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Chapter 1

Introduction

The four LEP experiments have extensively studied the hadronic decays of the Z
boson up to know. All results constrain the parameters of the theory of the strong
interactions as being compatible with the Quantum Chromodinamics. The strong
coupling constant, a;, the only free parameter of the theory, has also been measured
with a lot of different methods giving a precision that is now bellow 4%. This thesis
presents a new test of QCD an a new measurement of o, based on the study of

scaling violations in fragmentation functions.

The study of scaling violations in structure functions in deep-inelastic lepton-
nucleon scattering played a fundamental role in establishing Quantum Chromody-
namics (QCD) as the theory of strong interactions. QCD predicts similar scaling
violations in the fragmentation functions of quarks and gluons. In an electron-
positron collider this translates into the fact that the distributions of the scaled-
energy z = 2FE //s of final state particles in hadronic events depend on the centre-
of-mass energy +/s. These scaling violations come about because with increasing
/s more phase space for gluon radiation and thus final state particle production
becomies available, leading to a softer scaled energy distribution. As the probability
for gluon radiation is proportional to the strong coupling constant, a measurement
of the scaled-energy distributions at different centre-of-mass energies compared to

the QCD prediction allows to determine the only free parameter of QCD, a.

In principle, variations with energy of the z distributions would establish the
existence of scaling violations and allow the determination of «,. However, the
fact that the final state flavour composition depends strongly on the centre-of-mass
energy (abundance of u-type quarks at PEP and PETRA energies and majority
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of d-type quarks at LEP energies), and that the fragmentation functions depend
on the quark mass, means that the effect would be biased by differences between
fragmentation functions for the different quark flavours. Therefore, in order to
disentangle scaling violations arising from gluon radiation from effects due to the
changing flavour composition independently of Monte Carlo modeling, final state
flavour identification is needed.

The fact that the scaled energy distributions measure all the particles produced
after fragmentation and decay of the fragmented hadrons give contributions to the
evolution that have nothing to do with QCD. Other effects come from the assump-
tion of zero mass for the quarks and hadronization process. The measurement of the
scaling violations and of the strong coupling constant will need that, either these
effects are known or they have been demonstrated to not affect the perturbative
QCD evolution.

The work presented here uses inclusive scaled-energy distributions of stable
charged particles measured at PEP, PETRA, TRISTAN and LEP together with
ALEPH measurements of the distributions in bottom-, charm- and light-quark en-
riched samples, an inclusive sample, and a gluon jet sample. These data, obtained
in 1992 and 1993, correspond to approximately 40 pb~! taken at a centre-of-mass

energy around 91.2 GeV. They amount to close to 1.2 million hadronic decays of
the Z.

Chapter 2 described the theoretical framework of the analysis which is based on
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations with
splitting kernels and coefficient functions computed to next-to-leading order. Chap-
ter 3 gives a description of the main apparatus used for the analysis in the measure-
ment of the inclusive and flavour-tagged and gluon scaled energy distributions, and
the transverse and longitudinal cross-sections. This measurements need mainly the
tracking reconstruction and special flavour tagging algorithms that are described
in chapter 4. The measurement of the ALEPH and low energy data used in the
analysis is described in chapter 5. The results are discused in chapter 6. The final
summary and conclusions is given in chapter 77. A list of appendix give some more
detailed information on the formulas and data used.




Chapter 2

theory

After a brief introduction of the Quantum Chromodinamics theory with special
emphasis in the running coupling constant, the longitudinal and transverse cross-
sections are introduced. Their decomposition in fragmentation functions and the
factorization theorem that leads to the energy dependent effective fragmentation
functions that evolve following the evolution equation are introduced. Finally a

theoretical study of the power-law corrections is given.

2.1 QCD

The theory of Quantum Chrmodynamics was formulated about tweny years ago. It
constitutes the part of the Standard Model [1] that describes de strong interactions

of colored spin 1/2 quarks with massless colored spin 1 gluons.

The fermions of the theory were formally introduced as contituents of mesons
and baryons in the Gell-Mann-Zweig model [?]. It was realized that quarks are
naturally associated with the pointlike constituents, named partons [?], discovered

in deep inelastic lepton-nucleon scattering [?].

The concept of color [?] was introduced in order to avoid spin statistics prob-
lems appearing fro baryons made out of three quarks with the same flavour, as
for example the A** resonance [?]. Assigning to the quarks a new quantum num-
ber, color, corresponding to a new symmetry, solves this problem. The number of
colors was measured from the partial decay width of neutral pious into photons,

which is proportional to N2[?] and from the total hadronic cross section in ete™
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annihilations, where it is proportional to N,.

The gauge bosons are called gluons. They were introduced to explain hadrons
as dynamically bound quark states. An important fact of QCD is that gluons
carry color charge. Thus, they couple with other gluons apart to the quarks. As
a consequence, vacuum polarization effects produce an anti-screening of the bare
QCD charges, which results in a strong interactions at large distances and small at
short distances. This explains the fact that quarks are not observed as free particles
and leads to the concepts of confinements and asymptotic freedom.

2.1.1 QCD lagrangian

The fact that gluons are massless and have only two physical polarizations makes
gauge invariance a desirable property of the lagrangian in order to perform covariant
calculations adding two extra polarizations to the gluon fields. The QCD lagrangian
density is then the Yang-Mills Lagrangian for an unbroken SU(3) gauge invariance

and can be written as

1 .
L= _ZGZVGZV +—q;(2 /D _ m)qa +£GF +LGhost (21)
with
Go, = 0,A%—0,A%+g [ AL AL (2.2)
D, = 8,—igAsTg. (2.3)

do = {Ua,da,Say Cas ba, e} Tepresents the quark fields with color e, « having N,

(three) degrees of freedom. m = {m,} represents the quarks masses. A% is the gluon

field, a being the gluon color index that has N2 — 1 (eight) degrees of freedom. fob°.
are the group structure constants and T the N, dimension group generators in the

fundamental representation. g is a gauge coupling constant related with the bare

strong coupling constant, o, trough a, = ¢?/4.

L and Lot are, respectively, the gauge fixing and ghost terms. The gauge
fixing term is included to allow the inversion of the gluon propagator as is done in
any gauge theory with massless gauge bosons. The Ghost term has to be included in
non-abelian theories, where the gauge bosons interact among themselves, to cancel

the non-phycical contributions in those diagrams where these interactions appear.
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They are given by

1
LOF = —2—6(6“6*;)(6”6?5) (2.4)
LOhost = G T4 P (2.5)
fob = 5aba”_gfabcAg (26)

being ¢ a gauge fixing constant, which is, for example ¢ = 1 in the Feynman gauge
and ¢ = 0 in the Landau gauge, and (® massless, hermitian, scalar fields with
Fermi-Dirac statistics called ghosts fields.

The deduced Feynman rules for the above lagrangian can be found in any text-
book [?]. From them, it can be deduced that the amplitude for a quark changing
its color from « to 8 by emitting a gluon of type c is proportional to g(T%)as and
that the one for a gluons of type a changing to b by emitting a gluons of type c is
proportional to gf*°. Thus, the group structure constants and generators play an

important role in strong interactions and they deserve a more careful study.

2.1.2 Group structure and Color factors

The structure constants are related to the generators, T, of the group through the

relation
[T2,T%| = if*T.. (2.7)

Two important representations of the group are the fundamental (Np x Np) =
(N, x N.) representation, which, in the case of SU(3) is

(T8)up = 22 28)
begin \* the Gell-Mann matrices, and the adjount (Ng x Na) = (N2 —1 x NZ—1)

representation,
(Tj)aﬁ = —ifabc' (29)
From the relations (2.8) and (2.9), the followi‘ng relations can be deduced:

Tr (TpTh) = Tré® ,  Te(T4TS) = Cud® (T}T})aﬁchJ"‘ﬁ (2.10)

being Cr the casimir operator of the fundamental (fermion) representation, Cy4

the casimir of the adjount (gluon) representation and, Tr the factor that connects
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both representations through Tw = NpCr/N4. They are called ‘color factors’ and
depend only on the gauge group of the theory. In QCD (SU(3)) they are given by
_N2-1

4
= = — = Nc = =
Cr oNG 3 Ca 3 , TF

(2.11)

Since a [actor Cr frequently appears acompaining the coupling constant «,, it is
common practice to define
CE&C F C A TF

= A = ns=t 2.12
o y CF ) Z ny ( )

a =

which are the couplant constant and the factors that parametrize the gauge struc-
ture of the underlying theory. ny is the number of active flavours. Physically, they
are the ratio of the gluon-self coupling to the quark gluons coupling (X) and the
ratio of the ¢g splitting from a gluon to the quark-gluon coupling. The results of
these constants has been found in agreement with the SU(3) QCD structura by the
four LEP collaborations [?].

2.1.3 The running coupling constant and RGE

The lagrangian (2.1) contains only a free parameters: the gauge coupling constant,
g or, equivalently, a,. Supposing this is a small number, perturbation theory can
be performed to have physical predictions. When this is done, there appear calcu-
lations of Feynmann diagrams that contain loops which are ultraviolet divergents.
These divergences are first regularized [3] and then removed by absorbing them into
the redefinition of the physical bare parameters through some renormalization pro-
cedure [4]. In this procedure, a dependence on an arbitrary scale, p, is introduced.
Since any physical quantity, P(as,m,p), must not depend on the value of y, pro-

vided bare parameters gg, mp, are kept fixed, the renormalization group equation

(RGE) must hold

Wi Plas,m,pu)| =

gpympB

123 + Bles (1) 3% + 2y (o (1)) 52 Plasymyp)| =0, (2.13)

gBympB
™ = T(u) are the running masses and o,(u) is the running coupling constant.

Ym(as(p4)) is the mass anomalous dimension that will determine the functional form

of the running masses with the scale y. The G-function controls the renormalization
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scale dependence of «; though

o das (1)

du? =B(as) = =D b; (a3>+ . (2.14)

gB/MmB 120

The expansion of (2.14) is known up to three loops [5]. In the analysis, the two first
coefficients are needed

Bo = (11_37}) /4 (2.15)
8 = (10%5’%) /16. (2.16)

These expressions and equation (2.14) allow to write an explicit solution for the
running of a,

o (V5) = (/‘)< %#%) with w:l—ﬁo%ln%l— (2.17)

which is exact to leading and next-to-leading logarithm accuracy, i.e. it contains
all terms and only those terms of the full solution of the type a7(x)1n™(u?/s) with
m=n-—1,n-2,

The scale Az at which the strong coupling constant becomes infinite, is im-
plicitly defined as

_ 4w BilnL . ool
as(p) = oL (1—[30 7 ) with L—lnA?w_S. (2.18)

In the analysis of scaling violations performed, a representation is chosen that
express the running couplant, a(s), as a function of the strong couplant at a reference
scale, Mz, though

a(sy:a(TM%)( (MZ)””““’> with w=1—a(MZ )boln(M-%-) (2.19)
where

bo= —f and b (2>2ﬁ (220
=T TG/ * (2.

2.2 Transverse and Longitudinal distributions

The single inclusive particle spectrum produced in the process ete~ — hadrons can

be written as a sum of a ‘transverse’ (T'), a ‘longitudinal’ (L) and an ‘asymetric’
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(A) cross section:

d*o(s) 3 s ndoT(s) 3 ., dof(s) 3 do4(s)
&) _ 9 40 (8) L 2 n20%% \8) | 2 sptT \8) 9.91
dzdcos 8(l + cos™6) dz + i 6 de + 5 ® 6 dz (221)

Here 4 is the polar angle of the produced particle with respect to the beam direction.
The Lorentz-invariant variable z is defined through = 2(k- Q)/(Q - @) where &
is the 4-momentum of the produced hadron and @) the 4-momentum of the virtual
photon or Z. In the centre-of-mass frame of the collision (which is the laboratory
frame of an eTe-collider if initial state radiation can be neglected) it reduces to

T = Ehadron/Ebeam-

The first term, proportional to (1 + cos?#), has its origin in fragmentation of
the original quarks while the second one would not be present in a theory without
gluon radiation. A physical insight of their origin can be given considering the
initial and final spin states. In ete™ annihilations, the electron and positron spins
are oriented along the beam line in such a way that the system is in a state of
angular momentum of the form |J, J, >= |1, £1 > corresponding to the transverse
polarizations of the virtual boson formed in the collision. Then, two particles are
emitted forming an angle § with the beam line in a state of angular momentum
characterized by |J, Jy >= |1,41 >, where 2’ is the axis defined by the direction
of the outgoing particles. The transition amplitude for this event to happen is then

proportional to
<1, +le |1, £l >=d}, 4 = %(1 + cos §) (2.22)

which, averaging its square over the initial states, gives the expected angular be-
haviour. If now, a gluon (of spin 1) is radiated from one of the outgoing quarks,
the final state could be characterized by |J, J,» >= |1,0 >, thus giving terms pro-
portional to
1 _ sind
do p1(-1) = i“\/‘?, (2.23)

which are the ones forming part of the longitudinal term in equation (2.21)

The third term has its origin in parity-violating terms that will not be used in
this analysis.

Integration over cos @ of eq. (2.21) yields the scaled energy spectrum.

1 do(s) 1 da”(s) N _}_daL(s).

(2.24)

Ot dzx Ot dz Ot AT
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which has been defined in such a way that the integral gives the average number of
particles dividing by the total cross section, 0.

2.2.1 Fragmentation functions

In perturbative QCD, an expression can be computed for the transverse and longi-
tudinal cross-sections. In the naive parton model, the transverse differential cross-
sections are given by
T
Edf—d;(ﬂ = 20¢(s) ‘ > wi(s) Dos(z) (2.25)
i=u,d,5,0,b

and the longitudinal cross-section is zero. In equation (2.25), o¢(s) is the Born
cross section at a centre-of-mass /s = @, w;(s) are the relative electro-weak cross
sections for the production of primary quarks of tipe ¢ which explicit expressions
are given in appendix 7?7, and Dy ;(x) are the bare fragmentation functions that
give the probability of having an hadron of fractional beam energy z proceeding
from the fragmentation of a quark or an antiquark ¢; and defined as the mean of

the fragmentation of a quark and and antiquark of the same flavour, as

Do, = 1 (o) +7(2)) (2.26)

The fact that the total energy carried out by all fragments is equal to that of the

original parton implies the following sum rule for the bare fragmentation functions
1

/ dz 2 Dg(2) = 1. (2.27)
0

Proceeding beyond the zeroth order in 4, before the quark fragments into the
hadron, in can radiate a gluon. Therefore, the probability of having an hadron in
the momentum region between z and dz is given by

do Tl doT:k doTk
( - (s)) dz = ( e (s)) dz Do 4(y) dy{ ( e (s)) dzDog(y)dy  (2.28)
where (daZ‘('gL) /dz(s))dz is the probability of finding a quark(gluon) with energy

1
Eq(g) = 52@ (229)
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in an angular momentum final state |1,+1 > (transverse) of |1,0 > (longitudinal),
and Dy q()(y) dy is the probability that this quark (gluon) fragments into a hadron
carrying fractional energy :

y = En/Eq(g). ‘ (2.30)

The outside experimental variable, z, is related to the two inside parton variable
through
y=z/z. (2.31)

Figure 2.1: Feynman graphs fot the parton subprocess Z — ¢ + anything,contributing to the
reaction ete™ — h + anything- The crpss denotes the quark which fragments to the observed
hadron A.

The cross section for having real quark or gluon are given by the Freynmman
diagrams of figure ??(a). Their calculation contains infrared or soft divergences,
and parallel or mass singularities. The first ones occur when the energy of the
emitted gluon or its mass tends to zero. The second one occur when the gluon is
emitted parallel to the quark or the mass of the quark tends to zero being the gluon

mass zero. The virtual diagrams of figure ??(b) contain ultraviolet divergences that
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cancel when summed all together. However, some infrared divergences and mass
singularities remain. All the divergences will cancel when the total cross-section is
computed (the integral over z of the scaled energy distribution) but, the differential

cross-section of equation (2.28) leads to a functional form

¥4

where ¢ runs over all the flavours and the gluon. m is the scale that appears in the

regularization of the mass singularities.

The coefficient accompaining the logarithmic part is not dependent on the reg-
ularization scheme used but the f; functions are. Moreover, formula is not only
regularization scheme dependent by is also divergent as m — 0. Since the cross-
section is a measurable quantity, the bare fragmentation functions, which cannot be
measured, should have some mass dependence that cancels the mass singularities.

However still remains the problem of the regularization scheme dependence on f;.

The way to solve the problem consist in absorbing all the mass singularities
and the ambiguity of the f; functions in a redefinition of the bare fragmentation

functions, which then become

Do) = [ 200 [s0-0)+ 2 R g () 4 anats] )

z

and are scale dependent. D;(z,u%) are called the effective fragmentation functions.

With the definition of the effective fragmentation functions, and taking into

account the running of «,, eqaution (2.32) becomes,

doTl(g 1dz
Y = g [ LT, ), ibfs) Y wile) Dilaf i)
z 1=u,d,s,c,b
Ydz 2 2
+ 200(s) [ ZCTH(z, (), wh/5) Dy(a/2,13) (2.34)

The Og:;f’ are the so called coeficient functions. This procedure is called mass
factorization and its validity is ensured by the general factorization theorem [?].
The separation of the singular part in equation (2.32) from the remaining finite part
(the coefficient functions) takes place at a factorization scale , pr, which relates the

short distance (‘partonic’) from the long distance (‘hadronic’) effects.
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The coefficient functions reduce to the parton model at first order. They have
been computed up to next-to-leading order and their expressions are given in sec-

tion 7?7 in apendix B.

The coefficient functions for the transverse and longitudinal cross-section give

the relation

1 dot o, 1dz| 1 do T z .
Az o ts 7 |Gw dz P 2.35
Owr dz 2T /x z [atot dz +4 <a: 1) Dg(z)] + O(a5), (2.35)
from where additional information of the gluon fragmentation function can be ex-

tracted.

2.2.2 Normalization of the total cross-section

Since what is usually measured are the scaled energy distribution of equation (2.24),
expression (2.34) will contain the ratios of the total cross-section, oy, and the born
cross-section, 0. This can be computed integrating the differential cross-sections.

