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Abstract

This thesis focuses on the specification, design and implementation of open agent
organisations. We argue that open agent organisations can be effectively de-
signed and implemented as institutionalised electronic organisations (electronic
institutions) composed of a vast amount of heterogeneous (human and software)
agents playing different roles and interacting by means of speech acts. Then we
take the view that the design and development of electronic institutions must
be guided by a principled methodology. For this purpose we propose a for-
mal specification of electronic institutions that founds their design, analysis and
development.

Next we present a computational model that arises from and fully captures
the resulting formalisation of electronic institution. Our computational model
strongly relies on and exploits the notion of mediation for founding the realisation
of electronic institutions’ infrastructures. Thus we propose how to fully realise
an electronic institution based on institutional agents —the agents to which
the institution delegates its services— and interagents —autonomous software
agents devoted to mediating the interaction between each agent and the agent
society in the framework of an electronic institution. Therefore electronic insti-
tutions are computationally conceived as agent-mediated electronic institutions
since both institutional services and interactions are mediated by agents.

We illustrate the practical realisation of agent-mediated electronic institu-
tions by describing the development of an electronic auction house inspired by
the age old institution of the fish market where heterogeneous (software and
human) agents may trade.

Lastly we present the evolution of the electronic auction house into a test-bed
for experimenting with auction-based trading scenarios. We show how in these
scenarios trading agents of arbitrary complexity participate in auctions under a
collection of standardised market conditions and are evaluated according to their
actual market performance. We argue that such competitive situations consti-
tute convenient problem domains in which to study issues related with trading
agent architectures in general and agent-based trading strategies in particular.
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”I guess one of the reasons that I've never
been a very good private detective is that I
spend too much time dreaming of Babylon.”

(Richard Brautigan, Dreaming of Babylon)

"En efecto, no basta tener un buen en-
tendimiento, sino que lo principal es
aplicarlo bien. Las almas mds grandes son
capaces de los mds grandes vicios, como
también de las mds grandes virtudes; vy
los que no caminan sino muy lentamente,
st siguen siempre el camino recto, pueden
adelantar mucho mds que los que corren y
se apartan de él.”

(René Descartes, Discurso del Método)

Lanark looked sideways at Sludden.
?Is your life a continual feast?”

”I enjoy myself. Do you?”

”No. But I'm content.”

”Why are you content with so little?”
"What else can I have?”

(Alasdair Gray, Lanark A Life in /
Books)
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Chapter 1

Introduction

The main goal of this thesis is to present a principled, integrated methodology
for the formal specification, design, and implementation of open agent organisa-
tions. We exemplify how to put the resulting approach in practice by developing
an auction-based agent-mediated computational marketplace in which hetero-
geneous (human and software) agents may trade. Taking one step further, we
extend such computational marketplace and make it evolve in order to produce
a test-bed that supports controlled experimentation to help design, build and
tune trading agents in auction-based markets.

In what follows, we firstly identify the key research issues that have moti-
vated the work presented in this thesis. Next, we describe how our research
has contributed to tackle such issues and, finally, we provide the description
of two case studies that will be employed throughout the rest of the thesis for
illustrative purposes.

1.1 Motivation

Multi-agent systems (MAS) have emerged as a promising approach for creat-
ing agile information systems suited for addressing problems that have multiple
problem-solving methods, multiple perspectives and/or multiple problem solv-
ing entities [Jennings et al., 1998]. Apart from inheriting the traditional advan-
tages of distributed problem solving systems, MAS are characterised by their
high flexibility, fundamentally based on the exploitation of an ample variety of
sophisticated patterns of interaction. For instance, agents may cooperate to
achieve a common goal, they may coordinate their activities in order to avoid
harmful interactions or else exploit beneficial interactions, or they may negotiate
an agreement. Such forms of interaction allow to consider MAS as highly flexible
systems distinct from other forms of software.

Up to date most of the work produced by MAS research has focused on
closed systems, i.e. systems in which agents and their infrastructure are de-
signed, developed and enacted under centralised control [Klein, 2000]. Thus,
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MAS researchers have bargained for well-behaved agents immersed in reliable
infrastructures in relatively simple domains. Such assumptions are not valid
when considering open systems [Hewitt, 1986] whose components are unknown
beforehand, can change over time and can be both human and software agents
developed by different parties. In general, the design and construction of open
MAS! pose a number of issues that must be addressed:

e Heterogeneity. An open MAS must be capable of accommodating hetero-
geneous agents, i.e. agents developed in different languages, by different
parties, with different purposes (objectives) and preferences, and endowed
with varying degrees of sophistication.

o Reliability.” Open systems must be reliable. They must be designed do
that failures of individual components can be accommodated by operating
components while the failed components are repaired or replaced.” [Hewitt,
1986].

o Accountability and legitimacy. Since agents may possibly exhibit either
deviating or fraudulent behaviour, their behaviours must be monitored in
order detect and prevent dysfunctional behaviours which may jeopardise
the overall functioning of the system. Thus only those actions that are
regarded as legitimate should be permitted.

e Societal change. Agent societies are not static; they may evolve over time
by altering, eliminating or incorporating rules. Hence the need of demand-
ing flexible agent societies capable of accommodating future changes.

Examples of open agent systems include open electronic marketplaces and
virtual supply chains, disaster recovery operations, collaborative design and in-
ternational coalition military forces [Pro, 1999, Fischer and al., 1996, Rodriguez-
Aguilar et al., 1997, IEEE, 1993]. Although open systems have recently started
to be considered by MAS researchers as the most important application of multi-
agent systems, their inherent issues have not been conveniently addressed yet.
Therefore, open MAS undoubtedly appear as a class of systems worthy studying.
At this point a major, capital question arises: how to approach their design and
construction?

Notice that at present most agent applications lack of a principled method-
ology underpinning their development, and so they are produced in an ad hoc
fashion. Since open MAS are highly complex, costly, critical applications it
would be desirable to bargain for principled methodologies that support their
specification, analysis and validation. Indeed there has been a surge of inter-
est in agent-oriented methodologies and modelling techniques in the last few
years motivated and spurred by the first generation of agent developments. Re-
searches seem to have recently started to highlight the importance of method-
ologies that help mature and succeed agent research [Fisher et al., 1997, Brazier

IHenceforth through the rest of this chapter we employ the terms open MAS and open
agent society interchangeably
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et al., 1997, Sierra and Noriega, 1998, Wooldridge et al., 1999, Rodriguez- Aguilar
et al., 2000, Esteva et al., 2000b]. Along these lines, we distinguish two main
research areas represented by the use of formalisms and the adaption of existing
software engineering and knowledge engineering techniques.

On the one hand, formalisms encompass logics and general-purpose speci-
fication languages from software engineering techniques such as Z, w-calculus,
Petri Nets, CSP and others. Many advanced logics have been put forth to
deal with several issues, but they all have shared the commonality of focusing
on individual agents’ aspects. Nonetheless, temporal logics have proven use-
ful for dealing with multi-agent systems [Fisher and Wooldridge, 1997], though
they appear to be more valuable to verify and validate their properties since
there is a gap between any logic specification and an actual development. Us-
ing a general purpose-specification languages such as Z (employed in [d’Inverno
et al., 1998b, d’Inverno and Luck, 1999]), w-calculus (employed in [Padget and
Bradford, 1998]), or CSP represents a straightforward solution. However these
languages are limited by their lack of expressiveness to cover all agent issues.
For instance, Z has been reported to be inappropriate for modelling interactions,
being CSP or Petri Nets more appropriate for this purpose?. Nevertheless Z is
in turn more appropriate to model how the state of an agent changes in response
to a message protocol.

On the other hand, and alternatively, many approaches extend tools and
modelling techniques from software and knowledge engineering( [Brazier et al.,
1997]). Concerning the first case, most approaches (f.i. [Kinny et al., 1996,
Burmeister, 1996]) consider existing object-oriented modelling techniques in or-
der to either extend them, adapt them or simply directly apply them to the
design of agent systems®.

When considering the principled design of open MAS a fundamental issue is
to decide whether to employ a new or an existing technique, or even combination
of techniques. Our analysis of the literature indicates that generally existing
techniques need to be adapted and/or combined. Alternatively, a purposely-
devised technique ideally offers more expressiveness, structure and support. Un-
fortunately, there is no a clear answer to the issue of choosing a methodology,
fundamentally because the use of principled approaches has not been common
practice, and so not enough knowledge has been accumulated to elucidate this
matter. Although it is widely admitted that agent applications represent a dif-
ferent type of application with distinguishing features that may require new
formalisms and modelling techniques, no much work has been done in this direc-
tion. Furthermore, the extra features needed by the many existing techniques is
still a matter of research.

Whatever the chosen technique, another fundamental aspect is to opt for
either a micro (agent-centered) view or a macro (organisation-centered) view of
MAS. Most existing approaches are characterized by their agent-centered per-

2Although Petri Nets have been recently criticized for the combinatorial size for actual
protocols and the ultra-powerful simulation tools needed.
3 [Iglesias et al., 1999] offers a survey of agent-oriented techniques.
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spective (f.i. [Brazier et al., 1997,d’Inverno and Luck, 1999, Wooldridge et al.,
1999]. Typically agent-centered approaches focus on closed systems; they com-
mit to a given architecture or formal specification accounting for an agent’s
behaviour and attempt at explaining how an agent’s inner behaviour is related
to the social interactions (coordination, cooperation, negotiation, etc.) in which
an agent is involved. Although early work in DAI identified the advantages of
organisational structuring as one of the main issues in order to cope with the
complexity inherent to designing DAT systems [Gasser et al., 1987, Pattison et al.,
1987, Corkill and Lesser, 1983, Werner, 1987] —clearly influenced by related re-
search disciplines like organisation and management theory—, DAT research, and
MAS research in particular®, have traditionally kept an individualistic character.
Thus, MAS research has evolved patterned on a strong agent-centered flavour.

Criticisms against the inconveniences of employing agent-centered approaches
for open agent systems have been upheld [Carley and Gasser, 1999, Esteva
et al., 2000a]. In fact, notice that there is an increasing interest in incor-
porating organisational concepts into MAS as well as in shifting from agent-
centered to organisation-centered designs [Rodriguez-Aguilar et al., 1997, Nor-
iega, 1997a, Ferber and Gutknetch, 1998, pa So and Durfee, 1998, Sierra and
Noriega, 1998, Barbuceanu et al., 1998, Dellarocas and Klein, 1999, Esteva et al.,
2000Db] that consider the organisation as a first-class citizen likewise the pioneer-
ing works reported in [Gasser et al., 1987, Pattison et al., 1987].

Therefore, organisation-centered approaches do not consider that an organi-
sation design may emerge spontaneously and instead this is imposed in order to
structure activities or control the actions of a system as a corporate entity. A
shared organisational structure is expected to provide agents with descriptions
about their roles and responsibilities in the multi-agent context and contains
guidelines for their intelligent cooperation and communication. In other words,
an organisational structure defines a behaviour space for agents with a whole set
of norms and rules that agents are required to follow.

Evidently organisation-centered approaches are more valuable than agent-
centered approaches from the point of view of open MAS designers. At this point
we must formulate another fundamental question: what type of organisational
structure (agents’ roles, activities, relationships among activities, etc.) is more
appropriate for the open MAS to be modelled?

Notice that a principled methodology will be enormously valuable for a MAS
designer so as to conceive and realize structures and mechanisms of open agent
systems. Complementarily there is also the need of providing support to agent
architects to help them design, develop, test and tune their agents. Along this
direction, MAS research has been very prolific, producing a large variety of both
commercial and non-commercial agent development environments such as [Bee-
gent, www, Agentbuilder, www, Gossip, www, Cost et al., 1998] to name a few.
Such development environments provide different sets of facilities to aid agent
developers to construct their agents’ architectures and the sophisticated pat-

4In Chapter 2 we study the relationship between DAT and MAS as related but not identical
research fields.
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terns of interaction through which they communicate. Considering open agent
systems where agents are developed and owned by different parties, this type
of support is left to the agent developer’s choice. Another type of support is
needed when aiming at testing and tuning an agent’s social behaviour, i.e. an
agent’s behaviour once immersed within an open system.

Let us consider electronic marketplaces as a typical example of open agent
system. We observe that research in e-commerce has spurred the creation of
a large number of agent-based marketplaces °. However no much effort has
been devoted to provide support to agent developers to help them tune their
trading agents’ behaviour before let them play in extremely competitive trading
scenarios. Apart from AuctionBot [Wurman et al., 1998] and FM [Rodriguez-
Aguilar et al., 1998c] there is a paradoxical lack of test-bed for trading agents.
We can generalize this observation and extend it to MAS in general, since in the
last few years there has not been much activity concerning the development of
agent test-beds. This is mainly motivated by the evidence that the development
of DAT experimental platforms manifests as a long, tedious process characterised
by the need of an enormous development effort. Nonetheless, despite the costly
development inherent to test-beds, they are of tremendous value and relevance
as research tools for MAS in general, and for open MAS in particular, that can
help both the MAS designer and the agents’ developers to cope with the high
complexity inherent to open MAS.

1.2 Contributions

According to [North, 1990], human interactions are guided by institutions, which
represent the rules of the game in a society, including any (formal or infor-
mal) form of constraint that human beings devise to shape human interaction.
Thus, institutions are the framework within which human interaction takes place,
definining what individuals are forbidden and permitted and under what condi-
tions. Human organisations and individuals conform to the rules of institutions
in order to receive legitimacy and support®. Therefore, establishing a stable
structure to human interactions appears as the raison d’étre of institutions.
We observe that indeed human societies successfully deal with similar issues
to those identified above for open agent societies by deploying institutions that:

e determine what individuals are prohibited from doing and what are per-
mitted to undertake;

e costlinessly ascertain violations and the severity of the punishment to be
enacted; and

e evolve and are altered by human beings.

5Refer to Section 2.4 in Chapter 2 for a complete survey on agent-based electronic market-
places

6For instance, the Constitution and the common law are well-known examples of institu-
tions.
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In this thesis we defend the adoption of a mimetic strategy in order to cope
with the complexity of deploying open multi-agent systems. Thus we will be
upholding that open multi-agent systems can be effectively designed and im-
plemented as institutionalized agent organizations —henceforth referred to as
electronic institutions or e-institutions for shorter. The major contribution of
this thesis lies in the fact that it makes headway in the production of principled
developments of electronic institutions, continuing the work presented in [Nor-
iega, 1997b]. At this aim, we offer an integrated approach which departs from
a specification formalism, proposes a wholly agent-oriented design and finally
demonstrates its usefulness by implementing a proof-of-concept agent-mediated
electronic marketplace. In this way we intend to illustrate how to bridge the gap
between specifications and actual implementations. In what follows we decom-
pose the major contribution highlighted above.

First of all, in Chapter 3 we introduce a novel graphical specification for-
malism for electronic institutions, building upon our previous work reported
in [Rodriguez-Aguilar et al., 2000, Esteva et al., 2000b, Esteva et al., 2000a].
Why a formal specification language? We adhere to the following recommenda-
tion [Dav, 1993](page 215) to answer the question:

Use a formal technique when we cannot afford to have the require-
ments misunderstood.

For this purpose, instead of resorting to well-known, general-purpose formal
specification languages, here we have opted for proposing a new specification lan-
guage founded on our formal notion of institution —so far only vaguely defined
in the literature— that we introduce. Languages such as Z, CSP, Petri Nets and
logics are appropriate at several stages of the design, but as argued above in or-
der to overcome their lack of expressiveness they should be used in combination
to complement one another. If so, the important issue then becomes how to
define consistency constraints between each paradigm model in a single unifying
framework. Alternatively we have preferred to define a single unified language
that provides the expressiveness required by electronic institutions.

The proposed language allows to create graphical specifications of electronic
institutions. Graphical specifications are extremely easy to understand. They
are similar to the informal diagrams employed by engineers and designers while
designing, constructing and analysing a system.

Furthermore, such a language focuses on the macro-level (societal) aspects
of electronic institutions instead of the micro-level (internal) aspects of agents.
In this way we adopt a societal view in accordance to the early works in DAI
which followed a societal perspective of agent systems to ease their design and
development.

Next in Chapter 4 we present a computational model that arises from and
thoroughly captures the formalisation of electronic institution introduced in
Chapter 3. Our computational model proposes to realise an electronic insti-
tution by means of a fully agent-oriented design based on two types of agents:
institutional agents and interagents.
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Firstly, institutional agents are those agents to which the institution dele-
gates its services (f.i. registration, accountability, brokering, etc.). We detail a
general, flexible computational model of institutional agent based on the notion
of interpreting responsibility plans with which every institutional agent is en-
dowed. In this way, all institutional agents are realised by means of the same
computational model, only differing on their assigned responsibilities. Apart
from flexibility, this model intends to provide support for scalability purposes
(institutional services might be loaded into a single agent or else distributed
among multiple agents).

Secondly, based on our previous work in [Martin et al., 2000b, Martin et al.,
2000a] we introduce interagents as autonomous software agents, functionally
acting as a particular type of facilitators devoted to mediating the interaction
between each agent and the agent society. We illustrate how interagents are
valuable for realising agent-based systems in general and electronic institutions
in particular.

Originally interagents were conceived to mediate conversations among agents.
Because of the proved inability of agent communication languages to capture the
context, of agent interactions, we adhered to the promotion of the notion of con-
versation as the unit of communication among agents. Here by conversation we
mean a pattern of message exchange that some agents agree to follow in commu-
nicating with one another. Conversations are useful for structuring interactions
among agents by organising messages into relevant contexts. In this thesis, we
introduce a novel way of modeling and implementing conversation protocols as
a special type of pushdown transducer [Roche and Schabes, 1997] which lies
in between the simplest finite state machine models and complex, but highly
expressive, models” of more difficult realisation.

The management of conversation protocols, consisting fundamentally in the
validation of agents’ utterances [Searle, 1969], is identified as the main task of
interagents. Two major benefits, from the point of view of agent developers,
are achieved by employing interagents to articulate agent interactions within an
agent society: on the one hand, their agents can reason about communication
at higher levels of abstraction, and on the other hand developers are released
from dealing with low-level interaction issues, and so they can concentrate on
the design of the agents’ logics.

Further on, interagents needed to have their capabilities extended in order to
handle not only conversation protocols but also institutions’ specifications. In-
teragents constitute the sole and exclusive means through which agents interact
with the rest of agents within the institution. They are all owned and set up by
the institution in order to validate, enforce and monitor agents’ social behaviour.
Notice that interagents are a key element to realise open electronic institutions
by offering a common interface to electronic institutions to all exogenous agents
that encapsulates the institutional rules.

We introduce the notion of agent-mediated electronic institution so as to

“For instance, models based on Dooley graphs [Parunak, 1996] or Colured Petri Nets [Cost
et al., 1999].
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refer to an electronic institution whose infrastructure is fully realised by means
of institutional agents and interagents. In other words, institutional agents and
interagents are responsible for the computational realisation of the rules, the
normative environment of institutions.

Considering also exogenous agents, we thus conceive a multi-layer logical ar-
chitecture of agent-mediated electronic institutions composed by a kernel (com-
posed of institutional agents), a middle-ware layer (composed of interagents) and
an external layer (inhabited by exogenous agents).

In order to exemplify how to realise actual agent-mediated electronic institu-
tions based on the computational model introduced in Chapter 4, in Chapter 5
we present a FM96.5 [Rodriguez-Aguilar et al., 1997], an open electronic auction
house where heterogeneous (software and human) agents may trade. To the best
of our knowledge, along with AuctionBot [Wurman et al., 1998] FM96.5 was the
first auction house providing support to software agents: it encloses libraries
of agent templates in several languages and offers the possibility of generating
agents with customised trading strategies.

Considering auction protocols, FM96.5 includes, as a distinguishing feature
from the rest of auction houses for human and software agents, a sound and fair
implementation of a real-time Dutch auction protocol. Although as a matter
of fact originally it only included Dutch auctions, FM96.5 had its capabilities
extended in order to accommodate other classic auction types, namely English,
First-price sealed-bid and Vickrey.

One capital aspect which does not seem to be conveniently considered by
most agent marketplaces, apart from Zeus [Collins and Lee, 1998], is the notion
of accountability of the market activity. FM96.5 bargains for monitoring facilities
aimed at keeping track of all events taking place in the market as well as at
integrating into a coherent whole the vast amount of information generated by
individual agents in order to picture the behaviour of the system in such a
manner that humans can better understand it and market makers can better
analyze and debug it.

But undoubtedly the two more remarkable, differentiating features of FM96.5
with respect to the rest of computational marketplaces are its underlying flexible,
principled design and its organisational structure, deriving from our computa-
tional model and our formal notion of institution.

Firstly, its highly flexible, purely agent-oriented design has proven to be enor-
mously valuable in the evolution of the development in order to accommodate
changes in the market’s structure and activities (upgrades and changes of pro-
tocols, inclusion of new protocols, etc.). Secondly, its organisational structure
has added the modularity and abstraction needed to cope with the complexity
inherent to the development of large multi-agent systems.

Although in this thesis we only present FM96.5 as a proof-of-concept, of
our methodology based on the formal specification language of Chapter 3 and
the computational model of Chapter 4, the agent-mediated electronic institution
reported in [Plaza et al., 1999] is another proof of the usefulness of our approach.

If a trading agent intends to behave aptly in the context of an auction market-
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place such as FM96.5, the agent’s decision-making process may be quite elabo-
rate. It could involve procedural information—when to bid, how to withdraw—,
reasoning about individual needs and goals, information and reasoning about
supply and demand factors—which may involve other agents’ needs and goals—
and assessment of its own and rivals’ performance expectations—which in turn
may require knowledge or reasoning about the external conditions that might
affect the auction. Evidently, many approaches can be taken to deal with this
decision-making process. From highly analytical game-theoretic ones, to mostly
heuristic ones. From very simple reactive traders, to deliberative agents of great
plasticity.

There is the intricate matter of providing agent developers (and agent users)
with some support to help them face the arduous task of designing, building, and
tuning their trading agents, before letting them loose in wildly competitive mar-
kets. We have attempted to make headway in this direction by developing the
FM test-bed [Rodriguez-Aguilar et al., 1998b, Rodriguez-Aguilar et al., 1998c],
described in Chapter 6, for experimenting with auction-based trading scenarios
that can be used to test and tune trading agents. Conceived and implemented
as an extension of FM96.5, FM allows to generate auction-based scenarios in
which trading (buyer and seller) heterogeneous (human and software) agents of
arbitrary complexity participate in auctions under a collection of standardised
market conditions and are evaluated according to their actual market perfor-
mance.

To the best of our knowledge, AuctionBot [Wurman et al., 1998] and FM are
the only test-beds for trading agents in auction-based markets. Apart from the
originality of the test-bed domain, there are several features that differentiate
it from the rest of test-beds. Firstly, FM is open, likewise the marketplace it-
self and unlike most test-beds which are closed systems, and so agents owned by
different parties can take part in a same experiment. Secondly, FM allows to han-
dle eventual scalability problems by allowing experimenters to distribute their
agents across a network, and allowing remote agents to participate in auction
tournaments. Lastly, FM allows to artificially generate a wide range of trading
scenarios: from simple toy scenarios to the real-world scenarios represented by
the market scenarios generated by FM96.5.

Notice that differently to the vast majority of agent research devoted to
computational marketplaces —particularly concerned with supporting trading
agents’ construction— we also provide the necessary support to investigate and
analyze trading agents’ behaviour. At the time of writing, the different versions
of FM [Rodriguez-Aguilar et al., 1998a, Rodriguez-Aguilar et al., 2001] have
demonstrated to be valuable in hosting several auction-based competitions [Fish-
market, www].

One of the distinguishing features of this dissertation is its interdisciplinary
scope, encompassing driving ideas and techniques from several research areas
as illustrated in Figure 1.1. But notice that this is commonplace to agent re-
search, an intellectual area whose excitement mainly stems from the challenge
of integrating knowledge [Briot, 1998].
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Figure 1.1: Interdisciplinary scope of this thesis.

1.3 Case Studies

In this section we describe in detail the two case studies that will be employed
for motivating, upholding and illustrating the several notions that we are to
introduce during the rest of the dissertation. They constitute two practical cases
of institutions that in fact have served as the starting point and inspiration of two
different projects, Fishmarket [Fishmarket, www]| and Comris [de Velde, 1997],
which pursued the practical design and construction of agent-mediated electronic
institutions (denoted as AmFETIhenceforth), though for different purposes. Thus,
while the AmFEIs constructed in the framework of the fish market project were
devoted to auction-based e-commerce, the AmEIs developed by Comris were set
up for supporting a conference centre.

Above we identified as our main goal the construction of infrastructures for
computational institutions. But then, the proposed infrastructures highly de-
pend on our current conception of electronic institutions. Since we advocate for
adopting a mimetic strategy when conceiving computational counterparts of hu-
man institutions, it is apparent the need for a careful analysis of institutions that
help us identify all the elements needed to be considered on the computational
side.

Next, a thorough description of the two cases follows.

1.3.1 The Fish Market

As a starting point for the study of institutions in the framework of the Fish-
market project, we chose auction houses —and the fish market in particular— as a
paradigm of traditional human institutions. The description that follows intends
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to precisely describe how the fish market works. We firstly describe the elements
surrounding the market place, and next we proceed to the identification of the
activities taking place during and around the auctions and the roles adopted
by the participants for each activity. Mention that the description that follows
has been summarised and adapted from [Noriega, 1997b], and so we suggest the
interested reader to refer to that work for a much more thorough description.

