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Introduccié

Si R és un anell, un R-modul per la dreta M es diu que és generador si qualsevol
R-modul per la dreta és imatge homomorfica d’una suma directa de copies de
M. La nocid de modul generador va ser introduida I’any 1958 per Morita a [59)]
i juga un paper preeminent en tota la seva teoria de dualitat.

Un modul generador és fidel perdo no tot modul fidel és generador (Morita
anomena als moduls generador moduls completament fidels). Motivat per aquest
fet any 1966 Azumaya a [4] inicia Pestudi dels anells tals que tot modul per la
dreta fidel és generador.

L’estudi dels anells i dlgebres de Frobenius i quasi-Frobenius té el seu origen en
la teoria de respresentacié de k-algebres finitament generades. Nakayama l’any
1939 va introduir els anells quasi-Frobenius (QF) a [60] i [61], com els anells
artinians R que satisfan

rr(tr()) =1 i ln(re(J)),

per tot ideal per la dreta I i tot ideal per V'esquerra J. Exemples d’anells QF
son els anells artinians semisimples i les algebres de grup de grups finits.

La teoria desenvolupada per Nakayama de les K-algebres QF en els articles
abans esmentats, demostra que aquestes tenen molt bones propietats dins de la
teoria de representacié d’algebres. La definicié intrinseca dels anells QF permet
demostrar algunes d’aquestes propietats de manera abstracta pels anells. Sembla
ser que el primer que va observar aquesta propietat del doble anul.lador va se
Hall [42], per anells artinians semisimples. El lector pot consultar el llibre de
Curtis i Reiner [20, pag. 393 i 413] per tenir una informaci6é complerta del tema.

L’any 1940 a [5], Baer introdueix els moduls injectius i 'any 1951 Tkeda a [46],
caracteritza els anells QF de Nakayama com els anells artinians autoinjectius?.

Resultats de ’any 1946 de Nesbitt i Thrall, cf. [62], mostran que els anells
QF sén exemples d’anells tals que tots els seus moduls finitament generats fidels
sén generadors i per tant son exemples dels anells introduits per Azumaya que
esmentavern abans. Aquest fet motiva que posteriorment s’hagi anomenat a
aquest anell pseudo-Frobenius (PF). :

El primer exemple d’un anell PF que no és QF és degut a Osofsky i apareix
en l'article de ’any 1966 [63]. Els resultats dels articles d’Azumaya i Osofsky
ja esmentats, i els de Utumi {78], permeten donar una caracteritzacié dels anells
PF per la dreta, com anells autoinjectius per la dreta amb socol per la dreta
essencial. Malgrat aquesta caracteritzacid, saber si un anell PF per un costat

! La caracteritzacié de lkeda és la que farem servir a la memdria com a definicié d’anell QF
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ho era també per I'altre va ser qiiestié oberta durant un llarg temps. Dischinger
i Miiller ’any 1986, a [24] donan el primer exemple d’un anell PF per la dreta
que no ho és per I'esquerra. Queda oberta pero la qiiestié de saber quan lluny
estd un anell PF o en general un anell autoinjectiu de ser QF. El lector pot
consultar els survey de Faith [32] per obtenir una informacié detallada sobre
aquesta qiiestis i els resultats més importants fins ara obtinguts.

L’any 1967 Endo, cf. [], considera anells tals que tots els seus moduls per
la dreta finitament generats fidels sén generadors. Més tard l'any 1969 a [],
Tachikawa prova que un anell perfecte per ’esquerra que satisfa aquesta propietat
és PF per la dreta. Hi han despres més treballs que de manera implicita o
explicita treballan amb anells que satisfan aquesta propietat, pero és Faith qui els
hi déna identitat propia i els anomena anells “finitely pseudo-Frobenius” (F PF).
Ademés dels anells PF, sén exemples d’anells FPF els productes arbitraris
d’anells commutatius d’aquest tipus, anells commutatius injectius els dominis
de Priifer entre altres. Un teorema de Faith demostra que els anells FPF
semiprimers commutatius sén precisament els anells semihereditaris amb classic
de quocients injectiu. ‘

El contingut de la memories es situa dins del contexte dels anells FPF i ha
sigut motivat per diversos problemes dins de ’entorn d’aquesta area.

Una part del primer capitol esta dedicat a 'estudi dels anells F'PF semiprimers.
Dins s’aquesta lines apart dels resuitats recollits a [33], cal esmentar els articles de
Burgess i Kobayashi, referéncies [11] i (52] respectivament. Burgess demostra que
els anells FPF per la dreta semiprimers tenen classic de quocients per 'esquerra
injectiu, aquest resultat serveix a Kobayashi per donar una caracteritzacié dels
anells FPF per la dreta semiprimers en termes de propietats de ’anell i del seu
maximal de quocients. Aquesta caracteritzacié ens servird per mostrar que els
anells FPF semiprimers en general no tenen perqué ser semihereditaris, la qual
cosa déna resposta negativa a una pregunta de Faith i Page, cf. (33, Question
11).

Tant Burgess com Kobayashi inician un estudi “local” dels anells FPF per la
dreta semiprimers, mitjancant I’algebra de Boole associada a I’anell. En el primer
capitol estudiarem aquest problema i veurem que malgrat que els anells FPF
semiprimers tenen una gran quantitat d’idempotents centrals les stalks de Pierce
d’anells FPF no tenen perqué ser F'PF’, contestem aixi també negativament una
pregunta de Burgess, cf. [11, pag 1731).

Si R és un anell PF i G un grup finit aleshores RG també és PF. Un resultat
de Faith demostra que si R és un anell commutatiu injectiu (en particular F PF)
i G un grup finit aleshores RG és FPF. També en el primer capitol veurem
que aquest resultat s’esten a anells FPF commutatius i a un grup finit G amb
ordre invertible dins de I’anell. Val a dir que despres Kitamura a [51], déna una
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nova demostracié del nostre resultat que 'unifica amb resultats de Page sobre
algebres d’Azumaya F PF.

El segén capitol el dediquem a P’estudi de subanells de Galois i centres d’anells

- FPF. A[33] Faith i Page prguntatn si el centre d’un anells F PF és necessariament
FPF. Una resposta negativa a aquesta pregunta esta implicita a [}, on 77?77
construeixen exemples anells QF tals que el centre no ho és. Seguint les idees
d’aquest article donem exemples que demostran que ’anell fix d’'un anell FPF
no té perque heretar aquesta propietat. Un resultat positiu en aquesta direccié
és que si R és un anell FPF commutatiu reduit i G un subgrup finit dels
automorfismes de R aleshores ’anells fix és també F PF. Els nostres exemples
ilustran i limitan el camp a possibles generalitzacions d’aquest resultat.

Per anells F'PF semiprimers, fent us de métodes deguts a Bergman i Cohn, cf
[, Section 6.2] o [7], podem demostrar que tot domini commutatiu integrament
tancat es pot posar com a centre d’un domini de Bezout FPF. En general
demostrarem que el centre d’un anell FPF semiprimer és integrament tancat
dins del seu maximal de quocients, per tant els nostres resultats caracteritzan
els centres d’anells FPF primers.

A [6], Bergman esten les construccions que ja hem esmentat de [7] a anells
semiprimers, conseguint d’aquesta manera caracteritzar els centres d’anells here-
ditaris i semihereditaris. Aix6 ens va fer pensar que facilment podriem estendre
les nostres construccions d’anells FPF primers amb centres prefixats a anells
semiprimers, i aixi podriem caracteritzar els centres dels anells F' PF semiprimers
com els anells commutatiu reduits integrament tancats al seu maximal de quocients.
Un resultat positiu en aquesta direccié és comprovar que la definicié de Bergman
déna a [6] d’una valoracié sobre un anell commutatiu, ens permet veure facilment
els anells commutatiu reduits integrament tancats dins del seu maximal de
quocients com interseccié d’anells de valoracié del maximal de quocients. Pero
la construccié d’anells FPF semiprimers implica la construccié d’anells amb
classic de quocients injectiu i els métodes de Bergman i Cohn estan basats en
construir ’anell de Kronecker a partir de les valoracions que determinan 'anell
commutatiu C inicial. Aix6 implica adjuntar a C' una colla d’indeterminades i
en el nostre cas ho hem de fer de manera que aconseguim un anell amb classic de
quocients injectiu. En general s’ens planteja la qiiestié de com, donat un anell
comutatiu C, podem construir un anell R tal que C[z] C R i I'anell classic de
quocients de R sigui injectiu. Trobar una resposta a aquesta giiestié ha sigut
una de les motivacions principals al llarg de la resta de la memoria.

Pillay, cf. [69], va provar que ’anell classic de quocients per ’esquerra d’un
anell R és QF si i només sil’anell de polinomis R[z] també té classic de quocients
QF si i només si per qualsevol conjunt X ’anell classic de quocient de R[X] és
QF. En el tercer capitol de la memnoria veurem que en molts casos a I'imposar
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condicions d’injectivitat sobre Q',(R[X]), ja implica que aquest anell té que ser
artiniad. Els nostres resultats en aquest sentit sén plenament satisfactoris en el
cas de un conjunt infinit X. Podem demostrar en aquest cas que que el fet de que
QL,(R[X]) sigui injectiu per ia dreta o per 'esquerra és equivalent a que R tingui
classic de quocients per I'esquerra QF. Si suposem que X és un conjunt no buit
arbitrari, per arribar a la mateixa conclusié tenim que suposar que Q% (R[X]) és
autoinjectiu pels dos costats. En la mateixa linea també provarem que Q% (R[X]) |
és injectiu com a R[X]-modul per la dreta si i només si R té classic de quocients
pels dos costats i aquest és QF. Aquests resultats ens permeten caracteritzar els
anells diferents de zero, commutatius o semiprimers, tals que I’anell de polinomis
és FPF com els anells artinians semisimples.

Una pregunta implicita en aquesta mena de resultats és saber si ’existencia
de P'anell classic de quocients de R implica l’existencia de l'anell classic de
quocients de 'anell de polinomis. No coneixem cap resultat que confirmi, ni
que desmenteixi aquest fet de manera general. Tampoc és clar que ’existencia
del classic de quocients de ’anell de polinomis impliqui I’existencia del classic de
quocients de R.

Els resultats que hem esmentat de Small, Shock i Pillay, que dénen resposta
afirmativa a aquestes qiiestions en alguns casos, son resultats obtinguts a partir
de l'estructura de ’anell i de I’anell de polinomis. En aquesta linea provarem:
que si R[z] té classic de quocients per ’esquerra semilocal i és satisfa que
J(QY,(R[z])) N Rz] = I[z], per un cert ideal I de R, aleshores el classic de
quocients per ’esquerre. de R existeix i és semilocal. De fet aquest resultat és .
una facil generalitzacidé de les técniques de Small per ordres en anells artinians
semisimples, que gracies a la condicié que imposem sobre el radical de Jacobson
estenen a anells semilocals.

Es un resultat d’Amitsur ben conegut , cf. [1], que el radical de Jacobson de
’anell de polinomis és de la forma N{z] on N és un nilideal de R. Provarem que
aquesta situacid, en molts casos, s’esten a ’anell classic de quocients de ’anell
- de polinomis. Veurem que si R és un anell commutatiu o 27! € Q,(R[z]) o Z(R)
conté una arrell senar de l'unitat, aleshores J(QY,(R[z])) N R[z] = I[z]. Per
tant en aquests casos és cert el resultat d’ordres en anells semilocals del paragraf
anterior. ‘

Els resultats de Capitol 3, sobre la injectivitat del classic de quocients de
l’anell de polinomis, i les seves demostracions ens van fer pensar que els anells
de series formals, sota condicions no tan restricictives com les que surten amb
I’anell de polinomis, si prodrien tenir classic de quocients injectiu. En un principi
pensavem que pot ser si R era un anell amb classic de quocients injectiu aleshores
R[z]també. Amb una certa sorpresa vam descobrir que aixd només era veritat
a mitges. En el quart capitol explicarem aquests fets. Veurem que si R és un
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anell commutatiu, regular-i autoinjectiu aleshores R[z] té classic de quocients
injectiu, pero també veurem exemples facils d’anells commutatius de Baer amb
classic de quocients injectiu, tals que 'anell de séries formals no és injectiu. De
fet en aquest cas 'inic que podem provar és una condicié de Np-injectivitat. No
en tenim prou amb considerar séries de longitud numerable per obtenir anells
amb classic de quocients injectiu. Haurem de pensar en séries formals de longitud
més llarga, amb séries de longitud tant o més llarga que la dimensié de Goldie
de l'anell.

Anells de séries formals amb longitud prefixada van ser considerats per Malcev
i Neumann, cf. [67, pag. 777], per posar algebres de grup sobre grups ordenats
dins de cossos. També Kaplansky va construir exemples d’un cert tipus d’anells
basant-se en aquests métodes, cf. []. Exemples de Lévy de dominis de Bezout
tals que els seus quocientssén injectius, cf. [54], sén anells de séries formals amb
longitud prefixada pero més llarga del numerable.

Aquests treballs ens serveixen de model per construir anells de séries prou
llargues, perqué quan considerem aquestes séries sobre un anell de Baer commutatiu,
puguem provar que tenen classic de quocients injectiu. A partir d’aquest resultat
és facil veure que el maximal de quocients de 'anell de polinomis sobre un anell
de Baer commutatiu, es pot veure com el classic de quocients d’un subanell
adequat d’aquests anells de series formals.

En el capitol quart també veurem algunes construccions d’anells F PF' a partir
d’anells de séries formals. Aquestes construccions, juntament amb els resultats
d’injectivitat haurien de ser 'ingredient principal en el problema de construir
anells F PF semiprimers amb centre prefixat. Per poder realitzar aquesta construccié
ens quedara pero una qiiestié important per resoldre, com estendre les valoracions
a aquests anells de series formals?.

Les técniques que fem servir per treballar amb anells de séries formals estan
basades en un article de Brewer, Rutter i Watkins [10], els resultats del qual
estan recollits al llibre de Brewer [9]. En larticle abans esmentat s’obté una
caracteritzacié dels anells de series formals (de longitud numerable) sobre anells
commutatius, que sén anells de Bezout o semihereditaris. En el capitol cinqué de
la memoria estendrem aquests resultats a anells no necessariament commutatius.

Si R és un anell commutatiu aleshores R[z] és un anell semihereditari o Bezout
si i només si R és regular. Per anells de séries formals la situacié és una mica
més complicada, R[z] és un anell de Bezout si i només si R és regular Ng-
injectiu i R[z] és semihereditari si i només si R és regular Np-injectiu i No-
continu. Per anells no necessiriament commutatius la situacié és bastant més
complicada. No és cert en general que I’anell de polinomis sobre un anell regular
sigui un anell de Bezout o un anell semihereditari. De fet no és coneguda una
caracteritzacié dels anells tals que els anells de polinomis sén anells de Bezout o
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anells semihereditaris. Es poden trobar resultats en aquesta direccié en treballs
de Goursoud [], Menal [58], Moncasi i Goodearl [] i Dicks i Schofield [22].

En el capitol cinqué demostrarem que els anells de series formals sobre anells
regulars No-injectius per 'esquerra sén anells de Bezout per la dreta. Aquest
resultat contrasta amb la situacié per I’anell de polinomis, ja que en aquest cas
s’esten, al menys parcialment, el resultat del cas commutatiu. A 'intentar buscar
un reciproc s’ha de tenir en compte que un anell R no commutatiu pot satisfer
que R®R = R, aleshores és clar que tant I’anell de polinomis com I’anell de séries
s6n anells de Bezout, sense cap necessitat de que I'anell compleixi alguna altra
hipotesi adicional, com ser regular o No-injectiu. Aquest fet fa que per estudiar
els anells de polinomis o de séries formals que sén Bezout calgui imposar alguna
condicié de finitut sobre ’anell, andlogament a com fa Menal a [58] la condicié
de finitut que imposarem sera que ’anell sigui directament finit. Sota aquesta
hipé6tesi podrem provar que si 'anell de séries formals és un anell de Bezout per
la dreta aleshores R és un anell regular, peré no podrem provar que R sigui Ro-
injectiu més que afegint una hipétesi adicional relacionada amb les projeccions
d’ideals contablement generats, hip6tesi que es satisfa automaticament en anells
regulars comnyutatius.

Amb aquests resultats ataquem el problema dels anells de séries semihereditaris,
i en aquest cas també podem provar que els anells de séries formals sobre
anells regulars No-injectius per l'esquerra i No-complets també per ’esquerra
sén semihereditaris per la dreta. Tornem a trobar doncs una altra vegada
que els resultats del cas commutatiu s’estenen parcialment. Les dificultats ens
apareisen a l'intentar provar un reciproc, en aquest sentit veurem que sobre un
anell directament finit els anells de séries formals sén semihereditaris (pels dos
costats) si i només si I’anell és regular Ro-injectiu i Ro-complet.

Acabem el cinqué capitol demostrant que els idempotents de I’anell de series
formals sén conjugats d’idempotents de P’anell. Aquest resultat és bastant sor-
prenent perqué si hom pensa amb els idempotents de ’anell de polinomis la
situacié és cadtica. Perd cal fer un parell de reflexions, la primera és que en un
anell de series formals hi han moltes unitats i la segona és que els problemes que
plantegem, en general implican la resolucié de sistemes d’equacions sobre ’anell
de coeficients. En el cas de polinomis aquestes solucions han de ser polinomis,
és a dir han de ser sumes finites la qual cosa implica no sols trobar la solucicié si
no també trobar un cert n del grau de la solucid, en realitat el que hom té no és
un sol sistema si no un sistema per cada grau posssible de la solucié i d’aquesta
familia de sisteames s’ha de decidir quin o quins sén resolubles. En anells de séries
formals no apareix aquesta dificultat deguda al grau, es clar que es paga el preu
d’estar treballant sempre amb sistemes infinits.

Finalment ens resta dir que els resultats dels capitols 1 i 2 de la memoria estan
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recollits a [44]. Els resultats de les seccions 1,3 i 4 del capitol tercer sén part
d’un treball fet conjuntament amb P. Pillay i es poden trobar a [45].
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Notacié 1 abreviacions

Sigui R un anell amb unitat, M un R modul per la dreta N un submodul de
M i G un grup.

QL (R) Anell classic de quocients de R per la dreta.

QY (R) Anell classic de quocients de R per I’esquerra.
Qua(R) Anell classic de quocients de R pels dos costats.
oz (R) Anell maximal de quocients de R per la dreta.
QL 0z(R) Anell maximal de quocients de R per ’esquerra.
Qmaz(R) Anell maximal de quocients R pels dos costats.

M., (R) Anell de les matrius n x n sobre R.

mod — R Categoria dels R-moduls per la dreta.

RG Anell de grup.

R+«G Producte creuat.

R|[z] Anell de polinomis sobre la indeterminada x a coeficients a .
R[X] Anell de polinomis sobre el conjunt X a coeficients a R.
R[z] Anell de series formals en la indeterminada z a coeficients a
R[z; o] Anell de séries formals skew.

J(R) Radical de Jacobson de l'anell R.

Sing(M) Submodul singular de M.

Soc(M) Socol de M.

M+ Homomorfismes de M a R.

tr(M) Ideal traca de M.

Z(R) Centre de I'anell R.

N <. M) N és un submodul essencial de M.

FPF Finitely pseudo-Frobenius.

PF Pseudo-Frobenius.

QF Quasi-Frobenius.

M1 Producte cartesia de M I vegades.

MW Suma directa de M I vegades.

rr(S) {re R|Sr=0}.

lr(S) {re R|rS =0}

(M : N) {re R| Mr C N}.

N Els naturals.

z Els enters.

Q Els racionals.



Capitol 1.

Anells FPF

1.1. Mdduls generadors.

En aquesta seccié introduim el concepte de modul generador i algunes propietats
basiques. Els resultats que presentem sén ben coneguts i és poden trobar recollits
als primers capitols de [33] o [34].

En aquest treball els anells que considerem sén associatius i amb unitat. Si R
és un anell, denotarem per mod-R la categoria de tots els R-moduls per la dreta.
Si M i N sén dos R-moduls per la dreta, direm que M genera N si N és imatge
homomorfica d’ura suma directa de copies de M. Direm que M és generador de
la categoria mod-R o bé simplement generador, si M genera tots els R-moduls
dreta. Un exemple obvi de generador és el mateix anell R. Es clar que si M és
un generador una condicié necessaria i suficient per a que N ho sigui és que N
generi M.

Si denotem per M* el modul dual de M, és a dir

M* = Homgp(M, R)
podem considerar l'ideal trp(M) de R, anomenat traca de M:
trp(M) = ) f(M).
feMm*
Per les remarques anteriors M és generador si i només i trp(M) = R.
Resumim aquests fets en la segiient Proposicié:

PRroPosSICIO 1.1. Sigui R un anell i M un R-méddul per la dreta. Aleshores les
segiients afirmacions sén equivalents:

(1) M és un generador

(2) Existeix un R-mddul dreta X i un enter n > 1 tal que M™ = R @ X
(3) R=trp(M)

(4) Existeixen f1, fo,... ,fn € M* imy,ma,... ,m, € M tals que

Z fi(mi) = 1.
=1

10
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Si M és un R-modul per la dreta (esquerra) i S un subconjunt de M, denotarem
I’anul.lador per la dreta (esquerra) de S com rg(S) (Ir(S)). Direm que M és
fidel per la dreta (esquerra) si rr(M) = 0 (Ir(M) = 0). Cal observar que si M
és un generador aleshores en particular M ha de ser fidel.

Sigui M un R-modul per la dreta, considerem ’anell H = End(Mpg). Aleshores
M es pot veure com un H-modul per 'esquerra. Tenim definida de manera

natural aplicacié
p: R -— End(yM)

T i
on (m)f = m - r per qualsevol element m de M.

TEOREMA 1.2 (MORITA). Sigui R un anell i M un R-moédul per la dreta.
Aleshores M ¢s generador si i només si satisfa les dues condicions segiients:

(1) M és projectiu finitament generat com a H-moddul per I’esquerra.
(2) p és isomorfisme d’anells.

DEMOSTRACIO: Suposem que M és generador. Aleshores per I'apartat (2) de la
Proposicié 1.1 M™ = R® N, per tant

Hom(Mp, Mg) = Hom(R, M) & Hom(R, N)

1 tenim
H'=yM®&yN,

podem concloure doncs que M és finitament generat i projectiu com a H-modul
esquerra.

~ Si M és generador aleshores és fidel i per tant p és injectiva. Per l’apartat (4)

de la Proposicié 1.1

n
Y film) =1
i=1
per certs my,... ,mnp € M, f1,..., fn € M*, aleshores si m € M tenim
‘ n
m=me,~(mi). :
i=1

Per qualsevol i, m; és un element de H, en conseqiiéncia si f € End(ygM).

fFm) =Y "mfi- fms) =m Y fi(f(mi)) =mr
=1 i=1
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onr =31 fi(f(m;)) € R. Per tant p és també exhaustiva.
Suposem ara que M satisfa (i) i (ii). Per (i) tenim que existeix un enter n tal
que H® = yM @ g N, per tant

Hom(yH™, yM) = Hom(ygM, gy M) @ Hom(y N, y M)
Si apliquem (ii) obtenim la descomposicié de R-moduls per la dreta:
M™ = R® Hom(yN, yM)
i per Papartat (2) de la Proposici6é 1.1 podem concloure que M és generador.
LEMA 1.3. Sigui R un anell commutatiu i M un R-moddul fidel finitament
generat. Si I és un ideal de R tal que MI = M aleshores I = R.
DEMOSTRACIO: Siguin my,... , m, els generadors de M. Si MI = M tenim
que existeix un element A € M,(I) tal que
my 0
(1, — 4) =
my 0
on 1,, denota la matriu identitat n x n.
Multiplicani. per la matriu adjunta de 1,, — A, obtenim que per qualsevol i,
= 1,...,n, det{l, — A)m; = 0, on det(l,, — A) denota el determinant de la

matriu 1,, - A. Com que M és fidel det(1, — A) =0, perd det(] — A) =1—r
peruncert r € I, pertant I = R. 1

COROL.LARI 1.4. Sigui R un anell commutatiu i N un R-modul fidel finitament
generat. Aleshores N genera els moduls simples.

DEMOSTRACIO: Sigui M un ideal maximal de R. Pel Lema 1.3 el R/M-modul
M/MN és diferent de zero. Per tant N/MN genera R/M i aleshores N genera
R/M. 1

COROL.LARI 1.5 (TEOREMA D’AZUMAYA). Sigui R un anell commutatiu i P
un modul projectiu fidel finitament generat. Aleshores P és un generador.

DEMOSTRACIO: Si P és un modul projectiu és clar Ptrg(P) = P. Pel Lema 1.3
trr(P) = R i per tant per la Proposicié 1.1 P és generador. W

Es ben conegut que el Teorema d’Azumaya no s’esten a anells no commutatius.
Per exemple, si K és un cos, podem considerar la K-3lgebra R = K(z,ele? = e).
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Aleshores és clar que P = eR és un modul projectiu finitament generat fidel pero
trr(R) = ReR # R.

En el capitol 2 veurem la conclusié del Teorema d’Azumaya és certa quan
considerem ideals projectius generats per elements centrals.

Si R és un anell i I és un ideal bilater de R, anomenem 7 a la projeccié natural:

mR— R/I

LEMA 1.6. Sigui R un anell. Si P és un modul projectiu per la dreta i I un
ideal bilater contingut a rp(P). Aleshores trg;;(P) = m(trp(P)).

DEMOSTRACIO: Es clar que w(trg(P)) C trp/r(P). Suposem que tenim
f:P— R/I

Aleshores com que P és projectiu existeix f: P — R, tal que 7o f = f. Per tant
trp/1(P) € m(trr(P)), tal com voliem veure. N

En general per un anell commutatiu R tenim que la traca d’un modul projectiu
finitament generat és un sumand directe de R.

COROL.LARI 1.7. Sigui R un anell commutatiu i P un modul projectiu finitament
generat. Aleshores R = trp(P) & r(P).

DEMOSTRACIO: Pel Teorema d’Azumaya (Corol.lari 1.5), tenim que

trr/r(p)(P) = R/r(P).

Per tant pel Lema 1.6 R = trg(P) + r(P). Aixo implica que trp(P) N r(P) =
trp(P) -r(P) =01iper tant R =trp(P)®r(P). 1

El Teorema d’Azumaya té un reciproc parcial, en el sentit que si R és un
anell commutatiu aleshores els ideals finitament generats que sén generadors
son també projectius. Enunciarem aquest resultat en un contexte una mica
més general per un anell R no necessariament commutatiu i ideals generats per
elements del centre de R. :

PRropoSICIO 1.8. Sigui R un anell i I un ideal finitament generat per elements
del centre de R. Si I és generador com a R-modul dreta aleshores és projectiu
com a R-modul dreta.
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DEMOSTRACIO: Pel la Proposicié 1.1 i per estar I generat per elements centrals
T1,--. ,Tn, €Xisteixen elements fi,... , fn € I* talsque fi(z1)+...+ fu(z,) = L.
Aleshores per qualsevol r € I, r =1 fi(r)+...+ 1o fn(r). Per tant I és projectiu
per la dreta. B '

En el capitol 2 veurem que de fet aquest resultat també és cert sense tenir que
suposar I finitament generat.

1.2. Moduls generadors i cancel.lacié de poténcies.

Sigui R un anell i M un R-modul per la dreta. Es diu que M cancel.la de les
sumes directes si per a tots R-moduls per la dreta Ai Btalsque MGA=Z M®B
aleshores A = B. Es diu que M satisfa cancel.lacié de poténcies si MGA = M @B
implica A™ = B, per algun enter n > 1.

Goordearl a [39] va provar que si R és un anell commutatiu i M, A, B sén
R-modduls projectius finitament generats, aleshores M @ A = M & B implica
A™ = B™ per algun enter n > 1. En aquesta seccié donarem una demostracié
ineédita d’aquest resultat deguda a P. Menal que simplifica considerablement la
de Goordearl.

La connexié entre la propietat de cancel.lacié de poténcies i els moduls gene-
radors ve donada a través del segiient lema que és una adaptaciéo de P. Menal
d’un argument degut a Blackadard [8].

LEMA 1.9 (BLACKADARD-MENAL). Sigui R un anell, M un R-moddul per la
dreta projectiu f - g. Siguin A i B moduls per la dreta generadors de mod-R,
tals que M ® A = M @ B, aleshores existeix un enter n > 1 tal que A™ = B".

DEMOSTRACIO: Per ser A generador, sabem que existeix un morfisme exhaustiu
" f: A" — M, per un cert enter n > 1. Donat que M és projectiu, existeix un
modul per la dreta X tal que A™ = M & X. Si fem el mateix argument amb B
tenim que existeix un enter n > 1 tal que:

A"=MepX i B"=2MoY
per un certs moduls per la dreta X é Y. Per tant

A"OBXMOXOBEMOXP A A

~

i de la mateixa manera A @ B® = B™t!, Podem concloure doncs que A?" =
A™ ® B™ = B?" tal com voliem veure. B
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TEOREMA 1.10 (GOORDEARL [39]). Sigui R un anell commutatiu i M, A, B
R-moduls projectius finitament generats, tals que M & A = M @ B. Aleshores
existeix un enter n > 1 tal que A™ = B™,

' DEMOSTRACIO (P. MENAL): Suposem primer que A és un modul finitament
generat projectiu tal que M @ A & M. Anem a veure que aleshores A =0, i.e.
M és directament finit. Si sumen un modul adequat, de fet tenim R*" ® A = R™.
Sigui ¢ I'isomorfisme de R™ a R™ @ A. Aleshores considerem

R 2. RrroA-T R

on 7 és la projeccié natural. Aleshores moyp és un endomorfisme de R™ exhaustiu,
com que R és commutatiu també és injectiu. Per tant A = 0.

