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Chapter 1 INTRODUCTION

Chapter 1

1.1.- Evolution of semiconductor electronics

During the last 40 years, the understanding of the electronic transport in
conventional devices has been based, whenever this was possible, on
avoiding the consideration of quantum mechanical (QM) features for
electrons, thus promoting a classical intuitive picture. In this regard, after
assuming the semiconductor band theory and the Fermi-Dirac statistics,
electrons have been pictured as classical particles responding with an
effective mass to the external electric field. This simple picture breaks down
when the device active dimensions are of the order of the electron's
wavelength [Lüth 1995]. Nowadays, the inadequacy of the classical picture
for electrons is becoming of actual concern because the commercial Si-
CMOS devices are arriving at nanometric dimensions.

Apart from commercial devices, during the 1980s, it started to become
possible to fabricate very small prototype devices, whose dimensions are
intermediate between the microscopic objects (like atoms) and the
macroscopic ones. These are the so-called mesoscopic devices whose
characteristic dimensions are of several nanometers. The electronic transport
in these mesoscopic devices can only be understood by assuming additional
quantum 'skills' features for the electrons such us tunnelling or energy
discretization. However, although we can argue that semiconductor devices
have been continuously reducing their size since the beginning of solid state
electronics 50 years ago, it is difficult and naive to anticipate the actual
impact of these mesoscopic devices on electronics industry. In Datta's words
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Chapter 1 INTRODUCTION

[Datta 1998]: "The current status of mesoscopic physics thus seems
somewhat like that of semiconductor physics in the 1940s, when there was no
reason to believe that vacuum tubes would ever be displaced. But....who
knows?".

Anyway, it seems that the study of current flow in small conductors (either
commercial or prototype ones) will continue to produce new exciting
quantum physics during the coming years, that will either force our
classically oriented intuition to assume more and more quantum electron
properties, or ,who knows?, contribute to a new understanding of QM. In
this regard, in the summary of the proceedings of a recent conference we can
find the following paragraph written by Ridley [Ridley 1997]:"..,. -with the
possibility of coherent quantum devices in the offing, and the availability of
high-speed optical techniques, it is interesting to speculate what a study of
non-equilibrium carrier dynamics in semiconductors can contribute to one of
the most puzzling features of nature, namely, the collapse of the
wavefunction".

The objective of the present work is the study of one of these mesoscopic
devices which is quite close to reach a commercial status. We concentrate
here on the double barrier resonant tunnelling diode (RTD) and, in particular,
we develop a Monte Carlo (MC) simulator trying to extent the semiclassical
electron picture to this type of mesoscopic device.

1.2.- Resonant tunnelling diodes

One of the attractive features of working with mesoscopic devices is the
ability of applying textbook QM to understand their behaviour and still
achieving a reasonable degree of success in this task. Perhaps, the most
characteristic example is the electron transport by tunnelling (electrons are
able to cross energetically forbidden regions, thus violating the most
elementary laws of classical mechanics).

Single barrier tunnelling has found widespread applications in both basic and
applied research (the latest example is scanning tunnelling microscopy,
which allows to 'see' in atomic dimensions [Binning 1982]). It is well known
that tunnelling current through a single potential barrier depends
exponentially on the height and width of the barrier. Thus, it might seem that
the current-voltage characteristic of two barriers in series could not be much
more interesting than that of a single barrier. However, if the region between
the two barriers is only a few nanometers long (a fraction of the de Broglie
electron wavelength), the current-voltage characteristic is qualitatively
different from that of a single barrier. In particular it can be easily shown that
at certain energies, electrons can traverse the double barrier with near unity
transmission probability.
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Chapter 1 INTRODUCTION

EMITTER

COLLECTOR

Resonant energy

(a) Heterostructure (b) Band structure

Fig. 1.1: (a) Basic configuration for a typical
RTD and (b) Related conduction and valence
bands strcuture.

The basic RTD configuration is a double barrier structure of nanometer
dimensions, including two contacts as depicted in figure 1.1. The emitter and
collector regions are heavily doped contacts made from a semiconductor with
a relatively small bandgap. Between them, two potential barriers are made
from a semiconductor with a larger bangap. The region between the two
barriers, called the quantum well, is made again from the smaller bandgap
semiconductor. Several different material systems can be chosen if the RTD
pseudomorphical growth is assured. Among them, the possibilities offered by
the binary, ternary and quaternary III-V semiconductor are multiple and
allow the modulation of the values of barrier height and electron effective
mass (an example of band gap engineering). Moreover, in the literature, we
can find RTD with additional layers that provide even more control on
several particular aspects of their performance [Burgnies 1997].

The current^voltage characteristic of a RTD is easily understood if we note
that the quantum well acts like the typical 'one dimensional quantum box':
the electron energies associated to perpendicular transport inside the
quantum well can only take several discrete values. Let us assume that the
quantum well is small enough that, within the energy range of interest, there
is only one allowed energy inside the well that we call resonant energy (see
figure l.lb ). Then, the structure acts like a filter that only lets electrons with
energy near the resonant one to be transmitted. The applied bias, that makes
electrons to travel from emitter to collector, modify the whole conduction
band geometry lowering the resonant energy as the bias is augmented (see
figure 1.2). Thus, the current increases as the resonant energy approaches the
most populated energy electrons in the collector. But, when the resonant
energy falls below the conduction band edge in the emitter, there is almost
any electron that can traverse the barrier, thus forcing the current to decrease
to its valley value. Finally, at high bias, electrons pass over the barrier
leading to another increase of the current. This is the qualitative explanation
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of the origin of the negative resistance in the RTD. The figures of merit for
this device are the peak current and the rate between the peak to the valley
current. The improvement of both magnitudes in real devices is quite
difficult since they generally respond inversely to any RTD modification
(such as barrier dimensions, doping concentrations, ....) [Vanbesien 1991].

Current

Applied bias

Fig. 1.2: schematic representation of the I-V curve of a typical RTD. The
resonant energy inside the QW acts like an energetic filter that lets the
electrons from the emitter to arrive at the collector.

In the 50s, Bohm already solved this problem (the academic double barrier
potential) in one of his quantum theory textbooks [Bohm 1951]. After
recognising that this phenomenon could be projected with electrons in order
to provide new electronic device, Tsu and Esaki [Tsu 1973] showed that
negative resistance could arise from finite superlattices. A year later, together
with Chang [Esaki 1974], they were the first to observe resonant tunnelling
oscillations in a semiconductor. Ten years later, Sollner et al. [Sollner 1983]
showed that the intrinsic charge transport inside the double barrier could
respond to voltage changes in times of the order of 0.1 ps, thus opening the
path for RTD high frequency applications. It is argued that the negative
resistance and this fast intrinsic time response offer quite interesting
applications in analogic electronics for frequency generation, detection or
multiplication in the milimetric and submilimetric regim. Brown et al.
[Brown 1991] have observed RTD oscillations at 712 GHz, which are the
highest frequency ever achieved with a solid-state source. On the other hand,
in digital electronics, several efforts are devoted to integrate RTD in CMOS
logic circuits with the double goal of reducing complexity and augmenting
the operation frequency [Mazumder 1998]. Finally, regarding power
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capabilitiy (one of the practical problems that limits its introduction in
commercial circuits), power densities of 1 kW/cm2 have already been
obtained within GaAs/AlAs [Bouregba 1993].

As an example, in figure 1.3, we show several typical experimental I-V
curves obtained at the Institute d'Electronique et Microelectrinique du Nord
(lEMN), in 1998, which can be considered as an example of the state-of-the-
art RTDs. Finally, let us say that, to our knowledge, in spite of these
unquestionable potential applications, there is still no commercial RTD-
based device on the market although it is argued that RTD are quite near to
reach a commercial status (see for example [Seabaugh 1998]).

. Area=4um

_Area=lum

. Area=lum

. area=l Oum

-1.00 1.00

Fig. 1.3: Experimental I-V curves for a .
A barrier and 45 A well for several device Areas.

AlAs RTD of 17

On the other hand, more than a thousand scientific papers about RTD have
been published in the scientific literature. This shows the enormous interest
that RTD has attracted in the research community. Such structures represent
a suitable opportunity for the theorists to understand electronic transport in
mesoscopic devices. As we have pointed out, one has to consider the
quantum coherence of electrons to allow them to pass through thin barriers,
but several scattering mechanisms can break the electron phase coherence
and destroy the coherent picture explained in figure 1.2. Additionally, to
obtain realistic simulations, the charge density at any point has to be
computed with a Poisson solver to find self-consistent potential profiles. And
finally, there are two contacts (reservoirs) that connect the RTD with the

15
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exterior, so RTDs have to be treated as an open system. Let us summarised
the complexity of the RTD simulation in Capasso's words [Capasso 1990]:
"this (RTD simulation) implies the need of a fully quantum mechanical and
self-consistent calculations in the presence of scattering and coupling to the
reservoirs (contacts), a formidable task indeed! "

1.3.-Simulation approaches for resonant tunnelling diodes

In conventional devices, it is assumed that an electron is perfectly defined by
its position x and momentum p=1vk, and that the evolution of both
magnitudes, between scattering events, is described by classical mechanics.
In this regard, the fundamental quantity for the simulation of conventional
devices is the carrier distribution function, f(x,k,t), which specifies, at any
time t, the number of carriers located at the position x that have a momentum
p. This distribution is a solution of the Boltzmann transport equation (BTE)
that simultaneously deals with Newton dynamics and scattering processes.

However, as we have shown in the previous section, the classical picture for
electrons is not adequate to understand RTDs. Moreover, the RTD system is
very different from a simple isolated quantum system, where a conservative
Hamiltonian can be readily formulated with the appropriate boundary
conditions. Instead of this, the complete simulation of a RTD has to take into
account a full quantum system with both particle and energy exchanges with
the device's environment. On the other hand, the tunnelling current depends
exponentially on several parameters, such us barrier dimensions, which are
not perfectly determined in real devices. These two factors explain why, in
spite of the several tools developed during the last 30's years, it is still a
formidable task to accurately predict the I-V characteristic of RTDs.