Market Place Context

So far we have referred to the fish market in a rather general sense. In order
to focus our study we chose a particular, though general enough, sample of fish
market: the fish market in Blanes, a fishing town in the Costa Brava, in Girona.
Blanes hosts a fishing fleet whose catch is sold twice a day in the local market
place, managed by the local fishermen’s guild under a lease from the government.

Fishermen obtain their revenues from the daily auctioning of their catches
in the fish market using the traditional Dutch® auction that we fully describe
further on. However fishermen are charged with some transaction costs deriving
from the auctioning: 2% commission and consumables. The total, final revenue
is divided into the owner of the boat and its crew: half of it goes to the owner,
and the other half is shared out among the crew (the captain gets two parts,
pilots and machinists get a part and a half, and everyone else gets one part).

A distinguishing feature of the fish market in Blanes is that it is one of the
first fish markets in Spain that have effectively automated part of the auctioning
process. As a major benefit, buyers are enabled to freely wander around inspect-
ing the incoming goods instead of being confined to a hall, such as in a classic
Dutch auction hall. Besides, the system employs a database which registers all
the accounting information deriving from the auctioning: purchases, payments,
credits, buyers, sellers, etc.

The fish market is physically located in a building composed of a large market
hall, an incoming wharf, a delivery wing, offices, and warehouse such as depicted
in Figure 1.2. Auctions take place in the auction hall where goods are delivered
by fishermen, classified by market staff members, and subsequently sold. Ac-
counting activities of the auctioning process are in charge of the accounting staff,
situated in the offices.

Participants and Activities

We distinguish three types of participants: sellers, buyers and market interme-
diaries (market employees). Next we explain away the activities in which they
get involved within the market place.

(i) Sellers. A seller is a boat, or the fisherman or fishermen who own or operate
some boat registered in Blanes.

8This protocol is called a Dutch auction because it is the way flowers have been traditionally
traded in Holland.
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Figure 1.2: Fish Market Floor Plan. Squares labelled with fb stand for fish boxes,
while circles represent the market’s participants, both market intermediaries (a
= auctioneer, sa = sellers’ admitter, ac = accountant, boss) and traders (b =
buyer, s = seller)
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Sellers get their catches ready for sale while fishing or sailing back to port
by arranging produce of the same type (same species and uniform quality) in
boxes. Once reached the docks, the cargo is unloaded and the fish boxes sorted
for delivery. All boxes of the same type are grouped together to compose a lot.

Within the market place, sellers’ basic activity is limited to have their goods
registered for sale and getting paid once these get sold by auction. As to the regis-
tration of goods, the boxes composing each lot are delivered to one of the market
intermediaries, the sellers’ admitter, who is in charge of weighting, classifying
and tagging them before conveying them to the auctioneer for their auctioning.
The institution keeps track of all transactions occurring during the registration
process, and also manages the individual accounts corresponding to each seller.
Typically sellers receive the revenues deriving from the sale of their goods every
two weeks.

From a strategic point of view, sellers cannot do much about improving the
selling prices obtained by their goods. However, sellers can eventually benefit
from the dramatic price fluctuations that may result during a market session.
In general, such price fluctuations will directly depend on the uncertainty of
the supply® and the acknowledged prestige of the boat —a large bias in price is
awarded to the prestige of a boat.

(i) Buyers. We consider a buyer as an individual, acting on his own behalf
or on behalf of some companies, that has legally established a credit line with
the institution. Once set up the credit line, the buyer has an account open to
keep track of all his transactions, becomes enabled to buy fish, and receives an
electronic device —the so-called mineing device!®— to be employed for bidding
during the auctioning. Buyers keep their mineing devices locked up in special
compartments (labelled as check-in area in Figure 1.2) in the market hall and
remove them when intending to participate in the auctioning of goods.

After analysing the buyers’ behaviour within the market place, we can dif-
ferentiate three rather distinct types of buyers for which purchasing strategies,
goals and credit requirements are largely different:

e Wholesale buyers acquire large amounts of cheaper fish for packing,
distribution, freezing and industrialisation. Since they play on thinner
margins and higher volume, they concentrate in morning auctions when
there is less variety in the catches, or when a particularly large catch is
brought in. They have to set up a credit line of 1.5 million pesetas for
participating in the auctioning of goods.

9Fishing is quite an inexact science, and so the final catch of a fishing trip is quite unpre-
dictable: in a single day different boats may obtain quite different catches despite fishing the
same waters.

10Tn general, bids are expressed calls made by a bidder to an auctioneer in the shape of
either a declaration of a buyer of his intention to purchase a good at a certain price, or the
acceptance mineing made by the bidder of a price quote for a good offered for sale by the
auctioneer.
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e Fishmongers own fish shops in town or peddle fish in neighbouring towns.
Buyers of this type need to keep a regular stock, but highly conditioned by
the market sector that they address. In general, retailers are very sensitive
to competition among them since they are not happy with the idea of
others (perhaps the shop next door) having some produce that they do
not have. Their credit lines range from 300,000 to 500,000 pesetas.

e Restaurant owners. They are concerned about obtaining high quality
products to stock their regular menus. Though evidently they take ad-
vantage of abundant catches or unusual species, they seem to be rather
independent from competitors. Their credit lines are above 500,000 pese-
tas.

Buyers are allowed to enter the market hall at any time while open, and
are also allowed to freely move around, leave or come back in. A buyer’s basic
activity within the market restricts to inspecting incoming cargoes to be set at
auction, to control other buyers’ (competitors) presence and activity, and most
importantly to acquire the goods that they require to satisfy their needs. To
succeed in acquiring goods buyers have to push the button of their mineing
devices at the right time, before anyone else do it, during the auctioning of the
goods that they are interested in. This action is equivalent to raising a hand or
saying mine to the lot at auction in the equivalent traditional, non-automated
auction. The buyer who first pushes the button is entitled to take as many
boxes as wished whenever his current credit supports the total amount of the
operation.

Once sold a lot, its cost is immediately charged to the purchaser’s account.
Then, the lot must be taken away by the purchaser himself since the institution
is responsible neither for warehousing fish, nor for delivery.

As buyers may possibly run out of credit during a market session, they are
allowed to update their accounts or negotiate extensions to their credit lines at
any time during a session. Typically, however, buyers settle their accounts once
a week after a market session. Occasionally, in case that a buyer exceeds his
credit when submitting a bid, this is declared invalid and the buyer’s mineing
device is automatically disabled and it is not re-enabled unless the credit line is
reactivated by means of either a negotiation or payment process.

Notice that although a buyer might guess the financial power of his competi-
tors, he does not have access to the actual figures, which are privately preserved
between the market and the buyers.

(iii) Market Intermediaries. The institution is responsible for providing
a sellers’ admitter to classify, weigh and tag incoming fish boxes, accounting
staff members who care about registering buyers and sellers and maintaining
their accounts, a trained auctioneer to run the auction process, and support
personnel to distribute fish boxes around the market hall. Complementarily, a
market boss acts as the final authority during auctions.
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Figure 1.3: The sellers’ admitter registering goods.
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Figure 1.4: Sellers delivering goods.
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The sellers’ admitter is in charge of the good registration process, i.e. of
tagging incoming fish boxes, and storing the supply information onto the market
database. The goods’ registration process is undertaken for each boat separately
when delivering its cargo. The sequence in which sellers are serviced by the
sellers’ admitter is defined by the strict order of arrival of their corresponding
boats. When being serviced, the seller must decide the order in which lots and
boxes must be processed by the sellers’ admitter (see Figure 1.4). Then, the
admitter proceeds to tag the fish (see Figure 1.3) by determining;:

e the type of good, which in turn depends on the species in the box and its
quality

e the weight of the box; and

e the position of the box and lot in the auction set.

Although the weighing and positioning of boxes are fully automated, their
classification is entirely left to the sellers’ admitter who has the authority to
either split or join lots, or even reassigning the lot’s starting unit price (in pesetas
per kilogram) which is usually set 20% above the last selling price for that good
type in a previous market day. No reservation price is set for any item.

The auctioneer (see Figure 1.5) is responsible for the management of bid-
ding rounds. He identifies the lot to be sold, validates it —he has the authority
to carry out as many changes as deemed appropriate over the lot in order to
validate it— and starts the bidding till a single buyer bids for it. In such a case
he adjudicates the lot to the bidder.

The lot’s information is displayed on two large electronic boards. Figure 1.6
shows the structure of the electronic boards identifying the fields that compose
them, and Table 1.1 details its actual content. Such information can be altered
by the auctioneer using a remote control device. Furthermore, the auctioneer
is also equipped with a microphone that permits him to vocally override the
information displayed on the boards and conduct a bidding round by voice.

How does a bidding round work? A bidding round starts when a lot is pre-
sented for auction, and ends when it is adjudicated. First of all, the lot is pre-
sented by the auctioneer and its information is displayed on the display boards.
When the auctioneer opens (starts) the round, the starting price located at the
bidding clock area (Field 6) of the display board starts descending at a swift,
but uniform, pace till some bids, mine commands, are received by the system
from the buyers’ mineing devices (see Figure 1.7). The fish market automated
system detects and subsequently handles the bids submitted by buyers through
their mineing devices. These emit infrared signals in different (coded) frequen-
cies that the system can detect thanks to sensors distributed over in the auction
room that read the signals.

A mine command fixes the clock at that instant. But then two major situa-
tions may arise:
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Field Label Content

1 INICI The number of the first box in the lot to be
auctioned

2 FI The number of the last box in the lot to be
auctioned

3 ARTICLE Type of good

4 QUILOS Weight

5 CAIXES Number of available goods

6 PREU Bidding clock. Displays the current
unit-price quote

7 BARC Name of the boat where the lot comes from

8 ARTICLE Type of good

9 COMPRADOR Buyer’s name

10 CAIXES Buyer’s quantity option (boxes taken)

11 QUILOS Total weight of these boxes

12 PREU Unit price paid

13 REGAL Not in use

14 PENULTIMA DITA | The last available final bid for the same
type of good

15 AVISOS Collision or invalid sales

Table 1.1: Auction room display boards: field content.

Figure 1.7: Bidding round.
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e Single valid bid. The good is adjudicated to the bidder, whose identity
is revealed at Field 9 on the display boards'!. Then the bidder chooses
a subset of boxes of the lot at the selling price. That depends on how
long the buyer kept the button of his mineing device pressed. If the pulse
was long, the signal is considered as the willingness to take the whole lot.
Otherwise, the buyer is considered to be opting for a quantity option. In
this second case, the remaining boxes are re-auctioned setting a starting
price 1.2 times the sale price.

e Collision, invalid sale or cancellation. The round is repeated over setting
a starting price price 1.2 times the price showed at the bidding clock area
(the price at which the round was stopped).

— Collision. Two or more buyers pushed their mineing devices at ex-
actly the same time.

— Inwalid sale. Some buyer pushed the button before starting the bid-
ding clock.

— Cancellation. The auctioneer over-rid the round, either because a lot
is to be split, several lots are joined into one, or a buyer asked for an
exceptional treatment (involuntary or erroneous bid, malfunction of
the mineing device, or return of an adjudicated lot).

Whatever the case, the occurring event is conveniently displayed at Field
15 on the display boards.

During the bidding round the auctioneer is permanently in touch with the
market boss and the accounting staff. Thus the boss can communicate special
directions (close the market, change the order of auctioning, raise the starting
price of a good) or validate the auctioneer’s decisions.

The auctioneer can somewhat control the rhythm of auctioning. Time step
(between quotes) is either automatically set by the system or fixed by the auc-
tioneer when running voice auctions. Latency periods between lots are controlled
by the auctioneer subject to eventual delays provoked by the waiting for a boat’s
load to be admitted and displayed. In general, the auctioneer tries to adequate
the auction rhythm to the buyers’ state of interest and attention.

Historical information on catches and daily market session prices, as well as
weekly averages, is available form the market in printed form.

Finally, the boss supervises market sessions. In general, he is responsible
for ordering the auctioneer when to open the session to auction the first lot and
for deciding with the auctioneer the closing of the session. Nonetheless, and
occasionally —f.i. because of a storm, the lack of catch, or the suspicion about
collusion among buyers—, he is authorised to either delay or suspend the market
session. Furthermore, he is also authorised to override the admitters’ and the
auctioneer’s decisions if necessary.

I Notice that the bidding round is private, and so the identity of a buyer is only revealed
when he is the highest-bidder.
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Analysis

We analyse the description above so as to start identifying and advancing the
core notions of institutions that shall serve throughout the dissertation as the
foundations to achieve the goals presented in Section 1.2.

Our first observation has to do with the role of the agents participating
in the market. We fundamentally distinguish two classes of roles: institutional,
adopted by market intermediaries (employees), and non-institutional, adopted by
traders (buyers and sellers). Market employees are responsible for guaranteeing
the sound operation of the several activities conducted in the market. In other
words, the functioning of the institution is delegated to the market employees,
and so we can think of them as the agents'? of (working for) the institution.
Analogously we could also think of traders as agents. Thus, in general each
institutional agent becomes either partially or totally in charge of some activity
or activities taking place within the market place.

Each activity is governed by the rules of a protocol established by the insti-
tution itself. Such rules explicitly state the legal, allowed behaviour for each
role participating in the activity, and so they do affect both institutional and
non-institutional agents (market employees and traders). Moreover, apart from
specifying the legal behaviour for each role, the rules also make explicit how to
deal with deviating behaviours. For instance, the mineing device of a buyer is
disabled after submitting bids that cannot be supported by his current credit.
In addition to establishing which roles can participate in the activity, the insti-
tution restricts the number of roles involved in each activity and the conflicts
possibly existing among the roles. For instance, the institution requires a single
auctioneer for the auctioning of goods, whereas multiple buyers might partic-
ipate up to a limit of one hundred whenever none of them is the auctioneer
himself.

We also observe that there exist relationships among activities. While some
activities like the admission of buyers and sellers are completely independent,
others are tightly related. For instance, consider the case of a buyer: he cannot
make any payment if he has not bought anything by auction, and in turn he
cannot bid (and subsequently buy) any good unless he has previously and suc-
cessfully set up his own credit line. From this follows that we can see the fish
market as a place where multiple related and independent activities take place
concurrently.

And finally, some words about the commitments adopted by the institution
and the traders. We observe that some actions in the context of a given activity
may imply the adoption of a future commitment (f.i. when accepting and tagging
goods the institution is subscribing the commitment to put them at auction, or
after winning a bidding round the bidder is committed to subsequently pay for
the acquired good). It seems then that some rules, norms, of the institution
cannot be locally associated to a particular activity because they may affect

12Here we employ the term agent to mean a person who acts on behalf on another when
doing a particular task. Further on we will be employing the same term to mean a particular
type of programs.
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several activities.

It is our view that any formal specification or computational model of an insti-
tution must successfully capture the elements and structures identified through-
out the analysis above.

1.3.2 A Conference Centre Environment

Most large conferences are organised around a large variety of events. In order to
take part in them, participants must previously complete a registration process.
Once completed the registration, a participant can take part in some of the
following events in different manners:

Main conference talks. These are the central activity held during a confer-
ence. Before the conference, researchers submit their papers to the pro-
gramme committee requesting for giving a presentation during the confer-
ence. Only papers that are accepted for presentation are scheduled time
for a speaker’s talk at the conference venue. All registered participants are
allowed to attend conference talks.

Usually there are several session tracks being held in parallel, and so par-
ticipants must eventually opt for one out of the simultaneously ongoing
talks.

Invited talks. Talks given by experts in some field of interest. All registered
participants are allowed to attend these talks.

Tutorials. They are offered by experts in some field of interest. Differently to
invited talks, a tutorial does not consist of a short speech, but of a 1-day,
mid-day lesson. Participants must additionally register for those tutorials
that they aim at attending. Notice that several tutorials may be occurring
simultaneously.

Exhibitions (demos). Researchers and industries are usually invited to show
the results of their investigation during a special exhibition session. Like-
wise tutorials and main conference talks, exhibitions are usually run in
parallel.

Workshops. These are more specialised mini-conferences held in parallel to the
main conference. Their scope is not as broader as the main conference, and
so they are oriented to small groups of researchers working on the same or
highly similar topics.

In general, tutorials, workshops and main conference talks are celebrated on
different dates.

Apart from the official events above, one of the most important participants’
activities consists in meeting other people sharing research interests. Notice that
this purpose can turn out to be rather difficult in a large conference environment
and furthermore there is the matter of scheduling suitable meeting times for the
parties involved in the meeting.
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Analysis

Next, we analyse the description above with the purpose of conceptualising a
conference centre environment by identifying its core components, similarly to
the process followed when analysing the fish market.

First, we distinguish several roles for the participants in a conference event
that again we divide into two classes: institutional, adopted by conference or-
ganisers, and non-institutional, adopted by conference participants. In the first
class we find the chair of the conference, the programme committee members,
along with the administrative personnel. Within the second class we find speak-
ers, invited speakers, tutorial speaker, workshop participant, tutorial participant,
demonstrator, and participant. Notice that some participants may eventually
play several roles. For instance, an invited speaker might be also a tutorial
speaker or simply a demonstrator. Notice also that from the point of view of a
conference attendant perhaps one of the most interesting aspects of attending a
conference is to meet other people with similar research interests.

Here we also identify several activities, each governed by the rules of a pro-
tocol established by the conference organisation. For instance, concerning the
main conference talks, the speaker is presented by the chair of the session to
all attendants prior to his speech. After the talk, attendants are invited to ask
questions when authorised by the chair. Observe the several roles taking part in
this simple scene and their interaction.

Furthermore, there also exist relationships among activities. Some activities
are completely independent while others may be causally related. For instance,
all participants are forced to registering before taking part in any activity at the
conference centre.

Concerning the commitments adopted by the institution and the participants,
analogously to fish market we observe that some actions in the context of a given
activity may imply the adoption of a future commitment. For instance, speakers
are obliged to give their talks at the scheduled time and exhibitors to run their
demos when required. And so, the need for norms that regulate the participants’
commitments is also required for the conference centre.

1.4 Structure

This thesis is organised in seven chapters, including this introduction chapter,
and one Appendix:

Chapter 2 reviews the main research relevant to our thesis and discusses their
contributions and limitations. We present the current research on method-
ologies for designing agent-based systems; research in agent interaction, fo-
cusing on those approaches concerned with modelling agent conversations;
the MAS approaches to computational organisation theory and applica-
tions; and finally, we describe the features of the test-beds developed for
agent research.
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Chapter 3 proposes that open agent organisations can be effectively designed
and implemented as institutionalised electronic organisations (electronic
institutions) composed of a vast amount of heterogeneous (human and
software) agents playing different roles and interacting by means of speech
acts. We take the view that the design and development of electronic insti-
tutions must be guided by a principled methodology. Along this direction,
we advocate for the presence of an underlying formal method that under-
pins the use of structured design techniques and formal analysis, facili-
tating development, composition and reuse. For this purpose we propose
a formal specification of electronic institutions that founds their design,
analysis and development.

Chapter 4 presents a computational model that arises from and fully captures
the formalisation of electronic institution provided in Chapter 3. First we
argue on the capital importance of mediation for founding the realisation
of infrastructures for agent-based systems in general and for electronic in-
stitutions in particular. Subsequently we introduce a particular type of fa-
cilitators, the so-called interagents, as autonomous software agents devoted
to mediating the interaction between each agent and the agent society in
agent-based systems. Then we discuss how to extend this basic interagent
model so that interagents can be also employed in the framework of an
electronic institution. Furthermore, we also detail a computational model
of institutional agents, i.e. the agents to which the institution delegates its
services. Lastly, we present how to fully realise an electronic institution
based on interagents and institutional agents.

Chapter 5 thoroughly describes the development of a practical agent-mediated
electronic institution. Concretely we present the computational counter-
part of the fish market institution presented as a case study in Chapter 1.
Thus, we detail the design and implementation of an agent-mediated elec-
tronic auction house inspired by the age old institution of the fish market,
where heterogeneous (software and human) agents may trade. Such an ex-
ercise serves us to illustrate how to put in practice the concepts introduced
in former chapters.

Chapter 6 presents a framework for experimenting with auction-based trading
scenarios. In these scenarios, trading (buyer and seller) heterogeneous (hu-
man and software) agents of arbitrary complexity participate in auctions
under a collection of standardised market conditions and are evaluated ac-
cording to their actual market performance. The proposed framework, con-
ceived and implemented as an extension of the agent-mediated electronic
auction house presented in Chapter 5, constitutes a test-bed for trading
agents in auction tournament environments. We argue that auction-based
tournaments constitute convenient problem domains in which to study is-
sues related with trading agent architectures in general and agent-based
trading strategies in particular. In order to illustrate the practical usage
of the resulting framework, we comment on the experiences acquired from



Chapter 2

Background and Related
Research

In this chapter we summarise and analyse the research appearing in the literature
relevant to this thesis. We present this research along four different lines, corre-
sponding to the issues that we face in this work. Thus, Section 2.2 discusses the
role of organisational design in DAI systems. Next, in Section 2.3 we review the
state-of-the-art of the research in inter-agent communication, focusing on those
approaches concerned with modelling agent conversations. In Section 2.4 we
present and discuss the features of the most salient computational markets. The
chapter finishes describing in Section 2.5 the features of the test-beds developed
for agent research.

But first of all, we believe that is it worth dedicating part of this chapter
to define our terminology. This is particularly important to obtain a concrete
definition of the fundamental terms of distributed artificial intelligence research
so that we can conveniently situate our research in the right place. We regard
this effort as necessary due to the overuse and abuse of such terms made by
current, frantic agent research.

2.1 Distributed Artificial Intelligence. Basic Con-
cepts

From its inception, the field of distributed computing became mainly concerned
with the synchronisation and parallelisation of different processors sharing the
data associated with a problem. Later on, AI researchers started adding intel-
ligence to the field by proposing to share not only data but also control among
processors. This research originated a new field, distributed artificial intelligence
(DAT), focusing on problem solving, communication, and coordination differently
to the lower level issues of parallelisation and synchronisation [Lesser, 1995]. As
noted in [Weiss and Send, 1996], DAI systems do not necessarily involve agents,
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and they can simply consist of several interacting entities with certain degrees
of autonomy and intelligence which are logically and often spatially distributed.
However, when DAI systems are conceptualised in terms of agents, we refer to
them as agent-based systems.

DAT was decomposed into Parallel AT and Distributed Expert Systems, which
in turn was decomposed into Distributed Knowledge Sources and Distributed
Problem Solving (DPS) [Decker, 1987]. But nowadays DAI systems tend to be
classified as either DPS systems or multi-agent systems (MAS).

The term multi-agent system —as well as agent— is currently in vogue, but
its overuse and abuse tends to generally apply it to any system composed of
multiple interacting agents. As it has become progressively used, it seems to be
encompassing a larger variety of issues that difficult its distinction from DAT.

In this work we consider MAS as a sub-field of DAT research. And then, what
does distinguish DPS from MAS?

On the one hand, given a problem to solve, DPS concentrates on how to
get multiple agents to work together to solve it in a coherent, robust, and ef-
ficient manner under varying (dynamic and uncontrollable) environmental con-
ditions. DPS is mainly concerned with information management, consisting of
task decomposition (how to divide a complex task into manageable subtasks to
be adopted by different agents), and solution synthesis by combining the results
of the different subtasks.

In DPS systems there are strong assumptions about the compatibility of
different agents and their benevolence (DPS assumes that agents agree, share
tasks, communicate truthfully, and so on). The benevolence assumption became
unrealistic when modelling the social systems upon which much of DPS research
was built. Thus, experiences in the social sciences demonstrated that achieving
benevolence in a collection of individuals is far from simple.

At that point a new metaphor was needed that did not assume agents’ benev-
olence. MAS research departs from borrowing from the social since literature the
assumption that agents are rational, and so they act motivated by maximising
their own benefits. MAS research focuses on getting agents with individual pref-
erences interact in particular environments so that each agent acts in a way that
leads to desired global properties. Thus, MAS research intends to answer how,
given a particular environment, can certain collective properties be realised if the
properties of agents can vary uncontrollably. For instance, the work in [Rosen-
schein and Genesereth, 1985] studies how self-interested agents can yet converge
on agreement about deals so that they can mutually benefit.

Differently to DPS, MAS deals with behaviour management. A distinguishing
feature of MAS is that typically the individual behaviours of agents are less com-
plex than the interactions among agents. In fact the interaction issues among
agents form the basis for MAS research. Therefore MAS exploit sophisticated
patterns of interaction. Examples of common types of interactions include [Jen-
nings et al., 1998]: cooperation (working together towards a common aim);
coordination (organising problem solving activity so that harmful interactions
are avoided or beneficial interactions are exploited); and negotiation (coming to
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an agreement acceptable to all involved parties). The flexibility and high-level
nature of these interactions distinguishes multi-agent systems from other forms
of software.

Distributed Artificial
Computing Intelligence

Distributed .
Problem Multi-agent
Solving Systems

Figure 2.1: A taxonomy of fields containing MAS [Stone and Veloso, 1996].

Figure 2.1 depicts the relationships between distributed computing, artificial
intelligence, DAL, DPS and MAS.

At this point, a major question arises: in what circumstances are MAS useful?
Some domains do require a MAS approach. Particularly, this is true when there
are different people or organisations with different (possibly conflicting) goals
and proprietary information whose interactions need to be handled.