Suposem que A i B s6n moduls finitament generats projectius tals que M@ A =
M @ B. Pel Corollari 1.7 existeixen dos idempotents de R, e i f tals que
rr(A) = eR i rr(B) = fR. Aleshores tenim:

(1-e(1-fiMo(1-e)Q-flA=(1-e)(1-fIM S (1—-¢e)(1- f)B
(l-e)fMa(l-e)fA=(1-e)fM
e(1- )M = e(1 - M @e(l— f)B

pel que hem demostrat abans (1 —e)fA =01e(l — f)B = 0. Si considerem
I'anell (1 —€)(1 — f)R i apliquem el Teorema d’Azumaya, podem suposar sense
perdre generalitat que A i B sén generadors tals que M & A = M & B, aplicant
ara el Lema 1.9, tenim que existeix un enter n > 1 tal que A™ = B™. 1

A partir de la demostracié del Teorema i Lema anteriors, obtenim una cota
superior del n tal que A™ = B™. Si A és un modul generador, generat per r
elements, M és projectiu i estd generat per s elements, com que R és un anell
commutatiu, per la Proposicié 1.1 tenim:

AT =2MoX.

Per tant en la situacié M @ A = M @ B, si r; és el nimero de generadors de
A, T3 el nimero de generadors de B i s el nimero de generadors de M. Agafem
r = max(ry, r2) 1 tenim que

A2r's o B2r-s.

1.3. Anells introduits mitjancant la nocié de modul generador.

Un anell R és diu que és Pseudo-Frobenius per la dreta (PF per la dreta) si
tot R-modul per la dreta fidel és generador de la categoria mod-R. De manera
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similar es defineixen els anells PF' per 'esquerra. Direm que un anell és PF si
ho és pels costats.

Sigui M un R-modul per la dreta, aleshores es defineix el socol de M, que
denotarem (Soc(M)), com la suma de tots els submoduls simples de M. En el
cas de 'anell R podem considerar un socol per la dreta i un per ’esquerra que
denotarem com Soc,.(R) i Soc;(R) respectivament.

Si M és un R-modul per la dreta, direm que un submodul N és essencial dins
de M i escriurem N < .M, si tot submodul diferent de zero de M té interseccié
diferent de zero amb N.

Sigui R un anell i J(R) el seu radical de Jacobson. R es diu que és semiperfecte
si R/J(R) és artinia semisimple i els idempotents pugen modul J(R).

Els anells PF per la dreta es podem caracteritzar en termes de ’anell de la
segiient manera.

TEOREMA 1.11. [30, 24.32 pag.213] Sigui R un anell. Aleshores les segiients
afirmacions sén equivalents.

(1) R és PF per la dreta.
(2) R és semiperfecte, autoinjectiu per la dreta i Soc.(R) és essencial a R. [l

En particular tenim que un anell commutatiu R és PF si i només si és un
producte finit d’anells locals autoinjectius R; tals que cadascun satisfa

Soc(R;) <¢ R; i Soc(R;)*=0.

Un altre tipus d’exemple d’anells PF sén els anells quasi-Frobenius. Recordem
que un anell és guasi-Frobenius (QF), si és artinia i autoinjectiu. Cal remarcar
que QF és una propietat simetrica, de fet un anell artinid (per la dreta o per
I'esquerra) i autoinjectiu (per la dreta o per I'esquerra) és QF.

Condicions de cadena més restrigindes que la de artinid també impliquen que
un anell autoinjectiu sigui QF.

Un anell R és diu que satisfa condicid de cadena ascendent per anul.ladors
per la dreta si per qualsevol familia numerable de subconjunts de R, {S;}{2,
tal que 7r(S;) C rr(Si+1), existeix n tal que rr(S,) = rr(Sn+k) per qualsevol
k > 0. Similarment es defineix la condici6 de cadena ascendent per anul.ladors
per 'esquerra.

TEOREMA 1.12. Faith, [77,Theorem XIV.3.5] Sigui R un anell autoinjectiu per
la dreta o per I'esquerra. Si R satisfa a més condicié de cadena ascendent per
anul.ladors per la dreta o per I'esquerra aleshores R és QF . I
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Altres tipus de condicions de cadena també impliquen que un anell autoinjectiu
sigui QF. En el trebal de P. Ara i J.K. Park [3] i les seves referéncies es poden
trobar resultats d’aquest estil.

Hem comentat ja que a través de la caracteritzacié del Teorema 1.11 es pot
veure que tot anell QF és PF pels dos costats. De fet el primer exemple d’un
anell PF que no és QF és degut a Osofsky, cf. [63]. L’exemple d’Osofsky es pot
emmarcar dins del segiient esquema de construccié d’anells.

Sigui R un anell i M un bimodul sobre R. Aleshores s’anomena extensid trivial
de R per M, E(R, M), a l'anell format per parelles (r,m), r€ Rim e M. On
la suma, estd definida component. a component i el producte '

(T’l,Tnl)(T‘g, m2) = (7‘17‘2, T1Mo + ml'l‘g) .

L’anell E(R, M) es pot veure com ’anell de les matrius 2x2 de la forma (6 T)

onr € Rim € M. S’identifica R amb un subanell de E(R, M) via la inclusi6

r 0). o . 0 m
r— (0 r) i el bimodul M via m — (O 0)».
TEOREMA 1.13. (Faith [27]) Sigui R un anell local i sigui M # 0 un R bimodul.
Aleshores E(R, M) és PF per la dreta si i només si

(1) Mg és ’envolcall injectiva de 'inic R-modul dreta simple.
(2) R=End Mp. 1

L’exemple d’Osofsky [63], s’obté agafant R = Z,, (els enters p-adics) i M =
Z(p*>), on Z,, actua sobre Z(p™) de la manera natural. Es conseqiiéncia del
teorema anterior que E(R, M) és PF i en canvi no és QF.

Altres exemples d’anells PF que no sén QF sén deguts a Levy [54]. De fet
els exemples de Levy eren per construir anells de Bezout no noetherians tals que
els seus quocients sén anells autoinjectius. Faith va fer notar a [27] que alguns
d’aquests quorients sén PF pero no QF.

A [24] Dischinger i Miiller donan el primer exemple d’un anell PF per 'esquerra
que no ho és per la dreta. Aquest exemple també esta basat en la técnica de
construir anells PF' mitjancant extensions trivials.

Seguint a Carl Faith, cf. [34] 6 [33], definim dins d’aquest context els anells
FPF (finitely pseudo-Frobenius) per la dreta com els anell tals que tot modul
finitament generat fidel és generador de la categoria mod-R. De manera similar
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és defineix F PF per ’esquerra. Direm que un anell és F'PF si ho és per la dreta
i per 'esquerra.

Exemples d’anells FPF per la dreta, sén els anells PF per la dreta i els anells
QF. Perd els anells FPF formen una classe més amplia que els PF, tal com
prova el segiient resultat.

TEOREMA 1.14. ([34, Theorem 2.2]) Si R és un anell commutatiu autoinjectiu
aleshores R és FPF.

DEMOSTRACIO: Sigui M = Y .-, m;R un R-mddul finitament generat fidel.
Podem definir ’aplicacid,

f: R — M
r o— (my,ma,...,my)"

f és un R-monomorfisme i com que R és injectiu tenim que M™ = R @ X i per
la Proposicié 1.1, M és generador. B

Carl Faith va caracteritzar els anells FPF commutatius de la seglient manera:

TEOREMA 1.15. (Faith, [34, pag. 26]) Si R és un anell commutatiu, R és FPF
si 1 només satisfa:

(1) Els ideals finitament generats fidels sén projectius.
(2) L’anell classic de quocients de R és autoinjectiu. i

Un anell R es diu que és semihereditar: per la dreta si tot submodul finitament
generat d’un modul per la dreta projectiu és projectiu, o equivalentment si
tot ideal per la dreta finitament generat és projectiu. De manera analoga es
defineix semihereditari per ’esquerra. Direm que un anell és semihereditari si és
semihereditari pels dos costats.

Recordem que un anell R es diu semiprimer si I'inic ideal de quadrat nul és
el zero.

A partir del Teorema 1.15 és clar que els anells commutatius F' PF semiprimers
so6n precisament els anells semihereditaris amb classic de quocients injectiu.

1.4. Caracteritzacié dels anells FPF semiprimers.

Seguint a Chatters i Hajarnavis [14] direm que un anell R és acotat per la
dreta si tot ideal per la dreta essencial de R conté un ideal (bilater), que és
essencial com a ideal per la dreta. Volem remarcar que el terme acotat per la
dreta també es fa servir al llibre de Faith i Page, [33], perd amb un significat una
mica diferent.
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Si R és un anell denotarem per Q7. . (R) lUanell mazimal de quocients per
la dreta de R i per @', (R) l'anell maximal de quocients per l'esquerra. Si
aquests dos anells coincideixen aleshores seguirem la notacié Qmaz(R). Per
Q7 (R) denotarem [’anell clissic de quocient per la dreta de R i per Q.,(R)
l’anell classic de quocients per 'esquerra. Si el classic pels dos costats existeix
aleshores el denoterem com Q;(R). Per Sing(M) volem dir el submodul singular
del R-modul per la dreta M. En el cas d’un anell R denotarem per Sing,(R)

(Sing;(R)) el submodul singular per la dreta (esquerra) de R.

Si R és un anell semiprimer F PF per la dreta, aleshores un teorema de Page
[33,Theorem 3.12] diu:
(A) Qr...(R) és regular i llis com R-modul dreta i l’aplicacio

definida com f(r ® s) = rs és un isomorfisme d’anells.

Per [35, Theorem 5.17] (A) implica:

(A’) Tot R-modul dreta finitaments generat es pot incloure en un R-modul
dreta lliure. ‘

La segiient propietat d’un anell FPF per la dreta semiprimer és també ben
coneguda:

(B) R és acotat per la dreta(cf. [11, Proposition 2.2], [48,Proposition 1]).

En general si R és un anell no singular per la dreta, per [52, Lemma 2], (B)
implica:

(B’) Un R-mnsdul per la dreta M és fidel si i només si M /Sing(M) és fidel.

De la definicié d’anell FPF per la dreta tenim:

(C) Tot ideui dreta finitament generat fidel de R és un generador de mod-R .

Primer donarem una caracteritzacié dels anells FPF semiprimers, aquest
resultat és degut a S. Kobayashi. La nostra prova és potser més simple que
Poriginal.

TEOREMA 1.16. (Kobayashi, [52, Theorem 1]) Sigui R un anell semiprimer.
Aleshores R és FPF per la dreta si i només si R satisfa les condicions (A), (B)

i (0).

DEMOSTRACIO: Pel que hem dit anteriorment n’hi ha prou amb demostrar que
si R és un anell semiprimer que satisfa (A),(B) i (C) aleshores R és FPF per la
dreta. ‘

Suposem que M és un R-modul per la dreta fidel i finitament generat. Com
que Q.- (R) és regular, R és no singular per la dreta i aplicant (B’) podem
suposar sense perdre generalitat que M és no singular. Aleshores per (A’) existeix
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un R-monomorfisme (1, ...,¢n): M — @] R. Aquest indueix un epimorfisme
M"™ — @, ¢i(M). Com que M és fidel, també ho és @@, ¢;(M). Per tant
Sor i @i(M) C R és fidel. Ara per (C) Y| ¢i(M) és un generador. Com
que hi ha un epimorfisme M™ — "7 ;(M) podem concloure que M és un
generador. il

Gracies a aquesta caracteritzacié podem obtenir informacié dels anells entre
un anell FPF semiprimer R i Q.. (R).

En general és una pregunta oberta si el maximal de quocients d’un anell FPF
semiprimer coincideix amb el classic de quocients, cf. [33, Question 6]. Burgess
va donar resposta afismativa a aquesta pregunta en el cas dels anells FPF per
la dreta semiprimers.

TEOREMA 1.17. [11, Theorem 1.3] Sigui R un anell FPF per la dreta semipri-
mer. Aleshores Q.,(R) existeix i coincidéix amb Q.. (R).

LEMA 1.18. Sigui R un anell semiprimer i siguin a i b elements de Q7 ,.(R). Si
aRb = 0 aleshores aQr,,.(R)b = bQ7...(R)a = 0. '

DEMOSTRACIO: N’hi ha prou amb provar que bQ7,,.(R)a = 0. Considerem
I'ideal dreta de R, I = bQ5,..(R)aRN R. Aleshores

I? C Qroz(R)aRbQ, . (R) = 0.
Per ser R semiprimer I =0 i com que R <, QI...(R) obtenim que
bQmaz(R)a = 0.

LEMA 1.19. Sigui R un anell semiprimer. Si R satisfa la condicié (C) i té anell
classic de yuocients Q. (R), aleshores tot anell S entre R i Q.(R) satisfa (C).

DEMOSTRACIO: Sigui I un ideal per la dreta fidel i finitament generat de S.
Podem escollir un no divisor de zero b a R tal que bl = Z:’;l r;Sperr; € R
adequats. Si definim J = .- r;R, aleshores és clar que JS = I com a
S—modul dreta. Per tant aplicant el Lema 1.18 J és R— fidel. Per (C) existeix
n > 11iun R— epimorfisme ¢: J®* — R. Com que Q.(R) és R-llis per
Pesquerra J ® g Qu(R) = JQo(R). Per tant ¢ indueix un Q. (R)— epimorfisme
@: (JQu(R))® — Qa(R). Obviament ¢(J™) = R i per tant @((JS)*) = S.
Tenim doncs que I & JS genera mod—S. Per tant S satisfa (C). l
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COROLLARI 1.20. Sigui R un anell semiprimer, d’Ore per la dreta i FPF per
la dreta. Si S és un anell acotat per la dreta entre R i QT ., (R) aleshores S és
FPF per la dreta.

'DEMOSTRACIO: Pel Teorema 1.17 Q7. (R) és I'anell classic de quocients de R.
Ara si combinem el Teorema 1.16 i el Lema 1.19 obtenim el resultat que volem.

Es una pregunta oberta si els anells FPF per la dreta semiprimers sén també
FPF per lesquerra, cf. [33, Question 5). Una resposta a aquesta pregunta en
el cas no necessariament semiprimer esta implicita en ’exemple de Dischinger i
Muller, cf [24] d’un anell PF per un costat que no ho és per l'altre.

Un exemple pel cas semiprimer podria passar per trobar un anell FPF per
la dreta que no fés acotat per l’esquerra. Si pensem en dominis de Bezout la
propietat de ser acotat és equivalent a ser FPF tal com prova el segiient resultat,
ara immediat a partit de Teorema. 1.16.

TEOREMA 1.21. [33, Theorem 4.13] Un domini de Bezout és FPF per la dreta
si 1 només si és acotat per la dreta. ll :

Lenagan va provar a [53] que un anell Noetheria primer semihereditari és o bé
acotat pels dos costats o bé primitiu pels dos costat. En particular tenim que
no és possible trobar un domini d’ideals principals acotat per un costat i per
'altre no. Jategaonkar a [47] déna un exemple d’un domini d’ideals principals
per la dreta que és acotat per la dreta i no per 'esquerra. Aquest exemple pero,
no és FPF per la dreta perque no té classic de quocients per ’esquerra, fet que
contradiu el Teorema 1.17.

Per altra banda Cohn a [18] estudia els dominis de Bezout que sén principals
per un costat. Dels seus resultats es despren que aquests anells també sén o bé
acotats pels dos costats o be primitius pels dos costats. Queda perod pendent
la pregunta de si en un domini de Bezout també es torna a repetir la mateixa
situacié o bé pot ser que sigui només acotat per un costat.

1.5. Els anells FPF semiprimers en general no s6n semihereditaris.

Hem vist a la Seccié 3 que els anells FPF semiprimers commutatius eren
semihereditaris. Aquesta era una qiiestié oberta en el cas no commutatiu, cf. [33,
Question 11]. En aquesta seccié la respondrem negativament donant un exemple
d’un anell FPF semiprimer que no és semihereditari. El segiient resultat sera
I'ingredient més important per obtenir un tal contraexemple.
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PRrROPOSICIO 1.22. Sigui T un subanell d’un anell S i sigui R el subanell de
[In S de les successions (z,,) tal que z, € T per tot n € N llevat d’un nombre
finit. En aquesta situacio tenim:

(i) Si R és semihereditari aleshores també ho és T
(ii) Suposem que T satisfa:
(1) S = Qmaz(T) = Qu(T) i S és regular autoinjectiu amb index de
nilpoténcia acotat. |
(2) Existeix una funcié f:N — N, tal que per tot ideal per la dreta
fidel I de T generat per m elements, T és sumand directe de I7(™),
Aleshores R és FPF per la dreta.

DEMOSTRACIO: (i) Suposem que R és semihereditari per la dreta. Per 'equi-
valéncia de categories estandard entre mod-T i mod-M,(T), per veure que T
és semihereditari per la dreta, n’hi ha prou amb provar que qualsevol element
a € T té ’anul.lador per la dreta generat per un idempotent de 7. Com que R
és semihereditari per la dreta rp((a)) = (en)R on €2 =e, € S per n > 1. Per
definicié de R, existeix r > 1 amb e, € T. Aleshores és clar que rr(a) = e, T.

(ii) Per (1) 5 és regular. Per tant R és semiprimer. Sidemostrem que R satisfa
(A), (B) i (C) del Teorema 1.16, ja tindrem el resultat que volem. Observem que
(1) implica que Q(R) = Qu(R) = [[5 S i com que R — Q~(R) és clarament un
epimorfisme llis, (A) es compleix.

Per provar (B) considerem I un ideal per la dreta essencial de R. Escrivim
per cada n > 1, e, = (0,---,(*1,0,---) € R. Aleshores e,I és un ideal
dreta essencial de e, R = 5. Com que S és regular autoinjectiu amb index
de nilpoténcia acotat, existeix un ideal bilater J,, de e, R contingut a e, el qual
és essencial com a ideal dreta, cf. [37, Lemma 6.20). Posem J = @,~; Jn. Es
clar que J és un ideal contingut a I i essencial com a ideal dreta. B

De (2) és clar que [[y, T és un anell que satisfa (C). Aplicant el Lema 1.19
podem concloure R satisfa (C). Aixd completa la prova de la proposicié. B

Sigui k un cos de caractristica zero. Aleshores A, (k) denota la n-éssima dlgebra
de Weyl és a dir, la k-algebra amb 2n generadors z,,...,Zn, ¥1,. . -, Yn irelacions

Tiy; — YiZi = bij,
on 6;; denota la delta de Kronecker, i
TiZj — T3T = YiY; — YYi = 0.

Es pot fer una descripcié alternativa de A,(k) en termes de polinomis skew
iterats. Sidiemn R = k[z1,...,Zx), 1 considerem la successié d’anells
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| 0
Ry=R, Rip [y +1 0x¢+1}
Aleshores A, (k) &2 R,.

Els segiients fets sobre l’algebra de Weyl sén ben coneguts, el lector pot
consultar [57] per trobar la seva demostracié.

TEOREMA 1.23.

(1) A, (k) és un domini d’integritat Noetheria simple.
(2) La dimensié global per la dreta i la dimensié de Krull de A, (k) és n.

Direm que un anell R és reduit si no conté elements nilpotents.
EXEMPLE 1.24. Existeix un anell reduit FPF que no és semihereditari.

DEMOSTRACIO: Escollim T un domini noetheria simple amb dimensid de Krull
finita n i no semihereditari (per exemple, A, (K) l’algebra de Weyl d’ordre n > 1
sobre un cos K de caracteristica 0 ). Per un teorema de Stafford [75, Theorem
4.3] tot ideal dreta I de T diferent de zero compleix que I™"*2? conté un sumand
directe isomorf a T. Sigui S el cos de fraccions de T i definim R com a la
Proposicié 1.22. Clarament T satisfa (1),(2) de la part (ii) de la proposicid, per
tant R és FPF per la dreta. Per la part (i) de la mateixa proposicié, R no és
semihereditari. i

1.6. L’algebra dels idempotents centrals d’un anell FPF semiprimer.

Per un anell R, sigui B(R) el conjunt dels idempotents centrals de R. Es ben
conegut que B(R) té estructura d’algebra de Boole amb les operacions

eVf=e+ f—ef
eNf=ef

on e i f denotan dos elements de B(R).

Sigui M un R-modul per la dreta i N un submodul de M. Si S és un subconjunt
de M definim el transportador de S a N com (N :S)={re R| Sr C N}.

PRrorosicIO 1.25. Sigui Q un anell i R un subanell tal que:-

(1) ©: R — Q és un epimorfisme d’anells i Qp és llis.
(2) Tot ideal dreta de R finitament generat i fidel és generador.

Aleshores B(Q) = B(R).
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DEMOSTRACIO: Sigui € € B(Q). Per la caracteritzacié de [77, Theorem XI.2.1]
dels epimorfismes llisos, existeixen elements rq,...,r, de (R: e) igqr,...,qn €@
tals que 21—1 qn, = 1. Igualment podem trobar elements r{,...,7, de (R :
(1—e))igi,...,q, € Qtalsque Y ., giri = 1.

Tindrem doncs que Y ., gieri + D=, ¢i(1 — €)7. = 1. Si considerem Pideal
dretade R, I = Y 1 jeriR+ Y ._;(1 — €)r/R és fidel i finitament generat, per
tant generador. Si f € I'*, fent servir I'isomorfisme

Homg(I ®r Q,Q) = Homp(1,Q)
tenim que ef(s ® 1) = f(s®e) = f(es® 1). Pert tant

eR =etrp(I) =trr(el) CR

podem concloure doncs que e € R. Aixd demostra que B(Q) C B(R), perd com
que R — @ és un epimorfisme d’anells el centre de R esta dins del centre de @
i per tant B(R) = B(Q). 1

LEMA 1.26. (Contingut a [33, Theorem 3.3(demostracié)]) Sigui R un anell
semiprimer tal que el seu maximal de quocients per la dreta Q,..(R), és un
anell regular i tal que B(R) = B(Q7,,.(R)).

(1) Aleshores si I és un ideal de R, rr(I) estd generat per un idempotent
central.

(2) Si a més R satisfa que els ideals per la dreta fidels finitament generats sén
generadors, aleshores per tot ideal per la dreta I finitament generat de R
tenim que trp(I) ® rr(I) = R.

DeEMOSTRACIO: Com que QF...(R) és un anell regular R és no singular, i per

tant Qr. .. (R) és regular i autoinjectiu. Sigui I un ideal de R, per la remarca

anterior, IQ7 .. (R) <. (1 — e)@r,,.(R) per algun idempotent e de Q. Aixo

implica que eR(1 — e) = (0. Pel Lema 1.18 e és central dins de QF,,.(R), per

hipotesi e € R. Per tant eR C rr(I). Altra vegada pel Lema 1.18 tenim que

IQmaz(R)rR(I) = 0, per tant Tr(I) = rgr _(RY({QMaz(R)) N R. Com que
raz(R) és no singular

ranaz(R) (IQmax(R)) - rana:(R)((l - e)Qma:c(R)) - eQma:c(R)a

per tant tenim rp([) = eQl...(R)NR =eR.

Per provar la part (2) considrem I un ideal finitament generat de R, aleshores
per 'apartat anterior, rr(l) = eR per un cert e de B(R). L’ideal I + eR és
generador, per la Proposicié 1.1, trp(l + eR) = R, en conseqiiéncia

trr(l) =trp((1 —e)I) = (1 — )R,
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tal com voliem veure. §

Les conclusions dels resultats anteriors d’aquesta seccid, pel Teorema 1.16, sén
certes per anells FFPF semiprimers i de fet en aquest cas ja sén ben coneguts,
cf.[33, Proposition 2.2]. Perd les demostracions que hem donat sén diferents de
les que alla apareixen.

Per cada x € SpecB(R), es a dir per cada ideal maximal z de I’algebra de Boole
B(R), R; = R/zR es diu una stalk of R. Si donem a SpecB(R) la topologia de
Zariski i definiin Paplicacid

fi |y  R:— Spec(B(R))
z€Spec(B(R))

definida per f(rz) = z, per rz € R;. Si considerem sobre

U =

z€Spec(B(R))

la topologia més grollera que que fa de f un homeornorﬁsme local temm un feix
d’anells, anomenat Feizx de Pierce.

Si R és un anell semiprimer i sota certes condicions que asseguran |’existencia
de suficients idempotents centrals, R és isomorf a I’anell de les seccions globals del
feix, és a dir a 'anell de funcions continues de Spec(B(R)) a U, espec(B(r)) B=-
El lector pot consultar [68] o [12] per completar la informacié sobre els feixos de
Pierce.

En general els feixos de Pierce poden ser una eina util per passar informacié
sobre les stalks de l'anell al propi anell i al revés. Es ben conegut que per
un anell semihereditari commutatiu R les stalks R, sén dominis de Priifer , és
a dir dominis semnihereditaris. Per tant les stalks d’anells FPF semiprimers
commutatius sén de fet, FPF. El segiient exemple demostra que aixo no és cert
en el cas no commutatiu, malgrat que els resultats anteriors demostraven que
els anells FFPF semiprimers tenen una gran quantitat d’idempotents centrals.
Aquest exemple contesta negativament la pregunta de Burgess [11, pag. 1731},
sobre si les stalks d’anells F PF semiprimers tenen que ser o no FPF.

EXEMPLE 1.27. Existeix un anell FPF reduit amb una stalk que no és FPF.

DEMOSTRACIO: Sigui T un domini d’Ore simple (que no sigui un cos) i que
satisfa (2) de la Proposicié 1.22 (ii). Sigui S el cos de fraccions de T. Definim
R com a la Proposicié 1.22, per tant R és FPF. Sigui £ € SpecB(R) tal que
@D,>, S € zR. Afirmem que R; no és acotat i aleshores pel Teorema 1.16 (B)
R no pot ser FPF. Tenim que
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R. = ([[7)/=(I]T) = ([ D-
N R N

Per tant sense perdre generalitat podem suposar que R = [[yT. Escollim
yn € T — {0} tal que yo,T # T per tot n > 1. Posem y = (yn) € R i considerem
¥ =y+zR € R,. Clarament § # 0. Per altra banda R, és un domini d’Ore
per tant tot ideal diferent de zero és essencial. Ara provarem que 7R, no conté
ideals diferents de zero. Suposem que a = (a,) € R és tal que RaR C yR+ zR.
Hem de veure que a € zR. Com que y,T no conté ideals diferents de zero podem
triar t, € T tal que tpan ¢ y,T sempre que a, # 0. Sigui t = (t,) € R. Per
hipotesi ta € yR + eR per algiin e = (e,) € z. Si e, = 0 aleshores t,a, € y,T
implica a, = 0. Per tant ea = a i aleshoresa € zR. }

Observem que si T és semihereditari (per exemple, T = A; (k) on k és un cos de
caracteristica 0) I’anell R que obtenim a I’Exemple 1.27 és també semihereditari.

Totes les propietats que sabem de B(R), quan R és un anell F'PF semiprimer,
hem vist a la Proposicié 1.25 i al Lema 1.26 que sén conseqiiéncia de les propietats
(A) i (C) del Teorema 1.16. Sén de fet aquestes les propietats que hereta R, tal
com prova Burgess a [11, Lemma 1.1 i Lemma 1.2]. La propietat que no hereta
R. en general és la de ser acotat per la dreta, tal com hem vist a I’Exemple 1.27.

Quan suposem que R és un anell semiprimer FPF per la dreta que satisfa
una identitat polindmica, podem obtenir el segiient resultat sobre Qr,,,(R) fent
servir una técnica similar a la de les stalks.

PRroPOSICiO 1.28. Sigui R un anell semiprimer, FPF per la dreta i satisfent
una identitat polinomica. Aleshores Q = Qr,,.(R) = Rz on ¥ és el conjunt de
no divisors de zero del centre Z de R.

DEMOSTRACIO: Sigui z € ¥. Aleshores rp(z) és un ideal bilater de R. Com
que rz(z) = rr(z) N Z = 0 se seguéix del Teorema de Rowen per anells que
satisfan una identitat polinémica, cf.[15, pag. 464] que rr(z) = 0. Per tant
2 és un no divisor de zero de R. Per tant ¥ és un conjunt d’Ore i tenim que
R C Ry C Ql,..(R). Es pot veure facilment que una localitzacié central d’un
anell FPF és també FPF, per tant Ry és FPF per la dreta. Ara sigui b~la
un element del centre Z(Ryg) de Ry. Clarament b~la és un element del centre
de Q i per tant ro(Rb~la) = ro(Ra) = eQ on e és un idempotent central de
Q i per tant estad a Z, . Tenim doncs que rr(a +€) =0, comquea+e € Z,
tenim que (a+ e)u =1 amb y € Z(Ry). D’aix0 a = (a + e)ua = apa i per tant
b=la = b~ la(ub)b~la. Aixd prova que Z(Rg) és un anell regular. Si substituim
R per Ry podem suposar sense perdre generalitat que Z és regular i aleshores
hem de provar que R = Q.
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Per cada z € SpecB(R) considerem R, = (R + zQ)/zQ i Q. = Q/zQ.
Afirmem que el centre de R, is regular. En efecte , sigui a € Rtal que@ € Z(R,).
Per [36,Theorem 3.6] existeix 8 € Z(Q) tal que § — o € zQ. Escollim e € z tal
- que (1-e)a="(1-¢€)B. Aleshores (1—-e)a€ Zia@=(1— e)a. Pertant Z(R,)
és un factor de Z el qual és regular i per tant també ho és Z(R,). Com que R
és un anell primer [11,Lemma 1.1] que satisfa una identitat polindbmica podem
concloure aplicant el Teorema de Posner [15, Theorem 12.6.8] que R, és artinia
simple. Per la condicié (A) del Teorema 1.16 es segueix facilment que la inclusié
R, — @; és un epimorfisme d’anells per tant R, = @,. Per tant hem provat
que R+ zQ = Q per tot z € SpecB(R). Aixo implica R=Q. 1

El resultat anterior és una extensié d’un resultat de Burgess [11, Proposition
1.9], que veu aquest resultat en el cas en que R és F'PF semiprimer i és un modul
finitament generat sobre el seu centre.

Volem remarcar, que en general no és cert que un anell semiprimer que satisfa
una identitat polinémica tingui classic de quocients ni que aquest sigui Ry on X
és el conjunt de no divisors de zero del centre, cf.[70, Example 5.7].