Up to first order in a4
(8

or=do , 0L=—0p. (2.36)
Thus, the ratio of the two cross-sections is given by
oot 3 a, 3

2 112220 = Sl 2.37

5~ TR tr=3° (2.37)

Equations (2.36) and (2.37) show that, up to first order in e, the total correction

to o4¢ comes from the longitudinal cross-section. Higher orders have been computed

for the «, corrections to the total cross section [?], but not the contributions of

the transverse and longitudinal cross-sections. Thus, it is not known whether this

remains to higher orders.

2.3 Evolution of the fragmentation Functions

Although the effective fragmentation functions cannont be computed perturbatively,
their change with the energy is predicted in perturbative QCD. This change is
foverned by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution [?]
equations that can be written as

dD;(z,s 1 dy )
dl(ns)= )y / El; ii (2, s(1r), kp/s) Di(z/2,8) (2.38)

£=u1dysycrbyg €

L |
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where the splitting kernels (P;;) are known to next-to-leading order accuracy and
contain also all the leading log terms

Pu(asalpn) /) = SO ) (2L} 0oy o)

The renormalization scale, pg, relates the spliting functions at a given scale /s
to the strong coupling constant at the renormalization point pgr. The indices i, j
run over all active quark flavours and the gluon. What equation (2.38) tells is
that the logarithmic energy change in the effective fragmentation functions is due
to processes in which a quark or a gluon (partons) with a given scaled energy
higher than z (the scaled energy of the observed hadron) radiate becoming another
parton of fractional energy z (the probability of this being proportional to the
corresponding spliting kernel) that afterwards fragments into the hadron. The
probability of the last fragmentation is given by the probability of having an hadron
of scaled energy z in a jet of energy z/FEjeam. The sum takes into account all the
cases with z > z.

Up to first order in «,, the dependence on Ins on the quark fragmentation
functions is dur to two processes: the quarks can radiate a gluno and then fragment;
or it can radiate a gluon which then fragments to the hadron. Analogously, the
change in the gluon fragmentation function can be duo to the gluon takt pair-
produce a quark that then fragments or it can pair-produce gluons which then
fragment to the observed hadrons.

In higher order, other possibilities arise. A quark can splitt into a quark of
different flavour, or to an antiquark of the same or different flavour before the

fragmentation takes place.

It is most convenient to write the coupled system of evolution equations in (2.38)
in terms of singlet and non-singlet parts defined as

S(@,s)=— Y wDyz,s) and Ni(z,s)=oDiz,s) - S(a,s)  (2.40)

ng 1=u,d,3,c,b

where the singlet and non-singlet components have been defined with the x-weighted
particle espectra. This definition, which slightly deviates from common practice,

results in a less singular behaviour for £ — 0 The evolution equations then become

S%Ni(m,s) = /: d2Pn(z, 05(uRr), u%/s) N;(g,s) (2.41)
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for the non-singlet components, while evolution of the singlet components is de-

scribed by the coupled system

d

1
s=Glays) = [ ds [PGG(Z,S,#R)G(;S)+PGQ(z,87#R)S(*;£aS)]

9 oas) = [d [P G(Z,s)+ P s )] 2.42)
s=8(z,8) = [ dz|Paa(z,s,un)G(,5) + Paal#,,um)S(Z,9)] (2.

where G(z,s) = z Dg(z, s) is used. The terms containing P and PG are called
the diagonal parts and PgQ and PG the off-diagonal parts. The expressions of
the splitting kernels used in the analysis are given in section B.2 in appendix B.

2.4 Power-law corrections

The theory described in section 2.3 concerning the evolution of the fragmentation
functions is not complete. All the equations were developed with the assumption of
zero mass quark. This is not true at all, at least for charm and bottom quarks and,
the effects that their masses in the evolution, could induce some corrections that
should be controlled. The fact that the theory describes the evolution of scaled-
energy distributions and that what is usually measured is the scaled-momentum

distributions can also produce some corrections.

The fragmentation functions have been defined after the fragmentation stage. It
is know that heavy flavour quarks fragment in a heavy hadron that carries most of
the initial quark momentum and some light hadrons that share the rest of the initial
momentum. This would produce a hard fragmentation function that, after decay,
would finally give the softer observed fragmentation function for these flavours. The
last step in the formation of them is not governed by QCD and it should not be
considered in the evolution. Since the fragmentation functions before the decay
are not easy to measure, it is necessary to work with some redefined fragmentation
functions that include the decay of the heavy hadrons. The fact that the evolution
is made in the final fragmentation function is only a practical matter and, again,
the effect that this could induce in the evolution should be studied and controlled.

Finally the fragmentation itself is a non-perturbative fenomena that, for sure,

induce corrections to the evolution. This is a less known effect that has to be

- parametrized somehow into the evolution.



2.4 Power-law corrections 15

2.4.1 Kinematic corrections

The simplest Power-law correction comes from the fact that the momentum fraction,
T, = 2p/Q) is used instead of the energy fraction, z = 2F/Q). The relation between
the two approaches is given by

z=zp+ %—g—z + O(1/q%). (2.43)

The largest corrections come from considering the minimum values of  and energies
in the analysis. In this regions, the corrections are of the order of the systematic

errors, being even smaller at any other values.

2.4.2 Heavy quark masses

The coefficient functions and splitting kernels computed presented in section ??
assumed no mass for the quark production and fragmentation. This is a good
approximation for the light quarks, but for heavy quarks, and specially for the b
quark fragmentation, with 5 GeV of mass, this could not be the case.

In case the masses of the quarks are considered, the coefficient functions have
to be recomputed. In [2] a full list of all the coeflicient functions up to order a; is

given.

As an example, the coefficient function C} is modified to

. + 22 4 22 — 1+ 8,
200(s)Cy = o1 (s) [pp " l 1—,8

+0t)(s) [ 2"’1 140 + 4,@w m] (2.44)

+ 204(

1—,33,

where Bz = /1 — p/(1 — z) and p = 4m?/s being m the mass of the heavy hadron.
When the mass is set to zero, p — 1 and expression (2.44) reduces to the one given

in equation (B.1). The same procedure can be performed to the other coefficient
functions. '

From equation (2.44) it can be seen that all the corrections due to the mass of the
hadron are of order p, that is, of at least two powers of m/Q). Thus, this corrections
are expected to be small. Since they can be reabsorbed into the definition of the

fragmentation functions at one energy, they only affect to the evolution process. Any
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residual uncertainty can be taken into account with the variation of the factorization

scale.

2.4.3 Heavy quark decays

The evolution equations contain the fragmentation functions of quarks. They de-
scribe the change of them, due only to perturbative QCD. However, experimentally,
it is difficult to measure the fragmentation functions of the heavy quarks, since a full
reconstruction of their decay would be necessary. Instead, the total scaled energy
distribution after the decay to lighter product of the heavy hadrons produced from
the fragmentation of a heavy quark, is easy to measure. This section describes the
corrections to the evolution from using the ‘total’ fragmentation functions (after

the decay) with respect to the ‘true’ one.

The probability of finding a particle with scaled energy z after fragmentation
and decay of a quark is defined by

Ti(w, @)dz = Di(y, Q)dy ¢i(z,Q)dz (2.45)

where @;(z, Q)dz is the decay probability of the hadron. z = 2FE,;/Q is the fractional
energy of the beam of the final decay product, y = 2E;/Q is the fractional energy
of the beam taken by the hadron right after fragmentation, and z = E;/Ej, = z/y.
The index ¢ refers to the different quarks species. The total fragmentation function
is then given by

1 dy T

Ti(=,Q) = /x 5 D@ e (55 q) - (2.46)
The evolution equations hold for the fragmentation functions D;(y, Q). But the
measured cross-sections are related with T;(z, Q). The derivative of the later with

respect to the In @ is
0Ti(z, Q)

S0 - A+ B (2.47)
The following definitions were introduced:
= [%, (2 0) 2Diu.Q)
Ldy Opilz/y, @)
B=| =D —_ .
|3 D @ 50 | (2.49)
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The evolution equations can be applied to A, which can be written as

a=[ %o (20) [ Zrtani(Le). (2.50)

Delta and step functions can be introduced in (2.50) as

A = /%0(1—y)0(y—m)/d§5(f“§'> 0i6,Q) -
JZ 00200~ v) Pyt [dns (n-2) Ditm@).  251)

Taking into account that §(n —y/z) = 26(y — zn) and performing the integrals over
y and &

A = [£r0) [Lome(L).
8(1 — zn) 8(zn — z) (1 — 2) 0(1 — 7). (2.52)

The ¢; will only act over the D; with the same flavour. Since the index j runs over
all the flavours, generalized T} can be defined as the convolution of the fragmen-
tation functions and the decay. The 6 functions in (2.52) serve only to define the

integration limits giving finally

1 ;z /zmn
= [Sre5(5e). (259

The left side of (2.47) together with the result in (2.53) have the same structure as
the evolution equations applied to the total fragmentation functions, T;. Thus, the
term in B would constitute non-QCD correction to the evolution equations coming
from the decay effects included in T;. The B term contains a derivative of the decay

function, ¢; which can be written as

: 2\ 9ei(6,Q)
déd | € — — | /. 2.54
| e (s y) s (2.54)
The decay spectrum, ¢;(€, @), can be computed as the Lorentz boost of the rest
frame spectrum, @;(E*). If E* is the energy of the decay product in the heavy

hadron rest frame and 6* the angle of the decay particle with respect to the line of
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flight of the heavy hadron in the centre-of-mass frame, the observed energy of the

decay product can be written as
E= %ﬁQ = E*(1 4 Bcosd%) (2.55)

where ¥ = Ej m, being Ej, and m the energy and mass of the heavy hadron,
respectively. This allows to write ¢; as

@i, Q) = /dcos* 0(1 — cos 6*) §(cos 6" + 1) -

N 1E*
/dE &4(E )5[5—2 5

which can be integrated over cos 6* to finally have the following expression for the

(1 + B cosb°tar) (2.56)

B correction:

_ z\ 0 (PedEry pn@ 1
B—/w 5(5—5) 510 Juy B2 E )5 (2.57)

_ [1+8

The amount of correction can be traced if a decay to two particles are considered.

The variable o was defined as

In this case, equation (2.57) can be simplified to

[ile-omsatim)] e

whose first term is of order m?/Q?. In [2], a different approach based in the moments

of the total fragmentation functions arrives to the same conclusion.

The conclusion is then that the effects of the decay of heavy hadrons in the
evolution is, at least of two powers of m /@ which, at LEP energies is, for example
of the order of 0.2% multiplied by the b fraction.

2.4.4 Hadronization effects

The hadronization effects are the less well known effects in the evolution. They
have not been computed explicitly for the fragmentation functions neither for their

evolution. In deep-inelastic scattering, they are known to go as 1/Q? [?]. However,
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10 clear statement on their dependence with @ has been given for the case of ee~

collisions.

Nevertheless, the fact that corrections to the thrust and sphericity variables have
been shown to go as 1/Q [52, 53]. Fenomenological arguments arrive to the same
conclusion for the fragmentation functions. However, since no explicit calculation

have been given, some parametrization has to be done.
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Chapter 3

The ALEPH detector

The ALEPH detector [6, 7] (ALEPH:‘A detector for LEP PHysics’) is one of the
four large detectors installed in the LEP accelerator. The other three are DELPHI
[8],L3 [9], and OPAL [10]. It was designed to study in detail the parameters of the
Standard Electroweak model, to test QCD at large @2 and to search for new physics
(such as the top quark, the Higgs boson or supersymmetric particles) in the ete”
interactions that take place in the LEP accelerator. The detector was conceived to
be as hermetic as possible covering the maximun allowed solid angle and to collect as
much information as possible from each event. This chapter describes the ALEPH
detector with special emphasis in those parts used in the analysis.

3.1 LEP

The Large Electron Positron storage ring (LEP) [11], is a nearly circular accelerator
sited at the European Centre of Nuclear Research (CERN) in Geneva. It is located
inside a nearly horizontal tunnel of 26.7km of circumference, at a depth between
80 and 137 m spanning the French and Swiss territories (figure 3.1). It consists in
8 arcs and 8 straight sections. The beams are formed by bunches of electrons and
positrons that circulate inside the beam pipe. They are accelerated in opposite
directions and cross in eight or sixteen points incase the number of bunches per
beam is four or eight, respectively, although they are steere to collide only in the 4
points where the detectors are installed. The collisions in the other two points are

avoided by a system of electrostatic separators.

The accelerator program is comprised of two phases. In the first (current) phase,
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Point 8
Ferney~  (DELPHI)
Voltaire

Figure 3.1: The LEP ring.

LEP accelerates, stores and collides electrons and positrons at a centre-of-mass
energy around 90 GeV and produces Z bosons with a luminosity (the number of
events per time per unit of cross-section) that has been growing every year and that
~24-1

is now above 10*' cm . In the second phase, to start in 1996, an increase of a

center-of-mass energy up to 180 GeV would allow the production of W-pairs at a

foreseen luminosity of 1032 cm~2s71.

The LEP injection chain can be seen in figure 3.2. It consists of the LINear
ACcelerator (LINAC) which accelerates electrons and positrons in two stages. The
electrons are first accelerated up to 200 MeV. Part of the electrons are used to
produce positrons and the rest, together with the positrons are accelerated up to
600 MeV. After the LINAC, the particles are inserted in a small circular ete™
accelerator (EPA). From there, they are inserted to the PS accelerator, where the
energy is taken up to 3.5GeV. The particle's' are injected to the SPS accelerator,
rising to an energy of 20 GeV. Finally, they are injected to the LEP main ring and

accelerated to a maximum of ~ 55 GeV with a current up to 2.9 mA per beam.

The running and optics configuration of LEP has changed with time trying to
reach higher luminosities. While in the first years of operation (from 1989 to Oct
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Figure 3.2: Scheme of the LEP injectors and accelerators.

1992), four bunches of electrons were circulating inside the accelerator and were col-
liding in the interaction points every 22 usec, in the 1993 and 1994 running periods,
collisions of 8 bunches spaced 11 usec gave a considerable increase in luminosity. For
the 1995 running period an scheme of four bunch trains of electrons and positrons
consisting of two, three or four equally spaced wagons is expected to produce 50K
Z per day in each collision point. Table 3.1 gives the main parameters of LEP.

3.2 The ALEPH detector: general description

The ALEPH detector is located at experimental point number 4 in a cavern of 143 m
under the surface. It is a 12m diameter by 12m lenght cylinder of positioned around
the beam pipe (tube of 10 cm of radius that forms part of the accelerator). In the
ALEPH reference system (ARS) the z direction is along the beam line, positive in
the direction followed by the e, thereby slighly different from the local horizontal
due to the small till of the accelerator. The positive & direction points to the center
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Parameter Value
Circumference 26667.00m
Average radius 4242.893 m
Bending radius in the dipoles 3096.175 m
Depth 80-130 m
Number of interaction points 4
Number of experimental areas 4
Number of bunches per beam 4-8
RMS Bunch length 11.67 mm
Horizontal bunch sigma 200 pm
Vertical bunch sigma 12 pm
Injection Energy 20 GeV
Maximum beam energy (phase I) 55 GeV
RF Frequency 353 MHz
Total current per beam 0.029 A
Luminosity 10%em—2571
Vertical 8y 5 cm
Horizontal 8% 25x 3y cm

Table 3.1: Main LEP parameters.

of LEP, and is horizontal by definition. The positive y direction is orthogonal to z

and z and deviates 3.5875 mrad from the local vertical up.

The detector consist of subdetectors, each of one specialized in a diferent task.
The tracking devices allow to reconstruct the trajectories of charged particles and
to clasify them using the ionization left in the detectors. The electromagnetic and
hadronic calorimeters give a measurement of the energy of the particles, being also
the only detectors capable to give positional information for the neutral particles.
Muons are identified using the muon chambers or the final planes of the hadronic
calorimeter. Specialized detectors situated at low angle serve to give a precise mea-
surement of the luminosity. Some other subdetectors are épecialized in monitoring
tasks. Finally, the triger and data acquisition system is used to manage everything

and record the useful information. A brief description of these devices follows.
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Figure 3.3: Schematic view of the ALEPH detector. (1) Luminosity Monitor. (2) Inner Tracking
Chamber. (3) Time Proportional Chamber. (4) Electromagnetic Calorimeter. (5) Superconduct-
ing Coil. (6) Hadronic Calorimeter. (7) Muon Chambers. (8) Beam Pipe.

Main detectors

A particle leaving the interaction point would encounter the following subdetectors
(figure 3.3):

~ The Mini Vertex DETector (VDET), fully operational since end 1991, is a
double sided silicon strip device with two layers of strips parallel (z) and

perpendicular (r¢) to the beam, situated around the beam pipe, providing a
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very accurate vertex tagging of tracks coming from the interaction point. The
coordinate spatial resolution is 10 um in r¢ and 13 ym in 2.

— The Inner Tracking Chamber (ITC) is a cylindrical multiwire drift chamber.
It contributes to the global ALEPH tracking and is also used for triggering
of charged particles coming from the interaction region. It can provide up
to eight precise r¢ coordinates per track, with an accuracy of 100 um per

coordinate.

— The Time Projection Chamber (TPC), the central track detector of ALEPH,
is a very large three-dimensional imaging drift chamber. It provides up to
27 three dimensional coordinate points of each track The single-coordinate
resolutions id 173 pm in the azimuthal direction and 740 pm in the longitu-
dinal direction. From the curvature of the tracks in the magnetic field, the
TPC gives a measurement of transverse particle momenta p; with an accu-
racy of Ap;/p? = 0.6-1072(GeV/c)™! at 45GeV if it is used together with
the ITC and the VDET. The chamber also contributes to particle identifica-
tion through measurements of energy loss (dE/dz) derived from about 340

samples of the ionization for a track traversing the full radial range.

— The Electromagnetic CALorimeter (ECAL) is a sampling calorimeter con-
sisting of alternating lead sheets and proportional wire chambers read out in
projective towers to obtain a very high granularity (about 1° x 1°). It mea-
sures the energy and position of electromagnetic showers. The high position
and energy resolutions achieved lead to good electron identification and allow

to measure photon energy even in the vicinity of hadrons.