A fundamental dimension to consider in multi-agent systems is openness.
Open systems [Hewitt, 1986] are those in which the structure of the system itself
is capable of dynamically changing. An open system’s components are unknown
in advance, it can change over time, and it can be composed of heterogeneous
agents implemented by different people with different software tools and tech-
niques. The best-known example of a highly open software environment is the
Internet. Internet can be regarded as a large, distributed information resource,
with nodes of the network designed and implemented by different organisations
and individuals. And, for instance, marketplaces over the Internet constitute a
typical example of open multi-agent systems. Though open systems represent ar-
guably the most important application area of multi-agent systems [Wooldridge
et al., 1999] —particularly if they are intended to be running over the Internet—
they have not been conveniently addressed by MAS research as discussed further
on in the following section. In this thesis we have intended to contribute to the
understanding of these type of systems, and so we have chosen open multi-agent
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systems as our subject of study.

To close this section, notice that so far not much has been said about what
we mean by agent. Defining what an agent is has become the subject of an end-
less, heated debate held by agent researchers (see [Franklin and Grasser, 1996]
for a sample of contributions in this direction). Here we adhere to the definition
presented in [Jennings et al., 1998] that considers an agent as a computational
system ”situated in some environment, that is capable of flexible autonomous
action in order to meet its design objectives”. Situatedness means that the agent
affects and gets affected by its environment in some way. Autonomy is considered
in the sense that the system is capable of acting without direct human inter-
vention, controlling its own action and internal states. Flexibility concerns the
responsiveness of the agent (capability of perceiving and responding in a timely
fashion), its pro-activeness (capability of taking the initiative and exhibiting
goal-directed behaviour); and its social dimension (capability of interacting in
different ways with other artificial and human agents).

2.2 Organisational and Social Concepts in Multi-
agent Systems

Human organisations define the roles and responsibilities for organisational par-
ticipants, who are expected to bring those into action depending on the task
and environmental demands. This notion of organisation was early introduced
to computational systems within the field of DAI [Gasser et al., 1987, Pattison
et al., 1987]. Thus, early work in DAT identified organisational design as one of
the main issues in order to cope with the complexity of designing DAT systems.
However, DAI research has been accused [Decker, 1995] of having traditionally
kept an individualistic character, focusing on the principled construction of in-
dividual agents. It has evolved following an agent-centered view though tightly
related research disciplines such as organisation and management theory have
been out there and evolved considering organisations as first class citizens from
the early 60’s.

Regarding MAS in particular, these have been mostly considered as mere ag-
gregation of agents. Nonetheless, recently there is an increasing interest in incor-
porating organisational concepts into MAS as well as in focusing on organisation-
centered designs as an alternative to the classical agent-centered designs moti-
vated by the gradual influence of organisation theory. Organisation-centered
approaches do not consider that an organisation design may emerge sponta-
neously and instead this is imposed in order to structure activities or control
the actions of a system as a corporate entity. A shared organisational structure
provides agents with descriptions about their roles and responsibilities in the
multi-agent context and contains guidelines for their intelligent cooperation and
communication. In other words, an organisational structure defines a behaviour
space for agents with a whole set of norms and rules that agents are required to
follow.
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In what follows we describe different approaches appearing in the literature
dealing with organisational aspects of multi-agent systems.

Most prominent, early DAT works introducing organisational aspects are re-
ported in [Corkill and Lesser, 1983, Gasser et al., 1987, Werner, 1987]. Corkill
et al. [Corkill and Lesser, 1983] developed computational representations for or-
ganisations in terms of interest areas for agents. An agents’ interest area stand
for the types of data-processing tasks that it is willing an able to take on, and to
what extent. Given a variety of possible actions to take, an agent evaluates how
well such actions fit within its areas of interest. Each agent knows the interest
areas of the others.

The MACE system [Gasser et al., 1987]' provides a language for defining
multi-agent organisations and for evaluating organisational structures. It in-
cludes the notion of recursive composition of agents so that groups and groups
of groups can be treated as agents. Each agent has a set of acquaintances defin-
ing its boundaries of communication and interaction, i.e. its social structures.
Both social knowledge and social structure are founded on the modelling of other
agents. Thus MACE includes facilities to model other agents’ features (such as
roles, goals, skills, etc.) in order to structure individual interactions, and so to
establish social structure defined as patterns of interaction.

In both [Corkill and Lesser, 1983] and [Durfee et al., 1987] a variety of or-
ganisational structures are evaluated.

Werner [Werner, 1987] describes a unified theory of communication, inten-
tion, and social structures to develop a theory of social cooperation for multi-
agent systems. Social structures are built from roles among which permissions
and responsibilities are defined. They also contain the language making possible
the agents’ interaction as well as an environment on which agents can perform
actions. Societal structures are intended to represent efficient, sophisticated, and
permanent societal cooperation. Therefore, Werner argues that the formation of
social structures avoids the costly process of building up cooperative intentions
among agents whenever cooperation is required. Notice however that Werner’s
approach has a strong agent-centered flavour since the individual mental atti-
tudes of agents are strongly considered.

Such early work has recently found continuation due to the growing influence
of organisational theory and computational organisational theory in multi-agent
systems.

So et al. [pa So and Durfee, 1998] argue that the model of organisation is
tightly related to the model of the task the organisation is used for. Thus they
consider that an organisation model must include: the set of tasks and subtasks
to be done; the set of agents participating in the organisation; an assignment
of the tasks and subtasks of the participating agents; a work flow structure
dictating how the tasks and subtasks are to be distributed among agents and
how the results and partial results are to be synthesised.

Likewise [Gasser et al., 1987, Corkill and Lesser, 1983], [Barbuceanu et al.,

1Here we briefly summarise its features since a more thorough description is provided in
Section 2.5.
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1998] and [Moss and Edmonds, 1997] propose agent development languages that
allow to model organisations.

Moss et al. [Moss and Edmonds, 1997] developed SDML (Strictly Declara-
tive Modeling Language), a multi-agent object-oriented language for modelling
organisations. SDML is theory-neutral with respect to the capabilities of agents
and, furthermore, includes a library for alternate agent architectures. In SDML
the structure of a multi-agent system is represented as a container hierarchy.
Containers and their associated agents are also linked by an inheritance hierar-
chy. But one of its most distinguishing features, from our view, is that within
organisations there are predefined linkages among agents and predefined roles in
which knowledge is embedded with the purpose of constraining behaviour.

Barbuceanu et al. [Barbuceanu et al., 1998] present an agent development lan-
guage that covers the spectrum from defining organisations, roles, agents, obli-
gations, goals, and conversations to inferring and executing coordinated agent
behaviours in multi-agent applications. Though allowing for the definition of
organisations, this approach exhibits a definite agent-centered view. Thus, it
focuses on the realisation of agents capable of representing the organisation’s
normative structure in the form of obligations and inter-dictions and also ef-
ficiently reasoning about them to find non-violating courses of action. Then
negotiations among agents assume that an agent can let others know about its
list of obligations and inter-dictions.

In [Ferber and Gutknetch, 1998, Wooldridge et al., 1999] we find two different
methodologies of agent-oriented analysis and design founded on the view of a
system as a computational organisation consisting of various interacting roles.

Wooldridge et al. [Wooldridge et al., 1999] advocate for an organisational
design of agent-based systems that regards them as artificial societies or organi-
sations. They propose to design an organisation by defining its roles, along with
their relationships, and their patterns of interaction. Then the functionality of
each role is expressed as liveness and safety responsibilities. On the one hand, an
agent’s liveness properties specify the potential execution trajectories through
the activities and interactions associated to the role. On the other hand, safety
responsibilities are defined as the invariants to be held by a role that guarantee
undesirable conditions to come about.

Two major criticisms apply to this approach. On the one hand, though
exploiting the notion of organisation, Wooldridge et al. still keep a very much
agent-centered view. On the other hand, the notion of organisational structure
is not explicitly but implicitly defined.

A more organisation-centered approach is taken in [Ferber and Gutknetch,
1998]. Organisations are described using the core concepts of groups, agents, and
roles. A role is regarded as an abstract representation of an agents’ function,
service or identification within a group. Groups are agent aggregations in which
agents can interact according to the rules of pre-defined role-to-role protocols.
An organisational structure is defined as a collection of groups and connections
among groups standing for the paths that agents may follow to move from group
to group. An important aspect of this approach is the introduction of a new
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model, organisation-based model, of reflection with the purpose of realising the
organsiation’s infrastructure. Finally, the MADKIT development environment,
is provided in order to support the design of multi-agent organisations.

Although from the works analysed so far it might look the contrary, it is
important to notice that the division of labour is not the only concern in organ-
isational design [Carley and Gasser, 1999]:

The key issue under organisational design is not what is the appro-
priate division of labor, nor is it how should agents be coordinated.
Rather, there is growing understanding that there is a complex in-
teraction among task, agent cognition or capabilities, and the other
structural and procedural elements of organisational design. As such,
the issue is finding what combinations of types of agents, structures
(patterns of interactions among agents), and ways of organizing the
task are most likely to meet the organization’s goal.

From an organisational engineering perspective, locating an optimal organi-
sational design for a specific, multi-dimensional situation is key.

Notice that organisational approaches tend to consider multi-agent systems
as corporate entities with specific goals in which agents interact according to
the rules of a normative structure, which describes roles and interactions among
roles separately from the agents occupying the roles. Furthermore, multi-agent
systems are conceived in isolation from their environment.

Social approaches tend to have a wider scope and so they may consider open
agent societies. These approaches are not only concerned about the normative
structure of agent societies, but also about the social relations holding among
agents, such as, for instance, joint intention [Cohen and Levesque, 1991], (social)
commitment [Castelfranchi, 1995], dependence or power [Castelfranchi, 1996],
etc. In general, they are mainly focused on understanding how the individual
mind links to the collectivity. Therefore an agent-centered view is adopted in
order to understand and analyse under what conditions certain social relations
hold. The results obtained by this strand of research encompass ontologies and
formal models that describe social concepts, as well as their various states and
operations.

At this point we observe that while organisational approaches tend to dis-
regard openness issues though taking a global perspective of the system, social
approaches tend to keep an agent-centered view though eventually considering
agents as members of a possibly open system.

Openness in multi-agent systems brings up a large variety of issues, already
identified in Section 1.1, that deserve special treatment. When considering open
agent systems there is not only the matter of proposing more or less sophisticated
mechanisms for coordinating the activities of agents, or of understanding under
what conditions, for instance, an agent decides to adopt a joint goal, but also
the fundamental issue of providing an infrastructure containing mechanisms that
ensure the proper workings of the system as a whole. And this appears as a deli-
cate issue since the system is bound to be populated by multiple, heterogeneous
agents which may eventually exhibit faulty or dysfunctional behaviours.
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Although open systems have recently started to be considered by MAS re-
searchers as the most important application of multi-agent systems, their inher-
ent issues have not been conveniently addressed yet. In this thesis we focus on
the formalisation, design of construction of open multi-agent systems following
an organisational approach, along the lines of the early works in DAT.

Already in our early work [Rodriguez-Aguilar et al., 1997] and [Noriega,
1997b], it is noted that human societies have successfully coped with similar
issues to those inherent to the design of open multi-agent systems by creat-
ing institutions that set and enforce laws. In both works it is advocated the
adoption of a mimetic strategy for the realisation of open multi-agent systems
by deploying electronic institutions. In this thesis, we continue, refine and ex-
tend and [Noriega, 1997b], and uphold that open multi-agent systems can be
effectively designed and implemented as institutionalized agent organizations (
or electronic institutions for shorter). Computationally speaking we defend that
not only agents compose an open multi-agent system but also the computational
mechanisms realising the rules of the society. By taking this perspective of the
society designer, we manage to draw a clear distinction between the rules and
the players, considered by [North, 1990] as key in the design of institutions.

To the best of our knowledge only Dellarocas [Dellarocas and Klein, 1999] fol-
lows a similar approach to realise open agent societies. In [Dellarocas and Klein,
1999] an agent society is reported to count on several social institutions, namely
the socialisation service —in charge of establishing social contracts indicating
membership of agents to the society and their rights and capabilities—, the no-
tary service —in charge of verifying that agents’ interactions are legal—, and
an agent-based ezxception handling service —realised by means of a special type
of agents, the so-called sentinel agents. Notice that special care is taken as to
the handling of exceptions (more thoroughly discussed in [Klein and Dellarocas,
1999]) in order to guarantee the robustness of the society.

Differently, in our approach the major concern, and contribution and nov-
elty at the same time, is the principled development of electronic institutions.
At this aim, we offer an integrated approach which departs from a specification
formalism, proposes a wholly agent-oriented design and finally demonstrates its
usefulness by implementing a proof-of-concept agent-mediated electronic mar-
ketplace. In this way we pretend to illustrate how to jump from specifications
to actual implementations.

Firstly, similarly to [Gasser et al., 1987, Moss and Edmonds, 1997, Bar-
buceanu et al., 1998] , we introduce a language to define an electronic insti-
tution. But instead of a programming language, we introduce a novel graphical
specification formalism for electronic institutions, building upon our previous
work [Rodriguez-Aguilar et al., 2000, Esteva et al., 2000b, Esteva et al., 2000a].
Why a formal specification language? Because we consider that a formal tech-
nique must me used when we cannot afford to have the requirements misun-
derstood. And this is the case since electronic institutions are highly complex,
critical applications.

Secondly we present a computational model that arises from and thoroughly
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captures the formalisation of electronic institution introduced. Our computa-
tional model proposes to realise an electronic institution by means of a fully
agent-oriented design based on two types of agents: institutional agents and in-
teragents. Differently to [Wooldridge et al., 1999] we adopt a totally organisation-
centered approach.

Institutional agents are those agents to which the institution delegates its
services (f.i. registration, accountability, brokering, etc.). We detail a general,
flexible computational model of institutional agent based on the notion of inter-
preting responsibility plans with which every institutional agent is endowed. In
this way, all institutional agents are realised by means of the same computational
model, only differing on their assigned responsibilities. Apart from flexibility,
this model intends to provide support for scalability purposes (institutional ser-
vices might be loaded into a single agent or else distributed among multiple
agents).

Interagents are a special type of facilitators mediating all interactions among
agents; responsible for enforcing the institutional rules?.

Finally, an electronic institution exhibits an explicit organisational structure
building upon the notions of role, scene, performative structure and normative
rules. Agents, like in most organisational approaches, adopt different roles within
an institution. A scene, similarly to the notions of patterns of interaction [Gasser
et al., 1987], social structures [Werner, 1987], conversation [Barbuceanu et al.,
1998] and groups [Ferber and Gutknetch, 1998] is intended to model a particular
activity involving multiple interacting agents. A performative structure allows
to compose scenes, establishing different relationships, to model the whole insti-
tution activity as a network of scenes. For the sake of expressiveness, instead of
defining performative structures as graph-like scene networks (such as in [Ferber
and Gutknetch, 1998], we provide several types of connectors for scenes so that
a larger variety of relationships among scenes can be expressed (f.i. synchroniza-
tion, parallelization, sequencing, etc.). Likewise [Barbuceanu et al., 1998] and
most social approaches, we also consider the notion of commitment as fundamen-
tal in the context of an electronic institution. Thus, agent actions in the context
of an institution have consequences, usually in the shape of compromises which
impose obligations or restrictions on actions of agents in the scenes wherein they
are acting or will be acting in the future. We introduce the so-called normative
rules to make explicit the obligations or prohibitions fired by agents’ actions.

2.3 Agent Communication and Coordination

Independently of whether the development of an agent-based system is guided
by a principled methodology or not, there is the fundamental issue of deciding
how to make agents interact.

So far, much effort in agent research concerning agent interaction has focussed
on the semantic and pragmatic foundations of different agent communication lan-
guages (ACLs) based on speech act theory [Austin, 1962, Searle, 1969]. Speech

2 A more thorough discussion about the features of interagents is provided in the next section
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act theory is founded on Austin’s observation that utterances must not be con-
sidered as simple propositions, but as a speaker’s attempts that either succeed or
fail [Austin, 1962]. Research in agent interaction departs from this assumption
to understand and explain how agents communicate with one another.

ACLs were originally proposed as the means to allow the exchange of knowl-
edge among software agents in order to make easier their inter-operation [Gene-
sereth and Ketchpel, 1994]. Generally, an ACL is composed of three main ele-
ments: an open-ended vocabulary appropriate to a common application area [Gru-
ber, 1993b], an inner language (f.i. KIF-Knowledge Interchange Format [Gins-
berg, 1991]) to encode the information content communicated among agents,
and an outer language (f.i. KQML-Knowledge Query and Manipulation Lan-
guage [Finin et al., 1995]) to express the intentions of agents.

However, current ACLs, such as KQML [Finin et al., 1995], FIPA ACL [FIPA,
1998], or FLBC [Kimborough and Moore, 1997], are valuable for the traditional
message-passing processing but they do fail to capture the notion of message
context, i.e. the context of agent interactions. This is fundamentally because
most work on speech acts, from which ACLs take inspiration, has focused on
individual utterances. In fact, the major contributions of speech act theory are
related to the understanding of the relationship between an agent’s internal state
and the utterances that it exchanges with other agents.

The proved inability of current ACLs to capture the context of agent in-
teractions has motivated the recent promotion of the notion of conversation as
the unit of communication between agents®. A conversation is a pattern of
message exchange that some agents agree to follow in communicating with one
another. Conversations are useful for structuring interactions among agents by
organising messages into relevant contexts. The use of conversations allows to
attach context to the sending and reception of messages, easing interpretation.
Hence that current agent research in ACLs is broadening from the specification
of individual utterances to include the characterisation of goal-directed conver-
sations for which agents will use ACLs. In this new context, the representation,
specification, validation and implementation of conversations arise as new is-
sues. Nevertheless limited work has been done on implementing and expressing
conversations for software agents.

New works in agent communication research attempt at modelling and rea-
soning about the relationships within and among conversations, or groups of
utterances. Even there appears to be a growing consensus that the notion of
conversation is the principal factor to consider in defining an ACL’s formal se-
mantics [Pitt and Mamdani, 1999, Smith et al., 1998].

A conversation-based approach must be valued according to the conversa-
tional model proposed. In this section we offer a review of current conversation
models, analysing their contributions and drawbacks.

Traditionally most proposals concerning the modelling of conversations have

3Although this remark is also made in the FIPA specification [FIPA, 1998], it is only
proposed to include a :protocol slot in the syntax of performatives, and a simple protocol
specification language.
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fundamentally exploited Finite State Machines (FSMs). Winograd and Flores
pioneered this research proposing the use of state transition diagrams [Winograd
and Flores, 1988]. Currently the COOL language [Barbuceanu and Fox, 1995]
has perhaps the most complete finite state model to describe agent conversations.
Furthermore, it has been practically employed for modelling the supply chain of
manufacturing enterprises. In COOL each arch in a transition diagram repre-
sents either a message transmission, a message receipt or both, so that different
agents must use different automata to engage in the same conversation. In the
COOL language, conversations are computational objects containing conversa-
tion rules, error recovery rules, continuation rules (applied to restart suspended
conversations), and conversation nesting. COOL use an : intent slot within the
performative to help the recipient choose the conversation structure needed for
understanding the message.

The KAoS [Bra, 1997],Jackal [Cost et al., 1998] and Agentis [d’Inverno et al.,
1998a] systems also employ FSMs to model conversations.

The implementation of conversations in KAOS is realised by means of off-
line design: conversation laws are hard-wired in advance into agents. Evidently
this rigid, early approach does not contribute to produce flexible systems. KAoS
introduces the notion of conversation suite, defined as a grouping of conversations
that support a set of related services commonly available to agents, as a primitive
form of conversation sharing. Smith et al. [Smith et al., 1998] have recently
proposed semantics for the conversation policies developed for KAoS based on
the theory of joint intentions.

The Jackal system originally started employing a loose Extended Finite State
Machine to model conversations built as a Deterministic Finite State Automaton
extended with a local read/write store. But currently the work in Jackal has
shifted to the modelling of conversations by means of concurrency models [Cost
et al., 1999] as detailed further on.

Agentis [d'Inverno et al., 1998a] is a framework for constructing interactive
multi-agent applications based on a model of agent interaction whose charac-
terising elements are services and tasks. A fundamental element of the system
is the set of protocols underlying the provision of services and tasks for agents.
Agentis contains a single model to cover all different types of inter-agent interac-
tions based on four types of basic protocols. Interestingly, a formal specification
in Z of these protocols is provided as part of a more complete and formal specifi-
cation of the entire system. Furthermore, the execution of protocols is described
in terms of the operations that transform it from one state to another, and hence
it is showed how the actual communication among the agents of a system occurs.
The use of Z as the protocol specification language allows to take advantage of
the wealth of tool support for verifying the design. However, in order to analyse
the properties of an Agentis system, the authors admit the need for a concurrent
model (such as CSP).

The AgenTalk [Kuwabara, 1995] and Infosleuth [Nodine and Unruh, 1999)
systems add some innovations to the use of FSMs by introducing methods for
composing and reusing them.
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On the one hand, the AgentTalk system [Kuwabara, 1995] employs inheri-
tance as a mechanism for extending a finite state automaton to support new
conversations. A conversation is inherited by adding new states and/or tran-
sitions, and by overriding existing states and transition. Then conversations
in AgentTalk are specified as a set of states, a set of transition rules, a set of
local script functions invoked when certain events come about, and lastly the
conversation from which the specified conversation inherits.

On the other hand, the InfoSleuth system [Nodine and Unruh, 1999] intro-
duces extensions and concatenations of conversations. Extensions are defined in
order to enrich the transitions that can occur in the middle of a conversation. Ex-
tensions, differently to the inheritance methods proposed by [Kuwabara, 1995],
are predefined and applicable to multiple other conversations. A concatenation
is an operation over conversations that produces a new conversation specifi-
cation by connecting the final state of a conversation with the initial state of
another conversation. But perhaps one of the most important contributions
made by [Nodine and Unruh, 1999] is the introduction of the notion of con-
versation enforcement. InfoSleuth implements conversations by incorporating a
conversation layer in the agent’s generic shell and by separating the conversa-
tion management with the remote agent from conversational interactions with
the local agent.

Conversation enforcement is also brought up as a fundamental issue in this
thesis when introducing our model of mediation in Chapter 4. But differently
to [Nodine and Unruh, 1999], in [Martin et al., 2000b] conversation management
is delegated to a special type of facilitators, the so-called interagents, instead
of employing an agent’s built-in conversation layer. Interagents —like KQML
facilitators [Patil et al., 1992]— are autonomous software agents inspired by the
efficient secretary metaphor already introduced in the Actors model of concur-
rent computation [Agha, 1986].

Interagents are key for the realisation of open agent systems. Instead of
allowing the direct interaction of agents with the rest of agents in the society, we
oblige agents to have all their interactions filtered by interagents so that these
can validate them and enforce them conveniently. Along this direction, the use
of interagents has proved to be valuable in the development of two different types
of agent-based systems: the agent-based electronic auction house presented in
Chapter 5, and the multi-agent learning framework Plural [Martin et al., 1998],
which tackles the problem of sharing knowledge and experience among cognitive
agents that co-operate within a distributed case-based reasoning framework.

We model and implement conversation protocols for interagents as a special
type of Pushdown Transducer (PDT), which can be seen in turn as a combina-
tion of a Finite-State Transducer (FST) and a Pushdown Automaton (PDA).
The choice of PDTs as the mechanism for modelling CPs is motivated by sev-
eral reasons. First, analogously to other finite-state devices a few fundamental
theoretical basis make PDTs very flexible, powerful and efficient [Roche and
Schabes, 1997]. They have been largely used in a variety of domains such as
pattern matching, speech recognition, cryptographic techniques, data compres-
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sion techniques, operating system verification, etc. They offer a straightforward
mapping from specification to implementation. PDTs, unlike other finite state
devices, allow us to store, and subsequently retrieve, the contextual information
of ongoing conversations. In order to ensure the correct exchange of illocutions
during a conversation, we introduce important, desirable properties such as ter-
mination, liveness, and lack of deadlocks and race conditions that conversation
protocols must verify. Although conversation analysis has not deserved much
attention in the literature, we regard it as a fundamental issue since not only is
important a conversation protocol specification but its subsequent validation.

Several alternative modelling techniques to FSMs have been also put forth
to model agent conversations.

In [Labrou, 1997] Labrou investigates the specification and semantics of
KQML, and the logical architecture of KQML—-speaking agents. Building on
the semantics, he derives conversation policies as formal descriptions of how
KQML performatives may be combined into KQML exchanges using a Definite
Clause Grammar (DCG). Labrou is not only concerned about specifying the
permissible sequences of performatives within a conversation, but also about
capturing contextual information as constraints and dependencies on the values
of the reserved parameters (:reply-with and :in-reply-to) of the performa-
tives involved in the conversations. Conversation protocols are expressed using
a DCG in which each KQML message is a terminal, defined as a list of the
following values: :performative name, :sender, :receiver, :in-reply-to,
:reply-with, :language, :ontology, 10 (set to 1 for incoming messages and
to 0 for outgoing messages).

According to Labrou’s approach, in general when an agent sends a message, it
has expectations about how the recipient is to respond back. Those expectations
are encoded into the message itself, instead of employing a higher-level structure
(a conversation item) embedding the message.

In [Moore, 1999], Moore proposes to represent conversations using the state-
chart formalism defined originally by Harel [Harel, 1987] to model the behaviour
of reactive systems. Moore defends state-charts as an appropriate modelling
language to deploy in the research of conversation modelling after considering
that there are many commonalities shared between agent communication sys-
tems and reactive systems. Certainly, state-charts constitute a highly expressive,
modular visual formalism. In [Moore, 1999] it is showed how they can be use-
ful to model conversations at different levels of abstraction, as well as to model
sub-conversations and concurrent conversations. Notice however that Moore’s
proposal is solely presented as a formal specification that is not accompanied
and realised by a computational model.