1.7. Anells de grup FPF.

En aquesta seccié provarem que si R és un anell commutatiu i G un grup finit
tal que l'ordre de G és invertible a R, aleshores R és FPF si i només si I’anell
de grup RG també ho és.. Val a dir que aquest resultat va ser publicat per D.
Herbera i P. Menal a [44] i despres ha aparegut una nova demostracié de Y.
Kitamura a [51].

La idea de la demostracié de Kitamura és la seglient, si R és un anell com-
mutatiu i G un grup finit amb 'ordre invertible dins de R, és ben conegut que
RG és una algebra d’Azumaya. Si denotem per Z(RG) el centre de RG, tenim
la seglient situacid,

R C Z(RG) C RG.

Aleshores, aplicant un resultat de S. Page [65] RG és FPF si i només si Z(RG)
també ho és (de fet Page demostra que una algebra d’Azumaya és FPF si i
nomeés si el seu centre és FPF). Kitamura demostra que si R és FPF, aleshores
Z(RG) també és FPF i pot concloure finalment que RG és FPF. Cal remarcar
que Kitamura també déna una nova demostracié del resultat que hem esmentat
abans de S. Page.

Carl Faith prova a [33, Theorem 5.23A] que si R és un anell commutatiu
autoinjectiu i G és un grup finit aleshores RG és un anell injectiu FPF. La
demostracié que donarem en el cas d’un anell commutatiu i un grup d’ordre
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invertible en el grup fa 1us, de manera essencial, del resultat de Faith i del fet
de que en una algebra d’Azumaya els moduls projectius finitament generats
fidels sén generadors. Aquesta demostracié és més o menys la mateixa que vam
publicar a [44].

LEMA 1.29. .[51, Proposition 2, Corollary 4] Sigui R un anell aleshores:

(1) Si G és un grup tal que RG és FPF per la dreta, aleshores R -és també’
FPF per la dreta.

(2) Si anell de polinomis sobre un conjunt X, R[X] és FPF per la dreta
aleshore R també és FPF per la dreta. B

Recordem que si M és un R-modul per la dreta i NV és un submodul de M, és
diu que N és racional dins de M (N <, M) si per qualsevol R-modul L tal que
N < L < M és compleix que Homp(L/N, M) = 0.

LEMA 1.30. Sigui R un anell tal que els seus ideals per la dreta finitament
generats fidels sén projectius. Si M és un submodul racional finitament generat
de R™ (per algun n) aleshores M és R-projectiu.

DEMOSTRACIG: Farem la demostracié per induccié sobre n, €l cas n = 0 és obvi.
Sigui ey, - - , ey, la base canodnica de R™. Com que M és un submodul racional de
R™ existeix un ideal per la dreta racional i en particular fidel I, tal que e; I C M.
Sigui m: M — R la projecci6 sobre la primera coordenada. Com que I C n(M),
m(M) és un ideal per la dreta de R finitament generat i fidel. Per hipotesi n(M) -
és projectiu, per tant M = Kern @& n(M). Ara Ker n és un submodul racional
finitament generat de eagR @ -+ ® e, R = R™! que per hipotesi d’induccié és
projectiu. En conseqiiencia M és també projectiu. il

Podem ara provar el nostre resultat per anells de grup F'PF.

TEOREMA 1.31. Sigui R un anell commutatiu i sigui G un grup finit tal que el
seu ordre és invertible a R. Aleshores R és FPF si 1 només si RG ho és.

DEMOSTRACIO: Pel Lema 1.29 tenim que si RG és FPF aleshores també ho és
R. ’

Suposem doncs que R és FPF. Sigui M un RG-modul per la dreta finitament
generat i fidel, 1 R(M) el seu submodul racional, és a dir el conjunt dels elements
de M anul.lats per un ideal racional de R. Si a € RG és tal que Ma C R(M)
aleshores exisieix un ideal per la dreta racional I de RG tal que Mal = 0
(perque, per ser R commutatiu, Ma és un R-modul finitament generat). Com
que M és fidel al = 01 per tant @ = 0. Per tant M = M/R(M) és un RG-modul
fidel i finitament generat. Si substituim M per M podem suposar sense perdre
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generalitat que R(M) = 0. Perd aleshores E.(M), 'envolcall racional de M, és
un QG- modul per la dreta; on @ denota ’anell maximal de quocients de R. Per
tant MQ C E.(M) és un QG-modul fidel i fintament generat. Com que Q és
injectiu i FPF, QG és FPF per [33, 5.23A). Per tant podem suposar que tenim
un QG-epimorfisme f: MQ — QG. Aix0 implica f(M)Q = QG. Pel Teorema
1.15, @ és ’anell classic de quocients de R per tant hi ha un ideal I per la dreta
de RG, fidel i finitament generat, isomorf a f(M) i IQ = QG. Ara I és un
R-submddul racional de RG = RIC! per tant, pel Lema 1.30, I és R-projectiu.
Com que |G|™! € R aleshores I és RG-projectiu cf. [21, Lemma 3] i per ser RG
una algebra d’Azumaya és un generador. Com que I és imatge homomorfica de
M podem concloure que M és un generador de mod-RG. B

En el capitol 3 caracteritzarem també els anells de grup FPF sobre grups
abelians lliures.

Sigui R un arell i G un subgrup dels automorfismes de R, definim el producte
creuat de R i G, que denotarem per R * G, com la R-algebra formada pels
elements a = ) ., grg on 1y és un element de R que és zero gairebé per tot
g €G. Sir € Rig € G definim el producte d’aquests dos elements com rg = gr9
on r9 = g(r).

El proxim exemple demostra que el teorema anterior no és cert per productes
creuats.

EXEMPLE 1.32. Existeix un domini commutatiu FPF R tal que 2! € R, i un
automorfisme de R, g d’ordre 2 tal que R+ < g > no és FPF.

DEMOSTRACIO: Sigui R = k[t], 'anell de polinomis sobre un cos k de caracte-
ristica diferent de 2 i sigui g 'automorfisme de k-algebres que envia t a —t. Sigui
S = R* < g > i considerem l'ideal I = (1+ g)S. Observem que [ = 1(1+¢)S i
que #(1+g) és un idempotent de S, aleshores rr(I) C (1—g)S. Per altra banda
per a tot p1(t) i po(t) de klt],

(1+ g)(p1(t) + gp2(t)) = (1 + g)p(t)
(1-9)(p(t) + gp2(t)) = (1 - g)p(2)
on p(.t) = p1(t) + p2(t). En conseqiiencia I = (1+ g)k[t] i (1 —g)S = (1 — g)k[t].
(14 g)p(t)(1 - g)q(t) = (p(t) — p(—1))q(t) + g(p(-t) + p(t))a(t)

per tant rp(I; = 0.

Anem a veure que I no és generador. Com que -21-(1 + g) és idempotent,
trs(I) = S(1+4-¢)S = S(1+ g)k[t]. Si I f6s generador tindriem per la Proposicié
1.1, trs(I) = S i llavors (1 — g)S(1 + g)k[t) = (1 — ¢)S = (1 — g)k[t]. Pero és
facil veure que (1 — g)S(1 + g)k|t] C (1 — g)tk[t], per tant I no és generador. B
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Subanells de Galois i centres d’anells FPF -

2.1. Subanells de Galois i centres d’anells FPF.

Sigui R un anell FPF per la dreta amb centre Z. En aquesta seccié ens
preocuparem dels segiients problemes:

(a) Es Z FPF?[33, Question 3.
(b) Si G és un grup finit d’automorfismes de R, és aleshores el subanell de
Galois R® FPF per la dreta? [33, Question 14].

Una resposta negativa per les qiiestions (a) i (b) per anells F PF no semiprimers
es pot trobar de manera implicita a [66]. Primer donarem uns quants exemples,
inspirats en [66], que provaran que el centre d’un anell PF pot ser reduit pero
pot no ser FPF.

EXEMPLE 2.1. (i) Existeix un anell PF commutatiu R amb 27! € R i un grup
G d’ordre 2 actuant sobre R tal que RC es reduit pero no FPF.
(il ) Existeix un anell PF tal que el seu centre és reduit perd no és FPF.

DEMOSTRACIO: (i) Sigui A un anell noetheria commutatiu i complet tal que
2-1 € A. Si E{M) és Ienvolcall injectiva de I'tinic A-modul simple M, aleshores
per (72, Corollary 2 pag. 143] Enda(E(M)) = A. Si considerem l'anell R =
E(A,E(M)), lextensi6 trivial de A per E, és un anell PF, cf. Teorema 1.13.
Sigui g: R — R l'aplicacié definida per (a,e) — (a,—€). Com que 27! € A
podem veure que g és un automorfisme d’ordre 2. Si G és el grup generat per
g, aleshores és clar que R® = A. Si escollim A que no sigui hereditari (e.g.
A = Q[z,y]) aleshores aplicant [28, page 168] A i per tant R® no sén FPF. (ii)
Amb la mateixa notacié que a (i), considerem S el producte creuat R * G. Del
teorema de Louden ([55], (33 ,Corollary 5.22]) se segueix que S és PF. El centre
de S és RC = A. Llavors si A és un domini no hereditari, el centre de S és un
anell reduit que no és FPF. 1

Per anells commutatius reduits tenim el segiient resultat

TEOREMA 2.2. Sigui R un anell FPF reduit commutatiu. Si G és un subgrup
finit del grup d’automorfismes de R, aleshores R® és F PF.

DEMOSTRACIO: Pel Teorems 1.15 n’hi ha prou en demostrar que 1’anell classic
de quocients de R® és autoinjectiu i que tot ideal fidel finitament generat de R®
és un generador de la categorfa mod-RC.

30
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Pas 1. Qu(R®) = Qu(R)€ i és autoinjectiu.
)

Com que Q. (R) és un anell commutatiu regular autoinjectiu, també ho és
Qa(R)C (Theorem 3.5 a [64], on estd atribuit a Diop [23]). Clarament RG C
Qa(R)C. Veurem que Qu(RC) = Qu(R)C. Per aixo, sigui ab~! € Qu(R)® on
a,b € R1ib és un no divisor de zero de R, a; = (ab~ 1) ngc b € R i com que
by = ngc b9 és un no divisor de zero de R¢ podem veure que ab~! = albl_l.
Com que Q.1(R)® C Qu(R®)iamés Qu(R)C és el seu propi classic de quocients,
tenim que Qu(R)® = Qu(RC).

Pas 2. (Contingut essencialment a [79, pag. 283]) Tot ideal finitament generat
fidel de RS és un generador de mod-RC.

Sigui I un ideal fidel finitament generat de R®. Clarament IQ.(RC) és
un ideal fidel finitament generat de Qu(R®). Com que Q.(RS) és regular
autoinjectiu i I és fidel, tenim que IQqy(R®) = Qu(R®). Pel pas 1, Q4(R®) =
Qua(R)® C Qu(R). Aleshores IQ.(R) = Qu(R). Per tant tenim que IR és un
ideal finitament generat fidel de R. Com que R és F PF existeix un epimorfisme
¢: (IR)™ — R de R-moduls per algun n > 1. Ara Q4 (R) és autoinjectiu, per
tant ¢ és de la forma ¢(z1, -+ ,Zn) = Y. ; ¢:i%;i on ¢ € Qu(R) i ¢;I C R per tot
i =1, ,nicom que p és exhaustiva podéem trobar els ¢; tals que 3 .., g;a; = 1
per o; € I adequats. Per tant podem escriure [] gec(zz;l gia;) = 1la qual és
una relacié de la forma

3 P o0, =1
i=1

on m és 'ordre de G, les a pertanyen a I i les P; sén polinomis en qf invariants
per l'accié de G. Posem p; = Py, ---o4,,_, per i = 1,--- ,r. Aleshores p; €
Qu(RC) i com que ¢;I C R obtenim que p;] € RN Qu(R®) = RC per i =
1,---,r. També > [_,p:f = 1 per algin 8; € I. Aixd ens permet definir un
RC-epimorfisme I™ — RC com (s1,--+,8r) = Y., Pp:isi. Per tant I és un
generador, tal com voliem veure. N

L’exemple 1.1 (i) demostra que per un anell commutatiu R no és certa en
general la conclusié del Teorema 1.2, de fet aquest teorema falla fins i tot per
anells que sén Morita equivalents a anells commutatius reduits, tal com veurem
en el seglient resultat. '

ProrosICIO 2.3. Per quaJse{/oI anell R en el qual 2 no és invertible, existeix un
subgrup G dei grup d’automorfismes de M3(R) d’ordre 4 tal que M3(R)€ no és
mai ni semihereditari per la dreta ni FPF per la dreta.
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DEMOSTRACIO: Sigui G el subgrup de GL3(R) generat per

1 0 0 10 0
1 -1 0),l0 1 o0
0 0 1 1 0 -1

Tenim que G actua per conjugacié sobre M3(R) i uns quants calculs demostren
que

: T 0 0
]V[3(R)G ={ly z—2y 0 ;T,Y, 2 € R}
z 0 T — 2z

Escrivim S per M3(R)® i considerem

2 00 0 00 0 00
Q) = 1 00 , Qg = 0 00 3 = 0 0 O
1 00 010 0 01

Aleshores M = 1S + @3S + a3S C M;3(R) és un S-modul fidel finitament
generat. Suposem que f: M — S és un S- homomorfisme. S’observa que

0 0 O 0 0 O
fle {1 —2 0] =0f@)|0 0 0 |=0
0 0 O 1 0 -2
0 0 O
flas) {1 -2 0} =0.
0 0 O

D’aquestes relacions es pot obtenir facilment que

f(az-)=<“" 0 0) i=1,2,3

*

on a; € 2R. Si S és un anell FPF per la dreta, aleshores }_ .. f(M) =S la
qual cosa implica que 2R = R. Si S és semihereditari, aleshores ’anul.lador per
la dreta de ; ha d’estar generat per un idempotent. Si fem calculs veurem que
aix0 passa si i només si 2R = R. i

Finalment demostrarem que el Teorema 1.2 no es pot estendre de manera
obvia a anells FPF semiprimers, fins i tot suposant que |G|~! € R.

EXEMPLE 2.4. Existeix un anell FPF semiprimer R i un subgrup finit G del
grup d’automorfismes de R tal que |G|~! € R perd R® no és FPF.
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DEMOSTRACIO: Sigui K un cos de caracteristica # 2 i sigui A = K|t] I'anell de
polinomis. Sigui R = M3(A) i definim g: R — R com

(m(t) p2(t)> " ( pi(=t) —Pz(—t))
p3(t) pa(t) ) \-p3(=t) pa(=t) )

Es pot veure facilment que g és un automorfisme d’anells d’ordre 2. Si G és
el grup generat per g, aleshores és inmediat veure que

K[t?] tK[t?
R = (i i)

N

Sigui e = ( (1) 8) & RC. Aleshores I'ideal per la dreta I = eRC és fidel,
mentres que TR # RC. Per tant I no és un generador i podem concloure
que R® no és FPF. B

2.2. Generadors i ideals generats per elements centrals.

Sigui R un anell i M un R-modul per la dreta, aleshores podem considerar el

morfisme d’anells
¢: Z(R) — Z(EndpM)
d

a — a
on a? és ’endomorfisme de M, tal que per qualsevol m € M, a%(m) = ma.

TEOREMA 2.5. (33, Theorem 1.1D] Sigui R un anell i M un R-modul per la
dreta generador de la categoria mod-R. Aleshores ¢ és isomorfisme d’anells.

DEMOSTRACIO: Si M és generador aleshores en particular és un modul fidel, i
per tant ¢ és injectiva. Sols cal veure doncs que ¢-és exhaustiva, és a dir que
qualsevol endomorfisme del centre ve donat per multiplicacié per un element del
centre de R.

Per ser M generador, existeixen fi,...,f, elements de M* i my,...,m,
elements de M tals que fi(mi) + --- + fo(mn) = 1. Sigui f un element de
Z(EndrM), per acadam € M iper a cada i considerem el segiient endomorfisme

MR m

on am(r) = mr, per qualsevol element r € R. Com que f és un element del
centre de 'anell d’endomorfismes de M, tenim que (o, f;)f = flamf:) i per
tant m(f; f(m;)) = f(m)f;(m;) per qualsevol i. Si sumem aquestes expressions
en 1 tenim que

mEi_, fif(m;) = f(m)
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si diem r = X7, f; f(m;), obtenim que per qualsevol element m € M, f(m) =
mr. Com que M és fidel r ha de ser un element central, i per tant podem
concloure que ¢ és exhaustiva i isomorfisme d’anells. §

LEMA 2.6. [7, Lemma 5.1) Sigui R un anell i I un ideal del centre de R. Si
IR és un ideal finitament generat fidel i projectiu com a R-modul per la dreta
aleshores IR és generador de la categoria mod-R.

DEMOSTRACIO: Si IR és un ideal finitament generat podem suposar que els
generadors sén zy, ..., Zn, elements del centre de R. Si IR és projectiu aleshores
existeixen fq,..., fn elements de I'*, tals que per qualsevol element z € TR

I = xlfl(x) + .. -Infn(x)
com que els elements z; sén centrals tenim que z = X, fi(z;)z per qualsevol
element z de IR, la qual cosa implica que (1 — .-, fi(z;))IR = 0. Com que
IR és fidel 30| fi(z;) =11 per tant IR és generador. B

ProroSICIO 2.7. Sigui I un ideal del centre de R. Suposem que IR és un
generador de mod-R, aleshores IR és finitament generat i projectiu pels dos
costats.

DEMOSTRACIO: Com que IR és generador com a R-modul per la dreta, IR és
projectiu i finitarent generat com a S-modul per 'esquerra, on S = Endp(IRR),
cf. Teorema 1.2. Com que a més és un ideal bilater i fidel, I’aplicacié
¢: R — §
a +— af
on a®(z) = azx per qualsevol element z de IR, és una inclusié d’anells.
Per altra banda com que pel Teorema 2.5 ¢(Z(R)) = Z(S), sIR el podem
veure com un ideal de S generat per elements centrals de S, aquest ideal es veu
facilment que a més és fidel. Tindrem doncs les segiients inclusions

IRCRCSC Ends(sIR)

Per ser IR generador l'aplicacié »
@Y. R — Ends(sI R)
a ad

on a%(z) = za per qualsevol element z de IR, és un isomorfisme d’anells.

Podem provar ara que ¢ és exaustiva ja que per qualsevol s € S, ¢~ 1(s)
és 'antiimatge que busquem. Per tant R i S sén anells isomorfs i l'estructura
de sIR és la de rIR donada a través de ¢. Ara IR és un ideal finitament
generat, generador per la dreta i projectiu per 'esquerra, aplicant la Proposicio
1.8 podem con:cloure que és projectiu pels dos costats i aplicant el Lema anterior
que és generador pels dos costats. il
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2.3. Anells integrament tancats al maximal de quocients.

Siguin R i S anells commutatius tals que R C §, direm que un element s € S
és integre sobre R si el R-modul Rs] és finitament generat. Direm que R és
integrament tancat dins de S si qualsevol element de S integre sobre R, és també
de R. : '

En la propera seccid veurem que els anells que poden apareixer com a centres
d’anells FPF semiprimers satisfan que s6n integrament tancats al seu maximal
de quocients. En aquesta seccié volem descriure aquests anells en termes d’anells
de valoracié. Hi ha molts treballs on s’estenen a anells commutatius les nocions
classiques de domini de valoracié i domini integrament tancat. Nosaltres agafarem
I'enfoc de Bergman a [6], que sembla ser és també el de Marot a [56]. Bergman a
la seccié 6 del seu article treballa amb anells commutatius integrament tancats
al classic de quocients i tals que els ideals principals sén projectius. Aquesta
seccid és una facil extensié dels resultats de Bergman al cas d’anells semiprimers
commutatius i integrament tancats al maximal de quocients.

Un anell R (no necessariament commutatiu), es diu que és de Baer si I’anul.lador
per la dreta de qualsevol subconjunt de R estd generat per un idempotent de
R. Cal remarcar que aquesta condicid sobre els anul.ladors és simetrica. Per
qualsevol subconjunt C C R,

lp(C) = lR'I‘RlR(C).

LLavors si els anul.ladors per la dreta estan generats per idempotents, els a-
nul.ladors per ’esquerra també.

Si R és un anell commutatiu integrament tancat al seu maximal de quocients
Qmaz(R), és clar que B(R) = B(Qmaz(R)). Si R és a més semiprimer, donat
que @Qmaz(R) és un anell regular autoinjectiu, tenim que tot ideal anul.lador de
R estd generat per un idempotent de R. En particular tenim que R és un anell
de Baer.

En general és cert també que per un anell de Baer semiprimer B(R) =
B(Q"...(R)) = B(@Q4,,-(R)), tal com prova la segiient proposicié.

max

PRroPOSICIO 2.8. Sigui R un anell semiprimer, tal que per tot ideal per la dreta
principal I de R rp(I) = eR, one? = e € R. Si S és un anell tal que Rp<.Sr
aleshores B(R) = B(S). '

DEMOSTRACIO: En un anell semrprimer R, un idempotent és central si i només
sieR(1—e) = 0. Fent la mateixa demostraci6 que al Lema 1.18, podem concloure
que B(R) C B(S). Ens falta veure que B(S) C B(R).
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Sigui e € B(S), aleshores existeix r € R tal que 0 # ez € R. Sigui [ = zR,
per hipotesi tenim que rr(el) = fR on f és un idempotent de R. Per ser fR un
ideal bilater (1— f)Rf C fR. Per tant (1— f)Rf =01 f és central a R. Llavors
Rel® fR<.Rpien conseqiiéncia SeIS® fS<.Ss. En particular fS<.(1—¢€)Ss.
Podem concloure doncs que f(1 —¢€) = f i també que f(1 —€) = (1 —¢€). Per
tant 1 — e = f € R i aleshores tenim que e € R, tal com voliem veure. §

Si R és un anell commutatiu semiprimer, de la proposicié anterior i dels
comentaris que la precedeixen, tenim que B(R) = B(Qmaz(R)) si i només si
R és de Baer. Per caracteritzar els anells semiprimers integrament tancats al seu
maximal de quocients ho farem en termes d’anells de Baer.

Seguint a Bergman [6, pag. 225, si R és un anell commutatiu i G un grup
abelid totalment ordenat, fem G U {400} un semigrup totalment ordenat de
la manera Obvia i definim una wvaloracié de R sobre G com un morfisme v del
semigrup multiplicatiu R dins de GU {+0o0}, que satisfa v(0) = +o0o i v(r+s) >
min(v(r), v(s)).

Si v és una valoracié es clar que v~!(4+o00) és un ideal primer P de R. Si P
és un ideal primer de R una valoracié sobre R/P indueix una valoracié sobre R
tal que P C v~}(+00). Si Py i P, s6n ideals primers de R tals que P; C P2, les
valoracions sobre R/P, indueixen valoracions sobre R/P;.

Si R és un anell regular commutatiu aleshores els ideals primers s6n maximals
i sén de la forma zR on z € SpecB(R). Per tant en aquest cas les valoracions
provenen de valoracions sobre els cossos R, = R/zR.

Si R és un anell amb una valoracié v, direm anell de valoracié R, al conjunt
dels elements r € R tals que v(r) > 0.

ProPOSICIO 2.9. Sigui R un anell de Baer commutatiu. Aleshores les segiients
afirmacions sén equivalents,
(1) R és integrament tancat dins de Qmqaz(R).
(2) Per quelsevol z € SpecB(R), R; = R/zR és integrament tancat a Q; =
Qmaz («R) //-'EQmaa: (R) . '

(3) R és la interseccié d’anells de valoracié d’una familia de valoracions defi-
nides sobre Qmqz(R).
DEMOSTRACIO: Es fa igual que [6, Proposition 6.1]. 1

Si R és un anell commutatiu de Baer integrament tancat al maximal de
quocients aleshores també és integrament tancat dins del seu classic de quoments
Llavors per qualsevol z € SpecB(R) tenim,

R/.’L‘R - ch(R)/chl( ) c Qmaz(R)/meaz(R)'
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Per ser R de Baer Q. (R) i Qmaz(R) son anells regulars i per tant les seves
stalks son cossos. La relacié entre aquestes en el cas integrament tancat queda
explicada pel segiient lema.

LEMA 2.10. Sigui R un anell de Baer. Aleshores R és integrament tancat dins
del seu maximal de quocients si i només si es satisfan les segtients condicions per
cada z € SpecB(R),

(1) R/zR és integrament tancat dins de Q. (R)/zQq(R).
(2) L’extensié de cossos Qct(R)/zQct(R) C Qmaz(R)/2Qmaz(R) és transcen-
dent o QCI (R)/chl (.’II)R = Qma:c (R)/IQmaz (R)

DEMOSTRACIO: Es obvia, "inic que cal observar és que si § € Q. (R) satisfa
un polinomi a coeficients a Q.;(R),

ab Y+ arb ls+ -+ an1bls" 45" =0.

Aleshores bs en satisfi un a coeficients a R. Per tant si R és integrament tancat
dins de Qmq(R) aleshores bs € R, com que b és un no divisor de zero de R
tenim que s € Qa(R). R

El segiient exemple il.lustra aquest Lema i prova que un anell R integrament
tancat en el sen maximal de quocients, pot tenir stalks amb les dues situacions de
(2). Sigui R un domini commutatiu, que no sigui un cos, integrament tancat al
seu classic de quocients K. Sigui T un conjunt no buit i considerem els anells de
polinomis R[T] i K[T). Sigui S el subanell de R[T]™, format per les successions
(an) en les quals per gairebé tot n € N a,, € R. Aleshores Q.(S) és el subanell
de K(T)N format per les successions (b,) en que gairebé per tot n € N b, € K.
El maximal de quocients de S és K(T)N. Es clar que S és integrament tancat
dins de Qmqz(S).

B(S) té ideals maximals de dos tipus. Ideals maximals no essencials z,
generats per un idempotent del tipus e, = (€in), On €i, = 1sit # nienp =0.
En aquest cas les stalks sén de la forma,

S/znS = R[T]  Qa(8)/2nQu(S) = K(T)  Qmaz(5)/TnQmaz(S) = K(T).

L’altre tipus d’ideals maximals sén els essencials i que contenen tots la suma
directa, aleshores les stalks sén

S/zS = RN/zRN  Qu(S)/z.Qua(S) = KN /zKN
Qmaz(S)/ZnQmaz(S) = K(T)N/zK(T)N.
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2.4. Centres d’anells FPF semiprimers.

Volem saber ara com és el centre Z d’un anell FPF per la dreta semiprimer.
‘En general Z no té perqgue ser FPF. El segiient resultat explica quan passa aixo.

PRrROPOSICIO 2.11. Sigui R un anell semiprimer FPF per la dreta amb centre Z.
Aleshores les seglients afirmacions sén equivalents

(i) Z és FPF
(ii) Tot Z-submédul de R finitament generat que conté Z és projectiu.

DEMOSTRACIO: (i) = (i¢). Sigui I un ideal de Z. Com que R és semiprimer,
se segueix del Lema 1.26 que rr(IR) = eR per un cert idempotent central e de
R. Aix0 prova que si I és essencial a Z aleshores IR és també essencial com a
ideal dreta a R. Com a conseqiiéncia tenim que el Z-submodul singular de R
esta contigut dins de l'ideal singular dreta de R. Com que R és no singular per
la. dreta podem concloure que R és no singular com a Z-médul. Tenim doncs
aplicant (A’) del Teorema 1.16, que tot mddul M de la forma de (ii) s’inclou en
un Z-modul lliure i com que Z és semihereditari, cf. Teorema 1.15, aleshores M
és projectiu.

(71) = (4). Sigui M un Z-modul finitament generat i fidel. Per veure que M
genera mod-Z podem suposar que Z — M, ja que Z és commutatiu. Per (ii) R
és un Z-modul llis i per tant 1’aplicacié induida per la inclusié Z2 — M

R=Z®z;R— M@z R

és injectiva. Per tant M ®z R és un R-modul finitament generat fidel. Com que
R és FPF per la dreta, M ®z R és un generador de mod-R. Substituint M per
una potencia M™ si és necessari, podem suposar que hi ha un R-epimorfisme
ffM®zR— R. Siguim = ZLI m; ®r; € M ®z R tal que f(m) = 1. Posem
P = Zle Zr;. Aleshores la imatge de la composicio M@z P — M®zR — R
és un Z-submédul N de R finitament generat que conté Z. Per hipotesi NV és
projectiu per tant si apliquem el teorema d’Azumaya Corol.lari 1. N és un
generador. Per tant M ®z P i com a conseqiiencia M sén generadors. il

El nostre proper resultat és una extensid de [31, Proposition 2.7, pag. 78].

PRrROPOSICIO 2.12. Sigui R un anell semiprimer FPF per la dreta. Aleshores el
centre de R és integrament tancat en el seu anell maximal de quocients.

DEMOSTRACIO: Sigui @ l'anell maximal de quocients de R. Pel Lema 1.26 el
centre de R, Z i el de @, Z(Q), contenen els mateixos idempotents. Com que
Z(Q) és regular, aixd implica que Z C Z(Q) és una extensié no singular i,
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com que Z(Q) és també auto-injectiu, Z(Q) conté un subanell isomorf a ’anell
maximal de quocients de Z. Per tant hem de provar només que Z és integrament
tancat dins de Z(Q). Per fer aixo, considerem ¢ € Z(Q) un element enter sobre
Z. Aleshores M = R|g] és un R-moddul fidel finitament generat i per tant un
generador. Llavors pel Teorema 2.5 el centre de Endr(M) és candnicament
isomorf a Z. Com que R C M C @Q podem veure que tot R-endomorfisme de
M ve donat per multiplicacié a l'esquerra per algun element de @, per tant
multiplicacié a ’esquerra per q ha de ser un endomorfisme central de M. En
conseqiiencia g € Z. H

Recordem que un domini commutatiu C es diu un domini de Krull si existeix
una familia V de valoracions del cos de fraccions de C, K sobre els enters tals
que

(1) per qualsevol element diferent de zero a € C, v(a) > O per tota v € V
amb igualtat per gairebé tota v e V.
(2) C =NyevK,, on K, és l'anell de valoraci6 de v.

