshores R és FPF per la dreta.

DEMOSTRACIÓ: (i) Suposem que R és semihereditari per la dreta. Per l'equi-
valència de categories estàndard entre mod- T1 i mod-Mn(T), per veure que T
és semihereditari per la dreta, n'hi ha prou amb provar que qualsevol element
a e T té l'anul.lador per la dreta generat per un idempotent de T. Com que R
és semihereditari per la dreta r/?((a)) = (en)R on e£ = en e S per n > 1. Per
definició de R, existeix r > 1 amb er € T. Aleshores és clar que TT(O) = erT.

(ü) Per (1) S és regular. Per tant R és semiprimer. Si demostrem que R satisfà
(A), (B) i (C) del Teorema 1.16, ja tindrem el resultat que volem. Observem que
(1) implica que Q(R) = Qci(R) = UN & l com Que ̂  c~* Qd(R) és clarament un
epimorfisme llis, (A) es compleix.

Per provar (B) considerem 7 un ideal per la dreta essencial de R. Escrivim
per cada n > 1, en = (0, • • • /n 1,0, • • •) G R. Aleshores enl és un ideal
dreta essencial de enR = S. Com que S és regular autoinjectiu amb índex
de nilpotència acotat, existeix un ideal bilàter Jn de enR contingut a enl el qual
és essencial com a ideal dreta, cf. [37, Lemma 6.20]. Posem J = ®n>1 Jn- Es
clar que J és un ideal contingut a / i essencial com a ideal dreta.

De (2) és clar que HN ̂  és un anell que satisfà (C). Aplicant el Lema 1.19
podem concloure R satisfà (C). Això completa la prova de la proposició. I

Sigui k un cos de caractrística zero. Aleshores An (k) denota la n-èssima àlgebra
de Weyl és a dir, la ¿-àlgebra amb In generadors ari, . . . , £„> 2/i, • • • , yn i relacions

*»-»». = ««.
on 6ij denota la delta de Kronecker, i

¿-i

Es pot fer una descripció alternativa de An(k) en termes de polinomis skew
iterats. Si diem R = k[x\, . . . ,xn], i considerem la successió d'anells
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\ d 1
7?., F? f? . R u . . - —Jin it, fl·i+i .n-t ï/í+l, o

L dxi+i J
Aleshores An(k) = Rn.

Els següents fets sobre l'àlgebra de Weyl són ben coneguts, el lector
consultar [57] per trobar la seva demostració.

TEOREMA 1.23.

(1) An(k) és un domini d'integritat Noetherià simple.
(2) La dimensió global per la dreta i la dimensió de Krull de An(k) és n

1

Direm que un anell R és reduït si no conté elements nilpotents.

EXEMPLE 1.24. Existeix un anell reduït FPF que no és semihereditari.

23

pot

.

DEMOSTRACIÓ: Escollim T un domini noetherià simple amb dimensió de Krull
finita n i no semihereditari (per exemple, An(K] l'àlgebra de Weyl d'ordre n > 1
sobre un cos K de característica 0 ). Per un teorema de Stafford [75, Theorem
4.3] tot ideal dreta / de T diferent de zero compleix que /n+2 conté un sumand
directe isomorf a T. Sigui S el cos de fraccions de T i definim R com
Proposició 1.22. Clarament T satisfà (1),(2) de la part (ü) de la proposició,

a la
per

tant R és FPF per la dreta. Per la part (i) de la mateixa proposició, R no és
semihereditari. U

1.6. L'àlgebra dels idempotents centrals d'un anell FPF semiprimer.

Per un anell PL, sigui B(R) el conjunt dels idempotents centrals de PL. Es
conegut que B (R) té estructura d'àlgebra de Boole amb les operacions

eVf = e + f-ef

e/\f = ef

on ei f denotan dos elements de B(PL).

ben

Sigui M un P-mòdul per la dreta i N un submòdul de M. Si S és un subconjunt
de M definim el transportador de S a, N com (N : S) = {r G R Sr C N}.

PROPOSICIÓ 1.25. Sigui Q un anell i R un subanell tal que:

(1) i : R <— > Q és un epimorfisme d'anells i Q R és llis.
(2) Tot ideal dreta de R fínitament generat i fidel és generador.

Aleshores B(Q] = B(R).
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DEMOSTRACIÓ: Sigui e E B(Q). Per la caracterització de [77, Theorem XI.2.1]
deis epimorfismes llisos, existeixen elements TI , . . . , rn de (R : e) i q\ , . . . , qn € Q
tais que J^Lj Qi^'i = 1. Igualment podem trobar elements r{,...,r'n de (R :
(1 - e)) i ci , . . . , q'n e Q tais que EIU^M = 1.

Tindrem doncs que Y^i=i Qieri + ]Cr=i flíU ~ e)rí = 1- Si considerem l'ideal
dreta de .n, J = ]C¿Li er¿/2 + E™=1(1 — e)r¿/i és fidel i finitament generat, per
tant generador. Si / e /* , fent servir l'isomorfisme

HomQ(I ®R Q, Q) * HomR(I, Q)

tenim que e f (s <8> 1) = /(s (g) e) = /(es ® 1). Pert tant

= trn(e/) Ç /i

podem concloure doncs que e Ç. R. Això demostra que B (Q) Ç B (R), però com
que .fl <— > Q és un epimorfisme d'anells el centre de R està dins del centre de Q
i per tant B (R) =

LEMA 1.26. (Contingut a [33, Theorem 3.3(demostració)]) Sigui R un anell
semiprimer tal que el seu màxima] de quocients per la dreta Qr

mo.x(R)> ¿s un

anell regular i tal que B (R) = B(Qr
max(R)).

(1) Aleshores si I és un ideal de R, rn(I) està generat per un idempotent
central.

(2) Si a més R satisfà que els ideals per la dreta fidels finitament generats són
generadors, aleshores per tot ideal per la dreta I finitament generat de R
tenim que tr#(7) ® r#(7) = R.

DEMOSTRACIÓ: Com que Qmai(-^) és un anell regular R és no singular, i per
tant Qrmax(R) és regular i autoinjectiu. Sigui / un ideal de R, per la remarca
anterior, IQ^^R] <e (1 - e)Qr

max(R) per algun idempotent e de Q. Això
implica que eR(l — e) =0 . Pel Lema 1.18 e és central dins de Qlmax(R), per
hipòtesi e 6 R. Per tant eR Ç rfl(J). Altra vegada pel Lema 1.18 tenim que
IQrmax(R)rR(I) = O, per tant r«(J) = rg^i(fl)(/Q^ai(n)) n R. Com que

és no singular

- e)Qr
max(R)) = eQr

mai(R),

per tant tenim r«(7) = eQ1
max(R) C\R = eR.

Per provar la part (2) considrem / un ideal finitament generat de R, aleshores
per l'apartat anterior, r«(/) — eR per un cert e de B(R). L'ideal J + eR és
generador, per la Proposició 1.1, tr#(/+ eR) = R, en conseqüència

tr*(7) = trfí((l - e)/) = (1 - e)R,
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tal com volíem veure. I

Les conclusions dels resultats anteriors d'aquesta secció, pel Teorema 1.16, són
certes per anells FPF semiprimers i de fet en aquest cas ja són ben coneguts,
cf. [33, Proposition 2.2]. Però les demostracions que hem donat són diferents de
les que allà apareixen.

Per cada x e SpecB(R), es a dir per cada ideal maximal x de l'àlgebra de Boole
B(R), Rx = R/xR es diu una stalk of R. Si donem a SpecB(R) la topologia de
Zariski i definim l'aplicació

/: (J R* — > Spec(B(R))

definida per f ( r x ] = x, per rx € Rx. Si considerem sobre

U «.
x€Spec(J5(fi))

la topologia més grollera que que fa de / un homeomorfisme local tenim un feix
d'anells, anomenat Feix de Pierce.

Si R és un anell semiprimer i sota certes condicions que asseguran l'existència
de suficients idempotents centrals, R és isomorf a l'anell de les seccions globals del
feix, és a dir a l'anell de funcions contínues de Spec(B(R)} a UieSpec(S(fi)) RX-
El lector pot consultar [68] o [12] per completar la informació sobre els feixos de
Pierce.

En general els feixos de Pierce poden ser una eina útil per passar informació
sobre les stalks de l'anell al propi anell i al revés. Es ben conegut que per
un anell semibereditari commutatiu R les stalks Rx són dominis de Prüfer , és
a dir dominis semihereditaris. Per tant les stalks d'anells FPF semiprimers
commutatius són de fet, FPF. El següent exemple demostra que això no és cert
en el cas no commutatiu, malgrat que els resultats anteriors demostraven que
els anells FPF semiprimers tenen una gran quantitat d'idempotents centrals.
Aquest exemple contesta negativament la pregunta de Burgess [11, pàg. 1731],
sobre si les stalks d'anells FPF semiprimers tenen que ser o no FPF.

EXEMPLE 1.27. Existeix un anell FPF reduït amb una stalk que no és FPF.

DEMOSTRACIÓ: Sigui T un domini d'Ore simple (que no sigui un cos) i que
satisfà (2) de la Proposició 1.22 (ü). Sigui S el cos de fraccions de T. Definim
R com a la Proposició 1.22, per tant R és FPF. Sigui x e SpecB(R) tal que
®n>i S C xR. Afirmem que Rx no és acotat i aleshores pel Teorema 1.16 (B)
RX no pot ser FPF. Tenim que
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N N N -

Per tant sense perdre generalitat podem suposar que R = HN T. Escollim
yn e T — {0} tal que ynT ^ T per tot n > 1. Posem y = (yn) € R i considerem
y — y + x R E Rx. Clarament y ^ 0. Per altra banda Rx és un domini d 'Ore
per tant tot ideal diferent de zero és essencial. Ara provarem que yRx no conté
ideals diferents de zero. Suposem que a = (an) € R és tal que RaR C yR + xR.
Hem de veure que a E xR. Com que ynT no conté ideals diferents de zero podem
triar tn E T tal que tnan £ ynT sempre que an ^ 0. Sigui í = (ín) E R. Per
hipòtesi ta E yR + eR per algún e — (en) Ex. Si en — 0 aleshores ínan E ynT
implica an = 0. Per tant ea — a i aleshores a 6 xR. I

Observem que si T és semihereditari (per exemple, T = Ai(k) on k és un cos de
característica 0) l'anell R que obtenim a l'Exemple 1.27 és també semihereditari.

Totes les propietats que sabem de B(R), quan R és un anell FPF semiprimer,
hem vist a la Proposició 1.25 i al Lema 1.26 que són conseqüència de les propietats
(A) i (C) del Teorema 1.16. Són de fet aquestes les propietats que hereta Rx, tal
com prova Burgess a [11, Lemma 1.1 i Lemma 1.2]. La propietat que no hereta
RX en general és la de ser acotat per la dreta, tal com hem vist a l'Exemple 1.27.

Quan suposem que R és un anell semiprimer FPF per la dreta que satisfà
una identitat polinòmica, podem obtenir el següent resultat sobre Qmax(R) fent
servir una tècnica similar a la de les stalks.

PROPOSICIÓ 1.28. Sigui R un anell semiprimer, FPF per la dreta i satisfent
una identitat polinòmica. Aleshores Q = QJ^ai (R) = RZ on E és el conjunt de
no divisors de zero del centre Z de R.

DEMOSTRACIÓ: Sigui x e S. Aleshores r#(x) és un ideal bilàter de R. Com
que r z (x) = r#(x) n Z = 0 se segueix del Teorema de Rowen per anells que
satisfan una identitat polinòmica, cf. [15, pàg. 464] que TR(X} = 0. Per tant
x és un no divisor de zero de R. Per tant E és un conjunt d'Ore i tenim que
R *- RE *!= Qmax(R)- Es pot veure fàcilment que una localització central d'un
anell FPF és també FPF, per tant R% és FPF per la dreta. Ara sigui 6-1a
un element del centre Z(R^) de R%. Clarament 6i~1a és un element del centre
de Q i per tant rQ(Rb~1o) = rQ(Rd) = eQ on e és un idempotent central de
Q i per tant està a Z, . Tenim doncs que rn(a + e) = 0 , com que a + e e Z,
tenim que (a + ¿)u, = 1 amb p, E Z(R%). D'això a = (a + e)/¿a = a/¿a i per tant
b~la = b~la(ub)b~la. Això prova que Z(R^) és un anell regular. Si substituïm
R per RZ podem suposar sense perdre generalitat que Z és regular i aleshores
hem de provar que R = Q.
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Per cada x e SpecB(R) considerem Rx = (R + xQ)/xQ i Qx = Q/xQ.
Afirmem que el centre de Rx is regular. En efecte , sigui a e R tal que a e Z(RX).
Per [36,Theorem 3.6] existeix 0 e Z(Q) tal que 0 - a e xQ. Escollim e e x tal
que (1 — e)Oí ="(1 — é)0. Aleshores (1 — e)a e Z i 5 = (1 — e)a. Per tant Z(RX)
es un factor de Z el qual és regular i per tant també ho es Z(RX). Corn que Rx

és un anell primer [11,Lemma 1.1] que satisfà una identitat polinòmica podem
concloure aplicant el Teorema de Posner [15, Theorem 12.6.8] que Rx és artinià
simple. Per la condició (A) del Teorema 1.16 es segueix fàcilment que la inclusió
Rx <—» Qx és un epimorfisme d'anells per tant Rx = Qx. Per tant hem provat
que R + xQ = Q per tot x E SpecB(R). Això implica R = Q. I

El resultat anterior és una extensió d'un resultat de Burgess [11, Proposition
1.9], que veu aquest resultat en el cas en que R és FPF semiprimer i és un mòdul
finitament generat sobre el seu centre.

Volem remarcar, que en general no és cert que un anell semiprimer que satisfà
una identitat polinòmica tingui clàssic de quocients ni que aquest sigui RZ on E
és el conjunt de no divisors de zero del centre, cf.[70, Example 5.7].

1.7. Anells de grup FPF.

En aquesta secció provarem que si R és un anell commutatiu i G un grup finit
tal que l'ordre de G és invertible a R, aleshores R és FPF si i només si l'anell
de grup RG també ho és. Val a dir que aquest resultat va ser publicat per D.
Herbera i P. Menai a [44] i desprès ha aparegut una nova demostració de Y.
Kitamura a [51].

La idea de la demostració de Kitamura és la següent, si R és un anell com-
mutatiu i G un grup finit amb l'ordre invertible dins de R, és ben conegut que
RG és una àlgebra d'Azumaya. Si denotem per Z(RG) el centre de RG, tenim
la següent situació,

R ç Z(RG) C RG.

Aleshores, aplicant un resultat de S. Page [65] RG és FPF si i només si Z(RG)
també ho és (de fet Page demostra que una àlgebra d'Azumaya és FPF si i
només si el seu centre és FPF). Kitamura demostra que si R és FPF, aleshores
Z(RG) també és FPF i pot concloure finalment que RG és FPF. Cal remarcar
que Kitamura també dóna una nova demostració del resultat que hem esmentat
abans de S. Page.

Carl Faith prova a [33, Theorem 5.23A] que si R és un anell commutatiu
autoinjectiu i G és un grup finit aleshores RG és un anell injectiu FPF. La
demostració que donarem en el cas d'un anell commutatiu i un grup d'ordre
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invertible en el grup fa ús, de manera essencial, del resultat de Faith i del fet
de que en una àlgebra d'Azumaya els mòduls projectius finitament generats
fidels són generadors. Aquesta demostració és més o menys la mateixa que vam
publicar a [44].

LEMA 1.29. .[51, Proposition 2, Corollary 4] Signí R un anell aleshores:

(1) Si G és un grup tal que RG és FPF per la dreta, aleshores R és també
FPF per la dreta.

(2) Si l'anell de polinomis sobre un conjunt X, R[X] és FPF per la dreta
aleshore R també és FPF per la dreta. I

Recordem que si M és un /2-mòdul per la dreta i N és un submòdul de M, és
diu que N és racional dins de M (N <r M) si per qualsevol .fí-mòdul L tal que
N < L < M és compleix que Homn(L/N, M) = 0.

LEMA 1.30. Sigui R un anell tal que els seus ideals per la dreta finitament
generats fidels són projectius. Si M és un submòdul racional finitament generat
de Rn (per algun n) aleshores M és R-projectiu.

DEMOSTRACIÓ: Farem la demostració per inducció sobre n, el cas n = O és obvi.
Sigui ei, • • , en la base canònica de Rn. Com que M és un submòdul racional de
Rn existeix un ideal per la dreta racional i en particular fidel /, tal que e\I Ç M.
Sigui TT: M —> R la projecció sobre la primera coordenada. Com que J C 7r(M),
7r(M) és un ideal per la dreta de R finitament generat i fidel. Per hipòtesi 7r(M)
és projectiu, per tant M = Kern® 7r(M). Ara Kerir és un submòdul racional
finitament generat de e-¿R @ • • • © enR = Rn~l que per hipòtesi d'inducció és
projectiu. En conseqüència M és també projectiu. I

Podem ara provar el nostre resultat per anells de grup FPF.

TEOREMA 1.31. Sigui R un anell commutatiu i sigui G un grup finit tal que el
seu ordre és invertible a R. Aleshores R és FPF si i només si RG ho és.

DEMOSTRACIÓ: Pel Lema 1.29 tenim que si RG és FPF aleshores també ho és
R.

Suposem doncs que R és FPF. Sigui M un .RG-mòdul per la dreta finitament
generat i fidel, i R(M) el seu submòdul racional, és a dir el conjunt dels elements
de M anul·lats per uri ideal racional de R. Si a € RG és tal que Ma C R(M)
aleshores existeix un ideal per la dreta racional / de RG tal que Mal = O
(perquè, per ser R commutatiu, Ma és un /2-mòdul finitament generat). Com
que M és fidel al = O i per tant a = 0. Per tant M = M/R(M) és un .RG-mòdul
fidel i finitament generat. Si substituïm M per M podem suposar sense perdre
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1.7. Anells de grup FPF 29

generalitat que R(M) — 0. Però aleshores Er(M), l'envolcall racional de M, és
un QG- mòdul per la dreta^ on Q denota l'anell maximal de quocients de 7?. Per
tant M Q C Er(M) és un QG-mòdul fidel i fintament generat. Com que Q és
injectiu i FPF, QG és FPF per [33, 5.23A]. Per tant podem suposar que tenim
un QG-epimorfisme f: M Q — > QG. Això implica f(M)Q = QG. Pel Teorema
1.15, Q és l'anell clàssic de quocients de 7? per tant hi ha un ideal 7 per la dreta
de RG, fidel i finitament generat, isomorf a f (M) i IQ = QG. Ara 7 és un
72-submòdul racional de RG = R\G\ per tant, pel Lema 1.30, 7 és 72-projectiu.
Com que |G|-1 e 7? aleshores 7 és TíG-projectiu cf. [21, Lemma 3] i per ser RG
una álgebra d'Azumaya és un generador. Com que 7 és imatge homomòrfica de
M podem concloure que M és un generador de mod-72G. I

En el capítol 3 caracteritzarem també els anells de grup FPF sobre grups
abelians lliures.

Sigui R un anell i G un subgrup dels automorfismes de 7?, definim el producte
creuat de 7? i G, que denotarem per R * G, com la 72-àlgebra formada pels
elements a = £c€G 9rg on rg és un element de 72 que és zero gairebé per tot
g e G. Si r e 72 i 0 e G definim el producte d'aquests dos elements com rg = gr9

on r9 — g(r).

El pròxim exemple demostra que el teorema anterior no és cert per productes
creuats.

EXEMPLE 1.32. Existeix un domini commutatiu FPF R tal que 2"1 e 72, i un
automorfisme de R, g d'ordre 2 ta] que 72* < g > no és FPF.

DEMOSTRACIÓ: Sigui 72 = k[t], l'anell de polinomis sobre un cos k de caracte-
rística diferent de 2 i sigui g l'automorfisme de /c-àlgebres que envia t a —t. Sigui
5 = R * < g > i considerem l'ideal 7 = (1 4- g)S. Observem que 7 = ^ (1 4- 0)5 i
que 7j(l + 0) és un idempotent de 5, aleshores rR(I) C (1—0)5. Per altra banda
per a tot p\(t] i P2(t) de k[t],

(1 4- g)(pi(t) + gp2(t}} = (1 + g)p(t)

(l-0)(Pl(í)4-0P2(í)) = (l-0)p(í)

on p(t) = p i ( t ) + p2(t). En conseqüència 7 = (1 4- g)k[t] i (1 — 0)5 = (1 — g)k[t].

(1 + g)p(t)(l - g)q(t) = (p(t) - p(-t))q(t) + g(p(-t) 4- p(t))q(t)

per tant r#(7; = 0.
Anem a veure que 7 no és generador. Com que ^(1 4- g) és idempotent,

trg(7) = 5(1 4 g)S = 5(1 4- p) A; [t]. Si 7 fos generador tindríem per la Proposició
1.1, tr5(7) = 5 i llavors (1 - 0)5(1 4- g)k[t] = (1 - 0)5 = (1 - g)k[t]. Però és
fàcil veure que (1 — 0)5(1 4- g}k[t] C (1 — g)tk[t], per tant 7 no és generador. I
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Capitol 2.

Subanells de Galois i centres d'anells FPF

2.1. Subanells de Galois i centres d'anells FPF,

Sigui R un anell FPF per la dreta amb centre Z. En aquesta secció ens
preocuparem dels següents problemes:

(a) És Z FPF?[33, Question 3].
(b) Si G és un grup finit d'automorfismes de R, és aleshores el subanell de

Galois RG FPF per la dreta? [33, Question 14].

Una resposta negativa per les qüestions (a) i (b) per anells FPF no semiprimers
es pot trobar de manera implícita a [66]. Primer donarem uns quants exemples,
inspirats en [66], que provaran que el centre d'un anell PF pot ser reduït però
pot no ser FPF.

EXEMPLE 2.1. (i) Existeix un anell PF commutatiu R amb 2"1 e R i un grup
G d'ordre 2 actuant sobre R tal que RG es reduït però no FPF.

(ii)Existeix un anell PF tal que el seu centre és reduït però no és FPF.

DEMOSTRACIÓ: (i) Sigui A un anell noetherià commutatiu i complet tal que
2"1 6 A. Si E (M) és l'envolcall injectiva de l'únic .A-mòdul simple M, aleshores
per [72, Corollary 2 pàg. 143] EndA(E(M}} Sí A. Si considerem l'anell R =
E(A,E(M)), l'extensió trivial de A per F/, és un anell PF, cf. Teorema 1.13.
Sigui g: R —»• R l'aplicació definida per (a, e) i—*• (a ,—e). Com que 2"1 € A
podem veure que g és un automorfisme d'ordre 2. Si G és el grup generat per
g, aleshores és clar que RG = A. Si escollim A que no sigui hereditari (e.g.
A = Q [z, y]) aleshores aplicant [28, page 168] A i per tant RG no són FPF. (ü)
Amb la mateixa notació que a (i), considerem S el producte creuat R* G. Del
teorema de Louden ([55], [33 ,Corollary 5.22]) se segueix que S és PF. El centre
de S es RG = A. Llavors si A es un domini no hereditari, el centre de S es un
anell reduït que no es FPF. I

Per anells commutatius reduïts tenim el següent resultat

TEOREMA 2.2. Sigui R un anell FPF reduït commutatiu. Si G és un subgrup
finit del grup d'automorfismes de R, aleshores RG és FPF.

DEMOSTRACIÓ: Pel Teorema 1.15 n'hi ha prou en demostrar que l'anell clàssic
de quocients de RG és autoinjectiu i que tot ideal fidel finitament generat de RG

és un generador de la categoria mod-.RG.

30
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2.1. Subanells de Galois i centres d'anells FPF 31

PAS 1. Qd(RG) = Qd(R)G i és autoinjectiu.

Com que Qci(R) és un anell commutatiu regular autoinjectiu, també ho és
Qd(R)G (Theorem 3.5 a [64], on està atribuït a Diop [23]). Clarament RG C
Qd(R)G- Veurem que Qd(RG) = Qd(R)° • Per això, sigui ab~l e Qd(R)G on
a, 6 G R i b és un no divisor de zero de R, ai = (ab~1) ELec ̂  ^ ^-G l com Que

b\ — Ylgçcb9 és un no divisor de zero de RG podem veure que ab~í = ai&J"1.
Com que Qd(R)G Ç Qd(RG) i a més Qd(R)G és el seu propi clàssic de quocients,
tenim que Qd(R)G = Qd(RG)-

PAS 2. (Contingut essencialment a [79, pàg. 283]) Tot ideal finitament generat
fidel de RG és un generador de mod-RG.

