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Figure 3.12: Erosion-reconstruction �ltering example for a 1D signal. Erosion step

removes the meaningless minima and reconstruction step restores previous result

to its maximum value in a de�ned neighborhood. The removed minima do not

contribute to the watercourses and nor the segmentation.

valleys and the �ltering of the interior of grains. To this end, we design a new wavelet
�ltering scheme to emphasize ridges or valleys.

As we see in Sec. 2.2.3, the continuous wavelet transform [67, 20, 1] decomposes
a function f(x) at several scales. This decomposition is performed by convolving the
function with the dilations and translations of a special function  named the mother
wavelet:

w(a; b) =
1p
a

Z +1

�1
f(x) �

�
x� b
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�
dx a 2 R+ ; b 2 R :

The function f(x) can then be recovered as
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;

where C is a constant depending only on  .
The discrete version of this transform results from the sampling of parameter space

(a; b), see also Sec. 2.2.3. One of the most well-known discrete wavelet transform
algorithms is the multiresolution analysis [62] (see Sec. 2.2.4). In it, a sequence of
embedded function subspaces : : : � Vi � Vi�1 � : : : � V0 is spanned by the dilations
�(2�ix) of a function �(x) named the scaling function, such that if f(x) 2 Vi�1 then
f(x=2) 2 Vi. Therefore, the sampled parameters are a = 2�i; b = k2�i. A continuous



3.6. Filtering process 49

c

c

c

0

1

2

with decimation without decimation

Figure 3.13: Calculation of the coeÆcients with and without decimation.

signal f(x) is projected on each subspace by means of the scalar product with the
scaling function dilated and translated to integer positions. We can see the initial
discrete signal c0(k) as the projection of f(x) on V0,

c0(k) =< f(x); �(x � k) >=

Z 1

�1
f(x)�(x � k) dx : (3.5)

The projection on a subspace Vi,

ci(k) =< f(x);
1

2i
�

�
x

2i
� k

�
> ; (3.6)

is then an approximation of c0 at scale or resolution i. The greater is i, the coarser the
approximation will be. For scaling functions ful�lling certain conditions, the di�erence
between two successive approximations ci�1 and ci is a discrete signal belonging to
a new space Wi � Vi�1 which is the orthogonal complement of Vi in Vi�1, that
is, Vi�1 = Vi �Wi. These subspaces Wi are similarly spanned by the dilations and
translations of a mother wavelet function  . Note that Eq. (3.6) includes a decimation:
the number of coeÆcients at level i is half the number of coeÆcients at level i�1. Thus,
the full decomposition of a signal c0 of n samples is set of n � 1 wavelet coeÆcients
plus one approximation coeÆcient. Because of the orthogonality property, there is
no redundancy among them. Thus, it is very suitable for compression purposes.
However, this decomposition scheme lacks an important property for image analysis,
namely spatial invariance (translation invariance).

Therefore, we have applied a decomposition algorithm, named �a trous, which does
not perform decimation and consequently produces a redundant representation [89],
see Sec. 2.2.5. Figure 3.13 shows how a general algorithm uses the previous levels in
the decomposition to calculate the new coeÆcients. At this moment one can decide
among decimation with the advantage of reducing data or a non-decimation scheme.
As we see in the �gure the decimation step as well as any pyramid scheme do not
assure the conservation of the initial volume of data, it can be achieved by a special
orthogonal scheme [63, 90]. Also in the �gure, we see that in the scheme without the
decimation process a new level in the decomposition implies that the total amount
of data increases in a volume equal to the initial data, but having the property of
translation invariance.

