Appendix 1

Switching equilibrium errors lead to switching VECM.

Let us assume that z; is a (n x 1) vector of nonstationary variables and that g is the
(n x r) cointegrating matrix such that z; = §'z; is the stationary (r x 1) vector of equilibrium
errots thatlfollws[thel Markov [ swifchingl expression! (L).[TWelcanlalwayslchodselan (n[X K]
matrix 31 such that 878 = 0 and V6" = I,. Let w, be the (k x 1) vector §"z, such that
Aw, = ng, + G5, (L)Awy—y + 1y, where A = (1 — L), Gy, (L) = (G}, +---+ G2 LP7!), and
n, ~ N (0, It), is regime-independent.

Using the relation Fj,(L) = F,(1) + FZ(L)(1 — L),! it is easy to see that

B Axy = my, + F (L)' Azyy + [Fo, (1) — L] 221 + €. (A1.1)

On the other hand, we can establish that

BV Az, = ng, + Gy, (L) GV Azy_y +7,. (A1.2)

/
St

expressions (A1) and (A2) immediately lead to (?7), where y1,, = ©7'Z,,, a5, = 071 ((F,,(1) — L,)", (),

To simplify notation, we use the symbols © and =, for (ﬁ , ﬁT)/ and (m n’St)’ respectively. Thus,

e = (€},m}) and

-1 FSt
(L) = © o. (A1.3)

Appendix 2
Parameters of the moving average representation depend on previous states.

Let w; be a (n x 1) vector of stationary variables (minus its conditional mean as,) evolving

according to a MS-VAR(p), that is:

Wy = bitwt_l + ...+ bgtwt_p + [ (AZ]_)

'Tt follows that, after a little of algebra, Fy,(L) = F} + ...+ F? LP~! can be written as

F,, (L) = F,,(1) + F; (L)(1 - L),
, ptl
where F} (L) = F' + ..+ FP7'LP~2 and F}J = — Y F!.
i=j+1
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This may be written as a MS-VAR(1) as follows

Wt - FstWtfl + Gt, (A22)
where
b;t bgt o st_l St gt
Wy
Wt == . ) Fst = . . . . ) Gt
Wt—p+1
T 0, 0, L, 0, 0,

Assuming stationarity, recursive substitution in expression (A2.2) leads to
Wt Gt+FSth 1+F8t St— 1Gt 2+FStFSt 1 St zGt 3+ (A2'3)

which implies that parameters in (??) are:

nn

I = |F,,---F

St,St,(jfl) St*(jfl) ’

(A2.4)

for j > 0, with CY = I,,, and where [A]"" denotes the upper left (n x n) block of the matrix A.
Immediately, one can see that, if we were able to know the sequence of states, the switching

parameters of the vector moving average representation were the solution of the recursive system

J j—1 1 j—2 j—p
Cst $t—(j-1) Cstvst*(jfﬁbst*(j*l) + Cstvst G- 3)b5t (5— + -t Cst St—(j—p— 1)b€t G-p)’ (A25)
with C" . =0ifh<0,and C° = I.
t—(h—1)
Appendix 3

Derivinglexpression/ {6)).

Recall the state-dependent parameters of the moving average expression

Co (L)=I+CLL+C2, L*+C2, L°+..). (A3.1)
Le us define C(1) as follows
C(l)=I+C"+C*+C*+ ..., (A3.2)

104



where
. q q .
CT=> o Y Plsi=rtoysi-(n) =651 - (A3.3)
io=1 ij_1=1

Thus, expression (A3.1) may be rewritten as

C,, (L) = C)+ \(—C’(l)—l—])—\(—C’(lH—I)L +

/

-~

5:0 C*O

(-C()+I+C)L—(-C)+1+C,, )L* 3+

N N J/

Vv Vv
*1 *1
o3 Cst—l

\
;

\(_C<1) +1+ Csltfl + Csztystfl) L — \(_C<1) +1+ Csltfz + Cszt—lyst—Q) L’ +
\ C;tz,st71 C;tzfl’st72
(A3.4)
This implies that expression (?7?) holds, with
*j _ 1 2 3 J
C’Stvstf(jfl) B C(l) +I+ C(St*(jfl) T Cst—(j—2)78t7(j71) - Cstf(jfii) S (i—1) Tt C‘Sﬁst—(j—l)‘
(A3.5)

Appendix 4

Estimating the parameters of the moving average expression.