In the present section, we will briefly discuss some representative approaches
found in the literature for the modelling and simulation of RTD. Common to
all quantum transport approaches, one takes a model function to represent
electrons in the quantum system. Once the model function is evaluated for a
specific device, under particular boundary conditions, other physical
quantities of interest can be calculated from it. It is the chosen model
function that makes major differences (in terms of the mathematical
complexity, capabilities and results) between the different approaches.
Mainly, existing RTD device models can be classified as either coherent or
kinetic. In the coherent models, the model function is typically the
wavefunction solution of the Scrôdinger equation (rigorously speaking: the
envelope function), while in kinetic models, the density matrix, the Wigner
function or the Green's functions are employed. The big difference between
coherent and kinetic models is that coherent transport is based on single-
particle (i.e. pure state), while kinetic models are based on many particle
descriptions (i.e. mixed states). Hereafter, we will present three of these
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models: the Landauer-Büttiker approach (the most symbolic kind of coherent
models), and the density matrix and the Green's function as two types of
kinetic models.

1.3.1.- Landauer-Büttiker approach

The Landauer-Büttiker approach has been widely used in the interpretation
of mesoscopic devices with a reasonable success. It is supposed that the
current through a conductor is only expressed in terms of the transmission
probability of electrons injected from the external contacts. In this regard,
each electron inside the device is assumed to be described by a wavefunction
cpn(x) solution of the time-independent Schrôdinger equation (i.e. the model
function in this coherent approach is the wavefunction). The current density
of the state in each position is computed applying the standard current
operator, and the charge density is proportional to the modulus of the
wavefimction. On the other hand, a distribution function f(k) (position
independent) is associated to each state. States associated to electrons
departing from the emitter are supposed to be occupied by the emitter contact
distribution and,'obviously, states associated to electrons incidents from the
collector, are occupied according to the collector contact distribution (see fig
1.4). The total current (or the charge) is computed as a sum over the current
(charge) of each state weighted by the distribution function f(k).

From collector
to emitter

Emitter Collector

Fig. 1.4: Mathematical description of the different states involved in the
calculations of the net current within the Landauer-Büttiker approach.

Let us notice that the consideration of the RTD as an open system implicitly
sets the Schrôdinger boundary conditions for each eigenstate cpn(x).There are,
basically, two kinds of states: (i) the extended states which are associated to
electrons incidents from one contact and that are partially transmitted and

17
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reflected through the device (see the clearer square in figure 1.4), and (11) the
one side-bound states which are associated to electrons bounded in the
emitter region and therefore totally reflected by the potential profile (see
darker square in figure 1.4). In 1989, Kriman et al. demonstrated that these
states form an orthogonal and complete base of the RTD quantum system
(with no collision term in the Hamiltonian) [Kriman 1989]. Although their
demonstration was quite controversial, Di Carlo et al. confirmed their result
with a different approach [ Di Carlo 1994].

Limitations of the Landauer-Buttiker approach: quasi-2D states

As we have said, the often described Landauer-Buttiker approach has been
proved to be very useful in describing mesoscopic transport since it is
intuitively very appealing to assume that the conductance of a sample is
proportional to the ease with which electrons can transmit through it.
However, one can wonder if this approach is accurate enough. Does the
scattering mechanisms affect the conductance in real mesoscopic devices? It
is argued that if the electron transport is coherent (i.e the distances involved
are shorter than the electron mean free path and phase-relaxation length) then
the Landauer-Buttiker approach is rigorously correct. Unfortunately, the
electron transport in real RTD can not always be considered as coherent.

In order to clarify the limitations of this approach (i.e. the meaning of
coherent transport), let us concentrate on one kind of one-side bound state
that we will call quasi-2D states. We define them as states incident from the
collector but with an important presence probability in the barrier In a fully
coherent quantum picture, these states do not contribute to the net total
current, but only to the charge. However, from a physical point of view, the
electrons located in the emitter quantum well and associated to quasi-2D
states, can contribute to the net current in a two step process: (i) electrons
incident from the emitter can reach these states by a dissipative collision (non
coherent transport) and, then (ii) these electrons can contribute to the total
net current by traversing the barriers by tunnelling. However, the Landauer-
Buttiker approach can not model this physical phenomenon since quasi-2D
states are totally reflected states (i.e. they do not carry any current). In [paper
A] we propose a new definition for the quasi-2D states that can overcome
these limitations.

The conventional boundary conditions for quasi 2-D states impose that the
modulus at the emitter is zero |cpn (x->-oo)|2-»0. This implicitly implies that
the wavefunction is real and, hence, that this state does not contribute to the
current. However, we propose a new physical boundary conditions for these
states to be able to describe their stationary contribution to the charge and
current densities:(i) Since in the collector region we want the current to be
uniform, the most obvious choice is a transmitted plane at this region, and
(ii) since they are bounded at the emitter we also propose |cpn(x—»-oo)|2—»0.
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These two boundary conditions are not simultaneously compatible for an
eigenstate of the Hamiltonian. However, these two conditions can be
satisfied by two different real eigenstates, <pni(x) and cpn2(x) (for two slightly
different values of the energy, Enl and Enz). We propose to describe the
quasi-2D state by the combination of the two eigenstates:

fn(x) = ̂ »i(x) + jc>M(x) (1.1)

Within our model, the charge is computed from the wave-function moduli
and the current applying the current standard operator. Moreover, with a
proper choice of their occupation function, we have found that they perfectly
model the previously presented steady-state situation without explicitly
considering inelastic interaction. For a complete description of the present
model see [paper A].

1.3.2.- The Density matrix and the Wigner Function

As we have previously argued (and explicitly pointed out for quasi-2D
states), the description of the quantum system by a complete set of
eigenstates does not always provide an accurate simulation for RTDs (In
informal words, once scattering is introduced, it is, in general, difficult to
associate a single wavefunction to each electron). However, there are other
approaches developed with the goal of introducing scattering in the RTD.
Among them, the density matrix, p(x,x',t) (or its Wigner-Weil
transformation: the Wigner distribution function, fw(x,k,t)), is a very useful
tool that facilitates the simultaneous applications of the postulates of the
quantum mechanics and the results of the statistical calculations.

From a mathematical point of view, the density matrix is the solution of the
Liouville equation that, in the x-representation, can be written as:

If our device is perfectly described by a single state solution of the
Scrodinger equation ^(Xjt), then the density matrix and the Schròdinger
formalism are equivalent approaches. However, the density matrix formalism
can deal with other quantum systems that can not be directly studied with the
Schròdinger equation. For example, let us suppose a quantum system where
we are not able to associate a single state T(x,t) to it, because we only know
the probabilities, {fn}, of finding the electrons in one of the states {^(x^)}.
Then, the density matrix formalism using this 'incomplete' information, can
provide macroscopic results as the charge or -the current inside the device
[Fano 1957]. Let us develop the density matrix for this particular case. We
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suppose that each wavefimction is expanded in a set of eigenfimctions cpk(x)
(i.e as a superposition of eigenfunctions) as follow:

(1.3)

where a"(k) is the k-components of the wavefunction associated with the
eigenstate cpk(x) whose energy is Ek. Then, the density matrix, in the k-
representation, can be written as:

.(£,.-£<-)

(1.4)

In this representation, k and k' (i.e. the row and the column of p) label the set
of considered {cpk(x)}. From equation (1.4) we can provide a more complete
definition for coherent and kinetic models. Let us notice that within the
Landauer-Büttiker approach, where we assumed that the electrons are
described by eigenfunctions <pkn(x), the density matrix, in the k-

representation, remains diagonal (i.e. a"(k) = 5(k-kn} for Hamiltonian
eigenstates). Models with this property are called coherent modes. On the
other hand, models where the off-diagonal elements of p(k,k',t) are non-zero
are called kinetic models (Naively, one can appreciate the importance of the
off-diagonal terms by noticing that one must rely on the interference among
many plane waves in order to describe the propagation of a single localised
wavepacket).

In general, the majority of RTD simulations within this approach do not use
directly the density matrix, but a transformed version called the Wigner
function, fw(x,p). The Wigner-Weil transformation operates over the density
matrix to provide a more intuitive framework [Hillery 1984]. To obtain it
from the density matrix, we first transform the two position variables to the
center of mass, x, and relative coordinate, q, and then, we Fourier transform
the relative coordinate q to obtain the Wigner function that depends on the
position x and momentum p:

,3P
-,

2 2
(1.5)

Identically, the Liouville equation (1.2) can be Wigner-Weil transformed to
obtain a kinetic equation in a pseudo-phase space:

a = L-fw(x,k,t) (1.6)
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where L is the Lioville operator (related with the right term of the equation
1.2) that describes ballistic electron motion (i.e. the behaviour of the Wigner
function in the absence of scattering). The formal similarity between the
obtained kinetic equation and the Boltzmann equation is rather attractive and
several authors have used a collision term, C0,, to take into account the
scattering in the RTD simulation. The resulting equation takes the form:

(1.7)

The Wigner function is not only useful as a calculation tool but, it is said that
it can also provide insights into the connections between classical and
Quantum mechanics. However, there is an important difference between the
Wigner function, fw(x,p), and the semiclassical distribution function f(x,p).
The Wigner function can not be interpreted as the number of particles that
occupy a position x and have a momentum p in the same way as a classical
distribution function, because fw(x,p) it is not always positive. From a
practical point of view, Frensley provided appropriate boundary conditions
for the simulation of open systems in the Wigner framework [Frensley 1990].
Since then, a lot of profitable work has been dedicated to the simulation of
RTD within this formalism. However, quantitative simulations of RTD are
still not evident.

At this point, it is convenient to notice the analogies between the
semiclassical transport model and the one based on the quantum Liouville
equation. The Newton equation, which describes the classical dynamics of
electrons, is conceptually replaced by the Schrôdinger equation. Identically,
the Boltzman equation, which takes into account the dissipative processes
inside the device, is replaced by the Liouville equation.

Other approaches with the Liouville equation

From a practical point of view, in the literature, we can find several attempts
to solve the Liouville equation by quite different methods (some of them
even quite close to the Landauer-Buttiker model).

Among them, the group of Carlo Jacoboni in Modena works with the Wigner
distribution function in order to provide a formalism of electronic transport
in terms of Wigner Paths [Brunetti 1997] [Brunetti 1989] [Rossi 1992]. In
somehow, although their models have not always a transparent interpretation,
one can say that they try to solve the Lioville equation using quite classical
concepts. In the same regard, but more recently, Rossi et al. [Rossi 1998]
have developed a density matrix formulation to study the single wavepacket
evolution with scattering inside its- dynamic evolution.
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On the other hand, the work of Fischetti [Fischetti 1998] is of particular
importance for us. He started very interesting discussions about topics that
are quite recurrent in this thesis. He argues that it is not always necessary or
even desirable to face fully off-diagonal formulations of the Lioville equation
to treat the electron transport in mesoscopic devices. Under some conditions
of practical interest (sub-50 nm devices), the off-diagonal terms of the
density matrix may be neglected. In this regard, he presents a discussion
about the actual size of the electron (i.e. its spatial dispersion) which will be
repeatedly referenced. Let us provide a simple explanation of his proposal:
still assuming that each electron is described by a Hamiltonian eigenstate
(extended over the whole device), he introduces the scattering effects via a
Pauli master equation discussing its validity as a particular case of Liouville
equation. From a practical point of view, although his method provides an
accurate intuitive simulation framework for mesoscopic devices, the results
for RTD are, for the moment, not very successful.

