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ECAL photons

The clustering algorithm for the photon reconstruction is explained in [28]. It

starts with a search for local maxima among the towers in the three ECAL stacks.

The segments of a projective tower which share a face in common with the local

maximum are linked together into a cluster. At the end of the procedure, every

segment of a tower is clustered with its neighbour of maximal energy. A cluster

is then accepted as a photon candidate if its energy exceeds 350 MeV and if its

barycentre is at least 2 cm away from the closest charged track extrapolation.

The energy of the photon is calculated from the energy of the four central towers.

The direction of the photon is determined from the barycentre of energy deposition.

In order to distinguish fake photons 1 from photons originating from �0 decays

or other physical sources several estimators are constructed and a likelihood method

is used. For every photon the following estimator is de�ned:

P =
P genuine

P genuine + P fake
;

where P i is the estimator under the photon hypothesis of type i given by

P i =
Y
i

{i
j
(xj) ;

and {i
j
(xj) is the probability density for the photon hypothesis of type i associated

to the discriminating variable xj.

These are the discriminating variables used to distinguish between genuine and

fake photons:

- fractions of energy in the �rst and second stacks of ECAL,

- fraction of energy outside the four central ECAL towers,

- transverse size of the photon shower,

- angular distance (d) to the nearest photon,

- distance between the barycentre of the photon and the closest charged track

(a sign is computed depending on the position of the photon shower with

respect to the track bending in the r � � projection)

1A fake photon is a photon produced by whatever mechanism with non{physical source.
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- energy of the photon.

Reference distributions of these discriminating variables have been established

from the Monte Carlo simulations for genuine and fake photons.

4.3.2 �
0 reconstruction

The energy of the �0's from tau decays at the Z0 peak can vary from few MeV up

to about the nominal beam energy. For the whole energy range, an almost constant

fraction of �0's are reconstructed from converted photons in the tracking system.

At the low energy regime, one of the photons is not detected in the ECAL for most

of the �0's because of threshold, cracks or overlap with another electromagnetic

or hadronic shower. These are called �0's from residual single photons. From 5

to about 20 GeV of energy, for most of the cases the two 's are resolved in the

electromagnetic calorimeter. The energy resolution is very good in this regime

(typically �E � 0:02 GeV=c2). At high energy the two 's showers are very close

and they can only be resolved a few times. The energy resolution deteriorates with

increasing energy and is �E � 0:06 GeV=c2 at 30 GeV/c2.

In �g. 4.1 the fractions of resolved and unresolved �0's and single photons as a

function of the �0 energy (from ref. [36]) are summarized. It can be seen that the

fraction of resolved �0's without converted photons remains at a relatively high level

above 25 GeV. This is caused by the fact that the corresponding showers quite often

have large uctuations yielding two separate photon candidates in the clustering

algorithm. This e�ect is not well reproduced by the Monte Carlo simulation, where

this shower splitting occurs less frequently. The excess of resolved �0's at high

energy corresponds to a de�cit in the unresolved �0 fraction. However, the sum of

the resolved and unresolved �0 fraction is well described by the simulation.

The mechanism for the reconstruction of each of the �0 types is explained at

length.

�0 with two resolved 's

The �rst step of �0 reconstruction is the pairing of all photon candidates within

one hemisphere, considering all possible combinations. Only photons inside a cone

of 45o around the thrust axis are considered for the pairing. A �o identi�cation
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Figure 4.1: Fractions of resolved and unresolved �
0's and single photon as a function of the

�
0 energy. The points represent the data, and the open squares the simulation. The proportion

of �0's containing at least one converted photon is also plotted: Converted  in the �rst plot;
again, the full points correspond to the data and the open ones to the simulation. The fraction
of resolved �

0's without converted photons and that of unresolved �
0's di�er for the data and the

Monte Carlo simulation at a energy above 25 GeV. We comment on this e�ect in the text.

estimator D�
0

i;j
for two photons i and j is de�ned in the following way:

D�0

i;j
= Pi � Pj � P�0

where Pi is the estimator for photon i to be genuine according to eq. 4.3.1 and P�0

is the probability coming from a kinematic �0{mass constrained �t.

A dependence of the �0 invariant mass with energy is observed as explained in

ref. [36]. Once the resolved �0's are identi�ed, a second kinematic constrained �t is

performed to the nominal �0 mass, which allows a better determination of the �0

energy as shown in �g. 4.2 (also from ref. [36]).

�0 with unresolved 's

As the �0 energy increases it becomes more diÆcult to resolve the two photons

and the clustering algorithmmay yield a single cluster. The two{dimensional energy
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Figure 4.2: Energy resolution of the exclusive �0's as a function of energy before and after the
kinematic �t according to the simulation.

distribution in the plane transverse to the shower direction is examined and energy{

weighted moments are computed. The second moment provides a measurement of

the  invariant mass. As the photon energy increases this technique reveals a wide

peak at the �0 mass as explained in ref. [36]. We keep as �0 candidates all single

clusters not entering the previous �0 reconstruction but having an invariant mass

larger than 100 MeV/c2 according to this method.

�0 from residual single 's

After the paring of photons and the cluster moment analysis, all the remaining

photons inside a cone of 30o around the thrust axis are called residual single pho-

tons. About 50% of the total are fake photons, separated from photons coming from

physical processes with the estimator PRes, explained in ref. [36]. The remaining

single photons with physical origin could come from bremsstrahlung processes, ra-

diative processes and �0 decays. Three more estimators are calculated (PBrem, PRad,

P�0!) taking into account the angle between the photon and the most energetic

charged track, and the discriminating variables from section 4.3.1. Residual single
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photons with P�0! value larger than 0.07 are declared single photons coming from

�0 decay.

4.4 Tau decay classi�cation (TOPCLAS)

The tau decay classi�cation is done with a code called TOPCLAS, developed for

the analysis of ref. [36]. It takes into account the number of charged tracks, their

identi�cation and the number of reconstructed �0's. A total of 13 classes are deter-

mined, but only four of them are relevant for this analysis: h, h�0, h2�0 and 3h.

Here h stands for either a charged kaon or a charged pion. However, we are only

interested in pions and kaons are treated as background. We then name the above

four classes as �, ��0, �2�0 and 3�.

The invariant mass distributions for two of the classes considered are shown in

�g. 4.3 (from ref. [36]). The agreement between data and the simulation is good.

Figure 4.3: Invariant mass distributions for two of the classes of this analysis. The points
with errors bars show the observed distributions, the solid histograms represent the simulated
distributions and the shaded histograms account for the expected � background.
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4.5 Selection eÆciencies and candidates

Four of the most sensitive observables to the weak dipole moments are spin cor-

relations between the two taus, as it was shown in section 2.1.3. Therefore, both

hemispheres need to be identi�ed.

