
Chapter 3

Colour constancy for inspection

problems

In this chapter we introduce the phenomena of colour adaptation and some of the

approaches to computational resolution. It is fundamental to take it into account in

an inspection system where reproducibility is basic. As the method used needs to

assure that camera sensor responses are independent, we show the result of the exist-

ing literature to transform a set of sensor that do not have to hold these properties

to ones that they do. Finally, we explain the problems on assuring a temporal and

spatial constancy of the colour representation and the approach adopted in our case.

3.1 Introduction

Colour constancy is one of the phenomena that human vision system performs when
processing a visual stimulus from a scene of the real world. It is also called colour
adaptation in the psychophysics �eld. It can be de�ned as the ability to perceive the
same colour perception from a given surface even with changes in the illuminant [30].
As an example, suppose the daylight scene of �gure 3.1(a) has been taken with a blue
�lter. The result will be an image like the one in �gure 3.1(b). In both cases the
visual system perceives the top of the woman to be yellow. In fact if we superimpose
the woman's shirt of the second image over the shirt on the �rst image (�gure 3.1(c))
we will perceive it as green. In computer vision, there are many situations where light
changes and so does the stimulus acquired. If the goal of the vision system is to deal
with colour information of the scene, colour constancy is a major issue. A lot of work
has been done and is being done in this subject. There are various approaches to the
problem for di�erent conditions and using di�erent methods. Some of them will be
summarised in the next section.

The work done in this �eld starts from a speci�c model of colour image formation.
In this process there are three main elements, which work together to compose a
colour representation. These are the surface being seen, the light under the surface
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20 COLOUR CONSTANCY FOR INSPECTION PROBLEMS

(a) (b) (c)

Figure 3.1: Colour constancy example. (a) a scene taken with daylight. (b) sim-

ulated blue light of the same scene. In both case the woman's top are perceived as

yellow. (c) this is the original scene mixed with the shirt in the second image. In

fact, the top on the second one is green although the perception is di�erent.

is seen, and the device used to see the surface. The equation that models the colour
formation is

�kx =

Z
w

Lx(�;�)R
k(�) d� k = 1; 2; : : : ; p (3.1)

Lx(�;�) is the spectral power distribution emitted by the surface at a certain location
x, Rk(�) is the spectral sensitivity of the k-th sensor of the receptor, �kx is the response
obtained from the position x on the scene for the sensor k, and w is the visible
spectrum. In the Visual Human System there are three types of sensors and so it
is called a trichromatic model([117]) or Young-Helmholz theory, but there are many
other possibilities. Some animals can see in 4 basic colours whereas others can only
see in 2 or 1 colour. In computational vision p also may vary. It is the case of gray
cameras or multi-spectral band cameras, normally used in remote sensing. As our
purpose is the analysis of colour surfaces we will use the trichromatic model and set
p = 3.

We will consider the dichromatic re
ection model introduced by Shafer [92] to
model the interaction of light with a surface. In short, it states that for a certain
location x, L(�;�) = Ls(�;�) + Lb(�;�), where � de�ne the geometry of the light,
the surface and the sensor. Ls(�;�) corresponds to the specular light emitted by the
surface, and can be omitted if we can guarantee that it will never occur. When using
controlled conditions this is the case, and we will ignore it in our study. In these
conditions such con�guration is called the Lambertian di�usion model. Lb(�;�) is
de�ned as the light that is not absorbed by the body (surface) and will cause a certain
colour stimulus to hit the sensor. It can be divided into two factors:

Lb(�;�) = mb(�)cb(�)
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where mb(�) captures all the geometric information and cb(�) the physical properties
of the light and body. If we use an homogeneous illumination all over the scene, for
practical usage mb(�) can be ignored, and consequently we have cb(�) = I(�)S(�),
where I(�) is the light spectral power distribution and S(�) the surface re
ectance.
At the end, equation 3.1 can be rewritten as

�kx =

Z
w

I(�)Sx(�)R
k(�) d� k = 1; 2; : : : ; p (3.2)

where the colour representation of point x on sensor k is given by the incident light,
I(�), the re
ectance of the surface at this point, Sx(�), and the sensitivity of the k{th
sensor, Rk(�) at every single wavelength.

3.2 Basis of computational colour constancy

We will describe the colour constancy general basis that apply on most methods.
The aim of computational colour constancy is to get a representation of the acquired
stimulus as it has been acquired under a known illuminant. This de�nition does
not include those methods that reach constancy obtaining a representation invariant
to colour and/or intensity light changes. This representation can be quite abstract
without an evident human interpretation. Inspection system are more concerned with
the �rst set of methods as their intention is, usually, to reproduce the same conditions
in the whole inspection process. However, in some restricted situations the second
class could be a good solution and it will be explored in this work later on. The general
approach in both cases is based on Grassman's Laws of additive colour mixture and
they are the basis for most of these methods:

First law: any colour, c, can be matched by a linear combination of three primary
colours if none of those three can be matched by a combination of the other
two,

c = �R + �G + 
B

where R,G and B are the primaries and �, � and 
 are the amount of the
respective stimulus to obtain c. R,G and B do not stand for the usual red, green
and blue camera system. They could be any whereas they ful�l the independence
restriction.

Second law: when mixing two colours, c1 and c2, the result can be matched adding
together the mixtures of the primaries that individually match the two initial
colours,

c3 = c1 + c2 ^

c1 = �1R+ �1G + 
1B ^

c2 = �2R+ �2G + 
2B =) c3 = (�1 + �2)R + (�1 + �2)G + (
1 + 
2)B

This law holds for any number of colours.
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Third law: the colour matching holds under changes on luminance conditions,

�c3 = �c1 + �c2;

that is, when changing the illuminant, all colours will vary proportionally.