Parunak [Parunak, 1996] introduces Enhanced Dooley Graphs with the pur-
pose of capturing both the possible relationships among utterances, likewise state
models, and the actual relationships between utterances once the conversation
happened.

Thus, Enhanced Dooley Graphs are generated from an actual interchange
among existing agents. Each node in a Dooley Graph [Dooley, 1976] of a dis-
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course is said to represent what Parunak calls a character, a participant at a
distinguished stage of a discourse, i.e. either at the overall conversation, at a
nested conversation or at a side-bar conversation.

Due to the inherent difficulty in predicting the behaviour of an agent-based
system, Parunak proposes the analysis of the resulting interactions via simula-
tion with the aid of Enhanced Dooley Graphs and their underlying basic Dooley
Graphs. A (basic or enhanced) Dooley graph induces a topology whose features
provide the basis for obtaining quantitative measures that help analyse the dy-
namics of the discourse. For instance, the number of separated components in
the basic Dooley Graph represents the number of side-bar conversations under-
taken by the participants in response to the state of the overall conversation,
instead of in reply to specific utterances.

Then the analysis of the size and participants of each component provides
further information. Thus, for instance, components of similar size reflect con-
currency and parity among participants, whereas the appearance of a large com-
ponent and several smaller components indicates centralisation and domination
by one player. Similar measures can be derived from the lengths of the paths in
the graph and the degree of the characters (nodes).

Though valuable as an analysis tool, Parunak does not make clear how to
employ Dooley Graphs to guide the subsequent implementation of conversations.
Furthermore, although a Dooley Graph captures the rhetorical structure of a
conversation, it hides the control flow among the agents where more than one
character of an agent is involved. In [Singh, 1998] it is showed how Dooley
Graphs can be effectively used for generating the agent skeletons needed for
coordinating heterogeneous, autonomous agents. A skeleton, such as defined
in [Singh, 1998], is a model of an agent’s externally visible actions or events.
Notice however that both works depart from the trace generated during an actual
conversation to step back to the design of the conversation patterns needed by
agents.

Recently agent researchers have resorted to well-known and established mod-
els of concurrency endowed with verification mechanisms in order to overcome
the weaknesses of FSMs: though FSMs help us depict the flow of communication
in a very intuitive way, and are indeed sufficient for expressing many sequential
interactions, they lack of expressiveness to model more sophisticated interactions
involving some degree of concurrency. More precisely, there is a body of research
in conversation modelling that advocates for the use of Petri nets as an effective
model for supporting a greater range of interactions. Petri nets are argued to
provide many of the benefits of FSMs, and besides they offer greater expression
and concurrency. The purpose of the introduction of concurrent models is to
allow for the specification of complex multi-agent conversations (not just dia-
logues) that even allow for changes in the set of participants during the course
of interaction.

Along this direction, the Java-based Agent Framework for Multi-agent Sys-
tems (JAFMAS) [Chauhan, 1997] uses automata models for specifying conversa-
tions —based on COOL—, which can be subsequently converted into a Petri net
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representation. The conversion of conversations into Petri nets allows for the use
of existing Petri net analysis methods to check the consistency and coherency
of the conversation. This is achieved by checking the satisfaction of safeness,
liveness and no deadlock properties. JAFMAS is planned to have its capabili-
ties extended in order to assist designers in validating conversations [Galan and
Baker, 1999]. In this way, conversation specifications will be automatically con-
verted into a single Petri net that is subsequently analysed using an outer Petri
net verification tool.

Petri nets are also employed in [Koning et al., 1998] for modelling conver-
sations. However, the approach adopted is slightly different from the approach
used in JAFMAS. Thus, in this work a conversation is specified by building
a Petri sub-net per agent as well as a sub-net for the medium connecting the
agents involved in the conversation. Likewise JAFMAS, the Petri-net corre-
sponding to each agent is constructed from an FSM specification. Therefore,
the whole model is obtained by assembling the Petri-net sub-net corresponding
to the medium with those corresponding to agents. A distinguishing feature of
this approach is that it offers software tools that assist designers in the analysis
of specifications in order to check their validity. The validity process involves the
checking of some elementary properties: a conversation is required to be bound
(with a finite number of states), quasi-livable (all conversation messages may be
eventually used), deadlock-free and terminating. Perhaps the major drawback
of this contribution is that it does not make clear how to practically realise
conversation specifications.

A particular type of Petri nets, Coloured Petri Nets (CPNs) [Jen, 1995a],
has been also proposed for conversation modelling [Cost et al., 1999, Lin et al.,
1999]. Though CPNs are formally equivalent to traditional Petri nets, their
richer notation facilitates conversation modelling to designers. The major dif-
ference between CPNs and traditional Petri nets roots in their tokens. While
tokens in Petri nets are simply markers, in CPNs tokens can be typed, and so
they can have data associated to them.

In [Cost et al., 1999] the use of CPNs is proposed as the formal model un-
derlying the Protolingua conversation specification language investigated in the
framework of the Jackal development environment. Conversations are firstly de-
signed and analysed at a high level with the aid of CPN-ML*, with the aim of
subsequently translating them into Protolingua protocols. In [Lin et al., 1999]
CPNs are also employed as a specification and verification tool at the design
stage, but this time for the so-called conversation schemas. A conversation
schema is defined as a pattern of agent interaction specifying conversations that
may be centered on one or more domain-dependent topics.

Due to the intrinsic limitations of the Petri net formalism (in particular, the
combinatorial explosion of the network size for actual protocols and the ultra-
powerful simulation tools needed), Koning proposes in [Koning, 2000] to alter-
natively use Lotos as a more appropriate conversation specification language.
Lotos is a standard (ISO8807) specification language built upon a process alge-

4An extension of ML that allows the specification of CPNs.
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bra that provides a high degree of abstraction by making use of abstract types.
Lotos allows to model multiprocess systems. A distinguishing feature of Lotos
is that Lotos specifications can be easily translated into finite state automata.
Then it is possible to make use of validation tools over the resulting automata.
This is the main reason why Lotos is claimed to be particularly suited for formal
verification. The interesting contribution in [Koning, 2000] roots in the proposal
of an automated translation from a logical model of a conversation protocol into
a Lotos specification that can be employed to verify the properties of the spec-
ified conversation with the aid of the CADP tool box [Garavel, 1996]. Once
validated the designed conversation protocol, pieces of code that agents can use
in order to exploit the protocols are generated from the logical model.

The main and general criticism to be held up concerning the existing ap-
proaches to agent interoperability is that the integration of facilities to support
the specification, validation and implementation of conversations into an agent
development environment are still at a very early stage.

2.4 Agent-based Computational Markets

In this section we survey the most salient agent-based virtual market places.
Next we present the most relevant features of each system, leading such analysis
to establishing a brief comparison of the characteristics of each one as shown in
Figure 2.4.

Kasbah [Chavez and Maes, 1996, Chavez et al., 1997] is a web-based and
agent-based consumer-to-consumer electronic marketplace. Users intending to
buy or sell goods can create buying and selling agents that help them transact
their products. When creating agents, users must give them some strategic
direction, and afterwards send them off into a centralised agent marketplace.

Kasbah agents pro-actively seek out potential buyers or sellers so as to ne-
gotiate with them on their owners’ behalf. Thus these agents are responsible
for automating much of the merchant brokering and negotiation stages for both
buyers and sellers. Each agent arriving into the central marketplace is targeted
to close an acceptable deal according to a set of user-specified constraints such
as desired price, lowest (or highest) acceptable price, and a deadline to complete
the transaction.

Negotiation in Kasbah is rather simple. Once buying and selling agents
match, buying agents can offer a bid to selling agents that selling agents can
either accept or reject. When configuring their buying agents, buyers can
choose among three negotiation strategies: anxious, cool-headed, and frugal
—corresponding to a linear, quadratic, or exponential function respectively for
increasing its bid for a product over time. These are indeed very intuitive ne-
gotiation strategies that help users to understand their buying agents’ trading
behaviour.

Among the innovative features of Kasbah there is the incorporation of a
distributed trust and reputation mechanism [Zacharia, 1999]. It can be used by
both parties completing a transaction to rate how well the other party managed



41

2.4. Agent-based Computational Markets

521714904
buibbnqa
ou ou sok ou sok ou 69 buriopuopy

neaing SWISTURTDDA
seouIsST{ I0)jog ou ou ou ou | uoneindey] 9AIIRIOQRI[O)) uoyvInday]
SOA ou ou ou ou ou figapqopy

Xopur £10399eD syox IR s1ago pesmIqnd xopur £10303e0 307 9[qR[IeAR WOI] syuade
WIOIJ SIOPUSA pure S901AISS UIOI] SIOPUOA UIOIJ SIOPUSA I9Jj0 01 spoo3 19Y[01q PaYRIIPaP bur1230.49
95001 SIS} Jo soded MmoTPX 95001 SIS} 95001 SIS S9S00D I99UOTIONY £q poyeroeq JUDYILI T
Auew: Auewt Auew:Auewt fiyypurpano

T:Auewr‘Auewu: T T:Auewr‘Auewu: T Auew: Auewt T:Auewr‘Auewt: T Auewr: T Auewr: T 42finq:u2]128g
[eLI0)RUIqUIOD (Kox1A ‘prg porees
pepIs-a[qnop papis-e[qnop ao11d-)sI1 ' ysI[3usy
popIs-o[3uIs KoIdIA popIs-o[3uIs popis-o13urs ‘YoIn () popIs-o[3uts ou sadfi[ uowony
(buruinbing
fiom-omy)
ou SoA SoA ou ou SoA w01I013009 \J
IopeiI) O1I0US Ojul
So130%RI1ls sIopeI)
o[qeppeque W MS 10} 1AV | A3oye1)s poxy 1oddng
sjuade aIqout sa13ajells Surpes) sIepeI} se18ajer)s Surper) ® FUISOOD S1uaby
9[qesSIWOoISND | sIopell MG I0f TJV a[qesTuo)Isnd | MS 10} IV a[qesTuIolIsnd | 0} payuurg buipoug,
sjuage NVT® NVT® SIof[eS pue sIeAnq 19X IR [eniIrA
a[Iqour 9}1s-Uo SSOIOR PAINQLISIP | SSOIdR PANLIISIp | sjuade opIs IOAIas poINqLIISIp poseq-IoAIas squabo fo
snyd paseq-gap SIO[[eS pUe SIoAng | SIO[[ES PUR SIDANE | ‘YULI[D Paseq-gop\ ‘paseq-qap\ “)URID Paseq-gapl U0UNQLLISYT
JIOJRIPAIA® jouleN snayz joguor}ony 193 ITRUYSI | yeqsey] | swa)sAg/sa.ngno,]




42 Chapter 2. Background and Related Research

his half of the deal (e.f. accuracy of product condition, completion of transaction,
etc.). Therefore users can establish a reputation threshold when creating their
trading agents that these must utilise for discriminating which agents are eligible
for negotiation.

AuctionBot [Wurman et al., 1998] is a web-based, flexible auction server
that supports both software and human agents. AuctionBot is capable of man-
aging a large number of simultaneous auctions, which are organised in a hierar-
chical catalog. The user initiating an auction can position it anywhere within
the existing catalog, or extend the catalog to create an appropriate subcategory.

The most distinguishing, interesting feature of AuctionBot is that it manages
to support a wide range of auction types by decomposing the auction design
space into a set, of orthogonal parameters. Based on such parameters, the classic
auction types can be generated, plus others that have not been studied yet. The
identified parameters are classified in one of the following categories:

e Bidding restrictions. These parameters determine acceptable bids. They
basically encompass parameters referring to participation (whether the
auction allows one buyer or many buyers, one seller or many sellers) and
bidding rules (additional restrictions on allowable bids such as, f.i. the
bidders’ obligation to beat the current price quote).

o Auction events. They refer to the frequency and number the matching al-
gorithm is run to produce an allocation, the logical conditions determining
the closing of an auction, and the number of frequency of price quotes.

e Information revelation. They refer to the degree of information revelation
concerning current and past transactions (f.i. trader’s identity, timing of
upcoming clear,etc.)

e Allocation policies. They are the most important parameters because an
allocation policy dictates which agents transact, and at which price(s),
as a function of the bids. Currently, AuctionBot supports three different
allocation policies: the Mth- and (M+1)st-price policies as generalisation
of the first-price and second-price mechanisms to auction multiple units,
the chronological match policy implementing the sequential trade effect of
the Continuous Double Auction, and the tie-breaking rules employed for
breaking ties (f.i. choose the earliest bid).

AuctionBot provides full support for human agents through a web-based
interface and for software agents implementing the AuctionBot API, a commu-
nication specification that developers follow to implement software that commu-
nicates with the AuctionBot server over TCP. Currently, AuctionBot supplies
C++ and Java implementations of the API for developers. Both AuctionBot
and Fishmarket were the first auction houses providing full support for the par-
ticipation of software agents. However they follow different approaches; while
AuctionBot allows a software trader to directly connect to the auction server,
Fishmarket obliges that trader to have his participation mediated by a special
type of facilitator provided by the auction house.
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Though empowered to let software agents play, it does not provide any
facility to allow users to create customised automated autonomous (or semi-
autonomous) trading agents.

To the best of our knowledge, though neither evaluation facilities nor visu-
alisation tools are provided, AuctionBot supports the text-based monitoring of
the trading activity.

Zeus [Collins and Lee, 1998] is not a computational market, but an agent
building tool-kit that has been successfully employed for constructing a virtual
electronic marketplace®. The resulting marketplace was developed as a virtual
commodity auction with a variable number of agents capable of buying and
selling items. The marketplace is open, with an indeterminate number of partic-
ipating agents spread across a LAN (local area network). This is different from
Kasbah, Fishmarket and Auctionbot, which all allow for agents to be distributed
over the web.

The implementation of the agents participating in the marketplace was en-
sembled from the ZEUS agent component library with the aid of the ZEUS agent
building tool. Users are offered the possibility of creating their own agents by
customising their bidding and selling strategies via a GUIL Then users can opt
for either launching their agents to work autonomously or for instructing them to
work semi-autonomously. This facility is also provided by Kasbah and Fishmar-
ket. But the marketplace created with ZEUS was designed to allow individual
agent designers to include their own strategies into their agents. In other words,
agent designers can create new strategies and embed them into a generic trad-
ing agent provided by the marketplace. This approach is between the solutions
proposed in Fishmarket and Auctionbot. Thus on the one hand an agent de-
signer is not allowed to directly connect his own agent to the marketplace like
AuctionBot does. Instead he is forced to nest his strategies into a generic agent
so that the marketplace can secure that the agent behaves according to the rules
of the market handled by the generic agent. Notice that differently the so-called
interagents employed in Fishmarket remain separated from external agents con-
taining their own strategies, and so strategies and coordination mechanisms are
kept separated into two different agents.

An interesting feature of this marketplace is the availability of visualisation
tools, inherited from ZEUS, which can be used to view, analyse or debug the
marketplace. The visualisation tools succeed in integrating the large amounts of
limited, local information generated by each agent into a coherent whole. This
type of facility is only provided by Fishmarket.

Lastly, the marketplace also provides means for agents to discover what is on
offer, and where on the network the vendor can be found. For this purpose, the
ZEUS facilitator agents provide a brokering service as a classified ads service,
enabling agents wishing to buy or sell particular items to identify potential
trading partners.

5A similar approach has been recently reported in [Albers et al., 1999] where the agents of
an electronic marketplace were designed and developed using DESIRE [Brazier et al., 1998], a
compositional development method for multi-agent systems.
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MAGNET |[Collins et al., 1998] is a computational market designed to act
as an intermediary for multi-agent negotiations. It implements a generalised
multi-agent market architecture that provides explicit and integrated support for
complex multi-agent interactions; from complex negotiations to simple auction
protocols. The market place builds upon three fundamental elements: exchange
—a collection of domain-specific markets set up for the trading of goods and
services, along with some generic services —, markets —forums for trading in
a particular commodity or business area —, and market session —agent inter-
actions occurring in the context of a particular market. Market sessions can be
stored by the marketplace, and so the state of each transaction can be made
persistent over time.

MAGNET allows for the participation of both software and human agents,
likewise all systems described so far, spread over a LAN. Software agents are
handled likewise AuctionBot, and so they can directly interact with MAGNET
as long as they implement an API. Agents can play either as buyers or sellers with
respect to any market session. However, there is only a single agent initiating
the session for either buying or selling.

Using the CORBA trader service, each exchange maintains ”yellow pages”
of services and markets for brokering purposes. Furthermore, likewise Market
Maker —the successor of Kasbah—, an exchange is endowed with a Better Busi-
ness Bureau service that can provide to agent information about the reliability
of other agents based on past performance.

eMediator [Sandholm, 1999b] is a web-based electronic commerce server
that includes:

e an auction house, the so-called eAuctionHouse that allow users from across
the Internet to buy, sell, and set up auctions;

e a leveled commitment contract optimiser that determines the optimal con-
tract price and decommitting penalties for a variety of leveled commitment
contracting protocols; and

e a safe exchange planner that enables anonymous exchanges by dividing the
exchange into chunks and sequencing those chunks to be delivered safely
in alternation between the buyer and the seller.

Undoubtedly the eMediator auction house is the most powerful auction site
over the Internet, covering the largest auction space and being the first Internet
auction house that supports combinatorial auctions. Due to the complexity of
the auction space —the auction setting differs based on whether it is a single
or double auction, whether there is one or multiple items, whether there is
one or multiple units of each item, and whether the units can be divisible or
indivisible— the user is assisted by the auction server in choosing an auction
type out of a wide variety of auction types.

Once set up an auction, bidders can participate through either web browsers
or on (or near) the host machine of the auction server itself. eAuctionHouse
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provides support for mobile agents that permit a user have agents actively par-
ticipating in the auction while he is disconnected, and help reduce the network
latency. Though having the same motivation than some commercial auction
sites [eBay, www, Amazon, www] providing proxzy bidders, the approach of eAuc-
tionHouse is much more sophisticated.

Users can opt for coding their mobile agents themselves —likewise Auction-
Bot, Fishmarket and ZEUS—or using the support provided by eAuctionHouse
to generate a mobile agent out of a large variety of mobile agent types (simple
information agents reporting about special events, agents that implement domi-
nant strategies, agents that underbid optimally, or agents that speculate in order
to mislead the others).

Differently to other auction servers, eMediator provides additional services.

On the one hand, eMediator introduces the so-called leveled commitment
contracts; contracts which enclose the level of commitment for each agent speci-
fied by decommitment penalties, i.e. the penalties that agents must pay in order
to be freed from the obligations of the contract. A leveled commitment contract
optimiser determines the optimal contract price and decommitting penalties for
a variety of leveled commitment contracting protocols.

On the other hand, in order to guarantee contract execution, i.e. that the
seller gets paid and that the buyer gets the goods, a method to tackle this
problem without third parties is included into eMediator. As part of eMediator,
a safe exchange planner enables anonymous exchanges by dividing the exchange
into chunks and sequencing those chunks to be delivered safely in alternation
between the buyer and the seller.

In this thesis, in Chapter 5, we present FM96.5 (Fishmarket), an open,
flexible, robust, agent-based auction house where heterogeneous (software and
human) agents may trade. Along with AuctionBot [Wurman et al., 1998] it was
the first auction house providing support to software agents. In order to assist
agent developers in the construction of their agents, FM96.5 encloses a library of
agent templates in several languages. Furthermore, it also offers the possibility
of generating agents with customised trading strategies likewise [Collins and Lee,
1998] and [Chavez and Maes, 1996].

Considering auction protocols, FM96.5 includes, as a distinguishing feature
from the rest of auction houses, a sound and fair implementation of a real-time
Dutch auction protocol which is not included in other auction marketplaces.
Although as a matter of fact originally it only included Dutch auctions, it had
its capabilities extended in order to accommodate other classic auction types,
namely English, First-price sealed bid and Vickrey.

One capital aspect which does not seem to be conveniently considered by
most of the marketplaces described so far is the notion of accountability of
the market activity. Likewise Zeus [Collins and Lee, 1998], FM96.5 bargains
for monitoring facilities aimed at keeping track of all events taking place in
the market as well as at integrating into a coherent whole the vast amount of
information generated by individual agents in order to picture the behaviour of
the system in such a manner that humans can better understand it.
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But surely the most differentiating feature of FM96.5 with respect to the rest
of computational marketplaces surveyed in this section roots in its inception as
an open agent-mediated electronic institution founded on a formal specification
language as described in Chapter 3 and a strong agent-oriented computational
model as presented in Chapter 4.

To the best of our knowledge, FM96.5 is the only marketplace reported to
explicitly exhibit organisational structure. Such organisational structure takes
inspiration on the traditional trading institution, the fish market, presented in
Chapter 1. Thus, based on a highly mimetic strategy and according to the
formal model of electronic institutions presented in Chapter 3, FM96.5 is con-
ceptually conceived as a virtual marketplace where simultaneous scenes occur,
but with some causal continuity. Each scene represents a particular activity in
the marketplace and involves a group of agents playing different roles that inter-
act by means of illocutions according to a well-defined protocol. Such protocol
is intended to capture the possible dialogues that agents may have in the course
of the activity represented by the scene. Scenes in turn are connected compos-
ing a network of scenes, the so-called performative structure, which captures the
existing relationships among activities. Such network can be also regarded as a
map showing the possible activity roads, paths, that agents may follow within
the marketplace depending on the role that they play. Finally, on top of the
performative structure there is a set of constraints, the so-called normative rules
that produce limitations or enlargements in the acting possibilities of agents
depending on the actions that they take. For instance, an agent purchasing a
good is committed to pay for it, and so it will not be allowed to abandon the
marketplace till paying off.

Alternatively, Padget et al. [Padget and Bradford, 1998] develop an interest-
ing m-calculus model of the fish market. Although their approach demonstrates
the value and effectiveneess of m-calculus as a formal specification language for
multi-agent systems, they take an agent-centered approach. Thus, they focus on
the specification of the social behaviour of each one of the agents participating
in the marketplace. There is a high ressemblance between their resulting speci-
fication and the way we specify institutional roles in our computational model,
as described in Chapter 4.

FMO96.5 is computationally realised by means of two special types of agents:
institutional agents and interagents. Both types of agents are owned by the
institution and are responsible for guaranteeing its sound operation by means of
their coordinated activity. Notice that typically institutional agents, interagents
and external trading agents will be running distributedly.

On the one hand, institutional agents are those to which the institution
delegates its services. In fact, an institutional agent acquires as responsibilities
the tasks associated to a particular institutional role when adopting the role
(fi. an auctioneer is responsible for auctioning goods, a sellers’ admitter for
registering goods, an accountant for the book-keeping of traders’ accounts, etc.)

On the other hand, interagents are key in FM96.5 since their mediation guar-
antees that external trading agents are subject to the explicit —and enforceable—
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behavioural conventions of the institution. But more generally, interagents are
reported to be useful along a variety of directions: they allow to achieve the open-
ness of the market, and so allowing the participation of heterogeneous agents;
they contribute to the accountability processes undertaken by the market audi-
tor (monitoring agent) by book-keeping agents’ trace information; they locally
manage trading agents’ exceptions in order to prevent that an agent eventually
jeopardises the global market activity; and lastly they are ready to accommodate
societal changes since they are capable of handling institutions’ specifications.

Furthermore, not only are interagents useful for the deployment of electronic
institutions, but also of agent-based systems in general.

Summarising, notice that on the one hand an organisation-centered approach
is adopted in order to structure FM96.5, and besides additional computational
mechanisms are deployed to create the infrastructure of the electronic institution
so that it can be open to external trading agents.

A brief comparison of the features of the marketplaces presented so far is
shown in the table in Figure 2.4. The criteria used for comparison are as follows:
Distribution of agents refers to the organisational architecture of the market-
place, Trading agents’ support refers to the type of support provided to trading
agents, Negotiation refers to the support for different negotiation protocols, Auc-
tioning refers to the support for auction protocols, Seller:Buyer cardinality refers
to the number of potential sellers who will be in competition for an individual
transaction, Merchant brokering refers to the process whereby users identify who
has a desired item for sale, Mobility refers to the capability of the maketplace
of hosting mobile agents, Reputation services refers to the availability of repu-
tation mechanisms, and Monitoring and debugging refers to the availability of
monitoring and debugging facilities.

2.5 Agent Test-beds

Controlled experimentation is at the heart of Artificial Intelligence from its in-
ception. It is fundamentally founded on two research tools [Hanks et al., 1993]:
benchmarks, standardised tasks, and test-beds, environments in which AI pro-
grams can be studied. Both must be regarded as part of the apparatus of empir-
ical AT, exclusively devoted to support and facilitate experimentation. Therefore,
it is up to researchers to analyse experimental results and subsequently discern
whether a general formal theory may be postulated.

One of the main purposes of benchmarks and test-beds is to provide metrics
for comparing competing systems. In this direction, benchmark problems have
been largely exploited by AI researchers by means of competitions. Recall for
instance the Robocup initiative [Kitano et al., 1997] that encourages both agent
researchers and robotics researchers to make their agents and robots play soc-
cer; or the AAATI Mobile Robot Competition [Kortenkamp et al., 1997] where
autonomous mobile robots try to show their skills in office navigation and in
cleaning up the tennis court; or the Santa Fe Institute tournaments [Andrews
and Prager, 1994] where the contenders competed for developing optimised trad-
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ing strategies; and even automated theorem proving systems have been pitched
against each other [Suttner and Sutcliffe, 1996]. Nowadays Robocup is undoubt-
edly in vogue in the agent community, motivating an important body of work.

