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ECAL photons

The clustering algorithm for the photon reconstruction is explained in [28]. Tt
starts with a search for local maxima among the towers in the three ECAL stacks.
The segments of a projective tower which share a face in common with the local
maximum are linked together into a cluster. At the end of the procedure, every
segment of a tower is clustered with its neighbour of maximal energy. A cluster
is then accepted as a photon candidate if its energy exceeds 350 MeV and if its

barycentre is at least 2 cm away from the closest charged track extrapolation.

The energy of the photon is calculated from the energy of the four central towers.

The direction of the photon is determined from the barycentre of energy deposition.

In order to distinguish fake photons ' from photons originating from 7° decays
or other physical sources several estimators are constructed and a likelihood method

is used. For every photon the following estimator is defined:

Pgenuz'ne

- Pgenuine + Pfake ’

P,
where P? is the estimator under the photon hypothesis of type i given by
P = II (x5,

and ﬁ[; (z;) is the probability density for the photon hypothesis of type i associated

to the discriminating variable ;.

These are the discriminating variables used to distinguish between genuine and

fake photons:

- fractions of energy in the first and second stacks of ECAL,
- fraction of energy outside the four central ECAL towers,

- transverse size of the photon shower,

- angular distance (d,,) to the nearest photon,

- distance between the barycentre of the photon and the closest charged track
(a sign is computed depending on the position of the photon shower with

respect to the track bending in the r — ¢ projection)

LA fake photon is a photon produced by whatever mechanism with non—physical source.
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- energy of the photon.

Reference distributions of these discriminating variables have been established

from the Monte Carlo simulations for genuine and fake photons.

4.3.2 7 reconstruction

The energy of the 7°’s from tau decays at the Z° peak can vary from few MeV up
to about the nominal beam energy. For the whole energy range, an almost constant
fraction of 7%’s are reconstructed from converted photons in the tracking system.
At the low energy regime, one of the photons is not detected in the ECAL for most
of the 7%’s because of threshold, cracks or overlap with another electromagnetic
or hadronic shower. These are called 7”’s from residual single photons. From 5
to about 20 GeV of energy, for most of the cases the two +’s are resolved in the
electromagnetic calorimeter. The energy resolution is very good in this regime
(typically o ~ 0.02 GeV/c?). At high energy the two y’s showers are very close
and they can only be resolved a few times. The energy resolution deteriorates with

increasing energy and is op &~ 0.06 GeV/c? at 30 GeV/c2.

In fig. 4.1 the fractions of resolved and unresolved 7%’s and single photons as a
function of the 7° energy (from ref. [36]) are summarized. It can be seen that the
fraction of resolved 7’s without converted photons remains at a relatively high level
above 25 GeV. This is caused by the fact that the corresponding showers quite often
have large fluctuations yielding two separate photon candidates in the clustering
algorithm. This effect is not well reproduced by the Monte Carlo simulation, where
this shower splitting occurs less frequently. The excess of resolved 7°’s at high
energy corresponds to a deficit in the unresolved 7° fraction. However, the sum of

the resolved and unresolved 7° fraction is well described by the simulation.

The mechanism for the reconstruction of each of the 7° types is explained at
length.

7¥ with two resolved ~’s

The first step of 7° reconstruction is the pairing of all photon candidates within
one hemisphere, considering all possible combinations. Only photons inside a cone

of 45° around the thrust axis are considered for the pairing. A 7° identification
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Figure 4.1: Fractions of resolved and unresolved 7°’s and single photon as a function of the

70 energy. The points represent the data, and the open squares the simulation. The proportion

of 7%’s containing at least one converted photon is also plotted: Converted v in the first plot;
again, the full points correspond to the data and the open ones to the simulation. The fraction
of resolved 7°’s without converted photons and that of unresolved 7°’s differ for the data and the
Monte Carlo simulation at a energy above 25 GeV. We comment on this effect in the text.

estimator DZ”; for two photons 7 and j is defined in the following way:

Df. =P, P, Py
where P, is the estimator for photon 7 to be genuine according to eq. 4.3.1 and Pro

is the probability coming from a kinematic m°-mass constrained fit.

A dependence of the 7 invariant mass with energy is observed as explained in
ref. [36]. Once the resolved 7%’s are identified, a second kinematic constrained fit is
performed to the nominal 7° mass, which allows a better determination of the 7°

energy as shown in fig. 4.2 (also from ref. [36]).

7% with unresolved 7’s

As the 7¥ energy increases it becomes more difficult to resolve the two photons

and the clustering algorithm may yield a single cluster. The two—dimensional energy
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Figure 4.2: Energy resolution of the exclusive 7%

kinematic fit according to the simulation.

’s as a function of energy before and after the

distribution in the plane transverse to the shower direction is examined and energy—
weighted moments are computed. The second moment provides a measurement of
the v invariant mass. As the photon energy increases this technique reveals a wide
peak at the 7° mass as explained in ref. [36]. We keep as 7° candidates all single

0

clusters not entering the previous 7° reconstruction but having an invariant mass

larger than 100 MeV /c? according to this method.

70 from residual single +’s

After the paring of photons and the cluster moment analysis, all the remaining
photons inside a cone of 30° around the thrust axis are called residual single pho-
tons. About 50% of the total are fake photons, separated from photons coming from
physical processes with the estimator P,p.,, explained in ref. [36]. The remaining
single photons with physical origin could come from bremsstrahlung processes, ra-
diative processes and 7° decays. Three more estimators are calculated (Pgrem, Prad,
Pro_,,) taking into account the angle between the photon and the most energetic

charged track, and the discriminating variables from section 4.3.1. Residual single
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photons with Pro_,, value larger than 0.07 are declared single photons coming from

70 decay.

4.4 Tau decay classification (TOPCLAS)

The tau decay classification is done with a code called TOPCLAS, developed for
the analysis of ref. [36]. It takes into account the number of charged tracks, their
identification and the number of reconstructed 7°’s. A total of 13 classes are deter-
mined, but only four of them are relevant for this analysis: h, hw?, h27° and 3h.
Here h stands for either a charged kaon or a charged pion. However, we are only
interested in pions and kaons are treated as background. We then name the above

four classes as m, 7%, 727 and 37.

The invariant mass distributions for two of the classes considered are shown in

fig. 4.3 (from ref. [36]). The agreement between data and the simulation is good.
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Figure 4.3: Invariant mass distributions for two of the classes of this analysis. The points
with errors bars show the observed distributions, the solid histograms represent the simulated
distributions and the shaded histograms account for the expected 7 background.
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4.5 Selection efficiencies and candidates

Four of the most sensitive observables to the weak dipole moments are spin cor-
relations between the two taus, as it was shown in section 2.1.3. Therefore, both

hemispheres need to be identified.