— The superconducting coil is a liquid-Helium cooled superconducting solenoid
creating, together with the iron yoke, a 1.5 T magnetic field in the central

detector.

— The Hadronic CALorimeter (HCAL) is a sampling calorimeter made of layers
of iron and streamer tubes. It measures energy and position for hadronic
showers and, complemented with the muon chambers, acts as a muon filter.
The readout is performed twice: using cathode pads forming projective towers

and using digital readout of the streamer tubes for muon tracking and also
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for triggering. It also provides the main support of ALEPH, the large iron
structure serving both as hadron absorber and as return yoke of the magnet.

~ The MUON chambers (MUON), outside HCAL, are two double layers of lim-

ited streamer tubes which measure position coordinates of the muons, only
detectable particles reaching this subdetector.

Luminosity anb beam monitoring

An accurate luminosity measurement is required for the precise measurement of
cross-sections. This is provided by four detectors for small angle Bhabha scattering

installed around the beam pipe:

— The Luminosity CALorimeter (LCAL), is a lead/wire calorimeter similar to
the ECAL in its operation. It consists of two pairs of semi-circular modules

placed around the beam pipe at each end of the detector.

— The Sllicon luminosity CALorimeter (SICAL) was installed in September 1992
on each side of the interaction region. It uses 12 silicon/tungsten layers to
sample the showers produced by small angle Bhabhas. It improves the statis-
tical precision of the luminosity measurement by sampling at smaller angles
than LCAL. The systematic error of the luminosity is also reduced thanks

mainly to the greater precision in thé positioning of its components.

— The very small Bhabha CALorimeter (BCAL) located behind the final focus

quadrupoles, is used to give a measurement of the instantaneous and specific

lurninosity and also as a background monitor. It is a sampling calorimeter
made of tungsten converter sheets sandwiched with sampling layers of plastic
scintillator. A single plane of vertical silicon strips is used to locate the shower
position.

The optimization of LEP performance needs also some monitoring of the beam
conditions which is acomplished by:

— The Small Angle Monitor of the BAckground (SAMBA) is positioned in front
of the LCAL at either end of the detector. It consists of two multi-wire
proportional chambers at each end, read out in two rings of 8 pads per ring.
It is used as a background monitor.
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— The Beam Orbit Monitors (BOMs), located around the circumference of LEP,
measure the mean position and angle of the beam orbits which are used by
LEP to optimize the beam conditions, and by ALEPH to determine the (z,y)
position of the beam spot as a starting point for offline reconstruction of the

primary vertex.

Trigger system

Not all the collisions that take place at LEP are useful for the physics that ALEPH
is willing to study. The large amount of non-useful events have to be filtered out
in order to avoid ineficiencies in the detector and a large amount of unused data.
For example, if an event is decided to be recorded, it takes up to 45 usec for the
ionization electrons to reach the end-plates of the TPC and the electromagnetic
calorimeter takes up to 61 usec to be cleared and ready for the next event. Since
three bunch crossings are made in this time, this operation must be performed only
when the event will be useful, otherwise learge ineficiencies would be introduced.
The purpose of the trigger system is to produce a signal that starts the readout of
the events. It is desirable to keep all the electron-positron collisions and to reduce
as much as possible the rate of background events. The trigger system has been

organized in a three-level scheme:

— Level one decides whether or not to read out all the detector elements. Its
purpose is to operate the TPC at a suitable rate. The decision is taken
approximately 5 us after the beam crossing from pad and wire information
from the ECAL and HCAL and hit patterns from the ITC. The level one rate
must not exceed a few hundred Hz. If the decision is not to take the the event,
the TPC is resetted and kept ready for the next event.

~ Level two refines the level one charged track trigger using the TPC tracking
information. If level one decision cannot be confirmed, the readout process
is stopped and cleared. The decision is taken approximately 50 ys after the
beam crossing (the time at which the TPC tracking information is available).

The maximum trigger rate allowed for level two is about 10 Hz.

— Level three is performed by software. It has access to the information from

all detector components and is used to reject background, mainly from beam-
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gas interactions and off-momentum beam particles. It ensures a reduction of

the trigger rate to 1-2 Hz, which is acceptable for data storage.

This trigger scheme has to be rather flexible since it has to be able to reject
the background and keep signals from possible new physics events. Therefore the
available electronic signals from different ALEPH detector components allow for a

variety of triggers which, together, cover all possible types of events.

Data Acquisition System and Event Reconstruction

The data acquisition system allows each subdetector to take data independently.
The DAQ [12] architecture is highly hierarchical. Following the data and/or con-
trol flow from the bunch crossing of the accelerator down to storage device, the

components found and its tasks are briefly described below:

— Timing, Trigger and Main Trigger Supervisor: synchronize the readout elec-
tronics to the accelerator and inform the ReadOut Controllers (ROCs) about
the availability of the data.

— ROCs: initialize the front-end modules, read them out and format the data.

~ Event Builders (EBs): build a subevent at the level of each subdetector and

provide a ‘spy event’ to a subdetector computer.

— Main Event Builder (MEB): collects the pieces of an event from the various

EBs and ensures resynchronization and completeness.
— Level three trigger: as seen, performs a refined data reduction.

— Main host and subdetector computers: The main machine (a VAX-AXPCluster)
initializes the complete system, collects all data for storage and provides the

common services. The subdetector computers get the ‘spy events’ and perform

the monitoring of the large subdetectors (TPC, ECAL, HCAL).

The data taken by the ONLINE computers is called raw data and is reconstruct-

ed quasy online. In less than two hours after the data is taken, the reconstruction
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and a check of the quality of it is done, thus allowing ALEPH to have a fast cross-
check of it and correct possible detector problems. This task is performed by the
Facility for ALeph COmputing and Networking (FALCON) [13].

The year by year continuous increase of CPU power of the machines has made the
hardware and software of FALCON develop in order to acomodate to the available
performance and requirements.

Processors:

2 x DEC AXP 3000-600
4x 1 GB local disks
OPEN VMs
MULTINET

(~ 52 CERN units*)

Login and monitoring
workstations

3x V8 3100/78

1 x 400 MB disk

$.8.], 600MB+400MB+2x1

3480 cartridge

Syste g
Raw Data disks (shared with Online TK70
2x RA%0=2 GB™ 2XxRA90=2GB"

FALCON 1994

() has lo be lested with ALEPH programs, JULIA efc..
(**) one or two disks might be changed to 600 MB.

Figure 3.4: Schematic representation of the FALCON cluster.

In its actual configuration consists of three processors (three AXP machines with
a total power of ~ 60 CERN units 1) Each of the processors runs the full ALEPH
reconstruction program JULIA (Job to Understand Lep Interactions in ALEPH)
[14] which, for each event of the raw data file, processes all the information from

the different subdectectors. Other programs also run to compute the drift velocity

!A CERN unit is equivalent to an IBM 168 CPU unit, approximately 1/6 of an IBM 3090
processor or about 1.2 Mflops.
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in the TPC (PASS0), or to analyze the quality of the data taken (RunQuality).

After their reconstruction, the events are written in POT (Production Output
Tape) data files and transmitted to the CERN computer center where they are
converted into different data types more suitable for physics analysis. The events

are ready to be analyzed only a few hours after having been taken.

3.3 Subdetectors relevant to the analysis

The measurement of the scaled energy distributions and the selection of hadronic
events necessaries for the anlysis need only the use of tracking devices, specially
the TPC and the ITC that serve for the measurement azymutal angle (used in the
measurement of the longitudinal and transverse cross-sections) and the momentum
of the particles. However, the selection of flavour-tagged samples of events needs
the VDET detector and, also the use of the calorimeters.

The main tracking detectors are described in detail in the following sections. Al-
so a description of the electromagnetic and hadronic calorimeters is given, although

less detailed due to their more limited importance for the analysis.

3.3.1 The Mini Vertex Detector

The VDET is formed from 96 silicon wafers each of dimension (5.12 x 5.12 x 0.03) cm
arranged in two coaxial cylinders around the beam pipe. The inner layer has nine

wafers in azimuth, with average radius of 6.5 cm, and the outer has 15 wafers with

average radius of 11.3 cm, both layers being four wafers long. Each wafer has 100 pm

strip readout both parallel (r¢) and perpendicular (rz) to the beam direction. Par-

ticles passing through a wafer deposit ionization energy, which is collected on each

side of the wafer.

The advantage of the VDET is that it pinpoints a track’s location in space quite
near to the beam pipe. VDET hits are used by extrapolating a track found by the
ITC and/or the TPC to the VDET and then refitting the track more precisely using
VDET hits which are consistent with it. The addition of VDET to the tracking
improved the momentum resolution at 45 GeV to Apr/ph = 0.6-1072 (GeV/c)™?
from Apr/pk = 0.8-107% (GeV/c)~! when only TPC and ITC were used [26].
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Figure 3.5: Cut-away view of the VDET.

Using VDET, together with the other tracking detectors, the spatial coordinates
of the origin of a 45 GeV charged track’s helix (impact parameter) can be found to
within about 23 gm in the r¢ view and 28 pym in the rz view measured from dimuon
events. For lower momentum tracks, this parameter is measured from hadronic Z

decays. The resolution on the impact parameter can be parametrized as

o(6) =25 pm + 95T'UH—I(GEV/C)‘I. ‘ (3.1)

This allows tracks produced by decay of short-lived particles to be separated from
those at the primary interaction point with good efficiency.

3.3.2 The Inner Tracking Chamber

The Inner Tracking(Chamber (ITC) [27] using axial wires made of gold and tungsten
provides up to eight r¢ points for tracking in the radial region between 16 and 26
cm. It also provides the only tracking information for the level one trigger system.
It is able to identify roughly the number and geometry of tracks, due to its fast
response time (the trigger is available within 2-3 us of a beam crossing) and allows

non-interesting events to be quickly rejected.
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The ITC is operated with a gas mixture of argon (50%) and ethane (50%) at

atmospheric pressure.

The ITC is composed of 8 layers of sensing wires (operated at a positive potential
in the range 1.8 — —2.5kV) running parallel to the beam direction, located forming
hexagonal cells with the central sense wire surrounded by six field wires held at earth
potential (figure 3.6). The sense wires detect the ionization of particles passing close
by. The measurement of the drift time, gives the measurement of the r¢ coordinate
within about 150 um. The z coordinate is found by measuring the difference in
arrival times of pulses at the two ends of each sense wire, but with an accuracy of
only about 3 cm. The particles with polar angles between 14 and 165 degrees pass
through the 8 layers.

Sense Wire
0 0.8 1 1.8 2 2.5 3. @ Field Wire
’ @ Calibration wire

s Calibration 'zigzag'

Figure 3.6: The ITC drift cells.

3.3.3 The Time Projection Chamber

The Tinie Projection Chamber (TPC) [28] was designed to obtain high precision
measurements of the track coordinates, to get good momentum resolution and to

measure the dE/dx depositions of charged particles.

The time projection chambers use the techniques of the ionization chambers
to measure the transverse (z — y) coordinates, while measuring the time to detect

each ionized bunch of electrons gives the position in the z coordinate. In the case
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of ALEPH, the charged particles create ionization in the gas that fills the TPC.
The electrons produced in this ionization are driven by an electric field to the
end-plates where wire chambers are located. There, a secondary ionization takes
places and the position where this happens gives the r¢ coordinate. The time
needed for the electrons to reach the end-plate gives the z coordinate. Due to
the 1.5 T magnetic field produced by a superconducting solenoid surrounding the
TPC whose axis is parallel to the TPC symmetry axis, the trajectory of a charged
particle inside the TPC is a helix, and its projection onto the end-plate is an arc of
a circle. By measuring the sagitta of this arc, one obtains the curvature radius that
is proportional to the modulus of the component of the momentum perpendicular
to B.

The TPC has a cylindrical structure of 4.4m long and with 35cm and 180 cm
of ineer and outer radius, respectively (figure 3.7). Its volume is delimited by
two coaxial cylinders which hold the end-plates. The dimensions were designed to
reach 10% resolution in transverse momentum for the highest possible momenta
(muon pairs produced at the LEP energy of 100 GeV per beam). The resolution
Ap; in transverse momentum p; (GeV/c) is proportional to the resolution in the

measurement of the sagitta As (mm),

A
AP _ 00275, 28

. 75 (3.2)

where B(T) is the modulus of the magnetic field and {(m) is the length of the
projected trajectory. This was optimized by choosing the largest practical lever

arm [ = Ry — Rpin =~ 1.4m.

The device is divided into two half-detectors by a membrane which is situated
in the plane perpendicular to the axis and midway between the end planes. This
central membrane is held at a negative high voltage (—26kV) and the end-plates
are at a potential near ground. The curved cylindrical surfaces are covered with
electrodes held at potentials such that the electric field in the chamber volume is

uniform and parallel to the cylinder axis.

The TPC volume is filled with a nonflammable gas so that traversing particles
will ionize it producing electrons that will be drifted towards one end-plate by
the electric field of 110 V/cm. The argon(91%) + methane(9%) gas mixture was

chosen because with this mixture is possible to reach high wr values (w = cyclotron
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¥IRE CHAMBERS

Figure 3.7: Scheme of the TPC.

frequency; T = mean collision time of the drifting electrons). This causes the
electrons to drift mainly along the magnetic field lines and thereby reduces the

systematic displacements due to the electric field inhomogeneities.

The electrons produced by the ionization are amplified in the proportional wire
chambers positioned in the end-plates. There are 18 wire chambers (‘sectors’) on
each end-plate. In each erd-plate, there are six sectors of type K (Kind), surrounded
by a ring of alternating sectors of type M(Mann) and W(Weib). In order to get
a minimum loss of tracks at boundaries, the sectors are arranged in the ‘zig-zag’
geometry that can be seen in figure 3.8 in order to get a minimum loss of tracks
at boundaries. The gaps between the sectors must be as small as possible. High
precision in the alignment of each chamber with the others is also required because
each radial track is measured by 2 different wire chambers.
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Figure 3.8: View of a TPC end-plate.
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Figure 3.9: View of a TPC wire chamber.

The wire chambers consist on three layers of wires (figure 3.9):

— The gating grid [29] prevents positive ions produced in the avalanches near the
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sense wires from entering the main volume of the TPC, distorting the electric
field. Potentials of V, & AV, (V; ~ —67V) are placed on alternative wires of
the grid. A AV, of 150V was chosen to block both the passage of positive
ions to the drifting volume of the chambers and the incoming electrons in the
wire region. The gate is opened 3 us before every beam crossing. If a positive
trigger signal arrives, the gate is kept open, otherwise the gate is closed after

~ ) pm.

— The cathode wires keep the end-plates at null potential and together with the
central membrane create the electric drift field.

— The sense wires are read out to give the energy deposition (dE/dz) [30] for
particle identification and the 2 measurement of the tracks. For the estimation
of the dE/dx a truncated mean algorithm is used, taking the mean of the 60%
smaller pulses associated with a track. The achieved resolution is 4.6% for

electrons in hadronic events (slightly better for low multiplicity events).

The field wires are kept at null potential to create equipotential surfaces around

the sense wires.

The ionization avalanches created around the sense wires are read out by the
signal induced on cathode pads at a distance of 4mm from the sense wires. The

pads are connected to preamplifiers via wires passing through the structure which
supports the wire grids.

3.3.4 The Electromagnetic and Hadronic Calorimeters

The Electromagnetic [33] and hadronic [?] calorimeters consist both of a barrel and
two end-caps located around the TPC. While the Electromagnetic calorimenter is
placed inside the coil, the hadronic calorimeter is placed outside, which makes it to
be also the return of the magnetic flux of the magnet (figure 3.10).

Both are sampling calorimeters where the main active material is gas. Their bar-
rels and end-caps are divided into modules of 30° in azimuthal angle ¢. These mod-
ules have an small rotation angle between them to avoid cracks in all the calorimeter

system. The modules of the end-caps are also rotated with respect to the ones in
the barrels.
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Figure 3.10: Overall view of the Electromagnetic and Hadronic calorimeters.

The barrels are 4.8 m and 6.3 m long for the ECAL and HCAL respectively. The
ECAL extends from and inner radius of 1.85m to an outer radius of 2.25m and the
HCAL from 3m to 4.68 m.

The modules of the electromagnetic calorimeter, with a total thickness of 22
radiation lengths, consist on 45 layers of lead and wire chambers full with 80%
Xenon and 20% CO; gas. The structure of a single layer consists (figure 3.11) on
a lead sheet, a wire chamber plane (anode plane) made of open-sided aluminium

extrusions and a pad plane (cathode plane) covered by a graphited mylar sheet.

The cathode pads are connected internally forming towers which point to the
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Figure 3.11: View of an ECAL stack layer.

interaction point. Each tower is read out in three sections in depth (‘storeys’). The
size of the pads is approximately 30 X 30 mm? leading to a high granularity (73728
towers). In addition to the signal of the pads, an analog signal is also available
from each anode wire plane. These signals are used for testing and calibrating the

modules and also for triggering.
The achieved energy resolution for electons and photoﬁs is
o(E) 0.178

E VE/GeV

and the angular resolution for charged tracks with | cos @ymack |< 0.98 is

$0.019 | (3.3)

2.5

The hadronic modules have 22 iron sheets, each one with a width of 5cm and
an external plane of 10 cm, with a total amount of iron of 1.20m (7.16 interaction

lengths), which is enough to contain the hadronic showers at LEP energies. Between

+ 0.25)mrad (3.4)
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the iron sheets, there are modules of streamer tubes filled with a mixture of Argon
(21%), CO; (42%) and n-pentane (37%).