1.3.3.- Non-equilibrium Green's function formalism

The nonequilibrium Green's functions (NEGF) formalism provides a
different mathematical scenario to formally study interactions in QM
systems. Electron-electron interactions in the contact regions, electron-
phonon interactions, and other scattering processes, can be readily
incorporated in a unified and consistent formulation.

The NEGF's model consist of a number of different Green's functions and
their related self-energy functions that take into account the scattering
mechanism with the desired degree of approximation. Each of these
functions, in steady-state problems, can be Fourier transformed to yield and
energetic-resolved function which is able to take into account the phase-
correlation information of the system (i.e. like the off diagonal elements of
the density matrix). The central equation for the NEGF approach is the
Dyson's equation. Starting from this equation in the Keldysh formalism,
Datta, Lake and co-workers formulated a set of equations for RTD steady
state transport calculations, which yields de I-V characteristics [Lake 1997].
Once again, this set of equations combines the Schrò'dinger equation with a
probabilistic description of random scattering processes.

Recent efforts at Texas Instruments, in collaboration with others researches,
have produced nanoeletronic modelling (NEMO) software utilizing
nonequilibrium Green's functions to attempt state-of-the-art device
modelling tool for nanoelectronics devices [Klimeck 1995]. The relevant
publications have indicated that the NEMO program may be an accurate
modeling for RTD I-V characteristics and other steady-state properties. On
the other hand, the development of the NEGF based time-dependent
modelling is still in his infancy. See [Datta 1998] to provide further
information on the use of Green's functions for mesoscopic devices.
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1.4.- Outlines of our proposal

At this point, we want to anticipate the main features of our work. But,
before this, let us wonder about the current status of the simulation tools for
RTD. Among the different alternatives found in the literature, no one has
clearly emerged as the best choice for the simulation of mesoscopic devices.
In our opinion, a successful approach requires correctness, but also
simplicity. The word simplicity has to be understood twofold. First, from a
mathematical point of view, it means to try to find the simplest algorithm that
correctly describes the problem. Second, from a physical point of view,
simplicity means to be able to provide an intuitive (i.e. an easily
understandable) description of the system. However, when quantum transport
is involved, simplicity (in both meanings) is not readily achievable. In
particular, none of the above mentioned approaches provides neither a simple
algorithm nor an intuitive understanding of the quantum devices. This is the
main reason, in our opinion, that explains why RTD technology has evolved
much faster than the simulation tools. Due to the lack of simplicity of the
simulation models, experimentalists have only made extensive use of the
Landauer-Büttiker formalism when they have required simulated results.

The full QM kinetic formulations depart from very fundamental equations
(Liouville or Dyson equations) using several approximations, each at a time,
to be able to develop a numerically tractable tool. For example, let us center
on the Wigner formalism. Although, the Wigner function is a formal solution
of the Liouville equation, the scattering is generally introduced using the
relaxation time approximation [Garcia 1996], that is a quite fuzzy way to
treat collisions in quantum systems. Nonetheless, others more rigorous
approaches [Brunetti 1997] are numerically non-viable for device simulation
proposals. In this regard, these approaches are based on a TOP-DOWN
methodology. This usually provides function models which are hard to be
numerically manipulated and with a not-always clear physical interpretation
(in our example, the negative values of the Wigner function). On the other
hand, we are interested in providing a simulation tool starting from a
different point of view. We want to simulate mesoscopic devices with a
simple (i.e. fully understandable) function model. It is our opinion that such a
tool will enhance our understanding of RTD and, perhaps more important,
will be able to connect experimental and theoretical work on RTD.

This idea has been partially investigated by other authors. Among them,
Salvino and Buot pointed out one direction for a simple and intuitive
mesoscopic simulation tool [Salvino 1992]. They proposed to study RTD by
extending the classical MC technique to these devices. They defined a device
region, called Quantum Window (QW), where quantum phenomena must be
considered. Outside this region, they used a classical MC simulator to solve
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the BTE. Inside the QW, they considered ad-hoc quantum trajectories to
compute all macroscopic results following the MC philosophy. Following
their steps, we will develop a quantum MC simulator for RTD based on
Bohm trajectories. As we will explain in the second chapter, Bohm
trajectories are physical entities that are able to perfectly reproduce
Schròdinger-equation results within a classical intuitive framework. In this
regard, by using Bohm trajectories, our approach will have the simplicity
(from a physical point of view) guaranteed. In this report, we will also
present the connections of our work with the ones based on Liouville
equation in a BOTTOW-UP development (section 3.4). In other words,
although our proposal is based on simple physical ideas we are able to relate
it with the density matrix formalism within a mathematical framework. Our
proposal, although here focused on RTD because these devices are of high
practical interest and show a rich phenomenology, can be readily extended to
any mesoscopic device based on QM interference phenomena.
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Chapter 2

CAUSAL TRAJECTORIES IN QUANTUM
MECHANICS

2.1 The De Broglie-Bohm interpretation of Quantum
Mechanics

As we have pointed out, we are interested in describing quantum phenomena
inside RTD in terms of single particle trajectories. Among other possibilities,
Bohm trajectories fit with our goal because they perfectly reproduce the
charge and current densities inside the device. The general philosophical
implications about the physical reality of Bohm trajectories are far from the
scope of this thesis, however, to be fair, it is quite difficult to present a
mathematical description of the de Broglie-Bohm (BB) approach without
being seduced to assume its physical interpretation. In this regard, in the
present chapter, we present the BB interpretation of QM from a complete
(mathematical and physical) point of view.

2.1.1.- Controversies on the Copenhagen interpretation of quantum
mechanics

Although the debate about the true nature of the quantum behaviour of
atomic systems has never ceased, there are two periods during which it has
been particularly intense: the years that saw the funding of QM and,
increasingly, these modern times [Selleri 1990], The dramatic disagreement
between scientists is centred around some of the most fundamental questions
in science: Do atomic objects exist independently of human observations
and, if so, is it possible for man to understand correctly their behaviour?
Nowadays, the orthodox interpretation of QM (called Copenhagen
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interpretation of QM in order to acknowledge the city where it was born)
gives a more or less openly pessimistic answer to both questions.

Let us briefly discuss the Copenhagen's negative answer. The first postulates
of the robust mathematical apparatus that supports Copenhagen school,
affirms that a physical system is completely defined by specifying a ket in the
state space (a wavefunction in position cordinates). On the other hand,
Schrôdinger equation incorporates the Heisenberg uncertainty relations since
no wavefuntion exists that assigns single well-defined values to the position
and momentum simultaneously. In this regard, no position and momentum
measurement can be done simultaneously in a physical system (and as the
system is completely described by the wavefunction), therefore, one
concludes that these two observables can not be real at the same time. In
formal words, it is not possible to give a causal description of the physical
system in space time.

On the other hand, several scientists have stressed the philosophical
difficulties in blindly accepting the Copenhagen interpretation of QMs.
Among them, for example, Einstein was unable to assume the revolutionary
changes in the world view required by the Copenhagen theory. What
bothered him most was the elimination of determinism from fundamental
physics: "God does not play dice". In addition, the Einstein-Podolsky-Rosen
paradox, that appeared in the journal Physical Review in 1935 [Einstein
1935], used their famous 'criterion of physical reality' to try to demonstrate
that the Copenhagen interpretation of QM was not a complete theory. The
Bohr's answer [Bohr 1935] to this paradox, that was received by the editor of
the same journal less than four months after the previous one, clearly
manifested the essence of the disagreement: "The previous criterion does not
exhaust all possible ways to recognise a physical reality ". For Einstein,
physics was only a refinement of common sense that aspires to describe
reality in space and time. However, Bohr exposed a less ambitious definition
of physics as a discipline whose task is not to discover the way nature is, but
only to impose order on our experimental measures.

Once more, these discrepancies can be found didactically explained in the
Feynmann's lectures on Physics [Feynnamm 1963]. Both, Einstein's and
Bohr's, physical reality conceptions can be easily understood by noting the
two possible answers to the following question: "If a tree falls in a forest and
is nobody there to hear it, does it make noise? ". From a classical point of
view, the answer is clear. A real tree falling in a real forest makes a sound,
even if nobody is there. However, the standard QM are developed under the
idea that we should not speak about those things that we cannot measure. In
this regard, Born will affirm: " / do not need to answer such questions
because you cannot ask such a question experimentally". In any case, even
today, it remains true that no experimental result has been found to be in
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disagreement with standard QM yet. Moreover, it can be noticed that the
successes of QM are so numerous and its predictions so accurate that, from
the computational point of view, no comparable scientific theory has ever
existed. So, it is obvious, that all previous criticism were therefore directed
against the interpretation of the theory but not against its practical validity.

2.1.2.- The De Broglie-Bohm's interpretation of quantum mechanics

Those physicists who did not accept the 'final' version of QM disagreed with
the philosophy of the Copenhagen school in particular in one point: they
thought that it was possible and useful to complete the theory in such a way
as to make it causal. In other words, there is something more in the real
world that is not contained in the wavefunction description (i.e. hidden
variables) that allows us, for example, to talk of position and momentum
simultaneously even if they are not simultaneously measurable. However, in
1932 John Von Neumann proposed his famous theorem establishing the
impossibility of a causal completion of QM [Von Neumann 1955]. Bohr,
Born, Pauli, Heisenberg stressed the importance of this theorem, and the
great authority of these physicists, together with the mathematical
complexity of Von Neumann's theorem, had the practical effect of outlawing
the idea of hidden variables. From 1935 to about 1970 the physicists who
worked on the problem of causality were indeed few and far between.
Notwithstanding this, important results were obtained by Bohm (1952) and
by de Broglie (1960), who managed to do what von Neumann had declared
impossible: find a hidden-variable model that does not contradict quantum
mechanics in its statistical predictions and, at the same time, provides a
causal foundation for the individual behaviour of single quantum systems. It
took some time before Bohm's and de Brogue's results were fully
appreciated. In fact, until it was understood that von Neumann's theorem,
although mathematically correct, could in no way forbid deterministic
generalizations of QM, for the simple reason that one of its axioms was in
general not physically reasonable.