We have used for the event selection the tools explained before and in addition
have required a correct reconstruction of the event observables (Wi, cos 6y, ¢p,, W,
cos O,,, dn,), which reduces the number of candidates by 21%. The reconstruction
of these event observables makes use of the tau flight direction, but this will be

covered later.

Table 4.3 shows the global selection efficiencies of the decay modes considered
and the percentage of 7 background without requiring the correct reconstruction of
the event observables. For the final analysis, we use a matrix of selection efficien-
cies presented in the following chapter. However, this table is useful to compare
with other analysis carried out in ALEPH. The numbers of table 4.3 have been
calculated with the Monte Carlo simulation and only the statistical uncertainties
are given. The amount of non—tau background is not added to the table because
it is completely negligible after requiring the correct reconstruction of the event

observables.

We report, in table 4.4, the number of candidates in each channel as obtained
from the whole data sample, in which we have required the correct reconstruction
of the event observables. Finally, table 4.5 shows the data sample considered in
this analysis. We present, for each of the years of data taking, the various center of

mass energies and the corresponding integrated luminosities.

4.6 Monte Carlo and detector simulation

The reference Monte Carlo program in this analysis is SCOT [39], a program de-
scribing ete™ — 7777 at an energy around M. It has a full description of the spin
of both taus and, moreover, a complete parametrisation of the Lorentz structure of
the neutral current. We have set v,, a., v, a, to the SM values, and have explored

iy and d,.

Nevertheless, this program does not take into account bremsstrahlung correc-
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7 decay | Efficiency (%) | T Background (%) |
T 57.57 £ 0.39 24.18 + 0.39
T—mm° 58.39 £ 0.19 21.44 £ 0.18
- 270 50.36 £ 0.31 34.09 £ 0.34
3T 54.29 £ 0.31 16.42 + 0.28
- 59.76 £+ 0.19 19.47 £ 0.17
arl-m2rY | 52.12 £ 0.22 31.92 £ 0.23
-3 54.66 £ 0.21 13.96 + 0.19
2707270 | 45.84 + 0.50 42.73 £ 0.56
727037 46.98 £ 0.35 27.69 £ 0.39
33 50.98 £ 0.48 8.57 £ 0.36

Table 4.3: Selection efficiencies for the different decay channels and 7 background. The errors
are only due to the Monte Carlo statistic.

‘ Class ‘ Events ‘ Class ‘ Events
T 1901 w027 6395
T—rmd 7844 mrl-mw3m 5242
m—m2m° 2673 | m2n%-m270 | 1125
T—3T 2040 m2m0-371 1950
arl-mrd | 8624 3m—3m 712

‘ Number of all events used: 38506

Table 4.4: Number of reconstructed events for the decay combinations.

tions, but in a first approximation we have added the initial state radiation by the

simple radiator [40]

3 2 1
()= g1+ 254 2T ) - D), (4.0)
where [ is defined as
2c S
f=—(n—7—1), (4.2)

and = € [0,0.2], being the fraction of the beam energy carried by the initial state
photon.

KORALZ [41] is another Monte Carlo program adequate at LEP I energies which

can be used for lepton and quark pair production. This program includes initial and
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1990 data [ 1991 data | 1992 data [ 1993 data | 1994 data | 1995 data

Vs L | Vs L | s L | s L | Vs £ | s £
88.25 482 | 88.50 668 | 91.25 20999 | 89.50 8065 | 91.25 49089 | 89.25 8295
89.25 520 | 89.50 797 - - 91.25 14434 - - 91.25 17159
90.25 447 | 90.25 753 - - 93.00 8693 - - 91.75 72
91.25 3624 | 91.25 7546 - - - - - - 93.00 9355

92.25 555 | 92.00 693 - - - - - - -

93.25 597 | 93.00 677 - - - - - - -

94.25 642 | 93.75 797 - - - - - - -

Table 4.5: Data sample considered in this analysis. The center of mass energy is given in GeV.
The luminosity is given in nb~!. The total integrated luminosity is 155 pb~!.

final state bremsstrahlung corrections, which in principle are missing completely in
SCOT. In this case, however, only the longitudinal spin effects are considered and

for the Lorentz structure of the neutral current, only the SM description is assumed.

Finally, the KORALB Monte Carlo [42] program has the complete description
of the spin effects in tau production within the neutral current structure predicted
by the SM. However, no bremsstrahlung correction is applied. This Monte Carlo
program was used at the beginning of this analysis to verify the results obtained
with SCOT within its scope.

In order to compare with the real data, a detector simulation is needed after the
events are generated with one of the above Monte Carlo programs. This is done
with GALEPH [43], a program in which all the information about the geometry and
materials involved in the experimental setup of ALEPH is described. For the tra-
cking simulation, the primary long-lived particles are followed through the detector.

Secondary particles are also produced by interaction with the detector material.

4.7 Tau direction of flight

The reconstruction of the % vectors needs the tau flight direction, since the momenta
of the decaying particles are expressed in the tau rest frame. The expressions for

the h vectors are shown in appendix B.

For events in which both taus decay hadronically, two independent angles, 6+, +,
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between the 7% and the corresponding hadron, can be determined by the following

equation:

2 2
2B Ep+ —my — my,

cos(Op+,+) = , (4.3)

JAE2 = m2) (B2 —mip,)
where Ej+ is the hadron energy in the laboratory frame. To obtain this expression,
the energy and momenta conservation are used, and the following assumptions are

made:
- the 7’s are produced back—to-back with E.+ = E,- = E, = /5/2 1,
-my, =my. =0.

For each decay, the corresponding 6,+,+ angle determines a cone around the
hadron momentum where the tau direction could lie. If one of the cones is inverted,
the intersection of both surfaces determines two solutions (7; and 73), as shown

schematically in fig. 4.4.

h +
T+
+ - T
e e %
Q
T2

Figure 4.4: Geometric view of the 7 flight direction reconstruction and the two possible solutions
71 and Ty.

To express both solutions we choose the following unitary vectors:

. A 1 . .
Ny = Ng X N3 =———(Pp- — Pp+ cos(AfO
Sn(A0) (Pn- — Dr+cos(AD))
!Event by event, /5/2 is considered to be equal to the beam energy measured by LEP, in order
to take into account variations of the center of mass energy from M.
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~ ]‘ ( ~ X ~ )

n = _ —

2 sin(Ag) Prm TP

ﬁg = _p}/;Jr y (44)

where cos(Af) = pp- - pp+, and where the pp+ are unitary vectors in the direction
of the hadrons.

