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Chapter 1

Introduction

It is generally believed that Quantum Chromodynamics (QCD) is the correct theory for
the description of the strong interaction of quarks and gluons. This theory has been
successfully tested at high energies, but proofs that QCD predicts some basic properties
observed in nature, such as confinement of quarks in hadrons, are still missing. The lack
of these proofs is due both to the mathematical complexity of the theory and to the non-
applicability of the perturbative theory at low energies. Thanks to the enormous statistics
accumulated at the LEP eTe™ storage ring and the considerable theoretical progress in
the field of perturbative QCD, the measurements and tests of QCD have entered the
high precision regime. The strong coupling constant is not too “strong” at these high
energies, which increases the reliability of perturbative calculations, and at the same time
non-perturbative corrections to many observables, related to the hadronization of quarks

and gluons into observable hadrons, become small.

During the last years, a large number of measurements have been performed and the
theoretical predictions have been proved to predict better and better the experimental
distributions. This improvement is due to new calculations that allow for an exact fixed
order prediction at higher orders, but also to new Monte Carlo (MC) Programs. The lat-
est versions of the already existing MCs as well as the new codes include the exact matrix
elements for up to five-parton final state configurations. The present knowledge on the
contributions of missing higher order terms and on soft phenomena, like hadronization,

which cannot be described by the perturbative theory is also included.

The present thesis describes new measurements using LEP data collected by the

ALEPH detector: first a measurement of the strong coupling constant alone, and then a
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simultaneous measurement of the strong coupling constant and the colour factors, which
represents a stringent test of QCD, will be presented in the following chapters. Such
measurements have already been performed within the ALEPH collaboration, but new
calculations and new Monte Carlo Programs have been available for some years now that

allow for an improvement in the analysis.

The following chapters give the details of the measurements, and summarize the un-
derstanding on the performance of the new Monte Carlo programs. It all starts with an
introduction to the theory of strong interactions, QCD, which can be found in Chapter 2.
This is not intended to be a complete description of the theory, but tries to focus on the
main concepts as well as on the more specific points which are important for the under-

standing of the measurement.

In the next chapter, the theoretical predictions for four-jet observables are detailed
since these are the kind of observables used in the analyses of this thesis. It also includes

the definition of the observables used.

Then, in Chapter 4 a description of the ALEPH detector is given. Once more, instead
of an exhaustive discussion, only a brief description is given, with particular stress on the
subdetectors or performances which are more relevant for the measurements presented in

this work.

The next chapter contains a description of the analysis method. Details on the event
selection, on the theoretical predictions and on the corrections used and on the fit proce-

dure can be found there.

Chapter 6 gives all the details and results of the measurements. Plots of the correc-
tions applied and of the fit results can be found there. First, the measurement of the
strong coupling constant from the four-jet rate is presented. Then results on the simulta-
neous measurement of the strong coupling constant and the colour factors follow. Finally,

a measurement to test the possible existence of a light gluino is shown.

Finally, before the conclusions, the studies performed with the new Monte Carlo pro-
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grams used in the present thesis, which are not the standard for other ALEPH mea-
surements, are described. Our present understanding of them and the limits to their

applicability are discussed.

At the end of the present work an appendix summarizes the current discussions on
one of the methods used for the measurement of the strong coupling constant from the

four-jet rate: the experimentally optimized scale method.



Chapter 2

Theoretical framework

Jamadas he podido respetar esas extranas leyes.

Jamdas lo podré disimular, luna vuela y hazme a mi volar.

2.1 Introduction

The theoretical description of hadron production in e*e™ annihilation consists of four
parts as shown in Fig. 2.1. The first part is based on the Standard Model of electro-
weak interactions [1]. Feynman diagrams are used to calculate the electroweak process
of eTe™ annihilation. The description of a multihadronic event starts with a pair of pri-
mary partons, quark-antiquark, distributed according to an exact (up to some order in
a®ED) 7, decay matrix element. The evolution of these primary partons under the strong
interaction is described by perturbative Quantum Chromodynamics (pQCD). In a parton
(or dipole) cascade, the primary partons evolve from the hard scattering scale @) ~ My
into secondary partons at a cut-off scale Q¢ =~ 1GeV. It is during these calculable stages
(hard subprocess and shower) that the event’s global features are determined: energy
dependences, event topologies, multiplicity, etc. In a third stage, carried out at the low
virtuality scale (g, a model is employed to convert the secondary partons into hadrons.
This hadronization process can modify the global properties of the event, but these mod-
ifications are small at the LEP energies. Finally the decay of unstable hadrons, which
can be described by kinematics using experimentally measured decay rates, needs to be

included before the prediction can be confronted with data.

While the standard model of particle physics provides a well tested description of the
reaction eTe™ — Z/v* — qq, the subsequent production of observable hadrons is less well

understood. The following sections try to summarize our current understanding of both
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the evolution of partons under the strong interaction and the hadronization process. First,
a short introduction to the Standard Model of particle physics is given. Then, a review
of the perturbative theory of strong interactions is presented. Third, the problems of the
non-perturbative regime, namely Soft QCD, are introduced. Finally, some details about
the implementation of the current understanding of QCD in the Monte Carlo programs

are given.

c

e

-~

N —— N

=

T T v
<

Figure 2.1: The reaction ete™ — hadrons viewed in four phases.

2.2 The Standard Model

A “standard model” is a theoretical framework, built from observations, which allows for
predictions of physics phenomena. The Standard Model (SM) of particle physics [1, 2]
provides a unified description of the electromagnetic, weak and strong forces in the lan-
guage of quantum field theories. It has been experimentally verified with great accuracy

over a wide range of energies and processes.
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The SM is a quantum field gauge theory, based on the symmetry group SU(3)c ®
SU(2), ® U(1)y, partially characterized by the spectrum of elementary fields shown in
Table 2.1. The matter fields are spin—% fermions. There are three families of fermion
fields, with similar properties except their masses, with the first family containing the
constituents of stable matter: the up (u) and down (d) quarks (constituents of nucleons,
as well as of pions and other mesons) and the electron (e) plus the electron-neutrino (ve).
The quarks of the other two families are constituents of heavier short-lived particles. They
and their companion charged leptons decay to the quarks and leptons of the first family

via the weak force.

The interaction among fermions is mediated by spin-1 gauge bosons: one massless
photon () and eight massless gluons (g, ..., gg) for the electromagnetic and strong inter-

actions respectively, and three massive bosons (W* and Z) for the weak interaction.

Electrically charged particles interact due to the exchange of photons. The fact that

the photon is massless accounts for the long range of the electromagnetic force.

Leptons

Vug Vrp,
/’LL Yifé TL Y:,l

(), (), (o),

Quarks
ur, tr,
’ /
L Y:é L Y:é

)y s (en)yy ()]
(k)y; (393>y; (Qﬁ)yé

Gauge Bosons
Y, Za W:ta g1,---,98

Table 2.1: Standard Model fields. The SU(2)z x U(1)y group representation of the fermion fields is

explicitly shown.

Quarks carry a quantum number called colour which can take three different values.

Coloured particles interact strongly through the exchange of gluons. Contrary to the elec-
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trically neutral photon, gluons carry colour charge and hence couple to each other. This

makes the strong force between two coloured particles increase with increasing distance.

Both quark and leptons carry weak isospin (f) and weak hyper-charge (Y'). These
are quantum numbers that define the transformation under the SU(2); x U(1)y group.
The W+ and Z bosons couple to these “weak charges”. As shown in Table 2.1, the left-
(right-)handed fields transform as weak isospin doublets(singlets). As a consequence, Ws
couple only to the left-handed fermions (with the spin oriented opposite to the direction

of motion).

The [d',s',b'] weak isospin eigenstates are lineal combinations of the [d,s,b] mass
eigenstates. The unitary matrix relating both is the Cabbibo-Kobayashi-Maskawa ma-
trix, which depends on four fundamental parameters of the SM: three angles and a phase.
The latter provides the only mechanism within the SM that can account for the obserbed

violation of CP symmetry.

The spin-1 field mediating the interactions results from the local gauge invariance of
the SM Lagrangian. However, such a high degree of symmetry makes initially the theory
unphysical since it predicts massless gauge bosons, while we know that for a realistic
theory we need massive weak vector bosons. This problem is solved if we consider that

the SU(2);, x U(1)y symmetry is spontaneously broken.

The spontaneous symmetry breaking (SSB) mechanism is a general phenomenon which
happens when the symmetric solutions of a theory are unstable and the ground state of
the system is degenerated. Even if the theory is spontaneously broken, the symmetry is
(in a sense) still present; it is only “hidden” by the choice of ground state. In spite of the
SSB the theory can be shown to remain renormalizable [3]. This is an important property,
as the renormalizability ensures that once a few parameters are determined experimen-
tally, quantitative predictions can be calculated to arbitrary accuracy as a perturbative

expansion in the coupling constant.