In pattern analysis and recognition most of the time it is necessary to construct
signal representations that are translation invariant. This property guarantee that
any measure over the decomposition coeÆcients are not in
uenced by their positions.
If we have a particular element in a speci�c position that we want to analyze, in our
case a ridge or valley, and the same element appears a distance apart, their coeÆcients
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Figure 3.14: Detail of a marble image �ltered with the process that we propose

based on the selection of some coeÆcients in a wavelet decomposition.

at their relative positions are the same. CWT and STFT are translation-invariant
representation and there are also some other approaches to achieve this translation
invariance with wavelets [17, 50]. First one is the so-called spin cycle, that needs to
create shifted versions of the original signals and used them for training, obtaining
and average solution. The second one is a redundant invariant wavelet transforms.
We have chosen the �a trous algorithm in our problem to overcome the non-invariance
drawback due to its simplicity.

In this work, we use a two-dimensional version of the �a trous algorithm. The
matrix of initial values c0(k; l) is the non-polarized image and the number of levels
is N = 4. The scaling function in the two-dimensional case has been chosen as the
separable function �2(x; y) = �(x)�(y), being

�(x) =

�
1� jxj x 2 [�1; 1]

0 otherwise
;

whose associated �lter h(n) is h(�1) = h(1) = 1
4 ; h(0) =

1
2 , and zero elsewhere.

The wavelet �ltering process we have devised is performed by the reconstruction
of only a selection of details at some scales of the decomposition. We select the scales
that express the most important image information aiming at a correct segmentation,
that is, the grains. Consequently, we remove the noise and the inhomogeneous image
illumination by discarding in the reconstruction the �nest detail w1(k) and the coarser
approximation cN (k), respectively. After that, the coeÆcients of the remaining scales
are divided into positive and negative. Negative coeÆcients are roughly related to
contours and the positive ones with grains. This is due to the shape of the �lter
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h, that �ts better into grain-shaped structures and thus, gives positive coeÆcients.
Conversely, �h �ts into the contours, therefore mostly represented by negative coef-
�cients. We use a �lter kernel h with a narrow region of support. Other bases, like
B-splines of higher degree, mix contour and noise information in the detail coeÆcients
of the �rst scales because their region of support is wider. The �rst row of Fig. 3.14
shows a decomposition and selective reconstruction of a marble non-polarized image
for N = 7. Figure 3.15 compares the watershed of an inverted non-polarized image
with and without wavelet �ltering. Comparing results for the entire samples, this
wavelet scheme gives slight better segmentation with a minor drawback of interior
grains that can be easily removed with a labeling process and a neighborhood compu-
tation. Compare the two example (Figs. 3.11 and 3.15) almost taken over the same
image area.

(a)

(b)

Figure 3.15: Oversegmentation and segmentation: (a) initial image and watershed

of its inverse, (b) �ltering by partial wavelet reconstruction and watershed of its

inverse.

3.7 Region merging

In this part of the process, we perform the merging of the regions that belong to
the same grain. Two adjacent regions are merged if one of the following criteria is
ful�lled:

a) Their common boundary has high average grey level in the transmittance image.

b) The amplitudes and phases of both regions are similar enough in someone of
the sequences.

The reason why the second criterion does not require similarity in both sequences
is that the computed phase is not reliable when amplitude is small. Therefore, we
shall choose the best case between both sequences, according to a similarity measure
we have devised. The merging process is implemented by means of the following
procedure of �ve steps:
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Labeling. We label the regions and boundaries of the binary image resulting from
the previous segmentation. Thus, we obtain an image where the grey level at each
pixel is equal to the number of the region it belongs, according to the image scanning
order. Labeling of regions is a direct process. However, to perform a boundary
labeling we divided lines in the segmentation image into isolate boundaries removing
all the juntions in this image and applying a strandard labeling process.

Graph representation. This labeled image is represented as an undirected, weigh-
ted graph where nodes are regions and arcs are boundaries between adjacent regions.
Each one of the nodes and the arcs stores a label of its region in order to keep the
relationship between graph and image. Also, depending on the process we want to
apply to the image, each arc or node takes an appropiate value.