Three different kinds of signals are read out in the hadronic calorimeter: Signals
from the pads situated outside the modules containing the streamer tubes, which
are used to measure the energy of the showers; signals from the strips situated along
the streamer tubes modules, which give the pattern of the streamer tubes in the
event and are used as a ‘tracking’ of the showers and; the signal from the wires,

which measure the energy released in the planes and is used mainly for triggering.
The energy resolution is given by:

o 0.85

T~ JBiGev &
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Chapter 4

Event reconstruction and
simulation

4.1 Tracking in ALEPH

Before any measurement of the momentum and track parameters are performed,
the raw data coming from the tracking detectors has to be processed and track
coordinates have to be measured in order to join them together to finally form
a track helix. The next subsections describe the coordinate finding of the three

subdetectors and the track reconstruction from them

4.1.1 Coordinate ﬁnding‘

TPC The TPC measures the ionization induced by a charged particle traversing
the gas volume of the chamber. The cloud of charge is projected onto the TPC
end-plates (by the electric field) and is measured by the sense wires and the pads.
The information coming from both is grouped in hits, which contain the pad or
wire number, the pulse length and the arrival time of each pulse, and digitizations,
that contain pulse-height samples, ie. the details of the pulse shapes [34]. -

The pad hit-data are grouped into two-dimensional clusters; starting with one
pulse, another pulse on an adjacent pad is included if it overlaps the first by at
least one sample. In order to separate, or at least recognize, within each cluster
the contributions coming from different particles, all clusters are analysed again,

this time with the digitization information considered. Peaks that are sufficiently
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isolated from others form subpulses. For each subpulse, both a charge estimate
and a time estimate are made from digitizations. These estimates are used by the
coordinate algorithms. For each good subcluster a three dimensional coordinate is
calculated and errors are determined from the widths, in space and time, of the
subcluster. The r¢ coordinates are calculated by using a Gaussian model of the
pad response if only a few pads are involved, or simply by taking a charge-weighted
average of the positions if many pads are involved. The z-coordinate is always
determined from a charged weighted average of time estimates of the individual

subpulses. All coordinates are corrected for misalignment and distortions of the
drift field.

The efficiency of the coordinate finding has been estimated with MonteCarlo
events and is 92% for particles above 500 MeV and 75% for those with momentum
between 100 and 200 MeV. It should be noticed that the signals in the end-plates
are ~ 1.5cm in r¢ and ~ 2cm in z. Thus, there are cases in which the clusters
belong to more than one track. However, the probability that two tracks overlap
all their clusters is small.

The r¢ spatial resolution depends on the diffusion (which is dependent of the
drift distance), the alignment of the electric and magnetic fields, the localization of
the avalanche in the sense wire, the angle to the track with respect to the pad and
of electronic noise and errors in the calibration. An overall resolution .4 = 173 pm

is measured. The resolution in the z coordinate is o, = 740 um.

ITC The ITC also produces three dimensional coordinates from the raw data

consisting on the wire (channel) number, and the TDC valued in r¢ and z.

The z coordinate is reconstructed from the z digitization using an equation which
relates the digitization value to the time difference (At) of the signals, originating

from a pulse at 2, arriving at the two ends of the wire.

To obtain the nominal r¢ coordinate the wire number is used. The r¢ TDC value
is used to calculate the drift-time. The relationship between the drift-time and the
distance is not linear. The drift-time value is used to generate two coordinates one
on each side, azimuthally, of the anode wire. The proper location of the coordinate
(and its ambiguity) can only be obtained at the tracking stage when the angle of
the track through the drift cell is known,
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The r¢ resolution depends on the drift time, the error being worse close to both
anode and field wires than in between. The resolution is parametrised as a parabola
in azimuthal drift-distance with the minimum of approximately 100 um (occuring

mid-way between the anode and field wires).

VDET The raw data of the Vertex Detector contain the list of channels (and its
pulse-height) in the event with a signal above a defined threshold and the seven
channels of each side of it.

4.1.2 Track Reconstruction

Once all the coordinates have been found, the tracking [35], [36] is done startring
in the TPC by first merging coordinates consistent with an arc of helix less that
7 radians to form a chain. The chains that are determined to belong to the same

helix are linked together into a single track candidate.

Finally, the five helix parameters, as defined in figure 4.1, are determined by a fit
of a helix to the pad coordinates within the first half turn of each track candidate.
To account for multiple scattering within the fit, the coordinate error estimates are
increased in accordance with the distance from the track origin. The fit is allowed
to remove outlying coordinates and to break a track between two coordinates if

there is evidence from the fit of a particle decay. What results, in the end, is a set
of TPC-fitted tracks.

These track candidates are extrapolated to the inner detectors (ITC and VDET)
where consistent hits are assigned. First, the TPC track trajectories are projected
back into the ITC and a search is made for ITC coordinates around each trajectory.
If more than three hits are found a fit is performed and the ITC track is accepted if
the fit satisfies a x? cut. Afterwards, the same procedure is performed with VDET
hits to associate them to the extrapolated ITC-TPC tracks using a x? discriminator
to decide which hit has to be associated to a given track.

Coordinate errors are determined using the preliminary track parameters. The
final track fit based on Kalman filter [37] techniques uses these errors and takes into

account multiple scattering between each measurement.

The track finding efficiency in the TPC has been studied using Monte Carlo
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Figure 4.1: Helix parameters used in the TPC tracking programs: w, inverse radius of curvature;
dg, distance of closest approach to the z axis; zg, # coordinate where dy is measured; ¢q, ¢ at
closest approach to the z axis, and tan A, tangent of the dip angle.

simulation. In hadronic Z events, 98.6 % of tracks that cross at least four pad
rows in the TPC are reconstructed successfully; the small inefficiency, due to track
overlaps and cracks, is reproduced to better than 10~2 by the simulation. The
efficiency of associating a vertex detector hit to an isolated track is about 94 % per

layer, within the geometrical acceptance.

Systematic effects in the tracking parameters come from electric and magnetic
field inhomogeneities, unknowns in the small angle between the axes of the electric
and magnetic fields o from the systematic errors in the drift velocity. The distorsions
induced by these effects can be corrected and affect mainly to the tracks parameters

related with the position of the tracks.

A transverse momentum resolution of

o(1/pr) = 0.6 x 1072 (GeV/c)™? (4.1)
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is measured (for 45 GeV muons). At low momentum multiple scattering dominates

and adds a constant term of 0.005 to o(pr)/pr.

4.2 Enmergy and position reconstruction with the
calorimeters

To reconstruct the calorimetric energy, the hit storeys are combined to find topologic
clusters (a cluster being a group of spatially connected storeys, having at least
one corner in common). In the ECAL, the triggered storeys are scanned and the
first cluster is created if the energy of the storey is larger than a certain amount
(thigh = 90MeV). Then the neighbouring storeys are scanned and they are added
if their energy is larger than t,, = 30 MeV. In a similar fashion, in the HCAL, the

tower information is also reconstructed in the form of clusters.

To associate clusters with charged tracks, the track is extrapolated step-by-step
to the ECAL region. At each step, the ECAL geometry package is used to determine
which storeys are intercepted by the track. Then the clustering algorithm is used to
determine if the storey, or its neighbours, are hit and to which cluster they belong.
A track and a cluster are associated if one point of this track is in one storey of the

cluster or in a storey which has at least one corner in common with the cluster.

The position of the showers is calculated by an nergy-weighted mean of the
position of the individual storeys or towers in the cluster. This is corrected for the

usual ‘S-shape’ effect present in all the granular detectors.

The information from the calorimeters is heavily used in the particle identi-
fication algorithms giving good electron and muon identification efficiencies and,

photon and x° reconstruction.

4.3 Energy flow determination

The energy flow algorithm [38] is used in the event-shape algorithm used for the

identification of different flavour hadronic events. A description of the algorithm is
given in this section.

The simplest way to determine the energy flow of an event recorded in the
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ALEPH detector is to make the sum of the raw energy found in all calorimetric cells
without performing any particle identification. This method yields a resolution of
o(E)/E =1.2/+/E/GeV for hadronic decays of the Z. The energy flow algorithm
developed in ALEPH improves this resolution by making use of track momenta and

taking advantage of the photon, electron and muon identification capabilities.

A first cleaning procedure is done to eliminate poorly reconstructed tracks, V0
not compatible to originate from the nominal collision point, and noisy channels

and fake energy deposits in the calorimeter towers.

After the cleaning, the charged particle tracks are extrapolated to the calorime-
ters, and groups of topologically connected tracks and clusters (called ‘calorimeter
objects’) are formed. Each calorimeter object is then processed using the following

steps.

1. All the charged particle tracks coming from the nominal interaction point or
helonging to a reconstructed V°, are counted as charged energy assuming they

are pions.

2. The charged particle tracks identified as electrons, are removed from the
calorimeter object, together with the energy contained in the associated elec-
tromagnetic calorimeter towers. If the difference between this calorimeter
energy and the track momentum is larger than three times the expected reso-
lution, this difference is assumed to come from a bremsstrahlung photon, and

is counted as neutral electromagnetic energy.

3. The charged particle tracks identified as muons, are removed from the calorime-
ter object, together with a maximum of 1 GeV from the closest associated
electromagnetic calorimeter cluster (if any) and a maximum of 400 MeV per
plane fired around the extrapolation of the muon track from the corresponding
hadron calorimeter cluster.

4. The photons and 7°’s, are counted as neutral electromagnetic energy and are

removed from the calorimeter object.

5. At this stage, the only particles left in the calorimeter object should be charged
and neutral hadrons. The charged hadron energy has already been determined

in the first step, but the neutral hadron energy has not been accounted for.
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Although possible in principle via a specific tube pattern recognition, a direct
identification of neutral hadrons is difficult and has not yet been attempted
for the energy-flow reconstruction. Here, a neutral hadron is identified as a
significant excess of calorimetric energy: in a given calorimeter object, the re-
maining energy left in the calorimeters is summed, after first scaling that from
the electromagnetic calorimeter by the ratio of the calorimeter’s response to
electrons and pions. If this sum exceeds the energy of any remaining charged
particle tracks, and the excess is both larger than the expected resolution on
that energy when measured in the calorimeters, and greater than 500 MeV,
then it is counted as neutral hadronic energy. The ratio of the electromag-
netic calorimeter’s response to electrons and pions has been determined to be
~ 1.3 with test-beam data. However, in order to account for the fact that
low energy photons often escape identification in the preceding step of this
analysis, the ratio is modulated according to the penetration of the particle
and is taken as 1.0, 1.3 and 1.6 in the first, second and third segments in
depth of the calorimeter, respectively.

This is repeated for all the calorimeter objects of the event and results in a set of
‘energy-flow objects’ (electrons, muons, photons, charged or neutral hadrons), also
called particles, characterized by their energies and momenta. To this list are added
all the clusters found in the luminosity monitor, where no particle identification is
available. This list is expected to be a close representation of the reality, i.e. of
the stable particles actually produced by the collision. Since the neutrinos escape
undetected, they cannot be in the list but they should be detected indirectly by the

presence of missing energy in the event.

The energy-flow resolution can he determined from the data using a sample of
selected hadronic events. A Gaussian to the total energy distribution gives a peak
value of 90.5 GeV (62 % from charged particles, 25 % from photons and 13 % from
neutral hadrons), with a resolution of 6.2 GeV. It is well reproduced by a sample
of 700,000 fully simulated hadronic events in which a peak value of 90.7 GeV and
a resolution of 6.5 GeV are obtained. The jet angular resolution is 18 mrad for the
polar angle and 19mrad for the azimuthal angle.
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4.4 flavour tagging algorithms

Two flavour tagging algorithms have been developed in ALEPH. The Impact pa-
rameter tag makes use of the relatively long lifetime of hadrons containing a b quark
to construct the likelihood of a group of tracks coming from the primary vertex to
distinguish between heavy quark events from the light quark ones. The event shape

tag makes use of two global properties of the event to make the same clasification.

4.4.1 Impact parameter tag

The long lifetime and large mass of b hadrons give their decay products large
impact parameters, allowing a separation of these hadrons from hadrons coming
from fragmentation or decay of a ligth quark. This tagging algorithm computes the
probability that a track comes from the primary vertex using the measurement of
its impact parameter. The probabilities of coming from the primary vertex of all
the tracks from a given jet, hemisphere or event can be combined to finally have the

probability that the given object (jet, hemisphere or event) comes from a b quark.

The main tool in the analysis is, then, the impact parameter of a track. The
measurement of this quatity needs, however, a precise estimation of the ete™ inter-
action vertex for each event which needs also the estimation of the overlap region
of the electron and positron beams (beam spot) where it lies on. The description

of each of these measurements follows:

Beam spot measurement. The position of the beam spot is determined by
studying the distance of closest approach of tracks to the coordinate origin in the
r¢ plane, dy. This quantity is signed according to the sign of the angular momentum
component of the track along the beam axis, and in the absence of track distortions,
should have a distribution centered on zero. If the beam spot is not centered on
the coordinate origin, the mean value of dy has a sinusoidal dependence on the

azimuthal angle ¢. This dependence can be seen looking at the relation
dy = do — zpsind + yp cos ¢ — dog - (4.2)

which can be deduced from figure 4.2. d; is the distance of closest approach of

tracks to the beam spot, z; and y, are the coordinates of the beam position and dog
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is an additional offset that takes into account residual tracking effects (alignment

errors, field parametrization, etc.).

d, Track

Figure 4.2: Impact parameter with respect to the coordinate origin and with respect to the
beam spot centroid.

The mean of dy for each ¢ is zero, Thus, the fit to the dependence of < dy > as
function of the angle ¢ gives the coordinates of the luminous region as well as the
value of dgg.

Since there are variations in the crossing beam coordinates even inside the same
fill, this measurement is done every ~ 100 events. For the optics of the LEP ma-
chine, the beam spot is expected to be elliptical in shape in the plane perpendicular
to the beam direction, with the horizontal width much greater than the vertical due
to synchrotron radiation effects. The predicted dimensions are o = 200um and
oy = 12 um, respectively (table 3.1).

Event crossing point measurement. For each event, the measuremet of the
three coordinates of the collision point is needed. To perform this, the event is
clustered in jets using the E clustering scheme with a true mass metric (look at

what it is or reference...) using the energy flow objecs with a yeus = 0.02. All tracks
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satisfiyng minimal quality cuts are assigned to the nearest jet and then projected
into the plane perpendicular to its corresponding jet. The primary vertex in the
plane of each jet is then found. Knowing the direction of each, the projected primary
vertexes are expanded back in three dimensions and all jets are added together with
the beam spot information in the X-Y This way ensures that the hadron lifetime do
not bias the position of the primary vertex introducing correlations in the tagging
algorithm.

~|

Primary vertex Vi
Impact parameter D

Figure 4.3: Definition of the signed impact parameter. See text for details.

Track impact parameter measurement. The impact paramter of a track is
defined as the closest aproach of the track to the production point of the mother
particle of the track. The method to measure this parameter is described in fig-
ure 4.3. The point V is the primary vertex. J is the direction of the mother particle
momentum, as aproximated by the jet direction. "The circular arc represents a track,
assumed here to be a decay product. Point S, is the point -on the track where it
comes closest to the line going through V with direction J. The point $; is used as
an aproximation to the decay point of the track. The track is linearized at g}, and
the signed impact parameter is defined as

~

D =sign(S; - V). J)- D, (4.3)
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being a positive number with value D if the vector 5—'; —V lies in the same direction

as the jet direction J, negative otherwise,

The experimental resolution generates a random sign for tracks which originate
from the primary vertex. The negative tracks form a control sample that can be

used to measure the resolution.

In the tagging algorithm, the statistical significance of the impact parameter of
the tracks, defined as D /oD, is used. The uncertainty in D, op, is computed from
the error matrices from the track and primary vertex, plus their correlations. Since
the error of the track is highly dependento of its angle, the number of VDET hits
and the planes of the VDET that is traverses, this allows to treat all the tracks
nearly uniformly for all the angles and number of VDET hits.

The probability that a track comes from the primary vertex is then defined as
. -|B/es
Pr(D/op) = /_ dz R(x), (4.4)

being R(D/ op), the resolution function, the parametrization of the distribution of

the impact parameter significance for tracks with negative value of D.

The same argument can be extended to a group of tracks forming a jet, an
hemisphere or an event. The variable to compute, Py, is the probability that any
set of NV tracks without lifetime produce the same set of observed probabilities or
any other set of values equally or more unlikely. Being Pr, the individual track

probabilities, the diferential probability for the observed set of variables to happen
is given by
N
= H Pr,. (4.5)
t=1
Considering that all the individual track probabilities belong to a N-dimensional

space, Py can be computed as

N
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which working out the mathemathics, gives

N-1 J
Py=1II- Z (____%El_ (4.7)

and represents the likelihood for the group of tracks of coming from the primary
vertex.

4.4.2 Event shape tag

Events produced by the fragmentation of a b quark are expected to have different
shape that the ones coming from light quarks or ¢ quarks. In general, jets produced
by a b fragmentation and decay are expected to have a larger opening angle due
to the higher mass of the b hadron and the fact that they can decay to a charmed
hadron that would decay afterwards to lighter hadrons, thereby randomizing the

directions of the final particles. This can be used to clasify diferent quark flavours.

Considering all the energy flow objects computed according to the algorithm
explained in section ?7?, the thrust axis of the whole event, defined as the vector T
which minimizes the trust value defined as

>oIT-7il
T=55—-, (48)

> 1]

i=1
where p; is the momentum of the ith particle, is defined. The event is divided in
two hemispheres according to the plane perpendicular to thrust axis and another
thrust axis is computed for each hemisphere. In order to avoid correlations among
hemispheres, only particles forming an angle less than 45° are used. The selected
particles are boosted into the rest frame of each hemisphere before computing the

two variables used: the moment of inertia and the lateral mass.

The moment of inertia is defined as the minimum eigenvalue normalized to the

sum of the three eigenvalues of the inertial matrix which is computed according to

s Pt
Y= 2 T, (49

and . - -
= 3 ) EER) (4.10)

m=1 lpm |
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where p}_ is the ith component of the boosted momentum vector of the mth particle.
The total momentum in the centre of mass frame of the b jets tends to be more
uniformly distributed than the ones for lighter quark jets. Thus, b jets look more
spherical and the three eigenvalues of the inertial matrix tend to be equal. In this
case the moment of inertia tends to its maximum value of 1/3.