These laws are valid when working with an additive colour system, as it is the
Human Vision System and colour cameras under some conditions. A necessary con-
dition for a camera to hold the additive colour mixture properties is to disable any
automatic settings. Specially gamma correction that introduces an exponential fac-
tor, which breaks the linearity properties of the model. The use of the Grassman
model of colour mixing makes highly convenient the use of digital cameras against
the analog ones. The main reason is that most of the frame{grabbers perform colour
manipulation in digitalising the signal, as for example conversions to the PAL system,
etc.

Since Grassman's Laws assure linear properties of colours, colour representation
can be modeled by linear algebra. By these properties, given an acquired stimulus si

under a certain illuminant, and the same stimulus under the illuminant taken as the
canonical one sc, the transform can be written as

sc =Gisi; (3.3)

where bold symbols denote vectors when lowercase and matrices when uppercase.
Both stimulus are trichromatic stimulus and Gi is a full 3�3 matrix representing the
linear transform between the canonical illuminant and the illuminant on the scene.
Many of the methods we will review in this section simplify the use of a full matrix
by a diagonal matrix. It is widely accepted that this assumption is enough for an
approximate solution [38]. Thus the equation 3.3 does not hold the equality,

sc � Disi: (3.4)

When using the 3.3 equation model, methods will be called full linear transform
models (FTM), and when follow equation 3.4 they will be called diagonal transform
models (DTM). The diagonal model was �rst proposed by von Kries as a model for
human adaptation. Although it had been some controversial discussion about its
validity [114], it has been revisited and now is a widely accepted approach [38]. Most
of the colour constancy methods can be viewed as reformulations of the von Kries
model.

The computational approach to colour constancy is usually broken in two pro-
cesses. The �rst one implies to estimate the illuminant information and the second
process to use the precedent process to transform the response of the camera to inde-
pendent illuminant descriptors. The methods di�er on how the illuminant parameters
are extracted and related to an independent illuminant representation. The following
sections will enumerate and brie
y describe some of these methods. This is not an
exhaustive review of colour constancy and many other taxonomies can be done, and
it is based on the work of Barnard [6] . The methods presented are those that we
consider most representative or have been widely used in computer vision.
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3.3 Direct transform based methods

In this section we will describe two methods of colour constancy that work on the
ratios between the observed measures and the canonical descriptors. We call them
direct transform because they are based on a simple processing step to infer the
illuminant.

3.3.1 Grey world

This is considered the simplest approach to the colour constancy problem. It is based
on a calculation of a single description for the whole scene. It assumes that lighting
is uniform all over the scene and uses an statistical descriptor to discount the e�ect
of the illuminant. It assumes a physical model where scenes in real world are grey
in average, what is called the grey world assumption. From this point, the obvious
statistic is the mean of the image for every channel as a descriptor of the illumination
changes. That is, if there is a change in the colour of the light with respect to daylight
(under it the scene should average to grey), the di�erent channel means will be the
correction ratio.

This de�nition does not take into account the luminance, as the grey could be
thought to be from very dark to very light, being all of them di�erent grades of grey.
As an example, if we de�ne our world to be an average grey, we could think the
statistic descriptor as the response to a stimulus of 50% of a pure white. Using the
diagonal model an (r; g; b) response will be transformed to (r=2mr; g=2mg; b=2mb)
where mx is the mean of channel x. The grey world assumption is very restrictive,
even in the case that it holds for a given scene this does not guarantee that it holds
for all regions of the scene. The method will act di�erently when applied to the entire
scene or to its parts.

3.3.2 Retinex method

The main work of this method is presented by Land in [65]. It was initially conceived
as a computational theory of human vision, but it has been applied on computer vision
as well. The method assumes that slight spatial changes in the response are due to
changes in the illumination or noise, whereas large changes correspond to surfaces
changes. The idea is to run random paths from each pixel. When following the paths
the ratio of the responses in each channel is computed. If it is near 1 then it is noise
or light change and is set to 1, if not it remains as it is. The ratios are combined
(multiplied) while the path is followed, obtaining at each step the percentage of light
of the starting point that the current point has for a given channel. If the ratio is
greater than 1 at a given point this point is taken as the start of the path, that is,
the maximum luminance point is selected as reference. The ratios from di�erent path
are average and taken as a descriptor of the pixel. In this way a diagonal model is
being assumed. Another approximation is to take the average of the ratios in the
path. To simplify the process logarithms have been used reducing the problem to a
di�erentiation to follow the path and integration to recover the descriptors. When
considering a uniform illumination taking the maximum of the image is also called
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the white patch algorithm or white world because it is assuming that the light colour
descriptor is the maximum of its channel and the method will work if white is present
in the scene. And, when taking the average it is equivalent to the grey world.

3.4 Gamut based methods

Another kind of methods are those based on the observation of the population of image
pixels and their transformation to a plausible non illuminant dependent distribution.
In other words, all the pixels values of an image at the same time are considered to
be plausible only under a restricted set of illuminants. If the values of all possible
surfaces are known for a speci�c illuminant, a suitable transform between the plau-
sible illuminants to the canonical is calculated. The set of all possible tristimulus
representations for a certain imaging system (camera, scanner, printer, monitor,...) is
called its gamut. When we are acquiring an image its gamut is associated to the scene
illuminant. For example, we will not get strong red response if the light is blue. The
way gamuts are processed and the guess about the best transform is the di�erence
between these methods.