If we express the tau direction coordinates as é, = any + bny + cns, it turns out
that

1
a = Sn(20) (cos(0p-r-) + cos(Op+,+) cos(A))
c = cos(Op+rt),

b = £V1—a?—¢2, (4.5)

where the two solutions correspond to the two signs of b.

The expression 1 —a? — ¢? is not always greater than zero, due either to detector
effects or to Initial State Radiation. In practice it is possible to reconstruct the two

tau directions only for about 63% of the hadronic events.

For events with two tau directions, in principle, it could be possible to disentan-
gle the good solution using the information of the vertex detector [44, 45]. By con-
trast, one of the methods to measure the tau polarisation at LEP I in ALEPH [46]
has shown that this improvement is very small. Thus, we have preferred to average

the information coming from each of the solutions in the fitting expression.

In this analysis we consider events with two reconstructed tau directions, and
also an extra fraction of events in which the tau flight direction is obtained with
a procedure developed for the measurement of the tau polarisation [46]. In this
procedure, the particle momenta are fluctuated within their nominal errors 500
times, and the two possible solutions from the intersection of the two cones are tried
to be determined each time. The event is accepted if the cones have intersected at

least 10 times, and the tau direction is the average over all the solutions found.



Chapter 5

Likelihood function

In section 2.3, we introduced the likelihood function of this analysis from the theo-
retical point of view. Nevertheless, in reality some more elements have to be taken
into account, such as the detector resolution and the presence of background. In
this chapter we add these two effects to the likelihood function, in order to properly

describe the event probability of a detected event.

5.1 Likelihood formalism

The theoretical likelihood function was written in section 2.3 for the decay topology

(ij) as the following product:

Lid(,uTa d7—|Q, Wla Cos ghla ¢h17 W27 COos ghza ¢h2) =
RMV(/'LTa dT7 Q)H{L(Wl, COos ghla ¢h1)HJl~/(W2, COos ghza ¢h2) )

with

_ R (ttr, dry Q
RMV(/'LT7dT7Q) = M

A2 (i, dr, 2)
~ B
H* (W, cos by, ) = VI; : (5.1)
The normalization is such that
Z/Lij(uT,dTm,Wl,cos O, sy Way 08 O, 6 )dK1d X = 1. (5.2)
tj

And the event observables are (W7, cosOp,, ¢n,, Wa, cosO,, dn,).
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Nevertheless, two effects have always to be considered to properly describe the
event probability: the detector effects and the background. The former may be
treated by convoluting the likelihood function with a multidimensional resolution
function, taking into account the possible true values of the observables given cer-
tain measurements. The latter are introduced in the fitting formula by correctly

weighting their contributions.

Formally, the event probability for the decay topology (ij) is given by !> 2

L = [ Rulier dAQ HEW, cos 0, ) 7 (W3, cos 612, )
T%j (Wla COos 9h17 ¢h17 WZ) COos ghza ¢h27 W1(0)7 cos 9}(3), ¢§Lol)’ WZ(O), COS 9,(:;), d)gg)) X
dWl(O)d cos 9,(3) dqﬁgol) dWQ(O)d cos 9,(:;) dd)gg) + Background ,

where 7' is the resolution function describing the probability that an event produced
with “true” values (WI(O), cos 9,(3), ¢>§f’1’, WQ(O), cos 9,(;;), ¢§f2)) is observed with the mea-
sured values (Wi, cosO,, épn,, Wa, cosOh,, dn,).

To calculate the resolution function in ten dimensions is almost impossible and,

therefore, some simplifications have to be applied. We will write the likelihood for

each event as

Ly = [ Bulpr, d )V, cos 0, ol HY (WS, cos 0, 62
D;(Wy — W, WI(O))Di(cos 0, — cos 9,(:)1), cos 9,(1[1))Di(¢h1 - quﬂ), quﬂ)) X
D;(W, — w0, WQ(O))D]- (cos By, — cos 9,(2), cos 9,(2))Dj(¢h2 - ¢§g), ¢§g)) X
€i(cos 9,(:)1))63' (cos 9,(2) )dWl(O)d cos 9,(1[1) d¢§lol) AW Vd cos 9,(2) d¢§g) : (5.3)

The convolution of the detector effects with the event probability is factored for
each of the decays separately, and, for each decay, into three smearing functions
(D(xz — 2, 2) in the formula, with 2 = W, cos 8y, ¢), one for each of the three
event observables per hemisphere (W, cos#y, ¢,). These functions describe the

smearing effect of the detector for accepted events. There is also an overall efficiency

'In principle the production angle Q should also be part of the resolution function, although
in practice, as long as the anomalous coupling terms are near zero, the resolution on € can be
safely neglected [6].

2The Ry, terms are also functions of the event center of mass energy (,/s), as shown in
appendix A. This dependence is evaluated, for each event, by taken v/s = 2Epcqm, where Epeqm
is the beam energy measured by LEP.
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function (€) describing the probability that a given “true” event will actually pass
the tau selection criteria. We will come back later to the possible dependence of

the efficiency on more “true” variables.

Eq. 5.3 takes as independent statistical variables z — z(® and y — y®, with
z,y = W,cos b, ¢p and x # y. It also assumes z — 2(® and y© to be uncorrelated
quantities, with = and y taking the same values as before. We will see later that in
the final expressions we do take into account certain correlations between the above

variables.

5.2 Smearing functions

In this section, we explain how to determine D(z — z(®,z(®)). In what follows, z
will be either W, cos @), or ¢,.

For each channel, D(z — z(®, z(0) is a two dimensional function describing the
probability that the smearing introduced by the detector is (z — x(o)) for a certain
generated z(*) with reconstructed z. Therefore, we calculate D(z —2(®, #(0)) within
the acceptance region for (9. If we define e = z — (%, it follows from the definition
that

/D(e,xm))de =1. (5.4)

This normalization is possible because, when obtaining D(x — 2(®, z(®), each z(®
has associated a certain x. The efficiency of the detector is handled by a separate

function, the € introduced before.

The D(z — 29, 2(0) functions are obtained with the Monte Carlo simulation,
where the probability density functions of z ( = f,(z)) and of (0 ( = f,0 (2(?))
are known. D(z —z(®,£(0) are calculated by binning the (z — 2(*), (%)) plane and
applying the normalization of eq. 5.4 in each bin of z(?). The final two dimensional

binning is determined for each smearing function by requiring that
fol@) = [ D@ = 2®,2) fr0 () ds® | (5.5)

which express the convolution of f, (%)) with the fluctuations introduced by the

detector.
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Smearing function for W

The D(W — W© W ©) functions are calculated for, typically, 600 bins in W —
W©® and 200 bins in W© . This binning is such that eq. 5.5 is satisfied as mentioned

before.