To deduce the proof, we consider first the parameter of the vector autoregressive expression
as a function of the parameters of the restricted expression. For this purpose, we note that

assuming stationarity expression (??) can alternatively be seen as
y =€ +JBsJ'e + JBs,Bs, J€ o+ ... (A4.1)
Premultiplying this expression by M~ D(L) and recalling that € = Me,, it is easy to see that
Ary = M 'D(L)YMe; + M *D(L)JB,,J'Me;_y + M 'D(L)JB,B,, ,J' Me; o+ ... (A4.2)

Using the relation D(L) = I,,—[DL, where DIZ=[D {1),lalc¢loselcomparisonlofléxpressions((5)
and (A8) leads to write

citl =M'JB,,..B,,_;JJM — M 'DJB,,..B

StySt—j

M, for j >0 (A4.3)

St,(j,
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where C° = I,,, C} = M~'JB,,J’M — M~'DM.

In the remainder of this proof we assume that a good estimator of Bs,...Bs, ; is the following

expression

q q
S TS Pty = s st = iolXe) Borro-Bar. (Ad.4)

io=1  i;=1
To follow with the proof, we need an expression of the joint probabilities. Using the properties

of a Markov structure we derive that

(Pen) E&s)  (Pen) (8si)
(eéogt/tfl) (62j71£t7j+1/t7j)

P<3tfj =1y ey St = B0l Xy) = (6;’0€t/t)

(A4.5)

where e; is a (¢ x 1) vector with j-th element equals to one and zero elsewhere. We can now

apply rational expectations to get the estimates for (A44.4)

b (€s P BE 1 ji-oP " Bo&i_ iy P B) €0y (A4.6)

This(finisheslthelintuitive sketch (of[theproof, [the detailed [Verification[of [(17) beingleft tolthe

reader. As an example, and using that (e, ...,e,) = (e1, ...,e,)" = I, we derive the estimate of

c? .  =M"'JB,B

St,St—1

JM—~M"'DJB,,J M. (A4.7)

St—1

For this attempt we need to derive an expression for P(s;—1 = i1,s; = ig|x,) and to calculate

the estimates of B, and B, B Starting from the probability, we have that

St—1°

P(si-1 = i1, s = io|xy) = P(se = io|x;)P(s—1 = ix|xy, s¢ = o)
P(s—1 = 1| X4_1, 8t = o)
P(s = io|x;-1)

= P(st = io|x;) P(st-1 = i1]X4_1, 8t = i) = (6;’0€t/t)

(620 Ple;, ) (eélgt—l/t—l)

A4.8
(eéogt/tfl) ( )

= (egogt/t)
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Hence, the estimate of By, is

6/1516/16171,]9
> By, P(s; = iglx;) = <Bl, Bq) = (A4.9)

o b /

eqft/tlnp

[ N——
€
gt/t ® Inp
€

-~

(ft/t ® Inp) = f;ek/t

and the estimate of B, Bs, , becomes

ZZBiOBilp(St—l = 1,8 =1o|x;) =

o i1
z gt t
= ZBZO 0> Z (egopleh) i1 ( zlft 1/t— 1)
logt/t 1) i
ellgt—l/t—ljnp
[(¢],P'e1) By, ..., (€}, P'eq) By
6;5t71/t71[np
[(620]3’ (e1, s eq)) ® Inp] Bg:—l/t—l
(620 ® Inp) (P'® Inp) Bg:fl/tfl
e1€4 /4
(e’lét/t/fl)lnp 0 ell & Inp
= (B1,...,By) P/*Bg;:k—l/t—l
b elgt/t I
\ 0 (—eggt/tfl)lnp R A ]
3y Inpa
= bﬁt/t_lpl*Bé:}k_l/t_l- (A4-10)
Thus, we conclude that the estimate of C7, ,, | is
MIbE, P BE jyy J'M — M DJbES,J' M (Ad.11)

107



Appendix 5

Derivation of forward-looking IRF.

The derivation of the estimates of the parameters of the switching IRF is virtually identical
to the derivation of the estimates of the moving average representation analyzed in Appendix
4. During this proof, we will use the same notation we have stated in that appendix.