Si amb aquesta mateixa definicié considerem R un anell de Baer i el seu classic
de quocients, obtenim el que Bergman anomena un anell No Krull de Baer, cf.
(6, pag. 227).

Si apliquem ara la proposicié anterior, la Proposicié 2.7 i el resultat de Bergman
[6, Theorem 9.2] obtenim el segiient corol.lari

COROL.LARI 2.13. Sigui R un anell FPF per la dreta semiprimer, tal que els
ideals generats per elements centrals son finitament generats. Aleshores el centre
de R és un anell Xy Krull de Baer. i

2.5. Anells FPF primers amb centres prefixats.

Es ben conegut que el centre d’un domini d’ideals principals és un domini de
Krull [17, Theorem 1.9] i reciprocament, tot domini de Krull pot apareixer com a
centre d’un dormini d’ideals principals. Aquests resultats sén deguts a Bergman i
Cohn , que també provaren que tot domini commutatiu integrament tancat és el
centre d’un domini de Bezout [17, Theorem 2.7]. Els anells que ells construeixen
no sén acotats i per tant no sén FPF. Malgrat tot, veurem que modificant la
seva construccié una mica podem aconseguir que els dominis a més de ser de
Bezout siguin FPF.

Pel Teorema 1.21 un domini de Bezout és F PF si i només si és acotat. Gracies
a aquest resultat podem reconeixer a [25], [19, Section 3] i [76, Lemma 4.3
entre altres, alguns exemples interessants d’anells FPF que sén dominis d’ideals
principals.
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També és interessant remarcar que Cohn i Schofield han construit un domini
d’ideals principals que és FPF amb centre un cos F i tal que el centre de seu cos
de fraccions és més gran que F, [19, Section 3]. Aix0 prova que I’anell maximal
de quocients del centre d’un anell FPF semiprimer R no té perque coincidir amb

el centre de Q.. (Q).

Recordem breument la construccié de Bergman i Cohn de dominis d’ideals

principals amb centres prefixats.
Sigui C' un domini de Krull i K el seu cos de fraccions. Formem Panell

de polinomis K[T) = K|...,t_1,t0,t1,...]. Sigui V la familia de valoracions
satisfent (i) i (ii) de la definicié de domini de Krull. Cada v € V es pot estendre a
K|[T] definint v(Zail..,istzil . tz") = min{v(a;,..;,)} que és una valoracié sobre

K|[T) que s’esten al cos de fraccions K(T'). Definim ara A = Nyev K(T),, com
que C.és un domini de Krull, se segueix que A és un domini d’ideals principals
(cf. [17, pag. 308] per completar els detalls). Considerem 'automorfisme de K-
algebres a: K[T) -— KI[T] tal que t, + tn+1, n € Z. Com que v(p) = v(p®) per
qualsevol p € K[T),  indueix un automorfisme de K-algebres sobre A d’ordre
infinit. Considerem 'anell R = A((z, a)) de series de Laurent skew, és a dir els
elements de R sén de la forma s = Z;‘;_ooa:iai ona; € Aia; =0peri <k
per un k depenent de s, amb la relacié ar = za® per a tot a € A. Per [17,
Proposition 2.3] R és un domini d’ideals principals amb centre C.

Ara definirem un anell que és un localitzat de R que sera acotat i amb centre
C.

Cal observar que els ideals de A sén « invariants, ja que per tot a € A,
aA = a“A. Considerem el conjunt ’

o0

r={ i r'a; € R| Z a;A = A}

1=—00 1==—00

Afirmem que ¥ és un conjunt d’Ore. Primer provarem que ¥ és multiplicativament
tancat. Siguin s i s’ elements de T i sigui s’ = TR _ _r'a;. Si ZX__a; estd
estrictament contingut dins de A, aleshores escollim un ideal maximal M de A
que contingui I'ideal gencrat pels coeficients. Com que M és « invariant podem
considerar ’anell de series formals A/M ((z, @)) que és un domini quocient de R.
Clarament s i 8’ sén diferents de zero en aquest quocient, perd el seu producte
és zero, aix0 contradiu el fet de que A/M ((z, o)) sigui un domini. Per tant ¥ és
multiplicativament tancat. De fet, podem associar a cada s € R el seu contingut
c(s) que definim com el maxim comi divisor a A dels coeficients de s i aleshores
tenim que c(s)c(s’) = c(ss’) per tot s i s’ elements de R. Per veure que ¥ és un
conjunt d’Ore només queda per veure que per qualsevol element r€ Ris€ X



2.5. Anells FPF primers amb centres prefizats 41

tenim que T2 N sR # 0. Com que R és un domini d’Ore existeixen r1, 712 € R
tals que rry = srg # 0. Aleshores ¢(r)c(r1) = ¢(rq) i com que per cada i = 1,2
tenim r; = s;c(r;) on s; € X, tindrem finalment que rs; = ssac(r) tal com voliem
‘veure.

-Considerem ara doncs l'anell S = Rsx. Clarament S és un domini d’ideals
principals que es pot mirar com un subanell de K((z,¢)), on K és el cos de
fraccions de A. Com que « té ordre infinit el centre de K((z,a)) és 'anell K.
Per tant el centre Z de S és SN K*. Siguiab-1 € SN K*ona, b€ A. Com
que ab~! € S podem escriure b"la=rs"'onre Rise E. Per tant as = br i
com a conseqiiencia ac(s) = be(r). D’aqui podem veure que b~ la € A. Per tant
Z=ANK*=A>=C.

Finalment provarem que S és acotat. De fet veurem que tot ideal dreta o
esquerra diferent de zero conté un element central diferent de zero. Sigui r € R,
tenim que r = sc(r) = ¢(r)s’ per s, s’ € L adequats. Per tant tot ideal per la
dreta (o per ’esquerra) es pot generar per un element de A. Si tenim ara un
element a € A, aquest serd de la forma a = p(T)/q(T), si agafem un coeficient
diferent de zero ¢ de p(T'), aleshores v(c/p(T)) > 0 per qualsevol v € Vi per tant
¢/p(T) € A. Com que ¢ és un element central de S hem provat que aS conté un
element del centre diferent de zero.

Amb tot aixd hem demostrat el resultat segiient que és un reciproc al Corol.lari
2.13 per anells primers.

PRrROPOSICIO 2.14. Tot domini de Krull es pot posar com a centre d’un domini
d’ideals principals acotat, per tant d’un domini d’ideals principals FPF.

El segiient resultat és una conseqiiéncia de la manera de procedir anterior.

PROPOSICIO 2.15. Els centres dels dominis d’ideals principals tals que tot ideal
dreta esta generat per un element central son els dominis de factoritzacié unica.

DEMOSTRACIO: Sigui R un domini d’ideals principals en que tot ideal dreta esta
generat per un element central i sigui C el centre de R. Per [17, Theorem 1.5] tot
element diferent de zero a € C te una descomposicié com a producte de I-atoms
(i.e. atoms dins del monoid dels elements b # 0 tal que Rb=DbR). Per hipétesi tot
I-atom és un atom que estd associat a un atom central. Per tant a descompon
com a producte d’atoms de C. A més una tal descomposicié és tnica. Per tant
C és un domini de factoritzacié unica.

Reciprocament, sigui C un domini de factoritzacié Unica. Si agafem V la
familia de valoracions associades als atoms de C, aleshores C' és un domini de
Krull. Sifem Ry com a la prova de la proposicié anterior, aleshores I’anell Ry té
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les propietats que volem. Ja sabem que Ry és un domini d’ideals principals amb
centre C, només falta provar que tot ideal dreta pot ser generat per elements
centrals. Quan C és un domini de Krull arbitrari ja hem vist que tot ideal dreta
de Ry pot ser generat per un element de A. Ara en el nostre cas A estd format
pels elements f/g € K(T) tals que c(g) divideix ¢(f). Per tant tot element a € A
es pot escriure de la forma a = cf/gon c € C i ¢(f) = ¢(g). Com que f/g és
una unitat de A tenim que aA = cA. I aix06 completa la prova. N

Seguint les mateixes idees podem provar un reciproc a la Proposicié 2.12 en
el cas d’anells primers.

TEOREMA 2.16. Si C és un domini commutatiu integrament tancat, aleshores
existeix un domini de Bezout acotat (per tant FPF) tal que el seu centre és C.

DEMOSTRACIO: Per (17, Proposition 2.5] C = A* on a és un automorfisme
d’ordre infinit d’un domini de Bezout commutatiu A. A es pot descriure de
la segiient manera: sigui V el conjunt de totes les valoracions sobre k (el cos
de fraccions de C) tal que v(c) > 0 per cada ¢ € C. Aleshores A esta format
pels elements f/g € k(T) tals que v(f) > v(g) per totes les valoracions v de V
on T és com abans, el conjunt d’indeterminades ---t_q,t0,%1,- -+ 1 a envia t,
a th,4+1 per tot n € Z. Com a la prova de la proposicié anterior cal observar
que I N C # 0 per tot ideal I diferent de zero de A. Considerem l’anell de les
series formals skew K[, o], on K és el cos de fraccions de A, i formem anell
R = A+ zK|z,a]. Provarem que R té les propietats que volem. Fent servir que
« té ordre infinit es pot veure facilment que el centre de Rés C. Si0#r € R
aleshores r = z™(co+xc; +---) peralginn > 010 # ¢p € K. Per tant tot ideal
principal de R es pot generar per un element de la forma z™cp. Suposem ara que
tenim dos ideals I = z%coR i I’ = z™cyR. Sin < m aleshores I' C I'isin=m
tenim que [ + I’ = 270~ 1(aoR + a4 R) on ag,ah € Aiblag = cp,bla) = cf.
Com que A és un domini de Bezout existeix d € A tal que apA+ayA = dA. Ara
és clar que I + I’ = z"b~'dR. Per tant R és un domini de Bezout. Per provar
que R és avotat per la dreta, sigui z"coR un ideal per la dreta diferent de zero
de R . Sabem que tot ideal diferent de zero de A conté un element del centre
diferent de zero, per tant z"cgR 2 2z"cR on 0 # ¢ € C. Ara z™cR és un ideal
diferent de zero, per tant ja hem acabat la demostracié. B



Capitol 3.

Anells de polinomis amb classic de quocients injectiu

3.1. Condicié de cadena ascendent per anul.ladors.

Denotarem per R[X] I’anell de polinomis sobre un conjunt arbitrari d’indeter-
minades X i per R[z] 'anell de polinomis sobre una tnica indeterminada z. Si
X és un conjunt no buit, p(X) € R[X] iz € X per z-deg(p(X)) volem dir el
grau de p(X) mirat com un element de S[X] on S = R[X \ {z}].

En aquesta seccié veurem que en alguns casos imposar condicions d’injectivitat
sobre P’anell classic de quocients de I'anell de polinomis R[X], on X és un conjunt
no buit, implica que R satisfad condicié de cadena ascendent per anul.ladors.
Aquesta mena de resultats ens permeten concloure en alguns casos, fent servir el
Teorema 1.12 degut a Carl Faith, que R té classic de quocients QF. El segiient
resultat de Pillay prova que la propietat de tenir classic de quocients QF. és
heretada per I’anell de polinomis.

TEOREMA 3.1. (P. Pillay [69, Theorem 4.5]) Sigui R un anell, aleshores Q,(R)
existeix i és QF si i només si per qualsevol conjunt X, Q',(R[X]) existeix i és

QF. N

Tant el resultat de Faith com el de Pillay seran resultats clau al llarg de tot
el capitol i els citarem constantment.

Volem remarcar que l'existéncia del classic de quocients de ’anell no sabem
si implica 'existéncia del classic de quocients de ’anell de polinomis. Resultats
com l'anterior de Pillay, demostren que aixo és cert en alguns casos, perd sempre
estan basats en altres propietats de la estructura de R a més de la de tenir classic
de quocients. En la seccié 2 comentarem més extensament aquest problema i el
que nosaltres sabem sobre ell.

PrOPOSICIO 3.2. Sigui R un anell tal que per un conjunt no buit X, Q =
QL (R[X]) existeix i és un anell autoinjectiu per la dreta. Aleshores R satisfa la
condicio de cadena ascendent per anul.ladors per la dreta de subconjunts de R.

DEMOSTRACIO: Suposem que per n = 0,1,... i S, C R, els ideals per la dreta
I, = rp(Sn) formen una cadena estrictament ascendent. Aleshores la cadena
d’ideals per 'esquerra

lR(Io))Z) lp(lh) D Dlp(l,) D ...

43



44 Capitol 3. Anells de polinomis

és també estricta, ja que en un altre cas [p([,) = lp([n+1) implicaria
In = rr(lr(1n)) = rR(lR(In41)) = Ins1

~ Aleshores per cada n > 1 podem escollir b, € lr(In-1) \ Ir(I,). Fixem un
element z € X i considerem els polinomis definits inductivament per

so=1
sn(z) = sp_1(x) + baa™ .

Sigui I l'ideal dreta de @, I = U,.;07@(lr(I»)). Podem definir un morfisme

f:1 — Q de la seglient manera, f(q) = sn(z)q per ¢ € ro(lr(In)). Es facil
veure que f estd ben definit, ja que si ¢ € rg(lr(In—1)) aleshores b,g = 0. Com
que Q és autoinjectiu per la dreta, existeix un element q(X)~!p(X) € Q tal que
flg) = ¢(X)'p(X)q.

Per cada n existeix ¢, € RNrg(lr(1,)) tal que bncn, # 0ilp(In)cn, =0, ja que
si no 7r(bn) C rR(Lr(In)) = I i aixd implicaria que Rb, C lp(rr(bn)) € lr(In)
la qual cosa contradiria 'eleccié de b,.

Agafem N > max(z-deg(p(X)), z-deg(q(X)),1). Aleshores per n > N tenim

Q(X)sn(x)cn = p(X)cn 76 0.

Ara z-deg(sn(z)cn) = n?, com que ¢(X) és un no divisor de zero de R[X] i z-
deg(q(X)sn_1(x)c,) < n? aleshores z-deg(q(X)sn(z)cn) > n?. Per altra banda
z-deg(p(X)cn,) < N < n. Aix0d contradiu 'existéncia d’una cadena estrictament
ascendent infinita d’anul.ladors. W

2

Ara provarem que tenim una situacié similar quan Q7,(R[X]) és autoinjectiu
per la dreta, perd en aquest cas haurem de suposar que X és un conjunt infinit.

ProprosiCI® 3.3.  Sigui R un anell tal que per un conjunt infinit X, Q =
QL (R[X)) existeix i és autoinjectiu per la dreta. Aleshores R satisfa la condicié
de cadena asccndent per anul.ladors de subconjunts de R.

DEMOSTRACIO: Sigui Y un subconjunt de X infinit numerable, Y = {y1,¥2,... }.
Definim I,,, I, b,, i ¢,, com a la Proposicié 3.2. Considerem el morfisme f: I — Q
definit com f(q) = sn(Y)q si q € ro(r(1y)), amb s,(Y) = 1+ b1y1 + - + bnYn.

Com que @ és autoinjectiu per la dreta, existeix un element p(X)g(X)™! € Q
tal que p(X)g(X)~'q = f(g). Per tant p(X)q(X) cn = $n(Y)cn.

Com que només hi ha un nombre finit de monomis amb coeficient diferent
de zero a p(X) i ¢(X), podem doncs escollir n tal que yn-deg(p(X)) = yn-
deg(g(X)) = 0. Considerem l'anell S = R[X \ {yn}]. Per ser X infinit, S =
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R[X]. Per tant S satisfa la condicid d’Ore per la dreta. Tenim doncs que
existeixen r(X) i s(X), aquest no divisor de zero, ambdos amb grau en y,, zero,
tals que c,s(X) = ¢(X)r(X). Per tant p(X)q(X) len = p(X)r(X)s(X)™ ! =
sn(Y)cn 1 aleshores p(X)r(X) = sp(Y)cns(X). Perd yn-deg(p(X)r(X)) =01
Yn-deg(sn(Y)cns(X)) = 1. Aixd déna una contradiccié amb Pexisténcia d’una
cadena estrictament ascendent infinita d’anul.ladors. |

COROL.LARI 3.4. Sigui R un anell tal que Q%,(R) existeix i és autoinjectiu
per la dreta i tal que per un conjunt no buit X, Q%,(R[X]) existeix i és també
autoinjectiu per la dreta. Aleshores per qualsevol conjunt Y, Q,(R[Y)) existeix
iés QF.

DEMOSTRACIO: Aplicant els resultats de Pillay, Teorema 3.1, n’hi ha prou en
demostrar que Q%,(R) és QF. Com que Q' (R[X]) = Q,(Q%,(R)[X]) aleshores
aplicant la Proposicié 3.2 Q%,(R) satisfa la condicid de cadena ascendent per
anul.ladors dreta i per hipotesi és un anell autoinjectiu per la dreta. Si apliquem
el Teorema 1.12 tenim que Q%,(R) és un anell QF tal com voliem. W

COROL.LARI 3.5. Sigu R un anell regular tal que per un conjunt no buit
X, Q4 (R[X]) existeix i és autoinjectiu per la dreta. Aleshores R és artinia
semisimple.

DEMOSTRACI®: Aplicant la Proposicié 3.2 tenim que R ha de ser un anell regular
que satisfa la condicid de cadena ascendent per anul.ladors dreta, aleshores per
[37, Proposition 2.13 (a)] i [37, Corollary 2.16] R és artinia semisimple. il

COROL.LARI 3.6. Sigui R un anell, aleshores les seglients afirmacions son
equivalents

(a) Existeix un conjunt infinit X, tal que Q%,(R[X]) existeix i és autoinjectiu
per la dreta.

(b) Existeix un conjunt Y tal que Q,(R[Y]) existeix i és QF.

(c) Per qualsevol conjunt X, QL (R[X]) existeix i és QF.

(d) Existeix un conjunt infinit X, tal que Q',(R[X]) existeix i és autoinjectiu
per Pesquerra.

DEMOSTRACIO: (a) = (b) Suposem que QL (R[X]) és autoinjectiu per la dreta.
Escollim un element x € X i considerem ¥ = X \ {z}. Com que R[X] = R[Y]
aleshores Q%;(R[Y]) existeix i és autoinjectiu per la dreta, pel Corol.lari 3.4
L(R[Y)) és QF.
b) = (a), (b) & (¢) i (¢) = (d) sén conseqiiencia del Teorema 3.1. Per
acabar la demostracié és suficient provar que (d) = (b). Suposem que Q% (R[X])
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existeix i és autoinjectiu per 'esquerra. Com que X és infinit X =Y UZ,onY
té la mateixa cardinalitat que X, Z és infiniti Y NZ = ). Com que R[X] = R[Y]
aleshores Q!,(R[Y]) existeix i és autoinjectiu per 'esquerra, perd

a(RIX]) = Qu(Qu(RIY))(2)),

aleshores per I'enunciat simétric de la Proposicié 3.3, Q% (R[Y]) satisfa a més
condicié de cadena ascendent per anul.ladors esquerra. Per tant pel Teorema
1.12 QY (R[Y]) és QF. B

J. W. Kerr a [49] déna un exemple d’un anell commutatiu de Goldie tal
que els polinomis no satisfan la condicié de cadena ascendent per anul.ladors.
Camilo i Guralnick van provar a [13] que si R és una k-algebra, amb k un
cos no numerable, que satisfa condicié de cadena ascendent per anul.ladors
dreta aleshores per qualsevol conjunt X R[X] també satisfa condicié de cadena
ascendent per anul.ladors per la dreta.

3.2. L’anell classic de quocients de R.

Motivats pels resultats de la seccié anterior, en aquesta seccié estudiarem quan
Pexisténcia del classic de quocients de ’anell de polinomis implica ’existéncia
del classic de quocients de R, i quan les condicions d’injectivitat sobre el classic
dels polinomis sén heretades pel classic de R. Tots els nostres resultats estin
basats en el segiient, lema.

LeMa 3.7. Sigui R un anell tal que Q',(R[X]) existeix. Suposem que per
qualsevol no divisor de zero r(X) € R[X], existeix q(X) tal que ¢(X)r(X) té un
coeficient ro divisor de zero, aleshores Q.,(R) existeix.

Si a més Q',(R[X]) és injectiu com a R[X]-mddul dreta o bé és autoinjec-
tiu per I'esquerra, aleshores Q.,(R) és també injectiu com a R-mddul dreta o
autoinjectiu per I’esquerra.

DEMOSTRACIO: Per la primera part sols cal provar que R satisfa la condicié
d’Ore per Pesquerra. Sigui a # 0 un element de R i b un no divisor de zero. Com
que R[X] satisfa la condicié d’Ore, tenim polinomis r(X) i s(X), amb r(X) no
divisor de zero, tals que r(X)a = s(X)b. Ara per hipoOtesi tenim que existeix
g(X) tal que g(X)7(X) té un coeficient no divisor de zero r. LLavors la igualtat
g(X)r(X)a = ¢(X)s(X)b ens déna que ra = sb, per un cert s € R. Per tant R
té classic de quocients per l’esquerra.

Suposem que @Q!,(R[z]) és injectiu com a R[X]-modul per la dreta. Sigui
I un ideal per la dreta de R i f:I — @Q!,(R) un morfisme de R-modduls
dreta. Aleshores f es pot estendre a un morfisme de R[X]-moduls per la dreta,
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f:IR[X] — Q%(R[X]) , per tant f ve donada per multiplicacié a 'esquerra per
un element 7(X)"1s(X) € Q' (R[X]). Aleshores per qualsevol a € I tenim que
s(X)a = r(X)f(a). Sig(X)r(X) té un coeficient no divisor de zero r, tenim que
sa = rf(a), per un coeficient s de ¢(X)s(X) adequat. Per tant, per qualsevol
a€l, f(a) =r"'sa.

'Si QY,(R[z]) és autoinjectiu per I’esquerra, aleshores

QL(RIX]) = E(rix RIX)) = @Qrax (RIX)).

Volem provar que Qi,(R) hereta aquesta propietat, n’hi ha prou en veure que
per qualsevol » € E(rR) C E(px)R[X]), (R: r) conté un element no divisor de
zero. Perd (R : r)[X] = (R[X] : r), per tant hi ha un polinomi no divisor de zero
r(z) € (R|z] : ») i per hipotesi existeix g(z) tal que g(z)r(z) té un coeficient no
divisor de zero. Per tant (R : r) conté un no divisor de zero. B

LEMA 3.8. Sigui R un anell tal que Q.;(R) existeix. Si I <Q%(R) aleshores
!, (R)/I és un localitzat per I'esquerra de R/(I N R).

DEMOSTRACIO: Sigui £ = {@ € R/(INR) | a és un no divisor de zero de R}.
Es clar que ¥ és un subconjunt multiplicativament tancat de R/(I N R) format
per no divisors de zero. Suposem que a € (I N R), aleshores si sa = br on r és
un no divisor de zero de R, tenim que b € (I N R). Aplicant [71, Proposition
3.2.34] podem concloure que ¥ satisfa la condicié d’Ore per ’esquerra i tenim
que Ry = Q4 (R)/I.1

Si R/J(R) és artinia semisimple aleshores R és diu que és un anell semilocal,
si a més, J(R) és T-nilpotent per la dreta (esquerra) aleshores R és perfecte
dreta (esquerra). Si R és semilocal i J(R) és nilpotent aleshores R és diu que és
semiprimari. Es ben conegut que els anells semilocals que sén autoinjectius per
la dreta o per ’esquerra sén semiperfectes [77, Proposition XIV.1.6].

Small a [74], va provar que R és un ordre per I’esquerra en un anell artinia
semisimple si i nomes si R[z| és també un ordre esquerra en un anell artinia
semisimple. Per fer aix0 va caracteritzar els no divisors de zero de R[z] de la
seglient manera:

LEMA 3.9. (Small, [74, Lemma 2))Sigui R un anell, si R[z] és un ordre esquerra
en un anell artinia semisimple, aleshores per qualsevol polinomi no divisor de
zero r(z) existeix q(z) tal que q(z)r(x) té el coeficient de grau maxim no divisor
de zero. i

Després Pillay a [69, Theorem 2.1] va provar que R és un ordre per ’esquerra
en un anell artinia semisimple si i només si R[X] ho és, on ara X és un conjunt
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arbitrari. Les técniques de Pillay son les mateixes que les de Small i també passen
per la mateixa caracteritzacié dels no divisors de zero de R[X], on ara el coeficient
de grau maxim estd definit donant un bon ordre a X i 'ordre lexicografic als
monomis en X.

Suposem que R[X] té classic de quocients per 1’esquerra @ semilocal i a més
tenim J(Q) N R[X] = I[X] per un cert ideal I de R, aplicant el Lema 3.8 tenim
que R[X]/I|X] és un ordre per ’esquerra en un anell artinid semisimple i per
(69, Theorem 2.1] R/I també és un ordre en un anell artinid semisimple. Com
a conseqliencia veiem que per R[X]/I[X] val la caracteritzacio de Small pels no
divisors de zero, perd si r(z) és un no divisor de zero de R[X] la seva classe
tambeé és un no divisor de zero de R[X]/I[X]. Per tant en aquest cas podem
deduir que existeix un polinomi ¢(X) de R[X] tal que ¢(X)r(X) té un coeficient
no divisor de zero. Si apliquem ara el Lema 3.7 podem concloure que existeix el
classic per 'esquerra de R i estem en condicions d’aplicar el segiient resultat de
Robson,

TEOREMA 3.10. (Robson, [71, pag. 368]) Sigui R un anell. R és un ordre per
Pesquerra en un anell semilocal si i només si existeix un ideal I de R que satisfa
les segtients condicions, :

(1) R/I és un ordre per 'esquerra en un anell artinia semisimple.

(2) a no és divisor de zero a R si i només si la classe a + I no és divisor de
zero a R/I.

(3) Sia € I1ibés un no divisor de zero, aleshores existeixen a’ € I i b no
divisor de zero tals que a’b=b'a. 1

Ara observem que si R és un ordre per ’esquerra en un anell semilocal i Qlcl (R)
existeix, aleshores aquest també és semilocal. Llavors del teorema anterior
podem concloure que en el nostre cas R té classic de quocients per ’esquerra
semilocal.

Per tant hem demostrat el segiient,

PROPOSICIO 3.11. Sigui R un anell tal que Q. (R[X]) existeix i
J(Qu(RIX]) N RIX] = I[X]

per un cert ideal bilater I de R. Aleshores

i) Si QY (R[X]) és semi]oéal, aleshores Q,(R) existeix i és semilocal.

( ) cl cl

(ii) Si Q',(R[X]) és perfecte per la dreta o per I'esquerra, aleshores Q.,(R) és
també perfecte per la dreta o per I'esquerra.
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(iii) Si Q%,(R[X]) és semiprimari, aleshores Q';(R) és semiprimari.

(iv) Si QL(R[X)) és semiperfecte i autoinjectiu per I'esquerra o injectiu com
R[X]-modul dreta, aleshores Q,(R) és també semiperfecte i autoinjectiu
per Pesquerra o injectiu com a R-modul dreta. B

A la vista d’aquest resultat considerem interessant saber quan
J(Qu(RIX])) N R[X]

és de la forma I[X] per un cert ideal I de R. Per simplicitat, treballarem en
aquest problema només sobre R[z], encara que els resultats admeten una facil
generalitzacié a un conjunt arbitrari de variables X.

LEMA 3.12. Sigui R un anell tal que Q\,(R|[z]) existeix. Aleshores les segiients
afirmacions sén equivalents:

(i) J(QY,(R[z])) N R[z] = I|z] per un cert ideal I de R. '
(i) Sip(z) € J(Q',(R[z]))) N R[z], aleshores p(z?) € J(Q%,(R[z])) N R[z].
(iii) Si p(x) € J(QL,(R[z])) N R[z], aleshores existeix k > 1 tal que

p(z*) € J(Q(RIe)) N Rl

DEMOSTRACIO: Només cal provar que (i27) = (7). Sigui p(z) =ao+ -+ + anz™
un polinomi de J(Q!,(R[x])) N R[z]. Podem suposar que ag i a, sén diferents de
zero. Per hipotesi sabem que existeixen ki, ..., ky, tals que p(z**), ..., p(zk1-~*»)
sén elements de J(QY,(R[z])) N R[z]. Considerem ara la matriu

1 T e z"
kx g™k
M = : : : € M‘n+l(Qlcl(R[x]))

ky..kq . znkl...kn

ag
tenim que M ( : ) € "J(QY(R[z])). Com que M és una matriu invertible

an
podem concloure que ag, . .., an sén elements de J(Q',(R[z])) NR. 1

ProposICIO 3.13. Sigui R un anell commutatiu. Aleshores J(Qu(R[z])) N
R|z] = Iz] per un cert ideal I de R.
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DEMOSTRACIO: Aplicarem el Lema anterior veient que si p(z) és un element de
J(Qc1(R[z])), aleshores p(z?) tambe ho és. Sols cal veure que 1 — p(z?) T4 és
invertible a Q.:(R[z]). Sense perdre generalitat podem suposar que s'(z) = s(z?)
‘per s(x) € R|z] no divisor de zero, ja que sino considerem sﬂ,&%((:—’% Hem de
veure doncs que s(z?) — p(z?)r(z) és un no divisor de zero de R[z]. Cal observar
que per lisomorfisme que hi ha entre R[z] i R[z?] sabem que 1 — p(z?)t és
invertible a Q. (R[z?]) per qualsevol element t de Q. (R[x?]).
Suposem que (s(z?) — p(z?)r(z))g(z) = 0. Podem escriure r(r) = ri(z?) +
rro(z?) i g(z) = q1(z?) + zg2(z?), tenim doncs que
(s(g?) — p(z?)r1(2z?))q1(z*) — 2°p(z?)r2(2?)g2(2?) = 0
(5(2%) = pla®)r1 (=)@ (z?) - pa®)r> (D)1 (z%) = 0.
Perd u = s(z?) — p(z?)r1(x?) és un no divisor de zero de R[z?], per tant de
la primera igualtat tenim g¢;(z?) = v~ 1z2p(z?)ro(22)qo(z?). Si substituim a la
~ segona igualtat obtenim que
ugy(z?) — p(a?)ra(a?)u”"2’p(a?)ra(c?)q2(a%) =
(u — p(e?)ra(a®)u2?p(2?)ro(2%)) g2 (2%) = vga(2?) = 0,
perd v també és un element regular de R[z?], per tant g2(z®) = 0 i com que
s(z?) — p(z?)r{(z) és un element regular de R[z?] en conseqiiéncia també g1 (z?) =

0.0

Tenim doncs el segiient resultat per anells commutatius.
TEOREMA 3.14. Sigui R un anell commutatiu. Aleshores

(i) Si Qu(R|[z]) és semilocal aleshores Q(R) és semilocal.
(ii) Qu(R|[z]) és perfecte si i només si Q. (R) és també perfecte.
(iii) Qu(Rlz]) és semiprimari si i només si Q. (R) és semiprimari.