To illustrate the shape of the smearing functions for W, fig. 5.1 presents D(W —
WO W©) in just very coarse bins of W for the p channel. The behaviour of
the D(W — WO W) function for the 727° and the 37 channels is very similar
to that of the p. For the pion decay, the differential partial width is a constant for

unpolarised taus, and thus, W is a known number.

The dependence of D(W — W W) on more variables has also been studied
and has been found to be negligible.

Smearing function for the polarimeter polar angle

The D(cos ), — cos 9,&0), cos 920)) functions are calculated for typically 120 bins
in (cos#), — cos 920)) and 50 bins in cos 9,(10). However, this function increases very
sharply for the p, 727° and 37 channels for values of cos 9,(10) very close to £+ 1; and
therefore we have applied a much finer binning in those regions (about 1400 bins

are taken on (cos @), — cos 920)) ) for those channels.

Figs. 5.2, 5.3, 5.4, 5.5 show the D(cos6), — cos 9,&0), cos 920)) functions in four

coarse bins of cos 920) for the four channels considered.

In each of these plots, every event contributes twice: once for each of the two
available tau directions per event. On the contrary, in the case of the pion decay
channel, the polar angle of the polarimeter is uniquely determined for both experi-
mentally available tau directions. This is a very important feature coming from the

two body decay type.

The behaviour of the smearing functions is as expected for the pion channel:
the negative cos 9,(10) values corresponds to high pion energies, where the energy
determination is poorer. For the other channels, there is a tail which is a function
of cos 9,(10); however, the width of the curves around the peak is not simple to explain,
since the polarimeter expression is more complicated for those cases and the detector

effects are not easy to trace.
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Figure 5.1: Smearing function of the W variable for the p channel in just four coarse bins of
W),

Smearing function for the polarimeter azimuthal angle

The D(¢y, — d)}(}o)) d),(lo)) functions are found not to depend on gbgo), because ¢y, is
a periodical variable and the detector is symmetric in this angle. In what follows

we then omit the second argument.
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Figure 5.2: Smearing functions of the polarimeter polar angle for the pion channel in just four

(0)

coarse bins of cos ;.

It has also been verified that

fon(on) = [ D(on = 61) 1 o (04”10 (56)
However, we have empirically found that (gbh—d),(lo)) is correlated with cos 6),; and
then have calculated D(¢y, — gzﬁg))) in various bins of cos ), (typically 10), checking

that eq. 5.6 is verified in each bin of cos#),.
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Figure 5.3: Smearing functions of the polarimeter polar angle for the rho channel in just four

. 0
coarse bins of cos 02 ),

We illustrate the behaviour of I)(¢h-—-¢g»,cosﬁh),for the four channels con-
sidered, in figs. 5.6, 5.7, 5.8, 5.9, in which just four coarse bins of cos#), are

taken.
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Figure 5.4: Smearing functions of the polarimeter polar angle for the 727° channel in just four

. 0
coarse bins of cos 02 ),

5.3 Detection Efficiency

As shown in eq. 5.3, the efficiency is handled with the €(cos 9,(10)) function. In this

context, the smearing functions can be calculated within the acceptance region of

the generated variables.

In practice, we introduce a matrix of efficiencies, i.e. €;;(cos 19,(1 )), which is the
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Figure 5.5: Smearing function of the polarimeter polar angle for the 37 channel in just four

(0)

coarse bins of cos ;.

probability that a generated event in the topology i is identified as j. In principle,
this function could depend on W(©, on cos Gf(bo) and on ¢§LO). On the contrary, the
dependence on the azimuthal angle is very flat and, furthermore, any possible effect
from W© or gbgo) on the final result could be treated as a systematic error. It
should be also noticed that the ¢;;(cos 920)) function includes both the probability
of selecting an event and the probability of correctly identifying it.
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Figure 5.6: Smearing functions of the polarimeter azimuthal angle for the pion channel in four
coarse bins of cos8y,.

The efficiency matrix €;;(cos 920)

) has been calculated separately in the barrel
(|cos 0] < 0.75) and in the end—cap region (the remainder), where the performance
of the detector degrades. These functions are shown in figs. 5.10 and 5.11. In
both cases, the efficiencies are quite uniform for the diagonal elements, where the
identification is correct. In the off—-diagonal elements, the generated events are mis—

identified within one of the categories considered. It can be seen that the rate of
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Figure 5.7: Smearing function of the polarimeter azimuthal angle for the rho channel in four
coarse bins of cos8y,.

mis—identification of these off-diagonal elements is in, most cases, negligible, despite
the relevant contamination of 727° into p (about 7% in the barrel and 5% in the
end—cap). In fig. 5.12, we present the efficiency for miss—identification of other
tau decays within one of the categories considered, for the barrel and the end—cap

regions. The rate is very small for both regions and for all the channels.
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Figure 5.8: Smearing functions of the polarimeter azimuthal angle for the 727° channel in four

coarse bins of cos8y,.

5.4 Effective H functions

The convolution of the theoretical likelihood function over the detector smearing

and efficiency functions described by eq. 5.3 is only dependent upon the observed

decay properties of the identified hemisphere. This convolution can be re—written
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Figure 5.9: Smearing functions of the polarimeter azimuthal angle for the 37 channel in four

. 0
coarse bins of cos 02 ),

in terms of the effective H functions as
A (W,cos0h,60) = [ AW, cos 0}, 61) x

D;(W — WO WD, (cos b, — cos 9,(;)), cos 920))Di(¢h - ¢§L°), cos fp,) x
€ (cos 0 dW O d cos 0 dgl” | (5.7)

where the € (cos 6\)) = €;(cos 6\).
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Figure 5.10: Efficiency function €;;(cos 020)) as a function of the generated polar angle of the
polarimeter in the barrel region.

The H! functions are recalled in eq. 5.1, and are related with the polarimeter
of each decay, the h vector (explicitly written in appendix B for the decay modes

considered).

The great advantage of factoring the likelihood function in this manner is that
the integrals of eq. 5.7 are calculated only once, because the effective H functions for

each observed hemisphere are completely independent of the anomalous couplings,
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Figure 5.11: Efficiency function €;;(cos 920)) as a function of the generated polar angle of the
polarimeter in the end—cap region.

which are iterated over in the likelihood fit.

