
Ramón Gervilla Fernández

133

4. RESULTADOS Y DISCUSIÓN
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4.1.- ASPECTOS MICROBIOLÓGICOS

La aplicación de las altas presiones en la leche de oveja presentó un comportamiento

que, en general, condujo a un incremento de la destrucción microbiana a medida que se

incrementó la presión aplicada en los tratamientos (Tabla 11). No obstante, este incremento de

la letalidad no ocurrió de forma gradual entre 0.1 y 500 MPa y en cada microorganismo fue

diferente. Fue necesaria la aplicación de  presiones de 300 MPa en Pseudomonas fluorescens,

400 MPa en Escherichia coli y Listeria innocua y 500 MPa en Staphylococcus aureus y

Lactobacillus helveticus para obtener reducciones microbianas considerables, igual o

superiores a 3 unidades logarítmicas (Figura 5, 6, 7 y 8).

La sensibilidad que manifestaron los microorganismos estudiados frente a la presión

resultó muy diferente. Pseudomonas fluorescens fue, con diferencia, el microorganismo más

sensible a la presión. Escherichia coli y Listeria innocua mostraron una sensibilidad

intermedia en función del resto de variables del tratamiento, mientras que Staphylococcus

aureus y Lactobacillus helveticus mostraron gran resistencia a la presión. Sin embargo, de

forma significativa (P < 0.05), Staphylococcus aureus resultó ser el microorganismo más

resistente a la presión de los estudiados,  aspecto que ha sido constatado por otros autores

(Shigehisa y col., 1991; Takahashi, 1992).

Presiones inferiores a 200 MPa resultaron insuficientes en la mayoría de los

microorganismos estudiados, con cualquiera de las combinaciones de tratamientos ensayados

en leche de oveja 6% MG, a excepción de Pseudomonas fluorescens que a 200 MPa / 50 ºC

presentó una reducción superior a 3 unidades logarítmicas; entre los 200 y 300 MPa a 2, 10 y

25 ºC, se alcanzaron reducciones entre 2 y 6 unidades logarítmicas o destrucción total de ésta

(superior o igual a 7.3 unidades logarítmicas) con 300 MPa a 50 ºC. Hay que destacar que a

300 MPa, Escherichia coli y Listeria innocua presentaron reducciones entre 2 y 3 unidades

logarítmicas (excepto Listeria innocua a 25 ºC, inferior a 1 unidad logarítmica) y superior a 6

unidades logarítmicas a 50 ºC. Fue necesario alcanzar presiones de 400 MPa para obtener

mayor efectividad en la inactivación mediante los tratamientos de alta presión, en la mayoría

de los microorganismos estudiados. Con la aplicación de estas presiones, se obtuvieron

reducciones microbianas igual o superiores a 5 unidades logarítmicas para Pseudomonas

fluorescens, Escherichia coli y Listeria innocua (excepto en Escherichia coli a 2 ºC y Listeria

innocua a 25 ºC, con reducciones entre 4 y 5 unidades logarítmicas). Finalmente, a 500 MPa,

en la mayoría de los microorganismos estudiados se alcanzaron reducciones igual o superiores
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a 5 unidades logarítmicas, a excepción de Staphylococcus aureus y Lactobacillus helveticus

con reducciones de entre 3 a 7 unidades logarítmicas.

La variable temperatura presentó un efecto de destrucción bacteriana no lineal, a

diferencia del presentado por la variable presión. Así como muestra la figura 9, dependiendo

de la presión aplicada, la curva de inactivación bacteriana mostró un punto de inflexión a una

diferente temperatura para cada microorganismo estudiado.

Como resultado del estudio de todas las combinaciones de los tratamientos de alta

presión, el análisis estadístico mostró que las cepas de Pseudomonas fluorescens, Listeria

innocua y Lactobacillus helveticus fueron más resistentes a los tratamientos realizados a

temperatura ambiente (25 ºC) (P < 0.05), mientras que las cepas de Escherichia coli y

Staphylococcus aureus lo fueron a los tratamientos a bajas temperaturas (2 y 10 ºC) (P <

0.05). No obstante, los tratamientos realizados a 50 ºC (temperatura moderadamente alta)

mostraron ser los más eficaces (P < 0.05) en todos los microorganismos estudiados (Tabla

12).

A diferencia de los resultados obtenidos en el presente trabajo, hay estudios

(Takahashi, 1992) que concluyen que Escherichia coli presenta una major reducción a baja

temperatura (-20 ºC) que a temperatura ambiente (20 ºC). Esta mayor destrucción podría

explicarse por el daño que provoca en la membrana celular de los microorganismos la

formación de cristales de hielo (Kalichevsky y col., 1995) (Figura 1), así como, la

disminución de la fluidez de la membrana celular por la cristalización de los fosfolípidos de

ésta. Por otro lado, a consecuencia del efecto de la congelación, se produce un aumento de la

concentración de las sustancias que componen el medio tratado por altas presiones, las cuales,

dependiendo de su naturaleza, podrían tener una actividad antimicrobiana.

Al igual que la variable presión, el tiempo de aplicación del tratamiento presentó una

cinética de destrucción bacteriana de primer orden, al menos en los 15 primeros minutos de

tratamiento (Figura 11 y 12). A medida que se incrementó el tiempo de tratamiento, se

observó una mayor reducción microbiana. Del análisis estadístico de la variable tiempo se

desprende que para todos los microorganismos estudiados hubieron diferencias significativas

(P < 0.05) entre los tiempos 5, 10 y 15 min. de tratamiento (Tabla 13).