Sigui / un ideal fidel finitament generat de RG. Clarament IQd(RG) és
un ideal fidel finitament generat de Qd(RG)- Com que Qd(R°} és regular
autoinjectiu i 7 és fidel, tenim que IQd(R

G} = Qd(RG)- Pel pas 1, Qd(RG) =
Qd(R)G Ç Qd(R). Aleshores IQd(R) = Qd(R)- Per tant tenim que 772 és un
ideal finitament generat fidel de 72. Com que 72 és FPF existeix un epimorfisme
</?: (772)n —> 72 de 72-mòduls per algun n > 1. Ara Qd(R) és autoinjectiu, per
tant (p és de la forma (p(x\, • • • , xn) = Y^i=i Q&i on 9¿ £ Qd(R) i Qil í R per tot
i = 1, • • • , n i com que y> és exhaustiva podem trobar els c¿ tais que X)iLi Qiaí = 1
per OLÍ e 7 adequats. Per tant podem escriure Yl9£c(Y^i=i 9Ía¿) = ^ ^
una relació de la forma

on m és l'ordre de G, les a pertanyen a 7 i les P¿ són polinomis en q? invariants
per l'acció de G. Posem pi — Pid^ • • • aim_1 per i = 1, • • • , r. Aleshores PÍ 6
Qd(RG) i com que qj Ç R obtenim que pj Ç R n Qd(RG) = RG per i =
1, • • • ,r. També ]Cí=iP¿A ~ ^ Per algun A € 7. Això ens permet definir un
7iG-epimorfisme Ir —> 72G com ( s i , - - - , sr) >—* ^¿=1^1^. Per tant 7 és un
generador, tal com volíem veure. I

L'exemple 1.1 (i) demostra que per un anell commutatiu 72 no és certa en
general la conclusió del Teorema 1.2, de fet aquest teorema falla fins i tot per
anells que són Morita equivalents a anells commutatius reduïts, tal com veurem
en el següent resultat.

PROPOSICIÓ 2.3. Per qualsevol anell R en el qual 2 no és invertible, existeix un
subgrup G del grup d'automorfismes de Ms(72) d'ordre 4 ta] que Ma(72)G no és
mai ni semihereditari per la dreta ni FPF per la dreta.
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32 Capitol 2. Subanells de Galois i centres d'andls FPF

DEMOSTRACIÓ: Sigui G el subgrup de GL$(R) generat per

Tenim que G actua per conjugació sobre M$(R) i uns quants càlculs demostren
que

f x O O \
M3(R)G = { I y x-2y O ;z,7/, z € R}.

\z 0 x-2zj

Escrivim S per M^(R)G i considerem

/2 O 0\ /O O 0\ /O O 0'
ai = I 1 O O j , Q2 = I O O 0 I , a3 = í O O O

\1 0 O/ \0 1 O/ \0 0 1

Aleshores M = aiS + a^S + a^S Ç Ms(R) es un S-mòdul fidel finitament
generat. Suposem que /: M — > S es un S- homomorfisme. S'observa que

/O 0 0\ /O 0 0
/(ai) 1 - 2 0 =0,/(a2) 0 0 0 = 0 ,

\0 0 O/ \1 0 -

/O 0 0\
/(as) 1 -2 0 = 0 .

\0 0 O/

D 'aquestes relacions es pot obtenir fàcilment que

a¿ O O
= ' '

on ai G 2/2. Si 5 es un anell FPF per la dreta, aleshores Y^/^M' /(-^) = £ la-
quai cosa implica que 2R = R. Si S es semihereditari, aleshores l'anul.lador per
la dreta de QI ha d'estar generat per un idempotent. Si fem càlculs veurem que
això passa si i només si 2R = R. I

Finalment demostrarem que el Teorema 1.2 no es pot estendre de manera
obvia a anells FPF semiprimers, fins i tot suposant que |G|-1 e R.

EXEMPLE 2.4. Existeix un anell FPF semiprimer R i un subgrup finit G del
grup d'automorfismes de R tal que JG]"1 € R però RG no és FPF.
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DEMOSTRACIÓ: Sigui K un cos de característica ^ 2 i sigui A = K[t] l'anell de
polinomis. Sigui R = M<¿(A) i definim g: R —> R com

Es pot veure fàcilment que g és un automorfisme d'anells d'ordre 2. Si G és
el grup generat per g, aleshores és inmediat veure que

f íG = ( K [ t * ] tK(t2}
\ + V\-fi\ líTíSi
\ I/I [t J /Y [t J

I
I
I
I
I
I
I
I Sigui e = I n j E RG. Aleshores l'ideal per la dreta 7 = eRG és fidel,

I

I

I

I

I

I

I

I

I

I

I

I

I

mentres que PGIRG ^ RG. Per tant 7 no és un generador i podem concloure
que RG no és FPF. I

2.2. Generadors i ideals generats per elements centrals.

Sigui R un anell i M un 72-mòdul per la dreta, aleshores podem considerar el
morfisme d'anells

</>: Z (R) —> Z(EndRM)
a i—» ad

on ad és l'endomorfisme de M, tal que per qualsevol m G M, ad(m) = ma.

TEOREMA 2.5. [33, Theorem 1.1D] Sigui R un anell i M un R-mòdul per la
dreta generador de la categoria mod-R. Aleshores (f> és isomorfisme d'anells.

DEMOSTRACIÓ: Si M és generador aleshores en particular és un mòdul fidel, i
per tant $ és injectiva. Sols cal veure doncs que </> és exhaustiva, és a dir que
qualsevol endomorfisme del centre ve donat per multiplicació per un element del
centre de R.

Per ser M generador, existeixen /i,...,/n elements de M* i m\,...,mn

elements de M tais que /i(mi) + • • • + fn(mn) = 1. Sigui / un element de
Z (End RM], per a cada m E Mi per a cada i considerem el següent endomorfisme

on ctm(r) = mr, per qualsevol element r e R. Com que / és un element del
centre de l'anell d'endomorfismes de M, tenim que (am/i)/ = /(«m/¿) i per
tant m(/i/(mi)) = /(m)/¿(m¿) per qualsevol i. Si sumem aquestes expressions
en i tenim que

TT) } . f • ¡f TT} ' I ^~*̂  f I TTl )
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34 Capitol 2. Subandls de Galois i centres d'anells FPF

si diem r = E¿L1/¿/(m¿), obtenim que per qualsevol element m € M, /(m) =
mr. Com que M és fidel r ha de ser un element central, i per tant podem
concloure que </> és exhaustiva i isomorfisme d'anells. I

LEMA 2.6. [7, Lemma 5.1] Sigui R un anell i I un ideal del centre de R. Si
IR és un ideal finitament generat fidel i projectiu com a R-mòdul per la dreta
aleshores IR és generador de la categoria mod-R.

DEMOSTRACIÓ: Si IR és un ideal finitament generat podem suposar que els
generadors són X]_, . . . , xn, elements del centre de R. Si IR és projectiu aleshores
existeixen /i , . . . , /n elements de 7* , tais que per qualsevol element x € IR

x = xíf1(x) + ...xnfn(x)
com que els elements x¿ són centrals tenim que x = E"=1/j(xi)a; per qualsevol
element x de IR, la qual cosa implica que (1 — ]C?=i fi(xi))IR = 0. Com que
IR és fidel Y^i=i f í ( x i ) — 1 i Per tant f ̂  és generador. |

PROPOSICIÓ 2.7. Sigui / un ideal del centre de R. Suposem que IR és un
generador de mod-R, aleshores IR és finitament generat i projectiu pels dos
costats.

DEMOSTRACIÓ: Com que IR és generador com a fí-mòdul per la dreta, IR és
projectiu i finitament generat com a S- mòdul per l'esquerra, on S = EndR(IRp.),
cf. Teorema 1.2. Com que a més és un ideal bilàter i fidel, l'aplicació

</>: R — > S
a t— > ae

on ae(x) = ax per qualsevol element x de IR, és una inclusió d'anells.
Per altra banda com que pel Teorema 2.5 <f>(Z(R)) = Z(S), sIR el podem

veure com un ideal de S generat per elements centrals de S, aquest ideal es veu
fàcilment que a més és fidel. Tindrem doncs les següents inclusions

IRÇRCSÇ Ends(sIR)

Per ser IR generador l'aplicació

if: R — > Ends(sIR)
da »-* a

on ad(x) = xa per qualsevol element x de IR, és un isomorfisme d'anells.
Podem provar ara que $> és exaustiva ja que per qualsevol s € S, íp~1(s)

és l'antiimatge que busquem. Per tant R i S són anells isomorfs i l'estructura
de sIR és la de ni R donada a través de </>. Ara IR és un ideal finitament
generat, generador per la dreta i projectiu per l'esquerra, aplicant la Proposició
1.8 podem concloure que és projectiu pels dos costats i aplicant el Lema anterior
que és generador pels dos costats. I
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2.3. Anells íntegrament tancats al maximal de quocients.

Siguin R i 5 anells commutatius tais que R Ç S, direm que un element s e S
és íntegre sobre R si el R- mòdul R[s] és finitament generat. Direm que R és
íntegrament tançai dins de 5 si qualsevol element de S íntegre sobre R, és també
de R.

En la propera secció veurem que els anells que poden aparèixer com a centres
d'anells FPF semiprimers satisfan que són íntegrament tancats al seu maximal
de quocients. En aquesta secció volem descriure aquests anells en termes d'anells
de valoració. Hi ha molts treballs on s'estenen a anells commutatius les nocions
clàssiques de domini de valoració i domini íntegrament tancat. Nosaltres agafarem
l'enfoc de Bergman a [6], que sembla ser és també el de Marot a [56]. Bergman a
la secció 6 del seu article treballa amb anells commutatius íntegrament tancats
al clàssic de quocients i tais que els ideals principals són projectius. Aquesta
secció és una fàcil extensió dels resultats de Bergman al cas d'anells semiprimers
commutatius i íntegrament tancats al maximal de quocients.

Un anell R (no necessàriament commutatiu), es diu que és de Baer si Panul. lador
per la dreta de qualsevol subconjunt de R està generat per un idempotent de
R. Cal remarcar que aquesta condició sobre els anul.ladors és simètrica. Per
qualsevol subconjunt C Ç fí,

- ln(C)=lRrRlR(C).

LLavors si els anul.ladors per la dreta estan generats per idempotents, els a-
nul.ladors per l'esquerra també.

Si R és un anell commutatiu íntegrament tancat al seu maximal de quocients
Qrnax(R), és clar que B (R) = B(Qmax(R)}. Si R és a més semiprimer, donat
que Qmax(R) és un anell regular autoinjectiu, tenim que tot ideal anuí. lador de
R està generat per un idempotent de R. En particular tenim que R és un anell
de Baer.

En general és cert també que per un anell de Baer semiprimer B (R) =
B(Qr

rnax(R}} = B(Ql
rnax(R}}, tal com prova la següent proposició.

PROPOSICIÓ 2.8. Sigui R un anell semiprimer, tal que per tot ideal per la dreta
principal I de R rfi(I) = eR, on e2 = e € R. Si S és un anell tal que RR<€SR
aleshores B (R) = B (S).

DEMOSTRACIÓ: En un anell semrprimer R, un idempotent és central si i només
si eR(l — e} = 0. Fent la mateixa demostració que al Lema 1.18, podem concloure
que B(R) C B(S). Ens falta veure que B (S) Ç B (R).
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36 Capítol 2. Subanells de Galois i centres d'anells FPF

Sigui e e B(S), aleshores existeix x e R tal que 0 ̂  ex e R. Sigui / = xR,
per hipòtesi tenim que rn(el) = f R on / és un idempotent de R. Per ser f R un
ideal bilàter (l-f)Rf C f R. Per tant (1 - f ) R f - 0 i / és central a R. Llavors
ReI®fR<eRn i en conseqüència SeIS®fS<eSs- En particular fS<e(l — e)Ss.
Podem concloure doncs que f(l — e) = f i també que f (1 — e) = (1 — e). Per
tant 1 — e = f Ç. R i aleshores tenim que e € R, tal com volíem veure. I

Si R és un anell commutatiu semiprimer, de la proposició anterior i dels
comentaris que la precedeixen, tenim que B (R) = B(Qrnax(R)) si i només si
R és de Baer. Per caracteritzar els anells semiprimers íntegrament tancats al seu
maximal de quocients ho farem en termes d'anells de Baer.

Seguint a Bsrgrnan [6, pàg. 225], si R és un anell commutatiu i G un grup
abelià totalment ordenat, fem G U {+00} un semigrup totalment ordenat de
la manera òbvia i definim una valoració de R sobre G com un morfisme v del
semigrup multiplicatiu R dins de G U {+00}, que satisfà u(0) = +00 i v(r + s) >
min(v(r),v(s)).

Si v és una valoració es clar que v~l (+00) és un ideal primer P de R. Si P
és un ideal primer de R una valoració sobre R/ P indueix una valoració sobre R
tal que P C v~l (+00). Si P\ i PI són ideals primers de R tais que PI Ç P2, les
valoracions sobre R ¡Pi indueixen valoracions sobre -R/ PI.

Si R és un anell regular commutatiu aleshores els ideals primers són maximals
i són de la forma xR on x e SpecP»(.R). Per tant en aquest cas les valoracions
provenen de valoracions sobre els cossos Rx = R/xR.

Si R és un anell amb una valoració u, direm anell de valoració Rv al conjunt
dels elements r £ R tais que v(r) > 0.

PROPOSICIÓ 2.9. Sigui R un anell de Baer commutatiu. Aleshores les següents
afirmacions són equivalents,

(1) R és íntegrament tancat dins de Qmax(R}-
(2) Per qualsevol x e SpecB(R), Rx = R/xR és íntegrament tancat a Qx =

QmaX(R)/xQmax(R).
(3) R és la intersecció d'anells de valoració d'una família de valoracions defi-

nides Sobre Qmax(R}-

DEMOSTRACIÓ: Es fa igual que [6, Proposition 6.1]. I

Si R és un anell commutatiu de Baer íntegrament tancat al maximal de
quocients aleshores també és íntegrament tancat dins del seu clàssic de quocients.
Llavors per qualsevol x e SpecB(-R) tenim,

R/xR ç Qci(R)/xQd(R) ç Qmax(R]/xQmax(K).
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Per ser R de Baer Qci(R) i Qmax(R) són anells regulars i per tant les seves
stalks són cossos. La relació entre aquestes en el cas íntegrament tancat queda
explicada pel següent lema.

LEMA 2.10. Sigui R un anell de Baer. Aleshores R és íntegrament tancat dins
del seu maximal de quocients si i només si es satisfan les següents condicions per
cada x e SpecB(R),

(1) R/xR és íntegrament tancat dins de Qd(R)/xQci(R).
(2) L'extensió de cossos Qci(R)/xQd(R) Ç Qmax(R)/xQmax(R) és transcen-

dent 0 Qcl(R)/xQcl(x)R = Qmax(R)/xQmax(R).

DEMOSTRACIÓ: Es obvia, l'únic que cal observar és que si s e Qmax(R} satisfà
un polinomi a coeficients a Qci(R),

aoò"1 + aiò^s + • • • 4- dn-iò^s""1 4- sn = 0.

Aleshores bs en satisfà un a coeficients a R. Per tant si R és íntegrament tancat
dins de Qmax(R') aleshores bs e R, com que b és un no divisor de zero de R
tenim que s € Qci (R) . I

El següent exemple il·lustra aquest Lema i prova que un anell R íntegrament
tancat en el seu maximal de quocients, pot tenir stalks amb les dues situacions de
(2). Sigui R un domini commutatiu, que no sigui un cos, íntegrament tancat al
seu clàssic de quocients K. Sigui T un conjunt no buit i considerem els anells de
polinomis R[T] i K[T]. Sigui 5 el subanell de /?[T]N, format per les successions
(an) en les quals per gairebé tot n e N an e R. Aleshores Qci(S) és el subanell
de K (T) N format per les successions (òn) en que gairebé per tot n 6 N bn € K.
El maximal de quocients de S és K(T)N. És clar que S és íntegrament tancat
dins de QmM(5).

B (S) té ideals maximals de dos tipus. Ideals maximals no essencials xn

generats per un idempotent del tipus en = (ein), on e.in — 1 si i j^ n i enn = 0.
En aquest cas les stalks són de la forma,

S/xnS ^ R[T] Qci(S)/xnQcl(S) ^ K(T] Qmax(S)/xnQmax(S) ^ K (T).

L'altre tipus d'ideals maximals són els essencials i que contenen tots la suma
directa, aleshores les stalks són

S/'xS = R"/xRN Qd(S)/xnQd(S) ^ K™/xK™

Qmax(S)/xnQmax(S)^K(T^/xK(T}N.
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2.4. Centres d'anells FPF semiprimers.

Volem saber ara com és el centre Z d'un anell FPF per la dreta semiprimer.
En general Z no té perquè ser FPF. El següent resultat explica quan passa això.

PROPOSICIÓ 2.11. Sigui R un anell semiprimer FPF per la dreta amb centre Z.
Aleshores les següents afirmacions són equivalents

(i) Z és FPF
(ü) Tot Z-submòdul de R finitament generat que conté Z és projectiu.

DEMOSTRACIÓ: (¿) =» (ü). Sigui / un ideal de Z. Com que R és semiprimer,
se segueix del Lema 1.26 que rR(IR) = eR per un cert idempotent central e de
R. Això prova que si / és essencial a Z aleshores IR és també essencial com a
ideal dreta a R. Com a conseqüència tenim que el Z-submòdul singular de R
està contigut dins de l'ideal singular dreta de R. Com que R és no singular per
la dreta podem concloure que R és no singular com a Z-módul. Tenim doncs
aplicant (A') del Teorema 1.16, que tot mòdul M de la forma de (ü) s'inclou en
un Z-mòdul lliure i com que Z és semihereditari, cf. Teorema 1.15, aleshores M
és projectiu.

(ü) ==> (¿). Sigui M un Z-mòdul finitament generat i fidel. Per veure que M
genera mod- Z podem suposar que Z <— > M, ja que Z és commutatiu. Per (ü) R
és un Z-mòdul llis i per tant l'aplicació induïda per la inclusió Z <—* M

— > M <8>z R

és injectiva. Per tant M <S>z R és un .fí-mòdul finitament generat fidel. Com que
R és FPF per la dreta, M <S>z R és un generador de mod- .R. Substituint M per
una potència Mn si és necessari, podem suposar que hi ha un .R-epimorfisme
f:M®zR — * R- Sigui m = Y^Í=I m¿ ® r¿ e M <S>z R tal que f (ni) = 1. Posem
P = X)¿=i %ri- Aleshores la imatge de la composició M® z P — * M (B) z R — > R
és un Z-submódul N de R finitament generat que conté Z. Per hipòtesi N és
projectiu per tant si apliquem el teorema d'Azumaya Corol·lari 1. N és un
generador. Per tant M <g>z P i com a conseqüència M són generadors. I

El nostre proper resultat és una extensió de [31, Proposition 2.7, pàg. 78].

PROPOSICIÓ 2.12. Sigui R un anell semiprimer FPF per la dreta. Aleshores el
centre de R és íntegrament tancat en el seu anell maximal de quocients.

DEMOSTRACIÓ: Sigui Q l'anell maximal de quocients de R. Pel Lema 1.26 el
centre de R, Z i el de Q, Z (Q), contenen els mateixos idempotents. Com que
Z(Q) és regular, això implica que Z C Z(Q) és una extensió no singular i,
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com que Z(Q) és també auto-injectiu, Z(Q) conté un subanell isomorf a l'anell
maximal de quocients de Z. Per tant hem de provar només que Z és íntegrament
tancat dins de Z (Q). Per fer això, considerem q e Z (Q) un element enter sobre
Z. Aleshores M = R[q] és un .R-mòdul fidel finitament generat i per tant un
generador. Llavors pel Teorema 2.5 el centre de Endn(M) és canònicament
isomorf a Z. Com que R Ç M C Q podem veure que tot .R-endomorfisme de
M ve donat per multiplicació a l'esquerra per algun element de Q, per tant
multiplicació a l'esquerra per q ha de ser un endomorfisme central de M. En
conseqüència q e Z. I

Recordem que un domini commutatiu C es diu un domini de Krull si existeix
una família V de valoracions del cos de fraccions de C, K sobre els enters tais
que

(1) per qualsevol element diferent de zero a € C, v (a) > O per tota v & V
amb igualtat per gairebé tota v € V.

(2) C = r\vçvKvi °n KV és l'anell de valoració de v.

Si amb aquesta mateixa definició considerem R un anell de Baer i el seu clàssic
de quocients, obtenim el que Bergman anomena un anell NO Krull de Baer, cf.
[6, pàg. 227].

Si apliquem ara la proposició anterior, la Proposició 2.7 i el resultat de Bergman
[6, Theorem 9.2] obtenim el següent corol.lari

COROL·LARI 2.13. Sigui R un anell FPF per la dreta semiprimer, tal que els
ideals generats per elements centrals són finitament generats. Aleshores el centre
de R és un anell NQ Krull de Baer. |

2.5. Anells FPF primers amb centres prefixats.
/

Es ben conegut que el centre d'un domini d'ideals principals és un domini de
Krull [17, Theorem 1.9] i recíprocament, tot domini de Krull pot aparèixer com a
centre d'un domini d'ideals principals. Aquests resultats són deguts a Bergman i
Cohn , que també provaren que tot domini commutatiu íntegrament tancat és el
centre d'un domini de Bezout [17, Theorem 2.7]. Els anells que ells construeixen
no són acotats i per tant no són FPF. Malgrat tot, veurem que modificant la
seva construcció una mica podem aconseguir que els dominis a més de ser de
Bezout siguin FPF.

Pel Teorema 1.21 un domini de Bezout és FPF si i només si és acotat. Gràcies
a aquest resultat podem reconèixer a [25], [19, Section 3] i [76, Lemma 4.3]
entre altres, alguns exemples interessants d'anells FPF que són dominis d'ideals
principals.
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També és interessant remarcar que Cohn i Schofield han construït un domini
d'ideals principals que és FPF amb centre un cos F i tal que el centre de seu cos
de fraccions és més gran que F, [19, Section 3]. Això prova que l'anell maximal
de quocients del centre d'un anell FPF semiprimer R no té perquè coincidir amb
el centre de Qr

max(Q}.

Recordem breument la construcció de Bergman i Cohn de dominis d'ideals
principals amb centres prefixats.

Sigui C un domini de Krull i K el seu cos de fraccions. Formem l'anell
de polinomis K[T] = K[. . . , í _ i , í o > £ i > • • •]• Sigui V la familia de valoracions
satisfent (i) i (ü) de la definició de domini de Krull. Cada v e V es pot estendre a
K [T] definint i;(Ea¿1...¿ííí°'1 . . . í£*') = min{v(aij. ..»,)} que és una valoració sobre
K [T] que s'estén al cos de fraccions K(T). Definim ara A = r\vçvK(T)v, com
que C és un domini de Krull, se segueix que A és un domini d'ideals principals
(cf. [17, pàg. 308] per completar els detalls). Considerem l'automorfisme de K-
algebres a: K[T] — > K [T] tal que tn t-». ín+1, ne Z. Com que v(p) = v(pa) per
qualsevol p E K [T], a indueix un automorfisme de K -àlgebres sobre A d'ordre
infinit. Considerem l'anell R — A((x,a)) de series de Laurent skew, és a dir els
elements de R són de la forma s — 'L'^._00x

lai on aj 6 A i aj = O per i < k
per un k depenent de s, amb la relació ax — xaa per a tot a G A. Per [17,
Proposition 2.3] R és un domini d'ideals principals amb centre C.

Ara definirem un anell que és un localitzat de R que serà acotat i amb centre
C.

Cal observar que els ideals de A són o; invariants, ja que per tot a e A,
a A = aaA. Considerem el conjunt

E = a^oi e .R

Afirmem que E és un conjunt d'Ore. Primer provarem que E és multiplicativament
tancat. Siguin s i s' elements de E i sigui ss' = E!£._00x

lai. Si E^.^ttj està
estrictament contingut dins de A, aleshores escollim un ideal maximal M de A
que contingui l'ideal generat pels coeficients. Com que M és o; invariant podem
considerar l'anell de series formals A/M((x, a)) que és un domini quocient de R.
Clarament s i s' són diferents de zero en aquest quocient, però el seu producte
és zero, això contradiu el fet de que A/M((x, c*)) sigui un domini. Per tant E és
multiplicativament tancat. De fet, podem associar a cada s Ç. R el seu contingut
c(s) que definim com el màxim comú divisor a A dels coeficients de s i aleshores
tenim que c(s)c(s') = c(ss') per tot s i s' elements de R. Per veure que S és un
conjunt d'Ore només queda per veure que per qualsevol element r e R i s € E
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tenim que r E n sR ^ 0. Com que R és un domini d'Ore existeixen n, r-¿ e R
tais que rr\ = sr-¿ ^ 0. Aleshores c(r)c(ri) = c(r<i) i com que per cada i = 1,2
tenim r¿ = s¿c(ri) on Sj e E, tindrem finalment que rsi = ss2c(r) tal com volíem
veure.