We have used for the event selection the tools explained before and in addition

have required a correct reconstruction of the event observables (W1, cos �h1 , �h1,W2,

cos �h2 , �h2), which reduces the number of candidates by 21%. The reconstruction

of these event observables makes use of the tau ight direction, but this will be

covered later.

Table 4.3 shows the global selection eÆciencies of the decay modes considered

and the percentage of � background without requiring the correct reconstruction of

the event observables. For the �nal analysis, we use a matrix of selection eÆcien-

cies presented in the following chapter. However, this table is useful to compare

with other analysis carried out in ALEPH. The numbers of table 4.3 have been

calculated with the Monte Carlo simulation and only the statistical uncertainties

are given. The amount of non{tau background is not added to the table because

it is completely negligible after requiring the correct reconstruction of the event

observables.

We report, in table 4.4, the number of candidates in each channel as obtained

from the whole data sample, in which we have required the correct reconstruction

of the event observables. Finally, table 4.5 shows the data sample considered in

this analysis. We present, for each of the years of data taking, the various center of

mass energies and the corresponding integrated luminosities.

4.6 Monte Carlo and detector simulation

The reference Monte Carlo program in this analysis is SCOT [39], a program de-

scribing e+e� ! �+�� at an energy aroundMZ . It has a full description of the spin

of both taus and, moreover, a complete parametrisation of the Lorentz structure of

the neutral current. We have set �e, ae, �� , a� to the SM values, and have explored

�� and d� .

Nevertheless, this program does not take into account bremsstrahlung correc-
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� decay EÆciency (%) � Background (%)

�{� 57.57 � 0.39 24.18 � 0.39

�{��0 58.39 � 0.19 21.44 � 0.18

�{�2�0 50.36 � 0.31 34.09 � 0.34

�{3� 54.29 � 0.31 16.42 � 0.28

��0{��0 59.76 � 0.19 19.47 � 0.17

��0{�2�0 52.12 � 0.22 31.92 � 0.23

��0{3� 54.66 � 0.21 13.96 � 0.19

�2�0{�2�0 45.84 � 0.50 42.73 � 0.56

�2�0{3� 46.98 � 0.35 27.69 � 0.39

3�{3� 50.98 � 0.48 8.57 � 0.36

Table 4.3: Selection eÆciencies for the di�erent decay channels and � background. The errors
are only due to the Monte Carlo statistic.

Class Events Class Events

�{� 1901 ��0{�2�0 6395

�{��0 7844 ��0{�3� 5242

�{�2�0 2673 �2�0{�2�0 1125

�{3� 2040 �2�0{3� 1950

��0{��0 8624 3�{3� 712

Number of all events used: 38506

Table 4.4: Number of reconstructed events for the decay combinations.

tions, but in a �rst approximation we have added the initial state radiation by the

simple radiator [40]

H(x) = �x��1(1 +
3

4
� +

�

�
(
�2

3
� 1

2
))� �

2
(2� x) ; (4.1)

where � is de�ned as

� =
2�

�
(ln

s

m2
e

� 1); (4.2)

and x 2 [0; 0:2], being the fraction of the beam energy carried by the initial state

photon.

KORALZ [41] is another Monte Carlo program adequate at LEP I energies which

can be used for lepton and quark pair production. This program includes initial and
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1990 data 1991 data 1992 data 1993 data 1994 data 1995 datap
s L p

s L p
s L p

s L p
s L p

s L
88.25 482 88.50 668 91.25 20999 89.50 8065 91.25 49089 89.25 8295

89.25 520 89.50 797 - - 91.25 14434 - - 91.25 17159

90.25 447 90.25 753 - - 93.00 8693 - - 91.75 72

91.25 3624 91.25 7546 - - - - - - 93.00 9355

92.25 555 92.00 693 - - - - - - - -

93.25 597 93.00 677 - - - - - - - -

94.25 642 93.75 797 - - - - - - - -

Table 4.5: Data sample considered in this analysis. The center of mass energy is given in GeV.
The luminosity is given in nb�1. The total integrated luminosity is 155 pb�1.

�nal state bremsstrahlung corrections, which in principle are missing completely in

SCOT. In this case, however, only the longitudinal spin e�ects are considered and

for the Lorentz structure of the neutral current, only the SM description is assumed.

Finally, the KORALB Monte Carlo [42] program has the complete description

of the spin e�ects in tau production within the neutral current structure predicted

by the SM. However, no bremsstrahlung correction is applied. This Monte Carlo

program was used at the beginning of this analysis to verify the results obtained

with SCOT within its scope.

In order to compare with the real data, a detector simulation is needed after the

events are generated with one of the above Monte Carlo programs. This is done

with GALEPH [43], a program in which all the information about the geometry and

materials involved in the experimental setup of ALEPH is described. For the tra-

cking simulation, the primary long{lived particles are followed through the detector.

Secondary particles are also produced by interaction with the detector material.

4.7 Tau direction of ight

The reconstruction of the ~h vectors needs the tau ight direction, since the momenta

of the decaying particles are expressed in the tau rest frame. The expressions for

the ~h vectors are shown in appendix B.

For events in which both taus decay hadronically, two independent angles, �h���,
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between the �� and the corresponding hadron, can be determined by the following

equation:

cos(�h���) =
2E�Eh� �m2

�
�m2

h�q
4(E2

�
�m2

�
)(E2

h�
�m2

h�
)
; (4.3)

where Eh� is the hadron energy in the laboratory frame. To obtain this expression,

the energy and momenta conservation are used, and the following assumptions are

made:

- the � 's are produced back{to{back with E�+ = E�� � E� =
p
s=2 1,

- m��
= m��� = 0.

For each decay, the corresponding �h��� angle determines a cone around the

hadron momentum where the tau direction could lie. If one of the cones is inverted,

the intersection of both surfaces determines two solutions (�1 and �2), as shown

schematically in �g. 4.4.

Figure 4.4: Geometric view of the � ight direction reconstruction and the two possible solutions
�1 and �2.

To express both solutions we choose the following unitary vectors:

n̂1 = n̂2 � n̂3 =
1

sin(��)
(p̂h� � p̂h+ cos(��)) ;

1Event by event,
p
s=2 is considered to be equal to the beam energy measured by LEP, in order

to take into account variations of the center of mass energy from MZ .
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n̂2 =
1

sin(��)
( ^ph� � ^ph+) ;

n̂3 = � ^ph+ ; (4.4)

where cos(��) = ^ph� � ^ph+, and where the ^ph� are unitary vectors in the direction

of the hadrons.