Therefore, in the SM the masses of the gauge fields (as well as of the fermions) are
generated by SSB, ensuring that one of them (the photon) remains massless. The latter
is attained by choosing a vacuum (the ground state in a quantum field theory) which only
possesses U (1) gar symmetry. As a result of the SSB mechanism, the existence of a physical

scalar particle is predicted in the minimal version of the SM, the so called Higgs boson [4].
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The Higgs boson has not been observed experimentally yet, but some “hints” consis-
tent with the production of the Higgs boson with a mass near 114 GeV/c? were found
during the year 2000 [5]. The electroweak precision measurements made at LEP1, SLD
and v-Nucleon scattering experiments have some sensitivity to log(Mp) through loop

corrections, and allow to constrain log(Mz) to be 1.7810-27 at 68% confidence level [6].

2.3 The Perturbative Theory of Strong Interactions

The most fundamental statement of QCD is that hadronic matter is made of quarks. This
idea was born from the need to have a physical manifestation for the SU(3) symmetry
of flavour observed in the spectrum of the lowest-mass mesons (two-quark states) and
baryons (three-quark states). The quarks in the baryons have to be half-integral spin
states in order to account for the spins of low-mass baryons. In particular the quarks in a
spin-3/2 baryon are in a symmetrical state of space, spin and SU (3); degrees of freedom.
Then the introduction of the colour degree of freedom was needed to avoid a violation of

the Fermi-Dirac statistics.

A colour quantum number (QN) a is then carried by each quark. This QN can take
three values (namely, red, green and blue) and in this QN the baryon wave functions are
totally antisymmetric. In order not to create a proliferation of states with the introduction
of this QN, the requirement is added that only colour singlet states can exist in nature.
This lead to SU(3) to be the group of colour transformations, with the quarks transform-
ing according to the fundamental representation and antiquarks according to the complex
conjugate one. The experiments thought to prove the existence of such point-like con-
stituents went further than expected. The quarks were found to be not enough to explain
the properties of hadrons. It was in this context that the QCD improved parton model [7]
was constructed, with coloured quarks and gluons as the (up to now) final constituents
of matter. The last fundamental statement came to explain why free quarks are not ob-
served in nature. If they are not observed then a strong interaction should bind them
together to form hadrons. Asymptotic freedom predicts that the coupling of quarks and
gluons is large at large distances so as to confine quarks. At the same time the coupling
is predicted to be small at short distances so that the quarks behave as free particles at

asymptotically large energies.
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2.3.1 The Lagrangian of Strong Interactions
The QCD Lagrangian density is given by

_ 1
EQCD = Z da (Z'YMD/L - mq)abe - ZF[?;/FA#V + Egaugeffiming + Lghost
flavours (21)

where the sum runs over the Ny different flavours of the quarks. The first two terms
describe the interaction of spin-1/2 quarks of mass m and massless spin-1 gluons. Flﬁ/ is
the field strength tensor derived from the gluon field A2 as

Fos = [0aAf — 0545 — gf 17O AJAG] (2:2)

where the capital indices run over the eight colour degrees of freedom of the gluon field, g is
the coupling constant which determines the strength of the interaction between coloured
quanta, and fABC are the structure constants of the colour group, SU(3). The third
term in Eq. 2.2 shows the non-Abelian nature of QCD, which distinguishes this theory
from QED. It gives rise to triplet and quartic gluon self-interactions and, ultimately, to
asymptotic freedom. In non-Abelian theories, the covariant gauge-fixing term must be
supplemented by a ghost term, which will not be discussed here as it is not relevant for

what follows.

The quark fields g, in Eq. 2.1 are in the triplet representation of the colour group and
D is the covariant derivative, which acting on triplet fields takes the form:

(Da) gy = Oadap +ig (t°AF) ,, (2.3)

where the generators of SU(3), ¢, are matrices in its fundamental representation and fulfill

the relation

[t 48] = ifABCC (2.4)

By convention the normalization of the SU(N) matrices is chosen to be

1
T, (t4P) = TP, Tr =5 (2.5)
With this choice, the colour matrices obey the following relations:
ALA N%Z -1
; tabtbc = CF(;aCa CF = IN (26)
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Z FABC pABD _ 1 6CD. C, = N. (2.7)
A,B

Thus for the specific case of SU(3) we have
Cr =, Ca=3 (2.8)

which are called the colour factors. They are related to the emission of a gluon by a quark
and the splitting of a gluon into two other gluons, respectively. On the other hand, T

in Eq. 2.5 is related to the rate of gluon splitting into quarks of one flavour.

2.3.2 Gauge Invariance

The QCD Lagrangian is invariant under local gauge transformations, i.e. the quark fields
can be redefined independently, but not arbitrarily, at every point in space-time with-
out changing the physical content. The behaviour of a quark field under such a local

transformation is:

Ga(x) — exp (it - 0(z)) gp() (2.9)

and the covariant derivative is so called because it transforms in the same way as the field
itself:

Doq(z) — exp (it - 0(x)) Doq(z) . (2.10)

From the previous equations the transformation of the gluon gauge field and the field
strength can be obtained (see e.g. reference [8]) and it is observed that, in contrast to

QED, the QCD field strength is not gauge invariant due to the self-interaction of gluons.

There is no gauge-invariant way of including a gluon mass, because the term m?A%A,
is not gauge invariant. This property is similar to QED where a massive photon is for-
bidden.

The gauge fixing explicitly breaks gauge invariance. However, in the end physical
results will be independent of the gauge. The ghost term, that supplements the covariant

gauge-fixing term, cancels the unphysical degrees of freedom of the gluon.

2.3.3 The Running Coupling

In a quantum field theory the calculation of a dimensionless observable R as a perturbation

series in oy = g/4m, where R depends on a large energy scale requires renormalization
S b )
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to remove ultraviolet divergences. Such divergences come from loop corrections, such as

those depicted in Fig. 2.2, which diverge for infinitely large momenta.

q g
g ( ) g g é ? g
@) (b)
Figure 2.2: Loop corrections to the gluon propagator: (a) quark loop , (b) gluon loop.

Through renormalization the divergent terms are absorbed into the “bare” quantities
of the theory, such as the coupling, the masses or the field normalizations, which are
not observables, thus defining new renormalized quantities, which are measurable. This
process introduces a second mass scale u, at which the subtractions which remove the
divergences are performed. R depends on the non-constant ratio Q/u. The renormalized

coupling also depends on u.

Since 4 is an arbitrary parameter, R cannot depend on p when the coupling is fixed.
Moreover, since R is dimensionless, it can only depend on Q2/u? and on the renormalized
coupling as. Hence

d Q2 0 Oa, O
2 Y (% o) = (2L 4 29% - 2.11
Wi (;ﬂ’“) {“ o2 T a;ﬂaas]R 0 (2.11)

which is called the renormalization group equation. Introducing 7 = In (%;) ,and B(ag) =

@2 gi;, the renormalization group equation can be written as

0 0
- s)— = 2.12
5+ Bl | R =0 2.12)
which is solved by defining the running coupling a;(Q),
Qs (Q) dx
T = — 2.13
[ 7 21

where a;(1) = as. Thus all scale dependence in R comes from the running of a,(Q). A
change in the renormalization scale is compensated by a change of the coupling, and the
physical observable R remains independent of the unphysical scale 2. However, this only
holds if R is calculated at all orders of «g, otherwise an explicit scale dependence appears

at one order higher than the order at which the variable has been calculated.
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The Beta Function

The running of the QCD coupling, «y, is determined by the QCD g function, which has

the expansion:
Blas) = —ba? (1 +bas + O(a?)) (2.14)

where

_UCa-2N; 17C% — 5CaNy — 3Cp Ny

b
127 27(11C, — 2Ny)

(2.15)

with Ny the number of active flavours.

The B coefficients in general depend on the renomalization scheme used, hence also
the running coupling. In this analysis the modified minimal subtraction renormalization
scheme (MS) is used. The first two terms of the expansion for 3 are, in fact, scheme
independent. From the definition of the 8 function and neglecting ' and higher order

coefficients in Eq. 2.14 the following solution can be extracted,

2\ as(NQ)
CMs(Q ) - 1 N as('tﬂ)b]ng—; . (2.16)

Quark loop diagrams contribute to the negative Ny term in b, while gluon loop dia-
grams give a positive C'4 contribution which makes an overall negative § function. This
is in contrast to QED, where the b coefficients have opposite signs. Then, as () becomes
large, a4(Q) decreases to zero. This property of QCD, which depends on the sign of
b, is called asymptotic freedom. It is this property that allows reliable predictions from
perturbation theory for processes involving high momentum transfers. In QED where b

is negative, the coupling increases at large Q.