Considerem ara doncs l'anell S = R%. Clarament S és un domini d'ideals
principals que es pot mirar com un subanell de K ((x, a)), on K és el cos de
fraccions de A. Com que c* té ordre infinit el centre de K ((x, a)) és l'anell Ka.
Per tant el centre Z de S és 5 n Ka. Sigui aò"1 e S n Ka on a, 6 e A. Com
que ab~l e S podem escriure ¿f1 a = rs~l on r e R i s e E. Per tant as = 6r i
com a conseqüència ac(s) = bc(r). D'aquí podem veure que b"1 a e A. Per tant

Finalment provarem que S és acotat. De fet veurem que tot ideal dreta o
esquerra diferent de zero conté un element central diferent de zero. Sigui r £ R,
tenim que r = sc(r) = c(r)s' per s, s' e E adequats. Per tant tot ideal per la
dreta (o per l'esquerra) es pot generar per un element de A. Si tenim ara un
element a € A, aquest serà de la forma a = p(T)/q(T), si agafem un coeficient
diferent de zero c de z>(T), aleshores v(c/p(T)} > O per qualsevol u € Vi per tant
c/p(T) e A. Com que c és un element central de 5 hem provat que aS conté un
element del centre diferent de zero.

Amb tot això hem demostrat el resultat següent que és un recíproc al Corol.lari
2.13 per anells primers.

PROPOSICIÓ 2.14. Tot domini de Krull es pot posar com a centre d'un domini
d'ideals principals acotat, per tant d'un domini d'ideals principals FPF.

El següent resultat és una conseqüència de la manera de procedir anterior.

PROPOSICIÓ 2.15. Els centres dels dominis d'ideals principals tais que tot ideal
dreta està generat per un element central són els dominis de factoritzacio única.

DEMOSTRACIÓ: Sigui R un domini d'ideals principals en que tot ideal dreta està
generat per un element central i sigui C el centre de R. Per [17, Theorem 1.5] tot
element diferent de zero a e C te una descomposició com a producte de /-àtoms
(i.e. àtoms dins del monoid dels elements 6 ̂  O tal que Rb=bR). Per hipòtesi tot
/-àtom és un àtom que està associat a un àtom central. Per tant a descompon
com a producte d'àtoms de C. A més una tal descomposició és única. Per tant
C és un domini de factoritzacio única.

Recíprocament, sigui C un domini de factoritzacio única. Si agafem V la
família de valoracions associades als àtoms de C, aleshores C és un domini de
Krull. Si fem RE com a la prova de la proposició anterior, aleshores l'anell RE té
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les propietats que volem. Ja sabem que RE és un domini d'ideals principals amb
centre C, només falta provar que tot ideal dreta pot ser generat per elements
centrals. Quan C és un domini de Krull arbitrari ja hem vist que tot ideal dreta
de 72s pot ser generat per un element de A. Ara en el nostre cas A està format
pels elements f / g é K (T) tais que c(g) divideix c(f). Per tant tot element a e A
es pot escriure de la forma a = cf/g on c € C i c(f) = c(g). Com que f / g és
una unitat de A tenim que a A = cA. I això completa la prova. I

Seguint les mateixes idees podem provar un recíproc a la Proposició 2.12 en
el cas d'anells primers.

TEOREMA 2.16. Si C és un domini commutatiu íntegrament tancat, aleshores
existeix un domini de Bezout acotat (per tant FPF) tal que el seu centre és C.

DEMOSTRACIÓ: Per [17, Proposition 2.5] C = Aa on a és un automorfisme
d'ordre infinit d'un domini de Bezout commutatiu A. A es pot descriure de
la següent manera: sigui V el conjunt de totes les valoracions sobre k (el cos
de fraccions de C] tal que v (c) > O per cada c 6 C. Aleshores A està format
pels elements f / g € k(T) tais que v(f) > v(g) per totes les valoracions v de V
on T és com abans, el conjunt d'indeterminades • • • t-i,to, íi, • • • i a envia tn

a ín+i per tot n e Z. Com a la prova de la proposició anterior cal observar
que 7 fi C T¿ O per tot ideal 7 diferent de zero de A. Considerem l'anell de les
sèries formals skew K\x,Q], on K és el cos de fraccions de A, i formem l'anell
R — A + x K Ix, a]. Provarem que 72 té les propietats que volem. Fent servir que
a té ordre infinit es pot veure fàcilment que el centre de 72 és C. Si O ̂  r e R
aleshores r = xn(co -f xc\ H ) per algún n > O i O ̂  CQ e K. Per tant tot ideal
principal de 72 es pot generar per un element de la forma xncç,. Suposem ara que
tenim dos ideals 7 = xncoR i 7' = xmcó72. Si n < m aleshores 7' C 7 i si n = m
tenim que 7 + 7' = xnb~1(aoR + a'0R) on ao,aó e A i 6-1ao = co,^"1^ = CQ.
Com que A és un domini de Bezout existeix d 6 A tal que aoA + a'QA — dA. Ara
és clar que 7-t- 7' = xnb~ldR. Per tant 72 és un domini de Bezout. Per provar
que 72 és acotat per la dreta, sigui xnCoR un ideal per la dreta diferent de zero
de 72 . Sabem que tot ideal diferent de zero de A conté un element del centre
diferent de zero, per tant xncoR 3 xnc72 on O ̂  c e C. Ara xnc72 és un ideal
diferent de zero, per tant ja hem acabat la demostració. I
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Capitol 3.

Anells de polinomis amb clàssic de quocients injectiu

3.1. Condició de cadena ascendent per anul.ladors.

Denotarem per R[X] l'anell de polinomis sobre un conjunt arbitrari d'indeter-
minades X i per R[x] l'anell de polinomis sobre una única indeterminada x. Si
X és un conjunt no buit, p(X) e R[X] i x e X per x-deg(p(X)) volem dir el
grau de p(X) mirat com un element de S[X] on S — R[X \ {x}].

En aquesta secció veurem que en alguns casos imposar condicions d'injectivitat
sobre l'anell clàssic de quocients de l'anell de polinomis R[X], on X és un conjunt
no buit, implica que R satisfà condició de cadena ascendent per anul.ladors.
Aquesta mena de resultats ens permeten concloure en alguns casos, fent servir el
Teorema 1.12 degut a Carl Faith, que R té clàssic de quocients QF. El següent
resultat de Pillay prova que la propietat de tenir clàssic de quocients QF és
heretada per l'anell de polinomis.

TEOREMA 3.1. (P. Pillay [69, Theorem 4.5]) Sigui R un anell, aleshores Ql
ci(R)

existeix i és Q F si i només si per qualsevol conjunt X, Ql
cl(R[X}) existeix i és

QF.t

Tant el resultat de Faith com el de Pillay seran resultats clau al llarg de tot
el capítol i els citarem constantment.

Volem remarcar que l'existència del clàssic de quocients de l'anell no sabem
si implica l'existència del clàssic de quocients de l'anell de polinomis. Resultats
com l'anterior de Pillay, demostren que això és cert en alguns casos, però sempre
estan basats en altres propietats de la estructura de R a més de la de tenir clàssic
de quocients. En la secció 2 comentarem més extensament aquest problema i el
que nosaltres sabem sobre ell.

PROPOSICIÓ 3.2. Sigui R un anell tal que per un conjunt no buit X, Q =
Ql

cl(R[X}) existeix i és un anell autoinjectiu per la dreta. Aleshores R satisfà la
condició de cadena ascendent per anul.ladors per la dreta de subconjunts de R.

DEMOSTRACIÓ: Suposem que per n = 0, 1, ... i Sn Ç R, els ideals per la dreta
In = fR(Sn) formen una cadena estrictament ascendent. Aleshores la cadena
d'ideals per l'esquerra

43
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44 Capitol 3. Anells de polinomis

és també estricta, ja que en un altre cas lR(In) = ¿fí(7n+i) implicaria

In = r*(/fl(In)) = r«(/fl(/n+i)) = 7n+1

Aleshores per cada n > 1 podem escollir bn e lR(In-i) \ ln(In)- Fixem un
element x € X i considerem els polinomis definits inductivament per

S I T" 1 *~~ Q 11 T i —f- h T*nv·*' / "n— l\J /y ' "n1"

Sigui 7 l'ideal dreta de Q, I = Un>orQ(^(^))- P°dem definir un morfisme
f : I — > Q de la següent manera, f (q) = sn(x)q per q € rQ(lR(In)). És fàcil
veure que / està ben definit, ja que si g e rg(/fí(7n_i)) aleshores bnq = 0. Com
que Q és automjectiu per la dreta, existeix un element q(X)~1p(X) e Q tal que
f (q] = q(X)-lp(X}q.

Per cada n existeix Cn € Rr\rQ(lR(In)) tal que 6nCn ^ 0 i lR(In)cn = 0, ja que
si no rR(bn) Ç rR(lR(In)) - 7n i això implicaria que Rbn Ç /fl(rfl(6n)) Ç ¿fi(7n)
la qual cosa contradiria l'elecció de bn.

Agafem TV > max(o;-deg(p(X)),x-deg(ç(X)), 1), Aleshores per n > N tenim

q(X)sn(x)cn=p(X)cn^O.

Ara x-deg(sn(x)cn) = n2, com que q(X) és un no divisor de zero de R[X] i x-
deg(q(X)sn-i(x)Cn) < n2 aleshores x-deg(q(X)sn(x)cn) > n2. Per altra banda
x-deg(p(X)cn) < N < n. Això contradiu l'existència d'una cadena estrictament
ascendent infinita d'anul.ladors. 1

Ara provarem que tenim una situació similar quan Q^(7í[X]) és autoinjectiu
per la dreta, però en aquest cas haurem de suposar que X és un conjunt infinit.

PROPOSICIÓ 3.3. Sigui R un anell tal que per un conjunt infinit X, Q =
Qr

d(R[X}} existeix i és autoinjectiu per la dreta. Aleshores R satisfà la condició
de cadena ascendent per anul.ladors de subconjunts de R.

DEMOSTRACIÓ: Sigui Y un subconjunt de X infinit numerable, Y = {yi , y%, . . . }.
Definim 7n, 7, bn i cn com a la Proposició 3.2. Considerem el morfisme f : I — > Q
definit com f (q) = sn(Y}q si q Ç. rQ(lR(In)), amb sn(Y) = 1 + b\y\ H 1- bnyn.

Com que Q és autoinjectiu per la dreta, existeix un element p(X)q(X)~1 € Q
tal que p(X)q(X)~lq = f (q). Per tant p(X)q(X)-1cn = sn(Y)cn.

Com que només hi ha un nombre finit de monomis amb coeficient diferent
de zero a p(X) i q(X), podem doncs escollir n tal que yn-deg(p(X)} = yn-
deg(g(X)) = 0. Considerem l'anell S = R[X \ {yn}]. Per ser X infinit, S S
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R[X\. Per tant S satisfà la condició d'Ore per la dreta. Tenim doncs que
existeixen r (X) i s(X), aquest no divisor de zero, ambdós amb grau en yn zero,
tais que CnS(X) = q(X)r(X). Per tant p(X}q(X}-lcn = p(X)r(X)s(X}-1 =
sn(Y}cn i aleshores p(X)r(X) = sn(Y)cns(X). Però yn-deg(p(X)r(X)) = O i
yn-deg(sn(Y)cns(X)} = 1. Això dóna una contradicció amb l'existència d'una
cadena estrictament ascendent infinita d'anul.ladors. I

COROL·LARI 3.4. Sigui R un anell tal que Ql
ci(R) existeix i és autoinjectiu

per la dreta i tal que per un conjunt no buit X, Ql
ci(R[X]) existeix i és també

autoinjectiu per la dreta. Aleshores per qualsevol conjunt Y, Ql
cl(R[Y]) existeix

i és QF.

DEMOSTRACIÓ: Aplicant els resultats de Pillay, Teorema 3.1, n'hi ha prou en
demostrar que Ql

ci(R) és QF. Com que Ql
cl(R[X}) ^ Ql

ci(Qci(R}[x}) aleshores
aplicant la Proposició 3.2 Ql

ci(R} satisfà la condició de cadena ascendent per
anul.ladors dreta i per hipòtesi és un anell autoinjectiu per la dreta. Si apliquem
el Teorema 1.12 tenim que Ql

cl(R) és un anell QF tal com voliem. I

COROL.LARI 3.5. Sigu R un anell regular tal que per un conjunt no buit
X, Ql

cl(R[X}} existeix i és autoinjectiu per la dreta. Aleshores R és artinia
semisimple.

DEMOSTRACIÓ: Aplicant la Proposició 3.2 tenim que R ha de ser un anell regular
que satisfà la condició de cadena ascendent per anul.ladors dreta, aleshores per
[37, Proposition 2.13 (a)] i [37, Corollary 2.16] R és artinia semisimple. I

COROL·LARI 3.6. Sigui R un anell, aleshores les següents afirmacions són
equivalents

(a) Existeix un conjunt infinit X, tal que Ql
cl(R[X]) existeix i és autoinjectiu

per la dreta.
(b) Existeix un conjunt Y tal que Ql

ci(R[Y]) existeix i és QF.
(c) Per qualsevol conjunt X, Ql

cl(R[X\) existeix i és QF.
(d) Existeix un conjunt infinit X, tal que Ql

cl(R[X]) existeix i és autoinjectiu
per l'esquerra.

DEMOSTRACIÓ: (a) --=> (6) Suposem que Ql
cl(R[X]) és autoinjectiu per la dreta.

Escollim un element x G X i considerem Y = X \ {x}. Com que R[X] = R[Y]
aleshores Ql

cl(R'[Y}) existeix i és autoinjectiu per la dreta, pel Corol·lari 3.4
Ql

cl(R(Y])ésQF.
(b) => (a), (6) <í=> (c) i (c) =» (d) són conseqüència del Teorema 3.1. Per

acabar la demostració és suficient provar que (d) =$• (b). Suposem que Ql
ci(R[X])
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existeix i és autoinjectiu per l'esquerra. Com que X és infinit X = Y U Z, on Y
té la mateixa cardinalitat que X, Z és infinit i Y C] Z = 0. Com que R[X] = R[Y]
aleshores Q¿(-ñ[y]) existeix i és autoinjectiu per l'esquerra, però

aleshores per l'enunciat simètric de la Proposició 3.3, Ql
ci(R[Y]} satisfà a més

condició de cadena ascendent per anul.ladors esquerra. Per tant pel Teorema
1.12 Ql

ci(
R(Y\] és QF. I

J. W. Kerr a [49] dóna un exemple d'un anell commutatiu de Goldie tal
que els polinomis no satisfan la condició de cadena ascendent per anul.ladors.
Camilo i Guralnick van provar a [13] que si R és una fc-àlgebra, amb k un
cos no numerable, que satisfà condició de cadena ascendent per anul.ladors
dreta aleshores per qualsevol conjunt X R[X] també satisfà condició de cadena
ascendent per anul.ladors per la dreta.

3.2. L'anell clàssic de quocients de R.

Motivats pels resultats de la secció anterior, en aquesta secció estudiarem quan
l'existència del clàssic de quocients de l'anell de polinomis implica l'existència
del clàssic de quocients de R, i quan les condicions d'injectivitat sobre el clàssic
dels polinomis són heretades pel clàssic de R. Tots els nostres resultats estan
basats en el següent lema.

LEMA 3.7. Sigui R un anell tal que Ql
cl(R[X]) existeix. Suposem que per

qualsevol no divisor de zero r(X) € -R[A"], existeix q(X) tal que q(X)r(X) té un
coeficient no divisor de zero, aleshores Ql

ci(R) existeix.
Si a més Ql

cl(R[X}) és injectiu com a R[X]-mòdul dreta o bé és autoinjec-
tiu per l'esquerra, aleshores Q^R) és també injectiu com a R-mòdul dreta o
autoinjectiu per l'esquerra.

DEMOSTRACIÓ: Per la primera part sols cal provar que R satisfà la condició
d'Ore per l'esquerra. Sigui a ^ O un element de R i b un no divisor de zero. Com
que R[X] satisfà la condició d'Ore, tenim polinomis r (X) i s ( X ) , amb r (X) no
divisor de zero, tais que r(X)a = s(X)b. Ara per hipòtesi tenim que existeix
q(X) tal que q(X)r(X) té un coeficient no divisor de zero r. LLavors la igualtat
q(X)r(X)a = q(X)s(X)b ens dóna que ra = sb, per un cert s Ç. R. Per tant R
té clàssic de quocients per l'esquerra.

Suposem que Ql
cl(R[x}) és injectiu com a R[X]-mòdul per la dreta. Sigui

/ un ideal per la dreta de R i f: I — > Ql
d (R) un morfisme de R- mòduls

dreta. Aleshores / es pot estendre a un morfisme de -R[X]-mòduls per la dreta,
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/: IR[X] — > Ql
cl(R[X]) , per tant / ve donada per multiplicació a l'esquerra per

un element r(X)~ls(X) € <3¿(.ñ[X]). Aleshores per qualsevol a e / tenim que
s(X)a = r(X)f(a). Si q(X)r(X) té un coeficient no divisor de zero r, tenim que
sa = r/(a), per un coeficient s de q(X)s(X) adequat. Per tant, per qualsevol
a e J, /(a) = r-1sa.

Si Ql
d(R[x]) és autoinjectiu per l'esquerra, aleshores

Ql
cl(R[X}} - E(R[X]R(X}) ~ QLz(*[*3).

Volem provar que Ql
ci(R) hereta aquesta propietat, n'hi ha prou en veure que

per qualsevol r <E E(RR) C E(fi[X}R[X]), (R : r) conté un element no divisor de
zero. Però (R ; r) [X] = (R[X] : r), per tant hi ha un polinomi no divisor de zero
r(x) e (R[x] : r) i per hipòtesi existeix q(x) tal que q(x)r(x) té un coeficient no
divisor de zero. Per tant (R : r) conté un no divisor de zero. I

LEMA 3.8. Sigui R un anell tal que Ql
ci(R) existeix. Si I <Ql

cl(R) aleshores
Qld(R)/I és un localitzat per l'esquerra de R/ (I n R).

DEMOSTRACIÓ: Sigui E = {à 6 R/(I r\ R) \ a és un no divisor de zero de R}.
Es clar que S és un subconjunt multiplicativament tancat de R/ (I D R) format
per no divisors de zero. Suposem que a € (/ D R), aleshores si sa = br on r és
un no divisor de zero de R, tenim que b e (/ n R). Aplicant [71, Proposition
3.2.34] podem concloure que S satisfà la condició d'Ore per l'esquerra i tenim
que

Si R/J(R) és artinià semisimple aleshores R és diu que és un anell semilocal,
si a més, J(R) és T-nilpotent per la dreta (esquerra) aleshores R és perfecte
dreta (esquerra). Si R és semilocal i J(R) és nilpotent aleshores R és diu que és

/

semiprimari. Es ben conegut que els anells semilocals que són autoinjectius per
la dreta o per l'esquerra són semiperfectes [77, Proposition XIV. 1.6].

Small a [74], va provar que R és un ordre per l'esquerra en un anell artinià
semisimple si i només si R[x] es també un ordre esquerra en un anell artinià
semisimple. Per fer això va caracteritzar els no divisors de zero de R[x] de la
següent manera:

LEMA 3.9. (Small, [74, Lemma 2])Sigui R un anell, si R[x] és un ordre esquerra
en un anell artinià semisimple, aleshores per qualsevol polinomi no divisor de
zero r(x) existeix q(x) tal que q(x)r(x) té el coeficient de grau màxim no divisor
de zero. I

Després Pillay a [69, Theorem 2.1] va provar que R és un ordre per l'esquerra
en un anell artinià semisimple si i només si R[X] ho és, on ara X és un conjunt
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arbitrari. Les tècniques de Pillay són les mateixes que les de Small i també passen
per la mateixa caracterització dels no divisors de zero de R[X], on ara el coeficient
de grau màxim està definit donant un bon ordre a X i l'ordre lexicogràfic als
monomis en X.

Suposem que R[X] té clàssic de quocients per l'esquerra Q semilocal i a més
tenim J(Q) n R[X] = I[X] per un cert ideal / de R, aplicant el Lema 3.8 tenim
que R[X]/I[X] és un ordre per l'esquerra en un anell axtinià semisimple i per
[69, Theorem 2.1] R/I també és un ordre en un anell artinià semisimple. Com
a conseqüència veiem que per #[X]//[X] val la caracterització de Small pels no
divisors de zero, però si r(x) és un no divisor de zero de R[X] la seva classe
també és un no divisor de zero de R[X]/I[X]. Per tant en aquest cas podem
deduir que existeix un polinomi q(X) de R[X] tal que q(X)r(X) té un coeficient
no divisor de zero. Si apliquem ara el Lema 3.7 podem concloure que existeix el
clàssic per l'esquerra de R i estem en condicions d'aplicar el següent resultat de
Robson,

TEOREMA 3.10. (Robson, [71, pàg. 368]j Sigui R un anell. R és un ordre per
l'esquerra en un anell semilocal si i només si existeix un ideal I de R que satisfà
les següents condicions,

(1) R/I és un ordre per l'esquerra en un anell artinià semisimple.
(2) a no és divisor de zero a R si i només si la classe a + I no és divisor de

zero a R/I.
(3) Si a 6 / i b é? un no divisor de zero, aleshores existeixen a' e / i b' no

divisor de zero tais que a'b = b' a. I

Ara observem que si R és un ordre per l'esquerra en un anell semilocal i Ql
cl (R)

existeix, aleshores aquest també és semilocal. Llavors del teorema anterior
podem concloure que en el nostre cas R té clàssic de quocients per l'esquerra
semilocal.

Per tant hem demostrat el següent,

PROPOSICIÓ 3.11. Sigui R un anell tal que Ql
ci(R[X]) existeix i

J(Ql
cl(R[X}))r\R[X} = I[X]

per un cert ideal bilàter I de R. Aleshores

(i) Si Ql
cl(R[X]) és semilocal, aleshores Ql

cl(R) existeix i és semilocal.
(ü) Si Ql

d(R[X]) és perfecte per la dreta o per l'esquerra, aleshores Ql
ci(R) és

també perfecte per la dreta o per l'esquerra.
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(iii) Si Ql
cl(R[X]) és semiprimari, aleshores Ql

cí(R) és semiprimari.
(iv) Si Ql

ci(R[X]) és semiperfecte i autoinjectiu per l'esquerra o injectiu com
R[X]-mòdul dreta, aleshores Ql

ci(R) és també semiperfecte i autoinjectiu
per l'esquerra o injectiu com a R-mòdul dreta. I

A la vista d'aquest resultat considerem interessant saber quan

J(Ql
cl(R(X}))nR[X]

és de la forma I[X] per un cert ideal J de R. Per simplicitat, treballarem en
aquest problema només sobre R[x], encara que els resultats admeten una fàcil
generalització a un conjunt arbitrari de variables X.

LEMA 3.12. Sigui R un anell tal que Ql
cl(R[x\) existeix. Aleshores les següents

afirmacions són equivalents:

W J(&ci(R[x])) n R[x] = I[x] per un cert ideal I de R.
(ü) Si p(x) e J(Ql

ci(R[x])) n R[x], aleshores p(x2) e J(Ql
cl(R[x])) D R[x].

(iii) Si p(x) e J(Ql
cl(R[x])) n R[x], aleshores existeix k > 1 tal que

P(xk) e J(Ql
cl(R[x])) n R(x].