Considering uniquely test-beds, they have been largely employed by AT re-
searchers as a stepping-stone between formal theory and applications. In general,
their main role is to provide support for operationalising theoretical ideas so that
they can be tested, analysed and possibly validated. Ideally the use of test-beds
can serve researchers to either validate their hypothesis or, alternatively, to elab-
orate new hypothesis founded on their empirical observations. In what follows
we put benchmarks aside to survey existing test-beds for distributed artificial
intelligence research.

DAT has a long tradition of reported, controlled experimentations and test-
beds since its early days. Fundamentally, DAT test-beds have been exploited
along two directions:

e to experiment with agent architectures; and

e to analyse the performance of coordination, communication and negotia-
tion mechanisms.

In order to understand the support provided by DAT test-beds to researchers,
we divide the facilities that they may provide into three principal types [Decker,
1996]:

e Domain facilities for the representation and simulation of the problem be-
ing solved. One of the key features of this type of facilities is the capability
of scenario generation, essential for the repeatability of empirical experi-
ences, that highly depends on the degree of experiment parametrizability
offered by the test-bed. Another distinguishing feature is the type of do-
main modelled, i.e. whether the test-bed focus on providing tools to model
many domains or simply concentrates on a single representative domain.
We will be referring differently to both types of test-beds as general or
domain-independent and domain-specific respectively.

e Development facilities that may include:

— a development language;
— a pre-specified agent architecture;
— support for agent communication;

— graphic tools to visualise and monitor the execution of the system;
and

— debugging tools to analyse the behaviour of the system and detect
deviating, unexpected behaviours.

Test-beds that do not commit to any particular agent architecture and do
not provide any development language for building agents are said to re-
main architecturally-neutral since they may include agents possibly written
in different languages and run by different architectures.
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e Fwaluation facilities that permit to collect data so that it can be displayed
and analysed to study and understand both each agent’s performance and
the performance of the system as a whole. They are typically tied to de-
bugging and graphical facilities. Notice that the capabilities of scenario
generation and repeatability are fundamental in evaluating. For a com-
plete evaluation, researchers will require to generate and repeatedly eval-
uate carefully constructed scenarios that highlight certain problems and
randomly generated scenarios that help test average performance. Un-
doubtedly the most important part of evaluation is the analysis of results,
but agent test-beds have not historically supported analysis tools.

Therefore, the completeness of a test-bed (from a researcher’s point of view)
depends on the tools, if any, provided within the facilities’ types identified above.

Once presented what a test-bed is, in what follows we discuss how a test-bed
can be used by surveying a collection of test-beds employed for research in DAI
and multi-agent systems. Along our discussion we shall attempt at identifying
the types of facilities provided by each test-bed.

DVMT [Lesser and Corkill, 1983] is the oldest, and probably largest and
most-cited DAI test-bed. It is a domain-specific test-bed that simulates a net-
work of vehicle monitoring agents responsible of analysing acoustically sensed
data to identify, locate, and track patterns of vehicles moving through a two-
dimensional space. Each agent is equipped with problem-solving capabilities an
is associated with a sensor or sensors. Each agent is responsible for a specific
area and has as its goal to recognise and eliminate erroneous sensor data as it
integrates the correct data into an answer map. At this aim agents can engage
in several types of cooperative interactions.

DVMT agents use the Generic Blackboard Architecture (GBB) as their base
to construct blackboard-based agents, but allow for researchers to define their
own communication protocols. DVMT provides tracing facilities that permit
the global and local visualisation of the system, and even it is rarely one of the
few test-beds providing automated tools for analysing the performance of the
system.

Tile-world [Pollack and Ringuette, 1990a] is a test-bed whose agents are
simulated robots that push tiles around to fill holes in a rectangular two-dimensional
grid that they occupy composed of tiles, some obstacles, and some holes. The
experiment designer configures the world setting up the parameters that the
subsequent simulation employs to make appear holes, obstacles and tiles. The
agent’s goal is to maximise his score by filling holes with tiles. Its evaluation
facilities allow to track and measure each agent’s performance during a trial.
Although no development facilities are provided, Tile-world is distributed with
an embedded, configurable IRMA agent architecture.

Tile-world is intended to support controlled experiments with agent archi-
tectures situated in dynamic and unpredictable environments.

MICE [Montgomery et al., 1992] is another grid-oriented test-bed intended
to host research into coordinating the problem-solving behaviour of multiple
autonomous agents. The basic layout of MICE consists of various agents and a
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grid. The experimenter only defines an agent’s sensing and effecting capabilities
and the effect of actions taken simultaneously by the agents. Mice is domain-
specific, hence it allows to model many domains, and architecturally neutral.
MICE might be viewed more as a framework for building test-beds rather than
a simulator in and of itself (in fact versions of Tile-world and Phoenix have been
built with this platform).

Phoenix [Cohen et al., 1989] is a test-bed for implementing and testing
multiple autonomous agents in a complex fire-fighting scenario. The Phoenix
environment employs a fairly complex fire simulator based on weather condi-
tions, Yellowstone National Park’s physical features, and the features of the
terrain (particularly burn rates). The Phoenix test-bed allows multiple agents
(fire-bosses and bulldozers) to operate semi-autonomously in the highly dy-
namic environments generated by the simulator. For this purpose, it includes
an experiment-running facility that offers a language for specifying scripts for
changes in weather, fires starting, and other events. Phoenix uses Lisp as its im-
plementation language and includes a flexible high-level agent architecture. Due
to the environment’s complexity and size, Phoenix offers extensive and detailed
debugging and graphical visualisation tools that can be employed for monitoring
agents’ behaviour, producing data files that can be read by data-manipulation
and statistical packages.

Truckworld [Nguyen et al., 1993] is a test-bed designed to test theories of
reactive execution and to research in theories of reasoning about dynamic and
uncertain worlds. An agent is a truck with two arms, two cargo bays, several
sensors, and various other components that operates in worlds consisting of
roads that connect locations populated with objects (f.i. fuel drums, tire chains,
vending machines, etc.). The simulator is in charge of periodically generating
exogenous events (f.i. rain storms). Each agent directly communicates with the
simulator to perform actions and get sensor reports via communication devices
provided by the simulator itself.

Truckworld is in between general test-beds such as Tile-world and domain-
specific test-beds such as Phoenix.

MACE [Gasser et al., 1987] was one of the first general (domain-independent)
test-beds for modelling multi-agent systems, as well as one of the first truly con-
current distributed object systems. As a distinguishing feature, MACE exploits
the use of agents at all stages of system construction, user interaction, and man-
agement of experiments, as well as the basis for the modelled system itself. For
this purpose, MACE provides a language for describing and instantiating agents,
as well as support for a problem-solving architecture. Hence the test-bed and
the experiment are an integrated multi-agent organisation for interacting with
the experimenter and for testing hypotheses about the structure of organisations
of artificial agents.

Another major contribution of MACE is the inclusion of explicit social mod-
elling concepts drawn from sociological theory.

First, it employs the notion of recursive composition of agents so that a group
can itself be treated as an agent with distributed internal structure. In this way,
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agents, groups and groups of groups have all agency.

Secondly, it incorporates the notion of social world proposed by symbolic
interactionists®. Social worlds are operationalised in MACE as knowledge-based
agent boundaries. Then each agent contains a set of acquaintances that define
its boundaries of communication and interaction, and hence the social structure.

Lastly, social knowledge and social structure is founded in MACE on the
modelling of other agents. MACE includes facilities to model other agents’
features (such as roles, goals, skills, etc.) in order to structure individual inter-
actions, and so to establish social structure defined as patterns of interaction.
Observe that modelling others has become one of the main issues of MAS and
DATI research.

Taems [O’Hare and Jennings, 1996](Task Analysis, Environment Modeling,
and Simulation) is a powerful framework with which to model complex computa-
tional task environments for exploring issues concerning coordination, schedul-
ing, and organisation. The framework allows to both analyse and quantitatively
simulate the behaviour of single or multi-agent systems with respect to interest-
ing characteristics of computational task environments of which they are part.
At this aim, it allows to build models of task environments at multiple levels
of abstraction. The central idea motivating Taems is that the design of coordi-
nation mechanisms cannot solely rely on the principled construction of agents
alone, but also on the structure and other features of the task environment (f.i.
the presence of uncertainty and high variance in a structure). In turn, this
structure should be also used as the central guide to the design of coordination
mechanisms, and so must be part of any theory of coordination.

Tems is endowed with a language for building general models of a large
variety of different domains that can be either simulated or mathematically
analysed. Thus it exists as both a language for stating hypotheses or theories
and as a system for simulation. Since it focuses on domain modelling, it has
opted for remaining architecturally neutral as to agents, and so no development,
language or agent architecture is provided. Complementarily, Teems is also
endowed with extensible trace facilities, with facilities for the graphical display
of domain scenarios (task structures) and with support for data collection and
analysis.

AGenDA [Fis, 1996] is a test-bed for the design of DAI applications con-
sisting of two different levels:

o Architectural level. It involves a methodology for designing agents founded
on the InteRRaP agent architecture [Muller and Pischel, 1994]. General
templates for agents are provided that have to be filled by the designer of
a DAT system with the domain-specific instantiation.

o System level. Tt is covered by the MAGSY system [Fischer, 1993]. MAGSY
provides a frame-based knowledge representation formalism and a set of
general-purpose inference mechanisms. Furthermore, it provides facilities

6Individual people negotiate their lives by operating within social worlds which constrain
both what they need to know and with whom they interact.
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supporting the construction, visualisation, evaluation and debugging of
DATI scenarios; from the lowest level of communication up to higher levels
of complex protocols.

AGenDA is reported to have successfully hosted the development of two actual
applications, namely FORKS, an automated loading dock where forklift robots
load and unload trucks in a coordinated way, and MARS, which models an
agent society consisting of transportation companies and their trucks that have
to carry out transportation orders.

CooperA [Som, 1996](Cooperating Agents) is a generic test-bed for dis-
tributed knowledge-based applications that arises from the need to meet in the
most effective way the requirements of a specific real-life, critical application.
CooperA permits to investigate cooperative and coordinated problem solving
by sets of coarse-grained knowledge-based agents. As development facilities, it
uses a general language (Knowledge Craft’s CRL-Lisp, a Lisp extended with a
frame knowledge representation language) and a well-defined agent structure.
Furthermore, it provides translation mechanisms and semantic mapping dictio-
naries for heterogeneous agents and a uniform message structuring protocol for
communication. A special user interface agent provides a number of facilities
such as tracing of executions, continuous updating of the status of agents’ tasks,
and others.

CADDIE [Farhoodi et al., 1991](Control And Direction of Distributed Ar-
tificial Intelligent Agents) is a test-bed for evaluating organisational structures
and procedures. Instead of simulating specific domains, CADDIE allows to build
particular scenarios in a chosen domain of interest. It also provides an architec-
ture for describing agents and organisations of agents and their communications.

EOS [Dor, 1994] is a test-bed devoted to founding the study and development
of computational models of sociological theories. Simulations run by EOS intend
to obtain a link between cognitive and environmental factors and the emergence
of hierarchical groupings among small sets of agents and development tools based
on general languages such as C++ and Prolog.

AuctionBot [Wurman et al., 1998] Though not claimed as a test-bed, Auc-
tionBot has been used as a test-bed by being extensively used for investigating
both computational market mechanisms and agent strategies. On the one hand,
its flexible specification of auctions in terms of orthogonal parameters makes it
a useful tool for agent researchers exploring the design space of auction mecha-
nisms. On the other hand, it provides full support for trading agents implement-
ing the AuctionBot API, a communication specification that developers follow to
implement software that commmunicates with the AuctionBot server over TCP.
Currently, AuctionBot supplies C++ and Java implementations of the API for
developers. To the best of our knowledge, though neither evaluation facilities nor
visualisation tools are provided, AuctionBot supports the text-based monitoring
of the trading activity.

In Chapter 6 we present FM, a test-bed for trading agents in auction-based
markets. The framework, conceived and implemented as an extension of FM96.5
(a Java-based version of the Fishmarket auction house), allows to define trading
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scenarios based on several types of auctions (Dutch, English, First-price Sealed-
bid and Vickrey. FM provides the environment wherein agent designers can
perform controlled experimentation in such a way that a multitude of experi-
mental market scenarios — that we regard as tournament scenarios due to the
competitive nature of the domain — of varying degrees of realism and complexity
can be specified, activated, and recorded; and trading (buyer and seller) het-
erogeneous (human and software) agents compared, tuned and evaluated. Such
competitive situations are argued to constitute convenient problem domains in
which to study issues related with agent architectures in general and auction
strategies in particular.

To the best of our knowledge, AuctionBot and FM are the only test-beds for
trading agents in auction-based tournaments. Apart from the originality of the
test-bed domain, there are several features that differentiate it from the rest of
test-beds. Firstly, FM is open, likewise the marketplace itself and unlike most
test-beds which are closed systems, and so agents owned by different parties
can take part in a same experiment. Secondly, FM allows to handle eventual
scalability problems by allowing experimenters to distribute their agents across a
network, and allowing remote agents to participate in a tournament by employing
a minimum runtime environment. Lastly, FM96.5 is wrapped into FM being in
fact one of its tournament modes.

We have observed that in the last few years there has not been much activ-
ity regarding the development of DAT test-beds. This fact is mainly motivated
by the evidence that the development of DAI experimental platforms manifests
as a long, tedious process characterised by the need of an enormous develop-
ment effort. Although there is an increasing number of agent development en-
vironments, they are fundamentally conceived to support the construction of
agent-based applications.



Chapter 3

A Formal Specification of
Electronic Institutions

In this chapter we argue that open multi-agent systems can be effectively de-
signed and implemented as institutionalised electronic organisations (electronic
institutions) composed of a vast amount of heterogeneous (human and software)
agents playing different roles and interacting by means of illocutions. We take the
view that the design and development of electronic institutions must be guided
by a principled methodology. Along this direction, we advocate for the presence
of an underlying formal method that underpins the use of structured design tech-
niques and formal analysis, facilitating development, composition and reuse. For
this purpose we propose a specification formalism for electronic institutions that
founds their design, analysis and development.

3.1 Organisations, Institutions and Electronic In
stitutions

In Chapter 1 we identified as our main goal the design and implementation of
multi-agent systems. We also argued in favour of borrowing and incorporating
social concepts and structures that have proven valuable to articulate human
societies in order to reduce our endeavour. In what follows, the reasons why we
resort to social notions are discussed.

Firstly, we start out considering organisations and institutions in the context
of human societies.

Following the rational view of organisations provided by [Etzioni, 1964] ”or-
ganisations are social units (or human groupings) deliberately constructed and
reconstructed to seek specific goals”. Organisations include political, economic,
social and educational bodies (f.i. political parties, trade unions, clubs, univer-
sities). In [Scott, 1992] goal specifity and formalisation are identified as the two
main characteristics of organisations, meaning by formalisation the attempt to

35
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standardise and regulate the behaviour of the roles interacting within an or-
ganisation. Meaning by roles standardised patterns of behaviour required of
all agents playing a part in a given functional relationship in the context of an
organisation.

Organisations must conform to the rules of institutions (such as the Con-
stitution, the common law, etc.) in order to receive legitimacy and support.
Institutions [North, 1990] represent the rules of the game in a society, including
any (formal or informal) form of constraint that human beings devise to shape
human interaction. They are the framework within which human interaction
takes place, defining what individuals are forbidden and permitted and under
what conditions. Furthermore, institutions are responsible for ascertaining vio-
lations and the severity of the punishment to be enacted. They are created and
altered by human beings.

While organisations are concerned with achieving efficient functional struc-
tures, institutions are concerned with realising normative environments. From
this follows that institutionalised organisations are organisations whose activities
are regulated by means of some normative environment.

When considering open multi-agent systems, adopting an organisation-centered
perspective may eventually lead us to functionally structure the system in the
most effective way. And yet this is not enough. External agents are assumed
to be neither benevolent nor cooperative. Their eventual faulty, deviating or
malicious behaviour may jeopardise the system. Thus there is also the need for
deploying a normative environment similar to those provided by human insti-
tutions. Therefore, we uphold that open multi-agent systems can be effectively
designed and implemented as institutionalised agent organizations —henceforth
referred to as electronic institutions or e-institutions for shorter.

Since a distinguishing feature of institutions is the clear distinction drawn
between the rules and the players, in this chapter we focus on the macro-level
(societal) aspects referring to the rules and structure of electronic institutions,
instead of the micro-level (internal) aspects of agents. Due to the high complexity
of this task and to the critical nature of open multi-agent systems applications,
we advocate for adopting a principled, engineering approach founded on a formal
specification of electronic institutions, as a follow-up of [Rodriguez-Aguilar et al.,
2000, Sierra and Noriega, 1998], that founds their design, analysis and subsequent
development. As a result, we obtain a formal, graphical specification language
for electronic institutions.

Notice that the kind of electronic institutions that we will be considering
are populated by a vast amount of heterogeneous (human and software) agents
playing different roles and interacting by means of illocutions [Searle, 1969]. In
other words, we make the assumption that any interacting activity taking place
within our electronic institutions is purely dialogical.

The rest of the chapter is organised as follows. In Section 3.2 we argue on the
need for a formal method that underpins the specification, analysis and develop-
ment of electronic institutions. Next, in Section 3.3 we provide a mathematically
sound, unambiguous, abstract definition of electronic institutions. Section 3.4



3.2. A Formal Specification Approach 57

analyses how the rules contained in the structural specification affect the dy-
namics of electronic institutions once populated by agents. In order to illustrate
how to specify in practice electronic institutions, we offer in Section 3.5 two ex-
amples corresponding to the institutions introduced in Chapter 1. In Section 3.6
we summarise and highlight the major benefits arising from our contribution,
and discuss the open issues that can be faced taking our proposal as the starting
point.

3.2 A Formal Specification Approach

Formal methods in software building comprise two main activities, namely for-
mal specification and wverified design, that is the precise specification of the
behaviour of a piece of software, so that such software can be subsequently
produced, and the proof of whether the implementation complies with the spec-
ification. Thus, the role of any formal method is to provide a clear and precise
description of what a system is supposed to do, rather than a formulation of
how it operates [Diller, 1990]. The presence of an underlying formal model will
support the use of structured design techniques and formal analysis, facilitating
development, composition and reuse.

In this section we take such formal approach with the purpose of specifying
electronic institutions. Nonetheless, instead of using other formal techniques
such a Z, CSP, Petri Nets or others, our formal specification will be based on
a purposely devised specification language enabled to produce both visual and
textual specifications of electronic institutions. In other words, such specification
language shall serve to produce sound an unambiguous specifications of the rules
of the game of an electronic institution. It is apparent that at a further stage the
specification language can be extended in order to allow for the specification of
the players of the game. Such extension is expected to support the specification
of micro (internal) aspects of agents, i.e. their architectures and logics. As a
result, it would be possible the complete specification (infrastructure and agents)
of an electronic institution.

Why a new language? Let us refer back to our discussion about the subject in
Chapter 1. There we argued that although using a general purpose-specification
languages such as Z, m-calculus, or CSP represents a straightforward solution,
these are limited by their lack of expressiveness to cover all agent issues. For
instance, Z has been reported to be inappropriate for modelling interactions,
being CSP or Petri Nets more appropriate for this purpose. And yet Petri
Nets have been recently criticized for the combinatorial size for actual protocols
and the ultra-powerful simulation tools needed. Therefore, we have opted for
inferring the features of the language required from the requirements obtained
when analysing electronic institutions. As a future step, we might consider
whether there exists a natural mapping to a well-know formalism that helps us
to carry out formal reasoning.

For the moment, in this work we solely focus on the specification of the
rules of electronic institutions. As a first step, we identify the core notions on
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which our current conception of electronic institution, and so our specification
language, is to be founded:

e Agents and Roles. Agents are the players in an electronic institution,
interacting by the exchange of illocutions, whereas roles are defined as
standardised patterns of behaviour. The identification and regulation of
roles is considered as part of the formalisation process of any organisa-
tion [Scott, 1992]. Any agent within an electronic institution is required
to adopt some role(s). A major advantage of using roles is that they can
be updated without having to update the actions for every agent on an
individual basis. Recently, the concept of role is becoming increasingly
studied by software engineering researchers [Riehle and Gross, 1998, Ja-
cobson et al., 1996], and even more recently by researchers in the agents’
community [Odell et al., 2000, Becht et al., 1999, Kendall, 1998, Wooldridge
et al., 1999,Buhr et al., 1997, Belakhdar and Ayel, 1996]. Hereafter we will
differentiate between institutional and non-institutional (external) roles as
well as institutional and non-institutional (external) agents. Whereas in-
stitutional roles are those enacted to achieve and guarantee institutional
rules, non-institutional roles are those requested to conform to institu-
tional rules. From this follows that institutional agents are those that
adopt institutional roles, while non-institutional agents are those playing
non-institutional roles.

e Dialogical framework. Some aspects of an institution such as the objects
of the world and the language employed for communicating are fixed, con-
stituting the context or framework of interaction amongst agents. In a
dialogical institution, agents interact trough speech acts (illocutions). In-
stitutions establish the acceptable speech acts by defining the ontology!
and the common language for communication and knowledge representa-
tion which are bundled in what we call dialogical framework. By sharing a
dialogical framework, we enable heterogeneous agents to exchange knowl-
edge with other agents.

e Scene. Interactions between agents are articulated through agent group
meetings, which we call scenes, with a well-defined communication pro-
tocol. We consider the protocol of a scene to be the specification of the
possible dialogues agents may have. Notice however that the communica-
tion protocol defining the possible interactions within a scene is role-based
instead of agent-based. In other words, a scene defines a role-based frame-
work of interaction for agents.

e Performative structure. Scenes can be connected, composing a network of
scenes, the so-called performative structure, which captures the existing
relationships among scenes. The specification of a peformative structure

!Here we adhere to the definition of Alberts in [Alberts, 1993]: An ontology for a body of
knowledge concerning a particular task or domain describes a tazonomy of concepts for that
task or domain that define the semantic interpretation of the knowledge.
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contains a description of how agents can legally move from scene to scene
by defining both the pre-conditions to join in and leave scenes. Satisfying
such conditions will fundamentally depend on the roles allowed to be played
by each agent and his acquired commitments through former utterances.
The execution of a performative structure is to contain the multiple, simul-
taneous, ongoing activities, represented by scenes, along with the agents
participating in each activity. Agents within a performative structure may
be possibly participating in different scenes, with different roles, and at
the same time.

o Normative Rules. Agent actions in the context of an institution have con-
sequences, usually in the shape of compromises which impose obligations
or restrictions on dialogic actions of agents in the scenes wherein they are
acting or will be acting in the future. The purpose of normative rules is
to affect the behaviour of agents by imposing obligations or prohibitions.
Notice that institutinal agents are committed to undertake the required ac-
tions so that to ensure that non-insitutional agents abide by institutional
rules.

Next, in the rest of the section, we offer a detailed analysis of the notions
introduced above that helps us gradually construct a formal specification of an
electronic institution. Firstly, in Section 3.3 we concentrate on specifying an
electronic institution at the structural level. Our approach is analogous to the
definition of directed graphs, non-deterministic finite automata or Petri nets.
Formally, they are defined as many-tuples, but usually they are graphically rep-
resented by drawings. Once specified an electronic institution, in Section 3.4
we propose an execution model that explains the dynamics of agents within an
institution.

3.3 Specifying Electronic Institutions

First of all, and for notational purposes, we introduce some definitions that will
apply henceforth. Let Agents = {a1,... ,a,} be a finite set of agent identifiers,
and Roles = {ry,...,rn} a finite set of role identifiers respectively. At the
specification level we regard agents and roles simply as symbols and type names.
Then by a; : r; we mean that agent a; is of type r;. Moreover, we define the
sets Va = {z1,...,2,} and Vg = {p1,... ,py} as a finite set of agent variables
and a finite set of role variables respectively.

3.3.1 Roles

We have already identified the notion of role as central in the specification of
electronic institutions. Roles allow us to abstract from the individuals, the
agents, that get involved in an institution’s activities. In order to take part in
an electronic institution, an agent is obliged to adopt some role(s). Thereafter
an agent playing a given role must, conform to the pattern of behaviour attached
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to that particular role. Therefore, all agents adopting a very same role are
guaranteed to have the same rights, duties and opportunities. Notice that we
can think of roles as agent types. An agent thus have associated a finite set of
dialogic actions. Such actions are intended to represent the capabilities of the
role. For instance, an agent playing the buyer role is capable of submitting bids,
another agent playing the auctioneer role can offer goods at auction, and the
agent acting as the boss of the market is authorised to declare the closing of the
market at any time.

There are several issues concerning the agent/role and role/role relationships.
First, we must establish how agents are authorised to perform roles. As an
agent may possibly play several roles at the same time, role/role associations
standing for conflict of interests must be defined with the purpose of protecting
the institution against an agent’s malicious behaviour. For instance, though an
agent might act as a bank teller and as a costumer, we should not allow it to
play both roles at the same time.

Thus, in general, the management of agent/role and role/role relationships
becomes a fundamental issue for electronic institutions. Role-based Access Con-
trol Models (RBAC Models) [Sandhu et al., 1996] developed in the computer
security arena offer well-founded mechanisms for handling both types of rela-
tionships. Fundamentally, RBAC has been successfully employed for managing
the security administration of organisations [Barkley et al., 1997, Barkley, 1997].
But more interestingly, RBAC has been accurately formalised [Ferraiolo et al.,
1999, Gavrila and Barkley, 1998, Ferraiolo et al., 1995]. In order to solve the
agent/role and role/role relationships, we borrow and adapt the formalisation
of the rules for RBAC offered by the NIST RBAC model [Gavrila and Barkley,
1998, Ferraiolo et al., 1995, Ferraiolo et al., 1999], which extends the basic RBAC
model by adding role hierarchies, cardinality, and conflict of interests relation-
ships.