3.4.1 3D gamut

Forsyth was the �rst author introducing a gamut based method in [40] , the idea
behind his method is very intuitive. Once the canonical illuminant is �xed the set of
all possible rgb observations is calculated, this will form the canonical gamut. The
pixel values from an input image acquired under an unknown illuminant form an ap-
proximation of the gamut of this illuminant. Following the colour additivity law it is
not possible to obtain a colour outside the convex hull of the gamut. It permits to
simplify the complexity reducing the gamut to its 3D convex hull. Then all plausible
mappings that make the unknown convex hull gamut polygon to lie inside the canon-
ical are computed and considered. Although working with the convex hull instead of
the complete hull reduces the algorithm complexity, the fact that the transform has
9 freedom degrees (it is an FTM) implies a large number of possibilities. The author
reduces this complexity using a diagonal model. This variation is named CRULE
algorithm. The method has an important weakness; it is based on the assumption
that the light is constant all over the image. When light varies within the image the
results are poor.

3.4.2 2D gamut

The weakness of the above method drove Finlayson to modify the CRULE algorithm
[34]. The idea is to simplify the model transforming the 3D convex gamut to a 2D
convex gamut. The way to do it is with a perspective transform. A point in the 3D
space (r; g; b) is transformed to (r0; g0; 1) = (r=b; g=b; b=b), and the third component is
omitted. With this transform the new 2D space is independent of intensity changes
of the light. He demonstrates that this representation can be used to apply the
CRULE algorithm. From the set of all plausible transforms the one that maximises
the colourfulness of the solution is selected. Other selections, like the mean illuminant
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of all plausible illuminants are considered in other works. This leads to observe some
incongruities in the selected illuminant.

In [32] this work has been revisited reversing the 2D gamut to a 3D gamut over
the plane b = 1 and taking the mean illuminant and its corresponding transform in
the 3D space.

3.4.3 Statistical gamut

The idea of plausible illuminants from the pixels in the image is in the core of a
statistical approach of the gamut{based approach presented in [33]. It follows a voting
mechanism �lling a table with n columns indicating n illuminants and m rows, one
for each descriptor. Each descriptor is a value in the two-dimensional chromaticity
space. In short, a position in the matrix will be set to 1 if the respective chromaticity
coordinate is plausible from the corresponding illuminant, it will be set to 0 otherwise.
Then, each chromaticity point of the image will increase the associate counter of an
illuminant if this observation is possible with the corresponding illuminant. The
illuminant/s with larger number of votes are selected as the plausible illuminants of
the scene.

3.5 Other methods

There are many methods that do not �t in the previous sections, and among them
there is the well{known Maloney{Wandell algorithm. It is important for the way they
approach the colour constancy problem, and it will be presented separately here for
its elegant mathematical development.

Other methods that broach the problem from other perspectives are based on:
Neural Networks [18], image specularity [28], bayesian approaches [14], illuminant
spectra recovery [76], etc.

3.5.1 Maloney-Wandell algorithm

In the work by Maloney and Wandell [72] a linear method with rigourous mathemati-
cal posing was introduced. The main idea is to approximate re
ectance and illuminant
by a linear model of n� 1 and n dimensions respectively, being n the number of sen-
sors. The method search for a transform of the n�1{dimensional space of re
ectance
descriptors to the n{dimensional space of sensor responses. This transform will yield
an hyperplane in the nD space passing through the origin whose orientation will de-
scribe the ambient light. The process is to derive the hyperplane from the responses
of the image to estimate the vector that describes the illuminant and to calculate the
inverse transform from nD to n�1D giving a set of surface descriptors. When applied
to camera sensors, n is 3 and so the surfaces are described in a 2{dimensional space,
which is not suÆcient. Despite its elegance the method does not perform very well
because of this strong assumptions in the model.
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3.6 Invariance methods

In this section a set of invariant techniques are enumerated and brie
y described.
Their purpose is not to perform colour constancy but extract some properties in which
intensity or colour of the light are not considered. Although most of the invariance
methods are not colour constancy methods it is worthy to comment them.

These methods transform the input responses to a new representation in which
some kind of invariance is achieved. The di�erence with the previous approaches is
that their purpose is not to recover the image as seen under controlled circumstances
but assure some useful features.

One of the simplest invariants is chromatic normalisation. Each pixel (r; g; b) of an
image is normalised as: ( r

r+g+b ;
g

r+g+b ;
b

r+g+b ), which is an invariant representation
to changes on the intensity of light.

Some other invariants had been proposed as for example the description of each
pixel using a set of ratios between the signal in each channel and the signal in the
respective channel of a set of neighbour pixels. This is useful when considering ob-
ject recognition because its local invariance to changes on light properties. Another
invariance used in image indexing is the angles de�ned by the covariance between
channels of an image. The Frobenius distance is used to compare to distributions. It
is also invariant to change on colour light [37].

Other works exists that consider invariance to changes on the colour of the light.
One of them is to divide the pixel response in a channel by the mean of its channel
on the image. In fact this is the same as the grey world method. So, it can be seen
as invariant method or a canonical recovery method. This invariance and chromatic
invariance has been merged in an iterative process in [31] and it would be used and
analysed in this work.

The methods presented above are not a complete enumeration of colour constancy
or invariance methods. We only have intended to give a brief review of the most
important ones.

3.7 Adapting the camera system to VonKries the-

ory

In section 3.3 we have introduced the use of the diagonal transform model instead
of the full transform model for its simplicity. Although our aim is to use a DTM,
for real applications where an accurate representation of colour can be important, we
want to assure the colour precision. In order to do this and to avoid computing all
the requirements for a FTM, we will transform our acquisition system to fully hold a
DTM. This approach has been proposed by Finlayson in [35].

