
CHAPTER 4: Nonlinear stochastic trends and
economic ‡uctuations

1 Introduction

Many nonstationary variables, even though may behave separately in the short-run,

present a closely related long-run pattern. Engle and Ganger (1987) describe these

variables as being in a long-run equilibrium, in the sense that a stationary linear

combination of their levels behaves as an attractor. Thus, while most of the time

the system is out of equilibrium, economic forces such as a market mechanism or

government intervention, tend to correct these equilibrium errors.

The main drawback of this seminal linear model is that it implicitly imposes

symmetry in the strength on which the economy tends to push the system back

toward equilibrium. That is, positive and negative deviations from the attractor are

restricted to have the same dynamics. We think that there are economic reasons for

questioning this assumption, however.

Let us focus the analysis in certain macroeconomic variables for which positive

and negative deviations from the attractor may be interpreted as expansions and

recessions. The long-run pattern may then be seen as the steady state equilib-

rium where the business cycles movements vanish. We present market mechanisms

and government policies leading to asymmetric adjustment to the equilibrium (i.e.
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asymmetries in eliminating the business cycles).

On the one hand, Caballero and Hammour (1994) argue, within a creative-

destruction framework, that negative e¤ects of recessions are concentrated in less

productive plants which are quickly dropped out of the market, whereas high pro-

ductive …rms have competitive advantages that make them more likely to survive.

Hence, there are market mechanisms that move the economy from a deep recession

into the attractor more aggressively that it falls from expansions.

On the other hand, the asymmetric adjustment may also be due to policy in-

terventions. For example, stabilization policies are often characterized by discrete

interventions. Within expansions, macroeconomic variables are allowed to move

freely as long as they do not exceed certain bands, which implies that movements

toward the equilibrium need not occur aggressively every period. However, during

recessions, policy authorities may react more drastically against the adverse eco-

nomic situation, accelerating the convergence toward the attractor. Even though

we assume similar initiative for mitigating the e¤ects of expansions and recessions,

many authors have postulated the existence of a convex aggregate supply curve im-

plying that monetary policy would have stronger e¤ects during recessions. Garcia

and Schaller (1996) have found empirical evidence supporting this view.

In this paper we postulate a nonlinear Vector Error Correction Model (VECM)

to consider the asymmetric adjustment toward the long-run equilibrium. We allow

for nonlinear behavior by introducing shifting parameters as in Hamilton (1989). We
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study the theoretical properties of the statistical model and we …nd that the idea

of nonstationary variables with shifting autoregressive parameters may be related

with the presence of nonlinear common stochastic trends. Thus, we use a common

trends framework to implement long-run restrictions to identify and interpret the

e¤ect of structural disturbances to the di¤erent endogenous variables. In analyzing

the dynamics of the Markov-switching model, we …nd the explicit expressions of the

impulse-response functions (IRF) and the variance-decomposition (VD) analysis.

Thus, we employ an alternative approach to the Dynamic Factor Regime Switching

Model of Kim and Piger (2000).

Given these results, we turn to examine the short-run e¤ect of permanent shocks

to output, consumption and investment. As outlined by King, Plosser, Stock and

Watson (1991), henceforth KPSW, we …nd that these shocks are capable of explain-

ing more than two-thirds of the variation in output and consumption but less than

two-…fths of the movements of investment at horizons over the business-cycles. Our

mayor contribution is that we detect the presence of asymmetries across two regimes

that we identify as expansions and recessions: the ability of these shocks to explain

short-run variations depends upon the state of the cycle.

We organize the paper as follows. Section 2 provides a set of statistical relations

linking the concepts of switching VECM and stochastic trends. Section 3 develops

a framework for analyzing VAR models in a context that allows for state-dependent

responses to shocks. Section 4 applies the methodology in investigating the asym-
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metric responses of output, consumption and investment to technological shocks.

Concluding remarks appear in the last section.