DEMOSTRACIÓ: Només cal provar que (iii} => (i). Sigui p(x) = aoH h anx
n

un polinomi de J(Ql
cl(R[x})) r\R[x]. Podem suposar que CLQ i an són diferents de

zero. Per hipòtesi sabem que existeixen fci,..., kn tais que p(xhl),... ,p(xkl-kn}
són elements de J(Ql

cl(R[x\)} n R[x], Considerem ara la matriu

kl
/ I x ... xn \

1 x

\

e Mn+l(Q
l
cl(R[x})}

/oo\
tenim que M J : J e nJ(Ql

cl(R[x])). Com que M és una matriu invertible
\an /

podem concloure que ao , . . . , an són elements de J(Ql
cl(R[x])) n R. |

PROPOSICIÓ 3.13. Sigui R un anell commutatiu. Aleshores J(Qci(R[x}}) n
R[x] = I [x] per un cert ideal I de R.
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DEMOSTRACIÓ: Aplicarem el Lema anterior veient que si p(x) és un element de
J(Qd(R[x})), aleshores p(x2} també ho és. Sols cal veure que 1 — p(z2)pr|4 és
invertible a Qci(R[x]). Sense perdre generalitat podem suposar que s'(x} = s(x2)
per s(x) e R[x] no divisor de zero, ja que sinó considerem JA*\*/v2XA • Hem de

veure doncs que s(x2) — p(x2)r(x) és un no divisor de zero de R[x]. Cal observar
que per l'isomorfisme que hi ha entre R[x] i R[x2} sabem que 1 — p(x2)t és
invertible a Qci(R[x2]) per qualsevol element t de Qci(R[x2}}.

Suposem que (s(x2) — p(x2)r(x))q(x) = 0. Podem escriure r(x) = ri(x2) +
xr2(x

2} i q(x) = qi(x2) + xq2(x
2), tenim doncs que

(s(x2) - p(x2)r1(x
2))q1(x

2) - X2p(x2)r2(x
2)q2(x

2) = O

(s(x2) - P(x2)ri(x
2))q2(x

2} - P(x2)r2(x
2)qi(x

2) = 0.

Però u = s(x2) — p(x2)ri(x2) és un no divisor de zero de -R[a;2], per tant de
la primera igualtat tenim qi(x2) = U~lx2p(x2)r2(x

2)q2(x
2). Si substituïm a la

segona igualtat obtenim que

uq2(x
2) -p(x2)r2(x

2)u-1x2p(x2)r2(x
2)q2(x

2) =

(u - p(x2)r2(x
2}u~1x2p(x2}r2(x

2))q2(x
2) = vq2(x

2) = O,

però v també és un element regular de R[x2}, per tant q2(x
2) = O i com que

s(x2} — p(x2)r(x) és un element regular de R[x2] en conseqüència també q\(x2} =
0.1

Tenim doncs el següent resultat per anells commutatius.

TEOREMA 3.14. Sigui R un anell commutatiu. Aleshores

(i) Si Qci(R[x]) és semilocal aleshores Qd(R) és semilocal.
(ü) Qd(R[x]} és perfecte si i només si Qci(R) és també perfecte.

(iü) Qci(R[x]) és semiprimari si i només si Qci(R) és semiprimari.

DEMOSTRACIÓ: Per les dues proposicions anteriors tenim ja demostrat (i) i la
part "només si "de (ü). Sols falta veure que si Qci(R) és semilocal i el seu
radical de Jacobson és nilpotent o T-nilpotent, aleshores aquestes propietats són
heretades pel clàssic de quocients de l'anell de polinomis. Podem suposar sense
perdre generalitat que R = Qci(R), si J(R) és nilideal aleshores és clar que R[x]
i J(R)[x] satisfan les condicions del Teorema 3.10, per tant R[x] és un ordre en
un anell semilocal, per ser J(R) un nilideal tenim per [1] que J(R[x]} = J(R)[x],
per tant R[x] és un ordre en un anell semilocal tal que el seu radical satisfà les
mateixes condicions de T-nilpotència i nilpotència que J (R).

Per anells no necessàriament commutatius podem obtenir un resultat anàleg,
però hem de menester que 2 sigui invertible a Ql

cl(R[x\).
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LEMA 3.15. Sigui R un anell tal que Ql
cl(R[x}) existeix i 2"1 e Ql

cl(R[x}).
Aleshores J(Ql

cl(R[x])) fi R\x] = I[X] per un cert ideal bilàter I de R.

DEMOSTRACIÓ: Sigui f (x) un polinomi de J(Ql
cl(R[x])) n R[x], suposem que

f (x) no és de ( J(Ql
cl(R[x})) n R)[x] i que és de grau mínim entre els que satisfan

aquesta condició. Aleshores

f (x) =

f (-x) = h(x2) - xh(x2) e J(Ql
cl(R(x}))

per tant f (x) + f (—x) = 2/i(x2) i tenim doncs que /i(x) 6 J (Ql
cl(R[x\)} . Si per

altra banda considerem /(x)— /(— x) = 2/2 (x2 ), tenim que /2 (x) Ç. J(Ql
cl(R[x])).

Com que o bé /i (x) o bé f 2 (x) és diferent de zero i els dos són polinomis de grau
més petit que el de f (x), per la minimalitat del grau de f (x), són polinomis
de (J(Ql

cl(R[x\)) n R) [x]. Però els coeficients de f (x) són els de /i(x) i els de
/2(x), per tant f (x) també és un polinomi de ( J (Ql

cl(R[x\)} n R)[x], la qual cosa
contradiu la tria de f (x). I

TEOREMA 3.16. Sigui R un anell tal que Ql
d(R[x]) existeix i 2"1 e Ql

cl(R[x]).
Aleshores

(i) Si Ql
ci(R[x}} és semilocal, aleshores Ql

ci(R) existeix i és semilocal.
(ü) Si Ql

cl(R[x]} és perfecte per la dreta o per l'esquerra, aleshores (¿¿(R) és
també perfecte per la dreta o per l'esquerra.

(iii) Si Ql
cl(R[x]) és semiprimari, aleshores Ql

ci(R) és semiprimari. I

Observem que el Lema 3.15 i per tant el Teorema 3.16 es poden demostrar
amb arguments semblants quan R és un anell tal que Ql

ci(R) existeix i R conté
una arrel senar de la unitat al seu centre.

Cal remarcar que la condició de que 2 sigui invertible a Ql
ci(R[x}) o que hi

hagi una arrel senar de la unitat, només sembla una manera de garantir que
hi ha prous automorfismes de <5cí(-ñ[x]) i de fet nosaltres pensem que aquest

/

resultat és cert sense cap hipòtesi adicional. Es interessant en aquest context fer
referència de l'article d'Amitsur [1], on demostra que J(R[x]) = I[x] per un cert
nilideal / de .R, de fet la nostra tècnica està inspirada en la d'Amitsur. També és
molt interessant una demostració de Bergman del mateix fet, que es pot trobar
a [71, pàg 195]. La demostració de Bergman simplifica considerablement la de
Amitsur, i pot ser que aporti noves idees al nostre problema sobre el radical de
Jacobson del clàssic d'un anell de polinomis.
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Una altra qüestió interessant és saber si l'existència del clàssic de quocients
de R (per algún costat) implica l'existència del clàssic de quocients de l'anell de
polinomis. D'aquest tipus de resultat només en coneixem com els que ja hem
citat abans de Small i Pillay, [74] i [69], que és basen molt en l'estructura de R
i la del seu anell clàssic de quocients. Ambdós autors demostren explícitament
que l'anell de polinomis satisfà la condició d'Ore. Tampoc ens consta que a la
literatura hi hagi exemples d'anells que tinguin clàssic de quocients i el seu anell
de polinomis no.

Creiem que gran part de la dificultat del problema està en la falta d'una bona
caracterització dels no divisors de zero de l'anell de polinomis. Ja hem comentat
que quan R és un ordre per l'esquerra en un anell artinià semisimple, els no
divisors de zero és poden caracteritzar com els polinomis p(x) pels quals existeix
un altre polinomi q(x) tal que el terme de grau màxim de p(x)q(x) no és divisor
de zero. Si R és un anell commutatiu és ben conegut que p(x) és un no divisor de
zero si i només si els seus coeficients generen un ideal fidel de R (Lema de McCoy).
També és ben conegut que aquest resultat no s'estén al cas no commutatiu. Per
exemple, per qualsevol anell R diferent de zero podem considerar el polinomi de
M2(R)

»<*> = (o ¿) + G °}I+(° o)*'
aleshores és clar que els coeficients de p(x} generen tot M?,(R), però

, . fia 0\ /O 0\ \ _

PX ^° °' ^ Q ' ' ~

per qualsevol element a de R.
També volem fer notar que p(x) és un divisor de zero amb un coeficient no

divisor de zero. Això pot il·lustrar el fet de que en el Lema 3.7, no pensem que
els polinomis que surten amb un coeficient no divisor de zero hagin de ser no
divisors de zero a R[x].

La nostra opinió és que l'existència del clàssic de quocients de l'anell no implica
l'existència del clàssic de quocients de l'anell de polinomis. Per això ens basem
en el següent fet, sigui RÍ, i 6 /, una família infinita d'anells d'Ore per la dreta.
Considerem R — fltg/ -^ï» és clar que R és també d'Ore per la dreta, però per
a que R[x] sigui d'Ore per la dreta s'ha de complir que per qualsevol RÍ[X] les
solucions de l'equació d'Ore no tan sols han d'existir, sino que a més s'han de
poder triar amb grau acotat, ja que en cas contrari R[x] no té clàssic de quocients
per la dreta. Això ens fa pensar que en general el fet de que R sigui d'Ore per
un costat no implica que R[x] ho sigui.

. .-. -- — - *
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Finalment només comentar que del problema invers, és a dir quan l'existència
del clàssic de quocients de l'anell de polinomis implica l'existència de l'anell
clàssic de quocients de R, només sabem resultats "estructurals", com els ja
esmentats de [74] o els d'aquesta mateixa secció.

Si R és un anell autoinjectiu per l'esquerra aleshores és ben conegut que
Sing, (.R) = J (R), cf. [77, Corollary XIV. 1.3]. En el següent resultat veurem
que és més fàcil demostrar bones propietats de la intersecció de Singi(Ql

cl(R[x]))
amb R[x] que per J(Ql

cl(R[x})).

LEMA 3.17. Sigui R un anell. Aleshores

(ü) Si Ql
d(R[x]) existeix, aleshores Sing^Q^Rfr})) n R[x] = Sing,(R)[x].

DEMOSTRACIÓ: (¿) És clar que Sing,(.R)[z] C Sing,(J2[x]), perquè si p(x) €
Sing,(R)[x] aleshores IR(P(X))[X] <e R[x].

Suposem que p(x) e Sing,(/2[x]), provarem que p(x) e Sing, (R) [x] per inducció
sobre el grau de p(x). Si deg(p(o;)) = O aleshores és clar que p(x) e Sing,(.R),
suposem que p(x) = po H h pnx

n té grau n > 0. Per qualsevol a € R existeix
un polinomi diferent de zero q(x) e (-R[z]a n IR[X](P(X))), aleshores el coeficient
de grau més gran de q(x) serà un element de RaCí/n(pn), per tant lR(pn) <e R-
Considerem ara p\(x) = p(x) — pnx

n, Pi(x) € Sing,(/2[x]) que té grau més petit
que n, per tant per hipòtesi d'inducció p\(x] és un element de Sing,(.R)[z] i per
tant també ho és p(x}.

(ü) Observem en primer lloc que

Sing,(Q[,,(.R[z]) n R[x] = Sing,(^[x]).

Suposem ara que a e (Sing¿(Q|,,(.R[:r])) (~\R). Aleshores per qualsevol O =£ r e R,
IQI (R[x])(ci) H Ql

cl(R[x])r T¿ O, per tant existeix p(x)r ^ O tal que p(x)ra = 0.
Tenim doncs que I R (a) H Rr ^ 0. Suposem ara que a e Sing, (R), aleshores
per qualsevol q(x)~1p(x) € Ql

cl(R[x]). Fent inducció sobre el grau de p(x), amb
arguments semblants als utilitzats a (i), es té IR[X](O>) H R[x]q(x)q(x}~^p(x) ^ O
i per tant Singi(Ql

cl(R[x})) (~]R = Singt(R). Llavors (ü) segueix de (i). I

Tenim doncs com a conseqüència d'aquest Lema, de la Proposició 3.11, del
Lema 3.7 i del resultat [77, Corollary XIV.1.3] que esmentàvem abans,

PROPOSICIÓ 3.18. Sigui R un anell tal que Ql
cl(R[x]) existeix i és semiperfecte

autoinjectiu per l'esquerra. Aleshores Ql
cl (R) existeix i és semiperfecte i autoinjectiu

per l'esquerra. I
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3.3. Dimensió de Goldie finita.

Tornem ara als anells de polinomis amb clàssic de quocients injectiu. En
aquesta secció provarem que per un conjunt no buit X, Ql

cl(R[X}) és autoinjectiu
per la dreta i per l'esquerra si i només si R és un ordre en un anell QF, i que si
Q^RlX]) és injectiu com a /?[_X"]-mòdul dreta aleshores R té clàssic de quocients
pels dos costats i aquest ha de ser QF, cf. Teorema 3.19 i 3.23 respectivament.
Aquests resultats estan en la línea del Corol.lari 3.6, d'on suprimim la condició
de que X sigui infinit però exigim condicions d'injectivitat més fortes sobre

Recordem que un anell és diu que té dimensió de Goldie finita per l'esquerra
si no conté sumes directes infinites d'ideals esquerra independents diferents de
zero. Similarment és defineix dimensió de Goldie finita per la dreta. Direm que
R té dimensió de Goldie finita si té dimensió de Goldie finita pels dos costats.
R és diu que és un anell de Goldie per la dreta, si té dimensió de Goldie per la
dreta finita i satisfà condició de cadena ascendent per anul.ladors per la dreta.
De manera similar es defineixen els anells de Goldie per l'esquerra. R és un anell
de Goldie quan ho és per la dreta i per l'esquerra.

El títol de la secció, és degut a que en les demostracions que s'hi fan sempre es
demostra, a partir de les condicions d'injectivitat de l'anell clàssic de quocients
de l'anell de polinomis, que l'anell té dimensió de Goldie finita per un costat.
Observi's que provar aquest fet sempre ens és útil. Si Ql

cl(R[X}) és autoinjectiu
per l'esquerra i R té dimensió de Goldie finita per la dreta, aleshores podem
concloure per la Proposició 3.2 que R és un anell de Goldie per l'esquerra. Si
Ql

cl(R[X}) és autoinjectiu per la dreta i R té dimensió de Goldie finita per
la dreta, llavors per la Proposició 3.18 podem concloure que R té clàssic de
quocients per l'esquerra semiperfecte i autoinjectiu per l'esquerra.

És ben conegut que els anells de Goldie per la dreta semiprimers són precisament
els ordres dreta en anells artinians semisimples, cf. [14, Theorem 1.27], per
demostrar això és fa servir que en un anell de Goldie per la dreta semiprimer un
ideal és essencial si i només si conté un element regular, cf. [14, Theorem 1.10].
També és ben conegut que si un anell és de Goldie per la dreta aleshores N (R),
el nilradical de R, és nilpotent, cf. [14, Theorem 1.35]. En aquesta secció farem
ús constant d'aquests dos resultats.

TEOREMA 3.19. Sigui R un anell. Aleshores les següents afirmacions són
equivalents:

(i) fíï ha un conjunt no buit X tal que Ql
cl(R[X]) existeix i és autoinjectiu

per la dreta i per l'esquerra.
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(ü) fiï ha un conjunt Y tal que Qci(·^P'l) existeix i és un anell QF.
(iii) Per quateevo] conjunt X, Qci(R[X]) existeix i és un anell QF.

DEMOSTRACIÓ: (i) =$> (ü) Haurem demostrat el que volem si veiem que Ql
d (R[x])

autoinjectiu pels dos costats implica que Ql
d (R) existeix i és QF, perquè aleshores

escollint un element x € X i considerant Y = X \ {x} podem concloure que
Qld(R\Y]) existeix i és QF.

Suposem que R és un anell no singular per l'esquerra i que Q^(/l[a;]) existeix
i és autoinjectiu pels dos costats. Aleshores

Ql
d(R[x}) = Ql

max(R[x}) = Qlmax((Qlmax(R}}[x}) ~ Qi/CCQ^axC^M)-

Per ser R no singular per l'esquerra Ql
rnax(R) és un anell regular autoinjectiu per

l'esquerra. Pel Corol.lari 3.5 Qlmax(R) ha de ser artinià semisimple. Aleshores
per [74] Ql

cl(R[x}) és també artinià semisimple, aplicant altra vegada els resultats
de [74] podem concloure que Ql

ci(R) existeix i que és artinià semisimple.
Suposem ara que R és un anell qualsevol tal que Ql

ci(R[x]) existeix i és
autoinjectiu pels dos costats. És ben conegut que Ql

ci(R[x})/J(Ql
ci(R[x])) és un

anell regular autoinjectiu pels dos costats i que J(Ql
cl(R[x})) = Smg^Q^Rlx])) ,cf.

[77, Corollary XIV.1.3]. Pel Lema 3.8 tenim que Ql
cl(R[x])/J(Ql

cl(R[x}}} és
un localitzat per l'esquerra de (R/Smgi(R))[x], però com que un anell regular
autoinjectiu és directament finit, cf. [37, Theorem 9.29], tenim que

Ql
cl(R[x])/J(Ql

cl(R[x})) = Q^R/Smg^R))^})
R/S'mgi(R) és un anell no singular per l'esquerra, pel cas no singular i l'isomorfisme
anterior tenim que R/Singi(R) i (R/Süigi(R))[x] tenen clàssic de quocients per
l'esquerra artinià semisimple. Per tant Qj.2(/2[o;]) és un anell semiperfecte autoin-
jectiu pels dos costats. Per tant per la Proposició 3.18 Ql

ci(R) existeix i és un
anell semiperfecte autoinjectiu per l'esquerra, aleshores pel Corol.lari 3.4 podem
concloure que Q|,;(/2[y]) és un anell QF per tot conjunt Y.

(U) => (iii) és clar a partir del Corol.lari 3.6. 1

Volem remarcar que per treballar aquest cas hem fet servir que QJ.t(jR[a;]) és
autoinjectiu pels dos costats en només dos cops, un per aplicar el Corol.lari 3.5 en
el cas no singular per l'esquerra i l'altre per concloure que Ql

cl(R[x])/J(Ql
cl(R[x]))

és directament finit. Creiem que com a mínim el cas no singular per l'esquerra
s'ha de poder demostrar suposant només que Ql

ci(R[x}) és autoinjectiu per l'esquerra.
Si es demostrés això aleshores es podria concloure per la Proposició 3.18 que R
té clàssic de quocients per l'esquerra semiperfecte i autoinjectiu per l'esquerra.

El següent resultat pot aclarir quina és la situació, si s'intenta demostrar
directament que R té dimensió de Goldie finita per l'esquerra quan Ql

cl(R[x]) és
autoinjectiu per l'esquerra.
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LEMA 3.20. Sigui R un anell tal que Ql
d(R[x}) existeix i és autoinjectiu per

l'esquerra. Aleshores les següents afirmacions són equivalents,

(1) R té dimensió de Goldie finita per l'esquerra.
(2) Siguin p(x) i q(x) elements qualssevol de R[x], amb q(x) un no divisor

de zero. Aleshores existeix n tal que per qualsevol m > n, IR(P(X) —
xmq(x)) = 0.

(3) Siguin p(x) i q(x) elements qualssevol de R[x], amb q(x) un no divisor de
zero. Aleshores existeix n tal que IR(P(X] — xnq(x)) = 0.

DEMOSTRACIÓ: Si p(x) i q(x) són com a l'enunciat de (2), aleshores si considerem
IQ = IR(P(X)) i per n > 1 In = IR(P(X) — xnq(x)) són ideals per l'esquerra

y

independents. Demostrarem això per inducció sobre n. Es clar que /o n I\ = O,
suposem que tenim

Po(x) H h pn(x) = pn+i(x)

on PÍ(X] e li i pn+i(x) e ITI+I. Si multipliquem aquesta igualtat per la dreta
per p(x} — xn+1q(x) obtenim

-xn+1
Po(x}q(x) + (x - xn+1)Pl(x)q(x) + • • • + (xn - xn+l)pn(x)q(x) = O

per ser q(x} un no divisor de zero tenim que

-Xn+l
Po(x) +(X- Xn+l}Pl(x] + • • • + (Xn - Xn+1)pn(x) = O

i ara per hipòtesi d'inducció Pi(x) i per tant també pn+\(x) són zero.
Per veure (1) => (2) cal fer servir que R té dimensió de Goldie finita per

l'esquerra si i només si R[x] també té dimensió de Goldie finita per l'esquerra,
aquest és un resultat degut a Shock [73]. Per tant si R té dimensió de Goldie
finita existeix n tal que per qualsevol m > O, /m = 0.

És clar que (2) => (3). Per veure que (3) =» (2) considerem una successió Jn,
n > O, d'ideals de R per l'esquerra independents i diferents de zero. Aleshores
In = Ql

cl(R[x])Jn és també una successió d'ideals per l'esquerra independents
de (¿¿(Rfe]). Considerem el morfisme f:®n>oln —> Q^fífx]), definit com
f (r) — xnr per tot r e In. Per ser Ql

ci(R[x]) autoinjectiu per l'esquerra tenim
que existeix un element q(x)~lp(x) tal que / ve donada per multiplicació a la
dreta per aquest element. En particular tenim que per qualsevol r € /n, f diferent
de zero, rq(x)~1p(x) — xnr. Com que R[x] és d'Ore per l'esquerra tenim que
existeixen un no divisor de zero q'(x) i un element s diferent de zero, ambdós de
R[x], tais que q'(x)r = sq(x). LLavors q'(x)~1sp(x) = xnr i s(p(x)— xnq(x)) = 0.
Però això contradiu (3), per tant no pot existir a R una successió infinita d'ideals
independents diferents de zero. I
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Seguint amb la mateixa notació que a la demostració de (3) => (2) del resultat
anterior, cal observar que trobem un element s de IR[X](P(X)— xnq(x)) mitjantçant
les solucions de l'equació d'Ore q'(x)r = sq(x). Per fer la demostració podem
suposar de fet que r és un element de Jn, i aleshores arribem a veure que s és
de IR[X\(P(X] — xnq(x)). Això lliga amb la qüestió que plantejàvem a la secció
anterior sobre si es pot trobar una cota pel grau de les solucions de l'equació
d'Ore en funció del grau dels termes implicats. En aquest cas r es pot triar
de grau zero i q(x) és un polinomi fixat, què es pot dir del grau de s?. Si
es pogués trobar una cota podríem concloure que si Ql

cl(R[x}) és autoinjectiu
per l'esquerra aleshores R té dimensió de Goldie finita, perquè s no pot ser de
lR[x](p(x) — xnq(x}), ja que al anar augmentant n arribaríem a una contradicció
degut a que q(x) és un no divisor de zero.

LEMA 3.21. Si R és un anell amb dimensió de Goldie finita per la dreta,
aleshores RR <e Ql

cl(R).

DEMOSTRACIÓ: Hem de veure que per qualsevol element r~1s € Q¿(/£) es
compleix que r~ ^sR H R ^ 0. Això passa si i només si sR D r R ^ O per
qualsevol s e R i per qualsevol no divisor de zero r de R. Si sR D rR = O,
aleshores els ideals /„ = rnsR, formen una família d'ideals dreta independents,
en conseqüència existeix n tal que 7m = O per qualsevol m > n. Per ser r un
element regular, tenim que s = 0. Podem concloure doncs que R <e Q

l
cl(R), I

PROPOSICIÓ 3.22. Sigui R un anell amb dimensió de Goldie finita per la dreta,
tal que Ql

cl(R) esixteix i és un anell Q F que és injectiu com a R-mòdul per la
dreta. Aleshores Qr

ci(R) existeix.

DEMOSTRACIÓ: Com que R té dimensió de Goldie per la dreta finita, pel Lema
3.21 RR <e Ql

cl(R) i per ser Ql
d(R] QF, E(RR) Sa Ql

d(R). Volem provar que
E(RR) SÉ Qr

max(R). Considerem

H = EudR(E(RR)) s

Ara l'anell maximal de quocients per la dreta de R és l'anell d'endomorfismes
de l'envolcall injectiva vista com a /f-mòdul per l'esquerra i per tant en el nostre
cas isomort' a Ql

cl(R). En particular el maximal de quocients és injectiu i isomorf
a E(RR) , tal com volíem veure.

= J(Ql
d(R)) = N(Ql

d(R-))

J(Ql
ci(R))r]R =
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on N(Ql
cl(R}} i N (R) denoten el nilideal maximal de Ql

ci(R) i R respectivament,
cf. [77, Corollary XV.3.2]. Si apliquem ara un resultat de Tachikawa, cf. [77,
Proposition XV.3.3] podem concloure que Ql

ci(R) és també un ordre per la dreta.