If we express the tau direction coordinates as ê� = an̂1 + bn̂2 + cn̂3, it turns out

that

a =
1

sin(��)
(cos(�h���) + cos(�h+�+) cos(��)) ;

c = cos(�h+�+) ;

b = �
p
1� a2 � c2 ; (4.5)

where the two solutions correspond to the two signs of b.

The expression 1�a2�c2 is not always greater than zero, due either to detector

e�ects or to Initial State Radiation. In practice it is possible to reconstruct the two

tau directions only for about 63% of the hadronic events.

For events with two tau directions, in principle, it could be possible to disentan-

gle the good solution using the information of the vertex detector [44, 45]. By con-

trast, one of the methods to measure the tau polarisation at LEP I in ALEPH [46]

has shown that this improvement is very small. Thus, we have preferred to average

the information coming from each of the solutions in the �tting expression.

In this analysis we consider events with two reconstructed tau directions, and

also an extra fraction of events in which the tau ight direction is obtained with

a procedure developed for the measurement of the tau polarisation [46]. In this

procedure, the particle momenta are uctuated within their nominal errors 500

times, and the two possible solutions from the intersection of the two cones are tried

to be determined each time. The event is accepted if the cones have intersected at

least 10 times, and the tau direction is the average over all the solutions found.
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Chapter 5

Likelihood function

In section 2.3, we introduced the likelihood function of this analysis from the theo-

retical point of view. Nevertheless, in reality some more elements have to be taken

into account, such as the detector resolution and the presence of background. In

this chapter we add these two e�ects to the likelihood function, in order to properly

describe the event probability of a detected event.

5.1 Likelihood formalism

The theoretical likelihood function was written in section 2.3 for the decay topology

(ij) as the following product:

Lid(�� ; d� j
;W1; cos �h1 ; �h1;W2; cos �h2 ; �h2) =

�R��(�� ; d� ;
) �H
�

i (W1; cos �h1 ; �h1)
�H�

j
(W2; cos �h2 ; �h2) ;

with

�R��(�� ; d� ;
) =
R��(�� ; d� ;
)

jAj2(�� ; d� ;
) ;

�H�(W; cos �h; �h) =
Wh�

��
: (5.1)

The normalization is such that

X
ij

Z
Lij(�� ; d� j
;W1; cos �h1 ; �h1;W2; cos �h2 ; �h2)d

�X1d �X2 = 1 : (5.2)

And the event observables are (W1, cos �h1 , �h1, W2, cos �h2 , �h2).
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Nevertheless, two e�ects have always to be considered to properly describe the

event probability: the detector e�ects and the background. The former may be

treated by convoluting the likelihood function with a multidimensional resolution

function, taking into account the possible true values of the observables given cer-

tain measurements. The latter are introduced in the �tting formula by correctly

weighting their contributions.

Formally, the event probability for the decay topology (ij) is given by 1; 2

Lij =

Z
�R��(�� ; d� j
) �H�

i (W
(0)
1 ; cos �

(0)
h1
; �

(0)
h1
) �H�

j
(W

(0)
2 ; cos �

(0)
h2
; �

(0)
h2
)�

Tij(W1; cos �h1; �h1;W2; cos �h2 ; �h2;W
(0)
1 ; cos �

(0)
h1
; �

(0)
h1
;W

(0)
2 ; cos �

(0)
h2
; �

(0)
h2
)�

dW
(0)
1 d cos �

(0)
h1
d�

(0)
h1
dW

(0)
2 d cos �

(0)
h2
d�

(0)
h2

+ Background ;

where T is the resolution function describing the probability that an event produced

with \true" values (W
(0)
1 ; cos �

(0)
h1
; �

(0)
h1
;W

(0)
2 ; cos �

(0)
h2
; �

(0)
h2
) is observed with the mea-

sured values (W1; cos �h1 ; �h1;W2; cos �h2 ; �h2).

To calculate the resolution function in ten dimensions is almost impossible and,

therefore, some simpli�cations have to be applied. We will write the likelihood for

each event as

Lij =

Z
�R��(�� ; d� j
) �H�

i (W
(0)
1 ; cos �

(0)
h1
; �

(0)
h1
) �H�

j
(W

(0)
2 ; cos �

(0)
h2
; �

(0)
h2
)�

Di(W1 �W
(0)
1 ;W

(0)
1 )Di(cos �h1 � cos �

(0)
h1
; cos �

(0)
h1
)Di(�h1 � �

(0)
h1
; �

(0)
h1
)�

Dj(W2 �W
(0)
2 ;W

(0)
2 )Dj(cos �h2 � cos �

(0)
h2
; cos �

(0)
h2
)Dj(�h2 � �

(0)
h2
; �

(0)
h2
)�

�i(cos �
(0)
h1
)�j(cos �

(0)
h2
)dW

(0)
1 d cos �

(0)
h1
d�

(0)
h1
dW

(0)
2 d cos �

(0)
h2
d�

(0)
h2

: (5.3)

The convolution of the detector e�ects with the event probability is factored for

each of the decays separately, and, for each decay, into three smearing functions

(D(x� x(0); x(0)) in the formula, with x = W; cos �h; �h), one for each of the three

event observables per hemisphere (W , cos �h, �h). These functions describe the

smearing e�ect of the detector for accepted events. There is also an overall eÆciency

1In principle the production angle 
 should also be part of the resolution function, although
in practice, as long as the anomalous coupling terms are near zero, the resolution on 
 can be
safely neglected [6].

2The �R�� terms are also functions of the event center of mass energy (
p
s), as shown in

appendix A. This dependence is evaluated, for each event, by taken
p
s = 2Ebeam, where Ebeam

is the beam energy measured by LEP.
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function (�) describing the probability that a given \true" event will actually pass

the tau selection criteria. We will come back later to the possible dependence of

the eÆciency on more \true" variables.

Eq. 5.3 takes as independent statistical variables x � x(0) and y � y(0), with

x; y = W; cos �h; �h and x 6= y. It also assumes x� x(0) and y(0) to be uncorrelated

quantities, with x and y taking the same values as before. We will see later that in

the �nal expressions we do take into account certain correlations between the above

variables.

5.2 Smearing functions

In this section, we explain how to determine D(x � x(0); x(0)). In what follows, x

will be either W , cos �h or �h.

For each channel, D(x� x(0); x(0)) is a two dimensional function describing the

probability that the smearing introduced by the detector is (x� x(0)) for a certain

generated x(0) with reconstructed x. Therefore, we calculate D(x�x(0); x(0)) within
the acceptance region for x(0). If we de�ne e � x�x(0), it follows from the de�nition

that Z
D(e; x(0))de = 1 : (5.4)

This normalization is possible because, when obtaining D(x � x(0); x(0)), each x(0)

has associated a certain x. The eÆciency of the detector is handled by a separate

function, the � introduced before.

