
Chapter 3

Recognition based on segmentation

This chapter adresses the problem of structural texture recognition based on the
segmentation of its primitives or textons. In many cases, textures can be classi�ed
taking the images as a whole, that is, computing image features such as the classical
co-ocurrence matrices. However, structural textures (those exhibiting a more or less
regular pattern of primitives) can be analyzed by computing descriptive measures of
their individual primitive elements, like shape features, spatial, size and grey level or
colour distributions.

This is the approach taken here, and it is illustrated with a practical problem,
namely the recognition of marble samples from ornamental stones and statues of the
Roman period. It is a �rst approach to the classi�cation problem for those textured
images based on a structural point of view. We want to classify a marble sample in a
similar way as the expert works but using image processing techniques. Microscopy
marble images are textured images where grains correspond to the structural elements
(see Fig. 3.2). These grains observed globally as a structural texture permit to identify
the provenance quarry of a marble sample. Experts can distinguish among several
quarries by the size, shape and relations among the grains of a marble sample viewed
through a petrographical microscope.

To study the shape of the grains, �rstly we need to partition the image in those
grains. This preliminary grain segmentation used later by an expert for classi�cation
purposes is the main contribution of this chapter. Later, a classi�cation of a sample in
one of those quarries can be done studying the morphology of grains and the topolog-
ical relation among them. But, being the classi�cation fully application-dependend
(and unrelated to the wavelet transform), we consider it a secondary issue.

Wavelets, the connecting theme of the whole dissertation, are introduced as an
auxiliary tool in this process and is not related directly to the classi�cation process
as in next chapter, but it was our �rst contact to this vast �eld. Here, wavelets
are introduced as a �ltering step necessary to prevent an excessive oversegmentation.
They improve previous results obtained with mathematical morphology techniques.
These two �ltering strategies, mathematical morphology and wavelet transform, are
compared in our previous works [60, 61]. Therefore, the main focus is on segmentation
of textons and their statistical classi�cation based on simple mesures on them.
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34 RECOGNITION BASED ON SEGMENTATION

3.1 Introduction

The method we present is part of a more general project about the determination of
geographical origin of ornamental stones used in the Roman period. The �nal goal is
to classify a marble sample into one of several quarries to contribute to the knowledge
of the trading routes from that period. Provenance identi�cation is important in
discovering exchanges between populations, dating artifacts, and identifying forgeries
and copies.

Marble recognition has been performed by means of techniques based on physical,
chemical and visual properties of samples [40], such as the analysis of di�erent element
traces, stable isotopes, X-ray spectroscopy and di�raction, distribution and size of
pores, etc. Methods based on visual features are liable to be automated by digital
image analysis [56, 3]. This usually represents a higher speed of classi�cation and
greater 
exibility of the implementation at a relatively low cost.

The visual recognition of marble samples is carried out studying thin marble sec-
tions viewed through a petrographical microscope. It takes into account the shape,
size and spatial distribution of grains, factors related to the marble petrogenesis. In
Fig. 3.2 we can see ten samples of microscopic images of marble used in this work.
Visually, it is easy to dicern some classes; for example, Carrara samples are recognized
by the regular shape and uniform size of their little grains, whereas Paros samples
show two dominant di�erent sizes, Almad�en has macles in abundance, and the con-
tours of grains in Naxos are irregular, etc. All these features related to the visual
properties of grains are used for skilled professionals to classify samples.

We have studied samples of ten quarries; Section 3.2 describes these samples and
how they were acquired by our system composed of a microscope and a camera. We
take pro�t of the optical properties of this kind of material observed throught the
micorscope to re�ne the segmentation results. Each grain in a thin marble section
has its own preferred direction, usually di�erent from those of neighbouring grains.
Therefore, when we change the angle between the analyzer and polarizer in a pet-
rographical microscope, each grain exhibits a di�erent and characteristic pattern of
intensity variation of incident light transmission. This is due to the response of these
materials to polarized light, and this is explained in Section 3.3. An expert uses those
properties in order to distinguish the grains, and so does our method.