5.5 Background

The sample of data we have is very pure, but a few unwanted events are remaining,

which are handled in different ways depending on their source. We classify the
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Figure 5.12: Efficiency function for mis-identifying any tau decay not used in this analysis
(other) within one of the categories considered, for the barrel (top) and the end—cap region (bot-
tom).

background in the following types:

e Mis—identified spin—sensitive tau decay modes.
e Other mis—identified tau decay modes.

e Background from non-tau sources.

All sources of background can be accommodated into the likelihood formalism by
expanding the effective H functions of eq. 5.7. In this sense, the H describe a
weighted sum of the expected components in each identified decay channel. For
each hemisphere identified in channel j, the complete effective H function is then
given by

fN[J“(I/V, cos by, ¢p) =D f[z‘;(VV, cos Oy, dp) - (5.8)

The index ¢ runs over the four identified tau hemisphere types, the background
from other tau decay modes, as well as the non—tau background sources. The new

fl{;(VV, cos Oy, ¢y,) functions are written for the three types of background at length.
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Spin—sensitive tau background

We consider as mis-identified spin—sensitive tau background those events mis—
identified within one of the decay modes considered for this analysis. The effective

fl{;(VV, cos Oy, ¢p,) functions are written for them as

f[zl;(W, cos O, dp) = /Hf(W(O),Cos 9;(10)7 ¢§10)) X
Dij(W — WO W) Dyj(cos ), — cos 0, cos 0y Dy (61, — by, cos ) x
€i5(cos 9;(10))dW(0)d cos Hi(zO)dd);zO) : >

The most relevant change with respect to eq. 5.7 is that we introduce the smearing
functions for mis-identified events D;;(x — 20, 20 with 2=W cos @), ¢,. These
functions express the probability to find (z — 2(®) for accepted events which were

0

generated with value z(®) and of type i but reconstructed with value z and of type

j. Defining e = x — (%, it is verified that
/Dij(e,x(o))de ~1. (5.10)

This normalization is possible because the efficiency is handled with a separate
function, the ¢;;(cos 920)) matrix, which, as said before, gives the probability that

an event of type 7 is reconstructed as one of type j.

The D;j(z — 2@, 2(0) functions are also calculated binning the (v — (9, 2(9)

plane and requiring that eq. 5.5 has to be satisfied.
D;;(cos 6, —cos 9,(10), oS 9,(10)) and Dy;(W —W© W) are calculated in a similar

way to the case of correctly identified events. D;;(¢y — ¢§LO), ¢>§L°)) are also found not
to depend on ¢§LU) for the same reasons as before, and are calculated in four bins of
cos 6y, for the relevant background, i. e. for the contaminations of p into 7, p into
w27 and 7270 into p.

For the p 727" mixing, we present [ D;;(W — WO WO)gw© in fig. 5.13.
D, roq0(cos ), — cos 9,(10), cos 9,(10)) and Dy oz0 ,(cos 8, —cos 9,(10), cos 920)) are shown, for
coarse bins of cos 920), in figs. 5.14 and 5.15. Finally, D, 9.0 (¢ — ¢>§f”, cosfy,) and
Droro ,(én — ¢EZU), cosBy,) can be found in figs. 5.16 and 5.17.

Eq. 5.9 is also different from eq. 5.7 in the inclusion of the off-diagonal elements

(0)

of the €;;(cos#),’) matrix, which has been justified in the previous paragraphs.
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Other tau background

The remaining mis—identified tau decays are treated similarly to the previous
background. The effective ﬁf‘j(W, cos Oy, ¢p,) functions are exactly those of eq. 5.9,
with the Doyper (2 — x(o),x(o)) functions being extracted from the Monte Carlo sim-
ulation, as done for the spin—sensitive background. In principle, one can think that
the Doiper j(x — x(o),x(o)) may be approximated by uniform distributions (which
would mean a complete dilution of the underlying spin dependence). On the con-
trary, this hypothesis is not correct at all. In fig. 5.18, we present [ Doe ;(cos 6, —
cos 07, cos0”)dcos”, Domner i(dn — d\)) and [ Dogper ;(W — WO WO)dw ©  for
J=p

In eq. 5.9, the mis-identification efficiencies are €,per j(cOS 9}(10)), which were in-

troduced before.

Non—tau background

The background contribution from non—tau sources is clearly spin-independent

and, thus, can be treated as a constant dilution of the effective spin density matrix.
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Figure 5.14: Smearing function of the polarimeter polar angle for p channels mis—identified as

(0)

727", in four coarse bins of cosf,”.

Nevertheless, we do not need to introduce any correction for it, since the amount

of this background is completely negligible.
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Figure 5.15: Smearing function of the polarimeter polar angle for 727° channels mis—identified
as p, in four coarse bins of cos 9,(10).

5.6 Likelihood function summary

Every event identified within one of the decay categories considered is used to pro-
vide a likelihood for observing that event as a function of the anomalous coupling
strengths. The effects of instrumental resolution on the observed hemisphere pa-

rameters (IW,cos 0),,65,) and contamination from all known background sources are



| & AJ1IATI1111UVUU 1Ullluivil

) —1 < cos®, < —-0.5 -0.5< cost, <0
8.: - R 12 - |+
0.7 & + 1 - +
0.6 ;* + + 0.8 }
0.5 J{ B
0.4 ; J( J( 0.6 ; J( J(
0.3 ? J( + 0.4 }
0.2 = B
01, ﬁ% ﬂﬁ 0.2 [ *ﬁ hy
0 Ti ! HJFJFJF Jr I \Jr J\lﬁtﬁﬂﬁr& 0 $++‘++Tr +++++ I ! +++++\++ﬁ++++
-2 0 2 -2 0 2
0 < cost, 0.5 0.8 0.5 < cos?, < 1
1.2 [ R E [
E J{ 0.7
e + 0.6 -
0.8 |- 0.5 - +
- 0.3 M
0.4 + + r J( J{
F | 0.2 [ + +
0.2 |- fod 0.1 #w ﬂﬁ ity
L b4 ++ + erjrjfjr
o BT Y L P 0 o \
-2 0 2 -2 0 2

Figure 5.16: Smearing function of the polarimeter azimuthal angle for p channels mis—identified
as w20,

incorporated into the effective H H(W, cos Oy, ¢p,) functions, which are computed for
each identified hemisphere before the likelihood fit is performed. These effective
H functions are the weighted sum of the individual H for each physics process ex-
pected to be present in a given identified channel, as predicted by the Monte Carlo

simulation.
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Figure 5.17: Smearing function of the polarimeter azimuthal angle for 727° channels mis—
identified as p.