In particular, Bohm showed conclusively that one could analyse the causes of
individual atomic events in terms of an intuitively clear and precisely
definable model. This model adscribe physical reality to magnitudes such as
position and momentum independently of the observation. At the same time,
this model reproduce all experimental predictions of standard QM. In this
regard, Bohm's formulation retains the concept of wavefunction from the
standard QM and postulates the existence of particles.
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The basic postulates of the BB interpretation are[Holland 1993]:

(1) An individual physical system comprises a wave propagating in space
and time together with a point particle which moves continuously
under the guidance of the wave.

(2) The wave is mathematically described by the wavefunction, (̂x,!),
solution of the Schròdinger equation.

(3) The particle motion is obtained as the solution x(t) to the equation:

(2.1)

where S(x,t) is the phase of the wavefunction. To solve this equation
we have to specify the initial position X(U)=XB.

These three postulates constitute a consistent theory of motion. In order to
ensure the compatibility of the motions of the ensemble of particles with the
results of QM, a further postulate is needed:

(4) The probability that a particle in the ensemble lies between the points
x and x+dx at time t is given by:

where R(x,t)=|xF(x,t)|
R2(x,f)-dx3 (2.2)

This postulate has the effect of selecting from all the possible motions
implied by the law (2.1), those that are compatible with an initial distribution

f \ n

R (x,0)=|xP(x,0)| . We will show later that, with these postulates, the standard
results of QM are perfectly reproduced in terms of single particle trajectories.
Apart from this, the BB approach provides a deeper structure to QM that
avoids the obscure interpretation of the QM measurement with the
wavefunction collapse. In this regard, as Bohm trajectories have a physical
reality independently of the measurement, they are intuitively clear for our
minds.

At this point, following the Bohm's original paper [Bohm 1952], it will be
interesting to mathematically deduce how the Schròdinger equation can be
rewritten to obtain causal trajectories. We start by rewriting the wavefunction
in polar form:

.s(*,0
h (2.3)
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where R(x,f) and S(x,t) are two real functions representing, respectively, the
modulus and phase of the wavefuntion. Then, if we substitute R(x,t) and
S(x,t) into the time dependent Schròdinger equation, we can split it into two
real equations by separating the real and imaginary parts. The real part leads
to the following equation:

¿S(x,t)
+ 2m âc (X' '

h
2mR(x,t)

= 0 (2.4)

that can be interpreted as a generalized Hamilton-Jacobi equation assuming
that the momentum is described by the spatial derivative of the phase:

a
cS(x,f) '

H\x,— ,t = 0 (2.5)

where the Hamiltonian in addition to the kinetic energy and to the classical
potential V(x,f), contains a new term Q(x,f), called the quantum potential:

fi 1 â'1R(x,t)
' l m R ( x , f ) dx1 (2.6)

Within the BB approach, this new potential term correctly accounts for all
the differences between classical and quantum dynamics. In particular, Q(x,f)
introduces the non-local features characteristic of quantum phenomena.
Obviously, when Q(x,f) is negligible compared with the other relevant energy
terms, classical trajectories are obtained.

Equivalently, the imaginary part of the Schròdinger equation gives an
equation for R(x,t):

(2.7)

which can be identified as the continuity equation because R2(x,t) is the
presence probability density (postulate 4) and the expression inside the
gradient can be mathematically demonstrated to be identical to the standard
definition of the current density.

At this point, we need to discuss how the Heisenberg's uncertainty principle
is compatible with this causal formulation of QM. Although a single Bohm
trajectory has no uncertainties on its dynamic magnitudes, any quantum
system has an experimental uncertainty when a real experiment is carried
out. Therefore, from a practical point of view, one can not know with
absolutely accuracy which is the initial condition of the experiment (position,
energy...). In this regard, an initial position probability distribution,
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R(x,0)=|^/(x,o)|2, has to be chosen for the simulation of experimental results.
So, different Bohm trajectories (departing from different initial positions
x(0)=xB) have to be simulated. And as a consequence, within the BB, only
average results are obtained in experiments. In other words, Heisenberg's
uncertainties are not intrinsic to the BB interpretation (as it is in the standard
one), but only due to experimental limitations.

In figure 2.1 we reproduce the work of Philippidis, Dewdney, and Hiley
[Philippidisl979] who showed in particular how a detailed calculation of the
quantum potential for the usual two-slit experiment can give rise to
interference without the need to abandon the notion of a well-defined particle
trajectory. Their result shows that every particle follows a well-defined
trajectory and that, in spite of this, the interference pattern is obtained since
the particle probability density remains equal to ^(Xjt)!2 for all times. This
work is charged with phylosophical implications for those who believed that
the double-slit experiment did not allow any simple ('intuitive') explanation.
In the words of Bell: "De Broglie showed in detail how the motion of a
particle, passing through just one of two holes in screen, could be influenced
by waves propagating through both holes. And so influenced that the particle
does not go where the waves cancel out, but is attracted to where they
cooperate. This idea seems to me so natural and simple, to resolve the wave-
particle dilemma in such a clear and ordinary way, that it is a great mystery
to me that it was so generally ignored" [Bell 1987]

Fig 2.1: Particle trajectories for the double-slit
experiment as calculated by Philippidis, Dewdney, and
Hiley [Philippidis 1979]

Let us stress that, consistently with the Bohm's interpretation, but without
invoking the generalized Hamilton-Jacobi theory or the quantum potential,
all the dynamic behaviour of Bohm trajectories can be equivalently obtained
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by defining the particle velocity, described by the
classically-intuitive expression:

v(x,0 =
1 J(x,f)

with the quite

(2.8)

where q is the absolute value of the electron charge.

At this point, once more, we want to stress how the standard QM results can
be exactly reproduced in terms of individual trajectories. Following the
Bohm's formulation, the initial position is uncertain and only the presence
probability density is considered to be known at f=0. So, the
physical observables <A> must be computed by averaging the corresponding
magnitude A(xB,t) over all possible Bohm trajectories [Leavens 1993]:

<A>=- (2.9)

In particular, as a direct consequence of the continuity equation, the presence
probability density at an arbitrary position x can be recovered by 'counting'
all the particles:

CO

(2.10), 0|2 - \dxB I r(xB ,0)|2 S(x - X(XB , 0)
— 00

and the current density by weighting their velocities:

00

J(x, t} = q \dxB | V(XB ,0)|2 v(x, t)o(x - X(XB ,t)) (2.11)

From the above two expressions, an avoiding any physical interpretation, the
BB approach can be exclusively considered as a mathematical tool which is
able to reproduce the presence probability and current density associated to
*P(x,f) using well defined particle trajectories. Moreover, since the main goal
of any device simulator is to obtain charge densities (i.e. self-consistent
potential profiles) and current fluxes, the two previous equations demonstrate
that we can obtain reliable results using Bohm trajectories and treat the
classical and quantum regions equivalently.
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2.1.3.- Additional information provided by the De Broglie-Bohm
interpretation.

We have stressed that Bohm trajectories exactly reproduce the measurable
results obtained with standard QM. However, Bohm's interpretation also
provides other results that do not have a counterpart within the standard
framework of QM. This is not surprising since the causal trajectories give a
deeper structure to the quantum theory. An example of the nonconventional
information provided by the BB approach is the case of tunneling times (a
detailed discussion of different approaches for the description of tunneling
times is found in [Hauge 1989] and [Landauer 1994]). In particular, Leavens
have devoted a lot of work to study these times within the BB interpretation
[Leavens 1993]. Since the Copenhagen interpretation of QM denies the
probability of talking about trajectories, the answer to the question: "Hove
much time does the electron take to traverse the barrier? " is a nonsense (in
Bohr's words, you can not ask this question experimentally). However, when
the quantum formalism is regarded from Bohmian mechanics, these
paradoxes or perplexities (so often associated to with quantum philosophy)
simply evaporate. Following these steps, we have also studied the
implications of the noncrossing properties of Bohm trajectories in the
practical computation of these times in double barrier potential profiles
[Paper D].

In particular, when RTD are involved, it seems natural that one needs to
speak about the time that an electrons takes to traverse the double barrier
(directly related with its high frequency application). However, although
these concepts are natural in the BB interpretation, they are part of the
unspeakable quantum mechanics (i.e all additional results that have not an
analogue within the standard interpretation of QM, should be regarded with
caution until Bohm's theory is confirmed or refuted by experiments). In any
case, in the present thesis, this hidden information is considered as a
byproduct that can be useful to enlighten some obscure fields in quantum
transport. Let us express our opinion using Fischetti's words: We need to
keep an open mind: Otherwise surprises (and discoveries) would never
happen,

Finally, let us point out that, although recent experiments on quantum
teleportation evidence, once more, that the discussion about "locality" and
"realism" in QM is far from resolved [Furusawa 1998], the present thesis
does not contribute to this discussion.

2.2.- Properties of Bohm trajectories

Following the goal of providing a classical intuitive picture for electron
tunneling, the present section is devoted to study how Bohm trajectories can
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describe the mesoscopic electron transport in RTD. First of all, we will
discuss two relevant characteristics of Bohm trajectories.

It is widely assumed that intuition is a very important issue for our
understanding of nature. It is in this regard that it can be said that the
Copenhagen interpretation of QM remains impossible to be understood
within a classical framework. But, as intuition is unavoidably subjected to a
cultural environment, it is argued that once you have grown with concepts
such as wavefunctions, quantum jumps, nonlocality or wave-particle
dualism, you may find it intuitive (i.e. you can build a mental picture of what
goes on and make predictions about how a physical system will behave). In
any case, as far as electronic transport in mesoscopic devices is concerned, a
classical intuitive picture is an unquestionable advantage for any simulation
tool. In our opinion, aside from the quantum philosophical objections, Bohm
trajectories can provide a common language (intuitive picture) for people
working with mesoscopic devices (from theoretical physicists to device
modeling engineers).

On the other hand, we want to stress that, in addition of being intuitively
appealing, Bohm trajectories exactly reproduce the observable results of
standard QM by construction. In other words, the QM information present in
the wavefunction is equivalently contained in the Bohm trajectories
dynamics. The function used to describe the quantum system determines how
Bohm trajectories behave. In this regard, we will study Bohm trajectories
associated to either pure or mixed states.