The D(x � x(0); x(0)) functions are obtained with the Monte Carlo simulation,

where the probability density functions of x ( � fx(x)) and of x(0) ( � fx(0)(x
(0)))

are known. D(x� x(0); x(0)) are calculated by binning the (x� x(0); x(0)) plane and

applying the normalization of eq. 5.4 in each bin of x(0). The �nal two dimensional

binning is determined for each smearing function by requiring that

fx(x) =
Z
D(x� x(0); x(0))fx(0)(x

(0))dx(0) ; (5.5)

which express the convolution of fx(0)(x
(0)) with the uctuations introduced by the

detector.
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Smearing function for W

The D(W �W (0);W (0)) functions are calculated for, typically, 600 bins in W �
W (0) and 200 bins inW (0). This binning is such that eq. 5.5 is satis�ed as mentioned

before.

To illustrate the shape of the smearing functions forW , �g. 5.1 presents D(W �
W (0);W (0)) in just very coarse bins of W (0) for the � channel. The behaviour of

the D(W �W (0);W (0)) function for the �2�0 and the 3� channels is very similar

to that of the �. For the pion decay, the di�erential partial width is a constant for

unpolarised taus, and thus, W (0) is a known number.

The dependence of D(W �W (0);W (0)) on more variables has also been studied

and has been found to be negligible.

Smearing function for the polarimeter polar angle

The D(cos �h � cos �
(0)
h
; cos �

(0)
h
) functions are calculated for typically 120 bins

in (cos �h � cos �
(0)
h
) and 50 bins in cos �

(0)
h
. However, this function increases very

sharply for the �, �2�0 and 3� channels for values of cos �
(0)
h

very close to � 1; and

therefore we have applied a much �ner binning in those regions (about 1400 bins

are taken on (cos �h � cos �
(0)
h
) ) for those channels.

Figs. 5.2, 5.3, 5.4, 5.5 show the D(cos �h � cos �
(0)
h
; cos �

(0)
h
) functions in four

coarse bins of cos �
(0)
h

for the four channels considered.

In each of these plots, every event contributes twice: once for each of the two

available tau directions per event. On the contrary, in the case of the pion decay

channel, the polar angle of the polarimeter is uniquely determined for both experi-

mentally available tau directions. This is a very important feature coming from the

two body decay type.

The behaviour of the smearing functions is as expected for the pion channel:

the negative cos �
(0)
h

values corresponds to high pion energies, where the energy

determination is poorer. For the other channels, there is a tail which is a function

of cos �
(0)
h
; however, the width of the curves around the peak is not simple to explain,

since the polarimeter expression is more complicated for those cases and the detector

e�ects are not easy to trace.
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Figure 5.1: Smearing function of the W variable for the � channel in just four coarse bins of
W

(0).

Smearing function for the polarimeter azimuthal angle

The D(�h � �
(0)
h
; �

(0)
h
) functions are found not to depend on �

(0)
h
, because �h is

a periodical variable and the detector is symmetric in this angle. In what follows

we then omit the second argument.
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Figure 5.2: Smearing functions of the polarimeter polar angle for the pion channel in just four

coarse bins of cos �
(0)

h .

It has also been veri�ed that

f�h(�h) =
Z
D(�h � �

(0)
h
)f

�
(0)

h

(�
(0)
h
)d�

(0)
h

: (5.6)

However, we have empirically found that (�h��(0)h
) is correlated with cos �h; and

then have calculated D(�h � �
(0)
h
) in various bins of cos �h (typically 10), checking

that eq. 5.6 is veri�ed in each bin of cos �h.
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Figure 5.3: Smearing functions of the polarimeter polar angle for the rho channel in just four

coarse bins of cos �
(0)

h .

We illustrate the behaviour of D(�h � �
(0)
h
; cos �h), for the four channels con-

sidered, in �gs. 5.6, 5.7, 5.8, 5.9, in which just four coarse bins of cos �h are

taken.



5.3 Detection EÆciency 59

0

0.5

1

1.5

2

2.5

-1 0 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1 0 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-1 0 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

-1 0 1

Figure 5.4: Smearing functions of the polarimeter polar angle for the �2�0 channel in just four

coarse bins of cos �
(0)

h .

5.3 Detection EÆciency

As shown in eq. 5.3, the eÆciency is handled with the �(cos �
(0)
h
) function. In this

context, the smearing functions can be calculated within the acceptance region of

the generated variables.

In practice, we introduce a matrix of eÆciencies, i.e. �ij(cos �
(0)
h
), which is the
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Figure 5.5: Smearing function of the polarimeter polar angle for the 3� channel in just four

coarse bins of cos �
(0)

h .

probability that a generated event in the topology i is identi�ed as j. In principle,

this function could depend on W (0), on cos �
(0)
h

and on �
(0)
h
. On the contrary, the

dependence on the azimuthal angle is very at and, furthermore, any possible e�ect

from W (0) or �
(0)
h

on the �nal result could be treated as a systematic error. It

should be also noticed that the �ij(cos �
(0)
h
) function includes both the probability

of selecting an event and the probability of correctly identifying it.
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Figure 5.6: Smearing functions of the polarimeter azimuthal angle for the pion channel in four
coarse bins of cos �h.

The eÆciency matrix �ij(cos �
(0)
h
) has been calculated separately in the barrel

(j cos �j < 0:75) and in the end{cap region (the remainder), where the performance

of the detector degrades. These functions are shown in �gs. 5.10 and 5.11. In

both cases, the eÆciencies are quite uniform for the diagonal elements, where the

identi�cation is correct. In the o�{diagonal elements, the generated events are mis{

identi�ed within one of the categories considered. It can be seen that the rate of
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Figure 5.7: Smearing function of the polarimeter azimuthal angle for the rho channel in four
coarse bins of cos �h.

mis{identi�cation of these o�{diagonal elements is in, most cases, negligible, despite

the relevant contamination of �2�0 into � (about 7% in the barrel and 5% in the

end{cap). In �g. 5.12, we present the eÆciency for miss{identi�cation of other

tau decays within one of the categories considered, for the barrel and the end{cap

regions. The rate is very small for both regions and for all the channels.
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Figure 5.8: Smearing functions of the polarimeter azimuthal angle for the �2�0 channel in four
coarse bins of cos �h.