Demostrarem tot seguit que si Ql
cl(R[X]) és injectiu con a ,R[X]-mòdul per

la dreta, aleshores no tan sols aquest ha de ser QF sino que a més el clàssic
de quocients per la dreta també existeix. Si comparem aquest resultat amb el
Corol·lari 3.6 i el Teorema 3.19, la demostració de que el clàssic de quocients per
la dreta existeix és una novetat. Amb les hipòtesis dels resultats esmentats això
no és cert. Per exemple si agafem R, un domini d'Ore per l'esquerra i no per la
dreta, llavors per qualsevol conjunt X, existeix Ql

cl(R[X]) i és un anell de divisió
per tant QF. Però no existeix el clàssic per la dreta de

TEOREMA 3.23. Sigui R un anell, aleshores les següents afirmacions són
equivalents,

(i) HÍ ha un conjunt no buit X tal que Ql
cl(R[X}) existeix i és injectiu com

a R[X]-mòdul per la dreta.
(ü) Hi ha un conjunt Y tal que R[Y] té clàssic de quocients pels dos costats

i aquest és un anell QF.
(iii) Per qualsevol conjunt X, R[X] té clàssic de quocients pels dos costats i

aquest és un anell QF.

DEMOSTRACIÓ: (¿) => (ü) Sols cal demostrar que si Ql
cl(R[x]) existeix i és

injectiu com a n[x]-mòdul per la dreta aleshores .R té clàssic de quocients pels
dos costats i aquest és QF, ja que per un conjunt qualsevol X és suficient agafar
un element x € X i fer Y = X \ {x}, .

Suposem que / i , /2, . . . , / n , - • • és una successió d'ideals per la dreta de R
independents, aleshores IiR[x],l2R[x},... és una successió d'ideals per la dreta
de R[x] independents. Podem definir un morfisme

tal que si p(x) e InR[x] aleshores f(p(x)) = xnp(x). Com que Q^Rfe]) és
R [x] injectu per la dreta, / ve donada per multiplicació per l'esquerra per algún
element q(x)~lp(x) e Ql

cl(R[x}). Per tant tenim que per qualsevol n, p(x)In =
q(x)xnln. Però si agafem n > deg(p(x)) això implica que In = 0. Per tant R no
conté sumes directes infinites d'ideals per la dreta. Si R té dimensió de Goldie
per la dreta finita aleshores per un resultat de Shock [73] R[x] també té dimensió
de Goldie finita per la dreta. Per tant pel Lema 3.21, R[x] <e Ql

cl(R[x]) com a
R[x] mòduls dreta i aleshores Ql

cl(R[x}) = E(R[X]R[X}) és un anell semiperfecte
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[77, Proposition XIV. 1.7]. Per la Proposició 3.2 tenim que R satisfà condició de
cadena ascendent per anul.ladors dreta, com que a més té dimensió de Goldie
finita tenim per [14, Theorem 1.35] que el nilradical de R, N(R) és nilpotent. Per
tant J(R[x]) = N(R)[x] és nilpotent, cf.[l]. Com que R[x] té clàssic de quocients
per l'esquerra semilocal, podem concloure per [71, Exercise 6, pàg. 444] que de
fet aquest clàssic és semiprimari i que J(Ql

cl(R[x])) D R[x] = N(R)[x]. Per la
Proposició 3.8 i el Lema 3.7, tenim que Ql

ci(R) existeix, és semiprimari i injectiu
com a .R-mòdul per la dreta. Ara aplicant el Corol.lari 3.4 Ql

cí(R) és QF.
Si apliquem, ara la Proposició 3.22 obtenim que R té clàssic de quocients pels

dos costats i que aquest és un anell QF.
(U) => (Ui) Es clar a partir del Teorema 3.1. 1

3.4. Aplicacions.

Tots els nostres resultats és poden reescriure en termes de l'anell de grup RG
sobre un grup abelià lliure, ja que si G té una base X aleshores RG és pot veure
com una localització central de R[X], cf. [69].

COROL.LARI 3.24. Sigui R un anell, aleshores les següents afirmacions són
equivalents

(i) Hi ha un grup abelià lliure G ̂  0, taJ que Ql
cl (RG) existeix i és autoinjectiu

per la dreta i per l'esquerra.
(U) fíï ha un grup abelià lliure F tal que Ql

cl(RF) existeix i és un anell QF.
(ui) Per qualsevol grup abelià lliure G, Ql

cl(RG] existeix i és un anell QF.
(iv) Existeix un grup abelià lliure G amb base infinita tal que Ql

cl(RG] és
autoinjectiu per l'esquera.

(v) Existeix un grup abelià lliure G amb base infinita tal que Ql
cí(RG) és

autoinjectiu per la dreta.

Cal observar que si Ql
cl(R[X}) és injectiu com a mòdul dreta sobre un localitzat

central de R[X] aleshores també és injectiu com a .R[X]-mòdul dreta.

COROL·LARI 3.25. Sigui R un anell aleshores les següents afirmacions són equi-
valents,

(i) Hi ha un grup abelià lliure G ^ 0 tal que Ql
cl(RG) és injectiu com a

RG-mòdul dreta.
(ü) Hi ha un grup abelià lliure F tal que RF té clàssic de quocients pels dos

costats i aquest és QF.
(iii) Per qualsevol grup abelià lliure G, RG té clàssic de quocients per les dues

bandes i aquest és QF.
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La nostra recerca sobre anells de polinomis amb clàssic de quocients injectiu va
ser motivada per una pregunta de Carl Faith, sobre quan un anell de polinomis
podia ser FPF. En general és una pregunta oberta si els anells FPF per la
dreta tenen clàssic de quocients per algun costat i si aquest és a més injectiu [33,
Question 6]. Ja hem vist que això és cert en el cas commutatiu i en el semiprimer,
cf. Teorema 1.15 i el Teorema 1.17. Els nostres resultats anteriors ens serviran
per caracteritzar quan R[X] és FPF, amb R commutatiu o semiprimer. També
amb les mateixes tècniques podrem caracteritzar quan RG és FPF, on G és un
grup abelià lliure i R és o commutatiu o semiprimer.

LEMA 3.26. Sigui R un anell. Si per qualsevol a E R, l'ideal dreta aR[x]+xR[x]
genera la categoria dels R[x] mòduls dreta aleshores

(i) El centre de R és un anell regular.
(ü) Si a és un no divisor de zero per l'esquerra de R, aleshores RaR = R.

DEMOSTRACIÓ: (i) Sigui a un element central de R. Com que l'ideal J = a/?[x]+
xR[x] és un generador i està generat per elements centrals per la proposició
1.8 és projectiu. Per tant existeixen /i,/2 elements de Hom^] ( / , R [ x ] ) tais
que per qualsevol b E I, b = a f i (b) + xfa(b}. En particular per ax tenim
ax = a/i(x)a+x2/2(a), igualant els coeficients de grau 1 d'aquesta igualtat tenim
que ara = a per un cert element r E R. Si agafem z = rar és clar que aza — a,
es pot provar que a més z és central, cf.[37, Theorem 1.14 (demostració)].

(ü) Suposem ara que a és un no divisor de zero per l'esquerra de R. Considerem
l'ideal / = aR[x] + xR[x]. Tenim que per qualsevol / E Hom^^/,R[x}),
f(o.)x = f ( x ) a . Com que a és un no divisor de zero per l'esquerra el coeficient
de grau zero de f (x) és zero. Com que I és un generador existeixen f\,..., fn i
9i, • • • ,9n elements de Horn/^^/, R[x}) tais que

f i ( a ) p i + h fn(a)pn + 9\(x)qi + l· gn(x}qn = 1

per uns certs elements pi , . . . ,pn i ç i , . . . , qn de R[x], Per les remarques anteriors
tenim que

fi(x)api -\ h fn-i(x)apn-i =x- x2q(x)

per un cert q(x) E R[x]. Per tant el coeficient de grau 1 d'aquesta igualtat ens
està dient que RaR = R. I

COROL.LARI 3.27. Sigui R un anell diferent de zero tal que és o commutatiu o
no singular per la dreta i X un conjunt no buit. Aleshores una condició necessària
i suficient per a que R[X] sigui FPF per la dreta és que X = {x} i R sigui artinià
semisimple.



I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.4- Aplicacions 61

DEMOSTRACIÓ: Suposem que R[X] és FPF per la dreta, pel Lema 1.29 sabem
que R és FPF per la dreta. Escollim x e X i considerem (R[X \ {x}])[x}. Pel
lema 3.4 el centre de R[X \ {x}] és un anell regular. Per tant X = {x}.

Suposem que R és commutatiu, com que el clàssic de quocients de R[x] és
autoinjectiu, cf Teorema 1.15, pel Corol·lari 3.5 R és un producte finit de cossos.

Si R és no singular per la dreta aleshores és semiprimer, si fem servir la
caracterització dels FPF per la dreta semiprimers del Teorema 1.16 i el Teorema
3.23 podem concloure que R és un ordre per la dreta i per l'esquerra en un anell
artinià semisimple. Per tant R és un anell FPF per la dreta que és de Goldie
per la dreta i per l'esquerra. Per veure que R és el seu propi clàssic de quocients
provarem que per qualsevol no divisor de zero a e R, aR = R. Sabem que R és
acotat per la dreta per tant aR <e R conté un ideal bilàter J que és essencial
com a ideal dreta, per tant J conté un no divisor de zero 6, cf. [14, Theorem
1.10], i pel Lema 3.26 R = RbR <e aR. Per tant aR — R tal com volíem veure.

Si R és artinià semisimple aleshores R[x] és FPF, [33, Proposition 4.13]. I

Donarem ara un resultat anàleg al Lema 3.26 que ens portarà a les mateixes
conclusions per anells de grup FPF on el grup és un grup abelià lliure.

LEMA 3.28. Sigui R un anell, Z e] grup dels enters generat per un element x. Si
per qualsevol element a Ç. R, l'ideal dreta aRl + (1 — x)RI genera la categoria
dels Rï mòduls dreta aleshores

(i) E] centre de R és un anell regular.
(ü) Si a és un no divisor de zero per l'esquerra de R, aleshores RaR = R.

DEMOSTRACIÓ: (i) Sigui a un element central de R. Com que l'ideal / = aRI.+
(1 — x)Rl és projectiu, com al Lema 3.26 tenim que

a(l -x) = o/i(1 - x)a + (1 - x } 2 f 2 ( l - x)

per uns certs f i , f2 elements de Hom#z(/,RZ). Existeix un n tal que

o(l - x)xn = o/i(l - x)axn + (1 - z)2/2(l - x)xn e R[x],

però els elements (1 — x), (1 — x)2,..., (1 — x)n,... formen una base de R[x],com
a R- mòdul lliure. Igualant els coeficients en (I—x) de l'equació anterior, podem
concloure que existeix un r € R tal que ara = a. Com al Lema 3.26 tenim doncs
que el centre de R és regular.

(n) Suposem ara que a és un no divisor de zero per l'esquerra de R. Considerem
l'ideal / = aR2+ (1 —x}R~i. Ara la prova va com al Lema 3.26, sols cal observar
que per qualsevol / € Hom#z(/, RT) tenim que /(a)(l — x) = f (I — x)a. Per
tant com que a és un.no divisor de zero per l'esquerra /(I — x) és un element de
l'ideal d'augmentació de RZ. I
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COROL·LARI 3.29. Signi R un anell diferent de zero, tal que és o commutatiu o
no singular per la dreta i G un grup abelià lliure diferent de zero. Aleshores RG
és FPF per la dreta si i només si G = Z i R és artinià semisimple.

DEMOSTRACIÓ: Per veure que és una condició necessària ho podem fer com al
Corol·lari 3.27.

Per demostrar que és suficient és pot veure com a conseqüència del Corol.lari
3.27 i de que un localitzat central de un FPF continua sent FPF. I
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Capitol 4.

Anells de sèries formals amb clàssic

de quocients injectiu

4.1. Divisors de zero en l'anell de sèries formals.

En l'anell de polinomis sobre un anell commutatiu, els elements que no són
divisors de zero estan ben caracteritzats pel Lema de McCoy, com els polinomis
tais que els seus coeficients generen un ideal fidel. Aquest resultat no s'estén
a l'anell de sèries formals sobre un anell commutatiu, tal com prova el següent
exemple.

EXEMPLE 4.1. [9, Example 1 pàg.6] Existeix un anell commutatiu R tal que
.R [z J conté un polinomi mònic de grau 1 que és un divisor de zero a #[zj.

DEMOSTRACIÓ: Sigui K un cos commutatiu, considerem l'anell

sigui / l'ideal generat per yzç, i els elements {zi + yzi+i}^.0. Definim R =
K(y, {zi}^0]/I, sigui ÜQ = y ibi = Zi aleshores és clar que (ao + x)(E~06¿rE t) = O
a Rlx]. I

Existeixen resultats anàlegs al lema de Me Coy per anells de sèries, en els
casos en que R és un anell commutatiu semiprimer o noetherià cf. [9]. Tot seguit
demostrarem aquest resultat en el cas semiprimer i el farem servir al llarg del
capítol sense referència explícita.

PROPOSICIÓ 4.2. [9, Theorem 8] Sigui R un anell commutatiu sense elements
nilpotents. Si a i b són elements de R{x^ tais que ab = O, aleshores qualsevol
coeficient de b anuí. la a.

DEMOSTRACIÓ: Sigui P un ideal primer de R, aleshores P[a;J és un ideal primer
de R{xl- Tenim doncs que o bé a és de PjxJ o bé 6 és de P\x\. En particular
si a¿ és un coeficient arbitrari de a i b j és un coeficient arbitrari de 6, tenim que
dibj e P. Sigui / l'ideal generat pels coeficients de a i J l'ideal generat pels
coeficients de 6. Tenim que U G P per qualsevol ideal primer P de R però com
que R no té elements nilpotents U = 0. 1

Sigui R un anell commutatiu i Qci (R) el seu clàssic de quocients. Hom podria
esperar que Qc/(-^IxI) = Qd(Qd(R)lxl), la situació però no és així, en general
no és cert que Qc¿(/Í)[x] C Qci(R^x]). El següent resultat il·lustra aquest fet.

63
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TEOREMA 4.3. [9, Theorem 30 pag. 42] Sigui R un domini d'integritat commu-
tatiu i sigui a un element diferent de zero de R. Si ÏÏ^L^R = 0, aleshores el
clàssic de quocients de -R [f] té grau de transcendència infinit sobre Qci(Rlx}). I

4.2. Anells Ko-injectius i Ko-algebraicament compactes.

Per un sistema numerable d'equacions lineals S per la dreta sobre un anell
R volem dir un sistema del tipus AX = B, on A és una matriu KQ x KQ amb
les components de R i en la qual les files tenen totes les components zero llevat
d'un nombre finit, X és una columna amb un conjunt numerable d'incògnites
X Q , X I , . . . ,xn, . . . , i B és també una columna amb un numerable d'elements
de R. Un sistema numerable d'equacions lineals per la dreta S direm que és
finitament resoluble a R si qualsevol subsistema finit de S té solució a R. Un
anell R és diu que és iïo-algebraicament compacte per la dreta si tot sistema
numerable d'equacions lineals per per la dreta de R que és finitament resoluble
és resoluble. De manera anàloga es defineix Ko-algebraicament compacte per
l'esquerra. Direm que R és Ko-algebraicament compacte si ho és pels dos costats,
c. f. [9] per aquestes definicions.

Un anell R és diu que és ^o-injectiu per l'esquerra si satisfà el criteri de Baer
per ideals per l'esquerra de R comptablement generats. Anàlogament definirem
Ko-injectiu pe; la dreta. Direm que R és Ko-injectiu si és Ko-injectiu pels dos
costats. Quan l'anell R és regular, la condició de ser Ko-algebraicament compacte
per la dreta és equivalent a Ko-injectiu per l'esquerra, tal com provarem en el
següent resultat. Val a dir que la demostració que donem d'aquest fet és gairebé
la mateixa que la que apareix a [9, Theorem 42] pel cas en que R és un anell
regular commutatiu.

PROPOSICIÓ 4.4. (Essencialment a [9, Theorem 42]) Sigui R un anell regular.
Aleshores R és Ko-injectiu per l'esquerra si i només si R és Ko-aJgebraicament
compacte per la dreta.

DEMOSTRACIÓ: Si R és un anell regular que és Ko-algebraicament compacte per
la dreta aleshores és clar que és també Ko-injectiu per l'esquerra. Demostrar
que R satisfà el criteri de Baer per ideals esquerra comptablement generats,
és equivalent a resoldre un sistema numerable d'equacions lineals per la dreta.
Aquest sistema en el cas d'un anell regular sempre és finitament resoluble. Per
tant R és Ko-injectiu per l'esquerra.

Suposem doncs que R és un anell regular Ko-injectiu per l'esquerra. Considerem
el sistema numerable

00

Ln = y ^ Q-riiXi = bi per n > 1
¿=i
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tal que cada subsistema finit té solució. Per cada subsistema les solucions
s'obtenen sumant les solucions del sistema homogeni a una solució particular.
Com que R és un anell regular les solucions d'un sistema d'equacions lineal finit
homogeni per la dreta són un .R-mòdul per la dreta finitament generat, c. f. [37,
Lemma 2.1]. Si considerem el subsistema LI, . . . ,Ln, tenim en particular que
les solucions de la primera coordenada x\ del sistema homogeni formen un ideal
pricipal de R de la forma (1 — en)R on en és un idempotent de R. Si tornem ara
al sistema inicial, tenim que per cada subsistema finit LI, . . . , Ln, les solucions
de x\ són de la forma enctn + (1 — en)R, on enan és una solució particular i
(1 — 6i)(l — GJ} — 1 — ej per i < j. Sigui J = Un>i-Ren, i considerem el morfisme
de .fí-mòduls per l'esquerra /: / — > R tal que f(en) = enan. Per la definició de
enan i perquè Rei Ç Ren per i < n, és fàcil veure que / està ben definida. Per
ser R Ko-injectiu per l'esquerra, existeix a 6 R tal que f(en) = ena. Per tant
x i = a és solució de qualsevol subsistema finit del nostre sistema.

Fem ara inducció, suposem que hem trobat u;i,...,o;n elements de R que
es poden agafar com les n primeres solucions de qualsevol subsistema finit.
Considerem el sistema

oo n

y ^ aiiXi = bi — y aiiOii per / > 1.
i=n+l ¿=1

Si apliquem ara l'argument anterior obtenim un element an+i 6 R tal que
QI, . . . ,an+i és poden agafar com les n + 1 primeres solucions de qualsevol
subsistema finit.

Si agafem ai, . . . , an+i, . . . és clar que són solució de tot el sistema. Per tant
R és Ko-algebraicament compacte per la dreta. 1

La següent proposició dóna una manera de construir anells Ko-algebraicament
compacte. Aquest resultat va sorgir d'una conversa amb P. Ara on em va fer
notar una remarca de Handelman [43, pàg. 237], en la que diu que un resultat
anàleg a aquest és ben conegut en el context de grups abelians.

PROPOSICIÓ 4.5. Sigui S un anell i R = SN/S^ . Aleshores R és Ko-aJgebraica-
ment compacte.

DEMOSTRACIÓ: Sols cal demostrar que R és Ko-algebraicament compacte per
la dreta, ja que aleshores per simetria tindrem que R és Ko-algebraicament
compacte. Sigui TT: SN — > R la projecció canònica. Considerem un sistema
numerable d'equacions lineals a R AX — B, que sigui finitament resoluble. Si
el sistema és finit no hi ha res a demostrar, suposem doncs que hi ha infinites
equacions.
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Per hipòtesi per cada n > 0 existeix una successió d'elements (y?), on yj1 e R,
que són solució de les n primeres equacions. Fixem matrius A, B i y? amb
coeficients a S***, tais que ir(A) = A, ir(B) — B i ^(yj1) = y?. Si considerem
ara els subsistemes de les n primeres equacions del sistema AX = B de SN , per
la definició de R existeix kn e N, tal que per cada i les components de y" que
estan en una posició més avançada que kn són solució del sistema component
a component. Podem suposar que 1 < k\ < k% < • • • < kn < — Construïm
inductivament els següents elements j/¿ e 5N, per cada j/¿ les components des de
1 fins a ki — 1 són zero, si n > 1 les components des de kn fins a fcn+i — 1) són
les components de y" que estan en aquesta posició. Si considerem y¿ = 7r(y¿), és
clar per construcció que la successió (y¿) és solució del sistema AX — B. Hem
demostrat doncs que R és No-algebraicament compacte per la dreta. I

Cal observar que en la proposició anterior si per exemple agafem S un domini
commutatiu que no sigui un cos, R és un anell No-algebraicament compacte que
no és No-injectiu. En particular tenim que la Proposició 4.4 no és certa per
anells no regulars. El problema està en que els sistemes que s'han de resoldre
per provar que R és Ko-injectiu en general no són finitament resolubles.

Si R és un anell regular el conjunt dels ideals per la dreta principals és un
reticle, que denotarem per L(Rfí). R és diu que és Ko-complet superiorment
(inferioment) si tot subconjunt numerable de L(Rpi) té un suprem (ínfim) a
L(RR) i és diu que és iïo-complet si és complet superiorment i inferiorment. En
un anell regular R Ko-complet, el suprem i el ínfim d'una família numerable de
{eiR} Ç L(RR) venen donats per

y CiR = rRlfi({eiR}) i f\eiR = r#({e¿.R}).

Si un anell regular No-complet superiorment satifà

A A (VBi) = V(A A BÍ]

per qualsevol A e L(Rn) i tota família numerable ascendent {Bi} de L(Rn),
es diu que és HQ- continu per la dreta . La condició de ser No-continu per la
dreta és equivalent a que tota família numerable faR} de L(RR) sigui essencial
al seu suprem. Similarment es defineixen els anell No-complet i No-continu per
l'esquerra. Direm que un anell regular és Ko-complet o Ko-continu si ho és pels
dos costats.

Per un anell commutatiu R una condició necessària i suficient per a que R[x]
sigui de Bezout és que l'anell R sigui regular, aquesta condició és també necessària
i suficient per a que l'anell R[x] sigui semihereditari. Si considerem el mateix
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problema per l'anell R\x\ on R és un anell commutatiu, també tenim que l'anell
R ha de ser regular però per a que R[x] sigui de Bezout haurem de menester
que R sigui Ko-injectiu. Per caracteritzar els anells -de sèries formals que són
semihereditaris necessitem que R sigui regular No-injectiu i No-complet. Els
següents resultats expliquen aquests fets.

TEOREMA 4.6. [9, Theorem 42] Sigui R un anell commutatiu, aleshores les
següents afirmacions són equivalents.

(1) R és un anell regular iïo-algebraicament compacte.
(2) R és un anell regular Ho-injectiu.
(3) R[xl és un anell de Bezout.
(4) La dimensió global feble de R^x] és 1. 1

TEOREMA 4.7. [9, Theorem 43] Sigui R un anell commutatiu, aleshores les
següents afirmacions són equivalents.

(1) R és un anell regular No-injectiu i Ko-compJet.
(2) R[x] és un anell de Bezout en el qual els ideals principals són projectius.
(3) R[xl en semihereditari. I

En el capítol cinquè generalitzarem aquests resultats al cas no commutatiu.
Volem donar però la demostració d'un fet que està implícit en la demostració
del Teorema 4.6 i que utilitzarem després molt freqüentment, de tota manera
remarquem que ho farem en un context una mica més general que el de [9].

Sigui R un anell i a un automorfisme de R. Aleshores podem considerar l'anell
de sèries formals skew R{x, aj que té per elements X^o xn<1ni l'operació aditiva
és la suma component a component. El producte és el producte de convolució
habitual seguint la regla ax = xa(a) = xaa. En general suposarem que R és
un anell commutatiu i a un automorfisme de R que deixa fixes els idempotents
centrals.