In particular, we are interested in describing a constant flux of electron in
double barrier potential profile. First, we will consider that this quantum
system is described by an eigenstate (pk(x). But finally, after using a time
dependent wavepacket \|/(x,t), we will show that an incoherent superposition
of wavepackets Pkk'(t) (i.e. a particular kind of the density matrix described
in 1.3.2) perfectly fits with our goal for building a Quantum MC simulator.
In all the cases, we will evidence that any complain related with a particular
counterintutive behaviour of Bohm trajectories can also be directly imputed
to the associated function model

2.1.2.- Bohm trajectories associated to time-independent states

Let us assume that an electron is described by a time independent
wavefunction cp^(x) solution of the Schrodinger equation. These states are
associated with a constant flux of particles, so it seems natural that the
probability presence does not change with time. However, let us wonder
about the meaning of the dynamic information that they provided. In this
regard, let us compute Bohm trajectories associated to these states.
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Because of the monoenergetic description of <p^x), Bohm trajectories
associated to these states can be easily computed. In particular, SS(x,f)lat=-
Ek, so that, equation (2.4) can be rewritten as a energy conservation law:

1
2'

(2.12)

The quantum potential Q(x) depends only on the modulus of the
wavefunction, and hence, it has no dependence on time. Moreover, as the
classical potential V(x) is also time-independent, the velocity of all different
Bohm trajectories have only one possible value at each position, v(x), that
do not depend on time. (i.e. there is a unique trajectory in the phase space)
[Paper C].
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Fig. 2.2: Bohm trajectories associated to stationary
scattering states impinging on a typical GaAs/AlGaAs RTD
with 2 nm barriers of 0.3 eV separated by a 7 nm well. The
classical potential and the total potential (the sum of
classical and quantum terms) are also depicted in dashed
and solid lines, respectively, (a) Resonant eigenstate,
£¿=0.05 eV; (b) Non-resonant eigenstate, £¿=0.06 eV.

As an example, let us concentrate on extended states travelling from left to
right. These states represent a constant flux of particles, incident upon a
barrier, partially transmitted and reflected. For these states, the current
density is position independent and the probability presence is extended to
the whole device. So, Bohm trajectories can depart from all positions and the
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standard current and charge density values are perfectly reproduced. In Fig.
2.2(a) we have represented one of these trajectories for a state incident from
left to right upon a potential profile of a typical RTD. Its energy £¿=0.05 eV
corresponds to the first resonant level of a GaAs/AlGaAs. In this particular
case, where the transmission coefficient T(k) is very close to unity, the results
obtained within the Bohm's approach are quite compatible with our intuitive
understanding of the tunneling phenomenon: all particles are transmitted and
the particle velocity decelerates in the well.

Counterintuitive results associated to time independent states

However, the situation is far from clear for non resonant states. In Fig.
2.2(b), we have represented one of these non-resonant trajectories for the
same potential profile. Although T(k) is much smaller than unity for the non-
resonant states, they present the same features as the resonant ones: all Bohm
trajectories are transmitted through the barrier. This fact can be easily
understood from a mathematical point of view. Apart from using equation
2.12, the particle velocity can be equivalently computed as the quotient
between current and probability presence densities (eq. 2.8). For these states,
both densities are time-independent and positive everywhere. So, the Bohm
velocity is always positive. In this regard, although Bohm trajectories
associated to scattering states perfectly reproduce the presence probability
and the current density, they do not reproduce our particle-intuitive
understanding of the tunneling phenomenon since, in principle, we would
expect to find reflected as well as transmitted trajectories.

However, we can not conclude that Bohm's approach fails for scattering
states. As we have said in the introduction of the present section, Bohm
trajectories exactly reproduce the dynamic information contained in the
wavefunction. In our opinion, the problem resides in the fact that extended
states describe a constant flux of incident and reflected electrons:

(2.13)
incident reflected

As a consequence, the velocity of Bohm particles is neither related to the
incident electron nor the reflected one, but to the average of both. In
particular, if the barrier is infinitely high, then the reflection coefficient is
equal to one and Bohm's velocity is zero (one would expect positive and
negative electron velocities simultaneously). This argumentation is consistent
with the first example: if the reflected plane wave is not present (the
transmission coefficient equal to unity), then, Bohm trajectories reproduce
our intuitive picture for tunnelling. '
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Another example of the unphysical results obtained from Bohm trajectories
is the oscillatory behavior of the velocity in the emitter (as is seen in figure
2.2). Obviously, this oscillatory behaviour is due to the oscillatory behaviour
of the probability presence density in the emitter region, however, its quite
difficult to justify why an electron situated very far from the barrier, will find
some prohibited region (i.e. |(pi(x)|2=0). For a detailed discussion of this
unphysical behavior of Bohm trajectories see [Paper C] and [Paper D].

Our intuitive picture for tunneling is based on the fact that the electron is first
incident and then, after a time, reflected. In conclusion, we can said that
although these extended states can be useful (as a complete base) for
describing macroscopic variables of the device (charge and current), they
have serious counterintuitive aspects when used to describe the dynamics of
particle tunneling.

2.2.2.- Bohm trajectories associated to time-dependent wavepackets.

For the Monte Carlo simulation based on Bohm trajectories, we need a time
dependent description of tunneling. In this regard, we can consider that an
electron is described by a time dependent wavepacket, v|/\.(x,t), whose initial
boundary condition, (at t=t0) is a Gaussian wavepacket (i.e. a wavepacket
with a minimum position uncertainty):

(2.14)
2<T

crx being the spatial dispersion, xc the spatial center of the wavepacket at time
t=t0, and kc the centroid of the wavevector distribution which is related to a
central energy Ec. For reason that will become evident later, we define t0 as
minimum spatial uncertainty time and we use it.t0 label the wavepacket. In
other words, to is the time when the wavepacket has its minimum spatial
uncertainty. From a practical point of view, v|/kc'°(x,t) is computed by a
superposition of Hamiltonian eigenstates as described in equation 1.3. The
complete algorithm to compute the wavepackets is explained in [Paper
C].Then, the velocity of Bohm trajectories, at any time and position, is
computed as the quotient between current and presence probability densities
(eq. 2.8). Contrarily to the Hamiltonian eigenstates, since the velocity of
Bohm trajectories associated to a wavepacket depends also on time, there are
different Bohm trajectories in the x-t plane.

In Fig. 2.3 we show several of these trajectories corresponding to the second
transmission resonance (Ec=0.22 eV) of the structure described in the figure.
All Bohm trajectories are associated to the same wavepacket. They depart at
t=t0 from any position XB according to the initial gaussian distribution
lxl;kcto(xB5t

:=to)|2. The observable results obtained from this ensemble of Bohm
trajectories, perfectly reproduce the standard QM results. The trajectories
coming from the front of the wavepacket are transmitted, while those from
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the rear are reflected (most of them without even reaching the barrier). This
is caused by the fact that Bohm trajectories do not cross each other in
configuration space [Paper D]. If the barrier region is limited by XL<X<XR, we
can calculate the wavepacket transmission coefficient T(kc) by computing the
probability presence at the right of point XR for f-»oo. Moreover, we can also
computed T(/cc) by counting all the transmitted particles:

(2.15)

where a-r(xB) is equal to unity if the particle is transmitted and zero
otherwise.
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Fig. 2.3:Bohm trajectories associated to an initial Gaussian
wavepacket with a central energy of 0.22 eV and a spatial
dispersion of 10 nm, impinging upon a double barrier
structure with 2 nm barriers of 0.3 eV and 7 nm well. The
barriers and the initial Gaussian wavepacket are indicated
by dashed lines.

Let us remind that it was not possible to reproduce the transmission and
reflection coefficient of stationary extended states by counting transmitted
Bohm trajectories (all particles were transmitted for extended states). Finally,
let us said that some practical implications of the non crossing properties of
one dimensional Bohm trajectories are explained in detail in [Paper D]. Other
general observations about Bohm trajectories in time dependent wavepackets
can be found in [Paper E] and [Paper F].
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From the behavior of the trajectories shown in Fig. 2.3, one could conclude
that the intuitive picture of particles bouncing back and forth inside the well
at resonance (as in a Fabry-Perot interferometer) is not reproduced by the
Bohm trajectories. However, this conclusion is not exactly correct, since
oscillating trajectories are indeed found in other situations (i.e. different
parameters for the potential and/or the wavepacket). In general, we can
confirm that Bohm trajectories oscillate whenever the wavepacket oscillates
between the barriers (see [paper C] for a detailed discussion of the oscillatory
behavior of Bohm trajectories). In conclusion, as it has been repeatedly
stressed, Bohm trajectories are a perfectly equivalent alternative to the
wavefunction for the description of the electron dynamics.

Uncertainties and counterintuitive results with time dependent states

Although, Bohm trajectories associated to time evolving wavepackets seem
to provide an accurate intuitive picture of tunneling, there are also some
physical objections when electrons are described by these states.
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Fig 2.4: Non-selfconsistent I-V curves for a typical RTD
computed using scattering states or initial Gaussian
wavepackets with different values of its spatial dispersion

First of all, the spatial dispersion, oXi which determines the initial spatial
dimensions of the electron, remains undefined and an adhoc criterion are
required for its selection. In figure 2.4, we show how the choice of crx

determines the simulated macroscopic performance of the device: four
different non-selfconsistent I-V curves are obtained for four different spatial
dispersion of the wavepackets. In informal words, we can say that there is
not an easy answer to the question: "Which is the spatial extension of the
electron ? " in the sense formulated by Fischetti [Fischetti 1998].
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On the other hand, the spreading of a time dependent wavepacket has no
counterpart in classical electronic transport. For an initial Gaussian
wavepacket in a flat potential, the centre of mass of the wavepacket moves
like a particle that obeys the laws of classical mechanics. On the other hand,
it is already well known that, while the momentum dispersion is a constant of
motion, the spatial dispersion of the wavepacket varies with time and, for
sufficiently long times, increases without limit (spreading of a wave packet,
see [paper H]) . This classically unintelligible phenomenon is not limited to
the special initial Gaussian wavepacket, but to any arbitrary free wavepacket
[Cohen-Tanoudji 1977].

2.2.3.- Bohm trajectories associated to the density operator

For building up our Monte Carlo simulation, we are interesting in providing
an adequate description for a constant flux of electrons moving inside the
RTD device. When discussing Hamiltonian eigenstates we notice that they
'seems' to provide an accurate description for a constant flux of particles (i.e.
they are time independent and their presence probability extends along the
whole device). However, we have clearly notice that their dynamic
information is unsatisfactory. On the other hand, a single wavepacket,
although containing reliable dynamic information, it can not provide a
picture of a flux of electrons.