First, solving recursively, assuming stationarity, premultiplying by M ~'D(L) and recalling
that ¢, = ' 'u; (with u; being the vector of the n fundamental shocks), expression (A4.2)

evaluated at t 4+ j becomes
AZyip = Upgp + oo + M’lijﬂ JM—M'DJIBg2J' M| T uy + ... (A5.1)

where B3t is the product B, Bs, , - - - Bs,. Multiplying expression in brackets by ', we obtain
Eh, whose row 7, column j element is the response at ¢+ h of a unit increase in the jth structural
innovation at time ¢ for the value of the first difference of the ith variable.

On the other hand, using again the properties of the Markov structure that the probabilities

is assumed to follow, one can express

P(5t+h = Upy ooy Spg1 = i1|Xt) = <e;t+hpeit+hfl> "'(eizp/eil) (621§t+1/t) . (A5-2)
Rational expectation hypotheses can be used to propose the following estimation of By, , - - - B,
q q
Z o Z P(St-‘rl = il: ooy St4h = ij’Xt>BSt+h e BSt+17 (A53)
=1 ip=1

ahd[thelremainihgstépsltol getlthel geherallexpressionl (18)arel againlleft tolthelteadeér. [ 'We
instead propose the estimate of the much simpler case of I Thus, we need first an analytical

expression for the estimates of P(syy2 = 42, S441 = %1|Xy), Bs,yer and By, , B, ..

P(sir2 = iz, 841 = i1]x,) =

= P(si12 = t2|Xs, St+1 = 1) P(Se41 = t1|xy) = (622P61) (ellftﬂ/t) (A5.4)

Following (A4.9) it is easy to see that the estimate of B,,,, is

B3t+2p(st+2 =ialxy) = b€:+2/t‘ (A5.5)
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Finally, using (A5.4) we propose the following estimate of B;, ,B

St42 78t 41
a q
Z Z P(siy1 = 1, 8142 = t2|Xy) Biy By
ig=11i1=1
q (6,1£t+1/t) Inp
= Y Bi[(¢},Per) By, ..., (¢}, Pe,) By]
ig=1 .
(6q§t+1/t) I
(e;2®lnp)P*B(£t+1/t X Inp)
N —
&1/t
(€1 @ Inp)
- [Blv ceey Bq] P*Béj—s—l/t = bP*Bg;fk—i-l/t (A56)
(€5 ® Inp)
_\‘qlf_/_
It is now straightforward to show that the estimate of R is
(M~ JbP*BE; ) ' M — M DJbES o J' M| T (A5.7)
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Table 1. Linear common trend model estimates.

a. RVAR model.

=R —0.248
Ui (0.129)
-~ — —0.072
€t (0.037)
i —0.254
(0.062)

b. Common trend model.

where

c. Other estimates.

M

r=

Ay,
Acy
Aiy
1 11
-1 10 |,CQQ)=
-1 0 1

0.006 0.010 0.001
0.007 0.001 0.003
0.004 0.012 0.018

0.558
(0.064)

0.335 —0.211
(0.125)  (0.073)

—0.095 0.853 —0.025

(0.018)

0.224
(0.031)

0.007
(0.001)

0.007
(0.001)

0.007
(0.001)

(0.036)  (0.021)

0.037 0.834
(0.060)  (0.035)

Tt + C* (L)gt,

?t =0.63 + Tt—1

0.230
0.230
0.230

0.991
0.991
0.991

—0.195
-0.195 |,
—0.195

—0.148 0.007
—0.002 0.032
—0.186 0.172
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Table 2. Forecast-error variance decompositions (FEVD) for the linear model.

Horizon | y c l

1 0.30 { 0.79 | 0.10
(0.20) | (0.19) | (0.11)

4 0.41 | 0.85 ] 0.19
(0.21) | (0.18) | (0.15)

8 0.53 | 0.90 | 0.27
(0.21) | (0.18) | (0.16)

12 0.61 |1 0.93 ] 0.30
(0.19) | (0.18) | (0.15)

16 0.66 | 0.94 | 0.32
(0.18) | (0.17) | (0.14)

20 0.69 | 0.95 | 0.36
(0.17) | (0.17) | (0.14)

24 0.7310.96 | 0.39
(0.17) | (0.17) | (0.13)

NOTE: FEVD based on the VECM estimates shown in Table 1. Standard errors (in paren-

theses) were computed by Monte Carlo simulations (3000 replications).