Removal of weak arcs. In this case we assign to each arc the averaged grey level
of the boundary that represent. We apply the �rst criterion removing each arc with
a value less than a threshold t1 . These changes are propagated to the initial binary
image by setting to 1 the pixels of the removed boundaries, in this way, joining regions
in the image domain. Next, we label again and transform to a graph the new binary
image.

Distance criterion. In addition to a region number, we now associate to each node
two phases d0; d45 and amplitudes m0;m45 which are representative of the 0

Æ and 45Æ

amplitude and phase of its region. Then, we weight each arc with a dissimilarity
measure d between the two nodes it connects, which is calculated from their represen-
tative values. This dissimilarity measure has been designed according to the second
criterion, as following:

d = max(d0; d45)

d
2
g = m

2
g +m

0
g
2 � 2mgm

0
g cos(fg � f

0
g) ; g = 0; 45 :

The distance dg , as Fig. 3.16 illustrates, is the distance between (mg ; fg) and (m
0
g ; f

0
g)

taken as vectors in polar form, that is, taking the amplitude as a radius and phase as
an angle. The goal of dg is to return a large dissimilarity when phases are opposite
but also when phases are similar and amplitudes are very di�erent.

The second criterion is applied by removing all those arcs with a distance criterion
(d) lower than a threshold t2. These changes are propagated again to the initial
binary image, as in the Removal of weak arcs step. Thus, we �nally obtain the image
of merged regions.

Until now, we have not speci�ed how to compute representative values for each
region of 0Æ and 45Æ amplitudes and phases. We need them because the phase and
amplitude within a region are often not uniform. They can change due to macles,
borders between twin crystals appearing in the image as straight scratches, impurities
and material stress. In addition to this, a region can contain part of the real border
of a grain, where the phase is uncertain. The average of their values obtains a biased
estimation due to the in
uence of extrema. Therefore, we calculate the representative
of each parameter as the mode, that is, the most frequent value inside a region. This
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Figure 3.16: Dissimilarity measure d between two nodes calculated as the maximum

of d0 and d45.

is a more robust value than mean, and it is less in
uenced by the undesirable e�ects
that we mentioned before.

Removal of interior grains. Finally, after region merging, we must remove regions
that are totally or mostly placed inside another region, because there are not interior
grains in marble samples. These regions owe its existence to the fact that phase at
boundaries, and even inside a grain, di�ers signi�cantly from the rest of the grain.
For the interior region removal, the ratio between the longer boundary length shared
with another region and the total perimeter is calculated for each region. The more a
region is included within another one, the closer this ratio will be to 1. Thus, a third
threshold t3 is applied to the perimeter ratio to decide the removal of these grains.

3.8 Segmentation results

Figures 3.17 and 3.18 show the segmentation results for six sample images, each one
belonging to a di�erent type of marble (quarry). The original images show at once
the two most important problems: ill-de�ned contours and the presence of strong
and false contours due to macles. For the most part of grains and marble types, our
method succeeds in �nding out the right contours of grains thanks to the use of the
two amplitudes and phases at each point. Nevertheless, we have to admit that no
perfect segmentation is achieved in all samples. If we look at the results accurately,
we can see two types of errors. On the one hand, we have di�erent grains that appear
as an only one (e.g. Carrara and Pentelikon) and, on the other hand, grains in which
the merging step does not achieve to join all their regions (e.g. Paros). These errors
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Figure 3.17: Segmentation results: Carrara, Paros, Naxos. Second column with

erosion-reconstruction �ltering and third column with wavelet �ltering.

are mainly due to the parameters t2 and t3, whose values have been tuned in order
to obtain a good global performance, that is, for all types of marble and for di�erent
samples within each quarry. These values are t2 = 3 and t3 = 0:6. The range of t3
for which the segmentation results are not drastically a�ected is wide, t3 2 [0:5; 1],
only t2 has got to be accurately selected. Better results can be obtained if these
parameters are tuned for each case, but this is not a good solution for our purposes
because in the application we do not have a previous information about samples. The
input of our program are just the di�erent images taken from the sample, without
any previous knowledge of its features. Despite of this, we believe that the internal
geological structure of marbles is statistically well preserved in the segmented images.
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Figure 3.18: Segmentation results: Aphrodisias, Afyon and Pentelikon. Second

column with erosion-reconstruction �ltering and third column with wavelet �ltering.