5.4 E�ective ~H functions

The convolution of the theoretical likelihood function over the detector smearing

and eÆciency functions described by eq. 5.3 is only dependent upon the observed

decay properties of the identi�ed hemisphere. This convolution can be re{written
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Figure 5.9: Smearing functions of the polarimeter azimuthal angle for the 3� channel in four

coarse bins of cos �
(0)

h .

in terms of the e�ective ~H functions as

~H�

i (W; cos �h; �h) =
Z

�H�

i (W
(0); cos �

(0)
h
; �

(0)
h
)�

Di(W �W (0);W (0))Di(cos �h � cos �
(0)
h
; cos �

(0)
h
)Di(�h � �

(0)
h
; cos �h)�

�i(cos �
(0)
h
)dW (0)d cos �

(0)
h
d�

(0)
h

; (5.7)

where the �i(cos �
(0)
h
) � �ii(cos �

(0)
h
).
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Figure 5.10: EÆciency function �ij(cos �
(0)

h ) as a function of the generated polar angle of the
polarimeter in the barrel region.

The �H�

i functions are recalled in eq. 5.1, and are related with the polarimeter

of each decay, the ~h vector (explicitly written in appendix B for the decay modes

considered).

The great advantage of factoring the likelihood function in this manner is that

the integrals of eq. 5.7 are calculated only once, because the e�ective ~H functions for

each observed hemisphere are completely independent of the anomalous couplings,
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Figure 5.11: EÆciency function �ij(cos �
(0)

h ) as a function of the generated polar angle of the
polarimeter in the end{cap region.

which are iterated over in the likelihood �t.

5.5 Background

The sample of data we have is very pure, but a few unwanted events are remaining,

which are handled in di�erent ways depending on their source. We classify the
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Figure 5.12: EÆciency function for mis{identifying any tau decay not used in this analysis
(other) within one of the categories considered, for the barrel (top) and the end{cap region (bot-
tom).

background in the following types:

� Mis{identi�ed spin{sensitive tau decay modes.

� Other mis{identi�ed tau decay modes.

� Background from non{tau sources.

All sources of background can be accommodated into the likelihood formalism by

expanding the e�ective ~H functions of eq. 5.7. In this sense, the ~H describe a

weighted sum of the expected components in each identi�ed decay channel. For

each hemisphere identi�ed in channel j, the complete e�ective ~H function is then

given by

~H�

j (W; cos �h; �h) =
X
i

~H�

ij(W; cos �h; �h) : (5.8)

The index i runs over the four identi�ed tau hemisphere types, the background

from other tau decay modes, as well as the non{tau background sources. The new

~H�

ij(W; cos �h; �h) functions are written for the three types of background at length.
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Spin{sensitive tau background

We consider as mis{identi�ed spin{sensitive tau background those events mis{

identi�ed within one of the decay modes considered for this analysis. The e�ective

~H
�

ij(W; cos �h; �h) functions are written for them as

~H
�

ij(W; cos �h; �h) =
Z

�H
�

i (W
(0); cos �

(0)
h
; �

(0)
h
)�

Dij(W �W (0);W (0))Dij(cos �h � cos �
(0)
h
; cos �

(0)
h
)Dij(�h � �

(0)
h
; cos �h)�

�ij(cos �
(0)
h
)dW (0)d cos �

(0)
h
d�

(0)
h

: (5.9)

The most relevant change with respect to eq. 5.7 is that we introduce the smearing

functions for mis{identi�ed events Dij(x� x(0); x(0)), with x=W , cos �h, �h. These

functions express the probability to �nd (x � x(0)) for accepted events which were

generated with value x(0) and of type i but reconstructed with value x and of type

j. De�ning e � x� x(0), it is veri�ed that

Z
Dij(e; x

(0))de = 1 : (5.10)

This normalization is possible because the eÆciency is handled with a separate

function, the �ij(cos �
(0)
h
) matrix, which, as said before, gives the probability that

an event of type i is reconstructed as one of type j.

The Dij(x � x(0); x(0)) functions are also calculated binning the (x � x(0); x(0))

plane and requiring that eq. 5.5 has to be satis�ed.

Dij(cos �h�cos �
(0)
h
; cos �

(0)
h
) and Dij(W �W (0);W (0)) are calculated in a similar

way to the case of correctly identi�ed events. Dij(�h��
(0)
h
; �

(0)
h
) are also found not

to depend on �
(0)
h

for the same reasons as before, and are calculated in four bins of

cos �h for the relevant background, i. e. for the contaminations of � into �, � into

�2�0 and �2�0 into �.

For the � �2�0 mixing, we present
R
Dij(W � W (0);W (0))dW (0) in �g. 5.13.

D� �2�0(cos �h� cos �
(0)
h
; cos �

(0)
h
) and D�2�0 �(cos �h� cos �

(0)
h
; cos �

(0)
h
) are shown, for

coarse bins of cos �
(0)
h
, in �gs. 5.14 and 5.15. Finally, D� �2�0(�h � �

(0)
h
; cos �h) and

D�2�0 �(�h � �
(0)
h
; cos �h) can be found in �gs. 5.16 and 5.17.

Eq. 5.9 is also di�erent from eq. 5.7 in the inclusion of the o�{diagonal elements

of the �ij(cos �
(0)
h
) matrix, which has been justi�ed in the previous paragraphs.
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Figure 5.13:
R
D� �2�0(W � W

(0)
;W

(0))dW (0) (left) and
R
D�2�0 �(W � W

(0)
;W

(0))dW (0)

(right).

Other tau background

The remaining mis{identi�ed tau decays are treated similarly to the previous

background. The e�ective ~H�

ij(W; cos �h; �h) functions are exactly those of eq. 5.9,

with the Dother j(x�x(0); x(0)) functions being extracted from the Monte Carlo sim-

ulation, as done for the spin{sensitive background. In principle, one can think that

the Dother j(x � x(0); x(0)) may be approximated by uniform distributions (which

would mean a complete dilution of the underlying spin dependence). On the con-

trary, this hypothesis is not correct at all. In �g. 5.18, we present
R
Dother j(cos �h�

cos �
(0)
h
; cos�

(0)
h
)dcos�

(0)
h
, Dother j(�h��

(0)
h
) and

R
Dother j(W �W (0);W (0))dW (0), for

j = �.

In eq. 5.9, the mis{identi�cation eÆciencies are �other j(cos �
(0)
h
), which were in-

troduced before.

Non{tau background

The background contribution from non{tau sources is clearly spin{independent

and, thus, can be treated as a constant dilution of the e�ective spin density matrix.
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Figure 5.14: Smearing function of the polarimeter polar angle for � channels mis{identi�ed as

�2�0, in four coarse bins of cos �
(0)

h .

Nevertheless, we do not need to introduce any correction for it, since the amount

of this background is completely negligible.
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Figure 5.15: Smearing function of the polarimeter polar angle for �2�0 channels mis{identi�ed

as �, in four coarse bins of cos �
(0)

h .