2.3.4 The Lambda Parameter

Perturbative QCD tells us how «a(Q) varies with @, but its absolute value has to be
obtained from experiment. Nowadays, the value of the coupling at () = My is used as the
fundamental parameter , which is a convenient reference scale large enough to be in the

perturbative regime.
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However, it is also useful to express a (@) in terms of a dimensionfull parameter

(constant of integration) A,

§ * dx o dx
In-5 = — o = : 2.1
oy /as(Q) B(z) /as(Q) br?(1+ bz + ...) (2.17)

Then, if the perturbative theory were the whole story, as(Q) — oo as @ — A. Thus A

sets the scale at which a4(Q) becomes large.

In next-to-leading order (NLO) we have

1 v Inln(Q?/A?%)

(@ = p@ay [ b @2/ (218)

The A parameter depends on the number of active flavours, Ny, where active means
mg S Q. Thus for 5 $ Q S 175 GeV, Ny = 5. It also depends on the renormalization

scheme. So, taking as current best fit value of a; at the Z pole [9]
(M) = 0.1184 =+ 0.0031 (2.19)

the corresponding preferred value of Ayg for Ny = 5 falls in the range:

178 MeV < Agg(5) < 251 MeV.

2.4 The Non-Perturbative Regime of Strong Interactions

The transition from the quark and gluon degrees of freedom appropriate in perturbation
theory to the hadrons observed by real world experiments is poorly understood. In this
strongly interacting transition regime we presently rely on models, which to varying de-

grees reflect possible scenarios for the QCD dynamics.

Corresponding to asymptotic freedom at high momentum scales (short distances), we
have infrared slavery: « (@) becomes large at low momenta (long distances). pQCD is
not reliable anymore, and non-perturbative methods, such as lattice calculations, must
be used. Lattice QCD is QCD formulated on a discrete Euclidean space-time grid. The
discrete space-time lattice acts as a non-peturbative regularization scheme. At finite val-
ues of the lattice spacing a there are no infinities. Furthermore, renormalized physical
quantities have a finite well behaved limit as @ — 0. This subfield of the particle theory
attempts to solve QCD problems in the regime of the nuclear matter, i.e. at the scale
of the hadronic world. Its aim is the calculation of correlation functions of hadronic

operators and matrix elements of any operator between hadronic states in terms of the
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fundamental quark and gluon degrees of freedom.

There are two important low momentum-scale phenomena:

Confinement: partons (quarks and gluons) are found only in colour-singlet bound states,
called hadrons, of size = 1 fm. If an attempt to isolate the partons within a hadron is done,
it becomes energetically favourable to create extra partons, forming additional hadrons.
This is a static (long-distance) property of QCD, which can be treated by lattice tech-
niques.

Hadronization: partons produced in short distance interactions reorganize themselves
(and multiply) to make the observed hadrons. This is a dynamical (long-timescale) phe-

nomenon, where only phenomenological models are available at present.

2.4.1 Infrared Divergences

Even in the high-energy, short-distance regime, long-distance aspects of QCD cannot be
ignored. Soft or collinear gluon emission gives infrared divergences in pQCD. Light quarks

(mg < A) also lead to divergences in the limit m, — 0.

pQCD can still be used to perform calculations, provided that the study is limited to two
classes of observables:

Infrared- and collinear-save quantities, i.e. those insensitive to soft or collinear
branching. Infrared divergences in pQCD either cancel between real and virtual contribu-
tions or are removed by restricting the phase space through an integration cut-off. Such
quantities are determined primarily by hard, short-distance physics; long-distance effects
give power corrections, suppressed by inverse powers of a large momentum scale.

Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed

into an overall non-perturbative factor, to be determined experimentally.

2.5 The implementation of QCD in Monte Carlo Models

The whole chain, from the eTe™ annihilation to the hadronization and decay of unsta-
ble hadrons, has been implemented in Monte Carlo programs, which make it possible to
generate multihadronic final states. An important aspect of the hadronic decay of the
Z boson is that the final state hadrons generally form jets, i.e. they are not arbitrarily
spread out in phase space, but stay rather close together (see Fig. 2.3). The direction
and energies of these jets are in close correspondence with the directions and energies of

the primary high energetic partons. More precisely, hadrons are formed out of the colour
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field with limited transverse momentum, which is independent of the hard energy scale.
Therefore, the higher the energy of the primary parton, the stronger is the collimation
of hadrons around its direction. An event, where the primary quarks do not radiate any
energetic gluons will typically appear as two back-to-back “bundles” of hadrons, whereas
events with one or more high energy gluons, radiated off at sufficiently large angles, will

give rise to additional hadronic jets.

Figure 2.3: A three-jet hadronic event recorded with the ALEPH detector.

The most popular Monte Carlo programs that try to simulate all the properties of the
electron-positron annihilation into hadrons are PYTHIA (JETSET) and HERWIG [10,
11]. PYTHIA combines a Parton Shower (PS) algorithm with the Lund string frag-
mentation. HERWIG is also based on a PS, but models the hadronization via cluster
fragmentation. Some details about the PS implementation and about the string and

cluster fragmentation models are given in the following sections.
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2.5.1 Perturbative QCD: the approximation through a Parton Shower

Complete perturbative calculations in QCD have been performed only to next-to-leading
order in most cases, or to one further order in «; for a few observables. The effort for the
calculation of a new term increases roughly factorially with the order, so not many more
higher-order terms are expected to be calculated soon. Nevertheless there are regions of

phase space in which higher-order terms are enhanced and cannot be neglected.

In the present section an approximate result in which such enhanced terms are taken
into account to all orders will be shown. This will lead to a physically appealing parton
shower picture which can readily be implemented in computer simulations. The parton
shower represents an approximate perturbative treatment of QCD dynamics at scales of
momentum transfer-squared ¢ greater than some infrared cut-off value tg, typically taken
to be of the order of 1 GeV?2.

Parton Branching

Assume the branching of a parton a into b + ¢ as shown in Fig. 2.4. a is defined as an
outgoing parton, i.e. the time-like branching is chosen. The opening angle is 8 = 6, + 6,
and the energy fraction is z = Fy/E, =1 — E./E,. Thus, for small angles and massless

partons, where the matrix element is enhanced, the following expression holds,
t =2E,E. (1 — cos0) = z(1 — 2) E*6? (2.20)
hence, using transverse momentum conservation,

1 t 0 0.
o — - _ O 2.21
E N\ z1-2) 1-z =z (221)

Consider the different cases, i.e. a,b and ¢ being gluons, a being a gluon and b and ¢
a quark-antiquark pair, and ¢ and b being quarks and ¢ a gluon. Then the unregularized
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting kernels can be obtained (a

detailed calculation can be found in [8]):

Prgl2) = O L2 (222)
(1—2(1 - 2))? (223

z(1 - 2)

ng(z) =Ca
Pyy(z) = Tr (2% + (1 — 2)?) (2.24)
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Figure 2.4: Kinematics of time-like parton branching.

The cross section for the various branching processes can be written as:

— Plz) . (2.25)

A simple probabilistic picture can be adopted here. The cross section in n-th order is
corrected by the probability for the additional branching of an outgoing parton, and this

probability is given by a; P(z)dz dt/t. The integration over a properly defined phase-space

region will then lead to
op x ayL™, m=2n,2n-1,... (2.26)

with L again some logarithm of a cut-off parameter in order to avoid singular regions.
When approaching singular regions of the phase space, this logarithm will grow, and even
for small a; one will find large corrections. It becomes clear that the effective perturbative
expansion parameter is not a, any more, but rather o, L or «sL?, which can approach
O(1) for a large logarithm. Hence the series in this new expansion parameter has to
be resummed in all orders, if a meaningful prediction from perturbative theory ought to
be obtained. This can be done through the solution of evolution equations, which are

introduced in the next section.

The DGLAP Evolution Equations

The DGLAP evolution equations are typically derived within the framework of deep-
inelastic scattering (see for example [8]). These are space-like processes, however, similar
evolution equations can also be derived for time-like processes such as eTe™ annihilation

into qq with subsequent gluon radiation. For simplicity, we consider only a single type of
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branching, the multiple gluon emission from a time-like quark, originating from a 7 decay.
A quark with initial virtuality ~ Q? evolves down in virtuality via successive small-angle
gluon emissions. Eventually a lower scale ¢y is reached where non-perturbative (long-

distance) effects become dominant.

Figure 2.5: Final state branching in ete™ = qq.