An overview of the segmentation process is represented in Fig. 3.1, which sum-
marizes the 
ow of data and the important steps from the acquisition to the �nal
segmentation. First of all, we capture an image without polarizer, besides we take
two sequences of images, each sequence corresponding to a �xed polarizer position.
Thus, by varying the analyzer angle, we obtain the images for each sequence. Next,
we perform photometric and geometric corrections to images in order to process later
all these images (Section 3.4). At this point, we also calculate two parameters that
are related to the preferred direction at each point. They are the amplitude and
phase of the sinusoidal intensity pattern that exhibits each point within a grain and
are computed from the two sequences of polarization images (Section 3.4.4). To start
the segmentation process, we perform a �ltering step to reduce the number of re-
gions obtained (Section 3.6). We propose two solutions to this step. The �rst one is
based on mathematical morphological transformations, and was inspired by the fact
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Figure 3.1: Scheme of the segmentation method.

that the �nal segmentation is performed by a watershed transformation which is a
mathematical morphological transformation. Later, we studied the �eld of wavelets
and tried to adapt some of these techniques to our problems, and so we began by
solving this �ltering step. Using this approach, we get better results than simply
adapting traditional non-linear �ltering schemes in the literature based on wavelets.
Our method does a wavelet decomposition of the non-polarized image and reconstruct
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Figure 3.2: Samples of petrographical microscopic images of marbles of di�erent

quarries. From top to bottom and from left to right: Aphrodisias, Almad�en, Afyon,

Carrara, Estremoz, Naxos, Paros, Pentelikon, Proconneso, Saint-B�eat.

it but just with a subset of the detail coeÆcients. Thus, with any of the two methods,
we achieve a smooth image suitable to be oversegmented by means of a watershed
transform (Section 3.5). Next, in Section 3.7, regions belonging to the same grain
are merged according to a similarity measure depending on the amplitude and phase;
grains located inside other grains have been removed from the merged image. In
Section 3.8, we show and discuss the results obtained in the segmentation. In Section
3.9, we point out some properties useful for the classi�cation of samples, and �nally
we �nish with some conclusions in Section 3.11.

Figure 3.1 shows graphically the global process previous to the classi�cation. The
left column of the process with the amplitude and phase calculation is mainly devoted
to re�ne results obtained in the segmentation step. The right part works with a
simple image, and can be extended easily to other similar segmentation problems not
restricted to the microscopic �eld as we explain in Section 3.10.

3.2 Material

We have studied samples of marbles coming from the following quarries: Carrara (from
Italy); Paros, Pentelikon, Naxos (from Greece); Proconnesos, Aphrodisias, Afyon
(from Turkey); Almad�en (from Spain); Saint-B�eat (from France) and Estremoz (from
Portugal). Figure 3.2 shows one sample image of each one of these quarries. They
have been sliced up from pieces of sculptures or building elements belonging to the
Greek and Roman periods. We �nd in them a broad range of grain shapes and sizes,
although all of them are made of calcite, an uniaxial crystal1.

Samples are 3 cm long, 2 cm wide and 30 to 40 �m thick. To examine them, we
have used a petrographical microscope Leitz Ortolux. Its analyzer has a precision of

1anisotropic media where refraction index varies according to the vibration direction of the light

into the crystal [10].
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0.1 degrees, and the polarizer can be put into two positions, 0 and 90 degrees. We
have chosen for each sample the objective lens that, keeping a reasonable grain size,
visualized a suÆcient number of grains for classi�cation purposes. Digital images were
directly captured from the petrographical microscope with a black and white CCD
camera connected to an acquisition Matrox board. Images resolution is 512 � 512
pixels and 256 grey levels.

Our method has been implemented as a set of independent functions, each one
devoted to a speci�c task: correction, segmentation, classi�cation. These functions
are not stand-alone because they are integrated in ViLi, an image processing and
analysis environment conceived by the Computer Vision Center of the Universitat
Aut�onoma de Barcelona. ViLi image processing functions are programmed in C or
Lisp. Both kind of functions can be then called from the Lisp interpreter. Complex
functions, usually involving pixel-level operations, are programmed in C. Thus, we
take advantage of the speed and the control and data structures which this language
o�ers. On top of them, we write Lisp functions that play the role of main programs,
but are much easier to build and debug than C programs. ViLi includes more than two
hundred C and Lisp image processing functions, which can be invoked from any Lisp
or C ViLi program. This 
exibility permits to build complex software environments
based on ViLi [81] with a fast transition from test coding to �nal program.