Each identified 717~ in the topology (ij) then contributes a likelihood given by

Ry (pry d |Q)HE (W, cos O, gbhl)f[]’-’(Wg, o8 Opyy Ohy) (5.11)
such that the total likelihood function given by

F(ur,d;)==2 )" logLy; (5.12)

events
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can be minimized to find the most likely value of the anomalous dipole coupling
parameters. The actual fit results and a discussion of the interpretation of the errors

on the fit values will be covered in the next chapter.



Chapter 6

Systematic errors and results

In this chapter, we first test the fitting formula with a calibration procedure. Af-
terwards, the results on the data and some cross checks are presented. Finally, we
estimate the most relevant systematic errors and compare with the measurements

of other experiments.

6.1 Calibration curves

It is desirable to check the performance of the fitting formula developed in the
previous chapter, in an appropriate region of the anomalous couplings around the
SM prediction (which is zero except for small radiative correction effects, below our
sensitivity), and also taking into account our expected experimental uncertainty.
For this purpose, we make use of the SCOT Monte Carlo [39], with a simple radiator
function to include the Initial State Radiation [40], and interfaced with the full
detector simulation. For every anomalous coupling, we have generated five sets
of tau Monte Carlo samples at different values of each coupling. Each set has a
size typically equal to that of the tau data sample and branching ratios as in the
PDG [23].

Detector effects and background may not be fully simulated in the fitting for-
mula, and this may cause a disagreement between the fitted anomalous couplings
and those of the generation. The more relevant background is the contamination of
727% into p and the contamination of p into m, as shown in figs. 5.10— 5.12. Since
the analytical expressions of the polarimeters differ for each decay topology (see

appendix B), an incorrect channel assignment will translate in a dilution of the
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underlying tau spin structure; and therefore, in a dilution of the event observables

for measuring the weak dipole moments. This all is what we explore below.

For every channel and every anomalous coupling, we have plotted the fitted
versus the generated values which, in principle, should lie on a straight line, y = ax,
intersecting the origin. Any deviation of the a parameters from 1 is an indication
of a bias introduced by the fitting formula due to the incorrect modeling of the

detector and background effects.

The results of the straight line fits for every channel and every anomalous cou-
pling are shown in table 6.1. For the 7—r channel we also present the corresponding

curves in fig. 6.1.

The slope is not always compatible with 1, as one would expect if the detector
effects and the background were correctly modeled in the formula. For the (d;)
parameter in the 7—7 channel , the deviation of the slope from 1 is very significant.
This has been understood as badly reconstructed events (i.e. background), which
distort the results. The introduction of the D;; functions is not sufficient to recover
the proper values. However, the curves are in most cases good straight lines, as
shown by the x? of the fit.

Since we are dealing with a multidimensional fit, the correct description of all
the detector effects and background is very difficult. Such effects and processes
introduce some correlations between observables which are very difficult to take
into account. Therefore, the values obtained with the fit explained in the previous

chapter are corrected by the calibration curves of table 6.1.

6.2 Likelihood results

As we want to correct the fitted results for every channel and anomalous coupling
independently, we need the results for each topology. A four parameter fit is carried
out for each final state topology. Therefore, each fit provides four values with certain
individual correlation between them, which are found to be very small (typically
~ 10%).

We then obtain a set of measurements {Zrr, Zrp, - -}, with @ = (21, x2, T3, 4)
the four anomalous couplings (the subindex ij of Z;; stands for the decay topology).

From the minimisation, there is some small statistical correlation between the x;
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| Channel R(pr) | S(pr)
a Jndf a i
P 0.79 £ 0.12  4.63/4| 0.85 +0.13  7.27/4
P 0.931 £+ 0.055 9.23/4 | 0.649 + 0.069 3.99/4
-2 1.23 £ 0.11 7.91/4 | 0.99 + 0.13 1.54/4
37 1.11 £ 0.11 3.17/4 1 0.91 + 0.14 0.14/4
p—p 0.937 £ 0.056  1.54/4 | 0.609 + 0.074 1.11/4
p—m2m° 1.022 £ 0.072 6.11/4 | 0.768 £ 0.099  5.55/4
p-3m 0.911 £ 0.072 1.80/4 | 0.570 &+ 0.095 0.87/4
m2m0-m270 | 1.09 £ 0.19 0.79/4 | 0.70 + 0.25 3.70/4
w2m0-3m 1.07 £ 0.13 1.55/4 | 0.57 £+ 0.18 0.34/4
3m—3m 0.95 £ 0.19 1.42/4 | 0.48 £ 0.27 1.92/4

| Channel R(d,) | 3(d;)
a o /ndf z CIndf
Vi 0.810 £+ 0.082 1.65/4 | 0.588 + 0.096 2.14/4
m™p 1.078 £ 0.056  5.03/4 | 1.022 + 0.070 1.12/4
-2 1.14 £ 0.11 3.30/4 | 0.79 + 0.14 2.49/4
T3 1.22 £ 0.11 4.08/4 | 1.19+0.14 1.35/4
p—p 1.064 + 0.060 1.53/4 | 0.794 £ 0.076  1.59/4
p—m2m° 1.009 + 0.077 2.28/4 | 0.89 £+ 0.10 2.62/4
p-3m 0.889 + 0.072 2.42/4 | 0.612 £+ 0.095 1.51/4
m2m0-m270 | 0.96 + 0.20 6.63/4 | 0.85 + 0.25 2.27/4
72703 | 0.00 £0.13  0.62/4 | 0.70 £ 0.18  2.74/4
33w 0.92 £ 0.19 2.34/4 | 0.69 £+ 0.24 2.09/4

Table 6.1: Results of the fit of the calibration curves for the magnetic moment (top) and for
the electric moment(bottom), for each of the decay topologies. We also give the value of the slope
from the fit, a, and the x?/ndf.

(I=1,---,4) of a given #;;, but the correlation between the z; of different decay

topologies is zero.

The set of measurements {Zr, Zr,,---} with only their statistical errors are
presented in figs. 6.2 and 6.3. FEach figure gives the results on two anomalous
couplings for the various channels. At this stage, all the results are compatible
with the SM prediction. 0.8 x 103 for the

measurement of $(p,) with the pp channel to ~ 4.3 x 1073 for the measurement, of

The statistical errors vary from =

S (1) with the 727%-727% channel.