LEMA 4.8. Sigui R un anell regular commutatiu ^.Q-injectu i a un automorfisme
que deixa fixes els idempotents. Tot element a(x) de R{x, a J s'escriu de la forma
a(x) = e(x)u(x) = u'(x)e(x}. on c(x) = Z%L0x

nen per certs en idempotents
ortogonals de R i on u(x) i u' (x) són unitats de R[x, a]. '

DEMOSTRACIÓ: Sigui a(x) un element de #[z,a], a(x) = xi(Y^=0x
nan). Si

ao és una unitat de R aleshores l'enunciat del lema és trivial, ja que per obtenir
la descomposició que busquem posem e(x) = x1 i u(x) — S^Lo3-"^- Podem
suposar doncs que ao no és una unitat.
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Per ser R un anell regular commutatiu per cada an existeix una unitat rn

de R tal que anrnan = an, per tant anrn = fn = f%. Definim ara els en

induct i vament, posem CQ = /o i en = (1 — (Y%=o et))/n-
Hem de veure que existeix una sèrie u(x) tal que a(z) = e(x)u(x). Si desenvolupem

aquesta igualtat i igualem els coeficients del mateix grau obtenim que hem de
resoldre un sistema numerable S d'equacions lineals sobre R. Aquest sistema per
la Proposició 4.4 és resoluble si i només si és finitament resoluble. Per veure això,
donat que la família en està formada per idempotents ortogonals, és suficient
demostrar que a(x] = (eo+(l - eo)a(x))r(x) per un cert r(x) de R\x, a\. Podem
escriure a(x) = eoa(x) + (1 — eo)a(x) on eoa(x) és una unitat de eoReo[x,a],
existeix una unitat r(x) de n[a;, a] tal que a(x) = eor(z) + (1 — eo)a(x)r(x).
Podem concloure doncs que existeix u(x] e R\x\ tal que a(x) = e(x)u(x).

Per acabar la demostració hem de veure que podem triar u(x) invertible o
equivalentment que el terrne de grau zero WQ, de u(x) es pot triar de tal manera
que sigui un element invertible de R. Fent el mateix raonament que en el paràgraf
anterior es pot veure que existeix v(x) € Rlx, a] tal que a(x)v(x) = e(x), tenim
doncs que e(z)(l — u(x)v(x)) = 0. Sigui r un element de R tal que UQTUQ = UQ
i sigui / = u0r. Per qualsevol n, ene(x)(l - u(x)v(x))(l - /) = en(l - /) = O,
per tant e(x}(\ — /) = O i u(x) + (! — /) és la unitat que buscàvem.

Per veure la descomposició a(z) = u'(x)e(x), podem procedir igual que abans.
Cal utilitzar que els idempotents queden fixes per o; i que

00 00

a i T i — T* f \ T n i — í > n T 11*\JiiJ — JU ^ 7 JL> Ufl) — \ / u» Ju jJL, .

n—O n=0

Estem ara en condicions de donar una caracterització dels elements regulars
de R[x,a].

LEMA 4.9. Sigui R un anell regular commutatiu ÜQ-injectiu i a un automorfisme
de R que deixa fixes els idempotents de R. Un element a(x) e R{x, aj és regular
si i només si l'ideal que generen a R els seus coeficients és fidel.

DEMOSTRACIÓ: Si a(x) no és divisor de zero de -R[z,Q!]] és clar que l'ideal de R
generat pels seus coeficients és fidel.

Sigui a(o;) = Y^=oxn<ln ^ <lue rR^ = O on / = E^0aj/Ï. Suposem que
existeix b(x) e R{x, aj tal que a(x)b(x) = 0. Pel Lema 4.8 sabem que a(x) =
u(x)e(x) i b(x) = f(x)v(x) on u(x] i v(x) són unitats. Per tant e(x)f(x) = O,
d'on en/m = O per qualssevol n i m. Com que / = ®n>oen-n, / és un ideal fidel i
podem concloure que f (x) = b(x} = 0. Això demostra que a(x) és un no divisor
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de zero per la dreta, per veure que no és divisor de zero per l'esquerra podem
fer un raonament anàleg. I

LEMA 4.10. Sigui R un anell regular commutatiu ÜQ-injectiu i a un automor-
fisme de R que deixa fixes els idempotents. Aleshores R[x,a¡ és un anell d'Ore
pels dos costats.

DEMOSTRACIÓ: Siguin r(x) i a(x) elements de fí[z, a], suposem que r(x) és un
no divisor de zero. Pel Lema 4.8 tenim que r(x) = e(x}u(x] i a(x) = f ( x ) v ( x )
on u(x) i v(x) són unitats i on e(x) i f (x) commuten entre sí. Tindrem doncs
que a(x)v(x)~1e(x) = f(x)e(x) = r(x)u(x)~lf(x), per altra banda és clar que
r(x) és un no divisor de zero si i només si e(x) ho és, per tant podem concloure
que Rlx, a] satisfà la condició d'Ore per la dreta. Per veure que també la sàtira
per l'esquerra es pot fer un raonament anàleg. I

4.3. Anells de sèries formals amb clàssic de quocients regular.

El següent lema ben conegut caracteritza els anells commutatius amb clàssic
de quocients regular.

LEMA 4.11. Sigui R un anell commutatiu, aleshores Qci(R) és regular si i només
si per qualsevol element a de R existeix un element b € r#(a) tal que a+ b no és
divisor de zero.

DEMOSTRACIÓ: Suposem que R té clàssic de quocients regular, aleshores R no
té elements nilpotents i per tant és un anell semiprimer. Sigui a un element de R,
per hipòtesi sabem que existeix cd~l tal que acd~1a = a, per tant (ac — d)a = 0.
Sigui b = ac — d, llavors a + b no és divisor de zero ja que si (a + b)s = O
aleshores sa = — sb e aR n r#(a), i per ser R semiprimer sa = — sb = 0. Però
sb = s(ac — d) — —sd = O, com que d no és un divisor de zero s = 0.

Suposem ara que per qualsevol element a de R existeix 6 € rfi(a) tal que a + b
no és divisor de zero. Tenim aleshores que (a + b)(a+ b)~la = a2(a + ò)""1 = a,
per tant Q¿L (R) és un anell regular. I

Sigui R un anell commutatiu direm que un ideal 7 de R és essencialment
comptablement generat si existeix un ideal J, J <e /, tal que J és comptablement
generat.

LEMA 4.12. Sigui R un anell commutatiu, aleshores Qci(Rlx}) és regular si i
només si R és semiprimer i tot ideal comptablement generat de R té anul.lador
essencialment comptablement generat.
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DEMOSTRACIÓ: Suposem que QcK-^I^I) és regular, com a conseqüència R i fi [x J
són semiprimers. Sigui (a^) un ideal comptablement generat de R, considerem
la sèrie

oo

a i T i ~~~ » fi T*\-L) — / ^ "n·*'

n=0

com que Qcí(RIxÍ) és regular, pel lema anterior sabem que existeix b(x) €
rfí[Ij(a(o;)) tal que a(x) + b(x) no és un divisor de zero. Sigui b(x) = ]C^Lo k»xn

per la Proposició 4.2 bn € rfí({an}), per tant tenim que (an) ffi (6n) <e R i com
que per altra banda (an) © rR(an) <e R concloem que (bn) <e r#({an}).

Suposem ara que R és un anell semiprimer que satisfà que l'anul.lador d'un
ideal comptablement generat és essencialment comptablement generat. Sigui
a(x) e R[xl, considerem l'ideal I generat pels coeficients de a(x), ai. Sabem
que existeix un conjunt numerable de òj tal que (6¿) <e rfl({ai}), sigui 6(2) =
]C^Lo °nxTl') aleshores com que R és un anell semiprimer a(x) + b(x) no és
un divisor de zero de í2|x|. Per tant pel lema anterior podem concloure que

f ) és un anell regular. I

En particular obtenim el següent corol·lari.

COROL·LARI 4.13. Sigui R un anell regular commutatiu. Aleshores
és regular si i només si Qci(B(R)lx]) ho és. I

Donarem ara un exemple per veure que la condició de que els anul.ladors
d'ideals comptablement generats siguin essencialment comptablement generats
no implica que els anul.ladors d'ideals comptablement generats siguin comptablement
generats.

LEMA 4.14. Sigui K un cos commutatiu i R = KN, sigui M un ideal maximal
de R que conté K^ la suma directa numerable de K, aleshores M no és
comptablement generat.

DEMOSTRACIÓ: Considerem B(R) l'àlgebra de Boole de R. B(R) el podem
identificar amb el conjunt de totes les parts de N, via l'aplicació que fa correspondre
a cada idempotent el seu suport, és a dir el conjunt de les seves components
diferents de zero. Aleshores per a cada A C N i ideal maximal M tenim que M
conté un idempotent amb suport A o amb suport N \ A.

Sigui ara M un ideal maximal de R que conté la suma directa. Primer veurem
que no pot ser rmitament generat. Suposem que /i,...,/n són idempotents
ortogonals generadors de M. Sigui AÍ el suport de /¿, si considerem A = AiU- • -U
An, tenim que A no pot ser tot N ja que si no l'ideal seria tot R, per altra banda
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el suport de qualsevol idempotent de M ha d'estar contingut dins de A però això
és impossible si M conté la suma directa. Suposem que M és comptablement
generat i que M = E^/t-fi, per uns certs idempotents ortogonals /¿ diferents
de zero. Per cada fi sigui AÍ el seu suport, considerem A = U~1A2i. A no
pot ser el suport de cap idempotent de M, ja que aquest s'hauria d'escriure
com a combinació lineal finita de /¿, però pel mateix motiu N \ A tampoc pot
ser el suport de cap element de M. Això contradiu el fet de que M pugui ser
comptablement generat. I

EXEMPLE 4.15. Existeix un anell regular commutatiu R tal que els anul.ladors
d'ideals comptablement generats són essencialment comptablement generats però
no són tots comptablement generats.

DEMOSTRACIÓ: Sigui K un cos commutatiu i sigui S = K** el producte de K
un numerable de vegades. Definim dins de S els idempotents en com els que
tenen un 1 a la, component n-èssima i zero a totes les demés. Si considerem
l'anell U^L^nS, podem considerar dins d'aquest anell un ideal maximal M
que contingui la suma directa de e^, hem provat abans que M no pot ser
comptablement generat dins de U^^iS. Observem que com a ideal de 5,
M tampoc és comptablement generat.

Definim ara R com un subanell de 5" de la següent manera, R = K^ +
M + K, on K el pensem dins de S com les successions constants. Cal observar
que ©^L^n-R <e R, d'aquí podem concloure que tot ideal és essencialment
comptablement generat. Sigui / = ©^L^n-i-R, aleshores r#(7) = M que no és
comptablement generat. I

4.4. Injectivitat del clàssic de quocients de l'anell de series formals.

En el capítol anterior hem vist que la condició d'injectivitat sobre el clàssic de
l'anell de polinomis R[x], implica condicions molt restrictives per l'anell R. En
aquesta secció veurem que la situació és una mica millor en el cas de l'anell de
sèries formals sobre un anell commutatiu semiprimer.

TEOREMA 4.16. Sigui R un anell commutatiu regular autoinjectiu i a un auto-
morfisme de R que deixa fixes els idempotents de R. Aleshores R{x, aj té clàssic
de quocients pels dos costats i aquest és regular autoinjectiu.

DEMOSTRACIÓ: Pel Lema 4.10 l'anell Í2[a;, Q] satisfà la condició d'Ore pels dos
costats, per tant té clàssic de quocients pels dos costats. La demostració de que
aquest clàssic és injectiu la farem en varios passos.

PAS 1. Qd(Rlx,Cíl) és un anell regular. A més per qualsevol a(x) e íl|x,o;]
podem triar u e Qci(R\x, aj) tal que a(x)ua(x) — a(x) i a(x)u = ua(x) és un
element de B (R).
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Sigui a(x) un elements de R[x., a¡. Si a(x) és un no divisor de zero aleshores
el resultat és clar. Suposem doncs que a(x) = Y^=oxTlan és un divisor de
zero, com que R és regular autoinjectiu r«(ao, . . . ,an, . . . ) = eR per un cert
idempotent e e B(R}. Pel Lema 4.9 v — a(x) + e és un no divisor de zero de
Rlx, aj. Tenim aleshores que (a(x) + e)v~la(x) = a(x) = a(x)v~la(x), per tant
Qd(Rlxtal) és regular.

Sigui u = u"1, aleshores tenim

(1 — e)(a(x) + e)u = 1 — e = (1 — e)a(x)u = a(x)u

i
u(a(x) + e)(l - e) = 1 - e = ua(x)(l - e) = ua(x)

per tant a(x)u = ua(x) E B(R), tal com volíem veure.

PAS 2. Qci(R^x,o¿l) és autoinjectiu per les dues bandes.

Observem primer que pel Pas 1 R i Qci(Rl%, ce]) tenen els mateixos idem-
potents, en particular els idempotents de Qci(Rlx,ol) són centrals. Per [37,
Corollary 3.9], en aquesta situació, si demostrem que Qci(R\x, a]) és autoinjectiu
per la dreta també ho serà per l'esquerra. Hem de veure doncs que Qci(R\x, ct\)
satisfà el criteri de Baer per ideals dreta.

Pel pas anterior podem suposar que tot ideal dreta / de Qd(R\x,a\} està
generat per idempotents {fj}jçj de B(R), per tant tenim que tot ideal és bilàter.
Considerem l'ideal de R, £j&jfjR per ser R regular autoinjectiu, aplicant [37,
Lemma 9.7], aquest ideal conté una família maximal d'idempotents ortogonals
{e¿}¿6/ tal que ®¿g/e¿JÍ <e EjçjfjR. Com que / està generat per idempotents
centrals, ®içiieiQci(R\x,Q\} <e I. Com a conseqüència per demostrar que
Qd(Rlx,al) satisfà el criteri de Baer per la dreta podem suposar sense perdre
generalitat que / està generat per una família {ei}¿6/ d'idempotents ortogonals
de B (R).

Per altra banda sempre podem suposar que l'ideal / <e Qc/(fí|x,o:J), si no
com que R és regular autoinjectiu rn(eii€j) = eR per un cert idempotent e e R,
per tant

<e

Si tenim un rnorfisme /: / — > Qci(R[x, aj) el podem estendre a un morfisme
sobre /', definint per exemple f (e) = e.

Sigui /: / — > Qci(R[x, a]) un morfisme de Qci(R\x, a])-mòduls dreta, aleshores
per cada i e / f (ei) = eiS¿(a;)ri(x)~1 on r¿(x) i s¿(x) són elements de H[x, aj.
Siguin
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i

morfismes de Qd(Rlx, o;])-mòduls dreta definits de la següent manera, /i(Cj) =
eiSi(x) i fz(ei) = eiTi(x)~1. Aleshores és clar que / és el producte de fi
i /a i que per veure que / ve donada per multiplicació a l'esquerra per un
element de Q¿i(Rlx,al), n'hi ha prou en veure que que això passa per f i i
/2. Com que / <e Qci(Rlx,al) i ji és injectiu per veure que aquest ve donat
per multiplicació a l'esquerra per un element de Qd(Rlx,a¡) n'hi ha prou en
veure-ho per un morfisme definit com f(eî) = eiTi(x}. Podem suposar doncs
sense perdre generalitat que el morfisme /:/ — > Qd(R{x,al) està definit com
f (ei) = ei$i(x). Hem de veure que un tal morfisme ve donat per multiplicació a
l'esquerra per un element de Qd(R\x, aj).

Sigui s» (x) = Y^jLo^8]- Considerem els morfismes de R- mòduls dreta

J j • \l/¿c/C¿.rí '--* /L)

que per cada j estan definits per fj(ei) = e¿s*- per qualsevol i e I. Com que
R és autoinjectiu existeix un element s j € R, tal que f j (ei) = Sj6i. Sigui
s (x) = EJl0x

J'sj, aleshores és clar que per qualsevol i e /, f ( e i ) = s(x)ei tal
com volíem veure. Per tant queda demostrat que Qc¿(fí[x, a]) és autoinjectiu
per la dreta. I

TEOREMA 4.17. Sigui R un anell commutatiu tal que Qd(R) és regular NQ-
injectiu i ÜQ-complet, suposem queB(R) = B(Qd(R)) i que a és un automorfisme
de R que deixa fixes els idempotents. Aleshores Qd(R{x,al) és regular NQ-
injectiu i #Q-complet.

DEMOSTRACIÓ: Pel Lema 4.10 l'anell /Z [z, aj té clàssic de quocients pels dos
costats. Com que Qd(R) és Ko-complet tenim que l'anul.lador d'una família
numerable d'elements de R està generat per un idempotent, per tant pel Lema
4.9 si a(x) e .Rjz, aj existeix un idempotent e de R tal que a(x)+e no és divisor
de zero. Això ens permet concloure, igual que al Pas 1 del Teorema 4.16 que
Qd(R{x, aj) és un anell regular i que tot ideal es pot generar per idempotents
de R. D'això és clar que Qd(Rlx,(*l) és un anell No-complet.

Si / és un ideal comptablement generat de Qci(R[x,a]), per les remarques
anteriors, podem suposar que està generat per una família numerable d'idempo-
tents que per [37, Proposició 2.14] és poden agafar ortogonals. Per demostrar que
R satisfà el criteri de Baer per ideals comptablement generats, com que l'anul.la-
dor d'una família numerable d'elements de R està generat per un idempotent
sempre podem suposar que l'ideal és fidel.
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Sigui / un ideal fidel de Qci(R[x, a]) generat per una família numerable {e¿}^0

d'idempotents ortogonals. Considerem un morfisme de Qci(Rlx,a§) mòduls
dreta /:/ —> Qci(Rlx, a]), hem de veure que / ve donat per multiplicació a
l'esquerra per un element de Qci(R\x, aj). Com al Teorema 4.16 n'hi ha prou en
demostrar-ho quan / és de la forma /(e») = eiSi(x), per elements Sj(x) e R[x, a],
Ara procedint igual que en el Teorema esmentat i fent us de que Qci(R) és NQ-
injectiu, és fàcil veure que / ve donada per multiplicació a l'esquerra per un
element s(x) de Qd(R)lx,al. Però aquest element és també de Qc/(H[x,a]), ja
que r (x) = ^2™=QXnen no és divisor de zero a /2[x,o:J i s(x)r(x) e /2jx, aj. Per
tant Qd(Rlx,a]) és Ko-injectiu. I

En particular tenim que si R té clàssic de quocients regular autoinjectiu i
B(R) = B(Qci(R)) aleshores Qd(Rlxl) és No-injectiu. Aquest resultat no es pot
millorar, tal com prova el següent exemple.

EXEMPLE 4.18. Existeix un anell commutatiu R tal que Qci(R) es un anell
regular autoinjectiu, però Qci(R{x}) és regular #o-injectiu i no autoinjectiu.

DEMOSTRACIÓ: Sigui K un cardinal més gran que NO, / un conjunt de cardinalitat
H. Considerem l'anell R format per les successions (a¿)¿€/ de números racionals
amb Oi Ç. Z llevat pot ser d'un nombre finit.

Es clar que l'anell clàssic de quocients de R és Q', per tant R té clàssic de
quocients regular injectiu. També és clar que tots els idempotents del clàssic
de R estan dins de l'anell R. Tenim doncs que pel teorema anterior Qc¿ (/£([x]|)
és Ko-injectiu. Per altra banda és clar que R^x] <e Qci(R)l%l i com que pel
Teorema 4.16 Qd(Qd(ffy§x\) és injectiu, el maximal de quocients de .R[x] és
Q d (Q d (R) {xD- Anem a veure que aquest anell no coincideix amb el clàssic de
quocients de -R[x]. Siguin {an}£L0 una successió d'elements diferents de zero de
Z tais que Hn>oanZ = 0. Per n > O definim un element qn de Q/, com l'element
tal que cada component val nn

l
 Q . Considerem ara l'element de Qci(Qci(R}\x\),

Q(X) = ]C^Lo QnXn. Aquest element no és de Qd(R[xl), ja que si ho fos existiria
un no divisor de zero 6(x) e #[x] tal que 6(x)g(x) e R[x]. Es fàcil veure ara
que no existeix un tal element 6(x). Per tant podem concloure que Qd(Rlxl) no
és injectiu. I

4.5. Construcció d'anells FPF amb anells de sèries formals.

En aquesta secció caracteritzarem els anells de series formals sobre anells com-
mutatius que són FPF. També donarem una construcció d'un subanell de les
sèries formals que és FPF.
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LEMA 4.19. Sigui R C S una extensió d'anells commutatius tal que B(R) =
B (S) i S és regular. Aleshores si I és un ideal de R generat per idempotents
existeix un ideal J de R generat per idempotents ortogonals tal que J <e 7.

DEMOSTRACIÓ: Sigui / un ideal de R generat per idempotents. Primer veurem
que existeixen famílies d'idempotents ortogonals maximals dins de /. Sigui FQ C
FI C ... una cadena de famílies d'idempotents ortogonals dins de 7. Aleshores
UFj és clarament una família d'idempotents ortogonals dins de 7. Per tant
aplicant el Lema de Zorn podem concloure que existeixen famílies maximals
d'idempotents ortogonals dins de /.

Sigui {fk}kçK una d'aquestes famílies maximals d'idempotents ortogonals.
Volem veure ara que QkeK/kR <e I- Suposem que existeix un element r € / tal
que rRO((BkeKfkR) = 0. Com que S és un anell regular existeix un idempotent
e tal que r S — eS, de tal manera que {fi, e} és una família d'idempotents
ortogonals dins de S. Tenim que e = rs € R i com que r és un element de l'ideal
7 que està generat per idempotents, r = e\r\ H h enrn on e¿ són idempotents
de 7, al ser només un nombre finit podem suposar a més que són ortogonals.
Tenim doncs

e = (e\-\ (- en}(e\r\ H h enrn)s

podem ara concloure que e és un element de /, però això ara contradiu la
maximalitat de la família {fk}kç.K- Per tant ©fcg/c/fcT? <e I tal com volíem
veure. I

PROPOSICIÓ 4.20. Sigui R un anell commutatiu. Si X és un conjunt no buit
R[Xl és FPF si i només si X = {x} i R és un anell regular autoinjectiu.

DEMOSTRACIÓ: Suposem que /2[X] és FPF. Escollim un element x e X, pel
Lema 1.8 per qualsevol a Ç. R\X \ {x}] l'ideal / = aR{XJ + o;.R[X] és projectiu,
fent un raonament anàleg al Lema 3.26 podem veure que R\X \ {x}\ és regular.
En conseqüència X = {x} i R és un anell regular. Com que Tijz] és ara un anell
commutatiu FPF semiprimer, pel Teorema 1.15 tenim que és semihereditari.
Si apliquem el Teorema 4.7 obtenim que R és un anell regular No-injectiu i NO-
complet. Demostrarem ara que de fet R és autoinjectiu.

Sigui / un ideal de R, com que R és un anell regular / està generat per
idempotents. Com que R{x] és FPF i semiprimer, B(Qci(Rlx})) = B(RÍx]) =
B (R) aplicant el Lema 4.19 podem concloure que 7 conté un ideal essencial
generat per idempotents ortogonals. Per demostrar que R és injectiu podem
doncs considerar sense perdre generalitat que 7 és un ideal generat per idempotents
ortogonals {ek}keK- Com que r/Qcl(^[Ij) = eQci(R\x\) considerant l'ideal I@eR
podem suposar a més que l'ideal és essencial a R.
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Sigui /:/ — ~» R un morfisme de .R-mòduls tal que per qualsevol k e K,
/(efe) = e/feafc, ttfc e R. Aquest morfisme és pot estendre a f-.IRlx] — > R{x},
com que Qd(Rlx^) és autoinjectiu i per tant injectiu com a jRfxJ-mòdul, tenim
que existeix un element |̂f 6 Qd(Rlx]) tal que per qualsevol k E K /(et) =

TJftefc. Pel Lema 4.8 podem suposar que r(x) = Y^=o /n^n, on e^ elements fn

són idempotents ortogonals. Com que r(x) ha de ser un no divisor de zero, pel
Lema 4.9 ®£Li/n-ft <e R- Sigui s(x) = Y^=osnxUi aleshores per qualsevol n i
per qualsevol k tenim

Per cada n > O considerem, In = ®kçK/n^kR < /, In <e fnR i sobre Jn, /
ve donat per multiplicació per sn. Sigui J = 0)%L0fnR, definim un morfisme
g: J — > R tal que g(fn) — snfn com que R és No-injectiu i J és comptablement
generat existeix un element s € R tal que g(fn) = sfn- Però els morfismes / i g
coincideixen sobre 7 n J <e I per tant / també ve donat per multiplicació per
5. Per tant R és autoinjectiu tal com volíem veure.

Suposem ara que R és un anell regular autoinjectiu, volem veure que R\xl és
FPF. Com que pel Teorema 4.7 Rlx] és un anell de de Bezout i semihereditari,
pel Teorema 4.16 té clàssic de quocients injectiu. Aleshores pel Teorema 1.15
podem concloure que -R|x] és FPF. |

PROPOSICIÓ 4.21. Sigui A un anell commutatiu de Bezout amb clàssic de quo-
cients regular injectiu, tal que B(A) = B (Q d (A)). Sigui u un automorfisme de
A que deixa fixes els idempotents. Aleshores l'anell R = A + xQci(A\x, Q]) és
un anell de Bezout FPF.