The momentum fraction distribution, fraction with respect to the initial momentum,
D(z,t) of the evolving quark at some scale ¢ gets infinitely large contributions from arbi-
trarily soft and collinear gluon radiation if the scale is small. However, the change of the
distribution at some scale caused by additional radiation of a gluon is calculable. First we
introduce a pictorial representation of the evolution, where every sequence of branchings
is represented by a path in (¢,z)-space, see Fig. 2.6. Each branching corresponds to a
step downwards, from a higher to a lower value of the momentum fraction z, at a value
of t equal to the virtual mass-squared after the branching. The change in the parton
distribution D(z,t) when ¢ is increased to ¢ + dt is just the number of paths arriving
in the element (dt,dz) minus the number leaving that element, divided by dz. To find
the total number arriving, we must integrate the branching probability times the parton

density over all higher momentum fractions =’ = /2, to obtain
5t ! !/ !/ !
0D(xz,t) = — | dx d P(2)D(z',t)6(x — z2")

/ @%p D(w/21)

z 2

(2.27)

where P(z) is the relevant unregularized splitting function. For the number leaving the

element, we integrate instead over all lower momentum fractions z' = zz:

ot T, Qg s ,
0Dout(z,t) = —D(z,t) | da'dzg _P(2)d(2" — zz)
v
5 R (2.28)
= —D(w,t)/ dz=—="P(z)
¢ . 2

™



1 neoretcical 1Iraimeworxk

1
ad
al
........................................................ *
****** o x
v
""""" po
X 5x : — ’}k
4444444444 Voo TG |
B ¥* X,
<6t — X
0

Q? t t
0
Figure 2.6: Representation of parton branching by paths in (t,r)-space. Three possible paths are

indicated.

The net change in the population of the element is thus

A e T 1
5D (1) = 0Dy, — 6Dyt = —/ 0222 P(2) |2D(a)2 1) — D(,1)] .
t Jo 27 z (2.29)

The singularity at z = 1 in P(z) is damped by the difference [LD(%,t) — D(,t)], thus
the whole expression is well defined. A compact notation is obtained by the introduction

of the plus-prescription

1 1
/0 d f(x)g(z) s = /0 da [f(z) — f(1)] g(z). (2.30)
Using this plus-prescription, the regularized splitting functions are defined

P(z) = P(2)4 (2.31)
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in terms of which the evolution equation for the parton density may be written as

z 2T

t— (z,t) /%%P D(z/z,t). (2.32)

When there are several different types of partons in the branching process, the evolution
equation has to be generalized to take into account the different processes by which a
parton of type i can enter or leave the element (dt,dz). This leads to a coupled set of

evolutions equations of the form

t (2,1) Z/ dz a & Py Dy (a2 1) (2.33)

The above formulation of the DGLAP equations is convenient for obtaining analytical

solutions for the evolution of parton distributions. Introducing the Sudakov form factor

£) = exp [— /to dt /dz— ] (2.34)

we can write Eq. 2.32 as

P = [ F 5Pz + DA (25)
and hence
t% (DA(Z;)> - Al(t) / Ciz (;;P( 2)D(z/z,1) . (2.36)

This equation can be integrated to give an integral equation for D(z,t) in terms of the

initial parton distribution D(z,tp):

D(,t) :A(t)D(z,t0)+/t dt—’flﬁ((f,)) ‘iz SEP(2)D(w/2,).

(2.37)

The first term on the right-hand side is the contribution from paths that do not branch
between scales ¢ and ty. Thus the Sudakov form factor A(t) is simply the probability of
evolving from ¢ to ty without branching. The second term is the contribution from all
paths which have their last branching at scale t'. The factor A(t)/A(t') represents the

probability of evolving from ¢ to ¢ without branching.

In the present discussion for the Sudakov form factor, the infrared singularity of the
unregularized splitting functions at z = 1 has been ignored. However, this singular-
ity is removed, in order for the form factors to be defined, through an infrared cut-off,
z < 1 — €(t). Branchings with z above this range are classified as unresolvable: they in-

volve emission of an undetectable soft parton. The Sudakov form factor with this cut-off
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then gives the probability of evolving from ¢ to ¢ty without any resolvable branching.

Although no virtual corrections have been mentioned explicitly, the Sudakov form
factor in fact sums enhanced virtual (parton loop) as well as real (parton emission) con-
tributions to all orders. The virtual corrections affect the no-branching probability, and
are included via unitarity, which is just the fact that the sum of the branching and no-
branching probabilities must be unity. The resolvable branching probability tells us via
unitarity the sum of the virtual and unresolvable real contributions: the latter two are

both divergent but their sum is finite, and included consistently in Eq. 2.36.

A natural cut-off for the branching would be that the virtual mass-squared ¢ > g,

which can be translated into
z(1—2z) >/t . (2.38)
This follows from the condition of positive transverse momentum, as shown in [8],
P =z2(1—2)p2 — (1 —2)p} —2p> >0 (2.39)
and p? =t, pg, p? > to. The cut-off condition can be approximated to

to
7< z<1——=2, (2.40)

A further refinement consists in the usage of the running coupling with a properly chosen
scale. As a first guess, the scale for the running could be set to the virtuality of the
branching parton. However, a more careful treatment suggests [12] that z(1 — z)¢ should
be used as its argument, which is essentially the transverse momentum squared. By doing
this , terms of the form In(1—2)/(1—z) are resummed, which are found in next-to-leading

calculations of the splitting functions.

Finally the Sudakov form factor for a single branching type becomes

;o to/t — ¢
A(#) = exp [— /Zt dt/t (1% W pin| | (2.41)

o/t
Monte Carlo Method

The formulation of parton branching in terms of the Sudakov form factor is well suited to
computer implementation, and is the basis of the parton shower Monte Carlo programs

for simulating QCD jets. The basic Monte Carlo branching algorithm in its simplest form



«.9 1I11€ 1mpilemencation or Yoo 1in ivionve vario viodels

is described in the following lines, neglecting the complications for the different possible

branchings and QCD coherence effects.

The basic problem that the Monte Carlo branching algorithm has to solve is as fol-
lows: given the virtual mass scale and momentum fraction (¢1, 1) after some step of the
evolution, or as initial conditions, generate the values (t2,z2) after the next step. The
first quantity to be generated by the algorithm is the value of #5. It was shown that for a
time-like branching the probability of evolving from #; to t, without (resolvable) branch-
ing is A(t1)/A(t2) where A(t) is the Sudakov form factor. Thus ¢2 can be generated with
the correct probability distribution by solving the equation

=R (2.42)

where R is a random number distributed uniformly in the interval [0, 1]. If the value of
to is lower than %y, this means that no further branching occurs. Otherwise, we have to
generate the value of the momentum fraction x = z9/x; for the next branching, with
a probability distribution proportional to (as/27)P(z), where P(z) is the appropriate

splitting function. This can be done by solving the equation

To/x1 o 1—e€ a
/ dz—"P(z) = R'/ sz—sP(z) (2.43)
€ € ™

where R’ represents another random number in the interval [0, 1] and € is the infrared

cut-off for resolvable branching.

The values of (t;,z;) generated by successive applications of the algorithm define the
virtual masses and momentum fractions of the exchanged parton, from which the momenta
of the emitted gluons can be computed. The azimuthal angles of their emission need to
be specified by a further Monte Carlo algorithm. Each emitted gluon and in general each
parton with time-like momentum in a parton shower, can itself undergo further branching,
which can be dealt with by a similar algorithm. As a consequence of successive time-like
branchings, a parton cascade develops. Each outgoing line becomes the source of a new
cascade, until the Monte Carlo algorithm generates a no-branching step in the evolution
of its virtual mass. Those that do branch produce partons of lower virtual masses, which
become more likely to generate no branching. Eventually all outgoing lines have stopped
branching and the cascade ceases. At this stage, which depends on the cut-off scale %,
the outgoing partons have to be converted into hadrons via the hadronization model if the
Monte Carlo program is to be used for the simulation of real events. Different available

models are described in Section 2.5.2.



1 neoretcical 1Iraimeworxk

2.5.2 Soft QCD

The bulk properties of hadronic events in Z decay are established early in the fragmenta-
tion when virtualities are large and pQCD is valid. However, the issue of to what extent
pQCD dominates and what are the contributions coming from non-perturbative effects is

still under investigation.

It was already stated that the final state hadrons form jets with directions and en-
ergies quite close to the ones of the primary high energetic partons. The fact that soft
QCD does not heavily modify the properties of these jets might be a result of several
effects. First multiple gluon radiation is restricted in phase space such that subsequent
soft gluons can not be radiated at arbitrarily large angles (this is called angular ordering).
Second, the hadronization phase involves only small momentum transfers, thus the main

topological properties of the event remain almost untouched.