Con objeto de estudiar el comportamiento de los microorganismos en tratamientos

más largos, se realizaron ensayos con determinadas combinaciones de presión y temperatura a

intervalos de 5 minutos hasta 1 hora (0, 5, 10, 15, 20, ....., 50, 55, y 60 min.). De aquí se

obtuvieron las ecuaciones que nos permitieron calcular las cinéticas de destrucción

microbiana. Dichas ecuaciones fueron de primer orden, en las que por analogía con los
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tratamientos térmicos, se pudo hallar el tiempo de reducción decimal (valor D) (Tabla 17). El

valor D puede ser muy útil a la hora de comparar la efectividad entre diferentes tratamientos

de alta presión con el mismo o entre distintos microorganismos, así como para comparar

tratamientos de alta presión con otros tratamientos convencionales como los térmicos.

Nuevamente, en función de los valores D obtenidos, se volvió a evidenciar la diferente

sensibilidad mostrada por los microorganismos a los tratamientos de alta presión (Tabla 17).

Ésta coincidió con la mostrada frente a la variable presión: sensibilidad alta para

Pseudomonas fluorescens, media para Escherichia coli y Listeria innocua, media baja para

Lactobacillus helveticus y baja o muy baja para Staphylococcus aureus.

Por otro lado, se pudo observar que el mayor descenso de la población bacteriana

ocurrió durante los 15 o 20 primeros minutos del tratamiento (Figura 10). A medida que se

incrementó el tiempo de exposición al tratamiento de alta presión, la pendiente de la recta fue

disminuyendo, en algunos microorganismos, pasando de una cinética de destrucción de 1er

orden a una de 2o orden. En algunos casos, cierto número de la población bacteriana

sobrevivó, aunque el tratamiento de alta presión se prolongó a tiempos en los que

teóricamente debería haber ocurrido una destrucción total. Este fenómeno ha sido ya

observado de forma repetida en otros microorganismos Gram (+) (Earnshaw, 1995). Hay

varias razones que explican el cambio de la pendiente en la cinética de destrucción. Es posible

que una subpoblación sensible a los tratamientos de alta presión descienda rápidamente en los

primeros 5 min., aunque lo más probable es que cierto número de la población sobreviva

debido a mecanismos de adaptación al medio durante el proceso de alta presión. Este

comportamiento se observa a partir de tratamientos superiores a 20 min. Este supuesto

tiempo de adaptación concuerda con el período que sería necesario para la adaptación de la

síntesis proteica y la modificación del estado fisiológico de algunos microorganismos

(Earnshaw, 1995). Dicho fenómeno de selección natural podría ser interesante si se quisiera

obtener una cepa microbiana barorresistente.

A nivel práctico no resultó efectivo prolongar un tratamiento de alta presión más allá

de los 15 o 20 min. De forma generalizada, se pudo observar que en función del tratamiento y

tipo de microorganismo, al incrementar el doble la presión de un tratamiento se obtuvieron

valores D inferiores a la mitad. Así por ejemplo, en el tratamiento de Escherichia coli a 50 ºC,

al incrementar el doble la presión, de 150 a 300 MPa, ésta provocó un descenso del valor D de

18.8 a 2.53 min., por lo tanto, se produjo un aumento de la eficacia del tratamiento en más de

7 veces (Tabla 17).
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El efecto de la composición del medio, en el que tuvo lugar la aplicación de las altas

presiones sobre los microorganismos, se vio claramente influido por factores como el tipo de

microorganismo, la magnitud de la presión y la temperatura a la que se realizó el tratamiento

(Figura 13, 14 y 15).

En todos los tratamientos se pudo observar el efecto baroprotector de la leche de oveja

per se, ya que en todas las combinaciones, el análisis estadístico mostró que cuando el medio

de tratamiento de los microorganismos fue en Solución Ringer (SR) se alcanzó una mayor

letalidad que cuando se realizó en leche de oveja (0, 6, 50% de materia grasa) (P < 0.05)

(Tabla 14).

Por otra parte, del análisis estadístico se pudo observar que hubo 4 tipos de

comportamientos diferentes frente al contenido en materia grasa (MG) de la leche según el

microorganismo tratado: en Escherichia coli, el contenido de MG no mostró influencia en la

baroprotección; en Staphylococcus aureus y Lactobacillus helveticus, la MG per se ejerció

baroprotección, sin afectar el contenido de ésta; en Listeria innocua, la MG además de ejercer

baroprotección, esta protección fue mayor a medida que se incrementó su contenido; y en

Pseudomonas fluorescens, la MG ofreció baroprotección (6% MG), pero al aumentar el

contenido de ésta al 50%, pareció cambiar su efecto, incrementando la letalidad frente a dicho

microorganismo (Tabla 14).

Además de las tendencias que se observaron estadísticamente, en combinación de

todas las variables estudiadas para cada microorganismo, también se pudo comprobar que el

efecto que ejerce el contenido en MG, para un mismo microorganismo, varió en función de la

temperatura del tratamiento de alta presión. Así pues, por ejemplo, en el caso de

Staphylococcus aureus, a temperatura ambiente (25 ºC / 400 MPa), el aumento del contenido

de MG de la leche al 50% no influyó en su letalidad (P > 0.05), mientras que ese aumento a

bajas temperaturas (4 ºC / 400 MPa), provocó un ligero descenso en la letalidad de éste,

aunque de forma significativa (P < 0.05). Por el contrario, en el caso de Escherichia coli, la

letalidad se vio incrementada ligeramente (P < 0.05) cuando se aumentó el contenido en MG

del 6 al 50%, si se comparan los tratamientos de 25 ºC / 400 MPa y 4 ºC / 400 MPa.