The starting point of this work is that for a DTM to suÆce to identify the change
of the illumination it has to ful�lR

w
I i(�)Sq(�)Rc(�)R

w
I i(�)Sp(�)Rc(�)

=

R
w
Ij(�)Sq(�)Rc(�)R

w
Ij(�)Sp(�)Rc(�)

8c = 1 : : : 3: (3.5)

where I i and Ij are two di�erent illuminants, Rc is the sensor sensitivity of the c
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channel, and Sq and Sp are two any surfaces. One way to guarantee that equation
3.5 holds is to construct sensors as narrow-band as possible. The ideal case is to be
delta functions, ie: each sensor is only sensitive to one single wavelength. Instead
of constructing narrow-band sensors, the camera sensor sensitivities can be narrowed
by sharpening the spectral curve. That is the same that sharpening their responses.
This is done by a linear transform that is independent of the illuminants. Therefore,
equation 3.4 becomes

T sc � Di
T si (3.6)

where T is the sharpening transform of the original sensor sensitivities. The method
de�ned in the work minimises an expression over a set of three �xed wavelength
intervals. These intervals have to be set a priori. The problem is how to �x them since
they will vary with each di�erent camera. The advantage of the method used is that it
does not take into account the illuminants and surfaces, only the sensor sensitivities,
and hence it is not data dependent. In his analysis [35], a comparison between the
sensor{based sharpening and the data{based sharpening is done. The conclusion is
that the results from both approaches are nearly identical. From this conclusion we
decide to obtain the sharpening transform using the data-based method. In this way,
no guess should be done. The process starts from the observation of samples viewed
under two di�erent illuminants. One of them is taken as the canonical illuminant, the
images will be transformed as they would be seen under it. Two 3� n matrices are
constructed, Sc and Si. The �rst one represents the sensor responses of n samples
under the canonical illuminant, and the second one the responses of the same samples
under another illuminant. Then, using equation 3.6 we have

T
iSc = Di

T
iSi (3.7)

The equality is true if Di is considered to be the least-square solution, which is
obtained byDi = T iSc[T iSi]+ where A+ is the pseudo-inverse Moore-Penrose inverse
(A+ = A0[AA0]�1). Developing this expression yields to

ScSi = (T i)�1Di
T
i: (3.8)

Since the eigenvector decomposition of equation 3.8 is ScSi = UDU�1 and as Di is
diagonal then T i = U�1.

The task to do is to acquire all the samples under the two illuminants of interest.
The number of samples used in [38] was 462 from the Munsell set of colours. This
is a very tedious task, and needs of the Munsell charts. Another way to deal with
data-based sharpening is to do all the development synthetically. The data of the
Munsell spectra and the illuminants spectra are known. To apply equation 3.2 the
camera sensitivities must be known. Supposing that this is the case, applying the
sharpening will be straightforward.

For most of the cases the dealer does not supply sensor sensitivity spectra. Al-
though it was the case, the system optics will change the sensor speci�cations. This
implies that a method to recover the sensor spectral properties is needed.
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Figure 3.2: Macbeth Color Checker Chart used in sensor recovering.

3.7.1 Sensor sensitivity recovering

Fortunately there are various possibilities to do it, a short review can be found in [6].
The most reliable is the use of monochromators. Such devices can emit light on a very
narrow interval of the visible spectrum. Illuminating a white surface and measuring
the camera response the sensitivities can be recovered. This approach was used by
Vora et al in [107, 106],where they recover the sensors of two digital cameras and prove
their linearity. This method is very accurate when is done carefully. The problem
is that devices capable of generating narrow band light at the desired intervals are
expensive and not readily available. Therefore various authors have attempted to
solve this problem without using this equipment [93, 67, 57, 36, 5]. The starting
point is equation 3.2, but as it is a computational approach based on measured data
we need to rewrite it in the discrete domain as,

�kx =

WX
w=1

I(�w)Sx(�w)R
k(�w); k = 1; 2; 3 (3.9)

that implies to know the information for W wavelengths of the visible spectrum.
Usually, it is enough with W = 31. Equation 3.9 in vector form will be

�kx = (~Lx)
0 ~Rk k = 1; 2; 3 (3.10)

where Lx(w) is the energy emitted by the pixel x at the w-th wavelength.
The general idea is to measure a number of input spectra and its camera response

for each sensor from a set of samples. If �k is the responses vector of the k-th sensor
for m surfaces and L an m�W matrix where each row is the spectral response of the
respective stimulus then the problem reduces to �nd the spectral sensitivity of the
sensor as the vector Rk,

�
k = LRk (3.11)

which can be solved by minimising the RMS error, k�k�LR̂kk2. But if m is large
then the method will be analogous to the monochromator method. The intention is
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Figure 3.3: Recovered camera sensitivities without restrictions. (a) are the results

for a 3CCD Sony XC{003P camera and (b) are the sensor sensitivities for a 12 bits

line scan TVI camera.

to make the process as simple as possible and use as few samples as possible. That
yields L to be rank{de�cient because of its dimensionality. The most used samples are
those from a Macbeth Color Checker Chart in �gure 3.2 [77]. It consists of 24 colour
patches representing 18 natural colours an 6 achromatic stimuli. The test presented
here was done on a digital TVI line scan camera and a 3 CCD Sony XC-003P. The
light used is irrelevant because the data used includes it. The spectral measures were
collected using a PhotoResearch PR-650 spectroradiometer. If we try to recover the
sensitivities using the direct approach the results are those in �gure 3.3, where it is
plotted the spectra for all sensors of the Sony and the TVI camera respectively. Is it
obvious that there not exists a camera with such sensors. The expression minimised
is the RMS error of the following set of linear equations:

0
BBB@

�k1
�k2
...
�k24

1
CCCA =

0
BBB@

I(�1)S1(�1) I(�2)S1(�2) � � � I(�W )S1(�W )
I(�1)S2(�1) I(�2)S2(�2) � � � I(�W )S2(�W )

...
... � � �

...
I(�1)S24(�1) I(�2)S24(�2)� � � I(�W )S24(�W )

1
CCCA
0
BBB@

R̂k(�1)

R̂k(�2)
...