Therefore, the interface between perturbative an soft QCD is implemented at two
levels in Monte Carlo programs as HERWIG and PYTHIA, which are the ones used in
the analyses described in Chapter 6. Soft Gluon Emission is introduced in the parton
shower, which also includes our knowledge on pQCD. Then, at the end of the shower the
partons undergo hadronization. Different models are used in the MCs, namely string and
cluster models. In some cases the parton shower is not used, and the partons coming from
the matrix element expressions are directly hadronized (this option is only implemented
in PYTHIA).

i) Soft Gluon Emission

The parton branching formalism discussed so far takes account of collinear enhancements
to all orders in perturbative theory. However, there are also soft enhancements due to
gluon emission. The singularities of the small-angle parton splitting functions for soft
gluon emission have already appeared in the previous section. However, the enhancement
due to soft gluon emission has more general contributions. Whenever an external line of
a QCD Feynman graph with momentum p and mass m (not necessarily small) emits a
gluon with momentum ¢ and energy w, a divergence as w — 0 appears for any velocity
and emission angle. Notice that there is no soft enhancement of radiation from an off-
mass-shell internal line of a Feynman graph, since the associated denominator factor does

not diverge when w — 0.
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The enhancement factor in the amplitude for each external line implies that the cross

section enhancement has a factor which is the sum over all pairs of external lines {7, j} [8]:

dw dQ «
dop 1 = don—o— 2; Z Cii Wi (2.44)

where df) is the element of solid angle for the emitted gluon, Cj; is a colour factor, and
the radiation function W;; is given by

WQPin B 1 — v;vj cos 0;;

picjqu (1 — V; COS 0,-,1) (1 — vj COS qu)

Wi; = (2.45)
with v; the velocity of the i-th particle. The radiation function can be separated into two
parts, containing the collinear singularities along lines ¢ and j. For simplicity we consider

massless particles (v;j; = 0). Then, W;; = Wl + Wf] where

| 1 1

w2 ( T cosbig 1 —cos qu> (2.46)
This function has the property of angular ordering. After the azimuthal averaging, the
contribution of Wl is confined to a cone, centered on the direction of ¢, extending in angle

as far as the dlrectlon of line j.

Angular ordering is the coherence effect common to all gauge theories. In QED it
causes the Chudakov effect, i.e. the suppression of soft bremsstrahlung from e*e™ pairs.
In QCD the angular ordering provides the basis for the coherent parton branching formal-
ism, which includes soft gluon enhancements to all orders. For two external lines forming a
colour singlet, as in ete™ — ¢q, the angular ordering operates as in QED suppressing the
radiation outside the cones extending from 4 to 7 and vice-versa. A more interesting case
is that of three partons (7,4, k) forming a colour singlet, such as ete™ — ¢gg. There, each
of the partons ¢, j and k radiates in proportion to its colour charge squared. When 4 and
j are close in angle, their incoherent contributions are limited (after azimuthal averaging)
to cones of half-angle 6;;. At larger angles, out to the direction of £, they give coherent
contributions in proportion to their combined colour charge squared. This contribution
can be computed as if it came from an internal line of momentum p; = p; + p;, but in

reality it comes coherently from the two external lines.

The above treatment can be extended to higher orders leading to a coherent parton
branching formalism that can be used to compute soft gluon enhancement to all orders.
The rules for coherent branching involve a simple modification of those for the collinear

branching process seen in Section 2.5.1. Such modifications are detailed in [8] and they
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lead to the Sudakov form factor for the coherent branching process,

At —expl /4,: dt/ d as (2(1 — 2)°¢) P(2)| . (2.47)

to/t’

ii) Hadronization

One general approach to hadronization, based on the observation that perturbation the-
ory seems to work well down to rather low scales, is the hypothesis of local parton-hadron
duality. Here one only supposes that the flow of momentum and quantum numbers at
the hadron level tends to the flow established at the parton level. Thus, for example,
the flavour of the quark initiating a jet should be found in a hadron near the jet axis.
The extent to which the hadron flow deviates from the parton flow reflects the irreducible
smearing of order A due to hadron formation. However more explicit hadronization mod-
els are needed in order to compute detailed predictions. The two classes of models used

in the analysis of this thesis are briefly described in the following paragraphs.

String Model

In an e*e™ annihilation, neglecting the possibility of gluon bremsstrahlung, the produced
quark and antiquark move out in opposite direction, losing energy to the colour field,
which is supposed to collapse into a string-like configuration between them. Mesons and
baryons are created by tunneling effects or equivalently by the breakup of the colour
tube. This Lund Model [13] is inspired by the idea that because of the self-coupling of the
gluons, an effective anti-screening of the bare colour charge occurs and the field between
colour charges is restricted to a flux tube. Hence describing the gluon field as a flux tube
with constant energy per unit length, leading to a linearly rising potential, at increasing
distance between colour charges the attractive force stays constant instead of decreasing,
as is the case for the electro-magnetic force. Eventually the energy in the colour field
becomes so large that qg pairs are created from the vacuum, which afterwards combine

to form colour-neutral states. An schematic view of the string model is shown in Fig. 2.7.

Cluster Model

An important property of the parton branching process is the preconfinement of colour [14].
Preconfinement implies that the pairs of colour-connected neighbouring partons discussed
above have an asymptotic mass distribution that falls rapidly at high masses and is asymp-
totically @%-independent and universal. This suggests a class of cluster hadronization
models, in which gluons at the end of the perturbative phase are split into quark and

antiquark pairs. Then, colour-singlet clusters of partons form which afterwards decay
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Figure 2.7: String fragmentation scheme.

isotropically into hadrons. Only these hadrons and/or the decay products of short-lived
or weakly decaying ones are measurable in the detector. An schematic view of the cluster

model is shown in Fig. 2.8.

2.5.3 Monte Carlo Programs: a brief description

Complete matrix elements (ME) calculations are expected to give a good description of
multi-jet events when large separations among jets are involved and in particular when
angular variables are considered. On the other hand, pure ME differential cross sections
lack parton shower and hadronization and cannot reproduce collinear and soft radiation
at arbitrarily high order. It is therefore important to have the possibility to start with
pure ME calculations and complement them with these additional features. The results
obtained in this way (ME 4 PS + hadronization) can be compared with pure parton level
ones as well as those from dedicated QCD MCs, like standard ¢g§ PYTHIA and HERWIG.

If one takes for example topologies with four or more jets, one expects that a reason-

able description for not too small values of the jet resolution y.,+ may be obtained starting
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Figure 2.8: Cluster fragmentation scheme.

with a four-parton ME at a much lower y.,; and adding to it PS and hadronization. This
jet resolution parameter, y.us, introduced here is just a parameter of the different algo-
rithms used to define jets at parton level in the theoretical calculations, and for grouping
the selected neutral and charged tracks into jets at the experimental level. Even if events
such as the one in Fig. 2.3 have been seen in a detector such as ALEPH, there is no unique
way of grouping particles into jets and so different algorithms have been proposed. Basi-
cally, the method used is the successive binary clustering, i.e. for all pairs of final-state
particles (4, 7), a test variable y;; is defined. The minimum of all y;; is compared to the
so-called jet resolution parameter. If it is smaller, the two particles are recombined into
a new pseudo-particle with four-momentum p; = p; + p; (other recombination schemes

have also been proposed).

One must however be aware of the fact that when starting with four-parton ME, all
events described by two- or three-parton ME + PS + hadronization are not taken into
account. In this respect QCD MCs surely give a more complete description as they start

a PS from a two-parton ME and match three-parton production with the respective ME
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results. The above mentioned approach of starting from four-parton ME can however be
considered as a complementary approach for some studies and a way to check MC results

when for instance angular variables or mass effects are involved.

In the following sections two options to start with four-parton configurations, using the
PYTHIA showering and hadronization, are described. However, there are other options
as the ones described in the HERWIG and APACIC subsections.

PYTHIA

A shower interface to four-partons massless matrix elements

Since version 6.1, the PYTHIA MC program contains an algorithm to start a shower
from a given four-jet configuration, ¢ggg or qgqq'q’. This allows comparisons of four-jet
topologies between matrix-element calculations and data, with showering and hadroniza-
tion effects better implemented, which are not covered by the matrix-element calculations

alone.

The standard PYTHIA parton shower does not include any matching procedure to
four-jet matrix elements. Therefore, it is not a good option for the description of four-jet
topologies. For example, it does not correctly model angular azimuthal distributions in
branchings. In fact, the standard shower routine is set up only to handle systems of two

showering partons, not three or more.

The basic idea of matching to a four-parton configuration is to cast the output of
matrix element generators in the form of a parton shower history, which then can be used
as input for a complete parton shower. Here two of the subsequent branchings already
have their kinematics defined, while the rest are chosen freely as in a normal shower.
Benefits of having a prehistory include (i) the availability of the standard machinery to
take into account recoils when masses are assigned to massless partons in the matrix
elements, (i7) a knowledge of angular-ordering constraints on subsequent emissions and
azimuthal anisotropies in them, and (7ii) information on the colour flow as required for
the subsequent string description. The choice among possible shower histories is based

on a weight obtained from the mass poles and splitting kernels.