DEMOSTRACIO: Per les dues proposicions anteriors tenim ja demostrat (i) i la
part “només si "de (ii). Sols falta veure que si Q. (R) és semilocal i el seu
radical de Jacobson és nilpotent o T-nilpotent, aleshores aquestes propietats sén
heretades pel classic de quocients de I’anell de polinomis. Podem suposar sense
perdre generalitat que R = Q(R), si J(R) és nilideal aleshores és clar que R[z]
i J(R)[r] satisfan les condicions del Teorema 3.10, per tant R[z] és un ordre en
un anell semilocal, per ser J(R) un nilideal tenim per [1] que J(R[z]) = J(R)|[z],
per tant R[z] és un ordre en un anell semilocal tal que el seu radical satisfa les
mateixes condicions de T-nilpoténcia i nilpoténcia que J(R).

Per anells no necessariament commutatius podem obtenir un resultat analeg,
perd hem de menester que 2 sigui invertible a Q! (R[z]).
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LEMA 3.15. Sigui R un anell tal que Q' (R[z]) existeix i 27! € Q',(R|[z]).
Aleshores J(Q%,(R|[z])) N R|x] = I[X] per un cert ideal bilater I de R.

DEMOSTRACIO: Sigui f(x) un polinomi de J(Q,(R[z])) N R[z], suposem que
f(z) no és de (J(QY,(R[z])) N R)[z] i que és de grau minim entre els que satisfan
aquesta condicié. Aleshores

f(z) = f1(=?) + zfo(z?) € J(Q4(Rlz)))

f(=2) = f1(z*) — zfa(2?) € J(Qu(R[z)))

per tant f(z)+ f(—z) = 2f1(z?) i tenim doncs que fi(z) € J(Q%,(R[z])). Si per
altra banda considerem f(z)~ f(~z) = 2f2(z?), tenim que f2(z) € J(Q%(R[z])).
Com que o bé fi(z) o bé fo(x) és diferent de zero i els dos sén polinomis de grau
més petit que el de f(z), per la minimalitat del grau de f(z), sén polinomis
de (J(Q',(R[z])) N R)[z]. Perd els coeficients de f(x) sén els de fi(z) i els de
fo(z), per tant f(z) també és un polinomi de (J(Q%,(R[z])) N R)[z], la qual cosa
contradiu la tria de f(z). B

TEOREMA 3.16. Sigui R un anell tal que Q',(R[z]) existeix i 27! € Q.,(R[z]).
Aleshores

(i) Si QL (R[z]) és semilocal, aleshores Q';(R) existeix i és semilocal.

(ii) Si Q%,(R|z]) és perfecte per la dreta o per I'esquerra, aleshores Q%;(R) és .
també perfecte per la dreta o per I'esquerra.

(iii) Si QL,(R[z]) és semiprimari, aleshores Q.,(R) és semiprimari. 1

Observem Gue el Lema 3.15 i per tant el Teorema 3.16 es poden demostrar
amb arguments semblants quan R és un anell tal que Qf;z(R) existeix i R conté
una arrel senar de la unitat al seu centre.

Cal remarcar que la condicié de que 2 sigui invertible a Q% (R[z]) o que hi
hagi una arrel senar de la unitat, només sembla una manera de garantir que
hi ha prous automorfismes de Q',(R[z]) i de fet nosaltres pensem que aquest
resultat és cert sense cap hipotesi adicional. Es interessant en aquest context fer
referencia de l'article d’Amitsur (1], on demostra que J(R[z]) = I[z] per un cert
nilideal I de R, de fet la nostra tecnica esta inspirada en la d’Amitsur. També és
molt interessant una demostracié de Bergman del mateix fet, que es pot trobar
a [71, pag 195]. La demostracié de Bergman simplifica considerablement la de
Amitsur, i pot ser que aporti noves idees al nostre problema sobre el radical de
Jacobson del classic d’un anell de polinomis.
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Una altra qliestié interessant és saber si I'existéncia del classic de quocients
de R (per algin costat) implica 'existéncia del classic de quocients de 'anell de
polinomis. D’aquest tipus de resultat només en coneixem com els que ja hem
citat abans de Small i Pillay, [74] i [69], que és basen molt en ’estructura de R
i la del seu anell classic de quocients. Ambdos autors demostren explicitament
que l'anell de polinomis satisfa la condicié d’Ore. Tampoc ens consta que a la
literatura hi hagi exemples d’anells que tinguin classic de quocients i el seu anell
de polinomis no.

Creiem que gran part de la dificultat del problema esta en la falta d’una bona
caracteritzacié dels no divisors de zero de I'anell de polinomis. Ja hem comentat
que quan R és un ordre per l'esquerra en un anell artinia semisimple, els no
divisors de zero és poden caracteritzar com els polinomis p(z) pels quals existeix
un altre polinomi q(z) tal que el terme de grau maxim de p(z)q(z) no és divisor
de zero. Si R és un anell commutatiu és ben conegut que p(x) és un no divisor de
zero si 1 només si els seus coeficients generen un ideal fidel de R (Lema de McCoy).
També és ben conegut que aquest resultat no s’esten al cas no commutatiu. Per
exemple, per qualsevol anell R diferent de zero podem considerar el polinomi de

M (R)
- (3 3)+ (3 (0 9)-

aleshores és clar que els coeficients de p(z) generen tot Ma(R), perd

a 0 0 O
# (5 0)- (2 0)2) ¢
per qualsevol element a de R.

També volem fer notar que p(x) és un divisor de zero amb un coeficient no
divisor de zero. Aix0 pot il.lustrar el fet de que en el Lema 3.7, no pensem que
els polinomis que surten amb un coeficient no divisor de zero hagin de ser no
divisors de zero a R[z].

La nostra opinié és que I'existencia del classic de quocients de I’anell no implica
Pexisténcia dei classic de quocients de I’anell de polinomis. Per aix0 ens basem
en el segilent fet, sigui R;, 4 € I, una familia infinita d’anells d’Ore per la dreta.
Considerem R = Hie ; Ri, és clar que R és també d’Ore per la dreta, pero per
a que R[z] sigui d’Ore per la dreta s’ha de complir que per qualsevol R;[z] les
solucions de '’equacio d’Ore no tan sols han d’existir, sino que a més s’han de
poder triar amb grau acotat, ja que en cas contrari R[z] no té classic de quocients
per la dreta. Aix0 ens fa pensar que en general el fet de que R sigui d’Ore per
un costat no implica que R[z] ho sigui.
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Finalment només comentar que del problema invers, és a dir quan ’existéncia
del classic de quocients de ’anell de polinomis implica I’existéncia de 1’anell
classic de quocients de R, només sabem resultats “estructurals”, com els ja
esmentats de [74] o els d’aquesta mateixa seccié.

-Si R és un anell autoinjectiu per ’esquerra aleshores és ben conegut que
Sing;(R) = J(R), cf.[77, Corollary XIV.1.3]. En el segiient resultat veurem
que és més facil demostrar bones propietats de la interseccié de Sing; (Q%,(R[z]))
amb Riz] que per J(QL(R[z])).

LEMA 3.17. Sigui R un anell. Aleshores

(i) (73] Sing,(R[z]) = Sing;(R)|z].
(i) Si Q',(R[z]) existeix, aleshores Sing;(Q!,(R[z])) N R[z] = Sing;(R)[z].

DEMOSTRACIO: (i) Es clar que Sing(R)[z] C Sing,(R[z]), perque si p(z) €
Sing;(R)[z] aleshores [p(p(x))[z] <. Rlz].

Suposem que p(z) € Sing;(R|[z]), provarem que p(z) € Sing;(R)[z] per induccié
sobre el grau de p(z). Si deg(p(z)) = 0 aleshores és clar que p(z) € Sing;(R),
suposem que p(x) = po + -+ - + pox™ té grau n > 0. Per qualsevol a € R existeix
un polinomi diferent de zero g(z) € (R[z]a N g (p(x))), aleshores el coeficient
de grau més gran de ¢(z) serd un element de RaN!g(pn), per tant [p(pn) < R.
Considerem ara p;(z) = p(z) — p,x™, p1(z) € Sing;(R[z]) que té grau més petit
que n, per tant per hipotesi d’induccié p;(z) és un element de Sing;(R)|[z] i per
tant també ho és p(z).

(i7) Observem en primer lloc que

Sing;(Q%(R[z]) N R[z] = Sing;(R|z)).

Suposem ara que a € (Sing;(Q",(R[z])) NR). Aleshores per qualsevol 0 # r € R,
lQil(Rlll)(a) N QY (R[z])r # 0, per tant existeix p(z)r # 0 tal que p(z)ra = 0.
Tenim doncs que lp(a) N Rr # 0. Suposem ara que a € Sing;(R), aleshores
per qualsevol g(z)~!p(z) € @',(Rz]). Fent inducci6 sobre el grau de p(z), amb
arguments semblants als utilitzats a (i), es té lgjz)(a) N Rlz]g(z)q(z) " p(z) # 0
i per tant Sing;(@%,(R[2])) N R = Sing;(R). Llavors (i) segueix de (). B

Tenim doncs com a conseqiiéncia d’aquest Lema, de la Proposicié 3.11, del
Lema 3.7 i del resultat {77, Corollary XIV.1.3] que esmentiavem abans,

PROPOSICIO 3.18.  Sigui R un anell tal que Q%,(R[z]) existeix i és semiperfecte
autoinjectiu per l’esquerra. Aleshores Q’C, (R) existeix i és semiperfecte i autoinjectiu
per l'esquerra. B
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3.3. Dimensié de Goldie finita.

Tornem ara als anells de polinomis amb classic de quocients injectiu. En
aquesta seccié provarem que per un conjunt no buit X, Q%,(R[X]) és autoinjectiu
per la dreta i per ’esquerra si i només si R és un ordre en un anell QF, i que si
@, (R[X]) és injectiu com a R[X]-moddul dreta aleshores R té classic de quocients
pels dos costats i aquest ha de ser QF, cf. Teorema 3.19 i 3.23 respectivament.
Aquests resultats estan en la linea del Corol.lari 3.6, d’on suprimim la condicié
dfi que X sigui infinit pero exigim condicions d’injectivitat més fortes sobre

Recordem que un anell és diu que té dimensid de Goldie finita per 'esquerra
si no conté sumes directes infinites d’ideals esquerra independents diferents de
zero. Similarment és defineix dimensié de Goldie finita per la dreta. Direm que
R té dimensi6é de Goldie finita si té dimensié de Goldie finita pels dos costats.
R és diu que és un anell de Goldie per la dreta, si té dimensié de Goldie per la
dreta finita i satisfa condicié de cadena ascendent per anul.ladors per la dreta.
De manera similar es defineixen els anells de Goldie per ’esquerra. R és un anell
de Goldie quan ho és per la dreta i per 'esquerra.

El titol de la seccid, és degut a que en les demostracions que s’hi fan sempre es
demostra, a partir de les condicions d’injectivitat de l’anell classic de quocients
de l'anell de polinomis, que 'anell té dimensié de Goldie finita per un costat.
Observi’s que provar aquest fet sempre ens és ttil. Si Q%,(R[X]) és autoinjectiu
per 'esquerra i R té dimensié de Goldie finita per la dreta, aleshores podem
concloure per la Proposicié 3.2 que R és un anell de Goldie per 'esquerra. Si

L (R[X]) és autoinjectiu per la dreta i R té dimensié de Goldie finita per
la dreta, llavors per la Proposicié 3.18 podem concloure que R té classic de
quocients per ’esquerra semiperfecte i autoinjectiu per 1’esquerra.

Es ben conegut que els anells de Goldie per la dreta semiprimers sén precisament
els ordres dreta en anells artinians semisimples, cf. [14, Theorem 1.27], per
demostrar aixo és fa servir que en un anell de Goldie per la dreta semiprimer un
ideal és essencial si i només si conté un element regular, cf.[14, Theorem 1.10].
També és ben conegut que si un anell és de Goldie per la dreta aleshores N(R),
el nilradical de R, és nilpotent, cf. {14, Theorem 1.35]. En aquesta seccié farem
us constant d’aquests dos resultats.

TEOREMA 3.19. Sigui R un anell. Aleshores les segiients afirmacions son
equivalents: ‘

() Hi ha un conjunt no buit X tal que Q},(R[X]) existeix i és adt;oinject;iu
per la dreta i per I'esquerra.
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(ii) Hi ha un conjunt Y tal que Q' (R[Y]) existeix i és un anell QF.
(iii) Per qualsevol conjunt X, Q',(R[X)]) existeix i és un anell QF .

DEMOSTRACIO: (i) = (ii) Haurem demostrat el que volem si veiem que @', (R|[z])
autoinjectiu pels dos costats implica que Q’d (R) existeix i és QF, perque aleshores
escollint un element r € X i considerant Y = X \ {z} podem concloure que
QL (R[Y]) existeix i és QF.

Suposem que R és un anell no singular per 'esquerra i que Q.;(R[z]) existeix
i és autoinjectiu pels dos costats. Aleshores

Qu(Rx]) = Qhraz(Rlz]) = Qhaz (Qraz(R))2]) = QL ((Qrnaz(R))(z)-

Per ser R no singular per 'esquerra @', .. (R) és un anell regular autoinjectiu per
'esquerra. Pel Corol.lari 3.5 Q%,,.(R) ha de ser artinia semisimple. Aleshores
per [74] @%,(R|z]) és també artini3 semisimple, aplicant altra vegada els resultats
de [74] podem concloure que Q%,(R) existeix i que és artinia semisimple.

Suposem ara que R és un anell qualsevol tal que Q. (R[z]) existeix i és
autoinjectiu pels dos costats. Es ben conegut que QY4 (R[z))/J(Q%,(R[z])) és un
anell regular autoinjectiu pels dos costats i que J(Q, (R[z])) = Sing;(Q%,(R|z])),cf.
(77, Corollary XIV.1.3]. Pel Lema 3.8 tenim que Q,(R[z])/J(Q%(R[z])) és
un localitzat per 'esquerra de (R/Sing;(R))[z], perd com que un anell regular
autoinjectiu és directament finit, cf. {37, Theorem 9.29], tenim que

L(Rz])/J(Qu(Rlz])) = Qu((R/Sing,(R))[z])
R/Sing,(R) és un anell no singular per ’esquerra, pel cas no singular i I’isomorfisme
anterior tenim que R/Sing;(R) i (R/Sing;(R))[z] tenen classic de quocients per
P'esquerra artini semisimple. Per tant Q!,(R[z]) és un anell semiperfecte autoin-
jectiu pels dos costats. Per tant per la Proposicié 3.18 Q%,(R) existeix i és un
anell semiperfecte autoinjectiu per ’esquerra, aleshores pel Corol.lari 3.4 podem
concloure que %, (R[Y]) és un anell QF per tot conjunt Y.
(12) = (441) és clar a partir del Corol.lari 3.6. 11

Volem remarcar que per treballar aquest cas hem fet servir que Q',(R[z]) és
autoinjectiu pels dos costats en només dos cops, un per aplicar el Corol.lari 3.5 en
el cas no singular per 'esquerra i I'altre per concloure que Q%,(R[z])/J(Q%,(R[z]))
és directament finit. Creiem que com a minim el cas no singular per ’esquerra
s’ha de poder demostrar suposant només que @, (R[z]) és autoinjectiu per I'esquerra.
Si es demostrés aixo aleshores es podria concloure per la Proposicié 3.18 que R
té classic de quocients per I’esquerra semiperfecte i autoinjectiu per ’esquerra.

El segiient resultat pot aclarir quina és la situacid, si s’intenta demostrar
directament que R té dimensié de Goldie finita per I'esquerra quan Q4,(R[z]) és
autoinjectiu per 'esquerra.
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LEMA 3.20. Sigui R un anell tal que Q!;(R|z]) existeix i és autoinjectiu per
l’esquerra. Aleshores les segiients afirmacions sén equivalents,

(1) R té dimensié de Goldie finita per l'esquerra.

(2) Siguin p(z) i q(z) elements qualssevol de Rl|z], amb q(z) un no divisor
de zero. Aleshores existeix n tal que per qualsevol m > n, lp(p(z) —
z™g(z)) = 0.

(3) Siguin p(z) i q(z) elements qualssevol de R[z], amb q(x) un no divisor de
zero. Aleshores existeix n tal que [p(p(z) — z"¢q(z)) = 0.

DEMOSTRACIO: Sip(z)ig(x) sén com al'enunciat de (2), aleshores si considerem
Iy = lp(p(z)) i per n > 1 I, = lp(p(z) — z™q(x)) s6n ideals per 1'esquerra
independents. Demostrarem aixd per induccié sobre n. Es clar que Ip N I; =0,
suposem que tenim

po(z) + -+ + Pn(T) = prs1(x)

on pi(z) € I; i pny1(x) € Inyy. Si multipliquem aquesta igualtat per la dreta
per p(z) — z"1q(z) obtenim

—z"*po(2)q(z) + (z - 2" p1(2)g(2) + - - + (2" — 2" )pn(z)g(z) = 0
per ser g(z) un no divisor de zero tenim que
—z™*po(z) + (z — 2™ )p1(z) + -+ + (2" — 2" )pn(z) = 0

1 ara per hipotesi d’induccié p;(z) i per tant també p,41(z) sén zero.

Per veure (1) = (2) cal fer servir que R té dimensié de Goldie finita per
I'esquerra si i només si R[z] també té dimensié de Goldie finita per ’esquerra,
aquest és un resultat degut a Shock {73]. Per tant si R té dimensié de Goldie
finita existeix n tal que per qualsevol m > 0, I, = 0.

Es clar que (2) = (3). Per veure que (3) = (2) considerem una successié Jp,
n > 0, d’ideals de R per Pesquerra independents i diferents de zero. Aleshores
I, = Q. (R[z])J. és també una successi6 d’ideals per ’esquerra independents
de Q',(R[z]). Considerem el morfisme f:®n>0ln — Q. (R[z]), definit com
f(r) = z™r per tot r € I,. Per ser Q';(R[z]) autoinjectiu per I'esquerra tenim
que existeix un element g(z)~!p(z) tal que f ve donada per multiplicacié a la
dreta per aquest element. En particular tenim que per qualsevol r € I,,, r diferent
de zero, rq(z)~p(z) = z"r. Com que Rz és d’Ore per 'esquerra tenim que
existeixen un no divisor de zero ¢’(z) i un element s diferent de zero, ambdos de
R[z], tals que ¢’(z)r = sq(z). LLavors ¢'(z) " 1sp(z) = z"r i s(p(z)—z"q(z)) = 0.
Perd aixo contradiu (3), per tant no pot existir a R una successié infinita d’ideals
independents diferents de zero. il
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Seguint amb la mateixa notacié que a la demostracié de (3) = (2) del resultat
anterior, cal observar que trobem un element s de l gz} (p(x) —z™¢(z)) mitjantcant
les solucions de ’equacié d’Ore ¢’(z)r = sq(x). Per fer la demostracié podem
suposar de fet que r és un element de J,, i aleshores arribem a veure que s és
de lppj(p(x) — z™q(x)). Aixo lliga amb la qliestié que plantejavem a la seccié
anterior sobre si es pot trobar una cota pel grau de les solucions de I’equacié -
d’Ore en funcié del grau dels termes implicats. En aquest cas r es pot triar -
de grau zero i g(x) és un polinomi fixat, qué es pot dir del grau de s?. Si
es pogués trobar una cota podriem concloure que si Q',(R[z]) és autoinjectiu
per ’esquerra aleshores R té dimensié de Goldie finita, perque s no pot ser de
lpzj(p(z) — z"q(z)), ja que al anar augmentant n arribariem a una contradiccié
degut a que g(x) és un no divisor de zero.

LEMA 3.21. Si R és un ancll amb dimensié de Goldie finita per la dreta,
aleshores Rp <. Q%,(R).

DEMOSTRACIO: Hem de veure que per qualsevol element r~!s € QL (R) es
compleix que r"!sR N R # 0. Aixd passa si i només si SR N TR # 0 per
qualsevol s € R i per qualsevol no divisor de zero r de R. Si sRNrR = 0,
aleshores els ideals I,, = r™sR, formen una familia d’ideals dreta independents,
en conseqiiéncia existeix n tal que I, = 0 per qualsevol m > n. Per ser r un
element regular, tenim que s = 0. Podem concloure doncs que R <, Q'c,(R). |

ProPOSICIO 3.22. Sigui R un anell amb dimensié de Goldie finita per la dreta,
tal que Q',(R) esixteix i és un anell QF que és injectiu com a R-modul per la
dreta. Aleshores Q7;(R) existeix. :

DEMOSTRACIO: Com que R té dimensié de Goldie per la dreta finita, pel Lema
3.21 Rp <. Q4 (R) i per ser Q4 (R) QF, E(Rg) = Q%4 (R). Volem provar que
E(RpR) = Qh,0z(R). Considerem

H = Endr(E(RR)) = Endg (ry(Qu(R)) = QL(R).
Ara lanell maximal de quocients per la dreta de R és 'anell d’endomorfismes
de ’envolcall injectiva vista com a H-modul per ’esquerra. i per tant en el nostre

cas isomort a Q%;(R). En particular el maximal de quocients és injectiu i isomorf
a E(RR) , tal com voliem veure.

Sing,(Q4(R)) = J(Q4(R)) = N(Q4(R))

J(QL(R)NR = N(R)
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on N(Q%,(R)) i N(R) denoten el nilideal maximal de Q%,(R) i R respectivament,
cf. [77, Corollary XV.3.2].- Si apliquem ara un resultat de Tachikawa, cf. [77,
Proposition XV.3.3] podem concloure que @', (R) és també un ordre per la dreta.
| |

Demostrarem tot seguit que si Q%,(R[X]) és injectiu con a R[X]-modul per
la dreta, aleshores no tan sols aquest ha de ser QF sino que a més el classic
de quocients per la dreta també existeix. Si comparem aquest resultat amb el
Corol.lari 3.6 i el Teorema 3.19, la demostracié de que el classic de quocients per
la dreta existeix és una novetat. Amb les hipdtesis dels resultats esmentats aixo
no és cert. Per exemple si agafem R, un domini d’Ore per l’esquerra i no per la
dreta, llavors per qualsevol conjunt X, existeix Q% (R[X]) i és un anell de divisi6
per tant QF. Perd no existeix el classic per la dreta de R[X].

TEOREMA 3.23.  Sigui R un anell, aleshores les segiients afirmacions sén
equivalents,

(i) Hi ha un conjunt no buit X tal que Q'(R[X]) existeix i és injectiu com
a R[X]-modul per la dreta.
(ii) Hi ha un conjunt Y tal que R[Y} té classic de quocients pels dos costats
i aquest és un anell QF.
(iii) Per qualsevol conjunt X, R[X] té classic de quocients pels dos costats i
aquest és un anell QF.

DEMOSTRACIO: (i) = (i3) Sols cal demostrar que si Q! (R[z]) existeix i és
injectiu com a R[z]-modul per la dreta aleshores R té classic de quocients pels
dos costats i aquest és QF, ja que per un conjunt qualsevol X és suficient agafar
unelement z € XiferY = X\ {z}, .

Suposem que Iy, Iy, ..., I,,... és una successié d’ideals per la dreta de R
independents, aleshores I R[z], I;R[z],... és una successié d’ideals per la dreta
de R|z] independents. Podem definir un morfisme

f:®7L11nRlz] — Rlz]

tal que si p(z) € I,R[z] aleshores f(p(z)) = z"p(x). Com que Q. (Rz]) és
R[z] injectu per la dreta, f ve donada per multiplicacié per ’esquerra, per algin
element g(x)~'p(z) € Q4 (R[z]). Per tant tenim que per qualsevol n, p(z)l, =
g(z)z™I,. Pero si agafem n > deg(p(r)) aixd implica que I, = 0. Per tant R no
conté sumes directes infinites d’ideals per la dreta. Si R té dimensié de Goldie
per la dreta finita aleshores per un resultat de Shock [73] R[z] també té dimensié
de Goldie finita per la dreta. Per tant pel Lema 3.21, R[z] <. @.,(R[z]) com a
R(z] mdduls dreta i aleshores QY (R[z]) = E(R[z] Rlz}) és un anell semiperfecte
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(77, Proposition XIV.1.7]. Per la Proposicié 3.2 tenim que R satisfa condicio de
cadena ascendent per anul.ladors dreta, com que a més té dimensié de Goldie
finita tenim per [14, Theorem 1.35] que el nilradical de R, N(R) és nilpotent. Per
tant J(R[z]) = N(R)[z] és nilpotent, cf.[1]. Com que R[z] té classic de quocients
per l'esquerra semilocal, podem concloure per [71, Exercise 6, pag. 444] que de
fet aquest classic és semiprimari i que J(Q.,(R[z])) N R[z] = N(R)[z]. Per la
Proposicié 3.8 i el Lema 3.7, tenim que @', (R) existeix, és semiprimari i injectiu
com a R-modul per la dreta. Ara aplicant el Corol.lari 3.4 Q},(R) és QF.

Si apliquem ara la Proposicié 3.22 obtenim que R té classic de quocients pels
dos costats i gue aquest és un anell QF.

(i5) = (4i3) Es clar a partir del Teorema 3.1. 11

3.4. Aplicacions.

Tots els nostres resultats és poden reescriure en termes de 'anell de grup RG
sobre un grup abelia lliure, ja que si G té una base X aleshores RG és pot veure
com una localitzacié central de R[X], cf.[69].

COROL.LARI 3.24. Sigui R un anell, aleshores les segiients afirmacions son
equivalents

(i) Hiha un grup abelia lliure G # 0, tal que Q%,(RG) existeix i és autoinjectiu

per la dreta i per 'esquerra.

(ii) Hi ha un grup abelia lliure F tal que Qld(RF ) existeix i és un anell QF.

(iii) Per qualsevol grup abelia lliure G, Q%,(RG) existeix i és un anell QF.

(iv) Existeix un grup abelia lliure G amb base infinita tal que Qlcl(RG) és
autoinjectiu per Pesquera.

(v) Existeix un grup abelia lliure G amb base infinita tal que Q',(RG) és
autoinjectiu per la dreta.

Cal observar que si Q%,(R[X]) és injectiu com a modul dreta sobre un localitzat
central de R[X] aleshores també és injectiu com a R[X]-modul dreta.

COROL.LARI 3.25. Sigui R un anell aleshores les segiients afirmacions sén equi-
valents,

(i) Hi ha un grup abelia lliure G # 0 tal que Qld(RG) és injectiu com a
RG-modul dreta.
(ii) Hi ha un grup abelia lliure F tal que RF té classic de quocients pels dos
costats i aquest és QF.
(iii) Per qualsevol grup abelia lliure G, RG té classic de quocients per les dues
bandes i aquest és QF.
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La nostra recerca sobre anells de polinomis amb classic de quocients injectiu va
ser motivada per una pregunta de Carl Faith, sobre quan un anell de polinomis
podia ser FPF. En general és una pregunta oberta si els anells FPF per la
dreta tenen classic de quocients per algun costat i si aquest és a més injectiu [33,
Question 6]. Ja hem vist que aix0 és cert en el cas commutatiu i en el semiprimer,
cf. Teorema 1.15 i el Teorema 1.17. Els nostres resultats anteriors ens serviran
per caracteritzar quan R[X] és FPF, amb R commutatiu o semiprimer. També
amb les mateixes técniques podrem caracteritzar quan RG és FPF, on G és un
grup abelia lliure i R és o commutatiu o semiprimer.

LEMA 3.26. Sigui R un anell. Si per qualsevol a € R, I'ideal dreta aR[z]+zR|[x]
genera la categoria dels R(x] moduls dreta aleshores

(i) El centre de R és un anell regular.
(ii) Si a és un no divisor de zero per 'esquerra de R, aleshores RaR = R.

DEMOSTRACIG: (7) Sigui a un element central de R. Com que l'ideal I = aR[z]+
zR[z] és un generador i estd generat per elements centrals per la proposicié
1.8 és projectiu. Per tant existeixen fi, fo elements de Homp;j(Z, R[z]) tals
que per qualsevol b € I, b = afi(b) 4+ zfo(b). En particular per ar tenim
ar = afi(r)a+z?f2(a), igualant els coeficients de grau 1 d’aquesta igualtat tenim
que ara = a per un cert element r € R. Si agafem z = rar és clar que aza = aq,
es pot provar que a més z és central, cf.[37, Theorem 1.14 (demostracid)).

(#1) Suposem ara que a és un no divisor de zero per I’esquerra de R. Considerem
ideal I = aR[z] + zR[r]. Tenim que per qualsevol f € Hompy ([, Rz]),
f(a)z = f(z)a. Com que a és un no divisor de zero per ’esquerra el coeficient
de grau zero de f(z) és zero. Com que I és un generador existeixen f1,..., fn i
g1, .., gn elements de Homp(; (7, R[z]) tals que

fila)pr+ -+ fr(@)pn + 1(Z)q1 + - + gu(T)gn =1

per uns certs elements py,...,Pn i q1,...,¢, de R[z]. Per les remarques anteriors
tenim que v :
fi(@)apr+ - + fa1(2)apn—1 = = — °q(z)

per un cert g(x) € R[z]. Per tant el coeficient de grau 1 d’aquesta igualtat ens
esta dient que RaR = R.