5.6 Likelihood function summary

Every event identi�ed within one of the decay categories considered is used to pro-

vide a likelihood for observing that event as a function of the anomalous coupling

strengths. The e�ects of instrumental resolution on the observed hemisphere pa-

rameters (W ,cos �h,�h) and contamination from all known background sources are
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Figure 5.16: Smearing function of the polarimeter azimuthal angle for � channels mis{identi�ed
as �2�0.

incorporated into the e�ective ~H�(W; cos �h; �h) functions, which are computed for

each identi�ed hemisphere before the likelihood �t is performed. These e�ective

~H functions are the weighted sum of the individual ~H for each physics process ex-

pected to be present in a given identi�ed channel, as predicted by the Monte Carlo

simulation.



5.6 Likelihood function summary 73

0

0.1

0.2

0.3

0.4

0.5

0.6

-2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-2 0 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

-2 0 2

Figure 5.17: Smearing function of the polarimeter azimuthal angle for �2�0 channels mis{
identi�ed as �.

Each identi�ed �+�� in the topology (ij) then contributes a likelihood given by

Lij = �R��(�� ; d� j
) ~H�

i (W1; cos �h1 ; �h1)
~H�

j
(W2; cos �h2 ; �h2) ; (5.11)

such that the total likelihood function given by

F (�� ; d�) � �2 X
events

logLij (5.12)
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Figure 5.18:
R
Dother �(cos �h � cos �

(0)

h ; cos �
(0)

h )d cos �
(0)

h and Dother �(�h � �
(0)

h ) (top, left and
right) and

R
Dother �(W �W

(0)
;W

(0))dW (0) in the bottom{middle.

can be minimized to �nd the most likely value of the anomalous dipole coupling

parameters. The actual �t results and a discussion of the interpretation of the errors

on the �t values will be covered in the next chapter.



75

Chapter 6

Systematic errors and results

In this chapter, we �rst test the �tting formula with a calibration procedure. Af-

terwards, the results on the data and some cross checks are presented. Finally, we

estimate the most relevant systematic errors and compare with the measurements

of other experiments.

6.1 Calibration curves

It is desirable to check the performance of the �tting formula developed in the

previous chapter, in an appropriate region of the anomalous couplings around the

SM prediction (which is zero except for small radiative correction e�ects, below our

sensitivity), and also taking into account our expected experimental uncertainty.

For this purpose, we make use of the SCOT Monte Carlo [39], with a simple radiator

function to include the Initial State Radiation [40], and interfaced with the full

detector simulation. For every anomalous coupling, we have generated �ve sets

of tau Monte Carlo samples at di�erent values of each coupling. Each set has a

size typically equal to that of the tau data sample and branching ratios as in the

PDG [23].

Detector e�ects and background may not be fully simulated in the �tting for-

mula, and this may cause a disagreement between the �tted anomalous couplings

and those of the generation. The more relevant background is the contamination of

�2�0 into � and the contamination of � into �, as shown in �gs. 5.10{ 5.12. Since

the analytical expressions of the polarimeters di�er for each decay topology (see

appendix B), an incorrect channel assignment will translate in a dilution of the
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underlying tau spin structure; and therefore, in a dilution of the event observables

for measuring the weak dipole moments. This all is what we explore below.

For every channel and every anomalous coupling, we have plotted the �tted

versus the generated values which, in principle, should lie on a straight line, y = ax,

intersecting the origin. Any deviation of the a parameters from 1 is an indication

of a bias introduced by the �tting formula due to the incorrect modeling of the

detector and background e�ects.

The results of the straight line �ts for every channel and every anomalous cou-

pling are shown in table 6.1. For the �{� channel we also present the corresponding

curves in �g. 6.1.

The slope is not always compatible with 1, as one would expect if the detector

e�ects and the background were correctly modeled in the formula. For the =(d�)
parameter in the �{� channel , the deviation of the slope from 1 is very signi�cant.

This has been understood as badly reconstructed events (i.e. background), which

distort the results. The introduction of the Dij functions is not suÆcient to recover

the proper values. However, the curves are in most cases good straight lines, as

shown by the �2 of the �t.

Since we are dealing with a multidimensional �t, the correct description of all

the detector e�ects and background is very diÆcult. Such e�ects and processes

introduce some correlations between observables which are very diÆcult to take

into account. Therefore, the values obtained with the �t explained in the previous

chapter are corrected by the calibration curves of table 6.1.

6.2 Likelihood results

As we want to correct the �tted results for every channel and anomalous coupling

independently, we need the results for each topology. A four parameter �t is carried

out for each �nal state topology. Therefore, each �t provides four values with certain

individual correlation between them, which are found to be very small (typically

� 10%).

We then obtain a set of measurements f~x��; ~x��; � � �g, with ~x = (x1; x2; x3; x4)

the four anomalous couplings (the subindex ij of ~xij stands for the decay topology).

From the minimisation, there is some small statistical correlation between the xl
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Channel <(�� ) =(�� )
a �2=ndf a �2=ndf

�{� 0.79 � 0.12 4.63/4 0.85 � 0.13 7.27/4

�{� 0.931 � 0.055 9.23/4 0.649 � 0.069 3.99/4

�{�2�0 1.23 � 0.11 7.91/4 0.99 � 0.13 1.54/4

�{3� 1.11 � 0.11 3.17/4 0.91 � 0.14 0.14/4

�{� 0.937 � 0.056 1.54/4 0.609 � 0.074 1.11/4

�{�2�0 1.022 � 0.072 6.11/4 0.768 � 0.099 5.55/4

�{3� 0.911 � 0.072 1.80/4 0.570 � 0.095 0.87/4

�2�0{�2�0 1.09 � 0.19 0.79/4 0.70 � 0.25 3.70/4

�2�0{3� 1.07 � 0.13 1.55/4 0.57 � 0.18 0.34/4

3�{3� 0.95 � 0.19 1.42/4 0.48 � 0.27 1.92/4

Channel <(d� ) =(d� )
a �2=ndf a �2=ndf

�{� 0.810 � 0.082 1.65/4 0.588 � 0.096 2.14/4

�{� 1.078 � 0.056 5.03/4 1.022 � 0.070 1.12/4

�{�2�0 1.14 � 0.11 3.30/4 0.79 � 0.14 2.49/4

�{3� 1.22 � 0.11 4.08/4 1.19 � 0.14 1.35/4

�{� 1.064 � 0.060 1.53/4 0.794 � 0.076 1.59/4

�{�2�0 1.009 � 0.077 2.28/4 0.89 � 0.10 2.62/4

�{3� 0.889 � 0.072 2.42/4 0.612 � 0.095 1.51/4

�2�0{�2�0 0.96 � 0.20 6.63/4 0.85 � 0.25 2.27/4

�2�0{3� 0.90 � 0.13 0.62/4 0.70 � 0.18 2.74/4

3�{3� 0.92 � 0.19 2.34/4 0.69 � 0.24 2.09/4

Table 6.1: Results of the �t of the calibration curves for the magnetic moment (top) and for
the electric moment(bottom), for each of the decay topologies. We also give the value of the slope
from the �t, a, and the �2=ndf .