In this section, following the idea of providing a function model to describe a
flux of picture with reliable time dependent information, we will a specific
density operator. This particular density operator is build up as an incoherent
sum of wavepackets that, as we will see, contains the dynamic information of
the wavepackets while maintaining the stationary properties, (i.e. this density
matrix will be shown to be time independent and its associated presence
probability extends along the whole device like Hamiltonian eigenstates).

Before defining it, let us develop a simpler expression for the density matrix
of a single wavepacket. As we have said, when all information about the
quantum system is known, it can be equivalently described by the
Schrodinger or Liouville equations. In particular, using the notation of
equation 1.4, the density matrix for a single wavepacket can be written as:

.(£(*)-£(*'))(!-(„)

plo
k.k(t)=<(pk,\Y(t}><Y(t}\<pk>=a(k<}a(k)e' * (2.16)

let us notice the presence of the parameter to called the minimum-uncertainty
time
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As we have said, for our quantum MC simulator, we are interested in
modelling a constant flux of electrons. We can model this picture by
considering simultaneously (emphasis on simultaneously) lots of identical
wavepackets that have arrived at the region of interest at different times. All
these wavepackets are defined by equation 2.14 with the same wavepacket
parameters (i.e. identical central energy Ec, identical spatial dispersion ax and
identical central position xc). However, since each wavepacket have arrived
at a different time, it have reached (or will reach) it minimum spatial
uncertainty at a different time t0. In other words, each wavepacket of the
system can be labelled by its t0 value. From a mathematical point of view,
this quantum system can not be represented by a coherent superposition of
wavefunction, but by an incoherent sum of them (i.e. the density matrix
formalism has to be used). In this regard, the whole electron ensemble can be
written taking into account (2.16) and a sum over all possible entering times,
t0. If we suppose that the minimum-uncertainty time is uniformly distributed
from -co to +00 (i,e, fn=l for expression 1.4), then:

At-(0= J /A-*'(0-fifr0= J a(V)a(k)e' (2.17)

In order to clarify our definition, let us represent this function for a typical
double barrier RTD. We have selected wavepackets with a central energy
Ec=0.1 eV, a spatial dispersion of ax=10 nm and central position x^oO nm.
At any particular time, there are lots of different wavepackets evolving in the
system. Some of them have already arrived at its minimum uncertainty
position, but others have not passed through it yet. In figure 2.5 we have
represented the probability presence of finding an electron associated to the
density matrix described by equation (2.17). In this regard, each horizontal
line represents the probability presence of a particular wavepacket (the
wavepacket that at t=t0has its minimum uncertainty). On the other hand, each
vertical line represents an additional probability distribution, f(t0). At each
position, the probability of finding the electron can be decomposed into a t0-
distribution. In other words, if the exact position of the electron is
determined, an uncertainty about which is the t0-wavepacket associated to the
electron remains. Finally, let us mention that in figure 2.5 the t0-information
is still 'alive' because the to-integral in (2.17) is not evaluated. In this regard,
since p depends only on t-10, the expression (2.17) will take identical values
either considering the intervals [t fixed,-oo<t0<oo] or [-oo<t<oo, t0 fixed]. This
means that the roles oft and t0 are interchangeable. Figure 2.5 can also be
interpreted in a quite different and simple way. It can also represent the
probability presence distribution of a single t0-wavepacket evaluated for
different times t. In this regard, in spite of its dynamic origin, the function
can be defined, somehow, as stationary.
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250 300150
position (nm)

Fig Z.5: representation ot a SiSUW m a x-t0 space, ine
wavepackets that define the SISOW have a central energy E0=0.1
eV, a spatial dispersion of ax=10 nm and central position xc=60
nm. Each horitzontal line is the probability presence of one of the
wavepackets evaluated at a particular to.

In particular, if we use the identity:

(2.18)

then, we find that each element of the density matrix can be rewritten as:

t(E(k)-E(k"))t m* I
p,,.(t) = a(k[)a*(k)e " -In S(k'-k) (2.19)

n k

We notice that, even working with time-dependent wavepackets (rather than
with Hamiltonian eigenstates), we have found a diagonal density matrix for
our system when (2.17) is integrated along t0. In the next chapter, when we
will explain our Monte Carlo procedure, we will assume that the flux of
electrons, at each energy, is adequately described by this entity p(t) that we
will call Stationary incoherent superposition of wavepackets (SISOW).
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Intuitive results with the SISOW representation

Once the SISOW density matrix is obtained, all the observable results can be
obtained from it. In particular the charge and the current can be easily
computed (See [paper H] for explicit expression). Although a SISOW is
build up from time-dependent wavepackets, its charge density is also time-
independent:

(2.20)

Moreover, the current density associated to this quantum entity is also time-
independent and position-uniform [Paper H]. It can be easily demonstrated
that the current carried by a SISOW is:

= ̂  \\a(k)\2T(k}dk
m* J (2.21)

By defining a(k) = S(k-kc), one recovers the standard expression for the
current density of scattering states: the current of a scattering state is
proportional to its transmission coefficient. In figure 2.6 we have represented
the charge associated to a stationary state (with energy near to the second
resonance of the well 1.1 eV) to be compared with the charge associated to a
SISOW with identical central energy and a spatial dispersion of 200 A. We
realize that the oscillatory behavior of the stationary state in the emitter, that
has a quite embarrassing explanation, disappears when a SISOW is
considered. Moreover, the spreading of the wavepacket does not have any
importance since the SISOW is 'spread' everywhere like a time independent
eigenstate.

The parameters needed to define a SISOW are obviously related to the ones
needed to specify the wavepacket. In particular a SISOW is determined by
the central energy Ec and the spatial dispersion ax. (It can be easily
demonstrated that all results are independent of the initial central position xc

of the wavepacket provided that it is initially defined in a flat potential
region). However, as it is seen in expression 2.20 and 2.21, the macroscopic
results depend on a(k) and, hence, on the spatial dispersion of the
wavepackets. Nonetheless, as we have pointed out for the wavepacket, this is
an advantage rather than a drawback, since it introduces some flexibility
regarding the modeling of the "size of an electron", in the sense described by
Fischetti [Fischetti 1998]. In this way, regardless of technical or numerical
difficulties, a SISOW can a priori be used to define either classical particles
by using by considering ax«0 (i.e. a(k)xscte), or also Hamiltonian
eigenstates by considering ax«oo (i.e. a(k) = S(k - kc) ). Obviously, these two
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limiting situations drive to quite different macroscopic results, as we have
seen in figure 2.4 and 2.6.

2.0X10-» 4.0X10-8 6.0X10-8 8.0x10-» LOxlO'7 1.2x10-7 1.4x10-7

Position (m)

Fig 2.6: Probability distribution for: (a) stationary state
and with an energy of 1.1 eV (b) a SISOW with the
same energy. The oscillatory behaviour of the probability
presence in the stationary state in the emitter
disappears when a SISOW is considered.

Moreover, although a SISOW provides a stationary picture for the electronic
transport, when dynamic aspects are considered, it does not have the
counterintuitive results observed for stationary states. The Bohm trajectories
associated to a SISOW are the Bohm trajectories associated to a time
dependent wavepacket. Let us explain this point. As we have said, t0 and t
can be mathematically interchangeable. In this regard the trajectories of
figure 2.3 can be interpreted twofold. On one hand, they can be interpreted as
the t-time evolution of trajectories associated to a single wavepacket (i.e. we
can consider [-<x><t<oo, t0 fixed]). On the other hand, figure 2.3 can also be
interpreted as an instantaneous picture of the stationary trajectories
associated to a SISOW (i.e. we can consider [t fixed, -oo<t0<oo]). In this lat
interpretation of figure 2.3, at each time t and position x, we obtain a velocity
distribution.(This result has to be compared with the result for a single
wavepacket where only one perfectly defined velocity is obtained at time t
and position x).
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Chapter 3

QUANTUM MONTE CARLO SIMULATION

In this chapter, we present an explanation of our approach for the simulation
of RTD. In particular, we explain its origin, its practical implementation and
some significative results. See [Paper F] and [Paper G] for a complete
explanation. First of all, since our proposal has many similarities with the
classical MC technique, we will try to disclose why the MC technique is so
useful in the simulation of semiconductor devices.

3.1. Classical Monte Carlo technique

The MC technique is a stochastic-numerical method that provides a solution
of the BTE. This equation describes the evolution of the carrier distribution
function, f(x,k,t), inside a semiconductor device (without explicit quantum
effects):

a a (3.1)
scaiermg

where v(k) is the electron velocity, F the external electric field and q the
electronic charge. Along this work we will assume that the electrons are the
only significative carriers in the RTD under study. The right-hand term,
called the collision integral, can be rewritten as:

(3.2)
scaiermg
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S¡(k,k') being the probability per unit time for a transition from a state with
wavector k to another with k' due to the i-th scattering mechanism.
Generally, S¡(k,k') is computed using the familiar form of the Fermi's
Golden rule in the first-order QM perturbation theory:

(3.3)

where M¡ is the matrix element of each of the interaction mechanism and
E(k) the energy of an electron with wavevector k [Cohen-Tanoudji 1977].
So, the BTE can be regarded as a differential-integral equation that only
admits analytical solution for very few ideal cases. However, Chambers
developed the BTE in a series expansion introducing a new set of
mathematical variables x(t),k(t),t [Chambers 1952]. What makes Chambers
BTE version very interesting for electronic transport, is the fact that the new
set of variables can be interpreted as physical magnitudes that describe a
single particle trajectory. Between two scattering events the variables x(t)
and k(t) evolve as follow :

d x(t) 1 m(k)
dt n 3k (3.4)

In particular, if a parabolic relation is assumed between the electron energy
and momentum, the electron trajectory, between successive scattering events,
can be simply described by the classical Newton law: m * -d2x(t) I dt2 = q • F
where m* is the electron effective mass (which takes into account the
semiconductor band structure).

This intuitive picture for the description of the BTE perfectly fits with the
basis of the MC simulation. In this particular case, the MC method for
solving the BTE consists in evaluating f(x,k,t) as an average over an
ensemble of trajectories. Each electron trajectory is constructed as follow.
First, a random number (distributed according to the transitions probabilities)
determines the time (called the freeflight time) that the electron will evolve
without collisions. After this time, other random numbers determine which is
the involved scattering mechanism and also the final state after the scattering
event. These two processes, repeated successively, perfectly define the
electron trajectory [Gonzalez 1994].