Once the {Zr, Zr,, - - -} are obtained, for every coupling and every topology, we
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Figure 6.1: Calibration plots for the - channel, for R(p,) and S(p,) (top-left and top-right);
and for R(d;) and I(d,) (bottom-left and bottom-right). The reconstructed values are plotted
versus those of the generation. The fitting curve is y = ax and the result of the fit, a, is shown
on each plot.

correct the {Z;r, Zry, -} by the set of a parameters of the previous section. We
then have a set of {¥r, U, -} measurements, where each y is related with the
previous x by y = z/a, using the a values of table 6.1, which are different for every

anomalous coupling and every decay topology.

Finally, we would like to obtain a vector & = (aq, ag, az, ay) with the final mea-
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Figure 6.2: Results on the R(u,) (top), and on the J(u,) (bottom), versus the various decay
topologies.

surements of the anomalous couplings from all the data sample. For this purpose,

we minimize the following y?*:

O — Yrr
O[_yﬂ'p

X> =P (V") P" with P =



KDyssutliidiulil TL1IULS allu 1Toulls

0. 02
E0.015

0.01
0. 005

d)

sured value of

20. 005
-0.01
-0.015
-0.02 ‘

Mea

°

Ty VAV I
voul
dod -
uzu o
ued|

Ty AVRRYY AVR I
uQ ugu |-
Lo ug

©
o
N

o

0. 015
0.01
0. 005

©
o
o
a1

Measured value of Im(d,)

o
HH‘HH‘H\\‘\H\‘HH‘HH‘HH‘HH
|
|
-
|
|
|
——
|
|
|
|
|
|
el
|
|
|
——
|
|
|
—e—
|
|
j
|
|
|
|
|
|
— e
|
|
|
R —
|
|
|

74TV
vou
dd |-
V7AT.
wedl
rAVIRTY AV
Le ugu -
Leug |-

]

Figure 6.3: Results on the R(d,) (top), and on the J(d,) (bottom), versus the various decay
topologies. The weak electric dipole moment is assumed dimensionless in these figures.

where V' is the covariance matrix of the {¢,, ¥y, - - -}, obtained from the 4 parame-
ter fits performed before. As pointed out already, the only elements with statistical
correlation are those belonging to the same topology. Therefore, this covariance
matrix is a 40 x 40 squared matrix, which can be expressed as (4 x 4) x 10 x 10,

since the non—zero elements are 4 x 4 squared matrix placed in the diagonal.

The combined results from the minimisation of the y? are presented in table 6.2,
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and the individual correlation between the fit parameters in table 6.3.

The errors have decreased considerably from the combination, as it was obviously
expected, but the relevant point is that we get very competitive results comparing
with the measurements of other experiments. This will be fully covered in the last
section of this chapter. The individual correlations between parameters are quite
small. Thus, our numbers would not modify substantially if we had obtained them
from 1 parameter fits. However, we have preferred to perform 4 parameter fits
because the small correlations are taken into account and also because the CPU

consumption is not very high.

We could also wonder about the impact of the individual corrections, i.e. those
introduced by the a slopes, on the final numbers. To see this effect, we have
just minimized the x? of eq. 6.1 replacing the {%r, ¥xp, -} by the uncorrected
{Zrr,Zxp, - -}. The results are shown in table 6.4. As expected, the effect is more
important on (R(d,), I(d,)) than in (R(u,), S(ir)), because the deviation of the

slopes from 1 is more significant for the former parameters.

Parameter Fit value | o

() [1077] 0.65 0.40

S (7 )[1073] -0.68 0.82
R(d,)[107®e-cm] | -0.89 | 2.14
S(d,)[107 8¢ - cm] 1.48 3.77

Table 6.2: Fit values for the weak anomalous dipole moments and 1 o statistical error, from the
90-95 LEP data sample.

R(pr) | Sps) | R(dr) | S(dr) | Global
R() | 1.0 | -0.011 | 0.049 | 0.062 | 0.080
S(pr) 1.0 | -0.084 | 0.062 | 0.105
R(d,) 1.0 | -0.011 | 0.098
3(d,) 1.0 | 0.088

Table 6.3: Correlation matrix between the fitted parameters.
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Parameter Fit value o
%(MT)HO_?’] 0.67 0.39
R} ,uT)[IO_?’] -0.43 0.55

(
R(d,)[107®e-cm] | -1.10 | 2.17
S(d,)[107e -cm] | -1.04 | 3.07

Table 6.4: Fit values for the weak anomalous dipole moments and 1 ¢ statistical error, from
the 90-95 LEP data sample, without any correction from the calibration curves. Comparing with
table 6.2, we can see that the impact is more significant on the electric terms than in the magnetic
terms. This effect is due to the more relevant deviation of the slopes from 1 for the former
parameters.

6.3 Systematic checks

Some of the steps taken in the previous section, in particular the calibration curves
applied, are corrections for systematic effects arising from the incorrect modeling
of background and detector effects in the fitting formula. In addition, we can check

that other possible systematic effects are small and do not affect our results.

The fits have been obtained independently for every tau decay channel and the

results are consistent, as shown in the figs. 6.2 and 6.3.

Another test comes from the comparison of the data and the Monte Carlo sim-
ulation for the event observables. This is shown in fig. 6.4 for the cos#, of the
polarimeter for the four channels considered. Figs. 6.5, 6.6, 6.7 and 6.8 show the
comparison of the ¢, of the polarimeter in four bins of cosf), for every channel.
Finally, the W variable for the data and the Monte Carlo simulation is presented
in fig. 6.9 for the p, 727° and 37 channels.

The angular variables obtained from the data are consistent with those of the
simulation. However, the W variable of some channels differs strongly for the data
and the Monte Carlo simulation. The most relevant inconsistency on this variable
is found for the 727° channel: the distribution of the W for the data is higher than
that of the Monte Carlo simulation by 2 to 4 sigmas in the low W region. However,
the sensitivity of the anomalous couplings is stronger for the angular variables. The

effect of the W discrepancy will be investigated in the next section.
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Figure 6.4: Comparison of the cos@), distribution for the data (points) and the Monte Carlo
simulation (lines) for the four channels considered. The areas of all the histograms are normalized
to unit, and the x2 of the comparison is shown on each plot.

6.4 Systematic uncertainties

The systematic uncertainties coming from different sources have been calculated
for every anomalous coupling and decay topology. The estimates are shown in
tables 6.5, 6.6, 6.7 and 6.8. The most significant uncertainties are due to ECAL

effects, the a; dynamic modeling and the W disagreements. This all is covered
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Figure 6.5: Comparison of the ¢, distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos ), for the pion channel. The areas of all the histograms are
normalized to unit, and the x? of the comparison is shown on each plot.

below.