Al parecer, el efecto global del contenido en MG sobre los microorganismos fue la

suma de dos efectos contrapuestos. Por una parte, el efecto protector de la grasa, se explicaría

considerando que la grasa podría absorver la energía que supone la aplicación de la presión,

evitando el intercambio de sustancias hidrosolubles entre el medio y el interior de los

microorganismos. Por otro lado, la manifestación del efecto letal de la materia grasa para los

microorganismos, podría deberse al aumento de la concentración de ciertas sustancias
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liposolubles con actividad antimicrobiana (Bogh-Sorensen, 1994). Durante la presurización,

habría un intercambio de lípidos de la leche con las lipoproteinas de la membrana de los

microorganismos con la consiguiente alteración de la composición y la permeabilidad de ésta.

A estos efectos mencionados se podría sumar un efecto físico de destrucción bacteriana que

resultaría del incremento en la rigidez de la membrana por cristalización lipídica, dependiendo

de la presión y temperatura de tratamiento.

Al igual que se ha observado en otros estudios (Oxen y Knorr, 1993), los tratamientos

de alta presión a 50 ºC ejercen un efecto destructivo sinérgico, ya que al efecto de la presión

hay que añadir el efecto térmico, que provoca los cambios en la fluidez de la membrana de los

microorganismos (Knorr, 1995), permitiendo un mayor intercambio entre sustancias extra e

intracelulares.

Por otra parte, los posibles cambios de pH que se pueden generar durante el

tratamiento de alta presión en el alimento, están influenciados a su vez, por el pH inicial y la

composición del medio (Heremans, 1995). Según Chong y col. (1985), pequeños cambios en

el pH del medio provocan un efecto letal sinérgico con la alta presión que sobre todo se da a

temperaturas de tratamiento moderadamente altas así como a bajas temperaturas. Por una

parte, la actividad de la bomba Na+/K+ ATPasa y bomba H+ ATPasa es reducida por la

presión, lo que conlleva cambios de pH y el aumento de la concentración de componentes del

medio. Por otra parte, ya se ha comentado que los tratamientos de alta presión a bajas

temperaturas provocan la aparición de cristales que pueden dañar la membrana celular de los

microorganismos, de la misma forma que los tratamientos a temperaturas moderadamente

altas pueden aumentar en exceso la fluidez de la membrana de éstos. Estos fenómenos junto

con la pérdida de actividad de los enzimas encargados de regular el pH y la presión osmótica

podrían explicar el efecto cooperativo que poseen los tratamientos de alta presión cuando se

producen pequeñas modificaciones de pH (Smelt, 1993).

A modo de resumen, el efecto que provocó la composición del medio (SR y leche de

oveja: 0, 6 o 50% MG) sobre la letalidad, volvió a confirmar estadísticamente  (P < 0.05) el

mismo orden de barorresistencia entre los microorganismos estudiados, que se observó con la

variable presión y los valores D, más sensibles: Pseudomonas fluorescens < Escherichia coli

≈ Listeria innocua < Lactobacillus helveticus < Staphylococcus aureus,  (P < 0.05). En la

mayoría de los microorganismos estudiados, excepto en L. helveticus, la variable presión fue

la que afectó en mayor grado a la letalidad de éstos (P < 0.05) (Tabla 15).
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Figura 5: Efecto sobre la letalidad en los microoganismos estudiados (en leche de oveja 6%
materia grasa) a  2 ºC durante 15 min. como función de la presión aplicada.

Figura 6: Efecto sobre la letalidad en los microoganismos estudiados (en leche de oveja 6%
materia grasa) a  10 ºC durante 15 min. como función de la presión aplicada.
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Figura 7: Efecto sobre la letalidad en los microoganismos estudiados (en leche de oveja 6%
materia grasa) a  25 ºC durante 15 min. como función de la presión aplicada

Figura 8: Efecto sobre la letalidad en los microoganismos estudiados (en leche de oveja 6%
materia grasa) a  50 ºC durante 15 min. como función de la presión aplicada.
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4.2.- ASPECTOS FISICOQUÍMICOS

4.2.1.- TAMAÑO Y DISTRIBUCIÓN DE LOS GLÓBULOS GRASOS

Uno de los objetivos de este trabajo fue obtener información relativa a la estabilidad

de la leche respecto a la materia grasa y la distribución de tamaños de los glóbulos grasos

(DTGG) cuando es sometida a tratamientos de alta presión. Tecnológicamente, esta

información puede ayudar a entender el comportamiento de la leche durante la etapa de

almacenamiento previo a la elaboración de productos lácteos, así como durante el procesado

de los mismos. Por otro lado, nutricionalmente, también resulta interesante conocer el tamaño

del glóbulo, ya que esta característica, está estrechamente relacionada con la digestibilidad de

la fase lipídica de la leche.