The MC technique is usually called "the simulated experiment" because it
directly provides an exhaustive dynamic information of all the carriers in the
device. In this regard, the MC trajectories have surpassed their mathematical
origin, to acquire the status of 'real' trajectories. Additionally, this 'real' role
for the MC trajectories can be also justified within a simple QM
environment. It is known that, if an electron is described by an initial
gaussian wavepacket (solution of the Schrodinger equation), its central
position and momentum also evolve following equation 3.4 when coherent
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transport is assumed [Ashcroft 1976]. So, the MC trajectories can also be
interpreted as physical entities that describe the QM dynamics in flat
potential conditions without scattering.

The strength of the MC technique resides in the combination of an intuitive
picture for the electrons with an accurate description for the simulation. Its
introduction in the semiconductor environment is due to Kurosawa
[Kurosawa 1966] who presented a study of high-field transport of holes in
Ge. Its application to the simulation of electron devices started soon after, but
it has only received great attention in the last two decades [Jacoboni 1989]
due to the availability of the MC algorithms and computers needed to handle
phenomena and systems of great complexity, much closer to the real devices.
However, the BTE is not valid for the description of semiconductor devices
where quantum effects are important (in particular, the BTE does not
describe the electronic transport by tunnelling). So, as we have seen in
section 1.3, other fundamental transport equations are required for the
simulation of RTD. In this regard, the analytical formulation sketched by
Chambers to interpret the BTE equation in terms of particle trajectories is
also suitable for Quantum transport equations.

As we have said, none of the mentioned approaches in section 1.3 provides
neither a simple algorithm nor an intuitive understanding of the quantum
devices. The main goal of this work is to provide an extension of the
classical MC simulation technique to deal with mesoscopic devices. Our
approach pursues the consideration of the required QM effects while
maintaining the intuitive appeal of the classical MC.

3.2.- A quantum MC simulator with wavepackets and
Bohm trajectories

In order to explain our proposal, let us start by describing the different device
regions that we consider in the simulator. We have divided the whole device
in three regions: the emitter region, the quantum window QW where the
potentials significantly change over distances of the order of the wavelength
of the carriers, and the collector region (see fig 3.1). The electronic transport
in the classical region (emitter and collector) is studied by means of the MC
simulation of the Boltzman equation. On the other hand, inside the QW, we
want to extent the concept of electron trajectory by using Bohm trajectories.
In our model, the electron is pictured, consistently, as a point-particle along
the whole device.
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Fig 3.1: The device is divided into three regions: Emitter, Quantum
Window(QW) and Collector. The Quantum MC method is applied
at the QW where potentials change abruptly.

Basically, in figure 3.2 we have represented the four different procedures that
describes how an electron 'travels' along the device. First, an electron enters
inside the device by the classical contacts. Then, it evolves classically until it
arrives at the QW. There, inside the QW, it moves following a Bohm
trajectory. Either reflected or transmitted by the double barrier, the electron
arrives at the classical region again and exits the device by the contacts. We
have to model how the electrons enter/exit the device through the external
contacts. Then, a standard classical MC model is needed for describing the
electron trajectories in the emitter and collector regions. Finally, after
defining the classical/quantum interface, we have to model how electrons
move inside the QW.

Simulation procedures
i

1.- Quantum Monte Carlo
2.- Matching classical / quantum
3.- Classical Monte Carlo

! A.- Classical contacts

i

Get into
Evolve in the classical Region

Uet into the device

Evolve in the QW

|theQW Exit tl eQW |
Evolve in the classical Region

exit the device |

CLASSICAL REGION QW

Time
CLASSICAL REGION

Fig 3.2: We describe the four simulation procedures that
most electrons will suffer between entering and exiting the
device.

Basically, the history of each electron that enters inside the device can be
divided in these four simulation phases. Hereafter, we will explain them

50



Chapter 3 QUANTUM MONTE CARLO SIMULATION

devoting a special attention to the quantum MC and the quantum/classical
matching description (which are the ones that support our quantum MC
simulator proposal).

3.2.1.- Quantum Monte Carlo in the quantum region

Simplifying our proposal in order to provide a clear understanding of its
implications, apart from the scattering mechanisms, the only difference
between the classical MC and our quantum proposal is the way how we
compute the carrier velocity. In the classical MC, the Newton law provides
the carrier dynamics, while the Schrôdinger equation (in Bohm's
interpretation) has to be solved to compute the carrier velocity in the QW.
Apart from this difference, as we will see, all others magnitudes such as
current and charge densities are computed identically without differentiating
between classical and quantum regions.

However, from a practical point of view, calculating the velocity within
Bohm's approach requires a harder computing work (see equation 2.8). In
order to be able to reproduce our intuitive picture (i.e time dependent
process) of a particle impinging on a double barrier, we have to use a time
dependent wavepacket in spite of a Hamiltonian eigenstate as we have
stressed in the second chapter. In this regard, each electron inside the QW
has to be associated to a particular B ohm trajectory associated to this
wavepacket. Since electrons will arrive at the QW with different momenta,
we have to be able to compute the time evolution of several different
wavepackets, ^V (x,t) with different values of their central wavevector kc

and a minimum uncertainty time t0.

From a numerical point of view, as we have already explained, the practical
computation of the wavepacket can be done in three steps. First, the time
independent Schrôdinger equation is solved to compute a set of Hamiltonian
eigenstates, {(p^(x)}. Second, the particular a(k) values are calculated for the
specific t0-kc-wavepacket. And, finally, we use the superposition principle to
compute the time evolution of all wavepackets (see equation 1.3). The main
advantage of this method is that the wavepacket is computed at any arbitrary
instant of time without having to calculate it at intermediate times. Details
about the practical calculation of the set of Hamiltonian eigenfunctions, and
the wavepacket k-components can be found in our papers [Paper C] and
[Paper D].

Since the potential profile is modified at each time step of the MC procedure
(zlT) in order to reach self-consistence with the Poisson equation, all the
eigenstates and wavepacket components must be recalculated after each ¿IT.
This means that at each time step, a table of (100x400) complex values have to
be refreshed (which is the most significant additional effort needed to
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incorporate Bohm trajectories in our MC simulator). Strictly speaking
electrons that arrive at the QW are described by a SISOW. In particular, each
electron inside the QW is associated to a particular kc-t0-wavepacket, ¥*\a(x,f)
of the kc-SISOW. Then, after choosing the initial conditions for each particle
(i.e. XB and tB), its trajectory is computed by integrating the velocity (the
velocity is computed by equation (2.8)).

Finally, let us said that in the present stage of the simulator we have not
introduced the scattering between Bohm trajectories inside the QW,
however, we will briefly discuss how this could be done in section 3.5.

3.2.2.- Matching classical/Quantum trajectories

Now, let us concentrate in explaining how the simple classical electron is
reconverted to a quantum entity, and viceversa, at the boundaries of the QW.
Basically, there are two points that we have to take into account to provide a
good matching. First, we have to make compatible a classical and a quantum
definition for an electron. A classical electron is perfectly described by a
position, x(t), and momentum, p(t). However, a quantum electron is associated
to wavepacket î/^c

to(x,t) with an initial central position Xc, a constant central
momentum kc, a spatial dispersion ax and a minimum uncertainty time t0.
Second, in order to be able to reproduce the standard QM results (point 4 in
section 2.1.2), electrons have to be associated to Bohm trajectories that depart
from XB and tB following the probability wavepacket distribution.

Let us discuss the first point. In principle, the classical electron momentum p
is identified as the central wavepacket momentum, pc=1ikc. On the other
hand, the xc is fixed for all different wavepackets at specified position XC=XL

in the boundaries of the QW. However, the selection of crx is related with the
discussion of section 2.2.3. If one wants to reproduce the standard Landauer-
Büttiker results, then, a reasonable possibility is the choice of wavepackets
wide enough in position (ax > 25 nm) so that the corresponding transmission
coefficient is approximately that of the eigenstate associated to the central
momentum, &c(see fig. 2.4). Finally, the minimum spatial uncertainty time t0

is related with the time that the electron enters into the QW.

Once the wavepacket parameters are selected (kc, xc ax and t0), a boundary
condition for the electron (i.e a position, XB, and ta,) has to be chosen to
compute its trajectory. In order to be able to reproduce the wavepacket
dynamics inside the QW, we only have to assure that XB and tB are selected
according to the wavepacket probability presence. Next, we will explain two
different models that achieve the previous requirement. In this regard, let us
revisit the figure 2.5 used to describe the SISOW. We know that any
horizontal line in the figure represents the probability presence of a particular
wavepacket (i.e. a distribution function that depends on position x). So, when
a particle arrives at the QW, we can fix its tB=t0 and determine its initial
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position XB according to the presence probability presence distribution (i.e
according to |\j/tokc(xB,,to)|2)- In figure 3.5, we have represented this model (that
we call model A) where the darker square can qualitatively substituted by
either figure 2.5 or 2.3.

Model A; x variable

T fixed Quantum Window

Quantum trajectories
Classical trajectories

Model B: x fixed
T variable

4 Time

Quantum Window

Position Position

Fig 3.5: There are two possibilities to introduce Bohm trajectories inside
the QW assuring that they will reproduce wave-function evolution. Model
A: All particles depart from t=t0 and from different initial position XB, and
Model B: All the particles depart from the same X=XB but they have
different times t0. The darker squares can be qualitatively substituted by
either figure 2.3 or 2.5.

On the other hand, we also know that any vertical line in the SISOW of the
figure 2.5 represents a probability distribution that depends on t0, f(t0). So,
when a particle arrive at the QW, we can fix its initial position XB=XL and
determine its initial time tB according to this t0-initial probability distribution.
We refer to this model by letter B (see fig 3.5). Both algorithms warrant that
we will be able to reproduce the wavepacket dynamics inside the QW with
Bohm trajectories. The model B has the technical advantage of being able to
reduce the length of the QW, but we have to assure that all selected t0

correspond to particles that enter inside the QW. Finally, we want to stress
that the matching procedure is a crucial point in our simulator (in fact, any
interface in MC simulations is always a problem). Moreover, in this
interface, quite adhoc models have to be unavoidably used to define any
matching criteria because two quite incompatible different electron
description are used.

3.2.3.- Classical Monte Carlo in the laterals regions

At this point, let us briefly present our classical MC algorithm. The
electronic transport in the classical regions (emitter and collector), close to
the respective contacts and characterised by smooth potential profiles, are
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treated semiclassically. A conventional MC algorithm is used to simulate the
particle dynamics. For simplicity, only the electronic transport in the lower
valley with a constant effective mass has been taken into account (this
approximation is also implicitly assumed in the QW where the Schrôdinger
equation is solved). The scattering mechanisms considered in these classical
regions are: (i) Acoustic phonon scattering treated in the elastic
approximation, (ii) polar optical phonon scattering and (iii) ionised impurity
scattering. The transitions rates are calculated using the usual parameters for
GaAs [Jacoboni 1989].