2 Switching VECM and stochastic trends

The main aim of this study is to consider that, in a context of cointegrated variables,

the strength with which the economy tends to eliminate the deviations from the

long-run equilibrium may depend on the phase of the business-cycle. This leads

to propose a vector of equilibrium errors following a stationary Markov Switching

Vector Autoregressive (MS-VAR) speci…cation like

zt = mst + Fst(L)zt¡1 + et; (1)

where Fst(L) = (F
(1)
st + :::+ F

p
stL

p¡1) and etjst » N(0; V ):

Assume that xt is the (n£ 1) vector of nonstationary variables generating these

equilibrium errors. That is, the stationary errors are expressed as r linear combi-

nations of xt; zt = ¯ 0xt; being ¯ the (n £ r) cointegrating matrix. We prove in

Appendix 1 that the cointegrating errors lead to the following Markov Switching

VECM (MS-VECM)

¢xt = ¹st ¡ ®stzt¡1 + ¼st(L)¢xt¡1 + ²t; (2)

where ¼st(L) = (¼
1
st + ::: + ¼

p
stL

p¡1); and ²tjst » N(0;§). Note that we postulate

that the strength with which the equilibrium errors are corrected (measured by the
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matrix ®st) vary across regimes, whereas we assume a state-independent long-run

attractor (represented by the matrix ¯).

To complete the statistical properties of the baseline model, it is standard to as-

sume that the varying parameters in (2) depend upon an unobservable state variable

st that evolves according to an irreducible q-state Markov process which is de…ned

by the transition probabilities

p
¡
st = jjst¡1 = i; st¡2 = k; :::; Ât¡1

¢
= p (st = jjst¡1 = i) = pij ; (3)

where i; j = 1; 2; :::; q; and Ât = (zt; ; zt¡1; ::::). It is convenient to collect the transi-

tion probabilities in the (q £ q) transition matrix

P =

266666666664

p11 p21 : : : pq1

p12 p22 : : : pq2

...
... : : :

...

p1q p2q : : : pqq

377777777775
: (4)

Finally, let us de…ne »t=t as the (q £ 1) vector whose i-th element is P (st = ijÂt);

and »t+h=t as P
h»t=t:

The cointegrated process xt has an alternative representation in terms of a re-

duced number of common nonlinear stochastic trends. To see this, we state in

Appendix 2 that the stationary change in xt will have the switching moving average

representation

¢xt = ±st + Cst#(L)²t; (5)
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where ±st is the conditional mean of ¢xt; and Cst#(L) = (I + C1stL + C
2
st;st¡1L

2 +

C3st;st¡2L
3 + :::); with

1P
j=1

jjCjst;st¡(j¡1)j <1.1

Substituting recursively and using the relation derived in Appendix 3 and as-

suming ²0 = 0:2

Cst#(L) = C(1) + (1¡ L)C¤st#(L); (6)

equation (5) becomes

xt = x0 +
tX
j=1

±sj + C(1)
tX
j=1

²j + C
¤
st#(L)²t: (7)

Since we have assumed stationary equilibrium errors, it should be true that ¯ 0C(1) =

0; and ¯0±sj = 0 for all sj = 1; :::; q:
3 This implies that each ±sj lies in the column

space of C(1) and therefore can be written as ±sj = C(1)½sj , where ½sj is an (n£ 1)

vector. Thus, since cointegration implies that rank [C(1)] = k = n ¡ r; there is
1What we mean with Cst# is that parameters in C(L) depends not only on st but also on

st¡1; st¡2; :::; and what we mean with Cjst;st¡(j¡1) is that the matrix C
j depends on the sequence

of states st; st¡1; :::; st¡(j¡1):
2Matrix C(1) refers to (I +C1 +C2 + :::); where

Cj =

qX
i0=1

:::

qX
i(j¡1)=1

P (st = i0; :::; st¡(j¡1) = ij¡1)Cjst;st¡(j¡1) :

Expression (1¡ L)C¤st#(L) is equivalent to C¤st#(L)¡C¤st¡1#(L)L; where

C¤jst;st¡(j¡1) = ¡C(1) + I +C1st¡(j¡1) +C2st¡(j¡2) ;st¡(j¡1) + :::+C
j
st ;st¡(j¡1)

:

3Let us consider the simpler two-states case such that the economy is in estate 1 and state 2 in

t1 and t2 times respectively. If xt is cointegrated, then both ¯
0±1t1 and ¯0±2t2 should be zero.
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a (n £ r) matrix ¡¡1r such that C(1)¡¡1r = 0 for all t: De…ne the (n £ k) matrix

¨ = C(1)¡¡1k such that the k columns of ¡¡1k are orthogonal to the columns of ¡¡1r :

This means that C(1)¡¡1 = ¨Sk, where ¡¡1 =
¡
¡¡1k ¡

¡1
r

¢
and Sk is the (k £ n)

selection matrix [Ik0k£r].