111



Table 3. Nonlinear common trend model estimates for state 1.

a. RVAR model.

. —0.427 0.520 0.158 —0.301
m (0.146) (0.070)  (0.127)  (0.086)
G =1 —0.031 | +| —0.080 0.831 —0.003
(0.041) (0.020)  (0.036)  (0.024)
(" —0.381 0.193 0.003 0.756
(0.068) (0.032)  (0.059)  (0.040)

b. Common trend model.

Ay, 0.0051
Ac, | =1 0.0051 | 7+ C*(L)e,
Ad, 0.0051

where

?t =1.25 +Ti 1

c. Other estimates.

1 11 0.3392 0.5704 —0.1717

M=| -110 [,C0)=] 03392 05704 —0.1717 |,
~10 1 0.3392 0.5704 —0.1717
0.0077 0.0081 —0.0012 —0.1058 0.0205

I~'=1 00052 0.0001 0.0037 |.c1=| 00610 0.0169
0.0028 0.0161 0.0122 —0.1089 0.2637
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Table 4. Nonlinear common trend model estimates for state 2.

a. RVAR model.

~ 0.218 0.566 1.322 —0.049
U (0.329) (0.122)  (0.353)  (0.163)
& - —0.390 | + | —0.188 0.670 —0.192
(0.093) (0.034)  (0.100)  (0.046)
(i —0.364 0.185 0.059 0.773
(0.154) (0.057)  (0.165)  (0.077)
b. Common trend model.
Ay, 0.0051
Ace, | =1 00051 |7+ C*(L)e,
Ay 0.0051

where

’/7'\,5 =-1.20+ Tt—1

c. Other estimates.

1 11 0.3392 0.5704 —0.1717
M= -110 [,C1)=1| 03392 05704 —0.1717 |,
-1 01 0.3392 0.5704 —0.1717
0.0077 0.0081 —0.0012 —0.5311 —0.1228
It =1 0.0052 0.0001 0.0037 |,c2=| —02014 0.0697
0.0028 0.0161 0.0122 —0.5903  0.1031
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Table 5. Backward-looking Forecast-error variance decompositions (BL-FEVD) for the non-

linear model.

Horizon | y c l

1 049 { 0.71 | 0.15
(0.06) | (0.05) | (0.11)

4 0.61 [ 0.84 | 0.26
(0.02) | (0.03) | (0.12)

8 0.71 1 0.90 | 0.27
(0.02) | (0.05) | (0.11)

12 0.76 | 0.94 | 0.35
(0.02) | (0.06) | (0.10)

16 0.80 1 0.95 | 0.40
(0.02) | (0.06) | (0.09)

20 0.8210.96 | 0.43
(0.02) | (0.06) | (0.08)

24 0.84 1 0.97 | 0.50
(0.02) | (0.06) | (0.08)

NOTE: BL-FEVD attributed to the permanent shock based on the nonlinear VECM es-
timates shown in Tables 3 and 4. Standard errors (in parentheses) were computed by Monte

Carlo simulations (3000 replications).
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Table 6. Forward-looking Forecast-error variance decompositions (FL-FEVD) for the non-

linear model (shock in 1988.4).

Horizon | y c l

1 0.4510.67 | 0.11
(0.11) | (0.04) | (0.09)

4 0.55 | 0.79 1 0.19
(0.03) | (0.02) | (0.12)

8 0.65 | 0.79 1 0.25
(0.04) | (0.07) | (0.14)

12 0.71 1 0.79 | 0.28
(0.04) | (0.08) | (0.14)

16 0.75 | 0.80 | 0.30
(0.04) | (0.09) | (0.14)

20 0.78 { 0.80 | 0.32
(0.04) | (0.09) | (0.14)

24 0.80 { 0.80 | 0.34
(0.04) | (0.09) | (0.14)

NOTE: FL-FEVD attributed to a permanent shock hitting the system in 1988.4. These are
computed following the nonlinear VECM estimates shown in Tables 3 and 4. Standard errors

(in parentheses) were computed by Monte Carlo simulations (3000 replications).
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Table 7. Forward-looking Forecast-error variance decompositions (FL-FEVD) for the non-

linear model (shock in 1983.1).