In all cases, the different sources of systematic effects have been varied up and
down within their errors or estimated variation intervals, and the maximum di-
fference in the fitted parameters is quoted as the corresponding systematic error.

When various different effects are grouped under the same column, a geometrical
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Figure 6.6: Comparison of the ¢, distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cosé), for the p channel. The areas of all the histograms are
normalized to unit, and the x? of the comparison is shown on each plot.

mean is applied to the individual errors in order to obtain the number in the column.

In previous tau analysis in ALEPH, the response of the electromagnetic calorime-
ter ECAL has been observed to introduce relevant systematic effects on the measure-
ment of the energy of events [46]. Here, we explore the error due to the uncertainty

in the global scale, and the error due to the mis—intercalibration between modules.
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Figure 6.7: Comparison of the ¢, distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos @), for the 727° channel. The areas of all the histograms are
normalized to unit, and the x? of the comparison is shown on each plot.

For the total scale, global variations of the ECAL modules by a factor of + 0.7%
have been considered. The estimate of the systematic error has been obtained,
as already said, taking the maximum difference of the fitted parameters. For the
intercalibration between modules, a random mis—intercalibration of 0.4% has been

applied, obtaining an independent error estimate for this effect. The geometrical
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Figure 6.8: Comparison of the ¢, distribution for the data (points) and the Monte Carlo
simulation (lines) in four bins of cos@), for the 3w channel. The areas of all the histograms are
normalized to unit, and the x? of the comparison is shown on each plot.

average of these two uncertainties is presented under ECAL in the tables mentioned

above.

Variations in the 7 branching fractions (7 BF in the tables) can also introduce
systematic effects. They have been estimated by varying the pion and the electron

branching fractions within their errors in the fitting formula. The former is needed
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Figure 6.9: Comparison of the W distribution for the data (points) and the Monte Carlo
simulation (lines) for the p, 727° and 37 channels. The areas of all the histograms are normalized
to unit, and the x2 of the comparison is shown on each plot.

to get W of the pion, and the latter is used for normalisation, since in our formula
we express the W’s in units of [',. These are the two only points in the fitting
formula where the branching fraction are used. Other possible effects from this

source would appear either in the shape of the resolution functions, the efficiency
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functions or in the slope of the calibration curves. These would be “higher order

corrections”.

The uncertainties under the “Weak par.” column are due to variations of the
sin? Oy and M within their experimental errors in the fitting formula. Other weak

parameters have negligible effect on the measurements.

The “MC stat.” errors are due to the finite Monte Carlo statistic in the de-
termination of the efficiency matrix. Global variations up and down of the mean
values of each bin have been performed in order to see the sensitivity to this source

of error.

The theoretical model to describe the a; dynamic is not perfect. For the mea-
surement of the ALEPH polarisation in the past [47], this correction was evaluated
implementing several models in the analysis [48]. For this analysis the implementa-
tion of the models is considerably more difficult. To estimate this effect we have done
the analysis with three different models: the Kuhn & Santamaria (KS) model [49]
(considered in the fitting formula), the Feindt model [50] and the Isgur Morningstar
and Reader (simplified) model [51]. The effect of the two latter models in the W
and in the third component of the h vector were calculated, and the ratio with the

corresponding values of the KS model were used to scale the error.

Finally, the disagreement between the data and the Monte Carlo simulation on
the W distributions, which was presented in section 6.3, has been quoted as another
systematic error. It is certainly the most relevant systematic uncertainty in most
of the measurements. To obtain the numbers in this column we have weighted the
W observable from the data by the quotient MC/data of the plots of fig. 6.9.

Finally, the total systematic uncertainty is expressed for every parameter and
every channel, obtained as the geometrical average of the different sources of sys-

tematic errors.

6.5 Final results and comparison with other ex-
periments

To obtain the final results, we include in the diagonal of eq. 6.1 the total error

and perform the y? minimisation. This total error is the geometrical mean of the
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ECAL | 7BF | Weak par. | MC stat. | a; dyn. | W dis. | TOTAL
T 5.70 | 4.65 0.08 5.52 0. 0. 9.20
TP 1.81 | 2.18 0.11 2.47 0. 2.41 4.47
T 270 5.86 | 1.50 0.06 1.64 0.47 0.14 6.29
3T 0.55 | 1.97 0.15 2.17 1.34 2.96 4.41
p—p 1.28 | 1.29 0.10 1.39 0. 0.71 2.40
p-m2m0 1.98 | 1.00 0.06 1.19 1.86 1.02 3.29
p—3m 4.10 | 0.84 0.07 0.97 0.54 1.27 4.51
w2270 | 11.28 | 0.21 0.13 0.38 11.02 5.87 16.83
w2n%-37 3.36 | 0.32 0.02 0.40 2.60 1.07 4.41
3r-31 6.09 | 0.75 0.24 0.79 4.79 0.04 7.83

Table 6.5: Systematic uncertainties on R(u,) for the different channels, and on the last column
the total systematic uncertainty for each final state topology. The errors are expressed in units of
104

ECAL | 7BF | Weak par. | MC stat. | a; dyn. | W dis. | TOTAL
T 2.14 | 0.65 0.09 0.74 0. 0. 2.36
TP 1.61 | 0.16 0.03 0.28 0. 1.29 2.09
- 270 8.35 | 0.61 0.32 0.66 7.25 5.43 12.36
3T 3.22 | 0.74 0.21 0.96 6.91 1.26 7.83
p—p 0.97 | 0.36 0.05 0.40 0. 0.19 1.12
o270 3.79 | 0.06 0.04 0.20 1.40 2.81 4.92
p-3T 0.70 | 0.08 0.05 0.08 1.22 4.65 4.86
m2r0-m270 | 8.69 | 0.22 0.34 0.30 4.28 14.62 17.54
27037 7.34 | 0.21 0.16 0.20 8.96 6.50 13.29
3r—3m 2.05 | 0.72 0.17 1.04 5.88 1.30 6.49

Table 6.6: Systematic uncertainties on the $(u,) for the different channels, and on the last
column the total systematic uncertainty for each final state topology. The errors are expressed in
units of 1074,

previous statistical error and the total systematic uncertainty.

Therefore, the minimisation of the updated eq. 6.1 now provides the measure-
ment of the weak anomalous couplings with their total errors. The results of the fit
are expressed in table 6.9, where the total error from this minimisation is denoted as
o, the statistical error as oy, and the systematic error as o,,. The statistical error

is the value obtained before and the systematic uncertainty o, is the geometrical