El DTGG fue modificado tras someter la leche a los tratamientos de alta presión. El

efecto de la variable presión sobre el DTGG causó cambios de forma no gradual. Las

máximas diferencias en la DTGG con respecto al control se observaron a presiones de 200 y

300 MPa (P < 0.05), mientras que el resto de tratamientos, apenas presentaron diferencias

respecto a éste (Tabla 18) (Figura 1, publicación 3.6.). Por otra parte, esta variable tuvo una

influencia distinta en los diferentes intervalos de DTGG, provocando mayores cambios con

respecto al control en el intervalo de tamaños entre 1-2 µm (P < 0.05) (Tabla 18). La

temperatura de presurización tuvo una influencia tan importante como la presión (Tabla 19).

Los tratamientos realizados a 25 y 50 ºC mostraron una tendencia a incrementar el número de

glóbulos grasos con diámetro de 1-2 µm y disminuir el número de los glóbulos grasos con

diámetro entre 2 y 10 µm. Por el contrario, los tratamientos a temperatura de refrigeración

(4ºC) mostraron una tendencia inversa, es decir, causaron una disminución del número de los

glóbulos grasos con tamaño de 1-2 µm y un aumento del número de los glóbulos grasos entre

2 y 10 µm de diámetro (Figura 1, publicación 3.6.).

A simple vista, ninguna de las combinaciones de presión y temperatura utilizadas

permitieron observar alteraciones de la estabilidad de la leche, tales como cremado o

separación de fases. De hecho, según mostró el estudio del DTGG, el intervalo

correspondiente a los glóbulos grasos de mayor tamaño, entre 10 y 50 µm, no se vió alterado

con respecto al control.

Para valorar de una forma más sencilla el efecto de las altas presiones en las

modificaciones que sufre el DTGG la información obtenida se puede expresar como
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diámetros medios (Rüegg y Blanc, 1982). De los múltiples parámetros existentes para

caracterizar la DTGG, uno de los más utilizados es “dvs”, que corresponde a la media

aritmética de la distribución volumen-superficie de los glóbulos grasos. “dvs” fue utilizado

para realizar el análisis estadístico y las comparaciones con otros autores, ya que es el

parámetro menos dependiente del número de pequeñas partículas. Por la misma razón, como

parámetro de dispersión de los resultados, se utilizó “Cs”, el cual está basado en el coeficiente

de variación de “dvs” (Rüegg y Blanc, 1982).

En el intervalo de condiciones de los tratamientos de alta presión, el valor del diámetro

medio (dvs) osciló entre 4.3 y 5.1 µm. Por otra parte, al comparar las muestras control con las

muestras tratadas por alta presión el diámetro medio apenas varió (Tabla 3, publicación 3.6.),

mostrando que el diámetro medio de los glóbulos grasos aparentemente no se vio afectado por

presiones de hasta 500 MPa. Resultados similares fueron observados por Kanno y col. (1998)

en nata líquida (30% de materia grasa) de leche de vaca.

Para evaluar el efecto de los tratamientos de alta presión sobre el cremado de la leche,

se utilizó el parámetro “H”, el cual permitió comparar entre diferentes muestras la tendencia a

la desestabilización que provoca la migración de la fase lipídica hacia la superficie. Las

muestras tratadas por alta presión a 4 ºC, mostraron mayor tendencia al cremado espontáneo

que las tratadas a 25 y 50 ºC, siendo éstas últimas más estables con el paso del tiempo.

Paralelamente,  a la determinación de la DTGG, la cual fue realizada mediante un

contador de partículas, se realizaron diversas observaciones mediante microscopía laser

confocal. En dichas observaciones, los glóbulos grasos de las muestras tratadas mantuvieron

su morfología, y no se apreciaron deformaciones que distaran considerablemente de la forma

esférica que mostraban los glóbulos grasos de las muestras control (Figura 2, publicación

3.6.). Los ensayos efectuados con presiones de 200 y 300 MPa a 25 y 50 ºC, fueron los que

dieron lugar a una disminución del tamaño de los glóbulos grasos, incrementándose el número

y uniformidad de éstos (Figura 2, publicación 3.6., imagen C, 200 MPa / 25 ºC) respecto al

control (Figura 2, publicación 3.6., imagen A), estando esta observación en concordancia con

los resultados obtenidos en la determinación de la DTGG. Los tratamientos de 500 MPa a 25

y 50 ºC, apenas mostraron diferencias respecto al control. Sin embargo, a temperatura de

refrigeración (4 ºC) (Figura 2, publicación 3.6., imagen D, 200 MPa / 4 ºC), las imágenes

mostraron un incremento del número de glóbulos grasos con un diámetro intermedio,

ofreciendo el aspecto de una muestra muy homogénea, aunque esta apreciación no coincidió

con el cálculo del parámetro “H”, el cual indicó que esas leches presentaron una tendencia

elevada al cremado.
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El incremento del número de glóbulos grasos con pequeño diámetro, que se observó

en los tratamientos de 25 y 50 ºC entre 200 y 300 MPa, parece que fue debido principalmente

a la división de los agregados de glóbulos grasos sin alteración de la estructura de éstos,

evitándose el contacto de la materia grasa con la fase acuosa de la leche, que es donde se

encuentra el enzima lipoprotein-lipasa. A consecuencia de este comportamiento en las

muestras LI, no se detectó un incremento de la concentración de ácidos grasos libres superior

al obtenido en la muestras LE, dicho comportamiento está explicado más ámpliamente en el

siguiente apartado (4.2.2.). Aunque hay estudios que demuestran que a partir de determinadas

presiones, el enzima lipoprotein-lipasa ve reducida su actividad (Seyderhelm y col, 1996), en

leche tratada a 500 MPa, este enzima, aún conserva cierta actividad residual (Trujillo y col.,

1999). Esta actividad podría ser suficiente para provocar un aumento en la concentración de

los ácidos grasos libres en aquellas muestras LI donde hubiese habido contacto entre la

materia grasa y dicho enzima.