Using these properties, expression (7) may be transformed into:

xt = x0 +¨

(
Sk¡

tX
j=1

³
½sj + ²j

´)
+ C¤st#(L)²t: (8)

To interpret the expression in curly brackets we introduce the notion of nonlin-

ear stochastic trends, following Granger et al. (1997). Standard literature usually

decompose the random walk processes with drift into the sum of a linearly determin-

istic trend plus the sum of persistent errors. However, in our context, the dynamics

of the variables is state-dependent, which seems to be associated with trends whose

“deterministic” growth is not constant along time but rather shifting among regimes.

Speci…cally, we consider a wider class of trend-generating k dimensional vector ¿ t of

random walks with switching drift #st and white noise innovations 't:

¿ t = #st + ¿ t¡1 + 't =
tX
j=1

¡
#sj + 'j

¢
: (9)

A trivial veri…cation shows that the expression in braces appearing in (8) can be seen

as common switching stochastic trends, where #sj = Sk¡½sj , and 'j = Sk¡²j : This

leads to the following extension of the Stock-Watson common trend representation:

xt = x0 +¨¿ t + C
¤
st#(L)²t; (10)
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with ¨¿ t and C¤st#(L)²t representing the (nonlinear) permanent and transitory com-

ponents. We call this expression Switching Common Trends model.

3 Asymmetric responses

Up to this point, we have stated the assumptions and technical relationships that

we need for extending the standard VEC analysis of economic data to a framework

that allows us to introduce nonlinearities. We now try to concille these mathematical

results with the idea of asymmetric responses to exogenous shocks by dividing our

study into two related issues. First, we …nd a solution for the identi…cation problem,

that is, how structural shocks can be recovered from the MS-VAR model. Second,

we investigate how these shocks are propagated through time, that is, we look for

an explicit expression of the IRF and the VD analysis.

3.1 Identifying structural shocks

The analysis of the dynamic responses is not straightforward. Due to the presence of

correlations among statistical errors, we need to identify the component of the shock

that is not a simple reaction to other shocks, i.e., that is exogenous. A common way

to deal with this problem is using enough restrictions in the estimations to recover

the orthogonalized residuals from the correlated shocks. Depending on the nature

of the restrictions, they are classi…ed in contemporaneous and long-run restrictions.

The former are either recursive or nonrecursive and are, by much, the most used in
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the traditional literature.4 The latter are based on postulating restrictions on the

matrix of long-run multipliers.5

We assume that the reduced-form model has a MA(1) representation

¢xt = ±st +Rst#(L)vt; (11)

with Rst#(L) = I +R
1
stL+R

2
st;st¡1L

2 + :::; and vt being independent and identically

distributed with a mean of 0 and a variance of In: Given the information up to time

t, any matrix Rhst;st¡(h¡1) collects the reactions of the endogenous variables at time

t to one standard deviation shocks at t ¡ h. This is what we call backward-looking

responses.6

One of the mayor contributions in KPSW is to see that an intuitive way for

identifying the system is to look for the matrix that relates structural-form and

reduced-form errors that holds the restrictions of the common trends model, that is

²t = ¡
¡1vt: (12)

In our nonlinear context, we consider the ‡owering relationships to overcome the

identi…cation problem:

Rst#(L) = Cst#(L)¡
¡1 = Cst#(L)

¡
¡¡1k ¡

¡1
r

¢
; (13)

4All of them follow the seminal line proposed by Sims (1980).
5Blanchard and Quah (1989) motivate the long-run restrictions in macroeconomic predictions,

whereas King et al. (1991), Warne (1993) and Gonzalo and Ng (2001) leave the data to impose

the cointegrating (long-run) constrains.
6Within the standard linear literature, our backward-looking responses represent the actual

impulse-response functions. Note that it is not necessarily true in our nonlinear context.
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with Rst#(1) = (¨; 0): This implies that shocks that occurs at time t ¡ h, with h

large enough, may be decomposed into permanent-e¤ect shocks (…rst k elements of

²t, with responses at time t equal to ¨) and transitory-e¤ect shocks (last r elements

of ²t, whose e¤ect vanishes at time t): Additionally, it is assumed that the structural

shocks with permanent e¤ects are uncorrelated with those structural shocks with

only temporary e¤ects. This reduces the identi…cation of the structural dynamics

to the identi…cation of the matrix ¡ = (¡
0
k¡

0
r)
0:

On the one hand, KPSW show that the (k £ n) matrix ¡k may be obtained as

¡k = (¨
0¨)¡1¨0C(1); (14)

with ¨ derived from the relation ¨¨0 = C(1)§C(1):7 On the other hand, Warne

(1993) point out that the (r £ n) matrix ¡r allowing uncorrelated permanent and

transitory-e¤ect shocks may be estimated from the relation

¡r = ³Q
¡1§¡1; (15)

where Q is the Cholesky decomposition of ³ 0§¡1³; and ³ = ® (U®)¡1, with ® being

7To identify the system it is standard to impose k(k¡1)=2 restrictions by assuming the loading

matrix to be lower triangular. However one technical di¢culty emerges since the right-hand side

that equation is not of full rank. KPSW suggest this problem be overcome by writing the loading

matrix as ¨0!; such that ¯
0¨0 = 0; and estimating ! using the relation

!!0 = (¨00 ¨0 )
¡1 ¨0 C (1 )§C 0 (1 )¨00 (  ̈00 ¨0 )

¡1 :
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the last r columns of M¡1C(1)¡1:8

What it is clearly left is to explain how to estimate § and C(1): We try to con-

cille the ideas of Krolkig (1996) who suggests a two-stage procedure to estimate the

parameters of MS-VECM, and Warne (1993) who uses an intermediate estimation

for capturing the responses to shocks in VECM. First, we test for cointegration

and obtain an estimation for the cointegrating matrix ¯, using the standard tech-

niques developed for linear models: Second, applying the standard EM algorithm

conditional on the cointegration matrix, we estimate the so-called Markov Switch-

ing Restricted VAR(MS-RVAR) model

(I ¡Bst(L)L) yt = ¹¤st + ²¤t ; (16)

which comes from an appropriate manipulation of MS-VECM. Note that I¡Bst(L)L =

(I ¡B1stL¡ :::¡BpstLp) =M
£
(I ¡ ¼st(L)L)M¡1D(L) + ®¤stL

¤
, ®¤st = (0®st), ¹

¤
st =

M¹st and ²
¤
t = M²t; with ²¤t jst » N(0;­) and ­ = M§M 0: Note that yt =

D?(L)Mxt is stationary, which allows us to obtain the appropriate estimates of

Bst(L); ­; and P:
9

Finally, we recover the parameters of the MS-VECM from the MS-RVAR esti-

mates. To estimate § we may use the relation § = M¡1­ (M 0)¡1 : We propose in

8U is the zero-one matrix that imposes the r(r ¡ 1)=2 additional restrictions needed for the

identi…cation of the system. M is [Ok¯]
0 where Ok is orthogonal to ¯ such that M is invertible.

9We consider that D(L) =

2664 Ik 0

0 (1¡ L)Ir

3775 ; and D?(L) =

2664 (1¡ L)Ik 0

0 Ir

3775 :
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Appendix 4 how to estimate the moving average parameters as follows:10

Cj+1 =M¡1J©t=t¡jJ 0M ¡M¡1DJ©t=t¡j¡1J 0M for j > 1; (17)

with C0 = I, C1 = M¡1Jb»¤t=tJ
0M ¡ M¡1DM;and C2 = M¡1J©t=t¡1J 0M ¡

M¡1DJb»¤t=tJ
0M: Thus, any backward-looking responses for the di¤erence of the

variables may be estimated by Rj = Cj¡¡1; whereas adding these expressions is a

simple way of obtaining responses for the levels.

3.2 Propagation of shocks

In linear VAR speci…cations, it is standard to incorporate two additional tools that

provide a summary of the system’s dynamic properties: impulse response functions

(IRF) and variance decomposition (VD). The former, shows the time responses of

10Let D = D?(1): Let J be the (n £ nq) matrix (In0:::0) : For any (a £ b) matrix W let us

de…ne the (anp £ bnp) matrix W ¤ = (W ­ Inp) : In this way, we introduce the matrices P 0¤,

»¤h=h, and e»¤h=h¡1, with e»h=h¡1 being the (q £ q) diagonal matrix whose j-th diagonal element is
e0j»h=h¡1=e

0
1»h=h¡1: We also consider the (np£ np) , (n£ npq) and (npq £ npq) matrix

Bj =

0BBBBBBBBBB@

B
(1)
j : : : B

(p¡1)
j B

(p)
j

In : : : 0 0

...
...