3.3 Petrographical model of marble images

The amount of intensity that passes through an uniaxial crystal placed between two
nicols, as Fig. 3.3 shows, is given by the Johannsen's equation Eq. (3.1) [102]. It
relates the incident intensity of light Ii(�) that illuminates a sample to the intensity
transmitted (observed) through a petrographical microscope Io(�):

Io(�) = Ii(�)

�
cos2(�)� sin(2�) sin(2(� � �)) sin2

�
�
�

�

��
; (3.1)

being

� the light wavelength.

� the di�erence in trajectory between the fast and slow waves as the light goes
through the crystal.

� the angle between the analyzer and polarizer preferred directions.

� the angle between the polarizer and the crystal preferred directions.

Therefore, � and � are characteristics of each grain. If the light source emits in a
spectral range � then the relation between the incident and transmitted intensities,
Ii and Io respectively, is

Io = Ii cos
2(�) � sin(2�) sin(2� � 2�)

Z
�

Ii(�) sin
2

�
�
�

�

�
d� : (3.2)

� is constant inside each grain. Thus, Eq. (3.2) can be simpli�ed by de�ningZ
�

Ii(�) sin
2

�
�
�

�

�
d� = KIi ;
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Figure 3.3: Preferred directions in a petrographical microscope.

where 0 � K � 1. Note at this point that the value of K and � are unknown at
each grain. However, our goal is not to calculate them but to investigate how they
a�ect the transmitted intensity depending on the angle � between the analyzer and
the polarizer, which we can control. Let us rewrite Eq. (3.2) by grouping the terms
depending on �:

Io = Ii

�
cos2(�) �K sin(2�) sin(2� � 2�)

�
=
Ii

2

�
1 +A cos(2�) +B sin(2�)

�
;

where A = 1 � 2K sin2(2�) and B = K sin(4�). This expression gets simpler if we
de�ne two new variables C =

p
A2 +B2 and D = arctan(B=A) that are the radius

and the angle of (A;B) expressed in polar form:

Io =
Ii

2
(1 + C cos(2��D)) : (3.3)

Hence, Io is a sinusoidal function of amplitude M = C
Ii

2
and phase D, both val-

ues being function of K and � which are characteristic of each grain. Thus, the
computation of M and D for each pixel will greatly help us to di�erentiate adjacent
grains.

However, there is still one problem concerning the computation of D. If we �x the
polarizer position, we observe that the transmitted intensity at some grains is quite
low and does not change signi�cantly when we modify the analyzer angle (Fig. 3.4).
The reason is that in those grains the amplitude M is very small. Therefore, the
phase D computed from the intensities Io(�) will not be reliable because of the low
signal-to-noise ratio (see Section 3.4.4). In order to overcome this problem we acquire
a second sequence of images but at a di�erent polarizer angle. Let us see which one
is the most suitable.
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Figure 3.4: Intensity behaviour at di�erent points in a sequence where the polarizer

angle varies. We have also represented function M cos(2� � D), with M and D

estimated from F (1), the �rst harmonic.

M is a function of K and � . As we can not change K, we shall look for the value
of � which maximizes M :

d(M2)

d�
= K(K � 1) sin(4�) = 0 :

Extrema are found at � = �
4 k and maxima at � = �

2 k; k 2 N. Thus, by taking
two sequences of images with their polarizer angle 45 degrees apart, i.e. 0Æ and
45Æ, we guarantee a high amplitude and a reliable phase for each grain, at least in
one of the two sequences. Finally, although there are a good agreement between the
sinusoidal behaviour predicted in Eq. (3.3) and the data, as we see in Fig. 3.4, there is
a slight di�erence on the constant term but unimportant in the phase and amplitude
computation.

3.4 Image samples and preprocessing stage

3.4.1 Acquisition

According to the former image formation model explained in Section 3.3, for each
zone of a marble sample that we want to segment, we capture the following images:

� An image without analyzer nor polarizer, Is .

� A background image, taken without any sample, Ib .
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� A sequence of N images fI0(�k)g; k = 0 : : : N � 1 with the polarizer at 0Æ and
the analyzer at di�erent, equally spaced positions �k .

� A second sequence fI45(�k)g; k = 0 : : :N � 1 with the polarizer at 45Æ and the
same positions for the analyzer as the previous case.

The two �rst images are used to obtain a preliminary segmentation and the two
other sets try to re�ne this segmentation. Figure 3.1 shows all these images at the
top of the scheme as inputs to the global process.