4.2.2.- EVALUACIÓN  DE  LA  LIPOLISIS

La evaluación del efecto de los tratamientos de alta presión sobre la lipolisis se realizó

a través de la valoración de la concentración de ácidos grasos libres (AGL) considerando la

historia de la leche recien ordeñada. La concentración de AGL de esta leche almacenada a 4

ºC durante 24 h constituyó el valor de la lipolisis espontánea (LE) ocurrida en la muestra.

Paralelamente, la leche recien ordeñada fue tratada por altas presiones y seguidamente

almacenada también a 4 ºC durante 24 h, siendo la concentración en AGL el valor

correspondiente a la lipolisis inducida (LI) por el tratamiento aplicado.

A la vista de los resultados analizados las diferencias entre LE y LI parece claro que

existe un efecto beneficioso de la alta presión sobre la lipolisis, aunque éste es muy

dependiente de la temperatura aplicada. Mientras que a 25 ºC apenas hay modificaciones, a 4

y 50 ºC se observó una disminución significativa (P < 0.05) de la LI. Además, a 50 ºC, a

partir de 300 MPa se detectaron concentraciones de AGL inferiores que las observadas en la

leche recien ordeñada (Tabla 2, publicación 3.6.). Así mismo, a estas temperaturas de

presurización, pudo observarse una influencia positiva de la variable presión sobre la LI, que

fue más acusada a partir de 300 MPa.

Esta disminución de la LI a 4 y 50 ºC podría ser debida a la inactivación total o parcial

de la lipoprotein-lipasa nativa (LPL) de la leche (Seyderhelm y col., 1996), y a las

modificaciones que las altas presiones podrían causar en la composición y estructura de la
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membrana de los glóbulos grasos, modificaciones debidas a la adsorción de fracciones de las

micelas de caseina desintegradas (Law y col., 1998) y de las proteínas séricas

desnaturalizadas (Felipe y col., 1997). Estos fenómenos incrementan considerablemente la

fuerza o resistencia de la membrana, previniendo excesos de fluidez y posibles fugas de

triglicéridos del interior de los glóbulos grasos (Dalgleish y Banks, 1991). También, estos

fenómenos de adsorción de proteínas en la membrana de los glóbulos grasos dificultan el

anclaje del enzima LPL a la membrana. Por otro lado, los fenómenos de cristalización de la

grasa a causa de la presión o las bajas temperaturas, reducen la acción de la LPL sobre ésta,

evitando el consiguiente incremento en la lipolisis (Buchheim y Abou El-Nour, 1992). La LI

observada en los tratamientos de 300, 400 y 500 MPa a 50 ºC, en los que se llegaron a obtener

concentraciones de AGL inferiores a las presentadas por la leche recien ordeñada podría

indicar que algunas condiciones de tratamientos por alta presión pueden inducir una

activación de los enzimas responsables de la reesterificación de los AGL con mono- y

diglicéridos en la leche.

4.2.3.- EVALUACIÓN DEL COLOR

El análisis instrumental del color utilizando las coordenadas L*, a* y b*, mostró que a

medida que se incrementó la presión, aumentó la diferencia de color respecto a la muestra

control (P < 0.05) (Table 18). Estas diferencias se vieron reflejadas en una disminución de la

luminosidad (L*) y un aumento de los parámetros (-a*) verde y (+b) amarillo (Tabla 1,

publicación 3.6.). Respecto a la temperatura, los tratamientos de alta presión a 4 ºC, fueron los

que mostraron más diferencias totales (∆E) respecto al control (P < 0.05),  modificando las

tendencias de los parámetros del color (L*, a* y b*) de igual forma que la presión. Diferentes

autores han mostrado resultados similares del comportamiento del color en la leche bajo la

presión (Adapa y col., 1997; Johnston y col., 1992). Las diferencias entre los valores

absolutos de dichas experiencias (leche desnatada de vaca) y las del presente estudio (leche

entera de oveja) probablemente son debidas a las diferencias en la composición de la leche,

sobre todo de materia grasa. Schmidt y Buchheim (1970) observaron mediante microscopía

electrónica la desintegración en pequeños fragmentos de las micelas de caseina a causa de los

tratamientos de alta presión, aspecto que ha sido corroborado por numerosos autores. Este

aumento del número de pequeñas partículas es el responsable del descenso de la luminosidad

(L*) en la leche (Johnston, 1995).
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De todas formas, los cambios de color que visualmente se pudie ron observar, solo

fueron apreciables cuando la leche fue sometida a tratamientos de 4 ºC / 500 MPa, no

detectándose visualmente apenas diferencias entre el resto de las muestras tratadas y el

control.
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1.- La supervivencia de los microorganismos estudiados disminuye a medida que se

incrementa la presión de los tratamientos desde 100 a 500 MPa. Se observa que son

necesarias presiones de 400 MPa para obtener importantes reducciones microbianas, igual o

superiores a 4 unidades logarítmicas en la mayoría de las cepas estudiadas.