(l = 1; � � � ; 4) of a given ~xij, but the correlation between the xl of di�erent decay

topologies is zero.

The set of measurements f~x��; ~x��; � � �g with only their statistical errors are

presented in �gs. 6.2 and 6.3. Each �gure gives the results on two anomalous

couplings for the various channels. At this stage, all the results are compatible

with the SM prediction. The statistical errors vary from � 0:8 � 10�3 for the

measurement of <(�� ) with the �� channel to � 4:3� 10�3 for the measurement of

=(��) with the �2�0{�2�0 channel.

Once the f~x��; ~x��; � � �g are obtained, for every coupling and every topology, we
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Figure 6.1: Calibration plots for the �{� channel, for <(�� ) and =(�� ) (top{left and top{right);
and for <(d� ) and =(d� ) (bottom{left and bottom{right). The reconstructed values are plotted
versus those of the generation. The �tting curve is y = ax and the result of the �t, a, is shown
on each plot.

correct the f~x��; ~x��; � � �g by the set of a parameters of the previous section. We

then have a set of f~y��; ~y��; � � �g measurements, where each y is related with the

previous x by y = x=a, using the a values of table 6.1, which are di�erent for every

anomalous coupling and every decay topology.

Finally, we would like to obtain a vector ~� = (�1; �2; �3; �4) with the �nal mea-
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Figure 6.2: Results on the <(�� ) (top), and on the =(�� ) (bottom), versus the various decay
topologies.

surements of the anomalous couplings from all the data sample. For this purpose,

we minimize the following �2:

�2 = P
�
V �1

�
P T with P =

0
BBBBBB@

~�� ~y��
~�� ~y��

:

:

:

1
CCCCCCA
; (6.1)
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Figure 6.3: Results on the <(d� ) (top), and on the =(d� ) (bottom), versus the various decay
topologies. The weak electric dipole moment is assumed dimensionless in these �gures.

where V is the covariance matrix of the f~y��; ~y��; � � �g, obtained from the 4 parame-

ter �ts performed before. As pointed out already, the only elements with statistical

correlation are those belonging to the same topology. Therefore, this covariance

matrix is a 40 � 40 squared matrix, which can be expressed as (4� 4)� 10� 10,

since the non{zero elements are 4� 4 squared matrix placed in the diagonal.

The combined results from the minimisation of the �2 are presented in table 6.2,
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and the individual correlation between the �t parameters in table 6.3.

The errors have decreased considerably from the combination, as it was obviously

expected, but the relevant point is that we get very competitive results comparing

with the measurements of other experiments. This will be fully covered in the last

section of this chapter. The individual correlations between parameters are quite

small. Thus, our numbers would not modify substantially if we had obtained them

from 1 parameter �ts. However, we have preferred to perform 4 parameter �ts

because the small correlations are taken into account and also because the CPU

consumption is not very high.

We could also wonder about the impact of the individual corrections, i.e. those

introduced by the a slopes, on the �nal numbers. To see this e�ect, we have

just minimized the �2 of eq. 6.1 replacing the f~y��; ~y��; � � �g by the uncorrected

f~x��; ~x��; � � �g. The results are shown in table 6.4. As expected, the e�ect is more

important on (<(d� ), =(d� )) than in (<(�� ), =(��)), because the deviation of the

slopes from 1 is more signi�cant for the former parameters.

Parameter Fit value �

<(�� )[10�3] 0.65 0.40

=(�� )[10�3] -0.68 0.82

<(d� )[10�18e � cm] -0.89 2.14

=(d� )[10�18e � cm] 1.48 3.77

Table 6.2: Fit values for the weak anomalous dipole moments and 1 � statistical error, from the
90-95 LEP data sample.

<(��) =(��) <(d� ) =(d� ) Global

<(�� ) 1.0 -0.011 0.049 0.062 0.080

=(�� ) 1.0 -0.084 0.062 0.105

<(d� ) 1.0 -0.011 0.098

=(d� ) 1.0 0.088

Table 6.3: Correlation matrix between the �tted parameters.
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Parameter Fit value �

<(�� )[10�3] 0.67 0.39

=(�� )[10�3] -0.43 0.55

<(d� )[10�18e � cm] -1.10 2.17

=(d� )[10�18e � cm] -1.04 3.07

Table 6.4: Fit values for the weak anomalous dipole moments and 1 � statistical error, from
the 90-95 LEP data sample, without any correction from the calibration curves. Comparing with
table 6.2, we can see that the impact is more signi�cant on the electric terms than in the magnetic
terms. This e�ect is due to the more relevant deviation of the slopes from 1 for the former
parameters.

6.3 Systematic checks

Some of the steps taken in the previous section, in particular the calibration curves

applied, are corrections for systematic e�ects arising from the incorrect modeling

of background and detector e�ects in the �tting formula. In addition, we can check

that other possible systematic e�ects are small and do not a�ect our results.

The �ts have been obtained independently for every tau decay channel and the

results are consistent, as shown in the �gs. 6.2 and 6.3.

Another test comes from the comparison of the data and the Monte Carlo sim-

ulation for the event observables. This is shown in �g. 6.4 for the cos �h of the

polarimeter for the four channels considered. Figs. 6.5, 6.6, 6.7 and 6.8 show the

comparison of the �h of the polarimeter in four bins of cos �h for every channel.

Finally, the W variable for the data and the Monte Carlo simulation is presented

in �g. 6.9 for the �, �2�0 and 3� channels.

The angular variables obtained from the data are consistent with those of the

simulation. However, the W variable of some channels di�ers strongly for the data

and the Monte Carlo simulation. The most relevant inconsistency on this variable

is found for the �2�0 channel: the distribution of the W for the data is higher than

that of the Monte Carlo simulation by 2 to 4 sigmas in the low W region. However,

the sensitivity of the anomalous couplings is stronger for the angular variables. The

e�ect of the W discrepancy will be investigated in the next section.
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Figure 6.4: Comparison of the cos �h distribution for the data (points) and the Monte Carlo
simulation (lines) for the four channels considered. The areas of all the histograms are normalized
to unit, and the �2 of the comparison is shown on each plot.

6.4 Systematic uncertainties

The systematic uncertainties coming from di�erent sources have been calculated

for every anomalous coupling and decay topology. The estimates are shown in

tables 6.5, 6.6, 6.7 and 6.8. The most signi�cant uncertainties are due to ECAL

e�ects, the a1 dynamic modeling and the W disagreements. This all is covered
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Figure 6.5: Comparison of the �h distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos �h for the pion channel. The areas of all the histograms are
normalized to unit, and the �2 of the comparison is shown on each plot.

below.