For example, let’s concentrate on a process like qggg. Here the matrix-element ex-
pression contains contributions from five graphs (Fig. 2.9) and from interferences between

them. The five graphs can also be read as five possible parton shower histories, but here
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without the possibility of including interferences. The relative probability for each of

these possible histories can be obtained from the rules of shower branchings.

The relative probability P for each of the five possible parton-shower histories can be
used to select one of the possibilities at random. Then, when the conventional parton
shower algorithm is executed, the properties such as masses, momentum transfers and
angles between mother and daughter partons are forced to stay at the same value as for
the ME configurations. However, this forcing cannot be exact since the final partons
given by the ME are on the mass shell, while the corresponding partons in the parton
shower might be virtual and branch further. All other branchings of the parton shower
are selected at random according to the standard evolution scheme. Singular regions are
typically avoided with a cut y >y (default 0.01), where y is the square of the minimal
scaled invariant mass between any pair of partons. All this is done by calling the PY4JET
routine that will shower and fragment the four-parton configuration given as input. The
partons have to be stored in the order qgqgg or qqq'q’, where ¢'q’ is assumed to be the

secondary quark pair.

This strategy used in PYTHIA has the advantage that it can be applied to arbitrarily
complicated partonic states, but the disadvantage that it does not tell how to mix dif-
ferent event topologies consistently. Therefore, it can be used for events where the main
partons are well separated, and the task is to provide a realistic representation of the
internal structure of the resulting jets, which is the case of a four-parton configuration at
LEPI1.

Interfacing four-parton massive matrix elements: FOURJPHACT
FOURJPHACT is a Fortran code that computes exact LO massive MEs for all ete™ —
qqq'd and eTe”™ — qqgg final states and it interfaces them with the PYTHIA routine
PY4JET.

The program starts by computing some cross section, where one can choose between
fixed or running ;. Unweighted events may be generated during this step, or in a sec-
ond run in order to obtain a predetermined number of events. These may be passed to
PYTHIA which provides PS and hadronization.

An inventory of cuts at parton level are already defined in FOURJPHACT: to im-

plement them one only has to specify the numerical values for minima and maxima of
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energies, transverse momenta, angles among partons and invariant masses. In a similar
way, cuts using the resolution parameter of the most used clustering algorithms can be
requested (e.g. a DURHAM y.yu, which is the clustering algorithm used for this thesis,

as explained in Section 5.1).

FOURJPHACT can compute or generate events for one final state at a time or for
all 20 final states with quarks (no top) and gluons at the same time. In this last case,
the corresponding probability of each channel is determined or read from a file, and the
generated events will have the correct fraction of all final states. This “one shot” option

is often used when hadronization is required afterwards.

HERWIG

Four-jet matrix element 4+ parton shower options (massless ME)

A new option available in HERWIG version 6.1 is to generate events starting from the
four-parton processes eTe”™ — gggg and eTe” — qqq¢'q’. The relevant process code is
IPROC = 600 4+ IQ for primary quark flavour I(Q) or 600 for a sum over all flavours.
The matrix elements used are those of Ellis, Ross and Terrano [15] and Catani and Sey-
mour [16], which include the relative orientation of initial and final states, but not quark
masses. The kinematic effects of quark masses are taken into account in the subsequent
parton showers and in matching the showers to the momentum configurations generated
according to the matrix elements. The variable EM SCA = min /55, where s;; = 2p; - pj,
sets a limit on the transverse momenta in the showers and is also used as the scale for as.
The latter feature has the effect of enhancing the regions of small s;; relative to matrix

element calculations with «; fixed.

To avoid soft and collinear divergences in the matrix elements, an internal parton
resolution parameter Y4JT must be set. The interparton distance is calculated using
either the DURHAM or JADE metric. This choice is governed by the logical parameter
DURHAM. For reliability of the results, one should use the same metric for parton and
final-state jet resolution, with a value of Y4JT smaller than the y.,; value to be used for

jet resolution.

APACIC

The philosophy of the new approach of the APACIC MC [17] is to use ME and PS in

the corresponding regimes of their reliability: matrix elements are employed to describe
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the production of jets, and parton showers to model their evolution. A general algorithm
to match them has been proposed and implemented in APACIC++, the PS part of the
package. The algorithm is based on the paradigm above, namely to restrict the validity of
the ME’s for the description of particle emission to the regions of jet-production, i.e. to
regions of comparably large angles and energies - or to large yqu; of the corresponding jet-
clustering scheme. In contrast, the PS is restricted to the disjunct region of jet-evolution,
i.e. small angles and low energies - or low y.,;, respectively. The hadronization of the
partons is left to well-established schemes. At the moment, an interface to the hadroniza-

tion in the Lund-string picture as implemented in PYTHIA is supplied.

The program package is designed for the modelling of multi-jet events. It is capable
to produce and evaluate matrix elements for the production of up to five massive partons
in QCD and at least all electroweak processes of the type ete™ — four fermions allowed
in the Standard Model. The MEs are matched to the parton shower via an algorithm
capable to deal with -in principle- any number of jets produced via the strong, weak or

electromagnetic interaction on equal footing.

APACIC ++ parameters:

- i) yeus™ Emissions of colour charged partons are restricted to resolution parameters
i

Yeut > Yeut' -

- 1) m2’4’5 Due to the truncation of the perturbative expansion, matrix element cal-
culations show a significant dependence on the QCD renormalization scale. APACIC++

3
accounts for these dependences by a scale parameter xy’

. 3,4,5
tion: ay = ag(ks

4 for each n-jet configura-
- s), where s is the square of the center-of-mass energy of the

ete™ system.

- i11) as(My) The strong coupling constant is responsible for the parton shower evo-

lution

- iv) cut-off PS The parton shower ends at a given energy scale, where fragmentation

starts.
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2.6 Extensions beyond QCD: The light gluino hypothesis

Si es que existen, he de encontrar

lenguagjes de un mundo que estd dormido entre las hojas de los libros.

Although experimental measurements at the highest available energy are consistent
with the standard model of the strong interactions, the observed relationship of the strong
coupling constant at the Z and the weak angle as well as the value of the b/7 mass ratio
in relation to the top quark mass remain strong indications of a supersymmetric (SUSY)
grand unification above 10'GeV and a SUSY threshold for squarks and sleptons in the 0.1
to 1 TeV region. Supersymmetric phenomenology deals normally with sparticles of masses
O(100)GeV. The only exception is the light gluino with mass < 1.5GeV and 3—5GeV [19].
In this unification picture the value of the SUSY threshold is very sensitive to the highest
known (two-loop) contribution to the Minimal Supersymmetric Standard Model(MSSM)
B function. At the one-loop order a SUSY threshold far below 100GeV would be needed
in order to fit the coupling constant measurements and such a low threshold is directly
ruled out by the non-observation of squarks and sleptons in Z decay. This suggests that
the three-loop results could also be important especially as the precision of the measure-

ments at the Z and beyond improves.

As a first step in the calculation of the full three-loop 8 function of the MSSM, the
gluino contribution to the renormalization of the strong coupling constant is taken into
account. This gives the complete result in the region between the gluino mass and the
squark mass which, in the light gluino scenario, extends from the low energy regime up
to the Z and beyond up to the squark threshold. Then, as was seen in Section 2.3.3, the
running of the strong coupling constant as a function of the scale i is determined by the

QCD g function, redefined here more conveniently as

dfﬁb = -as () (2.48)

where 8 has the perturbative expansion
Bz) = iz + for® + oz’ + ... (2.49)

Simple relations between the coefficients, e.g. 1 = b8, allow to go from the definition
in Eq. 2.14 to the one in Eq. 2.49. Ignoring squark contributions, the one- and two-loop
results in the minimally extended SUSY QCD are [20]

8

22 N,
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68 40
pr= o5

N, N,
3 3 <NfTRCA + 7%*3) —8 (NfTRCF + 7%*3) (2.51)

where N, is the number of gluino multiplets.

The gluino contributions to the £ function coefficients as well as the additional four-jet
final states can be exploited to set limits on the light gluino mass. In fact this was used
in a previous ALEPH analysis [21] to exclude the existence of a gluino with mass below
6.3 GeV/c2. In this analysis four-jet observables were used, for which only tree-level cross
sections were known at that time. Similar hints were found in the analysis by Csikor and

Fodor [22], based on the running of the strong coupling constant.

However, a consistent analysis looking for a hint of the existence of the light gluino,
must contain the virtual gluino effects not only in the running (technically in the 8 func-
tion), but in all loop diagrams. As will be seen in Chapter 5, since recently calculations up
to next-to-leading order exist, which will allow for a consistent analysis. The calculations
are for massless quarks and a massless gluino though, preventing to set a limit on the

light gluino mass.
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Chapter 3

QCD predictions for Four-Jet
Observables

Prometo cambiar, volverme humilde como un cristiano,
dejar de beber y aprender tu alfabeto.