2.- La sensibilidad que presentan los microorganismos tratados con presiones es la

siguiente: Pseudomonas fluorescens > Escherichia coli ≈ Listeria innocua > Lactobacillus

helveticus > Staphylococcus aureus, siendo este último el más baroresistente entre todos los

microorganismos estudiados.

3.- El estudio de la variable temperatura demuestra que existen dos tipos de

comportamientos en los microorganismos que ofrecen mayor resistencia a los tratamientos a

temperatura ambiente (25 ºC) (P. fluorescens, L. innocua y L. helveticus), y los que son a

bajas temperaturas (2 y 10 ºC) (E. coli y S. aureus). Sin embargo, para todos los

microorganismos, los tratamientos a 50 ºC son los más eficaces.

4.- Las cinéticas de destrucción microbiana, al menos durante los primeros 15-20 min. de

tratamiento, son de 1er orden, siendo en este primer intervalo de tiempo en el que se obtienen

las mayores reducciones en la población. Por otro lado,  al incrementar el doble la presión, en

función del tratamiento y microorganismo, se obtienen valores D inferiores a la mitad. Por

esto, a nivel práctico no resulta efectivo prolongar los tratamientos más allá de los 15-20 min.

5.- La leche de oveja per se ejerce un efecto baroprotector sobre los microorganismos en

comparación con otros medios como la “solución de Ringer”, independientemente del

contenido en materia grasa de ésta.

6.- Respecto al contenido de materia grasa, ésta ejerce efectos diferentes sobre la

baroprotección microbiana. Así pues,  en E. coli no posee ningún efecto; en L. helveticus y S.

aureus la materia grasa protege independientemente del contenido de ésta; en L. innocua, a

medida que se incrementa su contenido ofrece mayor protección; y en P. fluorescens la

materia grasa protege, pero el incremento de ésta conlleva el efecto contrario.
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7.- El color de la leche de oveja apenas cambia por el efecto de las altas presiones.

Únicamente en los tratamientos de 500 MPa a 4 ºC se aprecian cambios con respecto al

control.

8.- En general las altas presiones no inducen lipolisis en la leche de oveja. Incluso, gran

parte de las muestras tratadas a 4 y 50 ºC presentan valores inferiores de ácidos grasos libres

respecto a la leche recién ordeñada, indicando que puede darse una reesterificación de éstos.

Únicamente en algunas combinaciones de tratamientos a 25 ºC tiene lugar un ligero aumento

de la lipolisis.

9.- Los tratamientos a 200 y 300 MPa son los que muestran las mayores diferencias en la

distribución del tamaño de los glóbulos grasos. En estas condiciones de presión a 25 y 50 ºC

se produce un incremento del número de glóbulos grasos del menor tamaño (1-2 µm) en

contra de los de entre 2 y 10 µm, mientras que a 4 ºC ocurre lo contrario.

10.- En concordancia con el punto anterior y atendiendo al parámetro de cremado, H, las

leches tratadas a 4 ºC poseen mayor tendencia a la desestabilización que las tratadas a 25 y 50

ºC, siendo estas últimas potencialmente más estables en las etapas de reposo.

11.- En los tratamientos aplicados, el diámetro medio “dvs” apenas se modifica respecto a

la leche tratada. Así mismo, no se observa la formación de glóbulos grasos o agregados de

éstos con un diámetro superior a 10 µm.

12.- Considerando los resultados del presente estudio en relación a las reducciones

microbianas, color y estabilidad de la fase grasa, la leche de oveja tratada por altas presiones

puede considerarse una alternativa a la pasteurización de ésta en la elaboración de quesos de

alta calidad.
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Figura 9: Tendencias sobre la letalidad en los microorganismos estudiados (en leche de oveja
6% materia grasa) a diferentes presiones durante 15 min. como función de la
temperatura del tratamiento
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Figura 10: Ejemplo de supervivencia para  L. innocua (400 MPa / 25 ºC) (l) y  L. helveticus
                 (450 MPa / 25 ºC) (s) en períodos prolongados de tratamiento por altas presiones.
                 Cinéticas de destrucción microbiana.
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Figura 11: Efecto sobre la letalidad de los microoganismos estudiados (en leche de oveja 6%
materia grasa) a 25 ºC y diferentes presiones como función del tiempo aplicado del
tratamiento

Figura 12: Efecto sobre la letalidad de los microoganismos estudiados (en leche de oveja 6%
materia grasa) a 2 ºC y diferentes presiones como función del tiempo aplicado del
tratamiento.
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Figura 13: Efecto sobre la letalidad de los microoganismos estudiados a 4 ºC con diferentes
presiones durante 15 min. como función de la composición del medio donde se
aplicó el tratamiento.

Figura 14: Efecto sobre la letalidad de los microoganismos estudiados a 25 ºC con diferentes
presiones durante 15 min. como función de la composición del medio donde se
aplicó el tratamiento.

Figura 15: Efecto sobre la letalidad de los microoganismos estudiados a 50 ºC con diferentes
presiones durante 15 min. como función de la composición del medio donde se
aplicó el tratamiento.
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Tabla 11: Niveles de significación para la variable “presión” en los microorganismos
estudiados.