A detailed explanation of the Monte Carlo method and its practical
implementation for their application to study electronic transport in
conventional devices can be found in [Gonzalez 1993].

3.2.4.- Classical contacts

As any interface in MC simulation, as we have said, the problem of the
boundary conditions for the BTE is not a trivial issue. Different models for
the contacts are proposed in the literature. Among them, we will use the one
developed by the MC group of Salamanca [Gonzalez 1996]. Basically, the
procedure is as follow: if the cell adjacent to the contact is positively
charged, carriers are injected from a velocity-weighted hemi-Maxwellian
distribution at equilibrium until the cell is charge neutral. On the other hand,
if the cell is neutral or negatively charged then, the number of particles in the
cell is left unchanged.

3.3.- Simulated results for resonant tunneling diodes:

3.3.1.- Evaluation of macroscopic results

First of all, let us describe how the macroscopic results are obtained. As we
have said, provided that Bohm trajectories are calculated as previously
explained, they can be treated as classical trajectories for all purposes.
Therefore, the same algorithms can be used to compute the charge and
current densities in the QW or in the classical regions.

For example, at every time step AT the contribution of the i-th particle to the
charge density of the rc-th cell of width Axn is computed by evaluating the
fraction of the time step spent by the particle in this cell, t¡(tí)lAT. An overall
sum over the total number of particles W gives the electronic charge density
associated to the specific cell:

C(rí) =
r ¿~l ATn /==! *-*•*

(3.5)
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where cris the charge per unit area represented by each simulated particle. At
each time step, the obtained profile of the electronic charge density is used to
update the potential by solving the Poisson's equation.

An identical procedure can be used to obtain the momentum distribution of
the particles at each cell by using an additional momentum grid for each
spatial cell. Since the exact position and momentum of each particle (even in
the QW) can be perfectly defined, we can compute the time, i/(n,m), spent by
the z'-th particle in the phase-space cell (n,m) during the simulated time T. In
this way, a time-averaged phase-space distribution fB(n,m) can be computed
as:

(3.6)
Tax,,Ak,m /=!

Let us now discuss the meaning of this new phase-space distribution. In the
classical regions, fB(n,m) is, by definition, a matrix representation of the BTE
solution averaged over time f(x,k). However, their meaning inside the QW is
not so clear since the uncertainty principle makes, in principle, the definition
of any phase-space distribution problematic. In any case, it is possible to
establish a relationship between this phase-space distribution and the Wigner
function, fw(x,p).

In particular, for a single wavepaket, it is known that the momentum
computed by the Bohm's approach at each position, fe(x), is the mean value
of the momentum of the Wigner distribution fw(x,p) [Muga 1993]:

/«(*) =
¿S(x',t)

(3-7)

In this regard, one can anticipate that both fB(n,m) and fw(x,p) will behave
quite similarly when an ensemble of different wavepackets (i.e. a SISOW) is
considered. In particular, it is very easy to demonstrate that the charge and
current densities, that in both cases are computed as if they were classical
distributions (i.e. a simple integral over the momentum distribution is done),
give identical results. But, in spite of this relation, there is a fundamental
difference (already pointed out in section 1.3.2) between the Wigner
distribution and the Bohm's one: By construction, Bohm's phase-space
distribution only takes positive values, while the Wigner function can also
take negative ones and this obscures its physical interpretation (at least as a
probability distribution).
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On the other hand, the current along the device can be computed from the
previous phase-space distribution. However, in order to avoid technical noise
in the results, other equivalent methods can be used to compute the current.
In particular under a constant applied voltage, the instantaneous current
density J(f) can be computed as the sum of the instantaneous velocities v,{f)
of all the N(f) particles contained in the device:

L ¡=\
(3.8)

where L is the total simulated length of the device [Gruzinskis 1991]. By
time averaging J(t) one can obtain the stationary current for a given applied
voltage.

3.3.2.- Simulated results

Hereafter, we will present same simulated results obtained with our quantum
MC simulator in order to demonstrate the feasibility of our proposal. The
steady-state I-V characteristic of a typical GaAs/AlGaAs double-barrier
structure with 3 nm barriers of 0.3 eV and a 5.1 nm well has been simulated
at 77 K. For simplicity, only one valley with an isotropic effective mass of
0.067m0 has been taken into account to model the conduction band. The
ionised impurity density in the GaAs electrodes is 1.51-1017 cm'3, which
corresponds to a realistic doping of 7VD=5-1018 cm"3 at 77 K. The AlGaAs
barriers and the GaAs well have been considered to be undoped. The total
simulation length is 0.25 um divided in 366 cells. The classical emitter (68.5
nm) and collector (96.5 nm) regions are divided into a non-uniform mesh, but
the QW (84,9 nm) is divided into 283 constant cells of 0.3 nm each. Let us
emphasise that the integration box is much larger than those typically used for
solving the Liouville equation, since most of the device is simulated with the
classical MC technique. In this regard, a recent work developed at our group is
also able to provide larger integration boxes for solving the Liouville equation
[Garcia 1998]. The QW extends asymmetrically at both sides of the double
barrier because the emitter region of the QW has to be large enough to define
the initial Gaussian wavepacket in a flat potential region.
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Figure 3.5: Self-consistent results of 3.0/5.1/3.0 nm double
barrier GaAs/AlGaAs RTD at 77 K with an impurity density of
5-1018 cm"3 at a resonant bias of 0.39 eV: (a) Electron density
(solid line) and average velocity (dashed line). The upper
horizontal solid line represents the current density (in arbitrary
units) computed as the product of the average charge density per
average velocity, (b) Self-consistent potential profile (dotted line)
and electron density: due to free electrons (solid line) and to
quasi-bound electrons (dashed line).

In figure 3.5 we show self-consistent results obtained at a particular bias point
of 0.39 V, corresponding to a position close to the peak of the I-V curve. The
results shown obtained by averaging instantaneous results over 1000 iterations
after reaching the steady-state particle distribution (2000 iterations are usually
required to reach it; the time step between iterations being AT=5 fs). In fig.
3.5(a) we represent (solid line) the electron density, which exhibits pre-barrier
oscillations and an accumulation in the well. No technical spurious
discontinuities are detected at the boundaries of the QW, this being an
indication of the smoothness of our classical-to-quantum matching model (in
this case we have used model A). In dashed line we represent the average
velocity, which is inversely proportional to the charge density, since their
product must be position-independent to assure current uniformity along the
device (see fig 3.5). In this regard, the behavior in the collector depletion region
is illustrative. It can be observed that the electrons travel faster in the depletion
region because of the high electric field and, as a consequence, the electron
density decreases hi adequate proportion to maintain an uniform current. As
reported by other authors [Frensley 1990], depletion is also obtained in the
emitter pre-barrier region as a consequence of the fact that electrons travel
ballistically inside the QW. As we have said, the fact that no scattering is
considered inside the QW has important consequences on the self-consistent
results. To obtain an accumulation layer in the emitter region adjacent to the
first barrier, the charge associated to quasi-bound states should be taken into
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account. However, since scattering in the QW is not considered yet, these states
are unreachable from Bohm trajectories. To avoid this unphysical result, a
semi-classical Thomas-Fermi approximation [Fug 1991] has been used to
compute this additional charge [see fig. 3.5(b)]. This electron charge is added
to the MC charge obtained from expression (3.5) before solving the Poisson's
equation.

Fig 3.6: Phase space distribution function along the device
of Fig. 3.5. Notice the tunneling ridge (indicated by an
arrow), which is originated in the QW by resonant Bohm
trajectories and which becomes progressively thermalized
in the collector by scattering mechanisms.

As we have previously discussed, in addition to the results such as those
obtained for charge and current densities, the use of causal trajectories allows
one to obtain more information related to the hidden variables. In particular, the
use of Bohm trajectories directly leads to the existence of the classical-like
phase-space distribution. In fig. 3.6 we have represented the particle phase-
space distribution at the resonance voltage, obtained from expression (3.6)
averaging over, the last 1000 iterations. This distribution is qualitatively quite
similar to the Wigner Distribution Function solution of the Liouville equation,
but it must be stressed that, contrarily to Wigner function, our phase space
distribution is positive by construction. On the other hand, we notice the
presence of a tunneling ridge,in the collector which was also reported within
the Wigner function framework [Frensley 1990]. Electrons in the collector
depletion region mainly come from Bohm trajectories associated with resonant
wavepackets. Since these resonant trajectories behave ballistically, a number of
electrons with large momentum appear in the collector. The presence of these
resonant hot-electrons, which are thermalized along the collector, is responsible
for the net current density at the right boundary of the QW. Very few electrons,
with high velocities, are responsable for the current in the collector. On the
contrary, the whole wavevector distribution is shifted towards positive
momenta in the emitter, so as to give an uniform current density.
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Fig. 3.7: I-V curve of the double barrier GaAs/AlGaAs RTD
described in fig. 3.5.

Finally, in fig. 3.7 we present the self-consistently simulated current-voltage
characteristic of the RTD described above. At the initial bias of 0.07 V, an
arbitrary particle distribution is defined, and it evolves during 3000 iterations
until the steady-state is reached (lower voltages are not considered since no
electron transport from collector to emitter is implemented). In order to reduce
the transient time required to reach the steady-state, the particle distribution
obtained for one bias point is used as the seed for the next one. The current
density is determined by averaging expression (3.8) over the last 100 iterations.
A sharp resonant peak is obtained in the I-V curve at an applied bias of 0.39
Volts. The whole I-V curve is very similar to that obtained from a fully
coherent treatment based on the solution of the stationary effective-mass
Schrôdinger equation. This is an expected result since we are not considering
scattering in the QW.

3.4.- Connection of our approach with the Liouville
equation

At this point, it can be interesting to establish the relation of our approach
with the those based on the solution of the Liouville equation (the density
matrix and the Wigner function). With this aim in mind, let us consider a
steady state situation for our device. In this particular case, the classical
distribution function, f(k) at the boundaries of the QW is time independent.
This means that a constant flux of electrons arrives at the boundaries of the
QW. This constant flux can be modelled by a SISOW inside the QW. If we
suppose that no scattering is present in the QW, the classical distribution
function, f(k) is also valid to define the occupation probability of each
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