Horizon | y c l

1 0.44 1 0.67 | 0.10
(0.15) | (0.08) | (0.11)

4 0.56 [ 0.75 | 0.17
(0.11) | (0.05) | (0.12)

8 0.67 | 0.65 | 0.23
(0.07) | (0.11) | (0.12)

12 0.73 1 0.62 | 0.26
(0.05) | (0.12) | (0.15)

16 0.76 |1 0.61 | 0.28
(0.04) | (0.17) | (0.12)

20 0.79 1 0.60 | 0.30
(0.04) | (0.18) | (0.12)

24 0.8110.61 | 0.31
(0.04) | (0.19) | (0.12)

NOTE: FL-FEVD attributed to a permanent shock hitting the system in 1983.1. These are
computed following the nonlinear VECM estimates shown in Tables 3 and 4. Standard errors

(in parentheses) were computed by Monte Carlo simulations (3000 replications).
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Panel A. Response of y to technological shocks
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Panel B. Response of ¢ to technological shocks
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Panel C. Response of i to technological shocks
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Figure 1. Dynamics responses of output (Panel A), consumption (Panel B) and investment
(Panel C) to the technological shock formlinear stochastic trend model. Dashed lines are 95%
asymptotic confidence intervals.
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logarithms $82 (scaled)

1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988

Figure 2. Logarithms of private output (y), consumption (c) and investment (y). To facilitate graphing,
constants were added. Shaded areas are NBER recessions.

“.‘\\\A\ ’A\»“l \ ‘“\IA“ A'A‘. UJ" I!JAA'AV o ;“\ \l‘\‘ Ii"A

%, 0 vyw v' ‘ v v‘w‘ I
: R
5
-10
1949 1952 1955 1958 1961 1964 1967 1970 1973

Figure 3. Rates of growth of private output (red), consumption (black) and investment (blue).
Shaded areas correspond to the NBER recessions.

118




logarithms $82

05

0.4

0.3
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0.6

Prob. recession

0.2

0.8

0.6

Prob. recession

0.2

1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988

Figure 4: Logarithms of the consumption:output (c-y) and investment:output (i-y) ratios. To facilitate

graphing, constants were added. Shaded areas are NBER recessions.

Filter probabilities of recessions.

_. j_]\,MA. LAY \/\ WANS M/\\

1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988
date

Smooth probabilities of recessions.

AN TN

1949 1952 1955 1958 1961 1964 1967 1970 1973 1976 1979 1982 1985 1988
date

Figure 5: Filter (Panel A) and smooth (Panel B) probabilities of recession from a
Markov-switching VARfor logarithms of the consumption:output (c-y) and investment:output (i-y)
ratios. Shaded areas are NBER recessions.
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Panel 1. Backward response of y to technological shocks
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Panel 2. Backward response of c to technological shocks
| L | L | L | L | L | L | L | L | L | L | L | L |
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Panel 3. Backward response of i to technological shocks

1988.4

1988.2 1987.4 1987.2 1986.4 1986.2 19854 1985.2 1984.4 1984.2 19834 1983.2 19824

Figure 6: Backward-looking responses of outout (Panel A), consumption (Panel B) and
investment (Panel C) in 1988.4 to permanent shocks hitting the systemin 1988.4-1982.4.
Dashed lines are one-standard-deviation confidence bands.
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Panel A. Forward-looking response of y to technological shocks
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001 7 T~ e
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Panel B. Forward-looking response of c to technological shocks
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Panel C. Forward-looking response of i to technological shocks
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Figure 7. Forward-looking responses of outout (Panel A), consumption (Panel B) and
investment (Panel C) to permanent shocks hitting the system in 1988.4. Dashed lines are

one-standard-deviation confidence bands computed by Monte Carlo simulation.
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Panel A. Forward-looking response of y to technological shocks

Panel B. Forward-looking response of ¢ to technological shocks

Panel C. Forward-looking response of i to technological shocks

Figure 8: Forward-looking responses of outout (Panel A), consumption (Panel B) and
investment (Panel C) to permanent shocks hitting the system in 1983.1. Dashed lines are
one-standard-deviation confidence bands computed by Monte Carlo simulations..
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