COROL.LARI 3.27. Sigui R un anell diferent de zero tal que és o commutatiu o
no singular per la dreta i X un conjunt no buit. Aleshores una condicié necessaria
i suficient per a que R[X] sigui FPF per la dreta és que X = {z} i R sigui artinia
semisimple.



8.4. Aplicacions 61

DEMOSTRACIO: Suposem que R[X] és FPF per la dreta, pel Lema 1.29 sabem
que R és FPI per la dreta. Escollim z € X i considerem (R[X \ {z}])[z]. Pel
lema 3.4 el cer:itre de R[X \ {z}] és un anell regular. Per tant X = {z}.
Suposem que R és commutatiu, com que el classic de quocients de R|[z] és
autoinjectiu, cf Teorema 1.15, pel Corol.lari 3.5 R és un producte finit de cossos.
Si R és no singular per la dreta aleshores és semiprimer, si fem servir la
caracteritzacié dels F PF per la dreta semiprimers del Teorema 1.16 i el Teorema
3.23 podem concloure que R és un ordre per la dreta i per I’esquerra en un anell
artinid semisimple. Per tant R és un anell FPF per la dreta que és de Goldie
per la dreta i per ’esquerra. Per veure que R és el seu propi classic de quocients
provarem que per qualsevol no divisor de zero a € R, aR = R. Sabem que R és
acotat per la dreta per tant aR <. R conté un ideal bilater J que és essencial
com a ideal dreta, per tant J conté un no divisor de zero b, cf. [14, Theorem
1.10], i pel Lema 3.26 R = RbR <. aR. Per tant aR = R tal com voliem veure.
Si R és artinia semisimple aleshores R[z] és FPF, 33, Proposition 4.13]. §

Donarem ara un resultat analeg al Lema 3.26 que ens portara a les mateixes
conclusions per anells de grup FPF on el grup és un grup abelia lliure.

LeEMA 3.28. Sigui R un anell, Z el grup dels enters generat per un element x. Si
per qualsevol element a € R, I'ideal dreta aRZ + (1 — ) RZ genera la categoria
dels RZ moduls dreta aleshores

(i) El centre de R és un anell regular.
(ii) Si a és un no divisor de zero per I'esquerra de R, aleshores RaR = R.

DEMOSTRACIO: (z) Sigui a un element central de R. Com que l'ideal I = aRZ +
(1 — z)RZ és projectiu, com al Lema 3.26 tenim que

a(l-z)=afi(l-z)a+ (1 -z)2fr(1-z)
per uns certs f1, fo elements de Hompz (I, RZ). Existeix un n tal que
a(l —z)z"” = afi(1 — 2)az™ + (1 — )’ fo(1 — 2)z™ € R|z],

perd els elements (1 -z), (1-z)%,...,(1-z)",... formen una base de R[z],com
a R-modul lliure. Igualant els coeficients en (1 — z) de I’equacié anterior, podem
concloure que existeix un r € R tal que ara = a. Com al Lema 3.26 tenim doncs
que el centre de R és regular. _

(i) Suposem ara que a és un no divisor de zero per I’esquerra de R. Considerem
I'ideal I = aRZ+ (1 —z)RZ. Ara la prova va com al Lema 3.26, sols cal observar
que per qualsevol f € Hompg (I, RZ) tenim que f(a)(1 — z) = f(1 — x)a. Per
tant com gue a és un no divisor de zero per 'esquerra f(1 — z) és un element de
I'ideal d’augmentacié de RZ. 1
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COROL.LARI 3.29. Sigui R un anell diferent de zero, tal que és o commutatiu o
no singular per la dreta i G un grup abelia lliure diferent de zero. Aleshores RG
és FPF per la dreta si i només si G = Z i R és artinia semisimple.

- DEMOSTRACIO: Per veure que és una condicié necessaria ho podem fer com al
Corol.lari 3.27. :

Per demostrar que és suficient és pot veure com a conseqiiencia del Corol.lari
3.27 i de que un localitzat central de un FPF continua sent F'PF. I



Capitol 4.
Anells de séries formals amb classic

de quocients injectiu

4.1. Divisors de zero en ’anell de séries formals.

En l'anell de polinomis sobre un anell commutatiu, els elements que no sén
divisors de zero estan ben caracteritzats pel Lema de McCoy, com els polinomis
tals que els seus coeficients generen un ideal fidel. Aquest resultat no s’esten
a l'anell de series formals sobre un anell commutatiu, tal com prova el seglient
exemple.

EXEMPLE 4.1. (9, Example 1 pag.6] Existeix un anell commutatiu R tal que
R[z] conté un polinomi monic de grau 1 que és un divisor de zero a R[z].

DEMOSTRACIO: Sigui K un cos commutatiu, considerem ’anell

K[y7 {zi}?;O]’

sigui I l'ideal generat per yzo i els elements {z; + yzi4+1}2,. Definim R =
Kly, {2:}26)/1, sigui ag = y i b; = z; aleshores és clar que (ap+1z)(EXbizt) =0
a R[z]. I

Existeixen resultats analegs al lema de Mc Coy per anells de séries, en els
casos en que R és un anell commutatiu semiprimer o noetheria cf.[9]. Tot seguit
demostrarem aquest resultat en el cas semiprimer i el farem servir al llarg del
capitol sense referéncia explicita.

PRrROPOSICIO 4.2. [9, Theorem 8] Sigui R un anell commutatiu sense elements
nilpotents. Si a i b sén elements de R[x] tals que ab = 0, aleshores qualsevol
coeficient de b anul.la a.

DEMOSTRACIO: Sigui P un ideal primer de R, aleshores P{z] és un ideal primer
de R[z]. Tenim doncs que o bé a és de P[z] o bé b és de P[z]. En particular
si a; és un coeficient arbitrari de a i b; és un coeficient arbitrari de b, tenim que
aib; € P. Sigui I I'ideal generat pels coeficients de a i J I'ideal generat pels
coeficients de b. Tenim que IJ € P per qualsevol ideal primer P de R perd com
que R no té elements nilpotents IJ = 0. §

Sigui R un anell commutatiu i Q. (R) el seu classic de quocients. Hom podria
esperar que Q. (R[r]) = Qu(Qa(R)[z]), la situacid perd no és aixi, en general
no és cert que Qu(R)[z] C Qu(R[z]). El segiient resultat il.lustra aquest fet.

63
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TEOREMA 4.3. [9, Theorem 30 pag. 42] Sigui R un domini d’integritat commu-
tatiu i sigui a un element diferent de zero de R. Si N2 ,a"R = 0, aleshores el
classic de quocients de R[%] té grau de transcendéncia infinit sobre Q.i(R[z]).

4.2. Anells Xj-injectius i Rp-algebraicament compactes.

Per un sistema numerable d’equacions lineals S per la dreta sobre un anell
R volem dir un sistema del tipus AX = B, én A és una matriu Ry x Rg amb
les components de R i en la qual les files tenen totes les components zero llevat
d’un nombre finit, X és una columna amb un conjunt numerable d’incognites
T0,Z1,-+-3Zpn,..., 1 B és també una columna amb un numerable d’elements
de R. Un sistema numerable d’equacions lineals per la dreta S direm que és
finitament resoluble a R si qualsevol subsistema finit de S té solucié a R. Un
anell R és diu que és Ng-algebraicament compacte per la dreta si tot sistema
numerable d’equacions lineals per per la dreta de R que és finitament resoluble
és resoluble. De manera analoga es defineix Np-algebraicament compacte per
I'esquerra. Direm que R és Ng-algebraicament compacte si ho és pels dos costats,
c.f.[9] per aquestes definicions.

Un anell R és diu que és Ng-injectiu per 'esquerra si satisfa el criteri de Baer
per ideals per 'esquerra de R comptablement generats. Analogament definirem
No-injectiu per la dreta. Direm que R és Np-injectiu si és Ng-injectiu pels dos
costats. Quan I’anell R és regular, la condicié de ser Np-algebraicament compacte
per la dreta és equivalent a Np-injectiu per I’esquerra, tal com provarem en el
segiient resultat. Val a dir que la demostracié que donem d’aquest fet és gairebé
la mateixa que la que apareix a [9, Theorem 42] pel cas en que R és un anell
regular commutatiu.

ProPOSICIO 4.4. (Essencialment a [9, Theorem 42]) Sigui R un anell regular.
Aleshores R és Np-injectiu per I'esquerra si i només si R és Ng-algebraicament
compacte per la dreta.

DEMOSTRACIO: Si R és un anell regular que és Rg-algebraicament compacte per
la dreta aleshores és clar que és també Np-injectiu per ’esquerra. Demostrar
que R satisfa el criteri de Baer per ideals esquerra comptablement generats,
és equivalent a resoldre un sistema numerable d’equacions lineals per la dreta.
Aquest sistema en el cas d’un anell regular sempre és finitament resoluble. Per
tant R és Np-injectiu per l'esquerra. '

Suposem doncs que R és un anell regular Ro-injectiu per ’esquerra. Considerem
el sistema numerable

o0
L, = Zamﬂ:i =b; pern>1

i=1
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tal que cada subsistema finit té solucié. Per cada subsistema les solucions
s’obtenen sumant les solucions del sistema homogeni a una solucié particular.
Com que R és un anell regular les solucions d’un sistema d’equacions lineal finit
homogeni per la dreta sén un R-modul per la dreta finitament generat, c.f.[37,
Lemma 2.1]. Si considerem el subsistema Li,..., Ly, tenim en particular que
les solucions de la primera coordenada z; del sistema homogeni formen un ideal
pricipal de R de la forma (1 —e,)R on e, és un idempotent de R. Si tornem ara
al sistema inicial, tenim que per cada subsistema finit Ly,..., L., les solucions
de z; sén de la forma e,a, + (1 — en)R, on e,a, és una solucié particular i
(1-ei)(1—¢;) =1—¢; peri < j. Sigui I = Up>1Rey, i considerem el morfisme
de R-mdduls per 'esquerra f: I — R tal que f(e,) = ena,. Per la definicié de
enn 1 perqueé Re; C Re, per i < n, és facil veure que f esta ben definida. Per
ser R No-injectiu per ’esquerra, existeix a € R tal que f(en) = epc. Per tant
T1 = a és solucié de qualsevol subsistema finit del nostre sistema.

Fem ara induccidé, suposem que hem trobat ay,...,a, elements de R que
es poden agafar com les n primeres solucions de qualsevol subsistema finit.
Considerem el sistema,

Z ax; = b; — Zal,a1 per !> 1.

i=n+1

Si apliquem ara ’argument anterior obtenim un element a,4+; € R tal que

Qi,...,0n+1 €s poden agafar com les n + 1 primeres solucions de qualsevol
subsistema finit.
Si agafem a,, ..., (n41,... €s clar que sén solucié de tot el sistema. Per tant

R és Ng-algebraicament compacte per la dreta. B

La segiient proposicié déna una manera de construir anells Ro-algebraicament
compacte. Aquest resultat va sorgir d’una conversa amb P. Ara on em va fer
notar una remarca de Handelman [43, pag. 237|, en la que diu que un resultat
analeg a aquest és ben conegut en el context de grups abelians.

PROPOSICIO 4.5. Sigui S un anelli R = SN/S®™). Aleshores R és No-algebraica-
ment compacte.

DEMOSTRACIO: Sols cal demostrar que R és Np-algebraicament compacte per
la dreta, ja que aleshores per simetria tindrem que R és Np-algebraicament
compacte. Sigui m: SN — R la projeccié candnica. Considerem un sistema
numerable d’equacions lineals a R AX = B, que sigui finitament resoluble. Si
el sistema és finit no hi ha res a demostrar, suposem doncs que hi ha infinites
equacions. '
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Per hipotesi per cada n > 0 existeix una successié d’elements (37*), on 77 € R,
que sén solucié de les n primeres equacions. Fixem matrius A, B i y* amb
coeficients a S™, tals que 7(A4) = A4, n(B) = B i n(y?) = 7. Si considerem
ara els subsistemes de les n primeres equacions del sistema AX = B de SV, per
la definici6 de R existeix k, € N, tal que per cada i les components de y* que
estan en una posicié més avancada que k, sén solucié del sistema component
a component. Podem suposar que 1 < k; < ks < -+- < k,, < .... Construim
inductivament els segiients elements y; € SV, per cada y; les components des de
1 fins a k; — 1 sén zero, si n > 1 les components des de k, fins a kp+1 — 1, sén
les components de ¥ que estan en aquesta posicié. Si considerem §; = 7 (y;), és
clar per construccié que la successié (7;) és solucié del sistema AX = B. Hem
demostrat doncs que R és Ng-algebraicament compacte per la dreta. B

Cal observar que en la proposicié anterior si per exemple agafem S un domini
commutatiu que no sigui un cos, R és un anell Rp-algebraicament compacte que
no és No-injectiu. En particular tenim que la Proposicié 4.4 no és certa per
anells no regulars. El problema estid en que els sistemes que s’han de resoldre
per provar que R és Ng-injectiu en general no sén finitament resolubles.

Si R és un anell regular el conjunt dels ideals per la dreta principals és un
reticle, que denotarem per L(Rg). R és diu que és Np-complet superiorment
(inferioment) si tot subconjunt numerable de L(Rg) té un suprem (infim) a
L(RR) i és diu que és Ro-complet si és complet superiorment i inferiorment. En
un anell regular R No-complet, el suprem i el infim d’una familia numerable de
{e;R} C L(RR) venen donats per

\eR=rplr({e:R}) i NeR=rr({e:R}).
Si un anell regular Rg-complet superiorment satifa
AN(VB;) =V(AAB;)

per qualsevol A € L(RR) i tota familia numerable ascendent {B;} de L(RR),
es diu que és Ng-continu per la dreta . La condicié de ser Ng-continu per la
dreta és equivalent a que tota familia numerable {e;R} de L(RRg) sigui essencial
al seu suprem. Similarment es defineixen els anell Rg-complet i Ro-continu per
I'esquerra. Direm que un anell regular és Np-complet o Np-continu si ho és pels
dos costats. ‘

Per un anell commutatiu R una condicié necessaria i suficient per a que R[z]
sigui de Bezout és que I’anell R sigui regular, aquesta condici6 és també necessaria
i suficient per a que l’anell R[z] sigui semihereditari. Si considerem el mateix
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problema per V'anell R[z] on R és un anell commutatiu, també tenim que ’anell
R ha de ser regular perd per a que R[z] sigui de Bezout haurem de menester
que R sigui Np-injectiu. Per caracteritzar els anells.de seéries formals que sén
semihereditaris necessitem que R sigui regular Ro- 1nJect1u i Np-complet. Els
segiients resultats expliquen aquests fets.

TEOREMA 4.6. [9, Theorem 42] Sigui R un anell commutatiu, aleshores les
segiients afirmacions sén equivalents.

(1) R és un anell regular Np-algebraicament compacte.
(2) R és un anell regular Ny-injectiu.

(3) R[z] és un anell de Bezout.

(4) La dimensi6 global feble de R[z] és 1.1

TEOREMA 4.7. [9, Theorem 43] Sigui R un anell commutatiu, aleshores les
segiients afirmacions sén equivalents.

(1) R és un anell regular Ry-injectiu i Ro-complet.
(2) R[z] és un anell de Bezout en el qual els ideals principals sén pro Jectzus
(3) R[z] és semihereditari. il

En el capitol cinqué generalitzarem aquests resultats al cas no commutatiu.
Volem donar pero la demostracié d’un fet que esta implicit en la demostracié
del Teorema 4.6 i que utilitzarem després molt freqiientment, de tota manera
remarquem que ho farem en un context una mica més general que el de [9].

Sigui R un anell i @ un automorfisme de R. Aleshores podem considerar I’anell
de series formals skew R[z, ] que té per elements Y oo, z"an,, l'operacié aditiva
és la suma component a component. El producte és el producte de convolucié
habitual seguint la regla az = za(a) = za®. En general suposarem que R és
un anell commutatiu i @ un automorfisme de R que deixa fixes els idempotents
centrals.

LEMA 4.8. Sigui R un anell regular commutatiu Ng-injectu i & un automorfisme
que deixa fixes els idempotents. Tot element a(z) de R[z, a] s’escriu de la forma
a(z) = e(x)u(z) = u'(r)e(z), on e(z) = T y2™e, per certs e, idempotents
ortogonals de R i on u(z) i u/(x) sén unitats de R[z, a].

DEMOSTRACIO: Sigui a(z) un element de R[z,a], a(z) = z*(3_ory2z™an). Si
ao €és una unitat de R aleshores I’enunciat del lema és trivial, ja que per obtenir
la descomposicié que busquem posem e(z) = z* i u(z) = > oo z"a,. Podem
suposar doncs que ap no €s una unitat.
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Per ser R un anell regular commutatiu per cada a, existeix una unitat r,
de R tal que a,Tna, = an, per tant a,r, = f, = f,f. Definim ara els e,
inductivament, posem eg = foie, = (1 — (Z::Ol €))fn-

Hem de veure que existeix una serie u(x) tal que a(z) = e(r)u(z). Sidesenvolupem
aquesta igualtat i igualem els coeficients del mateix grau obtenim que hem de
resoldre un sistema numerable S d’equacions lineals sobre R. Aquest sistema per
la Proposicié 4.4 és resoluble si i només si és finitament resoluble. Per veure aixo,
donat que la familia e, estd formada per idempotents ortogonals, és suficient
demostrar que a(z) = (eg+ (1 —ep)a(z))r(z) per un cert r(z) de R]z, a]. Podem
escriure a(z) = epa(z) + (1 — ep)a(z) on epa(z) és una unitat de egReop[z, a],
existeix una unitat r(z) de R[z, ] tal que a(z) = eor(z) + (1 — eo)a(z)r(z).
Podem concloure doncs que existeix u(z) € R[z] tal que a(z) = e(z)u(z).

Per acabar la demostracié hem de veure que podem triar u(z) invertible o
equivalentment que el terme de grau zero ug, de u(x) es pot triar de tal manera
que sigui un element invertible de R. Fent el mateix raonament que en el paragraf
anterior es pot veure que existeix v(z) € R[z, a] tal que a(z)v(z) = e(z), tenim
doncs que e(z)(1 — u(x)v(z)) = 0. Sigui r un element de R tal que uprup = up
i sigui f = ugr. Per qualsevol n, e e(z)(1 — u(z)v(z))(1 - f) = e (1 — f) =0,
per tant e(z)(1 — f) =0iwu(x)+ (1 — f) és la unitat que buscavem.

Per veure la descomposicié a(z) = u/(z)e(z), podem procedir igual que abans.
Cal utilitzar que els idempotents queden fixes per « i que

a(z) = xi(i 2"ay) = (i a® " ),
n=0 n=0

Estem ara en condicions de donar una caracteritzacié dels elements regulars

de R[z,a].

LEMA 4.9. Sigui R un anell regular commutatiu Ro-injectiu i & un automorfisme
de R que deixa fixes cls idempotents de R. Un element a(z) € R[z, o] és regular
si i només si I'ideal que generen a R els seus coeficients és fidel.

DEMOSTRACI): Si a(z) no és divisor de zero de R[z, a] és clar que I'ideal de R
generat pels seus coeficients és fidel.

Sigui a(z) = Y ovyz™an tal que TrRI = 0 on I = £2,a;R. Suposem que
existeix b(z) € R[z,a] tal que a(z)b(z) = 0. Pel Lema 4.8 sabem que a(z) =
u(z)e(z) i b(z) = f(z)v(z) on u(z) i v(z) sén unitats. Per tant e(x)f(z) = 0,
d’on e, fm = 0 per qualssevol n i m. Com que I = @p>0e,R, I és un ideal fidel i
podem concloure que f(z) = b(z) = 0. Aixd demostra que a(r) és un no divisor
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de zero per la dreta, per veure que no és divisor de zero per ’esquerra podem
fer un raonament analeg. il

LEMA 4.10. Sigui R un anell regular commutatiu Ro-injectiu i ¢ un automor-
fisme de R que deixa fixes els idempotents. Aleshores R[z,a] és un anell d’Ore
pels dos costats.

DEMOSTRACIO: Siguin r(z) i a(z) elements de R[z, af, suposem que 7(x) és un
no divisor de zero. Pel Lema 4.8 tenim que r(z) = e(z)u(z) i a(z) = f(z)v(z)
on u(z) i v(z) sén unitats i on e(z) i f(r) commuten entre si. Tindrem doncs
que a(z)v(z) le(z) = f(z)e(z) = r(z)u(z)! f(x), per altra banda és clar que
r(z) és un no divisor de zero si i només si e(z) ho és, per tant podem concloure
que R[z, o] satisfa la condicié d’Ore per la dreta. Per veure que també la satifa
per lesquerra es pot fer un raonament analeg. B

4.3. Anells de séries formals amb classic de quocients regular.

El segiient lema ben conegut caracteritza els anells commutatius amb classic
de quocients regular.

LEMA 4.11. Sigui R un anell commutatiu, aleshores Q. (R) és regular si i només
si per qualseva! element a de R existeix un element b € rp(a) tal que a+ b no és
divisor de zero.

DEMOSTRACIO: Suposem que R té classic de quocients regular, aleshores R no
té elements nilpotents i per tant és un anell semiprimer. Sigui a un element de R,
per hipotesi sabem que existeix cd~! tal que acd~'a = a, per tant (ac—d)a = 0.
Sigui b = ac — d, llavors a + b no és divisor de zero ja que si (a + b)s = 0
~ aleshores sa = —sb € aRN rg(a), i per ser R semiprimer sa = —sb = 0. Perd
sb = s(ac — d) = —sd = 0, com que d no és un divisor de zero s = 0.

Suposem ara que per qualsevol element a de R existeix b € rr(a) tal que a+b
no és divisor de zero. Tenim aleshores que (a + b)(a + b) "la = a%(a+b)"! = q,
per tant Q@ (R) és un anell regular. il

Sigui R un anell commutatiu direm que un ideal I de R és essencialment
comptablement generat si existeix un ideal J, J <. I, tal que J és comptablement
generat.

LEMA 4.12. Sigui R ur anell commutatiu, aleshores Q. (R[z]) és regular si i
només si R és semiprimer i tot ideal comptablement generat de R té anul.lador
essencialment comptablement generat.
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DEMOSTRACIO: Suposem que Q. (R[z]) és regular, com a conseqiiéncia R i Rz]
sén semiprimers. Sigui (a;) un ideal comptablement generat de R, considerem
la, série

a(z) = i anx"

n=0

com que Q(R[z]) és regular, pel lema anterior sabem que existeix b(x) €
rriz} (a(z)) tal que a(z)+ b(z) no és un divisor de zero. Sigui b(z) = 3,2 baz™
per la Proposicié 4.2 b, € rr({an}), per tant tenim que (a,) ® (bn) < R i com
que per altra banda (an) ® rr(an) <¢ R concloem que (by,) <e rr({an}).
Suposem ara que R és un anell semiprimer que satisfa que ’anul.lador d’un
ideal comptablement generat és essencialment comptablement generat. Sigui
a(z) € R[z], considerem l'ideal I generat pels coeficients de a(z), a;. Sabem
que existeix un conjunt numerable de b; tal que (b;) <. rr({a;}), sigui b(z) =
Yoo obnz™, aleshores com que R és un anell semiprimer a(z) + b(z) no és
un divisor de zero de R[z]. Per tant pel lema anterior podem concloure que

Qc(R[z]) és un anell regular. i

En particular obtenim el segiient corol.lari.

COROL.LARI 4.13. Sigui R un anell regular commutatiu. Aleshores Q. (R[z])
és regular si i només si Q. (B(R)[z]) ho és. §

Donarem ara un exemple per veure que la condicié de que els anul.ladors
d’ideals comptablement generats siguin essencialment comptablement generats
no implica que els anul.ladors d’ideals comptablement generats siguin comptablement
generats.

LEMA 4.14. Sigui K un cos commutatiu i R = K™, sigui M un ideal maximal
de R que conté K™) la suma directa numerable de K, aleshores M no és
comptablement generat.

DEMOSTRACIO: Considerem B(R) l'algebra de Boole de R. B(R) el podem
identificar amb el conjunt de totes les parts de N, via 'aplicacié que fa correspondre
a cada idempotent el seu suport, és a dir el conjunt de les seves components
diferents de zero. Aleshores per a cada A C N i ideal maximal M tenim que M
conté un idempotent amb suport A o amb suport N\ A.

Sigui ara M un ideal maximal de R que conté la suma directa. Primer veurem
que no pot ser finitament generat. Suposem que fi,...,f. sén idempotents
ortogonals generadors de M. Sigui A; el suport de f;, si considerem A = A;U- - -U
An, tenim que A no pot ser tot N ja que si no 'ideal seria tot R, per altra banda
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el suport de qualsevol idempotent de M ha d’estar contingut dins de A pero aixé
és impossible si M conté la suma directa. Suposem que M és comptablement
generat i que M = £, fiR, per uns certs idempotents ortogonals f; diferents
de zero. Per cada f; sigui A; el seu suport, considerem A = U2, A4y;. A no
pot ser el suport de cap idempotent de M, ja que aquest s’haurla d’escriure
com a combinacié lineal finita de f;, perd pel mateix motiu N\ A tampoc pot
ser el suport de cap element de M. Aixo contradiu el fet de que M pugui ser
comptablement generat. il

EXEMPLE 4.15. Existeix un anell regular commutatiu R tal que els anul. ladors
d’ideals comptablement generats son essencialment comptablement generats pero
no soén tots comptablement generats.

DEMOSTRACIO: Sigui K un cos commutatiu i sigui S = K™ el producte de K
un numerable de vegades. Definim dins de S els idempotents e, com els que
tenen un 1 a la component n-essima i zero a totes les demés. Si considerem
Panell TIS2 €2, S5, podem considerar dins d’aquest anell un ideal maximal M
que contingui la suma directa de ey;, hem provat abans que M no pot ser
comptablement generat dins de II$2,e2;S. Observem que com a ideal de S,
M tampoc és comptablement generat.

Definim ara R com un subanell de S de la segiient manera, R = K®™) 4+
M + K, on K el pensem dins de S com les successions constants. Cal observar
que B3 ,enR <. R, d’aqui podem concloure que tot ideal és essencialment
comptablement generat. Sigui I = &2 ;e2,-1R, aleshores rp(I) = M que no és
comptablement generat. il

4.4. Injectivitat del classic de quocients de 1’anell de series formals.

En el capitol anterior hem vist que la condicié d’injectivitat sobre el classic de
I’anell de polinomis R[z], implica condicions molt restrictives per 'anell R. En
aquesta seccié veurem que la situacié és una mica millor en el cas de ’anell de
series formals sobre un anell commutatiu semiprimer. :

TEOREMA 4.16. Sigui R un anell commutatiu regular autoinjectiu i o un auto-
morfisme de R que deixa fixes els idempotents de R. Aleshores R[z, o] té classxc
de quocients pels dos costats i aquest és regular autoinjectiu.

DEMOSTRACIO: Pel Lema 4.10 I'anell R[z, o] satisfa la condicié d’Ore pels dos
costats, per tant té classic de quocients pels dos costats. La demostracio de que
aquest classic és injectiu la farem en varios passos.

Pas 1. Qu(R[z,a]) és un anell regular. A més per qualsevol a(z) € R[z,c]
podem triar u € Qu(R[z,a]) tal que a{z)ua(z) = a(z) i a(x)u = ua(z) és un
element de B(R).
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Sigui a(z) un elements de R[z,a]. Si a(x) és un no divisor de zero aleshores
el resultat és clar. Suposem doncs que a(z) = Y oo ,z"a, és un divisor de
zero, com que R és regular autoinjectiu rgr(ao,...,an,...) = eR per un cert
idempotent e € B(R). Pel Lema 4.9 v = a(z) + e és un no divisor de zero de
R[z,c]. Tenim aleshores que (a(z) + e)v~la(z) = a(z) = a(z)v~'a(z), per tant
Qu(R[z,a]) és regular.

Sigui u = v~!, aleshores tenim

(1-e)a(z)+eu=1-e=(1-e)alz)u =a(z)u

u(a(z) +e)(1 —e) =1 — e =ua(z)(l —e) = ua(x)
per tant a(z)u = ua(z) € B(R), tal com voliem veure.
Pas 2. Qu(R[z,a]) és autoinjectiu per les dues bandes.

Observem primer que pel Pas 1 R i Qq(R[z,]) tenen els mateixos idem-
potents, en particular els idempotents de Qq(R[z,a]) sén centrals. Per [37,
Corollary 3.9], en aquesta situacid, si demostrem que Q. (R[z, a]) és autoinjectiu
per la dreta també ho sera per 'esquerra. Hem de veure doncs que Q. (R[z, o])
satisfa el criteri de Baer per ideals dreta.

Pel pas anterior podem suposar que tot ideal dreta I de Qu(R[z,a]) esta
generat per idempotents { f;};es de B(R), per tant tenim que tot ideal és bilater.
Considerem l'ideal de R, X;csf;R per ser R regular autoinjectiu, aplicant [37,
Lemma 9.7], aquest ideal conté una familia maximal d’idempotents ortogonals
{ei}ier tal que @icre;R <. Tjesf;R. Com que I esta generat per idempotents
centrals, @;ere:Qu(R[z,a]) <¢ I. Com a conseqiiencia per demostrar que
Qa(R[z,c]) satisfa el criteri de Baer per la dreta podem suposar sense perdre
generalitat que I esta generat per una familia {e;};cs d’idempotents ortogonals
de B(R).

Per altra banda sempre podem suposar que l'ideal I <. Qu(R[z,a]), si no
com que R és regular autoinjectiu rr(ei;cy) = eR per un cert 1dempotent e€eR,
per tant

I' = ®icreiQu(R[z, a]) ® eQa(R[z, o) < Qu(R|z,a]).

Si tenim un morfisme f:I — Qq(R[z,a]) el podem estendre a un morfisme
sobre I’, definint per exemple f(e) = e.