3.9 Classi�cation

The previous segmentation gives us a set of adjacent grains that can be studied �rst
in isolation and later in relation to their neighbors. The study of the individual
grains implies to measure values related to their size and shape. All this information,
individual values and topological relations, are used by an expert to determine the
origin quarry of the analyzed sample. The knowledge base for rock classi�cation using
grain parameters was established long time ago [68], but the acquisition of all this
kind of data manually by means of a microscope was so time-consuming that this
technique was discarded.

A preliminar visual classi�cation of our samples can be seen in Table 3.1 where
shape and size features has been used. It shows how some of the quarries are clearly
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Table 3.1: Classi�cation with shape and size features.

Criterion CA PA PR AF AY NA AL PE ES SA SC

Size

Large grains � �
Average grains � �
Small grains � � �
Non-uniform � � � �
Shape

Regular grain � � � �
Irregular grain � � � � � � �
Isotropy

Oriented �
Non-oriented � � � � � � � � � �

characterized according to just four shape parameters: Carrara (CA), Naxos (NA) and
the Saint-B�eat (SC); some other can be sometimes confused, however: Aphrodisias
(AF) $ Estremoz (ES), Afyon (AY) $ Pentelikon (PE); the remaining four classes
have the same parameters and therefore they have a high confusion: Paros (PA),
Proconnesos (PR), Almad�en (AL), Saint-B�eat (SA). These results re
ect that visual
inspection based on simple parameters is not enough to a good classi�cation and that
it is necessary to select and quantify accurately the classi�cation features to surpass
this problem.

According to the human expert, the fundamental criterion in the visual sample
classi�cation are: mean size, size distribution and shape of grains. Some of the
parameters that contribute to characterize grain shape are:

Circularity: computed as the ratio 4�s
p2

, where s is the area and p is the perimeter.
It represents the relation between the object to be measured and a circle of
equal area. For a circle it is equal to 1.

Quadrature: de�ned as the ratio p

4
p
s
and represent the relation between the

object and a square. For the square it is equal to 1.

Irregularity: ratio between actual perimeter and the perimeter of the convex hull.
For a regular object the two perimeters are the same and the irregularity is
equal to 1. But also for convex objects. Thus, irregularity measures divergence
from convexity or degree of concavity.

Elongation: it is the relation between the major axis and the perpendicular one
to this major axis.

These four parameters plus mean size of the grains have been used for classi�cation.
Among them, size has the highest discriminating power [5]. Therefore, it is possible
to establish a preliminary classi�cation between sample marbles of small, medium
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and large grains. Previous works in this �eld [4] calculate a discriminat analysis
over �ve samples for each one of the ten quarries with classi�cation parameters: size,
circularity, quadrature, elongation. The result obtained in this work was an 86% of
correct classi�cation.

The fact that our system is able to deliver the result with an extra information,
that is, a graph structure, adds new criteria to extend the classi�cation process.
Easily, the set of neighbours of each grain can be computed and its shape properties
evaluated and new statistics of these distributions can be also supplied to the classi�er.
In addition, the rate of little and big grains and its relative positions can be evaluated.
All this new tracks allow re�ning and improving the classi�cation results, but this
work must be done by skilled professionals able to extrapolate new evidences from
the facts that provoke these behaviors. It is necessary to know the petrogenesis or to
deduce it from the images themselves to take pro�t of these results. Therefore, this
issue remains as a future work.

3.10 Further extensions

The previous work was oriented to solve a concrete problem, the segmentation of
petrographical marble images. But this segmentation strategy can be easily adapted
to other completely di�erent problems than marble recognition. Accordingly, a similar
solution has been proposed in [86] extending it to colour textures.