R̂k(�K)

1
CCCA
(3.12)

As it becomes under{determined (W > 24) the best �tting can be reached by a wide
range of con�gurations. What the methods do is to impose some constraints on the
solution R̂k of equations 3.12, in order to improve the solution to a more realistic one.
In our work we have used the constraints imposed by by Finalyson et al. in [36], for
being one of the last works on this subject when the problem was set up, and for its
simplicity.

The simplicity of this method relies on the fact that all the restrictions made can
be included in the minimisation problem using quadratic programming which solves
the equation 3.12 subject to a set of q linear constraints:
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a1;1R
i(�1)+ � � �+a1;KR

i(�W ) � b1
a2;1R

i(�1)+ � � �+a2;KR
i(�W ) � b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aq;1R

i(�1)+ � � �+aq;KR
i(�W ) � bq

The di�erent constraints imposed are: positivity, modality and smoothness. Pos-
itivity states that it is not feasible to get a sensor with negative response. The
behaviour of sensors is always additive, never subtractive. Modality comes from the
fact that most of the sensors tend to be unimodal, i.e.: there is a unique peak in the
spectral response. And smoothness from the fact that there are no abrupt transitions
in the spectrum as is the case in �gure 3.3. In the following lines we summarise the
constraints introduced in each case:

Positivity:

Rk(�w) � 0 w = 1; : : : ;W (3.13)

Modality: If we want the peak of the sensitivity to be in the v{th wavelength then
the constraints are:

Rk(�v+1) � Rk(�v) v = 1; : : : ; w � 1 (3.14)

Rk(�v+1) � Rk(�v) v = w; : : : ;W � 1 (3.15)

These constraints should be tested for all plausible v's. In our experiments
we divide the range of spectral response in as many subranges as number of
sensors. Each sensor is imposed to be unimodal with the peak in one subrange.
That is, we approach the k sensor W=p times (p is the number of sensors) with
di�erent locations of the unimodal peak. From these W=p approaches, the one
with minimum error is selected.

Smoothness: To achieve the smooth sensitivity curves Finlayson proposes to ap-
proximate the sensitivities to a set of Fourier basis:

B1 = c; B2 = sin(x); B3 = cos(x); B4 = sin(2x); B5 = cos(2x); � � �

and combining them following the equation:

Ri = �1B1 + �2B2 + : : :+ �lBl

taking c an arbitrary constant (i.e: c = 1) and x = (� � �min)�=((�max �
�min)=2), for � = �min � � ��max. Then the problem is to �nd the vector �k that
minimises

kLB�k � �kk2
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Figure 3.4: Recovered camera sensitivities with positivity, modality and smoothness

constraints. (a) are the results for a 3CCD Sony XC{003P camera and (b) are the

sensor sensitivities for a 12 bits line scan TVI camera.

the matrix equation involved in this minimisation and equivalent under this
formulation to equation 3.3 is:0
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To impose positivity and unimodality to this approach the constrains have to
be reformulated, and we can write

Rk(�v) = �1B1(�v) + �2B2(�v) + : : :+ �lBl(�v)

it follows that the unimodality constraints 3.14 and 3.15 are, repectively:

�1(B1(�v)� B1(�v+1)) + : : :+ �l(Bl(�v)�Bl(�v+1)) � 0 v = 1; : : : ; w � 1
�1(B1(�v+1)�B1(�v)) + : : :+ �l(Bl(�v+1)�Bl(�v)) � 0 v = w; : : : ;W � 1

and the same for positivity:

Rk(�v) � 0 � ��1B1(�v)� �2B2(�v)� : : :� �lBl(�v) � 0 v = 1; : : : ;W

With this method the sensor of two cameras were recovered. The spectral sensi-
tivities are shown in �gure 3.4, at the left is the analog 3CCD matrix camera, and
at the right the digital line scan camera. In the case of the matrix camera we do not
have enough information and we can not validate the results. We do not know the
theoretic spectral distribution of the TVI camera but we know the spectral transmit-
tance of the prism used to split the light to the sensors. The results obtained are
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Table 3.1: The relative error on recovering the sensors of two cameras: Sony XC-

003P and TVI line scan camera.

Mean relative error of samples

Camera red sensor green sensor blue sensor

TVI 0.0244 0.0271 0.0310

Sony 0.0570 0.0581 0.0580

congruent with them. Moreover, to test the level of error we get the mean relative
error for each sensor k,

Pn

j=1

�
LjR

k��k(j)
�k(j)

�
n

(3.16)

where Lj denotes the j{th row of the matrix L and n the number of samples used.
The results are presented in table 3.1 for both cameras. The error we have in the
worst case is of 3% in the line scan camera and 5.8% for the matrix camera. Although
it is not perfect, they are quite good results.

3.8 Taking Spectral Sharpening into practice

To take spectral sharpening into practice without having to acquire 462 samples (as
it is suggested in [35]) the solution is to simulate the process. From equation 3.2 we
need to know the spectral power distribution of the light, the spectral re
ectance of
surfaces and the spectral sensitivities of sensors. Now, we know all of them. Surfaces
and light are tabulated and sensors are just recovered. It is immediate to apply
the above equation 3.8 giving us a matrix Si for any known illuminant i. Because
data{based sharpening is conceived as a method of validation of the sensor{based
sharpening some extra considerations have to be done. The method is applied from
a canonical illuminant against another one. To test its validity it should be done
for various pairs of illuminants maintaining the canonical one. When it is done the
resulting transforms, although they are nearly identical they are not the same and
some kind of fusion among them is needed. Let us examine this last point a little bit
later.