3.4.2 Photometric correction

Lighting of Is is not homogeneous, as can be seen in the background image Ib of Fig.
3.6b. Microscope optics can also introduce some lesser photometric distortions. We
must correct Is to make sure that the transformations we shall apply on it will be spa-
tially invariant, that is, they will have the same e�ect everywhere. The non-polarized
and background images can be modeled as transparent matters with a response to
the light ruled by some transmittance factors (see Fig. 3.5).

background

( )Tb

I

Is
Ib

I

sample
( )Ts

Figure 3.5: Intensity formation model based on the transmitance of the samples.

Therefore, intensities images represent:

Is = I Tb Ts (3.4)

Ib = I Tb ;

where I represents an ideal, completely homogeneous incident lighting, Ts is the
sample transmittance and Tb the background and microscope optics transmittance,
to which we transfer all the inhomogeneity defects of the real lighting [16]. The image
we are interested in is just the sample transmittance Ts = Is=Ib. In practice, in
order to accelerate computations, we shall work with a 256 levels (one byte/pixel)
quantization of Ts (Fig. 3.6c) instead of its 
oating point version.

3.4.3 Geometric correction

A second problem we have come across is that images from the sequences exhibit a
slight displacement (up to 6 pixels) according to the non-polarized image. This is
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(a) (b) (c)

Figure 3.6: Illumination correction: (a) Is, (b) Ib, (c) Ts = Is=Ib.

possibly due to a deviation of light caused by the analyzer of the microscope. For
each image from a sequence we must �nd out its displacement and then translate the
image according to the opposite vector. The alignment of images is essential because
the amplitude and phase at each point are computed from the intensities at the same
coordinates along the sequences.

To compute the displacement vector we use the correlation [32] that is given by:

f(r; s) Æ g(r; s) =
NX

i=�N

NX
j=�N

f(i; j) g(r + i; s+ j) ;

which is a similarity measure in the sense of linear dependency, in particular identity.
Equations (3.3) and (3.4) show that there is not a linear relationship between the
non-polarized image and an image of any sequence. Despite of it, the intensity in the
border of grains does approximately coincide in both images. Therefore, we compute
the correlation of their gradient magnitude, approximated as the absolute di�erence
between the local maximum and minimum in a 3�3 window:

k 5 fk (r; s) � jmax f(r + i; j + s)�min f(r + i; j + s)j; �1 � i; j � 1 :

The displacement vector goes from the center of the correlation image to its max-
imum. The right part of Fig. 3.7 shows di�erent types of correlation results and all
they have this maximum peak. We choose the pixel with the maximum value and do
not compute a better approximation (subpixel level) because the later calculations do
not require so much accuracy.

We also prove a phase correlation to calculate the displacement vector. In this case
we have a peak that is sharper than previous (Fig. 3.7f). The vector also comes from
the center of the image to the maximum peak. This phase correlation is based in the
fact that in the spectral domain most part of the important information of a signal
is coded in the phase and not in the magnitude (see [41] for a brief introduction). To
calculate this phase correlation we should remove the amplitude of the two signals
to be compared. Also, we use the correlation property that link correlation in the
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spacial domain with the product in the frequential domain:

corr(f; g) = f(x; y) Æ g(x; y)() F (u; v)G�(u; v) ;

where � represents the complex conjugate and a capital letter for a function means
its Fourier Transform. Therefore, the phase correlation formula is given by

corrph(f; g)() F (u; v)G�(u; v)

jF (u; v)G�(u; v)j :

(a) (b) (e) (f)

(c) (d) (g) (h)

Figure 3.7: Geometric correction based on correlation: (a) Im, the image without

polarizers; (b) I0(0
Æ), one of the images of the sequences to be corrected; (c) gradient

of (a); (d) gradient of (b); (e) correlation of (a) and (b); (f) phase correlation of (a)

and (b); (g) correlation of (c) and (d); (h) phase correlation of (c) and (d).

The reason to decide computing this displacement based on the correlation of
the gradients in front other solutions is due to the stability of the solutions. Phase
correlation gives better accuracy but is most sensitive to the noise and di�erences
between the two image to compare. The solution adopted in this point is showed in
Fig. 3.7g as the correlation of the gradients of the two images. It is an intermediate
solution between phase correlation of the image (sharp and unstable Fig. 3.7f) and
correlation of the two images (smooth and stable Fig. 3.7e). The case showed in Fig.
3.7h is only illustrative of a very unstable solution that has not been evaluated, there
are also localization but the noise is ampli�ed.