The segmentation in the marble case is achieved by detecting the valley lines
between grains but other images may not have these kind of border structures. Valleys
must be generated from edges by something like a gradient transformation or a contour
detection algorithm. Furthermore, the properties we use to merge the oversegmented
grains were amplitude and phase images that are speci�c for petrographical images
and concretely form uniaxic materials. Thus, in a generic problem if segmentation is
performed the results can be also improved merging regions with similar properties.
These new properties could be related for example with the colour of the region or with
other features as texture. These properties �t well into our proposed methodology
that permits improving a preliminary segmentation taking into account the appropiate
properties of the speci�c problem. As a demonstrative example we can see in Fig.
3.19 how the method applied with a little tuning of the parameters, achieves the
segmentation on other scenes. Figure 3.19a comes from the problem explained in [76]
where the aim is to extract the regions corresponding to clothes and skin of people
in front of a desk, in order to be able to �nd out later in a di�erent scenario. In the
real application a background subtraction removes any possibility of confusion with
the static objects behind people, then segmentation is restricted to those areas that
change along the sequence (basically subjects). Figure 3.19b shows the segmentation
of a face where a fast and easy result is achieved with no information about skin, hair,
cloths and background colours. In both cases valley lines has been obtained with a
morphological gradient transform, and the mean colour has been used as merging
criterion.
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(a)

(b)

Figure 3.19: Segmentation applied to other problems: (a) people location, (b)

face region detection. The left part are the original image and the right part is the

segmentation with grey lines the preliminary segmentation and black lines the �nal

segmentation.

3.11 Conclusions

Given the diÆculties that presents working only with non-polarized images, our ap-
proach has been focused in emulating the procedure followed by human experts when
a visual classi�cation of samples is performed. Thus, our method extracts additional
information through the illumination of samples with polarized light. In particular, we
take advantage of the image formation model o�ered by the Johannsen's law, which
relates the incident and transmitted light intensities through uniaxial crystals. This
model allows calculating two parameters at each pixel (amplitude and phase) which
are intrinsic of each grain. These parameters are the input of a region merging pro-
cedure that improves an initial oversegmentation to achieve a better correspondence
between regions and grains.

The oversegmentation is obtained by means of the watershed transform applied to
the non-polarized image, �ltered in order to reduce the number of local minima. We
propose two alternatives to this �lter process. A morphological erosion-reconstruction
that removes those valleys non-important (the �ltering element do not �t inside the
ridges associated to these valleys). This approach is an ad hoc solution with good
results but strongly related to the �ltering element. This strategy has been also used
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later in some other works for other authors with similar purposes and also good re-
sults. The second �lter strategy proposed is based on a partial reconstruction of a
wavelet decomposition, behind all this there is a model that detaches valleys, ridges,
noise and illumination inhomogeneities. We select for reconstruction purposes the
scales and coeÆcients where the boundaries of grains (valleys) are well represented
and discard the scales and coeÆcients which mainly contain ridges, noise and inho-
mogeneous illumination. Additionally, we take advantage of the relation between the
three dimensional shape of the grain boundaries and the analyzing wavelet function.
These boundaries mostly contribute to negative coeÆcients, which are the only ones
that take part in the reconstruction.

Results show that our method achieves a correct segmentation for most grains in a
variety of marble types, without any initial knowledge about their features. Once the
segmentation is done the expert study several parameters related to the morphology
of each grain and the relation among the bulk of grains. With all this information
and based on his knowledge and expertise he gives a source quarry for the sample.

This work allows creating a data base coming form di�erent marble samples of
known origin. The collection of this kind of data permits to identify the geograph-
ical origin of some non catalogued samples as archaeological or ornamental stones,
contributing to the knowledge of the trading routes of these materials. Provenance
identi�cation is important in discovering exchanges between populations, dating ar-
tifacts, and identifying forgeries and copies.