The lateral mass is intended to distingush between products of gluon brem-
strahlung and decay products in the final state based on the direction relative to
the boost of the jet. It is defined as the sum of the boosted momenta of those
particles in the hemisphere that make an angle with the hemisphere axis smaller
than cos™(0.75). The distribution of lateral mass for hemispheres produced from
a b quark is peaked at higher values than for the other flavours.
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Figure 4.4: Distributions of quantities used in the two variable hemisphere method. (a) lateral
mass variable, (b) moment of inertia variable, for different Monte Carlo events: b solid line, ¢
dotted, uds dashed. (All curves are normalized to have the same area).

Figure 4.4 shows the distribution for the Moment of inertia and the lateral mass
for the different flavours. Using Monte Carlo, the likelihood that an hemisphere
with a given moment of inertia and lateral mass comes from a Z — bb event [y, is

computed and this is the estimator used in the tag.
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4.5 The Event Simulation

The different physics analyses use Monte Carlo simulated events to evaluate back-
ground contaminations, compute acceptances and efficiencies and, in general, com-
pare theoretical models to the experimental results. These simulated events have
exactly the same format that the real data events, so the same reconstruction pro-

cess is performed in it. The chain to produce them is as follows:

— Generation of the event kinematics. The different particle four-momenta are
generated according to the different physics processes (in parentheses the

names of the computer programs used).

— ete™ — ptp~ (KORALZ [15)).

— ete” — vt~ (KORALZ).

— etem - ete- (BABAMC [16]).

— ¢te- —qg (LUND [17] + DYMU[18)).
— etem — £+4-(£+6-) (PHOPHO [19], [20).

In ALEPH, all these programs have been unified through the common inter-
face KINGAL [21].

— Simulation of the detector. This is done using a GEANT [22] based program
(GALEPH [23]) where all the information about the geometry and materials
involved in the experimental setup are described. For the tracking simula-
tion, the primary long-lived particles are followed through the detector. Sec-
ondary particles are also produced by interaction with the detector materials.
Bremsstrahlung, Compton and ionization are some of the processes simulat-
ed. GEANT and GHEISHA [24] are used to simulate the electromagnetic
and nuclear interactions respectively. Digitization or simulation of the detec-
tor behaviour. The energy depositions are converted to measurable electrical
signals. The complexity of the TPC required the development of a special
package (TPCSIM) for its tracking and digitization. Also, a simulation of the
trigger with the same conditions as the real one in implemented.
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Chapter 5

Data used in the analysis

This chapter describes the data used in the analysis. It is important to have as much
information as possible for different flavour-quark samples. Thus, light(uds)-,c-
and b-flavour enriched scaled energy distributions are measured besides the scaled
energy distribution for all flavours that tives the information to the evolution of
the fragmentation functions. The selection, correction and systematics estimates
procedures are explained in sections 5.1 and 5.2. The estimation of the correlation
errors among all there distributions is explained in section 5.4 Useful information
on the gluon fragmentation function is obtained in the analysis of three jet events
and the measurement of the longitudinal and transverse scaled enegy distributions.
These measurements are described in sections 5.5 and 5.6, respectively. Finally, the
scaled energy distributions measured at lower energies by other experiments than
ALEPH, and the error assumption made in the normalization errors are described

in section 5.7.

5.1 Selection of hadronic events

Before any flavour identification, a good selection of hadronic event has to be made.
Since the interest is in the scaled energy distribution and the available statistics of
around 20 tracks per event is rather high, the interest of the global selection is
in avoid possible biases that would result in high correction factors rather than in

optimizing the selection efficiency.

For each event, only charged tracks with more than 4 TPC hits, originated in a

cilynder of radius dp = 2cm and length of 2o = 10 cm, forming an angle with the z
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axis, #, between 20° and 160°, and with a transverse momentum, p;, with respect to
the z axis exceeding 0.2 GeV /c are considered in the analysis. Tracks passing these
requirements are called good tracks. An hadronic event should have more than four

of these good tracks and their energy must sum more than 15 GeV.

The sphericity axis, defined as the eigenvector corresponding to the minimum

> pint
i
P
1

is computed in the events passing the above selection cuts. Only those evetns in

eigenvalue of the tensor

Sra.b

(5.1)

which the polar angle of the sphericity axis, 0.y, lyes between 35° or above 135°
are accepted. Since the opening angle of a jet is roughly 15°, this cut avoids larger
correction factors removing those events that would not be fully contained in the

detector acceptance.

A total of 911539 events from 1992 and 1993 LEP run periods with a center of
mass energy of...(at peak) fullfil the requirements to be considered hadronic, the
selection efficiency being 77%. The background was estimated from Monte Carlo,
being the main contribution the one coming from taus (0.3%) and the ones from
bhabha and dimuon events being negligible (0.004% and 6.10°% respectively). No
Monte Carlo two photon event passed the selection cuts.

5.2 Scaled energy non-flavour tagged distribution

For each event, the variable 2g = Ey/Epear, 1s computed for each charged good

track, with E,. being the energy of the track assuming the pion mass.

The raw data distribution is normalized to the total number of events such that,

for each bin
1 NF

Fhraw = Nevents A(IJ,‘ '
where NJ™ are the number of tracks such that its variable zg lies within the bin
interval and Az; is the width for bin <.

(5.2)

The distribution is corrected, using standard Monte Carlo methods, for effect-
s of geometrical acceptance, detector efficiency and resolution, decays, secondary

interactions, initial state photon radiation and mass of the particles.
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To perform the correction, hadronic events were generated using the generators
HVFL03 and HVFL04 [?]. The events generated with HVFL03 were used for the
simulation of the 1992 geometry and efficiency. The 1993 data was simulated with
the HVFL04 Monte Carlo. The main differences between them comes in the update
of heavy flavour branching ratios and differences in the modeling of the hadronic
decays of b hadrons. Initial state radiation is included in the simulation. The
generated events were passed through the detector simulation program. The same
procedure was performed for 7, Bhabhas, dimuon and two photon events using
KORALOZ [?] and BHABHA [] as generators. The same selection and analysis
procedure was performed for the simulated data and distributions ¢ sim containing

the hadronic events and all the background sources, were constructed.

Hadronic events were also generated using the HVFL03 and HVFL04 generators
with neither initial state radiation nor detector simulation and with the requirement
that all particles with mean lifetimes > 107°s are stable. All charged particles were
used to construct the o;ge, distribution were, in the computation of zg, the true

mass of the particles is used to compute the energy.

Corrected data distributions were obtained using the bin-by-bin ration of the
generated and simulated distributions according to

Ticorr = Cz’ Oiraw = Tigen Oiraw- (53)
1,8tm
The distributions were corrected separately for 1992 and 1993 data taking peri-

ods to take into account the proper detector configuration for each year. Afterwards,
both corrected distributions were combined.

Althouth this correction can induce a small biass towards the model, the fact
that the simulated and raw data agree and that the correction factors are relatively
small indicate that this bias is not large. Figure 5.1(a) shows the correction factors,
C;, applied i~ the all flavour distribution. They are arround 7% or bellow in almost
the whole interval, except the bins at larger momentum. This is due to the TPC
momentum smearing. The reconstructed momentum error in the TPC is nearly

gaussian in the inverse of the momentum. Thus, the momentum track distribution
can be given

dn 1 ~ 2
_ﬁ__exp(_l/p <l/p>) ’

O1/p

(5.4)
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which has non gaussian tail at large momentum. This causes particles above
~ 30 GeV to be more probably measured at higher momentum than at lower one.
Since the scaled energy distribution is falls off rather steeply there are more parti-
cles at low momentum that then to populate the high momentum bins. This makes

the correction factor in the last bins to be even above 20%.

Figure 5.1(b) shows the corrected scaled energy distribution for the normal
flavour composition The continuous lines show the same distribution constructed
with different Monte Carlo models. The differences between the corrected data and
the different models can be seen in more detail in figure 5.1(c) where the quantitiy
(Model —Data)/Errorata, being Errordq, the total statistical and systematic error
of the distribution, is plotted for the different models. While the HVFL Monte
Carlo, which is the one used in the.correction procedure maintains a difference
bellow three sigmas in the whole energy range, the rest of models disagree up to
eight sigmas in, specially in the high energy range. The reason for this should be
looked for in the better paramter tunning of the HVFL Monte Carlo, specially in

the heavy flavour hadron decay branching fractions.

Systematic uncertainties due to: (a) possible discrepancies between the real and
the simulated detector performance and, (b) due to the QCD generator chosen to

calculate the correction factor were taken into account,

To estimate the uncertainties of the first kind, all the selection cuts were varied,
once at a time, taking alternatively the values listed in table 5.2 and the same
correction and combination procedure was used to produce analogous corrected
distributions for each set of cuts. In each bin, the maximum change with respect
to the standard set of cuts corrected distribution was taken as the systematic error.
Figure 5.2 shows these differences in number of statistical standard deviations of
the reference distribution. The maximum variation comes from accepting events
with four good tracks, were a large 7 contamination enters and from the change in
the cuts in the angle of the sphericity axis. Most of the differences are below one

standard deviation showing the robustness of the selection criteria.

To estimate the systematic uncertainties coming from the QCD generator cho-
sen, a simplified method wich does not use the full detector simulation performance,
was applied. Five million events were generated using the ARIADNE [?], NLLJET
[?) and JETSET PS[?] generators. HERWIG [?] was not used in this procedure
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Data used in the analysis
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Figure 5.1: Correction factors applied to the all-flavour inclusive energy distribution(a), cor--
rected distribution and comparision with different MonteCarlo models (b), and deviation of the
models from the corrected data measured in number of standard deviations, where the error
includes statistical and systematical sources (c).
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Standard cut Variation 1 Variation 2
Nrpc 2 4 Ntpg >3 Nrpg 2 5
dp <2.0cm do <1.5cm dy < 3.0cm
zo < 5.0cm 20 < 3.0cm 20 < 10.0 cm
20° S etrack S 160° | 30° ..<.. atrack _<_ 150° { 15° S otrack S 165°
pt 2> 200 MeV p: > 150 MeV pt = 400 MeV
Ngood >5 Ngood >4 Ngood =7
th Z 15 GeV EOh Z 10 GeV ECh 2 25 GeV
35° S aspher < 145° | 45° S 0spher < 135° | 65° < aspher S 155°

Table 5.1: Definition of the cuts for the standard analysis and the variation made for the
systematics estimation. Each cut was varied at once taking, alternatively, the values in the
two columns labelled as Variation 1 and Variation 2, and the analysis was repeated for each
combination. The rest of the cuts remain at their standard values.
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Figure 5.2: Differences between the distribution constructed with the standard selection cuts
and the ones varying one of the cuts at a time, This difference is shown in number of statistical
standard deviations of the reference distribution.
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because the available version (5.6) does not reproduce the angular distribution of
the data and the lower versions do not give the correct scale energy distributions.
Thus, including it would give an artificial increase in the systematic uncertainties.

Simplified correction factors were computed for each model using the ratio of the
generated distribution and the distribution containing contains tracks and events
that fullfill the same selection criteria that for the standard data. The fact that
no TPC smearing resolution and efficiency is taken into account in this simulation
makes these simplified correction factors to be rather smaller than the ones coming
from the full simulated distributions. Nevertheless, it is expected that when all the
detector effects would be included, the differences between the models remain the
same and that the maximum relative difference between the simplified correction
factors is a good estimation of the systematic errors coming from this QCD model

generator dependence.

The statistical error and the systematics coming from the limited statistics of the
Monte Carlo used to perform the correction procedure, the selection cut variation
and the QCD model dependence were added in quadrature to compute the total bin
by bin error of the distribution. A common normalization error, wich is correlated,
not only in all the bins, but also in all the distributions is also added in quadrature

to the total error. Table C in appendix C lists the cross-section and all the error
contributions for all the bins.

5.3 Enriched flavour distributions.

Since the distributions for the light quarks (u,d,s) are expected to be almost indis-
tinguishable, three different enriched flavour distributions were prepared: for light,
c and b quarks. This section describes the measurement of these enriched flavour

distributions two tagging algorithms used to construct them.

To prepare a sample of enriched flavour distribution, the same selection cuts as
described in section 5.1 were first applied. The selected events were then divided in
two hemispheres separated by the plane perpendicular to the thrust axis. The two
flavour tags described in sections 4.4.1 and 4.4.2 were applied to the two hemispheres

of the event giving the estimators Py and Iz, respectively, for each hemisphere.

In order to reduce the bias introduced by the tagging algorithm (which is more
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efficient for events with large charged multiplicity) thr algorithm is applied only
to the tracks of the first hemisphere. If that hemisphere passes the selection cut,
the other one is used to measure the charged particle spectrum, weighting each
track with a factor of two. Finally, since the two hemisheres are independent, the

procedure is repeated with the tag applied to the second hemisphere.

This procedure makes the assumption that the correlations of the tag among
hemispheres is small. It can be shown that, for the lifetime tag [?], this correlation
is smaller than one per cent for the cut in Py used in this analysis. In the case -
of the event shape tags, these correlations are already small by construction, since
only particles forming and angle bellow 45° with the jet axis are used in the vari-
ables. Residual correlations between the hemispheres are taken into account in the

correction procedure.

The b enriched distributions only make use of the lifetime tag to remove those
events with high probability that their tracks come from the primary vertex. The
same technique, but accepting only the hemispheres with high Py is used construct
the uds enriched distributions. For the c enriched distributions, the use of a window
cut lifetime tag together with the enhancement of b events produced by the cut in
the event shape likelihood, [y, was necessary to obtain a slightly better ¢ purity
that was possible with the lifetime tag alone.

A total of nine distributions were formed using both tags. Table 5.3 shows the
cuts applied in the two algorithms to construct them and the flavour composition
of each one together with the efficiency of the cut (without including the global
~ 77% of the hadronic selection) for the flavour that is enriched in each one. Those
labeled with ‘stand’ are the ones that are used in the nominal analysis and the ones
with ‘+’ and ‘—’ are more enriched and less enriched distributions to study the

systematic errors coming from the tag.

The same systen\mtic error estimation and correction procedure described in
section 5.2 was used in the tagged distributions. Systematic effects coming from
the possible deffects in the simulation of the flavour tag will be taken into account
in the o, measurement but they have not been included in the measurement of the

enriched flavour distributions.

The corrections were made using distributions generated with the same flavour

composition as the ones resulting applying teh different tag algorithms to the Monte
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| Dist. Name | %uds | % c| % b [ Efficiency | Cut definition
uds-enr. (stand) 78.9 1 145 | 6.6 | €ug, = 74.0 P, >0.3
uds-enr. (~) 75.0 | 16.1| 8.9 | €uqs = 91.0 P, >0.1
uds-enr. (+) 82.8 1125 | 4.7 €ygs = 37.8 Pp > 0.7
c-enr. (stand) 38.2 | 35.1|26.7]e=9.0 0.001 > P, > 0.07,1, <£0.2
cent. (=) 411315 | 274 |e. =159 |0.00056 > P, > 0.12,1, <0.25
cenr. () 35.6 | 360 | 27.5 |, =6.2 | 0.001 > P > 0.05,0, < 0.18
b-enr. (stand) 221 731905 | e =325 Py, <0.001
benr. (=) 351 9.7 868 | & =307 P, < 0.003
b-enr. (+) 091 391952 ¢=213 Pr, £0.0001

Table 5.2: Flavour composition of the different distributions considered in the analysis. For each
distribution, the flavour composition is shown and the efficiency of selecting those flavour events
that want to be enriched. Also the cuts applied to the hemispheres for the lifetime tag (Py) and
the event shape tag (Ls) are shown.

Carlo sample after detector simulation. Figures 5.3,5.4,5.5(a) show the correction
factors applied in the enriched flavour distribution marked as ‘stand’ in table 5.3.
While they are comparable to the ones shown in figure 5.1(a) corresponding to the
all flavours distribution bellow 2 ~ 0.6, differences arise above this limit going from
~ 15% for the uds enriched flavour distribution (figure 5.5(a)) up to more than 50%
for the b enriched flavour distribution (figure 5.3(a)). ‘This effect can be explained
again by the TPC momentum esmearing described in section 5.2. The more steeply
droping distribution for the b enriched flavour distribution accentuates the effect
while the harder momentum distribution of the ligth quarks gives correction factors

even smaller that the all flavour distribution for the large momentum bins.

Figures 5.3, 5.4,5.5(b) and (c) show the corrected distributions and their com-
parision with the different Monte Carlo models. Tha larger discrepancies arise in
the b enriched flavour distribution which should be atributed to a lake of branching
ratio tuning as was pointed out in section 5.2. The good agreement seen for the ¢
enriched flavour distribution (figure 5.4(c)) should be attributed to the larger errors
rather than a better agreement with the Monte Carlo models.

Figure 5.6 shows all scaled energy distributions where the differences betweent
the light and heavy flavour enriched samples can be better appreciated.

Tables C,C,C, in appendix C lists the cross-section and all the error contributions
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Figure 5.3: Correction factors applied to the b enriched flavour inclusive energy distribution(a),
corrected distribution (b) comparing it with different MonteCarlo models and deviation of the
models from the corrected data measured in number of standard deviations (including statistical

and systematic error (c).
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Figure 5.4: Correction factors applied to the ¢ enriched flavour inclusive energy distribution(a),
corrected distribution (b) comparing it with different MonteCarlo models and deviation of the

models from the corrected data measured in number of standard deviations (including statistical
and systematic error (c).
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Figure 5.5: Correction factors applied to the uds enriched flavour inclusive energy distribu-
tion(a), corrected distribution (b) comparing it with different MonteCarlo models and deviation
of the models from the corrected data measured in number of standard deviations (including
statistical and systematic error (c).
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Figure 5.6: Measured scaled-energy distributions corrected for detector effects (symbols) and
comparison with the predictions from HVFL. The distributions are normalized to the total number
of events. Error bars include statistical and systematics uncertainties. The same binning is used
for the inclusive and flavour-tagged distributions.

for all the bins for the standard flavour enriched distributions.

5.4 Correlation between the quark distributions

Apart from the statistical and systematic errors coming from the selection cuts or
from the Monte Carlo model used in the detector correction, there exist correlated
errors between the bins of all the measured distributions. One affects all the bins
of all the measured distributions and it comes from systematic uncertainties in the

normalization of the distributions. The other comes from the fact that some tracks
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enter more than one distribution.