Building upon RBAC, in what follows we develop our own model based
on role hierarchies, cardinality and conflict of interests relationships. We will
employ our model for two basic purposes:

e to grant role permissions to agents when joining an institution; and

e to regulate agents’ role changes through the several activities taking place
within an institution.

Although RBAC manages three types of associations, namely associations
between users (agents) and roles, associations between roles, and associations
between roles and permissions [Ferraiolo et al., 1999], in this section we solely
concentrate on the role/role associations and complementarily, further on in Sec-
tion 3.4.1, we deal with agent/role associations when considering the dynamics
of electronic institutions.

When analysing human institutions we observe that the roles played by hu-
mans are hierarchically organised. Consider for instance the roles played by the
medical staff in a hospital. The head of any department must be also a doctor.
Thus, for instance the head of orthopaedics is capable of diagnosing any patient
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likewise his subordinates. However, only the head is entitled to either approve or
disapprove some tests and surgeries, while his subordinates are only allowed to
perform them. Analogously, any doctor, no matter which speciality, is capable
of testing a patient’s blood pressure likewise any nurse. However, a doctor is
capable of diagnosing a patient. In general, roles further up in any given hi-
erarchy subsume the capabilities of related roles further down in the hierarchy.
Figure 3.12 depicts an example of a hierarchy involving medical staff roles.

There are many ways of constructing a role hierarchy to express different
types of relationships among roles. Here we consider that roles are organised as
a partially ordered set (poset), represented as a pair R = (Roles, »), reflecting
a role hierarchy. The relation »C Roles x Roles is reflexive, antisymmetric,
and transitive. Then if r > r’ holds we say that r subsumes r', or alternatively,
that r is a super-type of r'. We interpret this relationship as follows: an agent
playing role r is also enabled to play role 7.

We also realise that there are conflicting roles within an institution. For
instance, in the fish market the boss and buyer roles are mutually exclusive in
the sense that no one can ever act as the boss of the market and as a buyer. In a
bank, the teller and auditor roles are also considered as mutually exclusive. We
define a policy of static separation of duty (SSD) to mean that roles specified as
mutually exclusive cannot be both authorised to an agent.

We represent the static separation of duties as the relation ssd C Roles x
Roles. A pair (r,7') € ssd denotes that r,r’ cannot be authorised to the very
same agent. Observe that the static separation of duties will be verified when
assigning roles to an agent entering the institution. An agent can apply for
several roles when entering an insitution, though only the non-conflicting roles
can be assigned.

Summarising, the adoption of a policy of separation of duties will allow us to
express constraints on the role/role associations indicating conflicts of interests.

Finally, we explicitly state the requirements identified so far as necessary for
managing the role/role relationships:

(i) The static separation of duties relation is symmetric. Formally, for all
ri,7; € Roles (r;,r;) € ssd = (rj,r;) € ssd.

(ii) If a role subsumes another role, and that role is in static separation of
duties with a third role, then the first role is in static separation of duties
with the third one. Formally, for all r,r;,r; € Roles,r > r;, (ri,rj) €
ssd = (r,rj) € ssd.

(iii) If a role subsumes another role, then the two roles cannot be in static
separation of duties. Formally, r; = r; = (r;,r;) € ssd.

Observe that from the last requirements the following properties can be in-
ferred:

(i) For all r € Roles = (r,r) ¢ ssd since the = relation is reflexive.

2The example has been borrowed from [Ferraiolo et al., 1995].
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Figure 3.1: Example of Role Hierarchy.
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(ii) If (r4,7;) € ssd then for all r = r; and for all s = r; = (r,s) € ssd.

(iii) If exists r such that r > r; and r > r; = (r;,7;) € ssd.

3.3.2 Dialogical Framework

In the most general case, each agent immersed in a multi-agent environment is
endowed with its own inner language and ontology.

In order to allow agents to successfully interact with other agents we must
address the fundamental issue of putting their languages and ontologies in re-
lation. For this purpose, we propose that agents share when communicating
the so-called dialogical framework [Noriega and Sierra, 1996], composed of a
communication language, a representation language for domain content and an
ontology [Gruber, 1993a]. By sharing a dialogical framework, we enable hetero-
geneous agents to exchange knowledge with other agents.

Definition 3.3.1. We define a dialogical framework as a tuple DF = (O, L, 1,
CL,Time) where

e O stands for an ontology;
e [ stands for a representation language for domain content;

e [ is the set of illocutionary particles;

CL is the (agent) communication language;
e Time is a discrete and totally ordered set of instants.

Within a dialogical framework the representation language (KIF [Genesereth
and Fikes, 1992], first-order logic, etc.) allows for the encoding of the knowledge
to be exchanged among agents using the vocabulary offered by the O ontology.
The propositions built with the aid of L, the “inner” language, are embedded
into an “outer language”, C'L, which expresses the intentions of the utterance
by means of the illocutionary particles in I. We take this approach in accord to
speech act theory [Searle, 1969], which postulates that utterances are not simply
propositions that are true or false, but attempts on the part of the speaker that
succeed or fail.

We consider that CL expressions are constructed as formula of the type
vag : piyaj : pj,p,7) where ¢ € I,a; and «; are terms which can be either
agent variables or agent identifiers®, p; and p; are terms which can be either
role variables or role identifiers, ¢ € L and 7 is a term which can be either a
time variable or a value in Time. We say that a C'L expression is an illocution
when «;, a; are agent identifiers, p; and p; are role identifiers and 7 is a value in
Time time-stamping the illocution. We say that a C'L expression is an illocution
scheme when some of the terms corresponds to a variable. This distinction will
be valuable when specifying scenes in the following section.

3We shall also employ the particle all as a value of o to specify a broadcast of an illocution
to all agents participating in a scene playing a particular role.
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We shall employ question marks to differentiate variables in C'L expressions,
including the expression corresponding to the contents, from other terms. During
the execution of a scene, variables in C'L expressions will be bound to concrete
values. Thus we need to differentiate free variables from bound variables. Hence-
forth by 7t we shall denote a free variable ¢t whereas by !t we denote the value
bound to the t variable.

Considering the examples introduced in Chapter 1 (for both cases, we take
first-order logic as the representation language for domain content, as well as the
conferences ontology for the conference centre environment, and the e-auctions
vocabulary for the fish market). We have the following examples corresponding
to C'L expressions:

o request(?x; : pra,?z; : pra,appointment(?t), 7t') is an illocution scheme.

e request(KQLAT : pra,marc : pra, appointment(tomorrow), 5) is an illo-
cution that instantiates the schema above. We interpret this C'L expression
as a request sent by agent KQLAT playing the pra (personal representa-
tive assistant) role to agent marc playing the same pra role for arranging
an appointment to meet tomorrow. Furthermore, the time value indicates
that the request was uttered by agent KQLAT at time 5.

o request(auct#01 : auctioneer, KQLAT : buyer, bid(1$),6) is an illocution
uttered by the auctioneer agent auct#01 to ask buyer KQLAT whether
it wants to submit a bid at 18.

o refuse(KQLAT : buyer, auct#01 : auctioneer, bid(1$), 7) is another illocu-
tion, now sent by buyer KQLAT to the auctioneer agent auct#01 refusing
the proposal to bid at 1$.

Finally, we would like to stress the importance of the dialogical framework as
the component containing the ontologic elements on the basis of which any agent
interaction can be specified as illustrated next when introducing the notion of
scene. Thus, a dialogical framework must be regarded as a necessary ingredient
to specify scenes.

3.3.3 Scene

Before formally defining a scene, we must precisely understand what a scene
is. Recall that the whole activity within an electronic institution was described
above as a composition of multiple, well-separated, and possibly concurrent, di-
alogic activities, each one involving different groups of agents playing different
roles. For each activity, interactions between agents are articulated through
agent group meetings, which we call scenes, that follow well-defined protocols.
We consider the protocol of each scene to model the possible dialogical inter-
actions between roles instead of agents. In other words, scene protocols are
patterns of multi-role conversation. Scene protocols are state-based specifica-
tions characterising scenes as sequences of states.
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A distinguishing feature of scenes is that they allow that agents (possibly)
either join in or leave at some particular moments of an ongoing conversation.

The formal definition that follows is intended to contain all the elements that
we will subsequently need to specify the dynamics, the execution of a scene.

Definition 3.3.2. Formally, a scene is a tuple:

S =(R,DF,W,wo, Wy, WA)rer, WE;),er, ©, A, min, Maz)

where

R is the set of roles of the scene;

DF is a dialogical framework;

W is a finite, non-empty set of scene states;
wo € W is the initial state;

Wy C W is the non-empty set of final states;

(WA,)rer €W is a family of non-empty sets such that W A, stands for
the set of access states for the role r € R;

(WE,)rer C W is a family of non-empty sets such that W E, stands for
the set of exit states for the role r € R;

O CW x W is a set of directed edges;
A: 0O — CL is alabelling function;

min, Maz : R — IN, min(r) and Maz(r) are respectively the minimum
and maximum number of agents that must and can play the role r € R;

satisfying the requirements below:

(i)

(W, O) is a connected graph.

Every non-final state w ¢ Wy is reachable from the initial state and con-
nected to some final state w’ € Wy. More formally Vw € Wy 3w, ... ,wn,
W | (ws,wit1) € © (i =0,... ,m—1) such that w,, € Wy and Ji w = w;.

Wf - (WET‘)T‘ER
VO € ©,A(0) is a C'L expression representing an illocution scheme.
Vre R min(r) >0=w, € WA".

Mazx(r) > min(r) >0 Vr € R.
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These variables will be bound to concrete values during the execution of
the scene. For example, agent variables in an illocution scheme will be bound
respectively to the identifier of the agent that has uttered the illocution and to
the identifier of the agent who has received the illocution. Then at each moment
the bindings of the variables will be the context of the scene execution. Notice
that there is a major constraint applying to agent variables within a scene: there
cannot be two different agent variables taking on the same value. This is to say
that we will restrict agents to play a single role within each scene.

Next, we describe two examples of scenes extracted from the case studies
presented in Chapter 1, that we subsequently employ to illustrate how designers
can construct graphical specifications of scenes, and how such specifications, in
turn, can be naturally translated into a textual, machine-readable format.

Case Studies

First, concerning the fish market, we have selected the scene representing the
main activity within the marketplace: the auctioning of goods in the auction
room. This scene is governed by the auctioneer making use of the downward
bidding protocol (DBP) that next we state explicitly:

[Step 1 | The auctioneer chooses a good out of a lot of goods that is sorted
according to the order in which sellers deliver their goods to the sellers’
admitter.

[Step 2 ] With a chosen good, the auctioneer opens a bidding round by quoting
offers downward from the good’s starting price, previously fixed by the
sellers’ admitter, as long as these price quotations are above a reserve
price set by the seller.

[Step 3 | For each price called by the auctioneer, several situations might arise
during the open round:

Multiple bids. Several buyers submit their bids at the current price. In
this case, a collision comes about, the good is not sold to any buyer,
and the auctioneer restarts the round at a higher price. Nevertheless,
the auctioneer tracks whether a given number of successive collisions
is reached, in order to avoid an infinite collision loop. This loop is
broken by randomly selecting one buyer out of the set of colliding
bidders.

One bid. Only one buyer submits a bid at the current price. The good
is sold to this buyer if his credit can support his bid. Whenever there
is an unsupported bid the round is restarted by the auctioneer at a
higher price, the unsuccessful bidder is punished with a fine, and he
is expelled out from the auction room unless such fine is paid off.

No bids. No buyer submits a bid at the current price. If the reserve
price has not been reached yet, the auctioneer quotes a new price
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which is obtained by decreasing the current price according to a price
step. If the reserve price is reached, the auctioneer declares the good
withdrawn and closes the round.

[Step 4 | The first three steps repeat until there are no more goods left.

Secondly, concerning the conference centre environment we have selected the
activity in which two attenders engage to negotiate upon a set of topics for
discussing in a future, eventual appointment, the so-called appointment proposal
scene [Plaza et al., 1999]. In fact, the responsibility of participating in the
activity is delegated to the attenders’ personal representative agents(PRA). The
scene occurs as follows:

[Step 1 ] One PRA, the proposer, initiates the exchange by sending an appoint-
ment proposal to another PRA with a set of initial interest topics. This set
is intended to be a subset of its owner’s (the attender’s) profile of interests.

[Step 2 | The recipient evaluates the proposal to decide whether to accept it,
refuse it, or responding with a counter-proposal containing a different set
of topics.

[Step 3 | When the proposer receives a counter-proposal, it evaluates it to de-
cide whether accept it, refuse it, or responding back with another counter-
proposal.

The negotiation process above loops until an agreement is reached or one of
the PRAs decides to withdraw.

According to the definition of scene provided above, in Table 3.1, Table 3.2
and Table 3.3 we present the definition of the appointment proposal and auction
scenes. In both cases we leave out the time value contained in any CL expression.
The example demonstrates that, in practice, it is cumbersome to specify scenes
in this manner. It would be more intuitive to construct graphical specifications
of scenes.

Graphical Representation

The purpose of the formal definition above is to give a a sound definition of
scene. However in practice scenes will be graphically specified. For instance,
Figures 3.3 and 3.2 depict the graphical specifications of the scenes presented
above. Here we adopt an analogous approach to the definition of directed graphs,
non-deterministic finite automata, or Petri nets, which are all formally defined,
but usually represented by drawings containing the elements identified by their
respective formal definitions.

As to the auction scene (see Figure 3.3), we observe that the specification of
the role set requires the participation of exactly one auctioneer(a) and, at least,
two buyers(min(b) = 2), although up to ten buyers might be allowed to partic-
ipate(Max(b) = 10). The graph depicts the states of the scene, along with the
edges representing the legal transitions between scene states, and labelled with
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R = (pra)

DF = (conferences, fol, {commit, request,refuse}, ACL, IN)
W = {wo, w1, ws,wsi,wes}

Wi = {wsr, w2}

WApre = {wo}

WEpra = {ws1,wpa}

0 = {(wo,w1), (w1, w2), (wa,w1), (w1, wy2), (W2, wy2), (wa, ws1), (wi,ws1)}
AM(wo,wr)) = request(?z : pra,?y : pra,app(?t))

A(wy,ws)) = request(?y : pra,?z : pra,app(?t'))

AM(w2,wy)) = request(?z : pra,?y : pra,app(?t))

A(wr,wy2)) = commit(?y : pra, ?z : pra,app('t))

A((we,wy2)) = commit(?z : pra,?y : pra,app('t’))

A(w2,wp1)) = refuse(?z : pra,?y : pra, app('t’), reason(?r))
A(wi,wypr)) = refuse(?y : pra,?z : pra, app('t), reason(?r))
min(pra) = 2

Mazx(pra) =2

Table 3.1: Appointment Proposal Scene Specification
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Figure 3.2: Graphical Specification of the Appointment Proposal Scene
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R = (a(auctioneer), b(buyer))
DF = (e — auctions, fol, {in form, commit, request, question,refuse}, ACL, IN)

W = {w();wl;w2aw37w4)w5>w67w7aw8a >w97w10>w11)wf1}

Wi ={wp}
WA, ={wo}
WAy = {wo,w}
WE, ={ws}

WEy ={w,wp}

© = {(wo, w1), (w1, w2), (w1, ws1), (w2, w3), (W3, wa), (Wa,ws), (ws,ws), (w5, ws),
(ws, wr), (wr,wr), (we, w1), (wr, ws), (ws, wr), (wr,ws), (W, ws), (wr, wio),

(w10, ws), (w7, w11), (W11, ws), (w1, ws1)}

min(a) =1

Maz(a) =1
min(b) = 2
Mazx(b) = 10

Table 3.2: Auction Scene Specification (i)
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Al(wo,w1)) = inform(?x : a,all : b, open_auction(?n))
A((wi,wgr)) = request(lz : a,all : b, end_auction(In, 7reason))
A(wr,w2)) = inform(lz : a,all : b, open_round(?r))

A(we,w3)) = inform(lz : a,all : b, to_sell(?good_id))
AM(ws,wq)) = inform(lz : a,all : b, buyers(?bl,...,7bn))
A(wa,ws)) =inform(lz : a,all : b, offer(good_id, ?price))
AM(ws,ws)) = inform(lz : a,all : b, offer(1good_id, Tprice))
A(ws,we)) = inform(lz @ a,all : b, withdrawn(good_id, price))
A((ws, wr)) = commit(?y : b,z : a,bid(lgood-id, price))
A(wr7,wr)) = commit(?y : b,z : a,bid(!good_id, ?price))
A(wg,w1)) =inform(lz : a,all : b, end_round(!r))

A(wr,ws)) = inform(lz : a,all : b, sold(!good_id, 'price, ?buyer_id)
AM(ws,w)) = inform(!z : a,all : b, end_round(!r))

A(wr,wg)) = inform(lx : a,all : b, collision(Iprice))
A(wg,ws)) = inform(lz : a,all : b, offer(1good_id, Tprice))
A(w7,w10)) = inform(lz : a,all : b, sanction(Tbuyer_id))
A(wig,ws)) = inform(lx : a,all : b, offer(good_id, ?price))
AM(w7,w11)) = inform(lz : a,all : b, expulsion(?buyer_id))
A(wi1,ws)) = inform(lx : a,all : b, offer(good_id, ?price))

A(wi1,wyp1)) = inform(?z : a,all : b, end_auction(In, ?reason))

Table 3.3: Auction Scene Specification (ii)
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Figure 3.3: Graphical Specification of an Auction Scene
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illocution schemes of the communication language of the dialogical framework.
The information contents of such schemes is expressed in first-order logic (FOL)
making use of the concepts in the e-auctions ontology. The type of performative
is specified in the set I —which contains the types of performatives identified
in [Cohen and Levesque, 1995]— listed in the Particles area.

Notice that some states are identified as access and exit states. Apart from
the initial and final states, the w; state is labelled as an access and exit state for
buyers —meaning that after either a collision, sanction or expulsion, new buyers
might be admitted into the scene— while w3 is uniquely an access state.

Figure 3.2 shows the specification of the appointment proposal scene in the
conference centre environment. This scene is restricted to a couple of PRA roles,
but each PRA must be played by a different agent. Observe that the dialogical
framework of the scene only differs in the use of a different ontology (conferences)
with respect to the auction scene.

Graphical specifications are expected to be constructed by a scene designer.
However, such specifications are deemed to contain multiple errors. A straight-
forward procedure for checking whether a graphical specification is well-formed
can be readily obtained by conveniently adapting a basic breadth—first search
algorithm to run over the graph (W, ©) resulting from the specification.

Textual Representation

At this point there is the matter of generating a textual, machine-readable,
representation of scenes. Such a textual representation is to be conveyed to
agents intending to participate in a scene, so that they can interpret the rules
of the game. Thus, once specified, and subsequently validated a scene, a tex-
tual representation in the chosen language can be constructed. Here we choose
XML(eXtensible Markup Language) [Connolly, 1997] because it offers a unique
combination of flexibility, simplicity, and readability by both humans and ma-
chines, and because we regard it as an excellent format for interchanging data.

Below we provide the XML-based specification of the appointment proposal
scene depicted in Fig. 3.2, identified as aps, based on the document type defini-
tion enclosed in Appendix A.

<?xml version ="1.0" standalone = ’no’7?>
<!DOCTYPE SCENE SYSTEM "http://www.iiia.csic.es/\”jar/AMEI/dtd/scene.dtd">
<SCENE ID="aps">
<DESCRIPTION> Appointment Proposal Scene </DESCRIPTION>
<DF>
<ONTOLOGY> conferences </ONTOLOGY>
<LANGUAGE> fol </LANGUAGE>
<CL> acl </CL>
<PERFORMATIVES>
<PNAME> request </PNAME>
<PNAME> commit  </PNAME>
<PNAME> refuse  </PNAME>
</PERFORMATIVES>
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</DF>
<ROLES>
<ROLE>
<ROLEID> PRA </ROLEID>
<MIN> 2 </MIN>
<MAX> 2 </MAX>
</ROLE>
</ROLES>
<STATE ID= "wO" TYPE="initial">
<ACCESS>
<ROLEID> PRA </ROLEID>
</ACCESS>
<EDGELIST>
<EDGE ID="t1" HREF="#w1">
<ILLOCUTION>
request (?x:pra,?y:pra,app(?t))
</ILLOCUTION>
</EDGE>
</EDGELIST>
</STATE>
<STATE ID= "wl1" TYPE="intermediate'">
<EDGELIST>
<EDGE ID="t3" HREF="#w2">
<ILLOCUTION>
request(!y:pra, !x:pra,app(?t’))
</ILLOCUTION>
</EDGE>
<EDGE ID="t2" HREF="#wf1l">
<ILLOCUTION>
refuse(!y:pra, !x:pra,reason(?r))
</ILLOCUTION>
</EDGE>
<EDGE ID="t6" HREF="#wf2">
<ILLOCUTION>
commit (!y:pra,!x:pra,app(!t))
</ILLOCUTION>
</EDGE>
</EDGELIST>
</STATE>
<STATE ID= "w2" TYPE="intermediate'">
<EDGELIST>
<EDGE ID= "t4" HREF="#wl">
<ILLOCUTION>
request(!x:pra,!y:pra,app(?t))
</ILLOCUTION>
</EDGE>
<EDGE ID= "tb5" HREF="#wfl">
<ILLOCUTION>
refuse(!x:pra, !y:pra,reason(?r))
</ILLOCUTION>
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</EDGE>
<EDGE ID= "t7" HREF="#wf2">
<ILLOCUTION>
commit(!x:pra,!y:pra,app(!t’))
</ILLOCUTION>
</EDGE>
</EDGELIST>
</STATE>
<STATE ID= "wfl" TYPE="final">
<EXIT>
<ROLEID> PRA </ROLEID>
</EXIT>
</STATE>
<STATE ID= "wf2" TYPE="final">
<EXIT>
<ROLEID> PRA </ROLEID>
</EXIT>
</STATE>

</SCENE>

3.3.4 Performative Structure

In the context of an institution, certain relationships among scenes, activities,
hold, and therefore they must be effectively captured. The notion of performative
structure is the most complex and interesting of this formalism, since it models
the relationships among scenes. Notice that although conversations (scenes) are
currently admitted as the unit of communication between agents, limited work
has been done concerning the modelling of the relationships among different
scenes. This issue arises when these conversations are embedded in a broader
context, such as, for instance, organisations and institutions. If this is the case, it
does make sense to capture the relationships among scenes. Thus, while a scene
models a particular multi-agent (dialogic) activity, more complex activities can
be specified by establishing relationships among scenes that allow:

e to capture causal dependencies among scenes (f.i. a patient cannot undergo
an operation without being previously diagnosed by a doctor);

e to define synchronisation mechanisms involving scenes (f.i. within an ex-
change house, we might require the presence of a certain number of traders
when leaving the registration scene before allowing them to start off a ne-
gotiation scene);

e to establish parallelism mechanisms involving scenes (f.i. in an auction
house, several auctions —possibly devoted to the auctioning of heteroge-
neous types of goods under the rules of various, different auction protocols—
might be run at the same time);

e to define choice points that allow roles leaving a scene to choose their
destination (f.i. an agent attending a conference is expected to opt for one
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of various, simultaneous talks);

e to establish the role flow policy among scenes, i.e. which paths can be
followed by the roles leaving a scene and which target scenes they can
reach. In a conference centre, a speaker, after finishing off his talk, is
permitted to leave the conference room and make it for another conference
room to attend an ongoing talk. Notice that, for this particular case, the
migration of this speaker also involves the adoption of another role.

In general, the activity represented by a performative structure can be de-
picted as a collection of multiple, concurrent scenes. Agents navigate from scene
to scene constrained by the rules defining the relationships among scenes. More-
over, the very same agent can be possibly participating in multiple scenes at
the same time. Hence, it is our purpose to propose a formal specification of
performative structures expressive enough to facilitate the specification of such
rules.

Structure

From a structural point of view, performative structures’ specifications must be
regarded as networks of scenes. How does this network affect agents’ behaviour?
At execution time, a performative structure becomes populated by agents that
make it evolve whenever these comply with the rules encoded by the specifica-
tion. Thus, groups of agents may jointly start new scene executions, activities,
that we refer to as active scenes. Starting a scene execution must be regarded
as the instantiation of a particular scene node in the performative structure.
Thereafter such active scenes may possibly become available to other agents
(depending on whether they offer access states), which may apply for entering.
But also some agents participating in active scenes may leave them either to
start other scene executions or join in other active scenes. At the same time,
some active scenes may finish and therefore the activity that they represent.
Summarising, an agent participating in the execution of a performative struc-
ture devotes his time to jointly start new scene executions, to enter active scenes
where the agent interacts with other agents, to leave active scenes to possibly
enter other scenes, and finally to abandon the performative structure.

At this point we must notice that the way agents move from scene to scene
depends on the type of relationship holding among the source and target scenes.
As mentioned above, sometimes we might be interested in forcing agents to
synchronise before jumping into either new or existing scene executions, or offer
choice points so that an agent can decide which target scene to incorporate
into, and so on. Summarising, in order to capture the type of relationships
listed above we consider that any performative structure contains a special type
of scene, the so-called transition scenes*, devoted to mediate different types of

4Henceforth transitions for shorter. Although transitions are a particular class of scenes,
hereafter we will be using the terms separately to distinguish non-transition scenes from tran-
sition scenes.