Sigui f I — Qu(R[z, a]) un morfisme de ch(Rﬂx a]])—moduls dreta, aleshores
per cada i € I f(e;) = e;s;(x)ri(z)~! on ri(z) i s;(z) sén elements de Rz, of.
Siguin

fir] — Qa(R[z,of)
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forl — ch(R[[m, a]])

morfismes de Qq(R[z, a])-moduls dreta definits de la segiient manera, fi(e;) =
e;s:(x) i fa(e;) = eri(xz)~!. Aleshores és clar que f és el producte de fi
i fo i que per veure que f ve donada per multiplicacié a l’esquerra per un
element de Q.(R[z,a]), n’hi ha prou en veure que que aixd passa per fi i
f2. Com que I <. Qu(R]z,a]) i f2 és injectiu per veure que aquest ve donat
per multiplicacié a Pesquerra per un element de Q. (R[z,]) n’hi ha prou en
veure-ho per un morfisme definit com f(e;) = e;r;(z). Podem suposar doncs
sense perdre generalitat que el morfisme f: I — Q. (R[z,a]) estd definit com
f(e;) = e;isi(z). Hem de veure que un tal morfisme ve donat per multiplicacié a
’esquerra per un element de Q. (R[z, o]).
Sigui s;(z) = Y 72 2’ s;. Considerem els morfismes de R-mdduls dreta

fi: ®icreiR — R,

que per cada j estan definits per f;(e:) = e,-s;- per qualsevol i € I. Com que
R és autoinjectiu existeix un element s; € R, tal que fj(e;) = sje;. Sigui
s(z) = E;?‘;Oxj s;, aleshores és clar que per qualsevol i € I, f(e;) = s(z)e; tal
com voliem veure. Per tant queda demostrat que Q. (R]z,a]) és autoinjectiu
per la dreta. B

TEOREMA 4.17. Sigui R un anell commutatiu tal que Q. (R) és regular No-
injectiu i Ro-complet, suposem que B(R) = B(Qu(R)) i que a és un automorfisme
de R que deixa fixes els idempotents. Aleshores Q. (R[z,c]) és regular Ro-
injectiu i Ro-complet. '

DEMOSTRACIO: Pel Lema 4.10 anell R[z, o] té classic de quocients pels dos
costats. Com que Q. (R) és No-complet tenim que l'anul.lador d’una familia
numerable d’elements de R esta generat per un idempotent, per tant pel Lema
4.9 si a(r) € Rz, o] existeix un idempotent e de R tal que a(z) + e no és divisor
de zero. Aix0 ens permet concloure, igual que al Pas 1 del Teorema 4.16 que
Qa(R[z,c]) és un anell regular i que tot ideal es pot generar per idempotents
de R. D’aixd és clar que Qu(R[z, a]) és un anell Ro-complet.

Si I és un ideal comptablement generat de Q. (R[z,]), per les remarques
anteriors, podem suposar que esta generat per una familia numerable d’idempo-
tents que per [37, Proposicié 2.14] és poden agafar ortogonals. Per demostrar que
R satisfa el criteri de Baer per ideals comptablement generats, com que ’anul.la-
dor d’una familia numerable d’elements de R estd generat per un idempotent
sempre podem suposar que 'ideal és fidel.
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Sigui I un ideal fidel de Q.;(R[r, o) generat per una familia numerable {e;} 2,
d’idempotents ortogonals. Considerem un morfisme de Q. (R[z,a]) moduls
dreta f:I — Qu(R[z,]), hem de veure que f ve donat per multiplicacié a
Pesquerra per un element de Q. (R[z,a]). Com al Teorema 4.16 n’hi ha prou en
demostrar-ho quan f és de la forma f(e;) = e;si(z), per elements s;(z) € R[z, a].
Ara procedint igual que en el Teorema esmentat i fent us de que Q. (R) és Ro-
injectiu, és facil veure que f ve donada per multiplicacié a ’esquerra per un
element s(z) de Qu(R)[z,a]. Perd aquest element és també de Qu(R[z, c]), ja
que 7(z) = Y oo, z"€n N0 és divisor de zero a R[z, ] i s(z)r(z) € Rlz,a]. Per
tant Qu(R[z, a]) és No-injectiu. B

En particular tenim que si R té classic de quocients regular autoinjectiu i
B(R) = B(Q.(R)) aleshores Q. (R[x]) és No-injectiu. Aquest resultat no es pot
millorar, tal com prova el segiient exemple.

EXEMPLE 4.18. Existeix un anell commutatiu R tal que Qn(R) és un anell
regular autoinjectiu, perd Q. (R[z]) és regular Ro-injectiu i no autoinjectiu.

DEMOSTRACI): Sigui X un cardinal més gran que Ry, I un conjunt de cardinalitat
R. Consideremn: 'anell R format per les successions (a;);cs de numeros racionals
amb a; € Z llevat pot ser d’un nombre finit.

Es clar que Panell classic de quocients de R és @, per tant R té classic de
quocients regular injectiu. També és clar que tots els idempotents del classic
de R estan dins de ’anell R. Tenim doncs que pel teorema anterior Q. (R[z])
és No-injectiu. Per altra banda és clar que R[z] <. Qu(R)[z] i com que pel
Teorema 4.16 Q. (Q.(R)[z]) és injectiu, el maximal de quocients de R[z] és
Qu(Qa(R)[z]). Anem a veure que aquest anell no coincideix amb el classic de
quocients de R[z]. Siguin {a,}32, una successié d’elements diferents de zero de
Z tals que N,>0anZ = 0. Per n > 0 definim un element ¢,, de Q/, com I’element

tal que cada component val f=2—. Considerem ara I’element de Qu(Qa(R)[z]),
J 0

q(z) = Y o2 o qnz™. Aquest element no és de Q. (R[z]), ja que si ho fos existiria
un no divisor de zero b(z) € R[z] tal que b(z)q(z) € R[z]. Es facil veure ara
que no existeix un tal element b(z). Per tant podem concloure que Q. (R[z]) no
és injectiu. il

4.5. Construccié d’anells FPF amb anells de séries formals.
En aquesta seccid caracteritzarem els anells de series formals sobre anells com-

mutatius que s6n FPF. També donarem una construccié d’un subanell de les
series formals que és FPF.
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LEMA 4.19. Sigui R C S una extensié d’anells commutatius tal que B(R) =
B(S) i S és regular. Aleshores si I és un ideal de R generat per idempotents
existeix un ideal J de R generat per idempotents ortogonals tal que J <. I.

DEMOSTRACIO: Sigui I un ideal de R generat per idempotents. Primer veurem
que existeixen families d’idempotents ortogonals maximals dins de I. Sigui Fy C
Fy C ... una cadena de families d’idempotents ortogonals dins de I. Aleshores
UF; és clarament una familia d’idempotents ortogonals dins de I. Per tant
aplicant el Lema de Zorn podem concloure que existeixen families maximals
d’idempotents ortogonals dins de I.

Sigui {fk}rex una d’aquestes families maximals d’idempotents ortogonals.
Volem veure ara que @xek fi R <. I. Suposem que existeix un element r € I tal
que TRN(Prek frR) = 0. Com que S és un anell regular existeix un idempotent
e tal que rS = €S, de tal manera que {fi,e} és una familia d’idempotents
ortogonals dins de S. Tenim que e = rs € R i com que 7 és un element de l'ideal
I que esta generat per idempotents, r = e;ry + - - - + €,75, On €; s6n idempotents
de I, al ser només un nombre finit podem suposar a més que sén ortogonals.
Tenim doncs '

e=(e1+---+ten)eir1+ -+ enn)s

podem ara concloure que e és un element de I, pero aix0 ara contradiu la
maximalitat de la familia {fx}rex. Per tant ®rek fkR <. I tal com voliem
veure. i

PrOPOSICIO 4.20. Sigui R un anell commutatiu. Si X és un conjunt no buit
R[X] és FPF si i només si X = {z} i R és un anell regular autoinjectiu.

DEMOSTRACIO: Suposem que R[X] és FPF. Escollim un element z € X, pel
Lema 1.8 per qualsevol a € R[X \ {z}] l'ideal I = aR[X] + zR[X] és projectiu,
fent un raonament analeg al Lema 3.26 podem veure que R[X \ {z}] és regular.
En conseqiitncia X = {z} i R és un anell regular. Com que R[z] és ara un anell
commutatiu F'PF semiprimer, pel Teorema 1.15 tenim que és semihereditari.
Si apliquem el Teorema 4.7 obtenim que R és un anell regular Np-injectiu i No-
complet. Demostrarem ara que de fet R és autoinjectiu.

Sigui I un ideal de R, com que R és un anell regular I estad generat per
idempotents. Com que R[z] és FPF i semiprimer, B(Q.(R[z])) = B(R[z]) =
B(R) aplicant el Lema 4.19 podem concloure que I conté un ideal essencial
generat per idempotents ortogonals. Per demostrar que R és injectiu podem
doncs considerar sense perdre generalitat que I és un ideal generat per idempotents
ortogonals {ex }kek- Com que g, (r[z)) = €Qct(R[z]) considerant I'ideal I®eR
podem suposar a més que l'ideal és essencial a R.
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Sigui f:I — R un morfisme de R-moduls tal que per qualsevol k € K,
flex) = exak, ar € R. Aquest morfisme és pot estendre a f: IR[z] — R[z],
com que Qq(R[z]) és autoinjectiu i per tant injectiu com a R[z]-modul, tenim
que existeix un element %% € Qu(R[z]) tal que per qualsevol k € K f(ex) =

%ek. Pel Lema 4.8 podem suposar que r(z) = > oo fnz”, on els elements f,
sén idempotents ortogonals. Com que r(x) ha de ser un no divisor de zero, pel
Lema 4.9 @3, foR <. R. Sigui s(z) = Y oo Snz™, aleshores per qualsevol n i
per qualsevol & tenim '

Snek = frekar = fnf(fnek)

Per cada n > 0 considerem, I,, = @rex frnexR < I, I, <. foR i sobre I, f
ve donat per multiplicacié per s,. Sigui J = &2, f, R, definim un morfisme
g:J — R tal que g(fn) = snfn com que R és Np-injectiu i J és comptablement
generat existeix un element s € R tal que g(f) = sfn. Pero els morfismes fig
coincideixen sobre I N J <, I per tant f també ve donat per multiplicacié per
s. Per tant R és autoinjectiu tal com voliem veure.

Suposem ara que R és un anell regular autoinjectiu, volem veure que R[z] és
FPF. Com que pel Teorema 4.7 R[z] és un anell de de Bezout i semihereditari,
pel Teorema 4.16 té classic de quocients injectiu. Aleshores pel Teorema 1.15
podem concloure que Rfz] és FPF. 1

PROPOSICIO 4.21. Sigui A un anell commutatiu de Bezout amb classic de quo-
cients regular injectiu, tal que B(A) = B(Q.(A)). Sigui o un automorfisme de
A que deixa fixes els idempotents. Aleshores I'anell R = A + 2Q.(A[z,e]) és
un anell de Bezout FPF.

DEMOSTRACIO: Com que R és un anell semiprimer, per veure que és FPF n’hi
ha prou en coraprovar que satisfa les condicions (A), (B) i (C) del Teorema 1.16.
Es clar que @ . (R) existeix i és Qu(Q(A)[z,a]). També és clar que R és un
anell acotat, perquée pel Lema 4.8 per qualsevol element a € R existeix una
unitat u(z) € Qu(A)[z, o], tal que azu(z) = e(z), e(z) = Y oo g z™en amb {e,}
una familia d’idempotents ortogonals de A. Si veiem que R és de Bezout pels
dos costats, aleshores també és clar que els ideals, per la dreta o per ’esquerra,
finitament generats fidels sén generadors.

No és dificil comprovar que R és un anell de Bezout fent us de que A ho és i
la descomposicié dels elements de Qci(A)[z, @] del Lema 4.8. 1

4.6. Anells de series formals de longitud arbitraria.

En I’Exemple 4.18 hem vist que si un anell commutatiu té anell classic de
quocients injectiu, aleshores ’anell de series formals no hereta en general aquesta
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propietat. Veient la demostracié del Teorema 4.17 sembla que el principal
problema esta en que les séries no sén prou ’llargues’, nomes tenen longitud
numerable. En aquesta seccié veurem que almenys per anells de Baer commu-
tatius aquest és efectivament el problema. Donarem una construccié d’anells de
séries de longitud arbitraria perd prefixada i veurem que si un anell commutatiu
de Baer R té clissic injectiu i les sumes directes d’ideals de R tenen com a molt
cardinalitat R, aleshores les series formals de longitud més gran o igual que R
sobre R també tenen classic de quocients injectiu.

En la literatura ja és troben anells de séries formals de longitud arbitraria
prefixada, potser la primera construccié d’aquests anells és deguda a Malcev
i Neumann, que els fan servir per posar algebres associatives lliures dins de
cossos, el lector pot consultar {67, pag. 601] o també a [16, pag. 276]. Passarem
a descriure breument la construccid, els detalls que falten es poden trobar a les
referencies anteriors.

Sigui G un grup commutatiu ordenat tal que el seu con positiu P = {g €
G| | g > 0}, és ben ordenat. Sigui R un anell, considerem el conjunt S de les

aplicacions,
Pu{0} — R.

Aleshores tot element de S es pot escriure formalment com
TgePui0)agT?

Podem dotar a S d’una estructura d’anell definint la suma component a compo-
nent i agafant com a producte el producte de convolucié. Es a dir si a i b sén

elements de S,
a= Z agz?
gePU{0}

aleshores

on

aquest producte esta ben definit per que P és un conjunt ben ordenat, cf.[67,pag
598 Lemma 2.9].
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Per tant S és un anell que denotarem com R[P].

Analogamert com hem fet al Lema 4.2, es pot provar també en aquest cas un
resultat similar.

LEMA 4.22. Sigui R un anell commutatiu semiprimer, a i b dos elements de
R[P]. Aleshores ab = 0 si i només si tots els coeficients de a sén anul.lats per
tots els coeficients de b. i

Una conseqliéncia directa d’aixo és el segiient Lema.

LEMA 4.23. Sigui R un anell de Baer commutatiu, aleshores I'anell classic de
quocients de R[P] és regular i tot ideal d’aquest clissic es pot generar per
idempotents de R.

DEMOSTRACIO: Sigui a un element de R[P], aleshores pel Lema anterior i com
que l'anell R és de Baer I'anul.lador de a a R[P] és generat per un idempotent e
de R, per tant I’element a + e no és divisor de zero dins de R[P], pel Lema 4.11
podem concloure que R[P)] té classic de quocients regular. Per altra banda
(1—e){a+e)(a+e) P =1-e=(1-e)ala+e)! per tant tot ideal del classic
de R[P] el podem generar amb idempotents de R. il

Seguint amb la notacié introduida en aquesta seccié podem enunciar,

TEOREMA 4.24. Sigui R un anell commutatiu de Baer i sigui X un cardinal
més gran que el cardinal de la suma directa més llarga dins de R, sigui P de
cardinalitat igual a R. Aleshores R[P] té classic de quocients injectiu.

DEMOSTRACIO: Sigui J un ideal del classic de quocients de R[P], pel Lema
anterior podem suposar que J estd generat per idempotents de R. Com que
R és de Baer podem suposar a més que aquest ideal és essencial a Qu(R[P]).
Pel Lema 4.19 J conté un ideal essencial generat per una familia d’idempotents
ortogonals. Per demostrar la injectivitat podem suposar sense perdre generalitat
que J és un ideal essencial a Q. (R[P]) generat per una familia d’idempotents
ortogonals exre. Sigui
f:J — R[P]

un morfisme de R[P]-moduls, tal que per qualsevol k € K f(ex) = exax on
ar € R[P]. Si considerem el sistema d’equacions bex = exak, aquest té solucié
per b € Qu(Qmaz(R)[P]), si trobem un no divisor de zero ¢ de R[P] tal que
bc € R[P], podrem concloure que b és també un element del classic de R[P].
Per hipotesi existeix una aplicacié injectiva j: K — P, sigui ¢ = Zerzi(®,
pel lema 4.22 ¢ no és divisor de zero de R[P] i bc és un element de R[P]. Per
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tant podem dir que ’anell classic de R[P] és injectiu com a R[P]-modul i en
conseqiiencia €s autoinjectiu. il

Sigui R un anell que satisfa les hipétesis del teorema anterior i S el subanell
de R[P], format pels elements amb trasportador essencial a R[z]. Aleshores és
facil veure que S té classic de quocients injectiu i que R[z]<.Q(S). Per tant,
seguint aquesta notacid, tenim el segiient corol.lari,

COROL.LARI 4.25. Q.(S) és el maximal de quocients de R|x]. §



Capitol 5.
Anells de series formals que sén anells

de Bezout o semihereditaris

5.1. Anells de séries formals sobre anells regulars Ng-injectius.

A [10] Brewer, Rutter i Watkins varen provar que si R és un anell commutatiu
regular, aleshores R[z] és un anell de Bezout si i només si R és Np-injectiu. La
demostracié d’aquest resultat també es pot trobar a [9, pag. 54].

En aquesta seccié denarem una extensié parcial d’aquest resultat al cas no
commutatiu. De fet, demostrarem que si R és un anell regular No-injectiu per
Pesquerra aleshores R[z] és un anell de Bezout per la dreta. La demostracié en
el cas commutatiu utilitza que si R és un anell regular No-injectiu i a(z) és un
element de R[z] aleshores I'ideal a(z) R[z] es pot generar per un element s(z) tal
que els seus coeficients formen una familia d’idempotents ortogonals, cf. Lema
4.8. Per R no commutatiu el que farem serd també trobar generadors especials
pels ideals principals. :

Sigui:
E = {e(:z:) € Rlz] |e(z) = e+ i(l —e)anex”,on
n=1

e=e’cR,a, € Rn=12...}

Volem remarcar els segiients fets sobre E.
LEMA 5.1.

(1) E és un conjunt d’idempotents de R[z].
(2) Sie(z) € Eis(z) =) orysnz™ € Rz], aleshores e(z)s(z) = 0 si i només
sies, =0, pertotn=0,1,...

DEMOSTRACIO: Per demostrar (1) i (2) sols cal observar que

e(x) =e+ i(l —e)anex™ = (1 + i(l - e)anex"> e (1 - i(l - e)anex")
n=1 n=1

n=1

1

=ueu =ue. §

80
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LEMA 5.2. Sigui R un anell regular i a(z) un element de R[z]. Aleshores
a(z)R[z] = e(z)R[z] + za’(z)R[z], on:

(i) e(z) € E

(ii) e(z)d'(z) =0

(iii) Lr(a(z)) € lr(e(z)) ilr(a(z)) € lr(d'(z)).
DEMOSTRACIO: Si a(z) té terme de grau zero igual a zero, aleshores el lema és
trivial. Suposem doncs que ‘

a(z) = ap + za(z)

on ag # 01 a(zx) € R[z].
Com que R és regular existeix un element t € R tal que agtag = ag. Per tant
aot = e i tag = f sén dos idempotents de R. Tenim aleshores que

a(z)Rlz] = a(z) fRlz] + a(z)(1 - )Rlz] =
= o(z)fRlz] + za(z)(1 - f)Rlz]

Per altra banda:

a(z)fRlz]) = (ea(z) f + (1 - e)a(z) fz) R]z] =
= (ea(z)f + (1 — e)a(z) fz) teR[x]
Perd eagp fte =: e, per tant ea(z)fte és una unitat de eR[z]e, diem-li eu(z)le.

Aleshores l’element eu(z)e + (1 — €) és una unitat de R[x]. Per tant podem
concloure que

a(z)fR[z] = e(z)R[z]

on
e(x) =e+ ) (1-e)bnez™ = (ea(z)f + (1 - e)a(z)f) te (eu(z)e + (1 — €)) ()
n=1

per tant tenim que e(z) € E.
L’ideal inicial el podrem descompondre com,

a(z)R[z] = e(z)R[z] + za(z)(1 - f)R[z] =
= e(z)R[z] + z(1 - e(z))a(z)(1 - f)R[z]

Si agafem a'(z) = (1 — e(z))a(z)(1 — f) ja tenim la descomposicié que voliem.

Es obvi que aquesta descomposicié satisfa les propietats (i) i (ii) que dema-
navem. Per concloure la demostracié n’hi ha prou en demostrar que lg(a(z)) C
lr(e(z)). Sir € lp(a{z)) aleshores re =0 i per tant (1 — ) = r. A la vista de
la definicié (*) de e(z) és clar que re(z) =0. I
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LEMA 5.3. Sigui R un anell regular i a(z) € R[z]. Aleshores per tot n > 0

[ n
a(z)R[z] = (Z_e,—(x)xi> R[z] + o/ (z)z" "' R[z]
i=0
on
(i)Per tot 0 < i< n, e zx)€ E.
(ii) e;(z)ej(x) = O per qualssevoln > j > 1 >0
(iii) Per tot 0 < i < n, e;(z)a’'(z) =0.
DEMOSTRACIO: Farem la demostracié per induccié sobre n. En el lema anterior

hem demostrat el cas n = 0. Suposem doncs que n > 1, i que ho tenim demostrat
fins n — 1. Aleshores tenim

n—1

a(z)R[z] = (Z €; (x)x’) R]z] + a(z)z™ R[z]
i=0

i aquesta descomposicié satisfa les condicions (i), (ii) i (iii). Si apliquem el lema

anterior a a(x) tenim:

a(z)z"R[z] = en(z)z"R[z] + o/ (z)z" T R[z]

amb e,(z) € E, e,(z) - d'(x) = 01 lp(a(z)) = lr(en(z)) N lg(a(z)). Com
que e;(z)a(x) = 0 per 0 < i < n -1, pel lema 5.1 (2) aixd passa si i només
si e;a(x) = 0 on e; = €2 € R és el terme de grau zero de e;(z). Per tant

ei(z)en(z) =01iei(x)a’'(z) =0. B

PRrROPOSICIO 5.4. Sigui R un anell regular Ng-injectiu per Pesquerra i a(z) €
R[z]. Aleshores per tot n > 0, existeixen e,(z) € E tals que

z)R[z] = (Z en(z)T ) R[z]
n=0
amb
(1) en(z)em(z) = 0 per n < m.
(2) en(z)z™ € a(z)R[x].

DEMOSTRACIO: Agafem com e,(z) els idempotents donats pel lema anterior.
Aleshores és clar que compleixen que e, (z)em(z) = 0 si n < m. Falta veure que
a(z)Rlz] = (X2, ea(z)z™) Rla].

Per6 demostrar aquesta igualtat equival a solucionar sistemes numerables
d’equacions lineals sobre R que, pel lema anterior sén finitament resolubles.
Com que R és Np-injectiu per 'esquerra és Np-algebraicament compacte per la
dreta (Proposici6 4.4), per tant els sistemes tenen solucid.

El fet que a,(z)z™ € a(z)R[z], també es conseqiiencia del Lema 5.3. §
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COROL.LARI 5.5. Si R és un anell regular Rg-injectiu aleshores’

a(z)R]z] = “(Z enz™)R[z]

n=0
on:

(1) u és una unitat de R[z],
(2) en=€2€R
3) en-em=0sin<m.

DEMOSTRACIO: Per la proposicié anterior-sabem que

a(z)R[z] = (Z en(z)z"™ )R[[x]]
n=0

on e (z) € E i e (x)em(z) = 0si n < m. Per cada n > 0 sigui e, el terme de
grau zero de e, (z). Com que ex(z)em(z) = 0si n < m tenim que Y penR =
2 senR. Percadan, e (z) =en+)Y .0;(1—en)ale,z*. Considerem la familia

d aphcacmns
f i ®?=06nR E— R
€én — (1 —ep)alen

Per ser R Ro-injectiu, existeixen elements b; tals que fi(e,) = bien, = (1—en)alen.
Sigui
o0
u=1+ Z AL
n=1

aleshores u(Y oo g €n™) = Y ooy €n(z)z™, tal com voliem veure. Wl

TEOREMA 5.6. Sigui R un anell regular No-injectiu per I'esquerra. Aleshores
R[z] és un anell de Bezout per la dreta.

DEMOSTRACIO: Siguin a(z) i b(z) dos elements de R[z], volem veure que 'ideal
dreta a(z)R[z] + b(z)R[z] és principal. Pel Lema 5.2

a(z)R[z] = eo(z)R[z] + za(z) R[zx]

amb ep(z) € E i ep(z)a{z) = 0. Ara b(z) = eo(z)b(z) + (1 — eo(x))b(z) com
que eo(z)b(z) € a(z)R[z], podem suposar que eg(z)b(z) = 0. Perd eo(z) =
eo + Yoy (1 — eg)aleox?, per tant eg(z)b(z) = 0 si i només si epb(z) = 0. Una
altra vegada pel Lema 5.2, tenim que

b(z)R[z] = fo(z)R[z] + zb(z) R[x] |
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on fo(z) € E, fob(z) = 0 i eo() fo(x) = eo(2)b(z) = 0. Sigui fo(z) = fo(z)(1 -
eo(z)), és clar que fo(z)R[z] = fo(z)R[z] i que eo(z)fo(z) = fo(x)eo(z) = 0.
Definim a’(z) = (1 — fo(z))a(z) i ¥'(z) = (1 — fo(z))a(z). Aleshores tenim

a(z)R[z] + b(z)R[z] = (eo(z) + fo(z)) R[z] + o' (z)R[z] + b'(x)R[z]
amb |
eo()- fo(z) = fo(z)eo(x) = 01 (eo(x) + fo(x)) a’(z) = (eo(z) + folz)) b/ (z) = 0.

Per la definicié de fo(z), si eg(z)c(z) = 0 aleshores fo(x)c(x) = O si i només si
fo(z)e(z) = 0. Com que tant eg(x) com fo(x) sén elements de E aixd ens permet
traduir la condicié de que c(z) sigui anul.lat per ep(z) i fo(z) en termes de
lr(c(z)). Per la construccié dels elements eo(z), fo(z) a’(z) i b’(z) i el Lema 5.2
tenim que

tr(a(z)) NiR(b(x)) € lr (eo(z) + fo(z)) Nlr(a'(z)) N IR (z))

Aquests fets ens deixen en condicions d’aplicar el Lema 5.2 tantes vegades com
vulguem. Per tant, tal com hem fet al Lema 5.3, tindrem que per qualsevol n > 0
'ideal el podem descompondre en:

oo

a(z)R[z]+b(z)Rz] = Z (ei(x) + fi(z)) 2 Rlz]+z""! (a'(z) R[z] + b (z)R[z])

i=0
on

(1) ei(z) € Eiej(z)ei(x) =0perj<i

(2) ei(z)fi(z) = fi(z)ei(z) = 0 per qualsevol 1, j

(3) fi(z)fi(z) =0perj<i

(4) (ei(z) + fi(z))a'(z) = (es(z) + fi(z))b'(z) = O per qualsevol i < n.

Cal observar que el procés de trobar nous idempotents e,(z) + f.(z), es
fa només a través dels termes residuals a’(z)R[z] i b'(z)R[z]. Per tant els

idempotents que ja tinguem determinats no canvien a ’aplicar el procés a termes
de grau més gran. Podem doncs considerar ’element

o0

d(a:)l= > (en(x) + falz)) =™

n=0

Llavors és clar que a(z) R[z]+b(z) R[z] = d(z)R][z], ja que aixd equivai a resoldre
uns sistemes numerables d’equacions lineals per la dreta que tal com acabem de
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demostrar, sén finitament resolubles. Com que R és Np-injectiu per l'esquerra
podem concloure per la Proposicié 4. 4 que sén resolubles. B

Sigui R C S una extensié d’anells. Es diu que R és idealment tancat dins de S
per la dreta, si per qualsevol ideal per la dreta I de R es satisfa que ISNR = 1.

Els anells regulars Rg-injectiu per ’esquerra tenen una caracteritzaci6 en termes
d’anells de séries formals i del concepte d’idealment tancat, tal com prova el
seglient resultat. Cal remarcar que aquest resultat és, una vegada més, una
extensié de resultats que es donen en el cas commutatiu a [10].

ProposiCIO 5.7. Sigui R un anell regular. Aleshores les segiients afirmacions
sén equivalents:

(1) R és No-injectiu per 'esquerra

(2) Si R C S és una extensié d’anells, aleshores R[z] és idealment tancat per
la dreta dins de S[z].

(3) R[z] és idealment tancat per la dreta dins de Q" (R)[z].

Abans de demostrar la proposicié veurem un parell de lemes molt facils i ben
coneguts.

LEMA 5.8. Sigui R C S una extensié d’anells i suposem que R és un anell
regular. Sigui A € M,xm(R) i B € M,x1(R), aleshores si el sistema d’equacions
AX = B té solucié a S també en té a R.

DEMOSTRACIO: Sense perdre generalitat podem suposar que A és una matriu
de M,(R). Com que les matrius sobre un anell regular sén també regulars, cf.
[37, Theorem 1.7] existeix C € M,,(R) tal que ACA = A. Per tant el sistema té
solucié a R si i només si CAX = CB té solucié. Pero CACAX = CAX =CB

per tant si X és una solucié dins de S, CAX és una soluci6 dins de R. N

LEMA 5.9. Sigui R un anell regular i I un ideal comptablement generat per R.
Aleshores I = &{2,e,R on {e,} formen una familia d’idempotents ortogonals de
R S

DEMOSTRACIO: Veure [37, Proposition 2.14].

DEMOSTRACIO PROPOSICIO: (1) = (2) Sigui I un ideal de R[z], aleshores és
sempre cert que IS[z] N R[z] 2 I. Suposem doncs que a(z) € IS[z] N R[z].
Com que R[z] és un anell de Bezout (Teorema 5.6) tenim que existeix b(z) € I
i s(z) € S[z] tals que b(z)s(z) = a(z). Igualant els coeficients dels dos costats
de la igualtat obtenim un sistema d’equacions numerable a coeficients a R que
té solucié dins de S. Pel lema 5.8 tenim que el sistema és finitament resoluble
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dins de R. Com que R és Np-injectiu per ’esquerra el sistema és resoluble dins
de R (Proposici6 4.4). Per tant a(z) € I.