Microorganismo Valores (P < 0.05)

E. coli a 50 < 100 < 150 = 200 < 250 < 300 < 400 < 450 = 500 MPa

P.  fluorescens 50 < 100 = 150 < 200 < 250 < 300 < 400 = 450 = 500 MPa

L. innocua 200 < 300 < 350 < 400 = 450 = 500 MPa

S.  aureus 200 < 300 < 400 < 450 < 500 MPa

L. helveticus 200 < 300 < 400 < 450 < 500 MPa
a (X < Y) si diferencias significativas (P < 0.05), mayor letalidad en Y; (X = Y) no
diferencias significativas (P > 0.05).

Tabla 12: Niveles de significación para la variable “temperatura” en los microorganismos
estudiados.

Microorganismo Valores (P < 0.05)

E. coli a,b Refrigeración < Ambiente < Moderadamente Altas

P.  fluorescens Ambiente < Refrigeración < Moderadamente Altas

L. innocua Ambiente < Refrigeración < Moderadamente Altas

S.  aureus Refrigeración < Ambiente < Moderadamente Altas

L. helveticus Ambiente < Refrigeración < Moderadamente Altas
a (X < Y) si diferencias significativas (P < 0.05), mayor letalidad en Y; (X = Y) no
diferencias significativas (P > 0.05).
b Refrigeración (2, 4 y 10ºC), Ambiente (25ºC), Moderadamente Altas (50ºC).

Tabla 13: Niveles de significación para la variable “tiempo” en los microorganismos
estudiados

Microorganismo Valores (P < 0.05)

E. coli a 5  <  10  <  15 min

P.  fluorescens 5  <  10  <  15 min

L. innocua 5  <  10  <  15 min

S.  aureus 5  <  10  <  15 min

L. helveticus 5  <  10  <  15 min
a (X < Y) si diferencias significativas (P < 0.05), mayor letalidad en Y; (X = Y) no
diferencias significativas (P > 0.05).
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Tabla 14: Niveles de significación para la variable “composición del medio” en los
microorganismos estudiados.

Microorganismo Valores (P < 0.05)

E. coli a,b 50  =  0  =  6  <<  SR

P.  fluorescens 6  <  50  <  0  <<  SR

L. innocua 50  <  6  <  0  <<  SR

S.  aureus 50  =  6  <  0  <<  SR

L. helveticus 50  =  6  <  0  <<  SR
a (X < Y) si diferencias significativas (P < 0.05), mayor letalidad en Y; (X = Y) no
diferencias significativas (P > 0.05).
b 0 (leche de oveja al 0% materia grasa), 6 (leche de oveja al 6% materia grasa), 50 (leche de
oveja al 50% materia grasa) y SR (Solución de Ringer).

Tabla 15: Valores F en los microorganismos estudiados.

Microorganismo Valores F (P < 0.05)

E. coli Presión + Medio 49 % + 34 %

P.  fluorescens Presión + Temperatura 53 % + 29 %

L. innocua Presión + Medio 67 % + 20 %

S.  aureus Presión + Temperatura + Medio 54 % + 24 % + 20 %

L. helveticus Medio + Presión 47 % + 37 %

Tabla 16: Composición media de la leche de oveja utilizada en este estudio.

Parámetros a Media (%) Desviación Estándar (±± %)

Extracto seco 18.47 1.72

Materia grasa 7.63 1.48

Proteína total 5.74 0.18

Cenizas 1.17 0.12

 p H 6.67 0.08
a Media y desviación estándar obtenidas de las seis publicaciones objeto de esta tesis.
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Tabla 17: Tiempos de reducción decimal (Valores D) a diferentes presiones y temperaturas
en los microorganismos estudiados.

Microorganismo Tratamientos Valores D (minutos)

E. coli 250 MPa / 2ºC 6.83

300 MPa / 2ºC 5.35

250 MPa / 10ºC 11.14

300 MPa / 10ºC 8.13

200 MPa / 25ºC 9.51

250 MPa / 25ºC 6.4

300 MPa / 25ºC 5.19

150 MPa / 50ºC 18.8

250 MPa / 50ºC 4.86

300 MPa / 50ºC 2.53

P.  fluorescens 250 MPa / 2ºC 3.87

300 MPa / 2ºC 3.38

250 MPa / 10ºC 5.27

300 MPa / 10ºC 3.56

200 MPa / 25ºC 23.26

250 MPa / 25ºC 4.58

150 MPa / 50ºC 6.35

250 MPa / 50ºC 2.75

L. innocua 400 MPa / 2ºC 3.12

400 MPa / 25ºC 4

S.  aureus 450 MPa / 2ºC 20

450 MPa / 25ºC 16.7

L. helveticus 450 MPa / 2ºC 7.1

450 MPa / 25ºC 9.1
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Tabla 18: Niveles de significación de las variables analizadas en los parámetros
fisicoquímicos estudiados.

Variables Valores (P < 0.05) Parámetros

Presión a 100 < 200 < 300 < 400 < 500 MPa Color
500 < 400 = 300 < 200 = 100 MPa d Lipolisis (AGL)
500 = 400 = 100 < 300 = 200 MPa e TD de GG

Temperatura 50 < 25 < 4ºC Color
50 < 4 < 25ºC Lipolisis (AGL)
4 < 50 = 25ºC TD de GG

Tiempo 10 < 30 min Color

b Diámetro GG c (9-10 = 8-9 = 7-8 = 6-7) < (5-6 = 4-5 = TD de GG

4-3 = 3-4 = 2-3) < (1-2) µm
a (X < Y) si diferencias significativas (P < 0.05), mayor letalidad en Y; (X = Y) no
diferencias significativas (P > 0.05).
b Diámetro de los góbulos grasos.
c Intervalos en micras de los glóbulos grasos.
d Lipolisis inducida (Ácidos Grasos Libres).
e Tamaño y distribución de los glóbulos grasos.