3.3. Specifying Electronic Institutions 7

connections among scenes. Scenes and transitions are connected by means of
arcs. Each scene may be connected to multiple transitions, and in turn each
transition may be connected to multiple scenes. In both cases, the connection
between a scene and a transition is made by means of a directed arc. Then we
can refer to the source and target of each arc. And given either a scene or a
transition, we shall distinguish between its incoming and outgoing arcs. Notice
that there is no direct connection between two scenes, or, in other words, all
connections between scenes are mediated by transitions.

Figure 3.4 depicts the graphical elements that we will employ to represent
the components of a performative structure introduced so far. From the point
of view of the modeller, such graphical components are the pieces that serve to
construct graphical specifications of performative structures.

Agents will be moving from a scene instance (execution) to another by
traversing the transition connecting the scenes and following the arcs that con-
nect transitions and scenes.

In order to traverse a given transition towards new or existing scene exe-
cutions, an agent must first leave the scene instance in which it’s taking part
following some arc(s) which connects the scene with the transition when arriving
at an exit state. While sometimes the agent should be given the possibility of
choosing which path to follow, eventually we may need to enforce the agent to
follow all possible paths. Thus, in the context of a performative structure, we
classify the exit states of scenes into two classes: and and or. For the first type
of exit state, an agent is forced to follow all available arcs, whereas it is the
agent’s choice which arc to follow for the second type of exit states. Figure 3.4
shows how we will represent the two different types of outputs from scenes.

What does make transitions different from the rest of scenes? Transitions
must be regarded as a kind of routers. Therefore, instead of modelling some
activity, they are intended to route agents towards their destinations in different
ways, depending on the type of transition.

The arcs connecting transitions to scenes play a fundamental role. Notice
that as there might be multiple (or perhaps none) scene executions of a target
scene, it should be specified whether the agents following the arcs are allowed
to start a new scene execution, whether they can choose a single or a subset of
scenes to incorporate into, or whether they must enter all the available scene
executions.

We define a set of different types of transitions and arcs whose semantics will
highly constrain the mobility of agents among the scene instances (the ongoing
activities) of a performative structure. The differences between the diverse types
of transitions that we consider are based on how they allow to progress the agents
that they receive towards other scenes. Let us divide each transition into two
parts: the input, through which it receives agents from the incoming arcs, and
the output, through which agents leave following the outgoing arcs towards other
scenes. Then, the following classification of transitions is based on the behaviour
that they exhibit on their input and output sides:

e Sync/Parallel: They establish synchronisation and parallelism points
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since agents are forced to synchronise at their input to subsequently follow
the outgoing arcs in parallel.

¢ Choice/Choice: They behave in an asynchronous way at the input (agents
are not required to wait for others in order to progress through), and as
choice points at the output (agents are permitted to select which outgoing
arc, which path, to follow when leaving).

e Sync/Choice: They are a hybrid of the two types of transitions above: on
the one hand, likewise sync/parallel transitions, they force agents to syn-
chronise on the input side, while on the other hand, likewise choice/choice
transitions, they permit agents to individually make the choice of which
path to follow when leaving.

¢ Choice/Parallel: They are also a hybrid of sync/parallel and choice/choice
transitions. Agents are not required to wait for others on the input side,
but they are forced to follow all the possible outgoing arcs.

According to this classification, we define T = {sync/parallel, choice/choice,
sync/choice, choice/parallel} as a set of transition types.

SCENES TRANSITION TYPES PERFORMATIVE
STRUCTURE

D Choice/

Choice ARC TYPES

Root / Input 1

—_—

*

E—
Choice/ some
Parallel D

all

0

Output
LABELLING
Sync/ L
Choice X,y agents
rr roles

Figure 3.4: Graphical Elements of a Performative Structure

Depending on the path followed by the agents when traversing a transition,
they may either start scenes or incorporate to one or more ongoing scenes. Thus
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there are also different types of paths, arcs, for reaching scenes after traversing
transitions. We define & = {1, some, all,*} as the set of arc types. Following
a I-arc constrains agents to enter a single scene instance of the target scene,
whereas a some-arc is less restrictive and allows the agents to choose a subset of
scene instances to enter, and an all arc forces the agents to enter all the scene
instances to which the paths lead. Finally, a *- arc fires the creation of a new
scene instance of the target scene.

Furthermore, each arc will be labelled with the collection of roles that are
allowed to follow the arc such as depicted in Figure 3.4.

Before stating a concrete definition of performative structure, there is a last
element to be considered. Notice that although two scenes may be connected
by a transition, the eventual migration of agents from a source scene instance
to a target scene instance not only depends on the role of the agents but also
on the results achieved by agents in the source scene. Thus, for instance, in the
fish market, although a registration scene is connected to an auction scene, the
access of a buying agent to the execution of the auction scene is forbidden if
it has not successfully completed the registration process when going through
a registration scene. In a conference centre environment, two agents are not
allowed to meet to talk at a meeting room unless they have previously arranged
and committed to some appointment. This fact motivates the introduction of
constraints over the arcs connecting scenes and transitions. We will require that
agents satisfy the constraints, conditions, over the arc solicited to be followed
when attempting to reach a destination scene. Therefore, conditions must also
appear in our formal definition of performative structure.

Finally, we bundle all the elements introduced above to provide a formal
definition of a performative structure specification:

Definition 3.3.3. A performative structure is a tuple
PS =(S,T,so,s0,FE, fr, fr, fe,C,u, ML)
where
e S is a finite, non-empty set of scenes;
e T is a finite and non-empty set of transitions;

e 359 € S is the root scene;

sq € S is the output scene;

E = ET|JE© is a set of arc identifiers where Ef C S x T is a set of edges
from scenes to transitions and EC C T x S is a set of edges from transitions
to scenes;

fr : B — 2V4a*E ig the labelling function;

fr : T — T maps each transition to its type;

fe : E° — &£ maps each arc to its type;
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C : E — ML maps each arc to a meta-language expression of type
boolean, i.e. a formula representing the arc’s constraints that agents must
satisfy to follow the arc;

i S — IN sets the upper bound on the number of allowed simultaneous
scenes for the scene scheme represented by each scene node; and

ML is a meta-language.

In order to present the requirements to be satisfied by the elements above, some
previous definitions are needed. Let s € S be a scene such that s = (R, DF, W,
wo, Wy, (WA )rer, (WE;)rer,©, L,min, Maz). Let var and roles be two func-
tions over arcs, defined respectively as var : E — 2¥4 and roles : E — 2Foles
which return for each arc the set of variables and the set of roles contained in
the arc label. Furthermore, to differentiate the elements of two scenes s and s’
we will use a super-index s or s'.

Then the following requirements must be satisfied by every performative
structure:

(i)

(viii)

The root scene of a performative structure is not connected to the output
of any transition. Formally, /¢ € T | (¢,s0) € E©.

The output scene is not connected to the input of any transition. Formally,
PteT | (sq,t) € EL. This requirement and the requirement above in-
dicate that any performative structure starts at the root scene and finishes
at the output scene.

The output of every transition is connected to some scene. Formally, Vt €
T 3seSU{sa} | (t,s)€ E°.

The input of every transition is connected to some scene. Formally, Vt €
T 3seSU{so} | (s,t) € E"

All the agent variables labelling the incoming arcs of a given transition
must also appear on the outgoing arcs of the transition: for any ¢ € T

Us.nem: var((s,1) = U, snepo var((t, s))

All the agent variables labelling the incoming arcs of a given transition are
different: for all t € T, for all (s, t), (s',t) € B! wvar((s,t)) Nvar((s',t)) =
0

For every scene there is a path from the root scene to the output scene pass-
ing through the scene. For all s € S there is a path sg,t1,... ,, Sm,tm, SQ
such that (s;,t;) € ET, (t;,si11) € EC¢ Vi=0,...,m—1and s; = s for
some 4.

For every scene, the roles labelling its outgoing arcs must belong to its
role set and for every role in its role set there is at least one outgoing arc
labelled with it, i.e. forall s € S U, 4yepr roles((s,t)) = R*.
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(ix) For every scene, the roles labelling its incoming arcs must belong to its
role set and for every role of its role set there is at least one incoming arc
labelled with it, i.e. for every scene s € S |J 5)cpo roles((t, s)) = R°.

(x) For every scene, there must be at least one access state for every role
labelling an incoming arc, i.e. for every arc (t,s) € E9, and for every role
r € roles((t,s)) there is an access state w € W A,..

(xi) For every sync/parallel transition, every outgoing arc has to be connected
to a scene containing at least one access state for all the roles labelling the
arc. More formally, for every (t,s) such that fp(t) = sync/parallel then

mrEroles((Ls)) WA, 7& 0.

(xii) For every arc of type # the initial state of the scene must belong to the set
of access states for each role labelling the arc. Formally, for each arc (¢, s) €
E© such that fr((t,s)) = * we require that wo € [, ¢ opes((r,s)) W Ar-

From the definition above, we can simply view a performative structure as a
network of scenes interconnected by different types of transitions. The specifi-
cation of a performative structure amounts to select a collection of scenes, such
as those depicted by Figures 3.3 and 3.2, and next create sound connections
among them. Complementarily, the limits on the number of scenes, u, need to
be defined. Figures 3.12 and 3.13 show how the graphical elements in Figure 3.4
are combined in order to produce the graphical specification of the performative
structures corresponding to the fish market and to the conference centre envi-
ronment. Observe that the scenes that Figures 3.3 and 3.2 represent do appear
in the resulting specifications as two particular nodes.

Notice that we demand any performative structure to contain a root and an
output scene. The output scene does not model any activity, and so it must be
regarded as the exit point of the performative structure. As to the root scene, it
must be regarded as the starting point of any agent accessing the performative
structure. Departing from the root scene, agents will make for other scenes
within the performative structure.

Containers

It is time to introduce a special type of scene, the so-called container scene (or
container for shorter), depicted in Figure 3.4. Analogously to a root scene, there
is no activity within containers. Formally, we can think of containers as scenes
with a single state which is both initial and final. In practice, they are employed
to mark execution points to which we may force agents return. Therefore they
are useful for specifying iterative activities as shown further on through the
examples in Section 3.4.3. In practice, agents will not need to stop by these
containers and will consider them as part of the arc to be followed. In this way,
we avoid to introduce connections among transitions.
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Textual Representation

Analogously to scenes, here we present part of the XML-based specification of
the performative structure depicted in Figure 3.13 —identified as comris-01—
based on the document type definition enclosed in Appendix A.

<?xml version ="1.0" standalone = ’no’?>
<!DOCTYPE PS SYSTEM "http://www.iiia.csic.es/"jar/AMEI/dtd/ps.dtd">
<PS ID="comris-01">
<DESCRIPTION>
Comris Performative Structure
</DESCRIPTION>
<NODE ID="node-01" MAX="100" HREF="scenelib.xml#aps">
<ARCLIST>
<ARC ID="arc-01" HREF="#transition-01">
<LABEL>
<AGENTVAR> x </AGENTVAR>
<ROLEID> pra </ROLEID>

</LABEL>
</ARC>
</ARCLIST>
</NODE>
<NODE ID="node-02" MAX="100" HREF="scenelib.xml#aps">
</NODE>
<TRANSITION ID="transition-01" TYPE="AND">
<ARCLIST>
<ARC ID="arc-02" HREF="#node-02">
<LABEL>
<AGENTVAR> x </AGENTVAR>
<ROLEID> pra </ROLEID>
</LABEL>
</ARC>
</ARCLIST>
</TRANSITION>

<!--More specifications of scenes and transitions follow below-->

</PS>

3.3.5 Normative Rules

Such as depicted, a peformative structure constrains the behaviour of any par-
ticipating agents at two levels:

(i) intra-scene: Scene protocols dictate for each agent role within a scene what
can be said, by whom, to whom, and when.
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(ii) inter-scene: The connections among the scenes of a performative struc-
ture define the possible paths that agents may follow depending on their
roles. Furthermore, the constraints over output arcs impose additional
limitations to the agents when attempting to reach a target scene.

And yet, we understand that an agent’s actions within a scene may have
consequences that either limit or enlarge its subsequent acting possibilities.

Such consequences have effect along two different directions. On the one
hand some actions will introduce subsequent acting commitments that have to
be interpreted as acting obligations. On the other hand, other consequences
occurring locally within a scene may enlarge or restrict the number of paths
that an agent can follow in the performative structure because they affect the
satisfaction and dissatisfaction of the constraints labelling paths. Both types of
consequences will be required to be kept by an institution for each agent on an
individual basis. In general, for a given agent we shall refer to such consequences
as the agent obligations within the institution.

For instance, a trading agent winning a bidding round within an auction
house is obliged to subsequently pay for the acquired good. Considering the
performative structure in Figure 3.12 that implies that the trading agent has
to move at some time to the buyers’ settlements scene to pay for the acquired
good. Notice that although the auction scene is connected to the output scene,
the path is disallowed to agents unless they fulfil their pending payments.

In order to represent the deontic notion of obligation, we set out the predi-
cate obliged as follows:

obliged(x, ¢,s) = agent x is obliged to utter an illocution satisfying ¢ in scene
5.

where ¢ is taken to be an illocution scheme. Notice that the formulae expressing
obligations will be considered as part of a meta-language.

Next we introduce a special type of rules, the so-called normative rules, in-
tended to provide a means of capturing which agent actions (illocutions) have
consequences in terms of obligations. The institution is responsible for guaran-
teeing that every single agent participating in its activity abides by normative
rules. Notice that the behaviour of an institution shall be highly influenced by
normative rules since these constitute its main enforcement component.

Syntactically, in its most general form, normative rules will be composed of
and meta-language formulae:

D1LNA . NPy = Pppr AL A Dy

where ¢1 A ... A ¢, are meta-language formulae. While some of these rules will
be devoted to the triggering of obligations, others will be used for inferring facts
that will be subsequently employed to determine the access of an agent to other
scenes.

In order to undo a pending obligation ascribed to an agent, the following
basic rule applies:
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obliged(z, ¢, s) A done(¢p, s) = —obliged(x, P, s)

where done(¢, s) is a meta-language formula expressing that an illocution with
scheme ¢ has been uttered in scene s.

Notice that normative rules cannot be expressed by any other elements or
structures introduced so far. In order to understand them better, we must view
them as being part of the meta-level of a performative structure.

Notice also that normative rules do not have to do with agents’ decision ma-
chinery, but with their social, external behaviour. Thus their only purpose is to
formally underpin a normative environment, along the lines of human institu-
tions.

In what follows we encode some of the normative rules derived from the
description of the fish market, the case study institution presented in Section 1.3.

Rule: Price call. After calling out a given offer(price) in the auction room
scene(auction_room) for a given good (good_id), an auctioneer(z : a) is obliged
to call out a new offer (price — price_step) whenever no bids have been received
at price and the new offer price is below the good’s reserve price (established
when a seller (z : s) delivers the good to a sellers’ admitter(y : sa)).

Rule: Price call

done(inform(?z : a,all : b,of fer(?good_id, ?price)), auction-room) A

done(commit(?y : sa,?z : s, sell(lgood_id, ?starting_price, Treserve_price, ?price_step) ), good_delivery)
Iprice—!price_step >lreserve_price A

bids(!good_id, price) =0 =

obliged(lz,inform(!z : a,all : b, of fer(lgood_id, \price—!price_step)), auction_room)

A

Rule: Good adjudication. An auctioneer (z : a) is obliged to declare that a given
good is sold to a buyer (y : b) if he is the only bidder at the current offer (price)
and his credit (credit(y)) is bigger than his bid.

Rule: Good adjudication

done(inform(?z : a,all : b,of fer(?good_id, Tprice)), auction_room) A

Al ?y  done(commit(?y : b,z : a,bid(good_id, Iprice)), auction_room) A
credit(ly) >price =

obliged(lz,inform(!z : a,all : b, sold(!good_id, ly, \price)), auction_room)

Rule: Bidders’ collision. An auctioneer (x : a) is obliged to declare a collision at
the current offer price (price) when there are at least two bidders at the current
offer price.
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Rule: Bidders’ collision

done(inform(?z : a,all : b,of fer(?good_id, Tprice)), auction_room) A

3 ?y,7z done(commit(?y : b,!x : a,bid(!good_id, price)), auction_room) A
done(commit(?z : b,!z : a,bid(!good_id, 'price)), auction_-room) A

credit(ly) >lprice A

credit(!z) >!price =

obliged(z,inform(!x : a,all : b, collision(!good_id, price)), auction_room)

Rule: Bidder sanction. An auctioneer is obliged to sanction any given bidder
(y : b) when he submits a bid at the current offer price and his credit (credit(y))
cannot support his offer.

Rule: Bidder sanction

done(inform(?z : a,all : b,of fer(?good_id, ?price)), auction-room) A

A ?y  done(commit(?y : b,!z : a,bid(!good-id, 'price)), auction_-room) A
done(commit(ly : b,z : a,bid(!good_id, Iprice)), auction_room) A
credit(ly) <!price =

obliged(z,inform(!x : a,all : b, sanction(ly)), auction_room)

Rule: Good withdrawal. An auctioneer is obliged to withdraw a good at auction
whenever there are no bids at the current offer price(bids(good_id, price) = 0)
and the next offer price to be called out (price — price_step) is below the reserve
price (reserve_price).

Rule: Good withdrawal

done(inform(?z : a,all : b,of fer(?good_id, Tprice)), auction_room) A

done(commit(?y : sa,?z : s, sell(lgood_id, ?starting_price, Treserve_price, ?price_step) ), good_delivery)
Iprice—!price_step <!reserve_price A

bids(!good_id,\price) =0 =

obliged(z,inform(!z : a,all : b, withdrawn(!good_id, 'price)), auction_room)

A

Rule: Buyers’ payment. If a buyer (buyer_id : b) acquires a good during a
bidding round (the auctioneer announces that the good is sold to him), he is
obliged to subsequently pay for the good to a buyers’ accountant (y : bac).

Rule: Buyers’ payment

done(inform(?z : a,all : b, sold(?good4id, Tbuyer_id, 7price)), auction_-room) =
obliged(z, pay(buyer_id : b,y : bac, sale(!good_id, \buyer_id, \price)), buyer _settlements)

Rule: Sellers’ payment. If an auctioneer commits to sell the good at auction to
a given buyer, this is obliged to to pay for the good to a buyers’ accountant in
a settlements scene.
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Rule: Sellers’ payment

done(inform(?z : a,all : b, sold(?good4d, Tbuyer_id, Tprice)), auction_-room) A
done(pay(?buyer_id : b, 7y : bac, sale(!good_id, buyer_id, price)), buyer_settlements)

=

obliged(ly : sac,pay(ly : sac, seller(!good_id), sale(!good_id, \buyer_id, \price)), seller _settlements)

Rule: Auction room closing. The auctioneer is obliged to end the auctioning
when required by the boss of the market (z : boss) once the current bidding
round ends up.

Rule: Auction Room Closing

done(request(?x : boss, 7y : a, close_market(now)), closing) A
done(inform(ly : a,all : b, open_auction(?n)), auction_room) A
—done(inform(ly : a,all : b,end_auction(!n)), auction_-room) A
done(inform(ly : a,all : b,end_round(?r)), auction_-room) A
—done(inform(?! : a,all : b,end_round(!r + 1)), auction_room) =
obliged(ly,inform(ly : a,all : b, end_auction(!n)), auction_room)

In order to provide participants with a complete specification of an electronic
institution, normative rules must be published along with the specification of a
performative structure and its scenes. In this way, an agent would be able to
understand from the specification what can be said, to whom and when, along
with the eventual consequences of all actions undertaken within the institution.
In this way, an agent can decide on the convenience of participating in any given
institution.

3.3.6 Electronic Institution

Finally, we can define an electronic institution by choosing a performative struc-
ture and defining the rest of its components. These are the institutional roles,
the hierarchy between roles, the policy of duties and the normative rules. In-
stitutional roles define a set of roles that can not be played by external agents.
They are like the employees in a human institution. Notice that the hierarchy
of roles and the policy of duties are applied to the set of all roles within the
institution which are all the roles appearing in the different scenes composing
the performative structure.

Definition 3.3.4. An electronic institution is defined as a tuple
(PS,IR,*,ssd,Npg, ML)
where
e PS stands for a performative structure;

e IR is a subset of roles representing the institutional roles;
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> stands for the hierarchy partial order over the set of all roles;

ssd is the set of static separation of duties between roles; and

Npg stands for a set of normative rules.

ML is the meta-language employed for encoding the normative rules in
Nps.

Notice that the specification of an electronic institution must be regarded as
a compositional activity to be undertaken by the institution designer. In general,
the designer must go through the following steps.

e define a role set including the cardinality of each role and the policies of
separation of duties;

e select or construct a set of specifications of dialogical frameworks;
e select or construct a set of scenes;

e select or construct a performative structure; and

e define a set of normative rules.

We say that the designer can opt for either selecting or constructing some spec-
ifications because there might exist specifications already available to be reused
for composing new specifications. Thus we can consider that specifications of
dialogical frameworks, scenes, and peformative structures are to be naturally
organised into specification libraries.

Once completed a specification, it must go through a validation process that
checks its well-formedness. Ultimately, if such a specification proves to be cor-
rect, its equivalent textual representation must be generated in order to be ma-
nipulated by the agents intending to participate in the institution. We postpone
our example of textual representation of a given specification till Section 3.4,
where complete graphical specifications of the case studies introduced in Chap-
ter 1 are provided.

In the light of the complexity of the whole process, it is apparent the need
of tools that assist the institution designer through the specification, validation,
and translation of an electronic institution into a machine-readable format so
that it can be easily parsed by agents.

3.4 Execution Model

Notice that through Section 3.3 we have pursued to provide a static, structural
definition of electronic institution. Now we draw our attention towards the
dynamics of an electronic institution when it becomes populated by agents.
For this purpose, we take the view that scenes, transitions and performative
structures as objects whose evolution depends on the dialogic actions of the
agents immersed in the institution. Then we provide a functional specification
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of the operations over scenes, transitions and performative structures that shall
ideally help us understand the dynamics of electronic institutions.

3.4.1 Agents and Roles

An institution comes to life when populated by agents. But in order for an
agent to join in an electronic institution it is obliged to adopt some role(s).
Once adopted a particular role, an agent is enforced to conform to the pattern
of behaviour established for the role. We consider that an agent can adopt one
or more roles, and in turn a single role can be adopted by one or more agents.
And so we establish a many-to-many relationship between agents and roles.

When entering an institution, an agent must request for the authorisation of
the role(s) that it intends to play within the institution. Then the institution
assigns a subset of these roles to the agent taking into account the existence of
conflicting roles (pairs of mutually exclusive roles). Recall that roles are organ-
ised into a hierarchy. Thus, for each assigned role an agent is also authorised to
eventually play the roles below in the hierarchy. For instance, in Figure 3.1, if
an agent is assigned (and so authorised) the role specialist, it is also authorised
to play the role doctor.

We impose as a constraint that an agent can only play a single role within
a scene, and such role must belong to its set of authorised roles. However since
an agent can possibly participate in multiple scenes, it can play various roles
simultaneously. Then we will mean by active roles the set of roles currently
played by an agent within the institution.

Notice that so far we have distinguished assigned, authorised and active roles.
The following functions will be employed for referring to them separately:

e assigned_roles : Agents — 2F°les gssigned_roles(a) denotes the set of
roles assigned to agent a.

e authorised_roles : Agents — 25°°3 quthorised_roles(a) denotes the set
of roles authorised to agent a. We say that a role r is authorised for an
agent a if either r is assigned to a, or r is subsumed by another role that
is assigned to a.

e active_roles : Agents —s 2F°l¢s qctive_roles(a) denotes the set of roles
currently played by agent a.

While assigned_roles is conceived as a static assignment which is kept while
an agent takes part in an institution’s activities, active_roles is expected to be
varying as the agent takes on new roles or ends up playing other roles.

Next, we make explicit the requirements needed for handling agent/role as-
sociations®:

e An agent can only play authorised roles.

5Notice that the first two requirements concern in fact role/role associations, but have been
included here for explanatory purposes.
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e Any two roles assigned to the same agent do not subsume one another.

e Any two roles authorised to the same agent do not violate the static sep-
aration of duties, i.e. an agent cannot be authorised to play mutually
exclusive roles.

Put formally:
Requirement 1. For all a € Agents, active_roles(a) C authorised_roles(a).

Requirement 2. Forall a € Agents,Vr;,r; € Roles,r;,r; € assigned_roles(a) =
=(r; =% r;) where =T stands for the transitive closure of .

Requirement 3. Foralla € Agents,Vr;,r; € Roles,r;,r; € authorised_roles(a) =
(ri,rj) & ssd.

Notice that requirements 2,3 can be easily enforced when managing the access
of an agent to the institution. Differently, requirement 1 is demanded to be held
during an institution’s life-cycle. As we briefly sketched in the introduction of
this section, the activity of an institution is composed of multiple, concurrent
scenes populated by agents that move around by jumping into and out of scenes.
Consequently, requirement 1 will have to be be satisfied in the transit of agents
among scenes. Therefore, both requirements will be revisited later on when
presenting the dynamics of performative structures.

3.4.2 Scene

Notice that the specification of scene is purely static, simply establishing a pat-
tern of multi-role conversation (no agents, but the roles that they might take
on, are considered). Then there remains to explain how such a specification is
adequately exploited for modelling the behaviour of a scene, i.e. the dynamics
of a multi-agent conversation.