(3) = (1) Sigui I un ideal per 'esquerra comptablement generat de R. Podem
- suposar pel lema 5.9 que I = &2 ¢enR on {e,} és una familia d’idempotents
ortogonals. Sigui f:I — R un morfisme de R-modduls esquerra. Considerem
'ideal (3.2 enz™)R[z]. Com que R[z] és idealment tancat per la dreta dins
de Q... (R)[z], existeix a(z) € R[z] tal que (3 o genz™alz) = Y oop fle:)zt.
Sigui ay el terrue de grau zero de a(x), com que els e;’s sén idempotents ortogonals
tenim que per qualsevol n, e,ap = f(e,). En conseqiiencia f ve donada per
multiplicacié  la dreta per ag per tant, R és RNp-injectiu per ’esquerra. W

5.2. Anells de séries formals que sén anells de Bezout.

Aquesta seccié estd dedicada a considerar quan és cert el reciproc del Teorema
5.6. En general és fals, perque si R és un anell que satisfa R@ R = R com
a R-modul dreta, aleshores al fer producte tensorial per I'anell R[z] obtenim
R[z] ® R[z] = R]z], en particular tenim que R[z] és de Bezout per la dreta
sense que R sigui ni regular ni Np-injectiu. Per a evitar aquesta situacié hem
d’imposar alguna condicié sobre R.

Direm que un anell R és directament finit si per qualssevol elements a i b de
R tals que ab = 1 aleshores ba = 1.

Que un anell R sigui directament finit és equivalent a que R no sigui isomorf
a un sumand directe propi d’ell mateix.

ProprosICIO 5.10. Sigui R un anell directament finit tal que R[z] és de Bezout
per la dreta. Aleshores I'anell de séries de Laurent R((x)), és també directament
finit. :

DEMOSTRACIO: Per veure que R((z)) és directament finit demostrarem fent
inducci6 sobre n que si a(z) i b(z) sén dos elements de R[z] tals que a(z)b(z) =
z™ aleshores també b(z)a(z) = ™. Observi’s que aixo és suficient per a demostrar
la Proposicié.

El cas n = 0 és clar ja que si a(z)b(z) = 1, els termes de grau zero de a(z) i
b(z), ao i bp respectivament, satisfan apbp = 1. Com que l'anell és directament
finit també tindrem que bpag = 1 i per tant b(z)a(z) = 1.

Suposem doncs que n > 0 i que ho hem demostrat fins n — 1. Tenim ara que
a(z)b(z) = z™, on

a(z) = ianx" i b(z) = f: bpx™
n=0

n=0
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Podem suposar que els termes de grau zero ag i by, sén diferents de zero ja
que si no ens podriem reduir a un cas anterior de la induccié. Per la relacié
a(z)b(x) = z™ tenim que

(5.1) i Zn:aibn_i =1

1=0
Considerem l'ideal b(z)R[z] + z"R[z]. Per ser R]z] de Bezout per la dreta
existeixen a(z), 8(z),d(z), b (z) i a’(z) elements de R[z] tals que

(5.2) b(z)a(z) + z™B(z) = d(z)
(5.3) d(z)b'(z) = b(x)
(5.4) d(z)d'(z) = z"

Si multipliquem (5.2) a I'esquerra per a(z) obtenim z™a(x) + a(z)z"f(x) =
a(z)d(z) per tant si d(z) = > ooy dnz™, tenim la relacié

n=0
do ... dn—
(5.5) (@0, ... @n-1) | ° -, : = (0,...,0)
' 0o ... do
Per altra banda si b/'(z) = Y oo bl,z™, tenim per la identitat (5.3)

(do dn) bl, (bn)
0 ... do/ \ ¥} bo

Si substituim aquesta identitat dins de (5.1) obtenim

do ... dp bl,
(ao,...,an)<s ) | =1
0 ... do by

si ara apliquem (5.5) tenim que

dnbo
(ao,...,an)( : )=1,
dobo

per tant existeix ¢ € R tal que c¢bf = 1. Com que R és directament finit podem
concloure que b i per tant b’(z) sén invertibles. Aplicant ara les igualtats (5.3)
i (5.4) tenim que b(z)(b'(z))~'d’(z) = d(z)d’(z) = =™, i per tant b(x)a(z) = =™,
tal com voliem veure. il
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LEMA 5.11. Sigui R un anell directament finit tal que R[z] és de Bezout per
la dreta. Aleshores R és un anell regular.

DEMOSTRACIO: Sigui a un element de R i considerem l'ideal dreta de R[z]
generat per a i z. Per ser R[z] de Bezout per la dreta existeixen a(z), 8(z),
d(z), a’(z) i s(z) elements de R[z] tals que

(5.6) ' ac(z) + z8(zx) = d(x)
(5.7) d(z)d'(z) = a
(5.8) d(z)s(z) =z

De la igualtat (5.8) i aplicant la proposicié anterior podem concloure que d(z)
és un no divisor de zero. De les igualtats (5.7) i (5.8) obtenim que d(z)(a’(z)z —
s(z)a) = 0, per tant a’(z)z = s(z)a. Deduim doncs que a’(z) € R[z]a i en
particular que aj € Ra.

Del terme de grau zero de la igualtat (5.6) obtenim que dp € aR. Finalment
del terme de grau zero de la igualtat (5.7) tenim que a = dpaj € aRa. Per tant
podem concloure que R és regular. i

El nostre decsig seria demostrar ara que si R és directament finit i R[z] és
un anell de Bezout per la dreta aleshores R a més de ser regular és Rg-injectiu
per I’esquerra. No sabem si aquest resultat és cert en general, i ens haurem de
conformar amb donar resultats parcials en aquesta direccié.

Si R és un anell regular i I és un ideal per l’esquerra de R comptablement
generat, és ben conegut que I = &S yRe,, on {e,} és una familia d’idempotents
ortogonals de R, cf. Lema 5.9. Sigui f:I — R un morfisme de R-moduls per
I’esquerra i considerem les series

e(r) = Z enz™ i flx) = Z flen)x™

n=0 n=0

Si suposem que R[z] és de Bezout per la dreta, tenim que existeixen o, 3,a i b
elements de R[z] tals que

e(z)a+ f(z)B = d(z)
d(z)a = e(x)
d(z)b = f(z).

Fent servir la ortogonalitat dels e,, és facil veure que podem suposar que «, 3, a
i b son elements de R.
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Considerem l'ideal per l'esquerra de R, J = Y2  R(ena + f(e,)B) i el
morfisme de R-moduls esquerra

g: I — J
en +— epa+ f(en)B’

Aleshores és ciar que g és bijectiu i que 'invers de g ve donat per multiplicacié
a la dreta per a. Si g també vingués donat per multiplicacié a la dreta per un
cert element r, tindriem que

e(z)rb = f(z)
i Panell seria Ng-injectiu per 'esquerra. Hem vist doncs el seglient fet.

LEMA 5.12. Sigui R un anell regular tal que R[z] és un anell de Bezout per
la. dreta. Aleshores R és Ny-injectiu si i només si per qualsevol parella d’ideals
esquerra comptablement generats I,J i un isomorfisme f:I — J de R-modduls
esquerra que ve donat per multiplicacié per un element de R, aleshores I'invers
també ve donat per multiplicacié per un element de R. 1

LEMA 5.13. (P. Ara) Sigui R un anell regular gl , pJ dos ideals per I'esquerra
de R i f:I — J un morfisme bijectiu que ve donat per multiplicacio a I’esquerra
per un element a.

(1) Si Pinvers de f ve donat també per multiplicacié a I’esquerra per un
element de R, aleshores existeix p K ideal principal de R tal que I C K i
lr(z)N K =0.

(2) Si R és directament finit i existeix pK principal tal que I C K ilp(a) N
K =0, aleshores I'invers de f ve donat per multiplicacié a I’esquerra per
un elen:ent de R. '

DEMOSTRACIO: (1) Suposem que existeix un element b de R tal que zab = z
per tot z € I. Agafem K = (Ip(ab— (ab)?) ab que és un ideal principal esquerra.

Aleshores I C K, ja que si z € I tenim = = zab i per tant z(ab — (ab)?) = 0,
d’aqui que z € K. També es compleix que l{(a) N K =0, ja que sit € K Nl(a)
aleshores t = sab amb s € l(ab — (ab)?). Tenim 0 = ta = saba i per tant
0 = s(ab)? = s(ab) =t.

(2) Sigui f un idempotent tal que K = Rf i l{a) C R(1 — f), aleshores Rf =
Rfa. Sigui g = ¢° tal que Rfa = Ry, sigui ¢ € Ry tal que cfa =g i h = acg.
Observem que h = h? i que Rh = Rf. Com que Rh C Rf i R és directament
finit aleshores Rh = Rf. Per tant f = fh = facf. Sigui b = c¢f. Tenim ara
que per qualsevol z € I £ = zf = rfab. Per tant xab = z per qualsevol z € I.
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Si y € Ia aleshores y € Rfa = Rg i per tant yba = ycfa = yg = y. Podem
concloure doncs que b és I'element que buscavem. §

Podem ara enunciar un reciproc parcial al Teorema, 5.6.

PRroPOSICIO 5.14. Sigui R un anell directament finit. Aleshores les segiients
afirmacions sén equivalents

(1) R és un anell regular Rg-injectiu per Pesquerra.
(2) (i) R[z] és un anell de Bezout per la dreta.
(ii) Si I és un ideal esquerra de R comptablement generat i e = €2 € R
és tal que I N Re = 0. Aleshores la projeccié natural

p:I & Re — Re
ve donada per multiplicacié a la dreta per un element de R.

DEMOSTRACIO: Sols ens falta demostrar que (2) = (1). Sabem que R ha de ser
regular pel lema 5.11. Si I és un ideal esquerra comptablement generat tal que
multiplicacié a la dreta per un element a € R és injectiva, aleshores INi(a) = 0.
Perd l(a) = Re per un cert € = €2 € R. Aleshores per hipotesi existeix ¢ € R tal
que Ic=01ec=-e. Sigui K = R(1 — ce), aleshores és clar que I C K.

Sigui (1 — ce) € K N Re, aleshores 0 = r(1 — ce)a = ra per tant r(1 — ce) =
re(l — ce) = 0. Ara podem concloure doncs aplicant els lemes 5.11, 5.12 1 5.13
que R és Np-injectiu per 'esquerra. B

No sabem si la condicié (ii) es pot treure de ’enunciat de la proposicié. Si R és
un anell regular commutatiu aleshores aquesta condicié es satisfa automaticament
(sense que I'anell R sigui Np-injectiu). No és aix{ per un anell regular directament
finit no commutatiu, tal com il.lustrarem amb un exemple tot seguit.

Un anell R és diu que és unit-reqular si per qualsevol element r € R existeix
una unitat u € R tal que rur =r.

Un anell unit-regular és directament finit, ja que si a,b € R i ab = 1 aleshores
en particular lp(c) = 0. Si R és unit-regular sabem que existeix una unitat de
R diem-li u tal que aua = a, per tant (au —1)a=01i temm que au = 1, podem
concloure doncs que R és directament finit.

EXEMPLE: Existeix un anell R unit-regular tal que R conté un ideal esquerra
comptablement generat I i un idempotent e € R tals que /NRe = 0 i la projeccié

\

p:I & Re — Re
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no ve donada per multiplicacié a la dreta per un element de R. A més R esta
contingut dins d’un anell S, tal que S[z] és de Bezout als dos costats i p tampoc
ve donada per multiplicaci6 a la dreta per un element de S.

DEMOSTRACIO: Sigui K un cos i V un K-espai vectorial de dimensié infinita
numerable. Sigui § = Endg(V), considerem dins de S l'ideal M = {f €
S |dim(Im f) < oo}. Sigui R = K + M, aleshores és facil veure que R és
unit-regular.

Fixem {v;} una base de V com a K espai vectorial i w un element diferent de
zero de V. Considerem l'aplicacié e: V — V tal que e(v;) = w, i les projeccions
ei:V — V tals que e;(vj) = 6;;. Sigui I = @Re;. Aleshores INRe =01ila
projeccié

I® Re — Re
no ve donada per multiplicacié per la dreta, ja que si un element s € S compleix

que e;s = 0 aleshores s = 0. Finalment com que S satisfa que S® S = S, S[z]
és de Bezout per la dreta i per ’esquerra. W

Si R és un anell regular Ro-continu per ’esquerra, aleshores la condicié (2.ii)
de la Proposicié 5.14 també és satisfa automaticament, tenim doncs el segiient
corol.lari,

COROL.LARI 5.15. Sigui R un anell regular Ro-continu per P'esquerra. Aleshores
les segilients afirmacions son equivalents,

(1) R és un anell Ry-injectiu per Pesquerra.
(2) R[z] és un anell de Bezout per la dreta. il

5.3. Anells de séries formals semihereditaris.

En aquesta seccié aprofitarem la informacié que tenim sobre els ideals d’un
anell regular Rp-injectiu per l'esquerra, per veure que si a més 'anell R és
Ro-complet també per ’esquerra aleshores R[z] és semihereditari per la dreta.
Aquest resultat és analeg al de [10] en el cas en que R és commutatiu, de fet en
aquest cas Brewer, Rutter i Watkins varen provar que R[z] és semihereditari si
i només si R és regular Np-injectiu i No-complet, cf. Teorema 4.7.

LEMA 5.16. Sigui R un anell tal que R[z] és semihereditari per la dreta.
Aleshores R és un anell regular Ro-complet per ’esquerra.

DEMOSTRACIO: Sigui r un element diferent de zero de R, considerem lideal
dreta de R[z], I = rR[z]+ zR[z]. Com que I és projectiu existeixen fi, fo € I'*
tals que per qualsevol s de I, s = rfi(s)+z f2(s). Pertant rz = rfi(z)r+z2fo(r),
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fi(z)r = fi(r)x per tant aquesta serie no té terme de grau zero. Tenim doncs,
del terme de grau 1 de la igualtat anterior, que r € rRr i per tant R és regular.

Sigui {e,}32( una familia numerable d’idempotents ortogonals de R. Conside-
rem a(z) = Y oo anz™. Per ser R[z] semihereditari per la dreta rpp;)(a(z)) =
e(z)R[z], on e(z) = e(x)? € R[z]. per tant el terme de grau zero de e(z) és un
idempotent e = R tal que e,e = 0 per qualsevol n > 0, és a dir rp (@2 yRe,) 2
eR. Perd sir € rr (B2 yRen) 2 eR aleshores e(z)s(z) = r, per tant r € eR.
Tenim doncs que (©32Re,) € R(1—e). Anem a veure que (1 —e) és el suprem
de {€,}52,. Si &2, Re, C Rf, aleshores (1 — f) € rr (@ yRe,) = eR ien

conseqiiencia e(1 — f) =(1—f)i(l—e)f =(1 —e) per tant R(1—¢e) C Rf. 1

Prorosici® 5.17. Sigui R un anell regular Ro-injectiu per I'esquerra i Ro-
complet per l'esquerra. Aleshores R[z] és un anell de Bezout per la dreta i
semihereditari per la dreta.

DEMOSTRACIO: Pel Teorema 5.6 sabem ja que R[z] és un anell de Bezout per
la dreta. A més si Ip[;) és un ideal principal per la Proposicié 5.4

I= (Z en(a:):z") R[]

n=0

amb e, (z) = (1+ Yoo (1 — en)anen) €, i €, = €2 € R, per tant

TR[z] (Z en(x)x"> = TR[z] (Z en:c">
n=0

n=0

Per la mateixa proposicié tenim que enen = 0 si n < m, llavors
oo

RI:] (Z x) = ({en}220) Rla] = eRlx],
n=0

on e = €2 € R. Per tant els ideals principals de R[z] sén projectius. B

Pere Ara a [2, Lemma 2.1] va provar que un anell regular No-injectiu per
Pesquerra i Rp-complet per ’esquerra també és Np-continu per ’esquerra. Si es
pogués provar directament que R[z] semihereditari per la dreta implica que R
és Ng-continu per ’esquerra, aleshores pel Corol.lari 5.15 i el resultat de Pere
Ara, tindriem el reciproc de la Proposicié anterior en el cas en que R és un anell
directament finit.
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LEMA 5.18. Sigui R un anell directament finit tal que R[z] és de Bezout pels
dos costats i semihereditari per la dreta. Aleshores R és regular Ro-continu per
Pesquerra 1 Ro-injectiu per ’esquerra.

DEMOSTRACIO: Pel Lema 5.16 sabem que R és regular i Rg-complet per 'esque-

rra. Cal demostrar que si grl és un ideal per ’esquerra comptablement generat,

aleshores rI < .Re per un cert € = €2 € R. Podem suposar que rl esti generat

per una familia d’idempotents ortogonals {e,}3%,. ’
Sigui Re el suprem de 32y Ren, aleshores

€n€ent =¢€tp =€, Vn=>0

i (eene)(eeme) = 0 si n # m. Podem suposar doncs que {e,}3>, és una
familia d’idempotents ortogonals de eRe. Per altra banda si demostrem que
® oeRee, < ceRe aleshores també tenim que Re, < Re, perquési f = f2 €

Re aleshores fefe = fe = f i en particular ef és un element diferent de zero de
eRe, per tant

0 # (eRe)ef f) N (GrloleRe)en) C Rf N (@71 Ren).

Si R[z] és semihereditari i Bezout també ho és eRe[z], com que a més e és el
suprem de {e,} sense perdre generalitat podem suposar que

i volem veure que ®52 yRen < <R, és a dir podem suposar e = 1.

Sigui e = €2 € R tal que (&2 Re,) Re =0ia(z) = Y o ,e,z™. Considerem
'ideal esquerra de R[z], J = R[z]a(z)+ R[z]e. Per ser R[z] un anell de Bezout
per l'esquerra, J = R[z]d(z) per un cert d(z) € R[z]. Per tant existeixen
a,fB,a’',b € R[z] tals que

aa(z) + fe = d(x)
d'd(z) = a(z)
bd(z) =e.

Perd R[z]a(z) N R[z]e = 0, per tant

ad'aa(xr) =a(z) d'Be=0
Vaa(z) = b'Be=e

Per l'ortogonalitat de la familia {e,,}3,, podem suposar que o, 8,a’,b’ € R.
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De les relacions anteriors tenim que

(Zaen ) NBeR =0
n=0

Si considerem la serie c(z) = Y o7 , ae,z™, per ser R[z] un anell de Bezout per

la dreta

c(z)R[z] + PeR[z] = di(z)R[z]
per tant existeixen a;(z), f1(z), ¢'(z), d'(z) elements de R[z] tals que
c(z)ai(z) + Bebi(z) = di(x)

di(z)c (z) = c(z)
di(z)d'(z) = e

Pero (c(z)R[z]) N BeR[z] = O, per tant

c(r)ar(z)d(z) = c(z) PeBi(x)d(z) =0
c(x)ay(z)d' (z) =0  fefi(x)d (z) = Pe

d’aquestes igualtats es dedueix

a'c(z)o(z)c (z) = (i en:c") ai(z)d (z) = Z ent™
n=0

com que Y .o ,e,z" no té anullador per la dreta, obtenim que ai(z)c’(z) =
1, i com que R és directament finit també tenim que ¢/(z)ay(z) = 1. Perd
BeBi(z)c'(z) = 0 per tant fefi(z) = 0 i llavors

0 =b'Pefi(z)d (z) =e.

Tenim doncs que R és Rp-continu per ’esquerra i per la Proposicié 5.14 és també
Ng-injectiu per ’esquerra. W

Handelman va provar que un anell regular No-continu és unit-regular, la de-
mostracié d’aquest fet va ser després simplificada per Goodearl a [38, Corollary
1.6]. En aquest mateix article, Goodearl prova que si R és un anell regular Rp-
continu per la dreta i Ng-injectiu per I'esquerra aleshores R també Ng-continu
per la dreta i per tant també unit-regular.
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TEOREMA 5.19. Sigui R un anell. Aleshores les segiients afirmacions sén
equivalents

(1) R és regular Ro-injectiu (pels dos costats) i Ro-complet per Pesquerra (o
per la dreta).
-(2) R és directament finit i R[[z] és Bezout i semihereditari.

DEMOSTRACIO: (1) = (2) pel Teorema 5.6, sabem que R[z] és de Bezout pels
dos costats, i per la Proposicié 5.17 que és semihereditari per la dreta. Per (2,
Lemma 2.1] R és Ng-continu per l’esquerra, per tant per (37, Theorem 1.8] és
també Ro-continu per la dreta. Per tant per [38, Corollary 1.6] R és directament
finit i per la Proposicié 5.17 és semihereditari per ’esquerra.

(2) = (1) Es clar pel Lema 5.18. B

5.4. Idempotents de ’anell de séries formals.

Es molt facil veure que quan R és un anell commutatiu els idempotents de
R[z] s6én precisament els idempotents de R. Veurem en aquesta seccié que per
un anell qualsevol R els idempotents de R[z] s6n conjugats dels idempotents de
R.

Suposem doncs que e(z) = e+ 352, a;z¢, és un idempotent de R. Es clar que
e ha de ser un idempotent de R. Utilitzant que e(z)? = e(z), és facil veure que
els coeficients a; han de satisfer les relacions que anomenarem (1):

eaie=90
1'1{ (1-ea(l—€e)=0

1'2{ eane = —e(ajep—1+ ...+ an_1a1)e N >2
(1-e)an(l—€)=(1-e)aran-1+...+an-101)(1—¢) n>2
iles (2)
e(a1n-1+...+an-1a1)(1—€)=0 n>2
(1-e)(a1n-1+...+an—1a1)e=0 n>2
Qn
NoTaC16: Denotarem per vg, ala fila (ak, ... ,a,) i per vf, la columna
ar
ag ... Gn
Denotarem per T, la matriu triangular inferior { : . : que té com a
0 ... ag

fila r-éssima (0...0 ag Gk+1 - --Gn-r+1)
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LEMA 5.20. 5Sigui R un anell, e = €2 € R i {a,}32, una successié d’elements
de R que satisfa les relacions (1), aleshores també satisfa les relacions (2).

DEMOSTRACIO: Només demostrarem que per n > 2 es satisfa que e(ajan—1 +
...+an—1a1)(1—¢€) =0, ja que l'altra identitat es veu de manera analoga. Farem
les demostracions per induccié sobre n.

En el cas en que n = 2 tenim que

eajai(l —e) =eajea;(1—e)+eaj(l —e)ai(l1—¢€) =0.
Suposem doncs que n > 2 i que ho hem demostrat fins al cas n — 1. Aleshores
e(a1an—1+ ...+ an-101)(1 — €) = evin_1v],—1(1 —€) =
= eUin—1€V1,_1(1 — €) + evyn_1(1 — e)v},_1(1 —€)

Si apliquem 1.1 aquesta ultima igualtat es transforma en:

eVan—1€Vin_2(1l — €) + evin—2(1 — e)v;,_;(1 —€)
Si apliquem 1.2 tenim que

evan—1e = e(as,... ,an_1)e =
a ... Qap-2
=—e(ar...an-2) | * ., e = —eVin—-2T1n-2€
0 ce at

i analogament

(1 —€e)vzn_1(1-€) = (1-e)Tin2v], o(1 —¢€)
Per tant _

e(alan_l + ...+ an_lal)(l - 6) = —-C’Uln_QTln_.Qe’l{In_Q(l — €)+
+ evin—2(1 — €)T1n—2vi,_o(1 —€) =
= —-6'l)1n_28T1n_26’U;n_2(1 - 6)+
+ evVin—2(1 — €)T1n—2(1 — €)v],_o(1 —¢€)

Per hipotesi d’induccié tenim que

0

o | =eTin_2vi,_o(1 —€) = eTin—2ev],_o(1 — e)+

0

+ eTin—2(1l — e)vi,_o(1 —¢)
i també
(0 . 0) = 64'(,‘1,,,_2T1n_2(1 - 6) = euln_geTln;g(l - 6) + evln_geTln_g(l - e)

Per tant e(ajan—1+ ... + an-101)(1 — €) = evip—2eT1n—2(1 — €)v],_o(1 —€) —
eVin—2€T1n—2(1 — €)v},_o(1 — €) = 0, tal com voliem veure. W
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TEOREMA 5.21. Sigui R un anell i e(z)? = e(z) un idempotent de R[z]. Ales-
hores existeix una unitat u € R[x] i un idempotent e € R tals que e(z) = u~leu.

DEMOSTRACIO: Sigui e(z) = e+ Y oo anz™. Definim:

u=1+ i (-(1-e)ane+ean(l—€)— (1 —e)an(l —€) + eba(l —e)) z™

n=1

on eb, (1 — e) estd definit inductivament com:

6b1(1 - e) =0

n—1 n—1
ebn(1—€) = > ea;(l—e€)an—i(l—e)+ Y _ebi(l - e)an_i(1—¢)
=1

=1

En la resta de la demostracié també escriurem:
ebn(1 —e) = evin_1(1 — e)v},_,(1 —e) + eb, (1 —¢)

on eb, (1 — €) denota el segon sumand de la definicié de eb, (1 — e).
Hem de veure que ue(z) = eu. Es clar que

eu=-¢e+ i (ean(l—¢€) + ebn(1 —e)) z"™

n=1

Calculem doncs ue(x)

Pas 1. (1 —-e€)ue(z)(1—€) =0
Es facil comprovar que els termes de grau 1 i 2 de (1 — e)ue(z)(1 — €) sén zero.
El terme n-éssim de (1 — e)ue(z)(1 — e) és:

n—1 n—2
Z —(1-e)an—iea;(l —e) — Z(l —€)an_i(l—€e)a;(1—€)+ (1 —e)a(l —e) =
i=1 =2 '

= (1 - €)vin-160}1 (1~ )=
— (1= e)van—2(1 —e)van—2(1 —e) + (1 —e)an(l —¢€)

Aplicant les relacions 1.1 i 1.2 tenim que
(1-e)an(l—€) = (1 - €)vin_r€vj,_1(1 - €) + (1 — €)van_2(l - €)v3, (1 —¢€)

Per tant el terme de grau n de (1 — e)ue(z)(1 — €) és zero.
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Pas 2. (1 - e)ue(z)e=0
El terme n-éssim de (1 — e)ue(z)e és:

n,—l ’ n—1
- Z(l —~ €)an—iea;e — Z(l —e)ap—i(l —e)ae =
=1 i=1

- (1 - e)vin-1evi,_1€6 — (1 — e)vin-1(1 — €)v],_;€
Per les relacions (2) tenim que:
(1= €)vin-1(1 — e)vi_je = —(1 — €)vin_1€v],_s€

Per tant aquesis termes també sén zero.

Pas 3. eue(z)(l1—€) =) oo (ean(l—e€)+ ebs(1 —¢€)) 2™
El terme de grau n de eue(z)(1 — e) és:

n-1 n—1

Z ean—1(1 —e)a;(1 —e)+ Z ebn—i(1 —ve)ai(l —e)+ean(l—e)

=1 i=1
i per tant per la definicié de eb,(1 — e) aquest terme és igual a ean(1l — e) +
ebn(1 —e).

Pas 4. eue(z)e =0.
Volem veure que per qualsevol n > 0 es satisfa

n—1 n—1
E eb;(1 — e)an—e = E €a;€0n_i€
=1 i=1

Es més o menys tediés comprovar que aquesta identitat es satisfa fins n = 5.
Suposem que n > 5 i que ho hem demostrat fins n — 1.
Per una banda tenim que

n—1
Z €0;€0n_i€ = €Vin—1€V],_1€ = €V1n—3T1n_3€T1n_3V],_3€ =
=1
=5ev1n_367}n_3611n_3evfn_3e4-
+ evin-3(1 — C)Tln_3eT1n_36‘U;n__36+
+ evin—3€T1n—3eT1n—3(1 — €)v],_se+
+ C'Uln_3(1 - 6)T1n_36T1n_3(1 - e)vfn_3e =
=(a-1)+(a-2)+(a-3)+(a-4).
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on (a-1), (a-2), (a-3)i(a-4) denoten cadascun dels quatre sumands anteriors.
Els termes de b els podem desenvolupar:

n—1 n—1
Z ebi(1 — e)an—ie = Z ebi(l — e)an—ie =
=1 - 1=3

= evln..3(1 - €)T2n-—2(1 - e)v;n—3+
+ e(0a54a oo ’-En—l)(l - e)v{n_3e =
= eV1n-3(1 — €)T1n-3T1n-3(1 — €)vi,_se+

+ (Bt bae1)(1 = €)ujn_ge.
Si apliquem ara les relacions (2) als termes (a-4) + (a - 3) tenim:
(a-4)+(a-3)=(a-4)+ evin-3(1 — €)Tin-3(1 — €)T1n-3(1 — €)vi,_36 =
= eV1n—3(1 — €)T1n-3T1n-3(1 — €)v],_s€

Terme que cancel.la amb el corresponent del desenvolupament de les b’s.
Ara

Ce(bgy. .. bn1)(1—e)v},_se =e(bs,... ,bn2)(1 — €)Tin-4(1 — €)v},_4e =

= eVin-4(1 — €)Ton—3(1 — €)T1n—a(1 — €)v],,_4e+
+e(0,bd,... ,bn-2)(1 —€)T1n-4g(1 —€)v},_4e =

=0b-1)+(®-2)

Si considerem el terme

(a-2) =evip-3(1 — €)T1p-3€T1n-3€V],_3€ =
= eV1n—3(1 — €)T1n—3(1 — €)T1n—3(1 — €)v],_3e =

= 6'01n_.4(1 - 6)T2n_3(1 — e)Tln_4(1 — e)v{n_4e

veiem que cancel.la amb el terme (b- 1).
Tenim doncs:

(b . 2) = 6(54, e ,Bn._2)(1 — C)Tln_s(l - e)v'{n_se
Si apliquem dues vegades les relacions (2) i la definicié de b; obtenim:

(b . 2) = 6(b3, NP ,bn—3)(1 - 6)T1n._56T1n..56'U;n__56.
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Per hipotesi d’induccié
6(b3, cee bn—3)(1_ - e)Tln—Se = €V2n~4€lon-4€.

Per tant
(b-2) = evop—s€Ton_geT 1, -5€T1n_s€0],,_s€.

Si ara treballem amb el terme (a- 1) que és I'iltim que ens queda per cancel.lar:

(a-1) = evin—3eT1n—3eT1n—3eV],_ze =

(6-2)

*
= evon—4€T2n—g€T1n_5€V7,_s€

i aixd acaba la demostracié. B
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