3.1 Introduction

Multi-jet events at LEP have sufficiently large invariant masses to ensure that jets truly
reflect the distribution of quark and gluon quanta in the femto-universe, revealing the
basic couplings in the QCD Lagrangian. Four-jet events are particularly interesting for
the study of QCD (see Fig. 3.1), since this theory shows its full gauge structure only in
order o?. They are extremely important to experimentally verify the effects of the gluon
self-coupling, since the ete™ — qggg cross section dominates over the eTe™ — ggqq. As
already seen in Chapter 2, the direct coupling between gluons is a consequence of the

non-abelian nature of QCD.

The three-jet cross section is consistent with a spin-one gluon. However, one could
imagine an alternative “Abelian QCD” theory, in which SU(3) is replaced by [U(1)]3 and
the coupling is adjusted to be &g = Cras, so that the correct three-jet rate is obtained.
It is then the four-jet rate that allows to distinguish this theory from QCD, since only a

subset of the QCD Feynman diagrams contribute in the Abelian case.

The QCD cross section for four-parton production is given by

2
do® = (O‘—W) [C2A + CpCaB + CpTrnsC) + O(a?) (3.1)
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Figure 3.1: A four-jet hadronic event recorded with the ALEPH detector.

where A, B and C are functions of the parton-parton invariant masses squared, s;; =
(pi + pj)Z. The last term on the right-hand side corresponds to the ggqq final state, and is
common to both the Abelian and non-Abelian theories. The first two terms correspond to
the gqqgg final state: the second term receives contributions from the triple-gluon vertex

diagram and is absent in the Abelian theory.

With the overall couplings already fixed by the three-jet rate, the four-jet rates are
therefore different in the two theories, and one could in principle discriminate between
them on the basis of the overall event rate alone. In particular, the rate is much smaller
for the Abelian theory, where the ggqq final state rate is relatively more important than in
QCD. The problem with this is that the magnitude of the cross section is quite sensitive
to the choice of scale in the strong coupling, and this freedom would allow the overall
rates to be adjusted to fit the measured rate in each case. In principle, the fraction of
four-quark events would also provide a discrimination. However, it is very difficult to
distinguish light-quark and gluon jets with the necessary efficiency. The only realistic

possibility appears to be to tag at least three b quarks in the final state (using vertex de-
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tectors or semi-leptonic decays) to estimate the fraction of qgqq events, but the efficiency

is again very low.

A much more powerful and illuminating method makes use of the different correlations
among the final-state particles induced by the various contributions to the cross section.
These correlations have their origin in the different angular momentum properties of the

final state.

In this study both the overall four-jet rate and the so called four-jet angular correla-
tions have been used. The four-jet rate is very sensitive to the strong coupling constant
and, as the resummation of large logarithms exist, we expect its scale dependence to be
heavily reduced. For the angular correlations, the sensitivity to the QCD colour factors

will be exploited. In the following pages the description of these observables can be found.

3.2 Four-Jet Observables

The NLO differential cross section for a four-jet observable, Oy, can be written as,

1 do

0. (04) = 1(1)*Bo,(04) + n(1)* [Bo,(04)Bo Inz,* + Co,(04)] (3.2)
gp 4

with

n(p) = (%) (3.3)

and where o is the Born cross section for ete~ annihilation into hadrons, 4 is the renor-
malization scale, z,, the ratio of 1 with respect to the Z boson mass, and Bp, and Cp, are
scale-independent functions. They are obtained from the integration of the fully differ-
ential massless matrix elements for e™e~ annihilation into four-parton final states. The

NLO expression is presented here, as terms at O(a}) have not yet been calculated.

For the running coupling the two-loop expression

n(n) = WLIE/LZ)) ( - g—én(Mz)h;u(;(f; )> (3.4)

is used, with

wlp) =1 = Byt (M2 (3.5)
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11 4 17 10

T = g—; and y = g—’; are the QCD colour factor ratios. Using the expected values from

SU(3) for the colour factors, C4 = 3 and Cp = 4/3, together with the normalization
Tr = 1/2, the theoretical prediction for the ratios is x=2.25 and y=0.375. £} and (]
are the coefficients of the QCD g function as defined in Section 2.6 but including some
factors, B = Bo/2Cr and B} = 31/4C%, to have as perturbative parameter n(u) instead
of as(p), and setting Ny to zero, as the light gluino hypothesis is not taken into account

for the time being.

The B and C functions depend linearly and quadratically on the colour factors, as

can be seen in the following expressions,
By=DBy+ B,z + Byy (3.7)
and
Cy=Co+Crz+Cyy+C,z+ Cppa®+ Coyzy+ Cyyy”. (3.8)

Such a dependence will be used, in the analyses presented in Chapter 6, for the simulta-
neous measurement of the strong coupling constant and the colour factors. At NLO the
ratio z appears that is related to the square of a cubic Casimir operator,
Na
Cy= 3 Tr (T“T”TTC> Tr (TTCT”T“> : (3.9)

a,b,c=1

C3
N.C%

via z =

3.2.1 Electron-Positron Annihilation Cross Section

In the previous chapter it was seen that the formation of hadrons is non-perturbative.
However, a pQCD calculation of the total hadronic cross section can be obtained. The
reason for this can be found when looking at the event in space-time. The electron and
positron collide to form a y or a Z of virtuality @ equal to the collision energy /s, which
fluctuates into qq, gqg, ... By the uncertainty principle, this fluctuation occurs on a dis-
tance scale of the order 1/Q, and if @ is large the production rate should be predicted by
perturbation theory. Subsequently, the quarks and gluons form themselves into hadrons.
This process, called hadronization, occurs at a much later time scale characterized by
1/A, where A is the scale in «g, i.e. the scale at which the coupling becomes strong. The
interactions which change quarks and gluons into hadrons certainly modify the outgoing

state, but they occur too late to modify the original probability for the event to happen,
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which can therefore be calculated in perturbation theory.

The total cross section for gg production at Born level (no initial state radiation, no
gluon radiation) is given by
1270l gq
M7T
where My is the mass of the Z boson, and I'c., I'yz and I'z are the partial widths for

Z decay into eTe™, qg and the total width, respectively. Leading-order corrections, see

(3.10)

oy =

Fig. 3.2, from pQCD to this Born cross section give

3
Ttos = 00 (1 v %) = 0 <1 + —n) (3.11)
T 2

Z/y*

Figure 3.2: Feynman graph for the O(a) correction to the Born cross section for ete™ = qq.

3.3 The Four-Jet Rate

The four-jet rate is used in this thesis as it is very sensitive to 7 (i.e. to the strong coupling
constant). Following the expression in Eq. 3.2, the NLO prediction for the four-jet rate

-defined as the ratio of the four-jet cross section to the total hadronic cross section- is

given by:

) ) 5 (3.12)
+ 77(#’) /60 ln($u) + 04(YCut) - §B4(YCut) y
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where y¢, is the clustering resolution parameter and the relation in Eq. 3.11 is used to

obtain the proper normalization.

Four-jet fractions decrease very rapidly when increasing the resolution parameter, so
most of the data is found at small y¢,;. However, the fixed order perturbative prediction
is not reliable for small values of ycut, due to the terms g™ In™ y.,; that enhance the
higher order corrections. The all-order resummation of the leading and next-to-leading
logarithmic (NLL) contributions has to be performed. This resummation is possible with
the Durham clustering algorithm [23] used in this thesis and described in Section 5.1,
using the coherent branching formalism. The expression for the four-jet rate in the next-

to-leading logarithmic approximation is given in [24],

Q 2 Q
R4NLL=2[Aq(Q)]2K/ dqrq(Q,q)Ag(q,Qo>) n /Q daT4(Q0) Ay (0, Qo)

Qo

q

x /Q dg' + (Ty(g,4")A¢(q's Qo) + Ts(d) A (¢, Qo))] : (3.13)
0

The functions A,(Q, Qo) are the Sudakov form factors which express the probability

of parton branching evolution from a scale Q@ = Qo+/Ycut t0 a scale Qy without resolvable

branching. These functions are obtained as the integrals of the emission probabilities
. (Q, q), which are:

r(Qq) = 2CF as(q) [(1+ Ols(Q)K> m_ §] ’

s q 27 q 4
_ 2Ca as(q) as(q) Q 11
I'y(Q,q) = g [(1 T K) 111; - ﬁ] ) (3.14)
Ny as
Q) = 5L 20

The K coefficient is renormalization scheme dependent. In the MS scheme it is given
by [25]

2
1
K:CA<67 7r> 0

X)) 2N, . 1
18 6 g TR (3.15)

It was shown in reference [26] that one can obtain an improved theoretical prediction

for the differential two-jet rate if the vertex probabilities are taken at next-to-leading
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order, which we also consider in our analysis. Then the vertex probabilities can be written

as,

1+2° a2
—K
-2 Tor 1—z>’

Pyq(as,z) = Cr (

1 — 2
Ppylas,2) =204 [ —— + =2 4 21 — 2) + =K , (3.16)
l -z z o 1—z

Pyy(as,z) = TNy (22 + (1 — 2)?) .