3.4.4 Phase and amplitude computation

As we see in Section 3.4.1, for each zone of a marble sample to be segmented, we cap-
ture two sequences of images with di�erent polarizer orientation. For each sequence
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fI0(�k)g; fI45(�k)g; k = 0 : : :N � 1 we compute phase D and amplitude M at each
point by means of the Discrete Fourier Transform (DFT).

If f is a sinusoidal function of period N , it can be seen that the �rst harmonic
F (1) conveys all the important information and F (u) = 0 for u = 2 : : :N � 1.
Due to noise, in addition to sampling and quantization errors, the intensity at each
pixel along the sequences is not a pure sinusoidal function. The second and fol-
lowing harmonics are not zero although they are so small in magnitude that can
be discarded. Summarizing, in order to obtain the phase and amplitude of a se-
quence Ip, p = 0; 45 at a point (i; j), we only need to compute the �rst harmonic of
fIp(�0; i; j); Ip(�1; i; j); : : : Ip(�N�1; i; j)g.

(a)

(b) (c)

(d) (e)

Figure 3.8: Phase and amplitude images: (a) detail of a Carrara sample, (b) am-

plitude at 0Æ, (c) phase at 0Æ, (d) amplitude at 45Æ, (e) phase at 45Æ.

F (1) is computed from a sequence of intensity values within one period. If we
decide to take sequences of N images then �k = k�=N; k = 0 : : :N�1, because Io has
frequency 2�. The larger the number of images N , the more precise the computation
of F (1). However, our experience shows that segmentation results are satisfactory
for the most of marble samples just with three images per sequence, captured with
�1 = 0Æ, �2 = 60Æ and �3 = 120Æ. Three samples are also the minimum number
of samples necessary to perform this computation. Reducing the number of these
images we obtain also a reduction of the acquisition time and therefore an increase of
the response time of the system. Figure 3.8 shows the images of amplitude and phase
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at 0Æ and 45Æ for a Carrara sample. An important thing at this point is that macles
have been removed in the phase images an this fact is used later in Section 3.7 to join
wrongly segmented grains.

3.5 Segmentation

The purpose of the segmentation step is to partition the image Is into regions, each
one belonging to only one grain, although grains can be split into several, but not too
many regions (oversegmentation). Thus, we shall just have to merge regions suitably
in order to obtain the �nal segmentation. The oversegmentation step is based on the
watershed transform [101, 66, 8] coming from the mathematical morphology �eld [85].
It divides the image into in
uence regions of local minima. Let us suppose that it is
raining on our topographical relief. When a drop of water falls on the surface, it follows
the steepest descent path until it reaches a local minimum. The region of in
uence of
that local minimum is the set of such points and their paths, that is, its slope basin.
The watershed transform computes all those slope basins or, equivalently, the divide
lines. Watershed algorithms are quite complex, and their description is outside the
scope of this work. References [85, 101] describe two di�erent implementations of
watersheds.

Figure 3.9: Inverted image tm and its topographical relief.

If we invert the Is image, and plot it taking grey level as height (Fig. 3.9), we realize
that grains appear as slope basins separated by narrow crests, which are macles (junc-
tions between twin crystals) or the boundaries of grains. However, if the watershed
transform is directly applied to the inverted image �Is, an excessive oversegmentation
is obtained. The reason is the large number of intensity variations that, despite of
being small, give rise to too many local minima. These variations are due to several
contributions: non-uniform illumination, imperfect grains, and acquisition noise.

To establish watershed as the best method to segment these images we isolate
the problem and try to compare di�erent possibilities to reach the expected result.
Note that sometimes we talk about watershed and sometimes about watercourses.
The two are related because watercourse is the dual operation of watershed: results
obtained from watershed in an image are those obtained from watercourses in the
inverted image. If we think on the grains image as a topological relief (see Fig. 3.9),
the segmentation of grains where the boundaries of each grain must be detected, turns
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Figure 3.10: (a) Petrographical microscope image of a thin marble section. Valleys

based on: (b) negative large values of �; (c) positive large values of Lvv ; (d) vertex

condition for valleys; (e) negative large values of C~��; (f) height condition for valleys;

(g) watercourses; (h) drainage patterns. See [53] for an in-depth description of all

these operators.
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to a ridge detection problem. Trying to segment this image is similar to calculating
these valleys. The same could be formulated for the inverted image changing valleys
for ridges.