...
...

0 : : : In 0

1CCCCCCCCCCA
, b = (B1; :::Bq) , and B =

0BBBBBB@
B1 : : : 0

...
...

...

0 : : : Bq

1CCCCCCA :

Finally, let us de…ne the (npq £ npq) matrix

©t=t¡j = b
³e»¤t=t¡1P 0¤Be»¤t¡1=t¡2P 0¤B:::e»¤t¡(j¡1)=t¡jP 0¤B´ »¤t¡j=t¡j :
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the VAR from an unitary structural shock hitting a particular series. The latter,

measures the contribution of each structural disturbance to the variance of k-periods

ahead forecast errors for each variable in the VAR.

In both cases, the traditional assumption of linearity is associated with the idea

of responses that are independent from the past. This is di¢cult to reconcile with

the history dependence of nonlinear switching models since, given a structural shock

at time t; the j-periods ahead response of the endogenous variables depends on the

sequence of states. Thus, the current response to lagged shocks, measured with Rst#

does not correspond to traditional forward-looking responses so we need to introduce

a new concept for analyzing the dynamic response of the system.

To formalize this idea, we suggest a way of predicting the responses of the en-

dogenous variables to current structural shocks in a nonlinear MS-VAR context. For

this attempt, we de…ne the (n£n) matrix Rj such that the row i, column j element

is an optimal forward-looking estimation of the consequences of a one-unit increase

in the jth variable fundamental innovation at date t for the value of the di¤erence

of the ith variable at time t+ j. In Appendix 5, we present the following expression

for this matrix

R
j+1

=
h
M¡1Jb (P ¤B)j »¤t+1=tJ

0M ¡M¡1DJb (P ¤B)j¡1 »¤t+2=tM
i
¡¡1; for j > 0;

(18)

with R
0
= ¡¡1; R

1
=
£
M¡1Jb»¤t+1=tJ

0M ¡M¡1DM
¤
¡¡1, and where the remaining

parameters are stated in the estimation of the vector autoregressive parameters (17).
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Similar forward-looking responses for the level of the endogenous variables are the

sum of the sequence of matrices R
j
.

It is worth pointing out that other works as for example Ehrmann et al. (2000),

estimate di¤erent switching IRF for each possible state under the unrealistic hy-

pothesis that the economy remains in one of these states with probability one. On

the contrary, we propose a unique estimate of the responses to structural shocks

that helps us to analyze the most probable future e¤ects of these shocks hitting the

economy in a speci…c date. That is, the optimal forecasted response to an structural

perturbance is computed as the weighted average of the estimated responses in each

state, where the weights are the forecasted probabilities of being in each of these

states.

3.3 Variance decomposition

Using the notation stated in Warne (1993) we de…ne the forward-looking variance

decomposition vs as the matrix whose (i; j) element is the fraction of the variance

at time t+ s of the i-th variable (either in di¤erences or in levels) that is accounted

for by j-th shock hitting the economy at time t, that is

vs =

"
sX

m=1

R
m
R
m0 ¯ In

#¡1 " sX
m=1

R
m ¯Rm

#
; (19)
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where ¯ refers to the Hadamard product.11

3.4 Inference

Impulse responses and variance decompositions are usually presented along with

some indicator of their statistical reliability. We present in this section a simple way

of computing con…dence bands for IRF and standard errors for VD using Monte

Carlo methods to infer their respective distributions.

Conditional to the state, we would ramdomly generate a large enough set of

separate drawns for the parameters collected in Bst(L). For each of them, we may

calculate the respective IRF and VD leading to a numerical approximation of their

distributions. This is the basis for adding con…dence bands to the IRF estimates

and for computing standard errors for VD.