5.4.1 Normalization errors

The scaled energy distributions are normalized such that the integral of them is the
mean number of charged tracks per event. Thus, any uncertainty in the charged mul-
tiplicity would affect at all the bins of all the distributions. The study of the charged
multiplicity of hadronic events was already performed by ALEPH in [41]. The error
in the total charged multiplicity is about 1% and is mainly coming from the uncer-"
tainty in the multiplicity of trakcs with transverse momentum below 0.2 GeV /c and

from the uncertainty in the simulation of accepting tracks from photon conversions.

Any uncertainty of this kind in one bin of one distribution will affect the consec-
utive bins and also all the bins of all the other distributions since the events taken
are the same. Thus, a 1% error has been added in quadrature to all the elements

of the covariance matrix formed from all the distributions.

5.4.2 Common-tracks correlations

Since all the tracks that enter in one bin of one of the tagged distributions enter
also in the analogous bin of the distribution corresponding to all flavours, there is
a statistical correlation between these bins. The cuts used for the flavour enriched
distributions have been chosen to be exclusive and the binning is the same in all the
distributions. This makes these correlations not to be present between analogous
bins of different tagged distributions neither between different bins of the same or
other distribution.

Suposing the number of tracks entering bin ¢ in the all flavours distribution is

n and that the number of tracks in a given flavour tagged distribution for the

same bin is ni*, being n{* < n;, the correlation coefficient that should be included

in the corresponding element of the covariance matrix is

tag ) tag
tot,fag __ i U

U 1

i / / tot *
1 g
n,-ag nfot ’l’l1

tag
O_fot,tag - I ngt Ufot,stato_:ag,atat (56)
TLiOt

(5.5)

Therefore,
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was added in quadrature to the apropiate covariance matrix element.

5.5 Three-jet events gluons distribution

The gluon fragmentation function can be extracted directly from the data using
three jet symmetric events. These events are characterized by two of the jets having
essentially the same energy and the angular separation between any of the two lower

energetic jet and the highest energetic jet being in the range 150° £ 7.5°.

The most energetic jet has a high probability of orignitaing from a quark or
an antiquark. To identify the gluon jet from the two lower energy jets a b anti-
tagging method is used. If one of the two jets carries significant impact parameter
information associated with a heavy quark jet, it has a high probability of being a

b jet. The remaining jet is then tagged as the gluon jet.

Two samples of jets were prepared. In the symmetric S-sample no gluon jet
tagging is applied and contains the two lower energetic jets from all the events. This
untagged mixture contains PgS = 48.5% of gluons and 51.5% of quarks as computed
by Monte Carlo. In the tagged T-sample, only those jets not tagged as coming from
a b quark are considered. The gluon purity in this sample is PgT = 90.0%.

Any observable, A, can be measured in both samples and extract the measure-
ment for gluons and quarks, Ay and Ay, from the following relations for the S- and

T-samples
AP =P A +(1-F))- A, (5.7)

AT =Pr. A, 64,4+ (1 - PF) 4,54, (5.8)

where §.4,(,) is a measurement of the bias coming from the fact that the tagged
sample is largely enriched in jets coming from b quarks. This bias has to be stimated
from Monte Carlo and is given by

AM T

Ay = A?\%,s, (5.9)
9(q)

where A%IC)Y’T and A;V(IS’S are the MonteCarlo measurements for correctly identified
gluons (quarks) jets in the tagged and symmetric configurations. Further details of

the procedure to estimate the purities and the corrections ca be foung in [42]
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The gluon fragmentation function extracted using the technique described above
is presented in figure 5.7 and in table ?? in appendix C The mean energy of the
gluon jets is 24 GeV.
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Figure 5.7: Gluon scaled energy distribution measured in three jet symetric events.

5.6 Transverse and longitudinal distribution

The longitudinal and transverse cross sections defined in equation 2.21 are know
to be useful for the extraction of the gluon fragmentation function throught e-
quation' ??7. They can be extracted from the data, either by fitting the angular
dependence for each value of z [?], or by weighting each by weighting the double-
differential cross section with respect to « and cos 8 with the appropriate weight
to project onto the (1 4 cos®#) component (transverse) or the sin®f component
(longitudinal): ' |
doT +v d?c

el dcos § Wi, r(cos 8, v) T

(5.10)

with [?]
Wi(cosb,v) = [v2 (5 + 3'02) —5cos? 6 (3 + v2)] J4v® (5.11)
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and

Wr(cos,v) = [5 cos® § (3 - v2) —v? (5 - 3v2)] /20° (5.12)

being the longitudinal and transverse projectors, respectively, and v defining the

detector acceptance, which is considered to be constant in the range |cosf| < v =

0.94.

The event and track selection are the same as described in section 5.1 except
that the requirement on the sphericity axis is removed for the measurement of the
longitudinal and transverse distributions, because it would introduce an effective
strong cos f dependence in the track selection efficiency. Due to lack of statistics
in the measurement of the longitudinal distribution, the binning was changed with

respect to the othre measured distributions.

The selected tracks are then used to construct the inclusive transverse and lon-
gitudinal distributions according to

1 dobT ( d’o

dz dcos 0

3 v*  doTl/dz 3
= (tl%SWL(COS 0,'0)) Z [’U + —3—' + m(v - ) y (513)

Ctot dCE

Z Wi (cos 9,'0)) ’ dcos 0

tracks

where W, 7(cos 0, v) are given in equations (5.11) and (5.12). The factor acompain-
ing the sum is not depending on the acceptance cut and the ratio or the longitudinal
and total scaled energy distributions for the corresponding bin. However the de-
pendence on the ratio of the distributions is of the order of 1.5% for the values
of the distributions measured. Therefore, it was assumed that this dependence
would be taken into account in the correction factors and the expression (5.13) was

approximated by

1 daL'T_
Ttot dz B

> WL,T(cosa,v)) % [v + 3’; + <%>(v - v3)} (5.14)

tracks

which, for v = 0.94 is ~ 0.915 with small variations with the value of <j‘i—”—,i,%>.

The correction procedure is performed bin by bin in the way described in sec-
tion 5.2, Figures 5.8 and 5.9 show the correction factors and the comparision with
different Monte Carlo models for the transverse and longitudinal scaled energy dis-
tribution, respectively. The only significant discrepancy in between ARIADNE

and the corrected longitudinal distribution. While the correction factors for the
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Figure 5.8: Correction factors applied to the transverse inclusive energy distribution(a), correct-
ed distribution and comparision with different MonteCarlo models (b), and deviation of the models

from the corrected data measured in number of standard deviations, where the error includes
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Figure 5.9: Correction factors applied to the longitudinal inclusive energy distribution(a), cor-
rected distribution and comparision with different MonteCarlo models (b), and deviation of the
models from the corrected data measured in number of standard deviations, where the error

includes
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transverse scaled energy distribution (figure 5.8(a)) are rather similar to the corre-
sponding ones for the total distributions (figure 5.1(a)), the ones for the longitudinal

distribution (figure 5.9(a)) deserve more explanation.
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Figure 5.10: Angular efficiency of charged tracks (a) and angular difference between Monte
Carlo simulated data and real data (b).

Figure 5.10(a) shows the tracks selection efficiency for tracks inside the the
acceptance of v = 0.94. The hypothesis that this efficiency is constrant over in all
the angles is not true and this causes these the correction factors, specially for the
longitudinal distribution, to be larger. To confirm this hypothesis, studies with a
toy Monte Carlo, parametrizing the angular track selection efficiency to the sum of a
cubic polinomial and a hyperbolic tangent as a function of §. This parametrization
is shown by the continuous line in figure 5.10(a). The correction factors obtained
with this toy Monte Carlo follow the qualitative behaviaour of the ones shown in
figure 5.9(a). Thus, would be avoided correcting the angular distribution before
projecting the double differential cross section.of = and cos @ into the longitudinal
and transverse distributions. However, conceptually is the same that include this

effect in the bin to bin correction made.

Figure 5.10(b) shows the angular differences in between real and simulated data.
There exist differences bellow 1% in almost the whole angular interval, except for

angles bellow ~ 25°, To take into account, the analisys was repeated with this value
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for the acceptance and the difference with the nominal distribution was taken into
account in the systematic error computation whihc followed the same procedure

explained in section 5.2.

The cross sections and the detailed error contributions for the transverse and
longitudinal scaled energy distributions are given in tables C and C in appendix C.

For the measurement of the longitudinal and transverse distributions the re-
quirement on the sphericity axis is removed, as it would introduce a strong cos 8
dependence in the track selection efficiency. This effect is taken into account in the
correction procedure, which is identical to that used for the other distributions. Al-
though it leads to somewhat larger corrections those are well understood, with the

uncertainty in the reconstruction efficiency propagated into the systematic errors.

5.7 Low energy data

In addition to the ALEPH data, inclusive charged particle spectra from TASSO [43]
at /s = 22, 35 and 45 GeV, MARK II [44] and TPC/2y [45] at /5 = 29 GeV,
CELLO [46] at /s = 35 GeV, AMY [47] at /s = 55 GeV and DELPHI [48] at
Vs = 91.2 GeV have been used. Lower-energy data have been discarded because

of the larger size of power-law corrections.

Further treatment to the errors was done in the cases where normalization er-
rors were not specified. In some cases neither statistical and systematic errors were
separated. The principle to estimate the normalization error was to take the min-
imum percentual systematic error as normalization error. To perform this, first
the statistical errors were computed from the published number of event used in
the measurement. This error was subtracted in quadrature to all the bins to com-
pute the systematic error. The minimum percentage of computed systematic error
was taken as percentual normalization error for all the bins. Table 5.7 shows the

normalization errors for all the experiments used in the analysis.
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r Experiment [ Normalization error
Tasso (22 GeV) 2.3%
Tasso (35 GeV) 1.0%
Tasso (44 GeV) 1.5%
Mark II (29 GeV) 1.5%
TPC/2y (29 GeV) 3.2%
Amy (55 GeV) 0.4%
Delphi (91.2 GeV) 3.0%
Aleph (91.2 GeV) 1.0%

Table 5.3: Normalization errors used in the x-inclusive distributions for all the experiments used
in the analysis. The errors on TPC/2v, DELPHI and ALEPH are from the published papers.
The rest are estimated as explained in the text.
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Chapter 6

Description of the analysis

In chapter 2 was shown that the effective fragmentation functions evolve with the
energy in a way that is predictable by perturbative QCD. This evolution depends
on «,. Therefore, data at different centre-of-mass energies can be used to extract
a value of the strong coupling constant in an analogous way as it is done in deep-
inelastic scattering with the structure functions, which evolve following analogous

evolution equations as the fragmentation functions in ete™ annihilation.

Schematically, a QCD test based on measurements of inclusive cross sections at
different centre-of-mass energies, E,,, can be visualized as shown in figure 6. As-
suming a given set of fragmentation functions is specified at an initial factorization
scale p;, perturbative QCD relates those fragmentation functions to an observable
cross-section which, after inclusion of the non-perturbative power-law corrections,

can be compared with experimental data (horizontal arrows). The natural choice

Input Measurement at Ecn, = /5;
D(z, u?) = QCD(g},s) — do ;i — NP —terms — dawse;
3
QCD(?, %)
\J Measurement at Ec,, = /3¢
D(z,u3) - QCD(uds;) — 9284 NP —terms — d"je

Figure 6.1: Scheme of the scaling violations analysis
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is p; = s; and py = sy. Since the fragmentation functions are not calculable in
perturbative QCD they can be adjusted such that the theoretical prediction agrees
with the data at a given energy. However, having once fixed the initial conditions,
a QCD test can be performed by comparing the QCD prediction for various centre-
of-mass energies to actual measurements. The energy evolution (vertical arrows)
of the fragmentation functions again is described by perturbative QCD. Here the
renormalization scale u% appears, i.e. the energy variation of the fragmentation
functions at the scale y is expressed as function of 4 and the renormalization point

p%. The natural choice is up = p

Although the analysis scheme presented seems to be simple, there are some
practical problems that have to be solved before a reliable measurement of ¢, can
be performed. An important one is the fact that there exist evolution equations
for fragmentation functions corresponding to each flavour and the gluon, and none
of them have been measured isolated so far at any energy. In fact they cannot
be measured directly, but their value should be infered from their relation to the
measurable cross-sections as given in equation (?7?) and as described above. The
measurement of the fragmentation function for each flavour would have little impor-
tance if flavour percentage composition would be the same at all the energies. But
this is not the case as it was shown in ?? Thus, the b-flavour softer fragmentation
function enriched composition of the scaled energy distribution at LEP with respec-
t to lower energies, would be a source of fake scaling violation that have nothing
to do with strong interactions. Even if these measurements are made, the coarse
binning of the data does not allow to do an accurate enough evolution without a
parametrization of the fragmentation functions, which should be supported by some
physics arguments.

Another still undefined part of the analysis is the introduction of the non-
perturbative contributions to the evolution. In sections ?? some sources of power-
law corrections were presented. There are corrections that go as 1/4/s and another
ones that go as 1/s. Although it is expected that the dominant one is coming from
hadronization corrections (section ??), which go as 1/4/s, the actual form of the
non-perturbative contribution to the evolution are not know and some parametriza-

tion has to be performed also in these terms.

Still some more practical problems arise. The evolution equations and the ones

that relate the fragmentation functions with the cross-sections are not at all triv-
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ially solvable equations. The methods to handle this numerical problem are also

described in this chapter.

6.1 Evaluation of the Convolution Integrals

The equations relating the fragmentation functions to the measured cross-sections
(section ??) and the evolution equations themselves (section ??) contain multiple
convolution integrals of the type

/ "4z P(2)Q(a/2). (6.1)

As the functions P and ) are rather complicated expressions of their argument,
a fast algorithm to perform those integrals, which avoids a lot of slow numerical
integrations, has to operate on tabulated function values. Thus, a uniform coverage
in = and z, based on n subdivisions of the interval [0,1] would require to tabulate
P(2) on n, and Q(z/z) on n? grid points, which already for a moderately small

coordinate spacing results in huge memory requirements.

These can be avoided going to another set of variables. Since the evolution
of the fragmentation functions at a fractional momentum z, only depends on the
values of the fragmentation and splitting functions at £ > zo, the analysis can be
restricted also to a finite region in Inz. It is therefore possible to substitute z and

z by t = In(z) and v = In(z). In these variables equation (6.1) becomes

1 0 L.
L dz P(2)Q(z/7) = / dt Bt)O(u — t) (6.2)
with
P(t) = ¢'P (et) and Qu—1)=Q (e“‘t) : (6.3)
Choosing an equidistant grid in the new variables allows to evaluate the convolution

integrals based on the same number of tabulated points for both P and Q. Indexing

the grid points from 1 to n, the convolution integral (6.2) can be approximated by
the sum

[ 4z Pl ~ & 3B s (6:4)

i=k
where k is the index of the first P; such that P(z > z) and A is the grid spacing in
the transformed variables. The original convolution integral has been turned into a

scalar product between two partial arrays of tabulated function values.
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An algorithmically simple way to do the convolution integrals is only one aspect.
In addition high numerical accuracy is required. The simple unweighted sum (6.4)
evaluates the convolution integral with a residual error O(A). This can be improved
to O(A*) with only minimal additional computing costs by using the alternative
extended Simpson’s rule [39], where (6.4) is improved by adding a correction term
which only depends on the function values at the first and last four knots. The al-
ternative extended Simpson’s rule requires at least N = 8 knots where the integrand
is evaluated. The cases N < 8 have to be dealt with individually.

A collection of integration rules for arbitrary N > 0 is given below. Information

about how they are derived can be found in [39]. Let

/a "o flz) =1 (6.5)

be the integral to be evaluated. Estimates for I shall be based on N evaluations
yr = f(zk), k=1,..., N, of the integrand on an equidistant grid with grid spacing
A. If both endpoints are included, 2; = ¢, A = (b—a)/(N —1) and zy =b. A

complete set of closed quadrature formulas Iy is given by:

I, =0 (6.6)
A

I, = —2‘(% + y2) (6.7)
A

I; = ‘g(y1 + 4y + ys) (6.8)
3

Iy = ’8‘A(y1 + 3y2 + 3ys + y4) (6.9)
A

I; = 3(?;/1 + 4y + 2ys + 4ys + ys) (6.10)
A

Iy = (17y1 +59y; + 44ys + 44ys + 5995 + 17ys) (6.11)
A

I = S (y1+ 4y + 2ys + 4ys + 245 + dys + y7) (6.12)

N A
In = A y— Zg(31y1 — 11y; +.5y3
k=1 ’ .
—Ys —Yn-3 +dyn—2 — llyn—1 + 3lyy) N 2>8. (6.13)
For functions which are difficult to evaluate at z = b, a modified set of open

quadrature formulas I7; can be derived. Here the information from the given grid
points is extrapolated into the region between zy and b. With zy = a, A = (b—a)/N
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and zy = b — A, the following expressions, which are of the same accuracy as the
closed formulas given above are obtained:

If = L+Ay (6.14)
A

If = h+506ym-u) (6.15)
A

If = L+ 5(23ys — 162+ 5y1) (6.16)

A
I = In+ —22(553;1\; — 59yN-1 + 3Tyn—2 —Yyn—3) N >4 (6.17)

6.2 Methods to solve the Evolution equations

Looking at the non trivial structure of the evolution equations (2.38), it can be
deduced that is almost unavoidable to use some numerical method to solve them.
The standard method used in the analysis is the Runge-Kuta method. However, in
some cases, different approach can be useful. The Moment analysis, apart of being
an elegant method, allows to solve the equations analytically, at least, restricted to
first order in a;. This is no longer true when order o? is introduced. Therefore, this
method is only used in the study of Monte Carlo models to try to have an insight

in the parametrization of the non-perturbative terms.

6.2.1 Runge-Kuta Method

The general problem of solving a system of differential equations of any order can

be reduced to solve a coupled system of N first-order equations like

dyi(z . dij(z >
_(Z;_):fi(m;yl,'“)yl\f)) 2:1""’N — —%:f(x,if) (618)

Knowing the solution at a point z,, a solution can be found at the point z,4; =
zn, + h with

Y1 = U + b flen, §(2a)) + O(?) (6.19)
However, the method above is unstable and not enough accurate. Instead, the

fourth-order Runge-Kuta method, which is more robust and precise, can be used [39].