As the Durham four-jet rate can be resummed but it does not satisfy a simple ex-
ponentiation, the only viable matching schemes are the R matching or the modified R
matching [27, 28]. The one used in this study is the R matching following again refer-

ence [24]. The R-matched expression for the four-jet rate is

Ri—mateh = YL 4 |2 (B — BYYY) + 9 (04 = Oy =5 (Ba - BELL)” - (3.17)

In Fig. 3.3 a comparison of the predictions at different orders for the four-jet rate is shown.
There we can notice that the NLO contribution is large, going from 30% to about 70%
of the LO one. When the resummation is included the main difference is in the shape of
the distribution. The same effect is found when the K coefficient is taken into account.
As will be shown in Chapter 6, the inclusion of the K factor is needed in order to obtain
a good fit of the data.

3.4 The Four-Jet Angular Correlations

Apart from the four-jet rate, four other observables have been used which are expected to

be very sensitive to the colour factor ratios. These are the four-jet angular correlations:
- the Bengtsson-Zerwas angle [29]:
| cos (xBz) | =1 cos (£[(p1 x P2) , (P53 X Pu)]) | (3.18)
- the Korner-Schierholtz-Willrodt angle [30]:

cos (Bsw) = oo (5 (£ 7). x )] + 210 x ) ( x 7))
(3.19)
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Figure 3.3: Predictions at different orders for the four-jet rate.

- the modified Nachtmann-Reiter angle [31]:
| cos (Oxr) | = cos (£[(p1 — p2) , (P3 — P)]) |
- the angle between the two lowest energy jets [32]:

cos (agq) = cos (£ [P35, Pa])

(3.20)

(3.21)

where p; are the energy-ordered four-momenta (Fy > Ey > E3 > E,). The theoretical

NLO expression for each of the angular observables will be of the form

1 do
oo dcos X

(cos X) = 1(1)? Beos x (c08 X) + 1(1)? [Beos x (c0s X) By In(z,,%) + Ceos x (cos X)]

(3.22)

The idea of the four-jet angular observables is to exploit the characteristic features of

gluon dynamics in QCD, as opposed to abelian theories, to isolate the triple gluon vertex
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in four-jet events of ete™ annihilation. For this, the angular correlation observables were
defined to be sensitive to different types of Feynman graphs as detailed in the following

paragraphs.

Te~ — qqg are linearly polarized to a high degree

- Gluons radiated from ¢ and g in e
in the gqg final state. If y is the angle between the final state plane and the
polarization vector then we have the probability for ¢ — gg =~ [1 + %cos 2)(] and
for g — qq =~ [1 — cos 2x]. Therefore we expect the angle between the plane formed
by the two lowest energetic jets (preferentially virtual gluon decays) and the plane
formed by the high energy jets (mostly the primordial ¢G) to be distributed nearly
isotropically in QCD while these planes should be preferentially perpendicular in
abelian theories. Even if it is very difficult to distinguish between jets induced by
the primary and the secondary partons, we expect the secondary partons to be
less energetic. All this takes us to the definition of the Bengtsson-Zerwas angle.
See Fig. 3.4 for the difference between QCD, which has SU(3) as underlying gauge

group, and an abelian theory.

- In order to obtain evidence for the triple-gluon vertex the following variable was
presented. ¢xsw = Z[(p1 X p4), (P2 X p3)]. In theories without the triple-gluon
vertex the planes orthogonal to the vectors p; X p4 and p2 X ps are uncorrelated,
and because of phase space restrictions the angle ® g sy between these two planes
is found around 90°, preferentially. However, if there is a triple-gluon vertex, then
the pole structure of the propagator for the intermediate gluon leads to a preference
for small angles between the two secondary gluons, and a correlation between the
planes is induced. Because of the energy ordering, the planes turn out to be anti-
parallel most of the time. The final definition found in Eq. 3.19 comes from a
generalization in order to be invariant under exchange of the first and second jet,
as well as of the third and fourth jet. A simplified version of the Korner-Schierholz-
Willrodt angle is obtained by looking at the angle between the two lowest energetic
jets. This is the definition of the fourth angular observable defined above. The angle
az4 distinguishes between the relative contributions from double gluon radiation and
gluon splitting into gluon pairs. Gluon radiation from the two primary quarks occurs
more or less independently, and because of the collinear character of bremsstrahlung
and the energy ordering of the four jets, large angles between the secondary partons
are expected. Gluon splitting into secondary partons on the other hand will lead to
rather small opening angles. In Fig. 3.5 the distributions for the same cases as in

the above figure are shown for comparison.

- To find a signal for the triple gluon vertex the following kind of events are considered:
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Figure 3.4: Comparison of QCD NLO predictions and abelian NLO predictions for the Bengtsson-Zerwas
angle. (Durham algorithm, E-scheme, ycus=0.008. See Section 5.1)

Two back-to-back jets of high energy and two back-to-back jets of much lower energy,

1.e.

p1+p2=0 p3s +ps=0
E,=E, > E3=E,

Then cosf13 = (p1 - p3)/|p1l|P3|, which is the angle between the axis of the high
energy jets and the low energy jets is very sensitive to the presence of the triple-
gluon coupling. If we concentrate on events where a virtual gluon decays either
into two spin-1/2 or into two massless vector particles, the virtual gluon will have
always helicity 0 with respect to the direction of the high energy jets. Therefore the
helicities of the high energy quark-antiquark pair must be opposite and the pair ¢
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Figure 3.5: Comparison of QCD NLO predictions and abelian NLO predictions for cos ®xsw and cos a4
(Durham algorithm, E-scheme, ycu;=0.008. See Section 5.1)

carries =1 unit of angular momentum with respect to its direction of flight. Note
that a vector particle like a gluon with helicity zero in one direction has only helicity
components +1 in any orthogonal direction. Now, if the virtual gluon decays to a
massless gg pair, then the direction of these secondary partons has to be orthogonal
to the primary ones. However, for a decay into two real gluons, which must have
helicity £1, the situation is just the inverse. In summary, the following distributions

are expected for different kinds of graphs:

d
_ Y% 1~ cos? 013 for the final state ¢gqq (3.23)
dcos 013
do 9 _
—— x cos”“ 013 for the final state gGgg (3.24)
dcos 013

Since in QCD there are more gluon decays into two gluons than into a quark-
antiquark pair, a dominance of the cos? f;3 term is expected. Of course, in reality
also double bremsstrahlung diagrams occur, and cos 013 has to be restricted to values
well below 1 where the perturbation theory breaks down due to collinear divergences.
To solve this problem, a generalized Nachtmann-Reiter angle was proposed, Eq. 3.20,
which is the one used in this thesis. Fig. 3.6 shows the comparison between a four-

quark channel and a two-quark-two-gluon one.
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Figure 3.6: Comparison of the |cos fixr| distributions at LO between a four-quark channel and a two-

quark-two-gluon channel.

3.5 Four-Jet Events and Monte Carlo implementation

The analyses of this thesis will be based on the observables described above. Thus, it
is very important that four-jet events from QCD are correctly implemented in the MC
programs that are widely used in phenomenological studies of hadron production at ete™
colliders. However, certain aspects of the four-jet production are known not to be well
described by the standard “O(as) ME + parton shower” MC programs. In addition, some
of the observables that have shown a significant disagreement between data and MCs are
the four-jet angular correlations, which will be used for the simultaneous measurement of

the strong coupling constant and the colour factors.
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Such discrepancies have been related to the fact that standard MCs do not provide
a correct description of the spin correlations among the various partons, particularly at
large jet separations. These correlations are naturally included in a full matrix element
calculation, but are not necessarily included in a PS emulation for the four-jet final state.
A consequence of this is that “O(a?) ME” programs, such as the option of four-parton +
string fragmentation (no parton shower) implemented in PYTHIA, yielded a much better
angular description of four-jet final states. However, even an “O(a?) ME + fragmenta-
tion” model, without the PS evolution, is inadequate to describe QCD four-jet production

in eTe™ collisions. The problem is that such ME models contain “ad-hoc” hadronization
which is adjusted to produce a good agreement with some data, but they cannot be ex-
trapolated to other energies. Furthermore, their description of the sub-jet structure is

very poor.

Such deficiencies in the description of four-jet final states could be cured by an “O(a?)
ME + PS” (plus hadronization) approach, that is now available in the commonly used
MC programs, PYTHIA and HERWIG (see Section 2.5.3 for more details). There, a
combination of the full angular information content of matrix elements with the detailed
sub-jet structure of parton showers is tried, which should give a realistic overall description

of event properties.