DEMOSTRACIÓ: Com que R és un anell semiprimer, per veure que és FPF n'hi
ha prou en comprovar que satisfà les condicions (A), (B) i (C) del Teorema 1.16.
Es clar que Q ¿(R) existeix i és Qd(Qd(A)lx,ot]). També és clar que R és un
anell acotat, perquè pel Lema 4.8 per qualsevol element a E R existeix una
unitat u(x] e Qd(A)\x,ot\> tal que axu(x) = e(x), e(x) = ^C^Lo3-"6" amb {en}
una família d:idempotents ortogonals de A. Si veiem que R és de Bezout pels
dos costats, aleshores també és clar que els ideals, per la dreta o per l'esquerra,
finitament generats fidels són generadors.

No és difícil comprovar que R és un anell de Bezout fent us de que A ho és i
la descomposició dels elements de Qc¿(A)[x, a] del Lema 4.8. I

4.6. Anells de sèries formals de longitud arbitrària.

En l'Exemple 4.18 hem vist que si un anell commutatiu té anell clàssic de
quocients injectiu, aleshores l'anell de sèries formals no hereta en general aquesta
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propietat. Veient la demostració del Teorema 4.17 sembla que el principal
problema està en que les sèries no són prou 'llargues', només tenen longitud
numerable. En aquesta secció veurem que almenys per anells de Baer commu-
tatius aquest és efectivament el problema. Donarem una construcció d'anells de
sèries de longitud arbitraria però prefixada i veurem que si un anell commutatiu
de Baer R té clàssic injectiu i les sumes directes d'ideals de R tenen com a molt
cardinalitat K, aleshores les sèries formals de longitud més gran o igual que K
sobre R també tenen clàssic de quocients injectiu.

En la literatura ja és troben anells de sèries formals de longitud arbitrària
prefixada, potser la primera construcció d'aquests anells és deguda a Malcev
i Neumann, que els fan servir per posar àlgebres associatives lliures dins de
cossos, el lector pot consultar [67, pàg. 601] o també a [16, pàg. 276]. Passarem
a descriure breument la construcció, els detalls que falten es poden trobar a les
referències anteriors.

Sigui G un grup commutatiu ordenat tal que el seu con positiu P — {g e
G\ \ g > 0}, és ben ordenat. Sigui R un anell, considerem el conjunt S de les
aplicacions,

PU{0} — >R.

Aleshores tot element de <S es pot escriure formalment com

Podem dotar a S d'una estructura d'anell definint la suma component a compo-
nent i agafant com a producte el producte de convolució. És a dir si a i b són
elements de «S1,

a =

b=
aleshores

ab = c =

on

9'+9"=9

aquest producte està ben definit per que P és un conjunt ben ordenat, cf.[67,pàg
598 Lemma 2.9].
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Per tant S és un anell que denotarem com fí|P].

Anàlogament com hem fet al Lema 4.2, es pot provar també en aquest cas un
resultat similar.

LEMA 4.22. Sigui R un anell commutatiu semiprimer, a i b dos elements de
/?[P|. Aleshores ab = O sí i només sí tots els coeficients de a són anul·lats per
tots els coeficients de 6. 1

Una conseqüència directa d'això és el següent Lema.

LEMA 4.23. Sigui R un anell de Baer commutatiu, aleshores l'anell clàssic de
quocients de R^P] és regular i tot ideal d'aquest clàssic es pot generar per
idempotents de R.

DEMOSTRACIÓ: Sigui a un element de /2|P!, aleshores pel Lema anterior i com
que l'anell R és de Baer l'anul.lador de a a J?[PJ és generat per un idempotent e
de í?, per tant l'element a+ e no és divisor de zero dins de /2[P], pel Lema 4.11
podem concloure que -RJP^J té clàssic de quocients regular. Per altra banda
(1 — e)(a + e)(a + e)"1 — 1 — e = (1 — e)a(a + é)~l per tant tot ideal del clàssic
de fí[Pj el podem generar amb idempotents de R. I

Seguint amb la notació introduïda en aquesta secció podem enunciar,

TEOREMA 4.24. Sigui R un anell commutatiu de Baer i sigui H un cardinal
més gran que el cardinal de la suma directa més llarga dins de R, sigui P de
cardinalitat igual a K. Aleshores -R|PJ té clàssic de quocients injectin.

DEMOSTRACIÓ: Sigui J un ideal del clàssic de quocients de Pu[P], pel Lema
anterior podem suposar que J està generat per idempotents de R. Com que
R és de Baer podem suposar a més que aquest ideal és essencial a Qci(R{PT)-
Pel Lema 4.19 J conté un ideal essencial generat per una família d'idempotents
ortogonals. Per demostrar la injectivitat podem suposar sense perdre generalitat
que J és un ideal essencial a Qc¿(fí[P]) generat per una família d'idempotents
ortogonals ekkçK- Sigui

/: J — » R[P]

un morfisme de .R[P]-mòduls, tal que per qualsevol k £ K f(&k) = ek^k on
Ofc 6 -R[Pl- Si considerem el sistema d'equacions bek = ekdk, aquest té solució
per 6 e Qci(Qmax(R)lPl), si trobem un no divisor de zero c de -R|P] tal que
be € Í2[PJ, podrem concloure que 6 és també un element del clàssic de jR|PJ.

Per hipòtesi existeix una aplicació injectiva j: K - — > P, sigui c = SefcZJ(fc),
pel lema 4.22 c no és divisor de zero de fí[Pj i be és un element de -R[P]. Per
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™ tant podem dir que l'anell clàssic de R\P\ és injectiu com a /?[P]-mòdul i en
conseqüència és autoinjectiu. I

• Sigui R un anell que satisfà les hipòtesis del teorema anterior i S el subanell
de -RÏP]], format pels elements amb trasportador essencial a R[x]. Aleshores és

I fàcil veure que S té clàssic de quocients injectiu i que R[x]<eQci(S). Per tant,
spcmint. armpsta nntarir» tpniïri P! spcriípnt rnrnl Inri

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

seguint aquesta notació, tenim el següent corol.lari,

COROL·LARI 4.25. Qd(S) és el maximal de quocients de R[x\. I
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Capitol 5.

Anells de sèries formals que són anells

de Bezout o semihereditaris

5.1. Anells de sèries formals sobre anells regulars No-injectius.

A [10] Brewer, Rutter i Watkins varen provar que si R és un anell commutatiu
regular, aleshores fí|x] és un anell de Bezout si i només si R és No-injectiu. La
demostració d'aquest resultat també es pot trobar a [9, pàg. 54].

En aquesta secció donarem una extensió parcial d'aquest resultat al cas no
commutatiu. De fet demostrarem que si R és un anell regular No-injectiu per
l'esquerra aleshores nfxj és un anell de Bezout per la dreta. La demostració en
el cas commutatiu utilitza que si R és un anell regular No-injectiu i a(x) és un
element de R{x] aleshores l'ideal a(x)/ï|a;J es pot generar per un element s(x) tal
que els seus coeficients formen una família d'idempotents ortogonals, cf. Lema
4.8. Per R no commutatiu el que farem serà també trobar generadors especials
pels ideals principals.

Sigui:

oo

E = {e(x) G R{xl \e(x) = e+ /^(l — e)anexu,on
n=l

e = e2 € R, an € R n = 1,2,... }

Volem remarcar els següents fets sobre E.

LEMA 5.1.

(1) E és un conjunt d'idempotents de R{x].
(2) Si e(x) Ç. E i s(x] = Y^=o snXn G R^x^, aleshores e(x)s(x) — O si i només

si fi.sn = ü, per tot n = 0,1,...

DEMOSTRACIÓ: Per demostrar (1) i (2) sols cal observar que

00 / 00 \ / 00

e(x) = e+ y^(l — e)anexn = 1 1 + ^(1 — e)anexn j e í 1 — y](l — e)anexr'
n=l \ n=l J V n=l

= ueu~l '= ue. I

80
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LEMA 5.2. Sigui R un anell regular i a(x) un element de Rlx]. Aleshores
a(x)Rlx] = e(x)Rlx] + xa'(x)Rlx], on:

(i) e(x) e E
(ii) e(x)a'(x) = O
(iü) lR(a(x)) Ç lR(e(x)) i /fi(a(x)) Ç lR(a'(x)).

DEMOSTRACIÓ: Si a(x) té terme de grau zero igual a zero, aleshores el lema és
trivial. Suposem doncs que

a (x) = ao 4- xâ (x)

on ao 7^ O i à(x) 6 Rlx].
Com que R és regular existeix un element t € R tal que aoíao = ÛD- Per tant

= e i ¿ao = / són dos idempotents de R. Tenim aleshores que

I = a(x)/fl[xl 4- a(x)(l - f)R]x] =

= a(x)fRlx] + xo(x)(l - f ) R l x ]

Per altra banda:

a(x)fRlx] = (ea(x)f 4- (1 - e)a(x)/x) R]x] =

= (ea(x)/ 4- (1 - e)a(x)/x) teR{x\

Però eaofte -- e, per tant ea(x)fte és una unitat de e.Rjx]]e, diem-li eu(x)~1e.
Aleshores l'element eu(x}e + (1 — e) és una unitat de R]x]. Per tant podem
concloure que

a(x)fRlx] = e(

on
CXD

e(x) = e 4- J^(l - e)6nexn = (ea(x)f + (1 - e)o(x)/) te (eu(x}e 4- (1 - e)) (*)
n=l

per tant tenim que e(x) e E.
L'ideal inicial el podrem descompondre com,

a(x)R\xl = e(x)R]x] + xa(x)(l - f)Rlx] =
= e(x)R[x\ + x(l - e(x))a(x)(l - /)/2[a;]

Si agafem a'(x) = (1 — e(x))à(x)(l — /) ja tenim la descomposició que voliem.
Es obvi que aquesta descomposició satisfà les propietats (i) i (ii) que dema-

nàvem. Per concloure la demostració n'hi ha prou en demostrar que lR(a(x)) C
ln(e(x)). Si r e /#(a(x)) aleshores re = O i per tant r(l — e) = r. A la vista de
la definició (*) de e(x) és clar que re(x) = 0. I
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LEMA 5.3. Sigui R un anell regular i a(x) e -R[z]. Aleshores per tot n > O
/ n \

a(x)R[x] = ^.ei(x)xi Rfr] + a'(x)xn+lR[x]
\i=o J

on
(i)Per totO<i<n, e¿ (x) <E E.
(U) Gi(x}ej(x) = O per qualssevol n > j > i > O
(ui) Per totO<i<n, ei(x)a'(x) = 0.

DEMOSTRACIÓ: Farem la demostració per inducció sobre n. En el lema anterior
hem demostrat el cas n = 0. Suposem doncs que n > 1, i que ho tenim demostrat
fins n — 1. Aleshores tenim

/n-l

a(x)R{x\ = Yl 6i^
\i=0

i aquesta descomposició satisfà les condicions (i), (ü) i (iii). Si apliquem el lema
anterior a ü(x) tenim:

à(x)xnRlx] = en(x)xnR{x\ + a'(x)xn+1fí[x]

amb en(x) 6 E, en(x) • a'(x) = O i IR(Ü(X)) = ÍR(en(x)) n IR(Ü(X)). Com
que ei(x)ü(x) = O per O < i < n — 1, pel lema 5.1 (2) això passa si i només
si eià(x) = O on &i = e\ e R és el terme de grau zero de e¿(x). Per tant
ei(x}en(x) = O i Ci(x)a'(x) = 0. I

PROPOSICIÓ 5.4. Sigui R un anell regular ^o-injectiu per l'esquerra i a(x) e
R{xl- Aleshores per tot n > O, existeixen en(x) € E tais que

a(x)R[xl= en(x)xn R[x]
\n=0

amb
(1) en(x)eTn(x) — O per n < m.
(2) en(x)xn 6 a(x)R{x].

DEMOSTRACIÓ: Agafem com en(x) els idempotents donats pel lema anterior.
Aleshores és clar que compleixen que en(x)em(x) = O si n < m. Falta veure que
a(x)R[x] = (£~=0 CnOr)*") R[x}.

Però demostrar aquesta igualtat equival a solucionar sistemes numerables
d'equacions lineals sobre R que, pel lema anterior són finitament resolubles.
Com que R és Ko-injectiu per l'esquerra és Ko-algebraicament compacte per la
dreta (Proposició 4.4), per tant els sistemes tenen solució.

El fet que an(x)xn e a(x)/2[x], també es conseqüència del Lema 5.3. I
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COROL·LARI 5.5. Si R és un anell regular ÜQ-injectiu aleshores

oo

n=0

on:

(1) u és una unitat de -R[xJ,
(2) en = el 6 R
(3) en • em = 0 si n < m.

DEMOSTRACIÓ: Per la proposició anterior -sabem que

( 00 \

\ ^ p f-rW™ 1 RlÍTl> en[X)x i Jrinxí
¿0 /

on en(x) e E i en(x)em(x) = 0 si n < m. Per cada n > 0 sigui en el terme de
grau zero de en(x). Com que en(x)em(x) = 0 si n < m tenim que £^L0

 enR =
®^=QenR. Per cada n, en(x) = en + £^i(l — en)a"enx

l. Considerem la família
d'aplicacions

/
. • /T\OO o "D i Z?
1 • ^̂ 71, — 0 W **

Per ser fí Ko-injectiu, existeixen elements 6j tais que /¿(en) = 6jen = (1— en)a"en.
Sigui

oo

n=l

aleshores w(X^^Lo enXn) — JZ^Lo en(x)xn, tal com volíem veure. I

TEOREMA 5.6. Sigui R un anell regular No-injectiu per l'esquerra. Aleshores
í? [x J és un anei/ de Bezout per Ja dreta.

DEMOSTRACIÓ: Siguin a(x) i 6(x) dos elements de fi|x], volem veure que l'ideal
dreta a(x)/2[x]) + 6(x)-ñ[x] és principal. Pel Lema 5.2

â(x)Jî[x] = eo(x)/2[x] + xa(x)/2[xj

amb eo(x) € E i eo(x)a(x) = 0. Ara b(x) = eo(x)b(x) + (1 — eo(x))6(x) com
que eo(x)6(x) € a(x)-R[x]j, podem suposar que eo(x)6(x) = 0. Però eo(x) =
eo + Z)í^i(l ~ eo)a¿eoxl, per tant eo(x)6(x) = 0 si i només si eob(x) = 0. Una
altra vegada pel Lema 5.2, tenim que

&(a;).n|xj = /o(x)/?Ix1 + x6(x)ñíxj
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on /o(x) e E, f0b(x) = 0 i e0(x)/0(x) = e0(x}b(x) = 0. Sigui fQ(x) = /o(x)(l -
e0(x)), és clar que f0(x)Rlxl = fQ(x)Rlxl i que eo(x)f0(x) = fo(x)e0(x) = 0.
Definim a'(x) — (1 — fo(x))à(x) i b'(x) = (1 — fo(x))ü(x). Aleshores tenim

/ \ r^fT—Tl i Iv / ,M\ T^) IT A^ll / *̂  /na\ i £ ( \\ T} IT TI i A * / \ 15 IT TI i L* / \ ^? IT TI
Oil jt )-iLll j^ It "" T" Oí j^ 1 jLilj^ It ^^ f Pf\ \ jT i T™ Tf\ ( T I ) ./i 11̂ * II ^r tt I T 1 j i lU^ II ^\ O t J^ 1 1\ \\3T II

amb

e0(x)-fo(x) = fo(x)e0(x) = 0 i (e0(x) + f0(x)) a'(x) = (e0(i) + /o (x)) ¿/(o;) = 0.

Per la definició de fo(x), si eo(x)c(x) = 0 aleshores fo(x)c(x) = 0 si i només si
fo(x)c(x) — 0. Com que tant eo(x) com fo(x) són elements de E això ens permet
traduir la condició de que c(x) sigui anul.lat per eo(x) i /o (x) en termes de
/fí(c(x)). Per la construcció dels elements eo(x), fo(x) a'(x) i b'(x) i el Lema 5.2
tenim que

lR(a(x)) n lR(b(x)) Ç 1R (eo(x) + /0(ar)) H /n(a'(x)) n ¿fi(6'(x))

Aquests fets ens deixen en condicions d'aplicar el Lema 5.2 tantes vegades com
vulguem. Per tant, tal com hem fet al Lema 5.3, tindrem que per qualsevol n > 0
l'ideal el podem descompondre en:

oo

a(x)R[x]+b(x)R[x} = £ (*(*) + /«(x)) x'RW+x"*1 (a'(x)R[x] + b'(x)R[xl)
i=0

on

(1) GÍ(X) e E i ej(x)ei(x) = 0 per j < i
(2) ei(x)fj(x) = fj(x}ei(x} = 0 per qualsevol i, j
f *%\ f ( T\ f ( T\ O r\ ú ¿s' '

(4) (e¿(x) + fi(x))a'(x) = (ei(x) + fi(x))b'(x) = 0 per qualsevol i < n.

Cal observar que el procés de trobar nous idempotents en(x) + fn(x), es
fa només a través dels termes residuals a'(x)Rlx] i 6' (x) .R [z J. Per tant els
idempotents que ja tinguem determinats no canvien a l'aplicar el procés a termes
de grau més gran. Podem doncs considerar l'element

oo

n=0

Llavors és clar que a(x)Rlx]+b(x)Rlxl = d(x}R\x\, ja que això equival a resoldre
uns sistemes numerables d'equacions lineals per la dreta que tal com acabem de



1
1
1
1
•

1

1
•

1
1
•

1
1
1
•

1
1
1

5.1. Anells de sèries formals sobre anells regulars ^Q-injectius 85

demostrar, són finitament resolubles. Com que R és No-injectiu per l'esquerra
podem concloure per la Proposició 4. 4 que són resolubles. I

Sigui R C S una extensió d'anells. Es diu que R és idealment tancat dins de S
per la dreta, si per qualsevol ideal per la dreta / de R es satisfà que IS f! R = I.

Els anells regulars No-injectiu per l'esquerra tenen una caracterització en termes
d'anells de sèries formals i del concepte d'idealment tancat, tal com prova el
següent resultat. Cal remarcar que aquest resultat és, una vegada més, una
extensió de resultats que es donen en el cas commutatiu a [10].

PROPOSICIÓ 5.7. Sigui R un anell regular. Aleshores les següents afirmacions
són equivalents:

(1) R és Ko-icjectiu per l'esquerra
(2) Si R C S és una extensió d'anells, aleshores R[xl és idealment tancat per

la dreta dins de 5[xJ.
(3) R{x] és idealment tancat per la dreta dins de Qlmax(R) [x].

Abans de demostrar la proposició veurem un parell de lemes molt fàcils i ben
coneguts.

LEMA 5.8. Sigui R C S una extensió d'anells i suposem que R és un anell
regular. Sigui A e Mnxm(R) i B e MnX\(R), aleshores si el sistema d'equacions
AX = B té solució a S també en té a R.

DEMOSTRACIÓ: Sense perdre generalitat podem suposar que A és una matriu
de Mn(R). Com que les matrius sobre un anell regular són també regulars, cf.
[37, Theorem 1.7] existeix C e Mn(R) tal que AC A = A. Per tant el sistema té
solució a R si i només si CAX = CB té solució. Però CACAX = CAX = C B
per tant si X és una solució dins de S, CAX és una solució dins de R. I

LEMA 5.9. Sigui R un anell regular i I un ideal comptablement generat per R.
Aleshores I = ®^.0enR on {en} formen una família d'idempotents ortogonals de
R.

DEMOSTRACIÓ: Veure [37, Proposition 2.14].

DEMOSTRACIÓ PROPOSICIÓ: .(1) =$• (2) Sigui / un ideal de .R fa;]), aleshores és
sempre cert que /5|xJ n /2[zJ 3 /. Suposem doncs que a(x) e 75 [x J n JRjx].
Com que R{x] és un anell de Bezout (Teorema 5.6) tenim que existeix b(x) € /
i s(x) e Sfz] tais que b(x)s(x) = a(x). Igualant els coeficients dels dos costats
de la igualtat obtenim un sistema d'equacions numerable a coeficients a R que
té solució dins de S. Pel lema 5.8 tenim que el sistema és finitament resoluble



86 Capítol 5. Anells de sèries Bezout o semihereditaris

dins de R. Com que R és No-injectiu per l'esquerra el sistema és resoluble dins
de R (Proposició 4.4). Per tant a(x) e /.

(3) => (1) Sigui 7 un ideal per l'esquerra comptablement generat de R. Podem
suposar pel lema 5.9 que / = ©£Loen-R on {en} és una família d'idempotents
ortogonals. Sigui /:/ — > R un morfisme de .R-mòduls esquerra. Considerem
l'ideal (£)^Lo enzn) #([£]). Com que -R|zJ és idealment tancat per la dreta dins
de QL«(fl)[*J, existeix a(x) € Rfc] tal que (£~=0 enx

n)a(x) = E4~ o /(«*)*'•
Sigui ao el terme de grau zero de a(x), com que els e¿'s són idempotents ortogonals
tenim que per qualsevol n, enao = f(en). En conseqüència / ve donada per
multiplicació a la dreta per ao per tant, R és No-injectiu per l'esquerra. |

5.2. Anells de sèries formals que són anells de Bezout.

Aquesta secció està dedicada a considerar quan és cert el recíproc del Teorema
5.6. En general és fals, perquè si R és un anell que satisfà R © R = R com
a /?-mòdul dreta, aleshores al fer producte tensorial per l'anell R{x] obtenim
-nfarj © Rlx} = R fx], en particular tenim que R{x] és de Bezout per la dreta
sense que R sigui ni regular ni No-injectiu. Per a evitar aquesta situació hem
d'imposar alguna condició sobre R.

Direm que un anell R és directament finit si per qualssevol elements a i 6 de
R tais que ab — 1 aleshores ba = 1.

Que un anell R sigui directament finit és equivalent a que R no sigui isomorf
a un sumand directe propi d'el) mateix.

PROPOSICIÓ 5.10. Sigui R un anell directament finit tal que R{x] és de Bezout
per la dreta. Aleshores l'anell de sèries de Laurent R((x)), és també directament
finit.

DEMOSTRACIÓ: Per veure que R((x)) és directament finit demostrarem fent
inducció sobre n que si a(x) i b(x) són dos elements de R^x} tais que a(x)b(x) =
xn aleshores també b(x)a(x] = xn. Observi's que això és suficient per a demostrar
la Proposició.

El cas n = O és clar ja que si a(x)b(x) = 1, els termes de grau zero de a(x) i
b(x), ao i 60 respectivament, satisfan aoòo = 1- Com que l'anell és directament
finit també tindrem que. 60^0 = 1 i per tant b(x)a(x) = 1.

Suposem doncs que n > O i que ho hem demostrat fins n — 1. Tenim ara que
a(x)b(x) = xn, on

oo

a(x) = anx
n i 6(0;) = bnx

n

n=0 n=0
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Podem suposar que els termes de grau zero CQ i &o5 són diferents de zero ja
que si no ens podríem reduir a un cas anterior de la inducció. Per la relació
a (x) b(x) = xn tenim que

n

(5.1) . J]ai6n_i = l
¿=o

Considerem l'ideal 6(a;)/2|xJ -f xn/2fo:]. Per ser .R IE] de Bezout per la dreta
existeixen a(x),/3(x),d(x),b'(x) i a'(x) elements de /2|xJ tais que

(5.2) b(x)a(x). + xnp(x} = d(x]

(5.3) d(x)b'(x) = b(x}

(5.4) d(x)a'(x) = xn

Si multipliquem (5.2) a l'esquerra per a(x) obtenim xna(x) + a(x)xn/3(x) =
a(x)d(x) per tant si d(x) = S^Lo ̂ ^"j tenim la relació

Per altra banda si b' (x) = Y^nLo ^nxni tenim per la identitat (5.3)

•do ... dn\ fb'n\ /br,

: - . .

Jn

O . . . do/ \b'0J \bo

Si substituïm aquesta identitat dins de (5.1) obtenim

/do ...
/ \ í(ÜQ,... ,an) I ;

V O ...

si ara apliquem (5.5) tenim que

C
dnbo

do bo

per tant existeix c e R tal que cb'0 = 1. Com que R és directament finit podem
concloure que b'Q i per tant b'(x) són invertibles. Aplicant ara les igualtats (5.3)
i (5.4) tenim que b(x)(b'(x))~1a'(x) = d(x)a'(x) = xn, i per tant b(x}a(x] = xn,
tal com volíem veure. I
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LEMA 5.11. Sigui R un anell directament finit tal que R^x] és de Bezout per
la dreta. Aleshores R és un anell regular.