The process will be done only for the line scan camera since the matrix camera
is not suitable for accurate colour inspection as explained in section 2.4. The set of
samples are the 1269 ones from the Munsell Book of Color matte samples [22]. The
illuminants used are the CIE standards: A, B, C, D55, D65 and D75. Illuminant A
relates to a tungsten lamp at 2856ÆK and the others to various approximations of the
daylight [117]. We took illuminant A as the canonic and we calculated the inverse of
the eigenvectors for every possible pair SASX where X = B;C;D55; D65; D75. All
transform matrices are compiled in table 3.2. As mentioned previously the results
are nearly identical. However, we need to extract only one transform. The spectral
sharpening algorithm does not take the data-based sharpening as the way to obtain
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Table 3.2: The 3 � 3 sharpening transforms for the TVI line scan camera and for

all the considered illuminants, taking A as the canonic.

A vs B

0
@ 1:014 0:138 0:020

0:081 1:030 0:048
�0:033 0:096 1:005

1
A A vs C

0
@ 1:015 0:129 0:016

0:085 1:029 0:041
�0:029 0:105 1:005

1
A

A vs D55

0
@ 1:014 0:124 0:019

0:084 1:028 0:052
�0:032 0:098 1:006

1
A A vs D65

0
@ 1:014 0:112 0:016

0:087 1:028 0:047
�0:029 0:106 1:006

1
A

A vs D75

0
@ 1:014 0:117 0:015

0:088 1:028 0:042
�0:027 0:112 1:005

1
A
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Figure 3.5: Modi�ed camera sensor sensitivity to improve DTM. All transform are

similar but not identical. The dotted line is the best �t to all transforms..
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it. Our proposal is to extract the transform that best �ts all the above ones. To
obtain the new spectral sensitivities, given an illuminant X , we only need to apply
the linear transform T X to the sensor sensitivities as in equation 3.6,

(RX )0 = T XR0

where the k-th column of R is the sensitivity of k-th sensor, andRX the new spectral
sensitivities. As an example �gure 3.5 shows the results of the reconstruction of
the middle spectrum channel. The coloured solid lines are the applied transforms.
Now, to obtain the �nal transform we will minimise the RMS error of the needed
transform from the original sensitivities to the mean taken at each wavelengthR, i.e:
to minimise

kR�RT k2

At the end the resulting transform is:

T =

0
@ 1:012 0:123 0:017

0:092 1:018 0:047
�0:031 0:109 0:996

1
A (3.17)

We will discuss the e�ect of the sharpening transform in the �nal system at the
end of the next section.

3.9 Colour constancy for on{line inspection

In chapter 2 we de�ned a hardware system for accurate colour vision inspection, but
some computational e�orts should be dedicated to assure stable colour acquisition.
It is specially important when the underlying application relies on past measures.
This is the case of many industrial processes that maintain a catalog (or they should
do) of their production and the current output is related to it. If the system can
not reproduce the initial conditions then this reference to the past is not possible.
There are several factors that can make acquisition to di�er from time to time. As
an example: the aging of the �lters (if used), the soiling of the optics and lighting
system, small changes on the relative positioning of the triad sample, light and sensor,
etc. All of them can be solved with a periodical maintenance protocol that any
industrial computer vision application must de�ne. Apart from these, there are some
troublesomeness when handling light stability, and they can not be settled by a human
operator:

Non-homogeneous spatial illumination: Due to the use of non homogeneous �l-
ters (when needed) or to optic e�ects the response on the image varies between
locations. The optics introduce an attenuation of the signal when moving around
the image due to geometric e�ects, principally vignetting and a fall-o� propor-
tional to the fourth power of the cosine of the o� axis angle [56]. The vignetting
e�ect is stressed when working with high apertures. These e�ects will always
appear when considering a computer vision system, with the consequent out-
come to make diÆcult to get an homogeneous illumination through the acquired
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Figure 3.6: Light spatial variation: it shows the fall{o� at the edges of the image

due to the cosine{4th law.

image. As we are centred on the use of line scan cameras (see section 2.4) the
e�ect is the same for all the lines of the image, because it is formed joining
lines coming from a single line CCD sensor. An example of a particular con-
�guration of this system and to show the spatial inhomogeneity �gure 3.6 plots
the intensity pro�le of a random line from an constant colour surface. Under
this circumstance no comparison can be made between di�erent regions of the
image, thus testing spatial coherence or methods that apply all over the image
to extract information are not possible, or at least very weak.

Time varying illumination: This is a normal problem on any acquisition system
where a high degree of stability is required in order to do a colour based inspec-
tion. The aging of lamps changes the equivalent colour temperature, and so do
the acquired images. Under this circumstance absolute colour measures (and in
some degree illuminance measures) are not reliable if it is not corrected.

Both cases di�er from its causes and its consequences, but both of them can be
analysed from colour constancy. In the �rst case we want all positions of the image
to be referenced to a known canonical light. In the second case this is also true but
at any time. Our interest is to achieve, at the same time, spatial and time stability.

We will start from the results in section 3.8 applying the matrix 3.17 to all the
image pixels. In this way we can rely on algorithms performing a DTM.

3.9.1 Merging spatial and temporal colour constancy

In the course of our work di�erent colour problems have come to us. All of them
needed to treat the colour constancy problem and di�erent approaches have been
developed that helped us to deal with it.

Firstly we will explain the way we have broached the problem with a surface
inspection problem in mind. Afterwards we present what it was the �rs attempt to
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get an illuminant invariant representation of the image. Although it is not useful for
generic surface inspection it demonstrates good capabilities to solve the variability
conditions when only chromatic segmentation is needed.