Globally, speci�c algorithms for ridges/valleys could be categorized in: extraction
of medial axis, medialness approximation, segmentation, and extraction of drainage
patterns [55]. Each one of these applications must ful�ll their speci�c properties like:
no over-detection, no under-detection, continuity, good contrast, structural stability,
and good localization. Speci�cally, one of the important properties for segmentation
applications and therefore in our problem, consist on to get closed regions. Each grain
must be associated to one or more of these closed regions; there are not `open' grains
in the real world.

Comparison of di�erent procedures to obtain the ridges and valleys of an image
[55] shows how watershed/watercourse transform is, in general, the best ridge/valley
method for segmentation purposes. Usually, a suitable �ltering scheme to remove
local minima or a reliable set of markers is mandatory. We implement the �ltering
scheme because markers need to be placed for an external user by hand or presuppose
the knowledge of the position of something related to each grain. Two strategies
for the �ltering scheme have been designed and �tted to this problem and they are
exposed in Section 3.6. An application-dependent region merging postprocessing is
also a good solution also needed in our problem, in which the optical properties
of these samples are used to re�ne results. Figure 3.10 shows a segmentation of
marble grains for comparison purposes performed with the techniques explained in
our previous cited work. The drainage patterns (Fig. 3.10h) do not follow the grain
boundaries as drainage lines of equal relevance. They su�er of bad localization. Crease
operators give acceptable results (Figs. 3.10b, c, d, e, f), an implementation of these
algorithms can be found in [53, 54]. However, none of these operators ensure closed
regions, unlike the case of watercourses (Fig. 3.10g). The response of the multilocal
creaseness measure (Fig. 3.10e) explained in [53] could be postprocessed to give such
closed regions too. However, despite having fewer regions that with watercourses
(compare Figs. 3.10e and 3.10g), we still could not ensure that each one corresponds
to a di�erent grain. Therefore, anyway we had to build an application-dependent
region grouping procedure. Thus, the watershed algorithm is judged to be the most
suitable.

3.6 Filtering process

This is an step that must be done before segmentation. It is explained later because
as we conclude in the previous section we choose watershed transformation as the best
solution to our problem, but all these ridge/valleys detection techniques need a pre-
processing or post-processing stage to achieve good results. We also concluded that
in the speci�c case of watershed it is mandatory a previous �ltering step to reduce
the oversegmentation produced by noise (see Fig. 3.11a). Next, we explain the two
methods that we propose to solve this part. They has been used and adjusted to this
speci�c problem but they can be extended to other problems as we show later.
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(a)

(b)

Figure 3.11: Oversegmentation and segmentation: (a) initial image and watershed

of its inverse, (b) smoothing by erosion-reconstruction and watershed of its inverse.

3.6.1 Erosion-reconstruction approach

To overcome the oversegmentation problem due to noise, we previously smooth the
image by means of an erosion-reconstruction �lter [85]. This morphological �lter con-
sists of a local minimum transform followed by a series of local maximum transforms
conditioned to the original image. The local neighborhood considered is a square
of 5�5 dimension, but results are stable for a little variation of this parameter [56].
Figure 3.11 compares the watershed of an inverted transmittance image with and
without previous smoothing.

The erosion step applied to the inverted image tries to remove the noise of the
image preserving grain edges. The following reconstruction step �lls up the grains to
their original volume without reviving the noise. Figure 3.12 shows the two steps of
this �ltering scheme.

Later, some authors [86] have used a similar scheme based on erosion-reconstruc-
tion and watershed in segmentation problems of textured colour images achieving also
good results. We try to extend the segmentation process to di�erent images from the
marble case with also good results, this can be see as a further extension in Sec. 3.10.

3.6.2 New wavelet �ltering approach

In this second case we perform the �ltering stage, previous to the watershed, with a
tool not in the �eld of the mathematical morphology. Results obtained with linear
transformations based on the convolution with a kernel do not improve results ob-
tained with the erosion-reconstruction approach. We started to study wavelet trans-
forms and saw them as a possible solution.

The wavelet transform is better adapted than Fourier analysis to non-periodic
signals. Images, unlike other kind of signals have this non-periodic behavior, therefore
linear schemes that presuppose periodicity do not ful�l this basic requirements. Non-
linear �ltering based on wavelet decomposition as Donoho [25] proposes achieve the
removal of noise in images without distort edges. In our case, applying this kind
of algorithm directly to marble images does not give the expected results because
the next transform applied to the images, watershed, needs the reinforcement of the