DEMOSTRACIÓ: Sigui a un element de R i considerem l'ideal dreta de R{xl
generat per a i x. Per ser fíjz] de Bezout per la dreta existeixen a(x), @(x),
d(x), a' (x) i s (x) elements de R[x] tais que

(5.6) oa(ar) + x$(x) = d(x)

(5.7) d(x)a'(x) = a

(5.8) d(x)s(x) = x

De la igualtat (5.8) i aplicant la proposició anterior podem concloure que d(x)
és un no divisor de zero. De les igualtats (5.7) i (5.8) obtenim que d(x)(a'(x)x —
s(x)a) = O, per tant a'(x)x = s(x)a. Deduïm doncs que a'(x) e .ñjrrja i en
particular que a'Q G Ra.

Del terme de grau zero de la igualtat (5.6) obtenim que do € a/2. Finalment
del terme de grau zero de la igualtat (5.7) tenim que a = doa'0 e aRa. Per tant
podem concloure que R és regular. I

El nostre desig seria demostrar ara que si R és directament finit i R{x] és
un anell de Bezout per la dreta aleshores R a més de ser regular és No-injectiu
per l'esquerra. No sabem si aquest resultat és cert en general, i ens haurem de
conformar amb donar resultats parcials en aquesta direcció.

Si R és un anell regular i / és un ideal per l'esquerra de R comptablement
generat, és ben conegut que 7 = ®%L0Ren on {en} és una família d'idempotents
ortogonals de R, cf. Lema 5.9. Sigui /: / — > R un morfisme de .R-mòduls per
l'esquerra i considerem les sèries

n=0 n=0

Si suposem que Rlx} és de Bezout per la dreta, tenim que existeixen a,/5, a i 6
elements de Jî[xJ tais que

e(x)a + f (x) P = d(x)
d(x)a = e(x)

d(x)b = f ( x ) .

Fent servir la ortogonalitat dels en, és fàcil veure que podem suposar que o;, /5, a
i 6 són elements de R.
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Considerem l'ideal per l'esquerra de R, J = Y^=o R(en® + f(en)0) i el
morfisme de R- mòduls esquerra

0: / —> J
en '—»• ena + f(en)/3 '

Aleshores és clar que g és bijectiu i que l'invers de g ve donat per multiplicació
a la dreta per a. Si g també vingués donat per multiplicació a la dreta per un
cert element r, tindríem que

e(x)rb = f (x)

i l'anell seria No-injectiu per l'esquerra. Hem vist doncs el següent fet.

LEMA 5.12. Signí R un anell regular tal que fífa;] és un anell de Bezout per
la dreta. Aleshores R és ÜQ-injectiu si i només si per qualsevol parella d'ideals
esquerra comptablement generats I, J i un isomorfisme f : I —> J de R-mòduls
esquerra que ve donat per multiplicació per un element de R, aleshores l'invers
també ve donat per multiplicació per un element de R. I

LEMA 5.13. (P. Ara) Sigui R un anell regular R! ,RJ dos ideals per l'esquerra
de R i f: I —> J un morfisme bijectiu que ve donat per multiplicació a l'esquerra
per un element a.

(1) Si l'invers de f ve donat també per multiplicació a l'esquerra per un
element de R, aleshores existeix RK ideal principal de R tal que I C K i
IR(X) n K = 0.

(2) Si R és directament finit i existeix nK principal tal que I C K i IR(O) n
K = O, aleshores l'invers de f ve donat per multiplicació a l'esquerra per
un element de R.

DEMOSTRACIÓ: (1) Suposem que existeix un element 6 de R tal que xob = x
per tot x E I. Agafem K — (lfi(ab — (a&)2) ab que és un ideal principal esquerra.

Aleshores / C K, ja que si x € / tenim x = xab i per tant x(ab — (ab)2) = O,
d'aquí que x e K. També es compleix que l(a) D K = O, ja que si t e K C\ l(a)
aleshores í = saó amb s € l(ab — (ab)2). Tenim O = ta — saba i per tant
O = S(a6)2 = s(ab) = t.

(2) Sigui / un idempotent tal que K = R f i ¿(a) C R(l - /), aleshores Rf =
Rfa. Sigui g = g2 tal que Rfa — Rg, sigui c e Rg tal que efa = g i h = acg.
Observem que h = h2 i que Rh = Rf. Com que Rh C Rf i R és directament
finit aleshores Rh = Rf. Per tant f — fh = f a c f . Sigui b = cf. Tenim ara
que per qualsevol x e / x = x f = xfab. Per tant xab — x per qualsevol x & I.
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Si y € la aleshores y € Rfa = Rg i per tant yba = ycfa = yg = y. Podem
concloure doncs que b és l'element que buscàvem. I

Podem ara enunciar un recíproc parcial al Teorema 5.6.

PROPOSICIÓ 5.14. Sigui R un anell directament finit. Aleshores les següents
afirmacions són equivalents

(1) R és un anell regular ^o-injectiu per l'esquerra.
(2) (i) .fí[:rj és un anell de Bezout per ¡a dreta.

(ii) Si I és un ideal esquerra de R comptablement generat i e = e2 € R
és tal que I n Re = 0. Aleshores la projecció natural

p:I ®Re —> Re

ve donada per multiplicació a la dreta per un element de R.

DEMOSTRACIÓ: Sols ens falta demostrar que (2) =>• (1). Sabem que R ha de ser
regular pel lema 5.11. Si / és un ideal esquerra comptablement generat tal que
multiplicació a la dreta per un element a € R és injectiva, aleshores /n/(a) =0.
Però /(a) = Re per un cert e = e2 E R. Aleshores per hipòtesi existeix c e R tal
que I c = O i ec = e. Sigui K = R(l — ce), aleshores és clar que I C K.

Sigui r(l — ce) e K D Re, aleshores O = r(l — ce)a = ra per tant r(l — ce) =
re(l — ce) = 0. Ara podem concloure doncs aplicant els lemes 5.11, 5.12 i 5.13
que R és No-injectiu per l'esquerra. I

No sabem si la condició (ii) es pot treure de l'enunciat de la proposició. Si R és
un anell regular commutatiu aleshores aquesta condició es satisfà automàticament
(sense que l'anell R sigui Ko-injectiu). No és així per un anell regular directament
finit no commutatiu, tal com il·lustrarem amb un exemple tot seguit.

Un anell R és diu que és unit-regular si per qualsevol element r e R existeix
una unitat u e R tal que rur = r.

Un anell unit-regular és directament finit, ja que si a, 6 € R i ab = 1 aleshores
en particular IR(C) = 0. Si R és unit-regular sabem que existeix una unitat de
R diem-li u tal que aua — a, per tant (au — l)a = O i tenim que au = 1, podem
concloure doncs que R és directament finit.

EXEMPLE: Existeix un anell R unit-regular tal que R conté un ideal esquerra
comptablement generat / i un idempotent e € -R tais que I n Re = O i la projecció

p:I@Re —> Re
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no ve donada per multiplicació a la dreta per un element de R. A més R està
contingut dins d'un anell S, tal que S[x} és de Bezout als dos costats i p tampoc
ve donada per multiplicació a la dreta per un element de S.

DEMOSTRACIÓ: Sigui K un cos i V un K-espai vectorial de dimensió infinita
numerable. Sigui S = End/((V), considerem dins de S l'ideal M = {f €
S |dim(Im/) < 00}. Sigui R = K + M, aleshores és fàcil veure que R és
unit-regular.

Fixem {vi} una base de V com a K espai vectorial i w un element diferent de
zero de V. Considerem l'aplicació e: V —> V tal que e(vi) = w, i les projeccions
e¿: V —* V tais que 6i(vj) — oi j. Sigui / = ©-Re¿. Aleshores 7 n Re = O i la
projecció

7 © Re —> Re

no ve donada per multiplicació per la dreta, ja que si un element s e S1 compleix
que 6iS = O aleshores s = 0. Finalment com que S satisfà que S © 5" = S, S{xl
és de Bezout per la dreta i per l'esquerra. I

Si R és un anell regular Ho-continu per l'esquerra, aleshores la condició (2.ii)
de la Proposició 5.14 també és satisfà automàticament, tenim doncs el següent
corol.lari,

COROL·LARI 5.15. Sigui R un anell regular No-coiítmu per l'esquerra. Aleshores
les següents afirmacions són equivalents,

(1) R és un anell Ho-injectiu per l'esquerra.
(2) R{x] és un anell de Bezout per la dreta. I

5.3. Anells de sèries formals semihereditaris.

En aquesta secció aprofitarem la informació que tenim sobre els ideals d'un
anell regular Ko-injectiu per l'esquerra, per veure que si a més l'anell R és
No-complet també per l'esquerra aleshores /2jo;J és semihereditari per la dreta.
Aquest resultat és anàleg al de [10] en el cas en que R és commutatiu, de fet en
aquest cas Brewer, Rutter i Watkins varen provar que /ijzj és semihereditari si
i només si R és regular No-injectiu i Ko-complet, cf. Teorema 4.7.

LEMA 5.16. Sigui R un anell tal que -Rjz] és semihereditari per la dreta.
Aleshores R és un anell regular ÜQ-complet per l'esquerra.

DEMOSTRACIÓ: Sigui r un element diferent de zero de R, considerem l'ideal
dreta de Rfcl, I = rRlxl + xRlx]. Com que / és projectiu existeixen fi, f2 6 /*
tais que per qualsevol s de /, s = rfi(s)+xf2(s). Per tant rx = rfi(x)r+x2f2(r),
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fi(x)r = /i(r)x per tant aquesta sèrie no té terme de grau zero. Tenim doncs,
del terme de grau 1 de la igualtat anterior, que r e rRr i per tant R és regular.

Sigui {en}^LQ una família numerable d'idempotents ortogonals de R. Conside-
rem a(x) = S^Lo0"^"- Per ser ^IXI semihereditari per la dreta rn^(a(x)) =
e(x)R{xl, on e(x) — e(x)2 6 R[x}. per tant el terme de grau zero de e(x) és un
idempotent e C- R tal que ene = O per qualsevol n > O, és a dir TR (®%L0Ren) 2
eR. Però si r e r R (©£L0/ten) 3 eR aleshores e(x)s(x) = r, per tant r € eR.
Tenim doncs que (®^=oRen) Ç R(l — e)- Anem a veure que (1 — e) és el suprem
de {en}£L0- Si ®%L0Ren Ç Rf, aleshores (1 - /) e rR (®™=0Ren) = eR i en
conseqüència e(l — /) = (1 — /) i (1 — e)f = (1 — e) per tant .R(l — e) Ç Rf. |

PROPOSICIÓ 5.17. Sigui R un anell regular ÜQ-injectiu per l'esquerra i NQ-
complet per l'esquerra. Aleshores R{x\ és un anell de Bezout per la dreta i
semihereditari per la dreta.

DEMOSTRACIÓ: Pel Teorema 5.6 sabem ja que R[x} és un anell de Bezout per
la dreta. A més si //2jx] és un ideal principal per la Proposició 5.4

R[xl

amb en(x) = (1 + !^Li(l ~ en.)o,nen} en i en = e£ 6 R, per tant

\ / ~
en(x)xn j = rn[lj í 2_, enx

n

/ \n=o

Per la mateixa proposició tenim que enem = O si n < m, llavors

on e = e2 e R. Per tant els ideals principals de R{x] són projectius. I

Pere Ara a [2, Lemma 2.1] va provar que un anell regular No-injectiu per
l'esquerra i No-complet per l'esquerra també és No-continu per l'esquerra. Si es
pogués provar directament que .R[x] semihereditari per la dreta implica que R
és Ko-continu per l'esquerra, aleshores pel Corol.lari 5.15 i el resultat de Pere
Ara, tindríem el recíproc de la Proposició anterior en el cas en que R és un anell
directament finit.
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LEMA 5.18. Sigui R un anell directament finit tal que R[xl és de Bezout pels
dos costats i semihereditari per la dreta. Aleshores R és regular ÜQ-continu per
l'esquerra i ÜQ-injectiu per l'esquerra.

DEMOSTRACIÓ: Pel Lema 5.16 sabem que R és regular i No-complet per l'esque-
rra. Cal demostrar que si R! és un ideal per l'esquerra comptablement generat,
aleshores R! < eRe per un cert e = e2 e R. Podem suposar que R! està generat
per una família d'idempotents ortogonals {en}£L0.

Sigui Re el suprem de ®%LQRen, aleshores

eneene = een = en Vn > O

i (eene)(eeme) = O si n ^ m. Podem suposar doncs que {en}£L0 és una
família d'idempotents ortogonals de eRe. Per altra banda si demostrem que
®£L0e.neen < eeRe aleshores també tenim que Ren < eRe, perquè si / = /2 €
Re aleshores f efe = fe = f i en particular ef és un element diferent de zero de
eRe, per tant

O + (eRe)ef f) H (®%LQ(eRe)en) Ç Rf n (®%L0Ren).

Si R{x] és semihereditari i Bezout també ho és e,Re[a;J, com que a més e és el
suprem de {en} sense perdre generalitat podem suposar que

r R (®n=0Ren) = O

i volem veure que Ç&%L0Ren < eR, és a dir podem suposar e= 1.
Sigui e = e2 é R tal que (®%L0Ren) Re = O i a(x) = Y^=oenxn- Considerem

l'ideal esquerra de fí[a:|, J = R{xla(x) + R^x^e. Per ser /?|xj un anell de Bezout
per l'esquerra, J = Rlxld(x) per un cert d(x) E Í2[xj. Per tant existeixen
a, /?, a', b' e Rlxl tais que

cta(x) + /3e = d(x)

a'd(x) = a(a:)

b'd(x) = e.

Però R[x]a(x) n R\x}e = O, per tant

a'o;a(.T) = a(x) a'(3e = O
b'aa(x) = O b'/3e = e

Per l'ortogonalitat. de la família {en}£L0, podem suposar que a, ¡3, a', b' e R.
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De les relacions anteriors tenim que

aenR I n f3eR = O
n=0

Si considerem la sèrie c(x) = X)nLo aen%n j Per ser R{x] un anell de Bezout per
la dreta

c(x)R¡xl + peR{x\ = di(x)R[x]

per tant existeixen ai(x), Pi(x), c'(x), d'(x] elements de R\x\ tais que

c(x)ai(x) + Pe/3i(x) =
d\(x)c'(x} = c(x)
dl(x}d'(x} = e

Però (c(z)jRjz]) H f3eR{x\ = O, per tant

c(x)aí(x)c'(x) - c(x) /3epi(x)cf(x) = O
c(x)«i (x)d'(x) = O /3e/3i (x)d'(x) = pe

d'aquestes igualtats es dedueix

a'c(x)ai(x)cf(x) =
n=0 / n=0

com que X^^L:Oe"xn no ^ anul.lador per la dreta, obtenim que a\(x)d(x) =
1, i com que R és directament finit també tenim que ¿(x}o.i(x) = 1. Però
/3e/9i(x)c'(x) = O per tant J3e{3\(x) = O i llavors

Q = b'/3e/3i(x)d'(x)=e.

Tenim doncs que R és No-continu per l'esquerra i per la Proposició 5.14 és també
Ko-injectiu per l'esquerra. I

Handelman va provar que un anell regular Ko-continu és unit-regular, la de-
mostració d'aquest fet va ser després simplificada per Goodearl a [38, Corollary
1.6]. En aquest mateix article, Goodearl prova que si R és un anell regular NQ-
continu per la dreta i Ko-injectiu per l'esquerra aleshores R també No-continu
per la dreta i per tant també unit -regular.
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TEOREMA 5.19. Sigui R un anell. Aleshores les següents afirmacions són
equivalents

(1) R és regular No-úyectiu (pels dos costats) i ÜQ-complet per l'esquerra (o
per la dreta).

(2) R és directament finit i R{x] és Bezout i semihereditari.

DEMOSTRACIÓ: (1) =» (2) pel Teorema 5.6, sabem que R^xl és de Bezout pels
dos costats, i per la Proposició 5.17 que és semihereditari per la dreta. Per [2,
Lemma 2.1] R és Ko-continu per l'esquerra, per tant per [37, Theorem 1.8] és
també Ko-continu per la dreta. Per tant per [38, Corollary 1.6] R és directament
finit i per la Proposició 5.17 és semihereditari per l'esquerra.

(2) =*> (1) És clar pel Lema 5.18. I

5.4. Idempotents de l'anell de sèries formals.

És molt fàcil veure que quan R és un anell commutatiu els idempotents de
-R[xJ són precisament els idempotents de R. Veurem en aquesta secció que per
un anell qualsevol R els idempotents de -R[x| són conjugats dels idempotents de
R.

Suposem doncs que e(x] = e + X^i aix^^ és un idempotent de R. És clar que
e ha de ser un idempotent de R. Utilitzant que e(x)2 = e(x), és fàcil veure que
els coeficients a¿ han de satisfer les relacions que anomenarem (1):

ea\e = O

eane = —e(aien_i + ... -f an-\ai)e n > 2

(1 - e)an(l -e) = (I- e)(aian_i + ... + an-\ai)(l -e] n > 2

i les (2):
e(a\an-i + ... + an_iai)(l — e) = O n > 2

(1 — e)(aian_i + . . . + an-\ai)e = 0 n > 2

'an

NOTACIÓ: Denotarem per Vkn a la fila (ofc , . . . , an) i per v%.n la columna ( ; j •

I
. . . an

I ' • . '• j que té com a

O . . . afc

fila r-éssima ( O . . . O a^ a f c + i . . . an-r+i)
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LEMA 5.20. Sigui R un anell, e = e2 € R i {an}%Li una successió d'elements
de R que satisfà les relacions (1), aleshores també satisfà les relacions (2).

DEMOSTRACIÓ: Només demostrarem que per n > 2 es satisfà que e(a\an-\ +
.. . + an-iai)(l — e) = O, ja que l'altra identitat es veu de manera anàloga. Farem
les demostracions per inducció sobre n.

En el cas en que n = 2 tenim que

ea\a\(l — e) = ea\ea\(l — e) + ea\(\ — é)a\(\ — e] =0 .

Suposem doncs que n > 2 i que ho hem demostrat fins al cas n — 1. Aleshores

e(a\an-\ + ... + an_iai)(l — é) = euin_i jujn_1(l — e] —

— ev\n-\ev\n_i(\. — e) + ev\n-\(\ — e)vin_1(l — e)

Si apliquem 1.1 aquesta última igualtat es transforma en:

ev2n-ievin_2(l — e) + euin_2(l — e)u2n_1(l — e)

Si apliquem 1.2 tenim que

ev2n-\e — e(a2,... , an_i)e =

/ai ... an_2\

— — e(ai . . . an_2) I : ' • • '• j e = —evin—2Tin—2e

\ 0 ... ai /
i anàlogament

(1 - e)u2n_!(l - e) = (1 - e)Tln-2v*ln_2(l - e)
Per tant

+ evln-2(l - e)Tln_2t;ïn_2(l - e) =

2(1 - e)Tin_2(l - e)uîn_2(l - e)
Per hipòtesi d'inducció tenim que

' O N
: = erln_2UÏn_2(l - e) = eTln_2ei;Ïn_2(l - e)+

+ eT ln_2(l-eKn_2(l-e)
i també

( O . . . 0) = e?;i,,,_2Tln_2(l - e) = euin_2eïin_2(l -e) + evin-2eTln-2(l - e)

Per tant e(aian_i + ... + an_iai)(l — e) = euin_2eTin_2(l — e)v\n^2(l — e) —
— e)vln_2(l — e) = O, tal com volíem veure. I
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TEOREMA 5.21. Signi R un anell i e (z)2 = e(z) un idempotent de .R [z J. Ales-
hores existeix una unitat u 6 .R[z] i un idempotent e Ç. R tais que e(z) = u~1eu.

DEMOSTRACIÓ: Sigui e(x) — e 4- £lnt=i anz
n. Definim:

oo

u = 1 + 53 (~(1 ~ e)anC 4- eOn(l — e) — (1 — e)an(l — e) + eòn(l — e)) zn

n=l

on eòn(l — e) està definit inductivament com:

eòi(l-e) =0

n-l

eòn(l - e) = -t(l - e) + 53 ̂ í1 ~ e)an-¿(l - e)

En la resta de la demostració també escriurem:

eòn(l - e) = et;in_i(l - eju^.^l - e) + eòn(l - e)

on eòn(l — e) denota el segon sumand de la definició de eòn(l — e).
Hem de veure que «e(z) = eu. Es clar que

ço

eu — e + 5__, (ean(l — e) 4- e6n(l — e)) zn

n=l

Calculem doncs 'ue(z)
Pas 1. ( l -e) i íe(z)( l -e)=0

Es fàcil comprovar que els termes de grau 1 i 2 de (1 — e)ue(x)(l — e) són zero.
El terme n-éssim de (1 — e)i¿e(z)(l — e) és:

n-l n-2

53 -(1 - e)an_¿ea¿(l - e) - 53^ ~ e)an-i(l - e)a¿(l - e) + (1 - e)an(l - e) =
t=l i=2

- (1 - e)u2n-2(l - e)u2n-2(l - e) 4- (1 - e)an(l - e)

Aplicant les relacions 1.1 i 1.2 tenim que

(1 — e)an(l — e) = (1 — e)uin_ie?;Jí
n_1(l — e) 4- (1 — e)i>2n-2(l ~ e)u2n-2(·'· ~~ e)

Per tant el terme de grau n de (1 — e)ue(z)(l — e) és zero.
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Pas 2. (1 - e)ue(x)e = O
El terme n-éssim de (1 — e)ue(x)e es:

n—1 ... n —1

1 - e)an_i(l -

Per les relacions (2) tenim que:

(l-e)vin_i(l-e)t;;n_1e = -(l-

Per tant aquests termes també són zero.

Pas 3. eue(x)(\ — e) — YïmLi (efln(l — e) + ebn(l — e)) xn.
El terme de grau n de eue(x)(l — e) es:

n —1 n—1

i=l i=l

i per tant per la definició de ebn(l — e) aquest terme es igual a ean(l — e) +
eon(l -e).

Pas 4. eue(x)e — 0.
Volem veure que per qualsevol n > O es satisfà

n—1 n —1

53 e&i(l — e)an_¿e = 53 eOj

És més o menys tedios comprovar que aquesta identitat es satisfà fins n = 5.
Suposem que n > 5 i que ho hem demostrat fins n — 1.

Per una banda tenim que

53 ea¿ean_¿e = evln-1evln_1e =

_3(l - e)Tin_3eTin_3(l - e)v*ln_3e =

= (a • 1) + (a • 2) + (a • 3) + (a • 4) .
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on (a • 1), (a • 2), (a • 3) i (a • 4) denoten cadascun dels quatre sumands anteriors.
Els termes de b els podem desenvolupar:

n-l n-l

J^ ebi(l - e)an_»e = ]T ebi(l - e)an_¿e =
t=l t=3

= euin_3(l - e)r2n_2(l - e)vîn_3+

+ e(0,&4,... ,6n-i)(l-e)uJ'n_3e =
= euin_3(l - e)Tln-3Tin_3(l - e)vîn_3e+

+ e(64 , - . . ,6n-

Si apliquem ara les relacions (2) als termes (a • 4) + (a • 3) tenim:

(a • 4) + (a • 3) = (a • 4) + evi«_3(l - e)Tln_3(l - e)Tin_3(l - eKn_3e =

= euin_3(l - e)Tin_3rin_3(l - e)vln_3e

Terme que cancel·la amb el corresponent del desenvolupament de les ò's.
Ara

e(64 , . . . ,5 r i_i)(l-e)î;în_3e = e(63) . . . ,6n_2)(l -e)Tin_4(l - e)vln_4e =

-4(l - e)T2n-3(l - e)Tin_4(l - e)v*ln_4e+

e(0,64, • • • ,&»-2)(l - e)Tin_4(l - e}v*ln_4e

Si considerem el terme

(o • 2) = euin_3(l - e)rin_3eTin_3euîn_3e

3(l - e)Tln_3(l - e)Tln_3(l

_4(l - e)T2n_3(l - e)Tin_4(l

veiem que cancel·la amb el terme (b -1).
Tenim doncs:

(6 • 2) = e(64, . . . ,6n-2)(l - e)Tln_5(l - e)v*ln_5e

Si apliquem dues vegades les relacions (2) i la definició de 6¿ obtenim:

(6 • 2) = e(63, • • • , &n-3)(l - e)Tln
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Per hipòtesi d'inducció

Per tant
(6 • 2) =

Si ara treballem amb el terme (a • 1) que és l'últim que ens queda per cancel·lar:

(a • 1) =

n-5evln_5e = (6 • 2)

i això acaba la demostració. I
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