Diagonal transform approach

We will now assume that diagonal transformmodel suÆces to cope with the problem of
colour constancy. Afterward, we will add the sharpening transform we have computed
in the previous section. Then for the moment we will assume the use of a DTM as
being absolutely reliable.

The diagonal matrix has been computed by using a constant colour pattern sample,
C that is acquired periodically. This forms a set wt of reference images, where t stands
for the time they are acquired.

As we have mentioned above, we need to compute space and time corrections. We
will do these two corrections in separate steps:

1. The �rst step is to correct the spatial distortions of C. The distortions, due
mainly to optic e�ects and uneven line light, can be modeled by a set of diagonal
transforms fSxg, that is, one diagonal 3 � 3 matrix for each x position along
the x axis, where the spatial variation occurs. For each triad of photo{sensors
(photogate) of the CCD we will calculate the corresponding DTM.

2. The second step is to correct light variations due to time. They will be corrected
in a similar way. We calculate another set of diagonal transforms, fTti

x g, which
models the changes at time ti with respect to instant t0, resulting in a temporal
DTM.

Now, we can attack the problem separately, i.e: to de�ne fSxg and fT
ti
x g, and

then we will merge both sets in a single set of DTM.
In order to extract the diagonal transforms fSxg, we �x a canonical colour de-

scriptor of C, wc, which is the rgb vector that will represent the canonical colour of
the reference pattern, C. Its value will be derived from the �rst acquired reference
pattern at time t0, denoted as wt0 . We want to transform each triplet wt0

x to the
canonical descriptor, and use this transform for the subsequent images.

Changes in colour representation can be due to intensity or chromatic changes on
the illuminant. The former is constant for all channels and the latter can vary for
each channel. In a line scan camera all the pixels on the same column came from the
same spatial position, that is all of them have the same illumination conditions. For
a given column x, these conditions are de�ned by a constant sx representing intensity
changes and a matrix, Cx, for the chromatic changes.

Considering this separate model of illuminant changes we can de�ne wc as follows:

wc = st0x C
t0
x w

t0
x ;

where wt0
x is the rgb vector at position x of the white reference image, as well as,

sx and Ct0
x represent the shading factor and the diagonal light colour transform,

respectively, for the x image position. We have to recall we are assuming a speci�c
transformation for each image column, given that we are working with a 3CCD line
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scan sensor. As we do not need to know sx and Ct0
x separately we can rewrite the

expression as:
wc = Sxw

t0
x

and, from it, it follows that:

(Sx)kk =
(wc)k

(wt0
x )k

8k = 1 : : : 3 ; (3.18)

where (Sx)kk is the lighting and colour correcting factor for the sensor k and (wt0
x )k

is the k channel value of the x pixel on the initial reference image at position x. At
this point, wc has not been de�ned yet. As our objective is to have all images in
terms of a canonical descriptor, and which is the descriptor is not relevant, we choose
it as the mean value on each sensor:

(wc)k =
1

N

NX
x=1

(wt0
x )k : (3.19)

Substituting equation 3.19 in 3.18, we obtain the set of spatial DTM fSxg. The
following step is to compute the diagonal transforms fTti

x g. Doing the same reasoning
as in the previous step, that is, assuming the same lighting model we can write

wc
x = stixC

ti
xw

ti
x :

In this case the descriptors we want to refer to are the rgb values of the reference
pattern C at time t0. We are transforming the outputs of the camera to those that
would be obtained at a reference time. As we are not doing spatial correction, the
transform is applied to each individual element of the reference array. Because wt0

is the �rst known output from the camera, it will be taken as the reference time. We
can rewrite the expression in a compact style as:

wt0
x = Tti

xw
ti
x ;

and for each channel, k, of the image we have

(Tti
x )kk =

(wt0
x )k

(wti
x )k

:

Now what remains is to extract a single set of diagonal transforms from the spatial
set and the temporal set, Sx and Tti

x respectively. The process is depicted in the
following schema

Sx
wc  � wt0

x

SxT
ti
x-

x?? Tti
x

wti
x

Finally, what we need to do is to combine both transformations on the acquired image.
Given the rgb vector px from the position x of an image taken at an instant t where
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(a)

(b)

Figure 3.7: Test of the DTM colour correction approach. (a) are the original

image, the cluster image of pixels belonging to class 1, and the cluster image of pixels

belonging to class 2 when no correction is performed. (b) is the same con�guration

but using the spatio{temporal DTM.

ti < t < tj , being ti and tj the times when two consecutive white reference images
have been taken, we can express the canonical descriptor of px as

pcx = SxT
ti
x px ; (3.20)

being pcx the descriptor vector of px that is illuminant independent. The �nal set of
diagonal transforms fDti

x g are D
ti
x = SxT

ti
x , thus

(Dti
x )kk =

(wc)k

(wt0
x )k

(wt0
x )k

(wti
x )k

=
(wc)k

(wti
x )k

: (3.21)

As a test we used a sample of a ceramic tile with a random isotropic texture.
Once the correction is done we apply a k{means clustering algorithm with k = 2 to
get two di�erent images. Brie
y, this algorithm groups pixels by its colour similarity,
it will be explained later in section 5.2. Since the texture is randomly distributed
it is supposed to have the same amount of a certain colour in each column of the
image. If the colour correction is correct the segmented images should be spatially
homogeneous. The results on �gure 3.7 con�rm that point. The top row of the �gure
presents the origianl image without any correction, and the corresponding segments
of two di�erent colours. In both segments we can appreciate the e�ects of the spatial
non{homogeneity on the segmentation. These images are very conclusive, but it can
be seen more intuitively in �gure 3.8. Each graphic plots the percentage of pixels in the
respective column belonging to the �rst or second segment. Because of the properties
of the texture, all columns have similar amounts of particles of each colour. Thus,
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Figure 3.8: DTM colour correction. The image is segmented in two clusters and the

cumulative pro�le for each cluster is computed ((a) and (b)). The red lines are the

results for the uncorrected image and the black line are the colour corrected results.

the resulting pro�le should be almost 
at except for small variations. If this pro�le
is not nearly constant is due to non uniformity of the light and optic system, which
correspond to di�erent colours along the line sensor. In (a) and (b) the results of
the cumulative pro�les for both segments respectively are plotted when applying de
DTM approach in black, and without it in red. It is clear that the process is a must.
Temporal stability is also tested and the pro�les obtained are practically the same.