Tabla 19: Valores F en los parámetros fisicoquímicos estudiados.

Parámetros Variables Valores F (P < 0.05)

Color Presión + Temperatura 78 % + 19 %
a Lipolisis (AGL) Temperatura 95 %
b TD de GG Presión + Temperatura 43 % + 41 %
a Lipolisis inducida (Ácidos Grasos Libres).
b Tamaño y distribución de los glóbulos grasos.
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8.  ANEXO  II
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Quisiera hacer nota de varias aclaraciones que talvez por algún motivo u otro no

fueron reflejadas en el apartado de material y métodos de cada una de las publicaciones que

forman parte de este trabajo.

• Cada resultado expresado como promedio procede de 3 experiencias independientes y los

análisis por duplicado (n = 6).

• Todas las muestras inoculadas: control y tratadas por altas presiones, fueron sembradas en

medios de cultivo selectivos (Tabla 20, identificación) y en Plate Count Agar (PCA)

(Figura 3). Las diferencias en recuentos entre los medios selectivos (b y c) y el PCA (b y

c), en ningún caso fueron superiores a 0.2 unidades logarítmicas. Esto indicó que la

contaminación inicial (después de la pasteurización) y la sufrida durante el proceso de

preparación de las muestras no fue significativa.

• Después del proceso de pasteurización de la leche (75 ºC durante 1 min.) (Figura 3),

necerario para reducir la contaminación inicial de los microorganismos aerobios mesófilos

totales a niveles inferiores de 102 ufc/mL, se sembraron muestras de leche no inoculada

(blancos) en PCA (a) y el medio selectivo (a), para cada uno de los microorganismos

estudiados (Tabla 20, identificación). Los recuentos obtenidos en PCA (a) fueron siempre

inferiores a 102 ufc/mL, mientras que en los medios selectivos (a), en ningún caso se

detectó presencia de ningún microorganismo objeto de este estudio. Esto indicó que las

muestras de leche, una vez fueron pasteurizadas, no contenían ya microorganismos de las

cepas a estudiar antes de que éstas fueran inoculadas a propósito para su estudio por altas

presiones.

• Todas las siembras en PCA (b y c) y los medios selectivos (b y c) para el recuento de

supervivientes (Figura 3), se realizaron transcurridas aproximadamente 10 h desde su

tratamiento por altas presiones, y siempre estuvieron almacenadas a temperatura de

refrigeración (4ºC). Este protocolo evita la aparición de falsos negativos que podrían

generarse a causa de los posibles daños subletales sufridos por éstos bajo el efecto de las

altas presiones (stress post-presurización).

• A su vez, para confirmar la ausencia de los microorganismos estudiados, las muestras

tratadas por alta presión con recuentos en los medios selectivos (c) de 0 ufc/mL, éstas

volvieron a ser sembradas en medios selectivos (d) tras haber pasado previamente un
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período de incubación (tiempos y temperaturas óptimas para cada microorganismo) en el

mismo bote donde la muestra fue tratada por alta presión (Figura 3).

• Para estudiar el posible efecto letal de la temperatura per se. Se realizaron diferentes

experiencias que consistieron en tratar térmicamente muestras de leche de oveja (6%

materia grasa), las cuales previamente fueron inoculadas de forma individual con cada uno

de los microorganismos estudiados, a las temperaturas más extremas ensayadas con los

tratamientos de altas presiones: 1 y 53 ºC durante 30 min. en un  baño Mª con agitación.

No se observaron diferencias significativas (P > 0.05), entre las muestras tratadas

térmicamente y los controles. Así pués, no hubieron reducciones microbianas de las cepas

estudiadas por el efecto de la temperatura per se.

Tabla 20: Microorganismos, medios de cultivo, temperaturas y tiempos utilizados en los
ensayos microbiológicos.

Stock  Rehidratación   Crecimiento  Identificación

4ºC Medio Tª/t Medio Tª/t Medio Tª/t

E. coli NA LB 37ºC/24h LB 37ºC/24h VRBA 37ºC/24h
P fluorescens TSA TSB 30ºC/24h TSB 30ºC/24h CVT 30ºC/48h
L. innocua BHI-A BHI 37ºC/24h BHI 37ºC/24h LSA-S 37ºC/48h
S. aureus TSA TSB 37ºC/24h TSB 37ºC/24h BP 37ºC/48h
L. helveticus MRS-A MRS-B 37ºC/24h MRS-B 37ºC/24h MRS-A 37ºC/72h
BHI:   Brain Heart Infusion NA:     Nutrient Agar
BHI-A:  Brain Heart Infusion Agar MRS-A:  Man-Rogosa-Sharpe Agar
BP:   Baird Parker MRS-B:  Man-Rogosa-Sharpe Broth
CVT:   Crystal-Violet-Tetrazo lium Count TSA:    Tryptone Soya Agar
LB:   Lactose Broth TSB:    Tryptone Soya Broth
LSA-S:  Listeria Selective Agar-Supplement VRBA:   Violet Red Bile Agar
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