In all cases, the di�erent sources of systematic e�ects have been varied up and

down within their errors or estimated variation intervals, and the maximum di-

�erence in the �tted parameters is quoted as the corresponding systematic error.

When various di�erent e�ects are grouped under the same column, a geometrical
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Figure 6.6: Comparison of the �h distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos �h for the � channel. The areas of all the histograms are
normalized to unit, and the �2 of the comparison is shown on each plot.

mean is applied to the individual errors in order to obtain the number in the column.

In previous tau analysis in ALEPH, the response of the electromagnetic calorime-

ter ECAL has been observed to introduce relevant systematic e�ects on the measure-

ment of the energy of events [46]. Here, we explore the error due to the uncertainty

in the global scale, and the error due to the mis{intercalibration between modules.
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Figure 6.7: Comparison of the �h distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos �h for the �2�0 channel. The areas of all the histograms are
normalized to unit, and the �2 of the comparison is shown on each plot.

For the total scale, global variations of the ECAL modules by a factor of � 0.7%

have been considered. The estimate of the systematic error has been obtained,

as already said, taking the maximum di�erence of the �tted parameters. For the

intercalibration between modules, a random mis{intercalibration of 0.4% has been

applied, obtaining an independent error estimate for this e�ect. The geometrical
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Figure 6.8: Comparison of the �h distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos �h for the 3� channel. The areas of all the histograms are
normalized to unit, and the �2 of the comparison is shown on each plot.

average of these two uncertainties is presented under ECAL in the tables mentioned

above.

Variations in the � branching fractions (� BF in the tables) can also introduce

systematic e�ects. They have been estimated by varying the pion and the electron

branching fractions within their errors in the �tting formula. The former is needed
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Figure 6.9: Comparison of the W distribution for the data (points) and the Monte Carlo
simulation (lines) for the �, �2�0 and 3� channels. The areas of all the histograms are normalized
to unit, and the �2 of the comparison is shown on each plot.

to get W of the pion, and the latter is used for normalisation, since in our formula

we express the W 's in units of �e. These are the two only points in the �tting

formula where the branching fraction are used. Other possible e�ects from this

source would appear either in the shape of the resolution functions, the eÆciency
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functions or in the slope of the calibration curves. These would be \higher order

corrections".

The uncertainties under the \Weak par." column are due to variations of the

sin2 �W andMZ within their experimental errors in the �tting formula. Other weak

parameters have negligible e�ect on the measurements.

The \MC stat." errors are due to the �nite Monte Carlo statistic in the de-

termination of the eÆciency matrix. Global variations up and down of the mean

values of each bin have been performed in order to see the sensitivity to this source

of error.

The theoretical model to describe the a1 dynamic is not perfect. For the mea-

surement of the ALEPH polarisation in the past [47], this correction was evaluated

implementing several models in the analysis [48]. For this analysis the implementa-

tion of the models is considerably more diÆcult. To estimate this e�ect we have done

the analysis with three di�erent models: the Kuhn & Santamaria (KS) model [49]

(considered in the �tting formula), the Feindt model [50] and the Isgur Morningstar

and Reader (simpli�ed) model [51]. The e�ect of the two latter models in the W

and in the third component of the ~h vector were calculated, and the ratio with the

corresponding values of the KS model were used to scale the error.

Finally, the disagreement between the data and the Monte Carlo simulation on

theW distributions, which was presented in section 6.3, has been quoted as another

systematic error. It is certainly the most relevant systematic uncertainty in most

of the measurements. To obtain the numbers in this column we have weighted the

W observable from the data by the quotient MC/data of the plots of �g. 6.9.

Finally, the total systematic uncertainty is expressed for every parameter and

every channel, obtained as the geometrical average of the di�erent sources of sys-

tematic errors.

6.5 Final results and comparison with other ex-

periments

To obtain the �nal results, we include in the diagonal of eq. 6.1 the total error

and perform the �2 minimisation. This total error is the geometrical mean of the
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ECAL �BF Weak par. MC stat. a1 dyn. W dis. TOTAL

�{� 5.70 4.65 0.08 5.52 0. 0. 9.20

�{� 1.81 2.18 0.11 2.47 0. 2.41 4.47

�{�2�0 5.86 1.50 0.06 1.64 0.47 0.14 6.29

�{3� 0.55 1.97 0.15 2.17 1.34 2.96 4.41

�{� 1.28 1.29 0.10 1.39 0. 0.71 2.40

�{�2�0 1.98 1.00 0.06 1.19 1.86 1.02 3.29

�{3� 4.10 0.84 0.07 0.97 0.54 1.27 4.51

�2�0{�2�0 11.28 0.21 0.13 0.38 11.02 5.87 16.83

�2�0{3� 3.36 0.32 0.02 0.40 2.60 1.07 4.41

3�{3� 6.09 0.75 0.24 0.79 4.79 0.04 7.83

Table 6.5: Systematic uncertainties on <(�� ) for the di�erent channels, and on the last column
the total systematic uncertainty for each �nal state topology. The errors are expressed in units of
10�4.

ECAL �BF Weak par. MC stat. a1 dyn. W dis. TOTAL

�{� 2.14 0.65 0.09 0.74 0. 0. 2.36

�{� 1.61 0.16 0.03 0.28 0. 1.29 2.09

�{�2�0 8.35 0.61 0.32 0.66 7.25 5.43 12.36

�{3� 3.22 0.74 0.21 0.96 6.91 1.26 7.83

�{� 0.97 0.36 0.05 0.40 0. 0.19 1.12

�{�2�0 3.79 0.06 0.04 0.20 1.40 2.81 4.92

�{3� 0.70 0.08 0.05 0.08 1.22 4.65 4.86

�2�0{�2�0 8.69 0.22 0.34 0.30 4.28 14.62 17.54

�2�0{3� 7.34 0.21 0.16 0.20 8.96 6.50 13.29

3�{3� 2.05 0.72 0.17 1.04 5.88 1.30 6.49

Table 6.6: Systematic uncertainties on the =(�� ) for the di�erent channels, and on the last
column the total systematic uncertainty for each �nal state topology. The errors are expressed in
units of 10�4.

previous statistical error and the total systematic uncertainty.

Therefore, the minimisation of the updated eq. 6.1 now provides the measure-

ment of the weak anomalous couplings with their total errors. The results of the �t

are expressed in table 6.9, where the total error from this minimisation is denoted as

�, the statistical error as �stat and the systematic error as �sys. The statistical error

is the value obtained before and the systematic uncertainty �sys is the geometrical