4 Empirical example

In this section we consider an application to real data to illustrate the aforementioned

procedures. In our empirical analysis we employ the time series used by KPSW to

11Alternatively we may consider the backward-looking variance decomposition. For this attempt

we need the sequence of matrices vs whose (i; j) element is the fraction of the variance at time t

of the i-th (diferences of the) variable that is accounted for by j-th shock hitting the economy at

time t¡ s.
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gain insights by comparing results from the linear and the nonlinear frameworks.12

Speci…cally, we consider the quarterly series y, c and i referred to the logarithms

of per capita gross national product, per capita real consumption expenditures and

per capita gross private domestic …xed investment.13 The e¤ective sample runs over

the period 1949.1-1988.4 with previous observations being left as initial values.

The preliminary analysis of stationarity and cointegration of the series is su¢-

ciently detailed in KPSW, so this is not treated in this paper. They detect that

the three variables are nonstationary and that the number of linearly independent

cointegrating vectors is two (i.e. the number of common stochastic trends is one).

Based on both economic theory and econometric evidence they propose the coin-

tegrating vectors (¡1; 1; 0) and (¡1; 0; 1).14 This is crucial for understanding the

dynamics of the model: productivity shocks move the system towards a new steady

state producing balanced long-run responses of the series. Economic ‡uctuations are

basically movements along the adjustment path to the new steady state.

12They develop both a three-variable and a six-variable model. We concentrate our study in

the three-variable model to remain tractable the number of parameters to estimate within the

nonlinear approach.
13The Citibase series used are GNP82 minus GGE82 for output, GC82 for consumption and

GIF82 for investment. They are tranformed into per capita data with the series P16.
14In basic neoclassical model with uncertainty the great ratios consumption over output and

investment over output are stationary stochastic processes along the steady-state. Moreover these

models assume a common (to the logarithms of the three series) stochastic trend that allows

productivity shocks to raise the expected long-run growth path.
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Let us consider …rst the linear model in Table 1. We introduce some innovations

with respect to the KPSW speci…cation. First, they work with eight lags in regres-

sions whereas we have found, using AIC, BIC and Hannan-Quinn that the maximum

lag length should be one. Second, we estimate the parameters of the moving average

expression using the RVARmodel proposed inWarne (1993). Third, we compute the

asymptotic standard errors for the IRF and VD instead of the simulations employed

by KPSW. Finally, even when we consider the balanced growth shock restriction, we

do not normalize the long-run response to 1. Thus, we obtain an estimate of 0:007

(instead of 1) for row of ¨ and of 1 (instead of 0:007) for the standard deviation of

't.

Within the linear framework, we obtain essentially the same conclusions than

KPSW. Figure 1 plots the IRF of the endogenous variables to a one standard de-

viation change in the technology shock together with the 95% con…dence intervals.

The three variables present responses over the short-run horizons that are larger

than its long-run responses, reaching a peak at one year, and returning smoothly

to the steady level of 0:007 after three years. However, we detect di¤erences in the

volatility of the responses According to what we expected, investment ‡uctuates

much more dramatically than the other series whereas consumption’s response is

the most smooth. Additionally, Table 2 reports the fraction of forecast-error vari-

ance explained by the permanent shock for various forecast horizons along with the

estimates of the asymptotic standard errors. We …nd that more than two-thirds
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of the unpredictable variation of output and consumption may be attributed to the

balanced-growth shock over the business-cycles horizon. However, the permanent in-

novation is not able to explain more than two-…fths of the movements of investment

at horizons up to six year.

Thus, as in KPSW, we have detected that permanent shocks lead not only to

long-run responses but also to transitory movements of output, consumption and

investment. These shocks explain a considerable fraction of the short-run variation

output and consumption but it is not so clear that short-run variation of investment

may be attributable to permanent shocks. This claims for an extensive study of the

short-run dynamics of the responses.

Figure 2 plots the logarithms of output, consumption and investment and Fig-

ure 3 shows their respective rates of growth, together with the NBER-designated

contractionary phases over the e¤ective sample period. They point out interest-

ing features: …rst, there are clear upward trends of the variables, but they are not

smooth curves but are rather a sequence of upturns and downturns that are closely

related to the o¢cial business-cycles phases. Second, these ‡uctuations are more

dramatic for investment and more smooth for consumption.

The key graph of this study is presented in Figure 4. This plots the equilib-

rium errors, the logarithms of the consumption:output ratio (c ¡ y) and of the

investment:output ratio (i ¡ y). They ‡uctuate around a constant mean, but the

‡uctuation has a particular dynamics: the broad changes of direction in the series
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seem to mark quite well the NBER-referenced business cycles. During recessions,

the value of the …rst equilibrium error is usually greater than its mean, due to the

smoothness of consumption that falls less than output. On the other hand, the value

of the second equilibrium error declines within recessions due to the higher volatility

of investment.