For each step in the solution, the following sequence of evaluations must be made
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for each of the f;

ky = hf(mmyn)

h k
ky = hf(wn+'2‘7yn+'§)
h ko
ks = hf($n+§7yn+3')

ks = hf(n+h,yn+ks)
ki ke ks s

2
Yn+1 —yn+6+3+3

s 5+ O(h%) (6.20)
where f stands for any of the f;. It is easy to transport the method described in
equations (6.20) to the evolution equations (2.38), where the right-hand f; of (6.20)
are the convolution integrals, & is the evolution variable, log 1/s, and the y are each
of the values of the tabulated fragmentation functions. The value of h was chosen
to be the logarithmic difference between the center of mass of two consecutive

distributions.

6.2.2 Moments analysis method

An alternative method to solve the evolution equations is to convert them in simple
differential equations The evolution equations for the singlet (2.42) and non-singlet

(??) parts, contain convolution integrals that, forgetting the energy dependence,

/ "4z P(2) A 6) . (6.21)

Taking into account that « and z take values between 0 and 1, this can be written

are of the form

in the form
[y [ dzsy=2) () Aly) | (6.22)
26(y — — .
o Yo ¥y y
where the lower limit in the integral over the z variable can be moved from z to

0 because the § function ensures that the integrand is zero over the added interval

between 0 and z. Multiplying this by a power of « and integrating over the whole
interval, gives

/old” / dy/ dz z§(s—yz) P(2) Aly) /dyy y)/ dz 2" P(z). (6.23)

This property can be used to simplify the evolution equations in such a way

that they become simple diferential equations when they are expressed in form of
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the moments of the fragmentation functions. The formalism is described in detail
in [?]. Here it is described at leading order, since this formalism was used in the
leading order study of the scaling violations with the different Monte Carlos with the
purpose to have an insight of the parametrization of the non-perturbative power-law
corrections (section 6.4).

The moments of the cross-sections are defined in such a way that the zeroth-

order moment is related with the energy-momentum conservation sum rule:

d_a
dz’

Then, taking into account that the singlet and non-singlet parts of the fragmentation

- 1 n+1l
M, = / dr e (6.24)
0

functions have been defined weighted with z according to eq. (2.40), the n-order

moment for the singlet, non singlet and gluon fragmentation function has to be
defined as

A = /0 dzatA(,s) A=N,S,G. (6.25)
Up to leading order, the running coupling constant is given by
auls) = 57 (6.26)
where by is given in (?7) and ¢ is defined as
t=1In (1—\83) (6.27)

being A the effective QCD scale described in section ??. With this definitions, and

the property of equation (6.23), it is easy to show that the evolution equations
simplify to

£(2) - (3)(3)
dt \ G, aaqarég Gn
d n
tZt'Nn = aQQNn. (6.28)
with the coeficient a?, given by
1 1 w21
boaly = |—= —-2) = 6.29
04qQ [ 2 P T DT 3) FZ;]:I (6:29)

. 1 1 m21] 2
bOa’GG = ZX [—E'{' }

GiDe D T e TIn D & 7| 3460

j=2 3
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gt n?+5n + 8 ‘ 6.31

6 = I Dm+2)n+3) (6.31)
n? + 5n + 8

b n

0%qa (n+2)(n+3)(n+4) (6.32)

where X, Z, and bo are defined equations (2.12) and (2.20). The solution of the

non-singlet part is rather trivial and gives

In(s/A?) )“QQ . (6.33)

Nu(s) = Na(s0) (m

The solution for the coupled system needs a little bit more algebra and can be

(80) - (@) voa o

where Ay are the eigenvalues of the.respective coefficient matrix az, and efs the

expressed as

corresponding eigenvectors. The parameters o 5 are determined through the initial

conditions for ¢ =ty at the initial centre-of-mass energy ,/so.

6.3 Parametrization of the fragmentation func-
tions

The scheme presented in figure 6 assumes that the fragmentation functions are
specified at one particular energy scale. With enough amount of data, it would
be possible to perform a moment analysis, in a similar way as the described in
section 6.2.2, where this parametrization would not be necesary. But, the coarse
binning of the data due to statistical limitations does not allow to fix the initial
conditions truly unambigously. Some assumptiéns about the shape of the fragment-
tation functions must be done, the least restrictive ones being the requirements
of positiveness and smoothness. The most convenient approach is to use a phe-
nomenological parametrization, where the shape is described by a small number of
free parameters.

Perturbative QCD, in the framework of the modified leading-log approximation
(MLLA), predicts that the momentum spectrum of final state particles should ex-
hibit and approximately gaussian peak in lnz [?] From this, it can be infered a
functional form for the fragmentation function like

do 5 do 1 2\ aed
T ™ eXP (—c(d—— Inz) ) ® oo~ —exp (—cln :1:) %, (6.35)

T z
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Combined with the expectation that the momentum spectrum falls off with some
power of 1 — z for z — 1 finally yields the ansatz

D(z) = N(1 — z)*z" ! exp (—cln2 m) , (6.36)

where N, a normalization constant and a, b and ¢ are free parameters which have
to be determined from the data. With the possible exception of ¢, the parameters
are expected to be different for light quarks, c-quarks, b-quarks and gluons. The
parameter ¢ is in principle predicted by the MLLA and, in leading order, should
also be flavour independent. Treating it as an effective phenomenological parameter,
flavour independence a priori cannot be expected to hold any more. However, it
turns out that the experimental data actually support the idea that ¢ is a universal
parameter. Taking it to be the same for all flavours successfully improves the
description of the measured cross sections towards small z significantly with only
one additional parameter.

In order to avoid correlations between the normalization and the rest of param-

eters, the final parametrization function chosen for the analysis is given by
(1 —z)%zb exp (—cln2 w)

/00.3dm (1 — z)%z% exp (—cln2 m)

1

xD,-(:v, So) = N,'

, (6.37)

where i stands for uds, ¢, b, and g(gluons), and the dependence on s comes from

the implicit dependence of the parameters (N, a;, b; and ¢) on this variable.

6.4 Parametrization of the non-perturbative terms

The only missing ingredient in the analysis scheme of figure 6 is the parametrization
of the power-law corrections to the perturbative evolution. Given sufficient data, it
would also be possible to determine them from the data without strong external as-
sumptions. Such an aproach was followed in the analsys of the SLAC/BCDMS deep-
inelastic scattering data [?]. There the power-law corrections were known to behave
like 1/@* with the available data covering the range 0.5 GeV? < Q? < 260 GeV?2. In
the study of scaling violations in fragmentation functions the power-law corrections
are expected to behave like 1/4/s, while a typical analysis covers data in the range
from 22 GeV < /s < 91GeV. Thus the dynamical range to separate power-law
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corrections from the logarithmic scaling violations due to perturbative QCD is 125
times larger in deep-inleastic scattering experiments than it is in e*e~-annihilation.
This severely restricts the number of parameters describing non-pertrubative effects

that can be determined from the data to essentially only a single number.

A simple effective way of parametrizing the non-perturbative effect is by doing a
change of variables and relate the perturbative variable z to the measured quantity
z, through ¢ = g(z.). Imposing the condition of energy conservation before and
after the transformation fixes the relation between the perturbative prediction o(z)

and the observable cross section rpr(:ce):

/dmm—— /dg(a:e g(w /dmeg(a:e )g (:c fd TeT eda';VP (6.38)

e

From this, it can be deduced that

donp _ g(z)g'(ze) do
dz. Te dg(ze)’

(6.39)

The simplest ansatz for g is given by a rescaling of the type ¢ = z.(1+h1//s) [7].
However, it was found that some other corrections could work better. A general

ansatz for the non-perturbative effects is given by

2 = g(2e) = To + (ho + 1 Te + haz? +...) [(ﬁ)"c - (\/55)*] . (6.40)

Using only the parameter Ay means that the perturbative prediction and the observ-
able cross-sections are related by a shift of the spectra, using only h; corresponds
to a rescaling of z. The energy-dependence of this transformation is given by the
term in square brackets. This term is built such that the non-perturbative correc-
tions are zero at the scale /55 where the fragmentation functions are parametrized,
which takes into account the fact that the fragmentation functions themselves al-
ready parametrize all non-perturbative effects at a given scale. Perturbative QCD
then predicts logarithmic scaling violations in the evolution of those fragementation
functions, and the above ansatz takes care of the power law corrections that come

on top.

Section ?? describes the different sources of non-perturbative corrections to the
evolution. There are sources in which £ = 1 and another ones in which &£ =
Since the number of parameters allowed from the currently available experimental

is only one, some guidance about the appropriate choice has to be taken from
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Monte Carlo simulations of ete™ annihilation processes into hadrons. In addition
to a discrimination between using ho and h; (shift versus rescaling) those models

also allow to infer the power & to be used in ??.

For this purpose a leading-order moments analysis as decribed in section 6.2.2
was performed on results of the JETSET, ARIADNE and HERWIG Monte-Carlo
models. Here even the higher moments of the fragmentation functions can be re-
liably determined, something which unfortunately is practically impossible for the
comparatively coarse-binned published experimental z-distributions. Moments can
be viewed as a convenient means to describe the shape of the fragmentation func-
tions without having to resort to an explicit parametrization. Low order moments
probe mainly the low z-part of the distribution, higher order moments progressively
test the region z — 1. The next sections describe this analysis and the parametriza-

tion of the non-perturbative terms used in the analysis described in section ?7?.

6.4.1 Non-perturbative terms in the Moments analysis

The missing ingredient to perform the Moments analysis is the inclusion of the
non-perturbative effects. This is easy for the two parametrizations discussed above
(section 6.4). Defining

fe) = Z@) (6.41)
@ = 1+h [(\/E)'k—(\/Ea)"‘] (6.42)

s = ho[(v3) "= (vao*] O 64)

the introduction of the reescaling in the moments becomes
d n41
M,(NP) = _/ dze T, ot frp(ze) = / dme n+1 flayze) = _/ z 2{xn+1 (z) = /
o ay
(6.44)
were the last step is done because the integral in the interval (0, a;) in y is the whole
phase space as (0,1) is for the variable .

In the case of the shift,

1 1
M,(NP) = /0 dze z™ fup(ze) =/0 dz, fig:—@w;‘*'l f(ze + ao) (6.45)

e

= /o ' de, (1 + %) amH [f(:ve) +aof'(ze) + %ai "(zc) - ++|(6.46)

dza;mz™ f
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where a Taylor expansion is made in the cross-section. The following property can

be applied .
/0 do f'(z) = —(n + 1) My-y (6.47)

to trasform eqaution 6.46 in
1
M,(NP) = M, + aoMn_y — ao(n + )My — ad(n)Mu_z + =a2n(n + 1)M,_,

2
= M,—nas M1+ 3(32:—1—)<13,M,,_2 (6.48)

giving finally

M,(NP) = Z ( Z ) My (—ap)™* (6.49)‘

k=0
Here M,, are the moments without power-law corrections and M, (NP) the moments

including the non-perturbative effects.

6.4.2 Monte Carlo study

The energy-evolution of the moments seen in the Monte Carlo to the leading-order
QCD prediction allows to infer the behaviour of the non-perturbative corrections.
A leading-order analysis is justified since the Monte Carlo models are based on
a leading-log cascade and only partially incorporate next-to-leading logarithmic
effects. Although the HERWIG model approaches {?] the true next-to-leading
order case for z — 1, the above justification at least holds for the analysis of the

low-order moments.

Monte Carlo data containing 1 Million events were generated with the natural
flavour mix for centre-of-mass energies of 22, 35, 44, 55 and 91 GeV for all three mod-
els. At 91 GeV, additional samples of 1 Million events with primary c- and b-quarks
were generated. From this the moments for light-, ¢- and b-quark fragmentation
functions at an initial scale of 91 GeV were determined. The gluon fragmentation
function, which in leading order does not contribute to the observable cross section
but is needed in the evolution equations, was assumed to be equal to the c-quark
fragmentation function. The associated uncertainty was estimated by alternatively
setting it equal to the b-quark fragmentation function and taking the corresponding

change in the evolution of the moments as a theoretical error.

For the determination of the parameters governing the power-law corrections
the QCD scale parameter A decribing the logarithmic part of the scaling violations
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JETSET 7.3  Agep = 0.319 GeV
Ansatz | x%/ng Parameter Value h
ho 1/4/s| 154 | —=0.78 + 0.15 £ 0.15
hy 1/\/5| 183 | =23 + 140 + 0.41
he 1/s | 356 | —15. + 17 £ 28
hy 1/s | 411 | —45. + 928. £ 78

ARIADNE 4.02  Agep = 0.225 GeV

Ansatz | x%/ng Parameter Value A
ho 1/+/s| 46 | -059 + 013 + 0.13
hy 1//35| 56 | —18 £ 095 + 038

ho 1/s 132 -11. £+ 17 £ 25
he 1/s | 152 | —35. £ 20. + 7.4
HERWIG 5.6  Agep = 0.152GeV
Ansatz | x%/ng Parameter Value h
ho 1/v/s| 13 | 041 + 012 + 0.11
he 1)y 15 | =13 + 059 £ 0.36
he 1/s | 43 | -85 + 23 £ 23
he o 1fs | 48 | —25. + 13. + 7.1

Table 6.1: Monte-Carlo studies of non-perturbative correction.

was fixed to the input value used for the respective model. Different functional
forms for the non-perturbative corrections were tried separately for the leading ten
moments in single-parameter fits of hg and h; assuming the energy dependence to
be 1/4/s or 1/s. The parametrization scale was set to /50 = 22 GeV.

The results are summarized in table 6.1 and one example is diplayed in figure ?7.
For each ansatz of the non-perturbative terms the average chisquare per degree of
freedom x2/ngs is given together with the value obtained for the non-perturbative
paramater h;. The quoted number is the central value obtained over the first 10
moments, the first error the corresponding half-range and the second one the half
range found when varying the QCD scale from one half to twice its nominal value.

The statistical errors are completely negligible,

Although x%/ng is rather large one has to keep in mind that the Monte Carlo
statistics used in this study is roughly a hundred times of what is available in
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Figure 6.2: Energy evolution for the leading moments of the inclusive x-distributions as predicted
by the HERWIG model. The points are the actual moments, the curves are the results of a leading
order QCD analysis. The dotted lines show the result of a purely perturbative evolution from
91 GeV to 22 GeV. The full lines are evolutions over the same range with power law corrections
included in such a way that they vanish at /s = 22 GeV; ¢ = 2. +ho(1/4/5—1/22). The parameter
hg is optimized separately for each moment. The shaded bands finally are obtained by varying a
global parameter hq between the extreme values found in the individual fits.

the data. Consequently even values x%/ng ~ O(100) correspond to a satisfactory
description of the data. As can be seen from figure 6.2 even despite the bad x?
the qualitative behaviour is well reproduced by the fits. Studying the x%-values
given in table 6.1 shows that a power-law behaviour with 14/s is clearly preferred
over a 1/s dependence. Concerning the choice of hq versus h; the x?-values are less
conclusive. However, from the spread of the results (first quoted error) one sees,
that hg is much more stable than h;. This can be traced to the fact that the fitted
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value for h; becomes more and more negative for lower order moments, i.e. when
putting more emphasis on the low-z region, suggesting a behaviour Ay ~ 1/z which

is equivalent to parametrizing the non-perturbative terms by a shift hq.

In conclusion, the Monte-Carlo studies suggest a simple effective parametrization

of the non-pertrubative terms of the functional form

2= 20 + ho (% - 713_;) (6.50)

with a negative parameter hg.

6.5 Choice of parametrization scale

With the Monte Carlo parameters given in table 6.1 typical shifts in « are of the
order Az = (0(0.01). At high values of © where the cross section goes to zero such
a shift is much smaller than the experimental resolution and thus has only very
little impact. At small z it amounts to a non-negligible change of the cross-section
for two reasons: the momentum measurement is much more precise and the cross
section rises rapidly. The fact that ho is negative and the functional form (6.50)
suggests to use a parametrization scale ,/sq smaller or equal to the smallest scale
used in a scaling violations analysis, such that the value z at which the perturbative
cross section is evaluated in order to obtain the cross-section at the experimental
value z. is always larger than .. This assures that  never is needed at unphysical
negative values. Unphysical values z > 1 may occur, but as explained above are
much less severe and can easily be tolerated, thus permitting to have a really simple
way of parametrizing non-perturbative effects.

Another argument to choose the smallest value of sy available for the parametriza-
tion of the fragmentation functions is the fact that the corrections to the evolution
are of order 1/s. Thus, they are expected to be smaller if they only account for the
non-perturbative effects of the evolution to higher energies and the non-perturbative
effect to the fragmentation are absorbed in the parametrization of the fragmentation

functions at low energies that making it in the opposite way.
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6.6 Results of the fit

An overall fit of the QCD predictions to all ALEPH and low energy data between
22 GeV and 91.2 GeV presented in chapter 5. Following the arguments given in sec-
tion 6.5, the fragmentation functions for the different flavours are parametrized at
22 GeV according to equation (6.37) The non-perturbative effects are parametrized
by (6.50). In total, thirteen parameters are used to describe the fragmentation func-
tions at one energy. The evolution to another energy requires two more parameters:
o, which determines the perturbative evolution, and ho, which parametrizes the
non-perturbative effects in the evolution. Finally, the first order strong coupling
constant, B, introduced in equation (??) is also required. Altogether there are

sixteen parameters, which are all fit simultaneously to the available data.

The flavour-tagged distributions serve mainly the purpose of fixing the param-
eters of the corresponding fragmentation functions. The gluon-tagged sample and
the longitudinal and transverse distributions determine the leading-order coupling
constant, B,, and the parameters of the gluon distribution function. Then, from
the low energy data and the inclusive data at 91 GeV the values of a, and ho are

obtained.