Up to the moment no sharpening transform has been applied. The last step is to
extent the colour correction to the sharpened responses of the camera as it has been
explained in section 3.8. To do this the rgb outputs from the camera are multiplied
by the transform T in equation 3.17.

We have measured the di�erence between the colour correction with and without
this sensor sharpening for a line scan camera. The error between both transforms is

Ek =j IkD � IDT
k j

where k is the channel being analysed, IkD is the corrected image using the diagonal
transform model, IDT

k denotes the correction applying Spectral Sharpening. The Ek

means were 0.13%, 0.11% and 0.06% in the red, green and blue channels respectively
for a set of 274 images with di�erent colour distributions. The changes in illuminant
are not dramatic but are the real conditions in a industrial inspection problem. The
standard deviations were 0.01%, 0.009% and 0.005% that means that the obtained
coeÆcients are very stable. These small di�erences evidence the good properties for
colour constancy of the camera sensitivities, which are quite narrow band.

Colour normalisation approach

This approach is based on the change of representation of the colour space, eliminat-
ing the information that is not referring to intensity and colour of light. This is a
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(a)

(b)

Figure 3.9: Test of the column comprehensive normalisation. (a) are the original

image, the cluster image of pixels belonging to class 1, and the cluster image of pixels

belonging to class 2 when applying the original method. (b) is the same con�guration

but using the modi�ed version. The second case has no agglomerative areas.

work based on the Comprehensive Normalisation of Finlayson presented in [31]. The
comprehensive colour normalisation is an iterative algorithm, which tries to remove
shading and light colour, successively. One of the assumption of this normalisation
is that light colour is constant all over the scene, thus, given an image of N �M
pixels, represented as a NM � 3 matrix, I, where rows are rgb values of a pixel, the
normalisation is computed by considering an iterative process

I0t+1 = DsI0tD
c ; (3.22)

where Ds is a NM �NM diagonal matrix that represents lighting geometry of the
image, and Dc is a 3� 3 diagonal matrix assuming a diagonal model for the colour of
the illuminant. The iterative normalisation tries to remove the factors introduced by
Ds and Dc, by transforming the image to its chromatic coordinates, and �xing the
magnitude of the image channels, respectively.

Given that, we can not assume that the colour light is exactly the same all over
the image, we have introduced a modi�ed version of this algorithm. As we have
already commented, the N �M images from a line scan camera are formed from a
3CCD sensor array of length M , then all pixels of the same column come from the
same sensor and the same point light source. We made use of this fact to modify the
algorithm. Instead of normalising the entire image, it is split into M sub{images, one
for each column. These images are separately normalised and merged again.

This column-comprehensive normalisation allows avoiding spatial illuminant vari-
ations that can be important to get a good starting point for an inspection system.
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Figure 3.10: Colour normalisation correction. The image is segmented in two

clusters and the cumulative pro�le for each cluster is computed ((a) and (b)). The

red lines are the results for the Comprehensive Normalisation and the black line are

the modi�ed version of the colour normalisation.

However, it presents some problems on speci�c applications where the lightness is
an important cue for the inspection. Comprehensive colour normalisation removes
lightness reducing the image to its chromatic information. Those applications that
are concerned to relative chromatic content are candidates to use this approximation.
A variation of this approach has been used to calibrate colour acquisition in a real in-
spection environment [104, 9, 8]. But, in most cases this is not enough, and lightness
should be corrected together with chromatic information.

We used the same test to compare the results from the original Comprehensive
Normalisation and the modi�cation that we suggest. Figure 3.9(a) is the result of
applying this process with the original comprehensive normalisation, at the left the
original image and at the middle and right the masks of the cluster images. The real
values are not shown because the nature of the normalisation is not intended to give
a visually interpretable space. In �gure 3.9(b) the same process is applied with the
modi�ed version of the colour normalisation. It can be perceived that the second case
results in a more distributed segmentation.

Figure 3.10 shows the results for the two segments of the example. It is the
comparison between colour normalisation and the proposed variation. Although the
images depicted in �g. 3.9 are visually very similar, there exist spatial variation
when using the original form of the Comprenhensive Normalization. The column
normalisation comes to be very stable.

3.10 Discussion

We have made a concise introduction to computational colour constancy methods,
with the basis of colour formation that explains most of the algorithms intended for
this purpose.
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An obvious and important conclusion of this chapter is that one of the key factors
to succeed in colour inspection based on computer vision techniques, is the need of
some kind of colour correction.

We have de�ned a colour constancy method adapted to a line scan camera. The
method computes a linear transform that combines both spatial and temporal colour
variations. It is based on a diagonal model improved by a linear sensor modi�cation.
When applying sensor sharpening to the line scan camera used in this work, we
realised that it presents very good sharpening properties on its sensors.

As a lateral contribution, we have also modi�ed an existing method of chromatic
invariance that could work in industrial vision and treats both spatial and temporal
variations at the same time.