In order to be more con…dent that equilibrium errors share this business-cycles

pattern, we …t for them a MS-VAR model as in (1) with lag length one. Figure

5 displays the …lter and smooth probabilities of being in state 2 along with the

usual shaded areas correponding to the NBER recessions. It is easy to interpret

state 2 as recessions and the series plotted in this chart as probabilities of being in

recessions.15 Thus, according to our theoretical proposal, we have found evidence

of a cointegrated system in which, even though the cointegrating vectors are linear,

the dynamics of the equilibrium errors towards the linear steady state presents the

standard business-cycles asymmetries. This claims for the MS-VECM and MS-CT

speci…cations to consider the short-run and long-run connections among the series.

Tables 3 and 4 present the nonlinear common trends estimates leading to the

following interesting features. First, permanent shocks lead to a lower long-run

impact (0.005 in nonlinear models vs. 0.007 in linear models). Second, within

recessions the system moves more dramatically to the stationary level than within

expansions. To see that, let us consider the simple example such that the equilibrium

15The accuracy of this indicator at signaling the NBER recessions presents three exceptions:

shows two false recession signals at 1951.1 and 1967.1 and anticipates the …rst 1950’s recession.
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errors ct¡yt and it¡yt are both equal to 1 at time t. Due exclusively to the long-run

adjustment (i.e. ¡®st¯0xt in the MS-VECM speci…cation), the rates of growth of

output, consumption and investment at time t+ 1 would be 0:08, ¡0:07 and ¡0:15

within expansions and 0:66, 0:13 and 0:48 within recessions.

The backward-looking responses to permanent shocks are investigated in Figure

6. This reveals that responses to permanent shocks depend upon the age of the

shock. The response in 1984:4 is maximum for shocks hitting the system in 1988:4¡

1988:2; is declining for shocks produced between 1988:1 and 1986:2, and reach the

long-run level for shocks occurring before 1986. Interestingly, Table 5 shows that

shocks produced six year prior to 1988:4 are able to explain almost the totality of

the variation in output and consumption and the half of the variation in investment.

As we have stated in Section 3, even though the backward-looking analysis of the

responses is the nonlinear version of KPSW study, it may be of interest the study of

the dynamic e¤ects of permanent shocks hitting the economy in 1988:4. A notable

feature of the forward-looking responses to permanent shocks is that the variables

do not necessarily have balanced responses. Figure 7 shows again the smoothness of

consumption, the volatility of investment, the hump-shaped responses peacking at

three quartets and declining after until reaching the long-run response within three

years. However, the long-run responses of output, consumption and investment are

0:008, 0:005 and 0:007 respectively. Additionally, Table 6 reveals that the fractions

of the short-run forecasted-error attributed to such shocks are higher for output and
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similar for consumption and investment to those found by KPSW.

Finally, we investigate the possible state-dependence of the short-run e¤ects of

permanent shocks. We approach this problem by computing the responses of the

series to permanent shocks under the assumption that these shock occurs in 1983:1,

just after almost four years of o¢cial recessions. With respect to the e¤ects of

the shock in 1988:4 (after 5 years of expansions) consumption is the most a¤ected:

short run responses due to the permanent shock are more smooth (Figure 8) and

this shock account for a smaller fraction of the total variability of consumption at

the six-year horizon (Table 7).

5 Conclusion

In this paper, we present both theoretical and empirical reasons to believe that

even though equilibrium errors ‡uctuate around a linear long-run attractor, the

dynamic adjustment toward the attractor may be nonlinear. Speci…cally, we consider

a Markov-switching structure in developing a nonlinear stochastic trends model that

allows us to connect the short-run and long-run interactions among a set of variables.

For gaining insights in comparison, we apply the model to the data used by King

et al. (1991) obtaining two main results. First, we …nd that the strength to vanish

short-run deviations from the long-run equilibrium is higher during recessions. Sec-

ond, we detect evidence of asymmetric adjustment dynamics to permanent shocks:

a shock hitting the economy within expansions is capable of explain larger fraction
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of the variability of consumption than the same shock occurring just after a deep

recession.
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