The fit range is chosen as 0.1 < z < 0.8 for all data at all energies. Outside
this range, systematic effects, especially at low /s, start to become important.
However, for the longitudinal cross section (measured only at 91 GeV), the fit range
is taken as 0.04 < z < 0.8 to increase the statistical sensitivity.

as(Mz) = 0.1258 £ 0.0053
ho = —0.14 £ 0.10 GeV
light (uds) quarks ¢ quarks b quarks gluons

N| 03724£0.005 |0.35940.006 | 0.295 £ 0.008 | 0.395 £ 0.020
a 1.69 £ 0.04 3.09+0.16 | 3.29+0.09 26408

b —1.40 £ 0.06 —1.10£0.09 | —1.69 £0.07 | —1.59 4 0.29
c 0.252 £ 0.014

Bs 0.199 £ 0.008

Table 6.2: Results of the fit to all data. The errors include statistical and experimental systematic
uncertainties, except for those related to flavour tagging. See text for definition of parameters.
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The results of the fit are shown in Table ??7. There are sizable correlations a-
mongst most of the parameters, which may be as large as 90% between the param-
eters of the fragmentation functions. The parameter most strongly correlated with
as(Mz) is the one describing the energy evolution of the non-perturbative terms,
ho. Here the correlation is 36%. The value found for hg is compatible with zero,
which indicates that non-perturbative effects are small, within the parametriza-
tion given by equation (6.50). Its influence in the «, can be seen fixing it at its
nominal value, The error on «, decreases to £0.0049. Thus, its contribution to
the total error can be estimated to be £0.0020. Fixing the parameters describing
the shape of the fragmentation function and the non-perturbative corrections, the

purely experimental error of a,;(Mz) would be Aa, = 0.0017.

Figure 6.3 shows that the overall agreement between data and prediction is
good and that the QCD evolution reproduces the observed scaling violations. All
error bars include both statistical and experimental systematic uncertainties. This
can be seen in better detail in figure 7?7 where the differences between the fitted
and the measured value is plotted in number of standard deviations (statistical
and systematic error of the measure distribution are included) of the measured
distributions. All the distributions disagree with the fit result bellow z = 0.1,
where the fit is not performed. This is due to inadequancies in the parametrization
of the fragmentation function in this zone. High deviations are also observed at high
z mainly due to experimental systematic uncertainties. The ALEPH data gives the
impression of having a huge contribution to the total x? mainly coming from the
low momentum (bellow z = 0.4). This is not the case because all the data has
the normalization error correlation (section 5.4.1) and it can be demonstrated that
when the correlated error is the dominant one (as in the case in this momentum
region for the ALEPH data), the contribution to the chi? is the same as the one
coming from only one bin and not the sum of all the deviations of all the bins.
Thus, although the deviations are two standard deviations for all the bins in this
region, the contribution to the total x? is only of roughly two units. A change in

the normalization of ~ 2% in that region will make the distribution to agree almost
perfectly.

The size of the scaling violations can be seen in Figure 6.5, where the ratio of
the inclusive cross sections measured by ALEPH at /s = 91.2GeV and TASSO

as /s = 22 GeV is plotted as function of z. For comparison also the expectation
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for the case all the distributions would have the same flavour composition as at
91.2 GeV is given. This can also be seen comparing the fragmentation functions

obtained at the two energies (figure 6.6).

The value found for ¢, agrees with previous ALEPH determinations [?, ?] and
¢ with the MLLA expectation [?]. Also 3, is consistent with typical values for a
leading-order a,-measurement. Since [, is allowed to vary, the information about
the gluon fragmentation function obtained from the longitudinal cross section im-

proves only marginally the direct measurement {?}.

The x? per degree of freedom of the fit is 307.3/213. The contributions from each
distribution are detailed in table 6.6. The contributions from the ALEPH all flavour
and enriched flavour distribution have to be considered only as approximate since
the correlation among them were not considered when extracting their individual

value.

| Distribution | x*/ng
Tasso (22 GeV) 7.3/13
Tasso (35 GeV) 44.6/13
Tasso (44 GeV) 13.6/13
Mark II (29 GeV) | 36.8/14
TPC/2y (29 GeV) 9.5/12
Amy (55 GeV) 787
Delphi (91.2 GaV) 32.1/22

Aleph all flavours (91.2 GeV) | 28.9/23
Aleph uds-enriched (91.2 GeV) | 29.7/23
Aleph c-enriched (91.2 GeV) 26.9/23
Aleph b-enriched (91.2 GeV) | 66.5/23
Aleph gluons (48 GeV) 2.8/5

Aleph Longitudinal (91.2 GeV) | 7.8/16

Table 6.3: Detail of the x?/ng per experiment in the standard analysis

As can be seen in table 6.6, three distributions contribute substantially: MARK
IT (37/14), TASSO at 35 GeV (45/13) and the ALEPH b-enriched sample (66/23).
The large x? for the b quark enriched sample is due to inadequacies of the simple
parametrization of the fragmentation function. While the simple ansatz is good

enough to describe the fragmentation of the gluon and the light quarks including
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the ¢ quark, it fails to reproduce the detailed structure of b quark fragmentation
and decay over the full z-range. Removing the high-z points above z = 0.6 changes
the x?/n4 to 31/19 while the result of the fit remains unchanged. The relatively
high values of the x? for MARKII and TASSO(35 GeV) point to an inconsistency
in the experimental data, since there are data from other experiments at the same
energy which are perfectly consistent with the QCD fits. In order to understand
the importance of those problems for the fit, the errors of these two distributions
are scaled up by the corresponding values of |/x?/dof, effectively deweighting the
results from those experiments. The results of the fit with the enlarged errors and
the ALEPH b-enriched sample restricted to the range 0.1 < z < 0.6 is a;(Mz) =
0.127 4 0.006, fully consistent with the previous one with an overall x*/ny =
219/209.

6.7 Systematic errors

The error in as(Mz) presented in section 77 contains the statistical errors and most
of the systematic errros from the measurement of the scaled energy distributions.
Also the error from the correlations in all the parameters is included in the fit.
The onlv missing uncertainties come from the assumption made in the normaliza-
tion errors for those experiments in which this is not specified, the dependence of
as(Mz) on the assumed flavour composition for the enriched flavour scaled energy

distributions, and the factorization and renormalization scale dependence,

6.7.1 Experimental systematic errors

Nomalization errors assumption. In the low energy experiments where only
the combined statistical and systematic errors have been published, the nominal
result was performed with the assumptions explained in section 5.7 for the nor-
malization errors. Alternatively, all unspecified errors were taken as bin-to-bin
errors giving the result a,(Mz) = 0.1278 £ 0.0058. The corresponding shift of

Aay = 0.002(norm) was taken as an additional systematic error.

Flavour composition systematic. By varying the confidence-level cuts in the

lifetime bags, the flavour compositions were changed such that the flavour enrich-
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ment for u, d, s and b quarks changed by +4% and for ¢ quarks by —4% and +2% (it
was found to be very difficult to get higher purities). The flavour composition of the
different distributions obtained with these changes are specified in table 5.3. The
results of the fit changing one of the corresponding enriched flavour distributions

at a time are given in table 6.7.1.

Changed distribution | x%/ng as(Mz)

ads-enr. (=) 303.8/213 | 0.1253 + 0.0056
uds-enr. (4) 309.1/213 | 0.1263 £ 0.0054
c-enr. (—) 307.1/213 | 0.1218 £ 0.0055
cenr. (1) 308.9/213 | 0.1246 = 0.0055
b-enr. (—) 289.2/213 | 0.1259 £ 0.0054
b-enr. (+) 294.8/213 | 0.1252 £ 0.0053

Table 6.4: Results of a,(Mz) for different flavour compositions tagged distributions. For each
fit, the tagging cuts of a given distribution are changed, giving the flavour compositions specified
in the table 5.3. A fit is performed with this new distribution but leaving the rest untouched. The
value of the x%/ng and a,(Mz) is presented.

The maximum change was Aa, = 0.004, which was taken as an additional
systernatic error due to flavour composition of the tagged data samples. This result
can be confirmed from the extrapolation of the results presented in table 6.7.1
where the nominal values of the purities were varied artificially by +1%. The shifts
in a,(Mz) were ~ 0.001. Assuming a linear variation of the fitted value on a,(Mz)
with variation of the Monte Carlo estimates in the purities, the estimated systematic

error would be equivalent to an uncertainty of £4% in the purity estimates from
the Monte Carlo.

Considering also the fit error, the total experimental error of o, (Mz) is Ac(exp) =
+0.003(f1t) £ 0.002(norm) % 0.004(purity) = £0.007(exp).

6.7.2 Theoretical errors

A priori, the scales y;, ¢y and pg in figure 6 are unconstrained. When calculating
to all orders, any dependence on the choice of the scales vanishes. In finite order
perturbation theory, a residual scale dependence is related to the sensitivity to

uncalculated higher order terms. In order to avoid large logarithms in the theoretical
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| Changed purity | x%/ng as(Mz)

uds-enriched — | 308.9/213 | 0.1262 £ 0.0054

uds-enriched + | 308.3/213 | 0.1251 £+ 0.0055
c-enriched — | 308.2/213 | 0.1250 £ 0.0055
c-enriched + | 306.6/213 | 0.1266 % 0.0052
b-enriched — | 308.5/213 | 0.1247 + 0.0054
b-enriched + | 306.4/213 | 0.1269 4 0.0053

Table 6.5: Results of a,(Mz) for different purities in the tagged distributions. For each fit, the
nominal purity taken from the MonteCarlo was changed by £1%. The fits were done with the
same nominal distributions but with this ‘artficially’ changed purity.

predictions, the natural choice of scales is p?/s; = p}/s; = pp/u* = 1 and these
are the values used for the standard analysis. Varying the scales allows to estimate

the theoretical uncertainties of the prediction.

The renormalization and factorization scales were parametrized according to
prF = frF+/s, being the nominal value determined by In fpr = 0. The scale
values were varied, one at a time, in the range —1 <In frp < 1, giving the values
of a,(Myz) presented in table 6.7.2.

[ Value of the scale | x?/ng a,(Mz)

ln fr=-1 307.3/213 | 0.1242 £ 0.0052
In fp=+1 307.3/213 | 0.1281 £ 0.0056
In fp=-1 310.8/213 | 0.1196 4 0.0049
In fr = +1 304.7/213 | 0.1310 £ 0.0061

Table 6.6: Results of a,(Mz) for different factorization and renormalization scale assumptions.
The theoretical errors are taken from the maximum variation of each scale.

The quality of the fit is totally insensitive to the renormalization scale and does
not change substantially with the changes made in the factorization scale. Taken

the two scales as independent sources of theoretical error, the theoretical systematic
error on «,(Mz) will be given by

A (theory) = £0.002(ug) % 0.006(uF). (6.51)
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which, combined in quadrature with the experimental error gives

a,(Mz) = 0.126 + 0.007(ezp) =+ 0.006(theory) = 0.126 = 0.009. (6.52)

6.8 Consistency checks

Several additional consistency checks were carried out in the analysis varying some

of the assumed parameters.

6.8.1 Parametrization scale variation

Although there are reasons to choose the parametrization scale at 22 GeV as was
explained in section 7?7, repeating the fit with different parametrization starting
points will prove, not only that the value of , does not strongly depend on this
assumptions, but also that the result is not widely sensitive to the choice of the
parametraization of the fragmentation functions. This last point comes from the
fact that, given the fragmentation functions in the exact form 7?7 at an initial scale
Wi = So, the evolution to a final scale py will transform them to a similar shape
which, however, will be outside the original parameter space. Thus varying the

scale of the parametrization is a way to probe slightly different families of functions
D(z).

Two different scales were tried for the parametrization scale giving the results:
(PUT THIS IN A TABLE??77)

ao(Mz) = 0.1246 £0.0059  for  so=45.0GeV (6.53)
as(Mz) = 0.1240 £0.0063  for s =91.2GeV (6.54)

which deviate less than 0.002 from the nominal result. The chiesquared values differ

in less than one unit from the standard fit.

6.8.2 Parametrization of the non-perturbative effects

Although the parametrization of the non-perturvative terms is justified in the Monte

Carlo (section 77), it is worth to probe the dependence of the result of it.
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The energy dependence of the non-perturbative evolution terms was changed
from 1/./s to 1/s, as is known to be in deep-inelastic scattering. The result was
as(Mz) = 0.1265 £ 0.0052 in perfect agreement with the nominal result. The val-
ue of the x? increased in less than one unit and the value of the non-perturbative
parameter changed to ho = —2.7 £ 2.0. Thus, the data themselves cannot confirm
that the energy dependence of the non-perturbative evolution terms is of the form
1/+/s but the change in o,(Mz) is negligible with the 1/s assumption. Howev-
er, the nominal result is well supported by Monte Carlo studies (section ??) and

phenomenological theoretical assumptions (section ?7).

The rescaling ansatz used in reference {?]

z _ z! [1 +h (% - %)] | (6.55)

was also tried. The fit to all the parameters gave a x? = 314.1/213, and a result
of a;(Mz) = 0.108 + 0.010 with a correlation of 87% between o, and hy. This
correlation precludes a simultaneous measurement of both parameters. In refer-
ence [?], the value of h; was estimated from the HERWIG Monte Carlo, giving a
value of hy = —0.5. Moving and fixing the value of this parameter from its fitted
value (hy = —1.03 & 0.44) to the estimated one gave a,(Mz) = 0.1184 % 0.0050
which is compatible with the nominal result although is totally dependent of the
assumptions made in the HERWIG Monte Carlo.

6.8.3 Dependence on the fit range

The dependence on the choice of the fit interval was studied by varying the lower
and upper bounds of the fit range around the nominal value of zy;, = 0.1 and
Tmax = 0.8. The results on «, (shown in table 6.8.3) are compatible with the
nominal result. The x? of the fit degrades considerably when going to smaller
. Tmin, indicating that the parametrization of the fragmentation functions and non-
perturbative terms is not suitable for very small z. This is because Going to larger
values of @i, amounts to giving up much of the available data, and the fit of all 16

parameters becomes unstable, with correlations of more than 90% between many
of the variables.

Finally, the whole parametrization except a,(Mz) was fixed to the nominal

result, and the strong coupling constant was fitted, using the same formalism as
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| Interval [ x%/ng a,(Mz) ho
0.1-0.5 | 162.4/148 | 0.1215 £ 0.0071 | —0.077 £ 0.108
0.05-0.8 | 702.2/259 | 0.1331 £ 0.0036 | —0.253 4 0.084
0.15-0.8 | 244.7/180 | 0.1326 + 0.0100 | —0.094 + 0.169

Table 6.7: Results of the fit to a,(Mz) to different intervals in x. All the parameters are fitted.

before in independent z-intervals of size Az = 0.1 between z = 0.1 and z = 0.8.
The different fitted values are shown in table 6.8.3. All results were found to be

statistically compatible with the nominal one, verifying that scaling violations over

the full = range are described by one single coupling constant.

‘ Interval ‘ X g as(Mz)
0.1-0.2 | 51.9/73 | 0.1313 £ 0.0040
0.2-0.3 | 47.8/57 | 0.1234 +0.0073
0.3-0.4 | 33.9/54 | 0.1200 +0.0078
0.4-0.5 | 50.1/43 | 0.1249 +0.0075
0.5-0.6 | 41.1/39 | 0.1255 £ 0.0075
0.6-0.7 | 43.5/37 | 0.1261 £0.0075
0.7-0.8 | 52.8/37 | 0.1247 £ 0.0088

Table 6.8: Results of the fit to a,(Mz) to different intervals in x. All the parameters except

as{Mz) are fixed.

6.8.4 Different experiment combinations

Removing the data of one experiment at a time from the overall fit leads to the

results presented in table 6.8.4.

All the results are compatible with the nominal result except for the case of

removing the information of the gluons coming from the three jet symmetric events
and the data from Tasso at 35 GeV and Mark II at 29 GeV.

The case of the removal of the gluon information is explained because doing

this, the only remaining information on the gluon fragmentation function is the

one coming from the constraint in the longitudinal and transverse cross-sections
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D.iemoved distribution x* /gt as(Mz)
Tasso (22 GeV) 299.8/200 | 0.1235 £ 0.0057
Tasso (35 GeV) 255.3/200 | 0.1152 £ 0.0060
Tasso (44 GeV) 293.5/200 | 0.1251 £ 0.0054
Mark II (29 GeV) 258.9/199 | 0.1391 + 0.0055
TPC/2y (20 GaV) 597.4/201 | 0.1278 % 0.0056
Cello (35 GeV) 596.2/191 | 0.1236 % 0.0055
Amy (55 GaV) | 599.5/206 | 0.1257 % 0.0053
Tasso (35 GeV) + Mark II (29 GeV) | 221.6/186 | 0.1307 £ 0.0065
Delphi (91.2 GeV) 272.1/191 | 0.1268 £ 0.0054
Aleph (91.2 GeV) All 286.1/190 | 0.1244 + 0.0054
Aleph (91.2 GeV) uds 289.0/190 | 0.1252 + 0.0054
Aleph (91.2 GeV) ¢ 283.6/190 | 0.1242 + 0.0095
Aleph (91.2 GeV) b 238.7/190 | 0.1230 £ 0.0064
Aleph (9L.2 GeV) gluon 300.6/208 | 0.1045 £ 0.0079
Aleph (91.2 GeV) Longitudinal 297.8/197 | 0.1275 £ 0.0057

Table 6.9: Results of a; (Mz) for removins one distribution at a time. The table shows the
result of the fit when removing the specified distribution

through equation ??. There, the values of 5; and the normalization of the gluon
fragmentation functions become strongly correlated and this makes the correlation

between 3, and «a, to increase up to 75% which makes the result for o, unreliable.

The large variations removing one of the two other experiments can be justified
because they are the distributions that mostly contribute to the overall x*. Remov-
ing one of them make the other have a strong weight in the fit, therefore shifting
the value of a,. Removing both experiments at the same time gives a compatible
result with the standard one.
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Figure 6.3: Scaled-energy distributions used in the QCD fit. Only the dark points enter the fit.
Errors shown include statistical and systematic uncertainties. The lines represent the result ofthe
fit.
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Figure 6.4: Differences between the fit result and the data in number of standard deviations

(including statistical and systematic errors) for all the distributions used in the fit. Only the dark
points enter the fit.
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Figure 6.5: Ratio of inclusive cross sections at /s = 91.2GeV and /s = 22 GeV compared to
the QCD prediction. The full dots contributed in the global fit.
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