For this purpose, a scene must be executed. Any scene execution is firstly
started by a group of agents intending to engage in a conversation following
the rules specified by the scene. Here we assume that during a scene execution
each agent plays a single role. Once started a scene execution, it will evolve
as the participating agents legally utter illocutions that make the conversation,
the scene execution, progress. Furthermore, an execution will also vary as some
participating agents leave when the conversation reaches exit states and non-
participating agents join in when the conversation reaches access states.

Recall that the arcs connecting the states of a scene are labelled with illocu-
tion schemes containing variables. Such variables correspond to agent variables,
role variables and variables in the contents of the illocution scheme. During a
scene execution, the variables in an illocution scheme are bound to the values
of the uttered illocution matching the scheme. In order to keep track of the
context, of a scene, a list of bindings is maintained keeping the bound variables
along with their values. Notice however that we may eventually need that some
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of these bindings change dynamically. In this way the very same variable may
be bound to a different, value at different stages of the execution of a scene.

We distinguish two cases regarding the change of the binding for a particular
variable. Firstly, when the utterance of an illocution brings the scene state to a
past state that closes a cycle. In such a case, the context prior to the beginning
of the cycle is recovered in the sense of free and bound variables. Secondly,
when the value of an already bound variable is overwritten as introduced in
Section 3.3.2.

Considering a cycle, the list of bound variables is composed of variables
bound before and during the cycle. Variables bound during a cycle become free
again once the cycle completes, i.e. the scene goes back to the visited state at
which the cycle started. For the purpose of controlling cycles, a special list of
visited states is used, characterised by not containing visited states belonging to
a cycle —except for scene states marking the starting point of a cycle.

Complementarily, in order to recover the context when a cycle is closed, a list
of bound variables is kept for each scene state containing the variables bound
when each state was last visited.

Building upon the intuitions provided above, next we describe the execution
of a scene by providing the possible operations that transform it from one state
to another. In this way we manage to specify the dynamic evolution of a scene
execution composed of multiple interacting agents. As we intend to construct a
formal specification, the operations are specified by giving their pre-conditions
and post-conditions, and not by giving a procedure for how those operations
are to be carried out. Hence, we show under what conditions each operation
preserves the scene execution consistency. If a scene execution is in a consistent
state, and a certain set of conditions is satisfied by (the arguments of) an oper-
ation, then it remains in a consistent state after the operation is performed. For
each operation, we specify its arguments, semantics, and consistency preserving
conditions. In the semantics specification of each operation, a primed variable
denotes its value after the operation has been performed?®.

In order to keep track of the state of a scene execution we introduce the
notion of scene execution descriptor(or scene descriptor for shorter) departing
from the definition of scene:

Definition 3.4.1. Given ascene s = (R, DF,W,wo, Wy, (WA;)rer, (WE;)rcr,
O, )\, min, Maz), an execution of s will be characterised by a tuple ¥y =<
A7 pP,0s,W, N’ (Vwi)wiEW > where

o A C Agents is the set of participating agents;
e p: A — R maps each participating agent to its role in the scene;

e o, contains all the variable bindings at each moment during the scene
execution;

e w is the scene state;

61ikewise Z specifications.
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e N is the list of visited states without cycles, i.e. without containing visited
states belonging to a cycle —except for scene states marking the starting
point of a cycle;

e V,, stands for the list of bound variables last time the state w; was visited.

Notice that an important restriction applies to the number of roles that
an agent can play within a scene, since each agent can only play a single role
(following the formal definition above, the p function maps each agent to a single
role).

In order for a scene to start executing, there must be a group of agents for
which the following pre-conditions apply:

e the roles requested to be played by the agents do not exceed the cardinality
of the scene roles and the minimum for each role is reached;

e the requested roles are indeed authorised to each agent; and
e the initial state of the scene is an access state for all the requested roles.

If this is the case, a scene can start being executed and so the scene starts
at wo —the initial state— and o, and V,,, are initialised as empty lists while N
is initialized to wqy. Furthermore, the variables of the scene are free and so they
can be subsequently bound to any value of its type.

More formally, the creation of an execution descriptor of a scene s with an
initial group of agents Ag C Agents such that each agent a € Ag requests for
playing a role pa4(a) can be specified by means of the start operation as follows:

start(s, Ag, pag)

Pre-conditions.

(c0)Vr e R min(r) < | {a € Ag| pagla) =r}|| < Max(r)
(Cl) Ya € Ag,wy € WApAg(a)

(c2) Ya € Ag, pag(a) € authorised_roles(a)

Post-conditions.

w' = wy
A’ = Ag
Pl =pag
o, ={}
N" = {wo}
Vo = {}
whose output is a new execution descriptor X such that X3 = (A’ p', 0%,

wla NI: (Vul)l)szW>
Once started the execution of a scene, the participating agents are allowed
to interact with one another by uttering legal illocutions. By legal we mean
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illocutions that comply with the rules of the scene, which explicitly state what
can be said, by whom and when. Valid interactions among the agents make
the conversation evolve, and hence its underlying activity. For each non-final
state w there is at least one state w; such that the illocution schema labelling
(w,w;) states which role can speak, to whom, an what can be said. Notice
that the variables in the illocution schemes labelling the arcs become bound
as illocutions are uttered during the execution of scenes. In other words, the
context of the scene kept in oy, is constructed as illocutions are uttered. Then
an illocution u uttered at state w is valid if it matches the label of (w, w;) once its
bound variable are substituted considering the bindings in os;. Summarising, the
variables in the illocution scheme already bound are substituted by their values
in the list of bindings. whereas the remaining (free) variables are assigned their
values from illocution u generating new bindings which are used for updating
the context. This new bindings are kept in a list that we denote as oy,.

Then the state of the conversation switches from w to w;. Observe that
not only a state transition occurs, but also an eventual change in the context
captured by the update_context function that we thoroughly detail further on.
Below, the operation update_state specifies the changes in an execution descriptor
¥s when a illocution wu is uttered:

update_state(Xs, u)

Pre-conditions.

(CO) w ¢ Wf

(cl)ueCL

(c2) H(w,w;) € E | Mw,w;) = (e : ri,05 175, ,t)
and u matches o,(A(w, w;))

Post-conditions.
w' = w;j
(05, N', Vyy,,) = update_context(o)

Next we describe how the list of bindings (o5), the list of visited states
(N) and the list of bound variables of state w; (V,,;) are updated when a new
illocution is uttered and the scene evolves to the w; state.

Let o, be the list of new bindings generated by the utterance of illocution w.
More precisely , o, contains the bindings for the free variables of the illocution
along with the overwritten variables. The purpose of the process that follows
is to update o, with the information in ¢, taking into account whether the
transition corresponds to a loop that brings the scene to a visited state. If so
the states composing the loop are removed from the list of visited states N and
the bindings of the variables not appearing in V,,; are removed from o, —in this
way the context corresponding to w; is recovered. If not w; is added to N as a
visited state and the variables in o, are assigned to V,,, .
where
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Function 1 update_context(o,,)
Os <= 0y Op O
if w; € N then
N < wp---wj
Os <= 05 proj Vi,
else
N < ij
Vi < Var(os)
end if
return (oy, N,Vy,)

e 0, op o stands for the union of the bindings in both lists taking into
account that if there is a variable appearing in both, the binding in o, is
taken because this means that the variable has been overwritten;

e 05 proj Vi, stands for the projection of the variables in V,,, over the
bindings in os. As a result, this operation keeps in o the bindings for the
variables in V,,;, removing the others; and

e Var(os) returns the bound variables, i.e. the variables in o.

We can see an example of the execution of the scene depicted in Figure 3.2
in Table 3.4. There we consider two agents identified as pral and pra2 playing
both the pra role in the scene. Then the scene starts with Ag = {pral, pra2}.
Since neither Ag nor p change during the execution of the scene, they are not
shown in Table 3.4. The table presents how the rest of variables change when
the scene evolves when the illocutions listed below are uttered. Notice that an
update_state operation occurs after each of the following illocution:

(i) request(pral,pra2,app(e — commerce)) at wo

)
(ii) request(pra2,pral,app(auctions)) at wy
(iii) request(pral,pra2, app(strategies)) at wo
(iv) accept(pra2, pral, app(strategies)) at wq

The first column of the table represents the state of the scene, o; the bindings
generated after each illocution, og contains all the bindings of the scene, V,, the
list of bound variables that are kept at the current scene state and finally NV
represents the list of visited states without cycles.

The first row of the table shows how the variables are initialised once scene
starts. Recall that in the beginning all scene variables are free. After the first
illocution occurs three new bindings are generated for each one of the variables
appearing in the illocution as shown in the ¢; column. Furthermore, the list of
scene bindings o is updated considering the new bindings in ;. As a result of
the first illocution, the scene evolves to the state w, which is then added to N.
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At w; there are three outgoing arcs each one labelled with a different illocution
scheme. After replacing the occurrences of the bound variables in such illocution
schemes using the values in oy, the next illocution to be uttered is due to match
one of the following expressions:

e request(pra2, pral,app(?t'))
e commit(pra2, pral,app(e — commerce))

e refuse(pra2,pral,reason(?r))

t w o; Os Ve N

0 wo {} { { {wo}
1wy  {z/pral y/pra2t/e} {z/pral y/pra2 t/e} {z yt} {wow }
2wy {t'/a} {z/pral y/pra2 t/et'[a} {zytt'} {wowiwsy}
3w {t/s} {z/pral y/pra2 t/s} {z yt} {wo w1}
4wy {} {z/pral y/pra2 t/s} {zytt {wowr wy}

Table 3.4: Example of the evolution of the context during the execution of the
scene in Figure 3.2 (the following abrreviations apply: e = e-commerce, a =
auctions, s = strategies)

Notice that given the current state and context only the pra2 agent can utter
an illocution whose addressee must be the pral agent. It has three possibilities:
to propose new topics for the appointment, to accept the topic proposed by pral
or simply to refuse the proposed appointment. In case it chooses to make a new
proposal, this can include new topics because t' is a free variable. On the other
hand, if it decides to accept the current proposal, the topic of the appointment
will correspond to that proposed by pral to which ¢ is bound.

In our example agent pra2 chooses to propose auctions as an alternative topic
for the appointment, making the scene evolve to the ws state. This illocution
generates a new binding for ¢/, which is the only free variable. This binding is
kept by o; and subsequently added to os. As the occurring transition does not
close a cycle, ws is added to the list of visited states.

Now there is an interesting aspect concerning the illocution scheme request(lx :
pra,ly : pra,app(?t)) that allows pral to make a new proposal for the appoint-
ment topic. If the notation ?¢ is not used for ¢, this would be substituted by the
value in o, corresponding to the first proposal submitted by pral. Introducing
?t implies that ¢ is handled as a free variable. Thus agent pral can propose new
topics for the appointment and a new binding can be generated for ¢ and kept
in ;. And so the binding for ¢ in o, is replaced for the new one generated in
the last illocution.

Going back to our example, when the scene reaches wq, pral proposes strate-
gies as a new topic for the appointment, making the scene evolve to w;. By going
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back to w; a cycle is completed and detected because w; belongs to N. Then,
only the bindings for the variables in V,,, are kept in o, while the rest of bindings
are removed. In our case, V,,, = {z,y,t} and so the bindings for these variables
are stored in o, while the binding for ¢ is removed. Thus ¢ becomes a free
variable again allowing agent pra2 to propose new topics for the appointment.
Furthermore N is updated by removing from it the states forming the cycle.
Thus the w, state is removed from N.

Finally agent pra2 accepts to hold an appointment to discuss about the
strategies topic proposed by pral, and so the scene reaches its final state.

A distinguishing feature of scenes is that agents may enter or leave through
the access and exit states.

Any agent can join in an ongoing scene whenever the scene execution is
unfinished (the conversation has not reached a final state yet), the roles requested
to be played by the agent do not exceed the cardinality of the scene roles, and
the state of the scene is an access state for the role requested by the agent. In
the most general case, the access of a group of agents Ag C Agents to a scene
execution represented by X5 such that each agent a € Ag requests for playing
a role pag(a) and is authorised to play the roles authorised_roles(a), can be
specified by means of the operation add_agents as follows:

add_agents(Xs, Ag, pag)

Pre-conditions.

(CO) w ¢ Wf

() VreR | {a€ Al pla)=r} |+ {d' € Aglpay(@) = r} [I< Maz(r)
(c2) Ya € Ag,w € WE4e®

(c3) VYa € Ag, pag(a) € authorised_roles(a)

(c4) Va € Ag,a ¢ A

Post-conditions.
A= AU Ag
p'(a) = p(a) + pag(a)

whose output is an execution descriptor ¥, = (A’ p', 05, w, N, Vi, w;ew)-

We say that a scene being executed is accessible to Ag iff the conditions
c0, cl,c2c3 and c4 above hold.

As an example of access state, in Figure 3.3 the wy, w3 states allow for the
incorporation of more buyers during a bidding round.

On the other hand, any participating agent can leave a scene whenever the
scene execution is unfinished, the role to be played out by the agent do not
violate the cardinality of the scene roles, and the state of the execution state
corresponds to an exit state for the role of the leaving agent. Notice that the
variables in o4 corresponding to the agents leaving the scene must be unbound.

In the most general case, given an execution descriptor X, the exit of a
group of participating agents Ag can be specified by means of the operation
substract_agents as follows:
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substract_agents(Xs, Ag)

Pre-conditions.

(c0) w & Wy

(c1) AgC A

(c2) Va € Ag,w € AR

(c3) Va € Ag,min(p(a)) < [{a' € A —{a}|p(a’) =r}|

Post-conditions.
A'=A- Ag

#(a) = pla) aeA-Ag
ol = unbind(os, Ag)

whose output is a scene execution descriptor ! = (A’ p', o, w, N, Vi, Jw;ew)-
The function unbind above unbinds the variables bound to the agents leaving
the scene.

We say that a scene execution is open for Ag iff the conditions ¢0, c1, ¢2 and
¢3 above hold.

To finish, once a final state is reached during the execution of the scene, the
scene can be closed whenever no agents remain within, as specified by the close
operation:

close(Xs)

Pre-conditions.
(c0) w € Wy
(cl) A=10

Post-conditions.
=0

To summarise, the general dynamics, the life-cycle of a scene execution can
be specified via the following regular expression:

start.(update_state|add_agents|substract_agents)*.close

It is time to take into account that multiple scene executions corresponding to
the very same scene specification might be concurrently running. For instance,
multiple executions of the scene in Figure 3.3 could be running to allow for the
parallel auctioning of goods. Furthermore, other executions corresponding to
other scenes may also be running.

In the context of an electronic institution, the specification of the performa-
tive structure captures the relationships holding among the scenes composing
the institution. Such relationships must be considered when agents are in play
to understand how and under what conditions agents can either start a scene
execution or move from a scene execution to another.
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3.4.3 Performative Structure

Notice that the specification of performative structure provided in Section 3.3.4
is static, simply defining a network of scenes interconnected by means of transi-
tions. As a matter of fact, no agents are considered to be part of the definition.
Thus, there remains the matter of explaining how agents interact and how their
behaviour becomes affected and constrained by a performative structure speci-
fication.

At the outset any performative structure uniquely contains two special, ev-
erlasting scenes, namely the root and output scenes. The root scene must be
regarded as the starting point of any performative structure that all agents have
to enter in order to act within the institution. No activity whatsoever takes
place within this scene: agents enter, stand still, and leave to start new scenes
or join ongoing scenes (if any).

On the other hand, the output scene is a special scene that agents make for
when intending to leave the performative structure. We consider that there is
a special transition directly connecting the root and output scenes that can be
followed by any role.

This is the initial picture of a peformative structure. From this starting
point, Once started the execution of a performative structure, it may evolve due
to the dynamics of agents whenever these comply with the rules encoded by the
specification. Thus, groups of agents may jointly start new scene executions,
activities, that become part of the set of active scenes. Thereafter such active
scenes may possibly become available to other agents (depending on whether
they offer access states), which may apply for entering. But also some agents
participating in active scenes may leave them either to start other scene exe-
cutions, join in other active scenes or simply leave the performative structure.
At the same time, some active scenes may finish and therefore the activity that
they represent. Summarising, an agent participating in the execution of a per-
formative structure devotes his time to jointly start new scene executions, to
enter active scenes where the agent interacts with other agents, to leave active
scenes to possibly enter other scenes, and finally to abandon the performative
structure.

In what follows we formalise all the operations involved in the dynamics of
a performative structure. In formal terms, we base our explanation on defin-
ing how scene and transition variables become bound and unbound. Thus, for
instance, consider a group of agents intending to jump from one scene execu-
tion to another through a given transition. First, they must leave their scenes
to enter the transition. Next, they must be bound to the transition variables.
Afterwards, if their target scenes are ready to let them in they are allowed to
traverse the transition towards their destinations. This process can be seen as
the creation and destruction of bindings for the scenes and transition involved.
Summarising, the flow of agents within a performative structure is achieved by
doing and undoing bindings within scenes and transitions. An important aspect
to consider in our discussion concerning both scene and transition variables is
their local scope.



98 Chapter 3. A Formal Specification of Electronic Institutions

Analogously to the approach followed for scenes, we start by introducing the
notions of performative structure execution descriptor (or performative structure
descriptor for shorter). Thereafter we will complete our functional specification
by defining a collection of operations over a performative structure execution.

Definition 3.4.2. Let PS = (S,T,so,sa, E, fr, fr, fr,C, 1) be a performa-
tive structure. We define an execution descriptor of PS as a tuple Ilpg =
<A7 (ES)SGPS7 (Tt)t€T> where

e A C Agents is the finite set of agents participating in the performative
structure execution;

e ¥, stands for the set of all execution descriptors of scene s, denoting
(Xs)seps the set of all scene execution descriptors, henceforth referred
to as the set of active scenes and denoted simply as ¥; and

e 7; stands for the execution descriptor of transition t.

For notational purposes, henceforth ¥ will stand for the set of all active
scenes, and X and X% will stand for the set of all executions of scene s and
the i-th execution of scene s respectively. Within ¥ we will distinguish two
particular scene executions: ¥, and ¥, corresponding to the single executions
of the root scene and output scene respectively.

Observe that our definition of performative structure contains transition de-
scriptors whose formal definition and used is provided further below. Now,
complementarily to our definition of performative structure descriptor, we intro-
duce additional, auxiliary definitions that help us express the global state of a
performative structure.

Thus the active roles played by an agent in a peformative structure execution
are those played by the agent within each scene execution wherein it participates.
Recall that given a scene execution ¥t = (A, p,05,w, S, (Vi )uw,;ew), the role
played by an agent a € A can be readily obtained as p(a). Next we define
the marking of a performative structure execution as a function that returns
the agents immersed in each scene execution, along with the role that each one

plays.

Definition 3.4.3. We define the marking of a performative structure execution

described by I,s = (A, (Xs)seps, (Tt)ier) as a mapping M : (X;5)seps —
2A><Roles_

Then, considering also the local state of each scene execution, we can ob-
tain in a straightforward manner the global state of a performative structure
execution.

Definition 3.4.4. We define the state of a performative structure execution
described by II,s = (A, (Zs)seps, (t)ier) as a function T’ : (Z5)seps —
gAxRoles o« Wpg where Wpg = Uses W, is the set of all states for all the
scene specifications composing the performative structure specification.
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In what follows we take a formal view to specify how agents can legally move
around within a performative structure.

Since agents jump out of and into scene executions by following different
arcs, paths, and by traversing transitions, we start by explicitly stating how
transitions can be traversed. It is fundamental to understand how transitions
work since they let agents flow among scenes. Informally, we consider that a
transition can be traversed when it becomes enabled. At that precise moment
the transition can fire (or occur), and so the agents waiting within the transition
may go through following the output arcs that lead to some scene executions
lying on the output side. In formal terms, enabling a transition means that its
variables are bound to a given set of agents which can leave the transition to
either start or join in their destination scenes. Notice that we are assuming that
any agent intending to either start or join in a scene execution must solicit his
destination: the scene execution along with the role to be played. For now, we do
not consider how agents make or refrain from their requests since our focus is a
functional, not procedural, specification. We simply consider that such requests
can be incorporated or refrained from a transition. The way requests for scenes
are produced and handled is left to Chapter 4, where a computational model
that fully captures our formal specification is presented.

Next we introduce the notion of transition execution along with the opera-
tions that allow to add/refrain requests for scenes to/from transitions.

Definition 3.4.5. Let II,s = (A, (¥5)seps, (7¢)ter) be a performative structure
descriptor. We define the execution descriptor of transition ¢ € T as a tuple
7 = (Ag,Q, o) where:

e Ag is a finite set of agents within the transition;
e () is a finite set of tuples of the form (a,s,r, %, r') being a an agent

identifier”, r the role played by a in his source scene, and r' the role
intended to be played in the target scene X¢,; and

e 0 : Vary — Ag is the function binding transition variables in Var; =
Us,pyer var((s,t)) to agents in the Ag set.

Given an agent a that played the r role in his source scene, the addition of
a request of a to enter a set of scene executions dy C ¥y playing role r’ can be
specified by means of the add_request operation as follows:

add_request(7,a,s,r, by ,1')

Pre-conditions.

(cl) r' € authorised_roles(a)

(c2) 3 r; € Roles, X!, € 64 such that (a,r;) € M(Z%)

(¢3) 3z € var((s,1))|(x,7) € fu((s,t)) and (z,7') € fu((t,s"))

Post-condition.
QI — Q V) {((l, s, T, 68’7rl>}

"Henceforth we shall be using the terms agent and agent identifier indistinctly.
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At this point, notice that it is possible to join several threads of a very same
agent when he reaches a transition. Notice that a transition execution keeps a
single instance of an agent. Thus an agent reaching a given transition following
different arcs (and possibly playing different roles) must decide on progressing
through the transition playing a single or multiple roles. In other words, within
transitions an agent can rejoin several of his roles at will.

Refraining from an annotated request is accomplished by removing the request
from the transition:

refrain_request(7,a,s,r,ds, ')

Pre-conditions.
<a7 S, T, 65’77J> € Q

Post-conditions.

QI = Q - {(a,s,r, 68’7r1>}

Both operations produce a new transition execution descriptor 7} = (Ag, Q’, o).

Considering all the definitions introduced so far, we are ready to consider the
enablement and subsequent occurrence of transitions. Importantly, in the defini-
tions that follow we exclusively consider sync/parallel transitions. Why? Notice
that we could even do without choice/choice, sync/choice and choice/parallel
transitions since they all can be expressed in terms of sync/parallel transitions.
Figures 3.5, 3.6 and 3.7 illustrate this observation. The graphical specifications
at the top of each box are translated below into equivalent graphical specifica-
tions using exclusively sync/parallel transitions. At this point, we may wonder
about the use of having available such a collection of transition types. The
answer is that they provide us with more expressiveness and contribute to the
simplification and readability of resulting specifications.

Since transition enabling and occurrence can be best explained in terms of
the binding of transition variables, we start out defining how transition variables
and transitions themselves are bound to agent identifiers.

First, the definition of transition variable binding simply states that an agent
identifier a can be bound to a transition variable £ whenever the agent has re-
quested to follow all the transition output arcs whose labels contain the variable.
Depending on the type or arc followed, the agent must select a new scene ex-
ecution (i), a single scene execution (ii), all current scene executions (iii) or a
subset of scene executions (iv).

Definition 3.4.6. Let » = (Ag, ), o) be a transition execution and z a variable
such that (z,7) € fr,((s,t)) for some scene s and role r. We say that x can be
bound to agent a if V(¢,s’) € E such that (z,7') € fr((t,s")) F(a,s,r, ds,7") €
Q satisfying that

(1) type((ta S,)) =* = 63’ = @

(ii) type((t,s')) =1=|ds ||=1 and 0y € Zy
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(iii) type((t,s")) =all = 6y =Xq
(iv) type((t,s')) = some = 6y C Xy
When a given variable z is bound to some agent a, we write that o(z) = a.

In order for a transition execution to be bound, all we require is that all
transition variables are conveniently bound as stated by the following definition.

Definition 3.4.7. Let 7 = (Ag, @, o) be a transition execution for a transition
t € T such that Var; = {z1,...,x,}. We say that 7; is bound if each transition
variable is bound to a different agent identifier so that all agents following the
same arcs choose the same target scene executions and the conditions over the
transition output arcs apply. More formally,

e Vo € Var, 3Ja € Ag such that « is bound to a and V(¢,s) € E,Vz;,z; €
var((t,s)) 670 = 57 where 67" and 677 stand respectively for
the destination scenes requested by the agents bound to z; and z;; and

b V(t,S) €L |:{0(z)\z€Vm“t} C((tas))

We denote that a transition execution 73 is bound to a set of agents A’ as
B[Var)] = A'.

A bound transition is enabled when the agents bound to the transition vari-
ables can join in the requested target scene executions. In other words, the
bound agents can be removed from the transition to be subsequently added to
their destination scenes.

Definition 3.4.8. Let » = (Ag, @), o) be a transition execution whose variables
Zi,...,T, € Var, are bound to ay,...,a, € Agents with roles r},... ,r!, so
that the bindings o(z1) = a1,...,0(zn) = a, apply. Let 6% stand for the
target scene executions of a; so that (a;,s;,r;,0%,7;) € Q. We say that 7, is
enabled iff V(¢,s) € E UEEUM((LS))(S‘ST(Z) are all accessible to {o(z;) : 7; | x4 :

ri € fr((t,5))}-

After a transition is enabled it occurs(it is fired). Then the agents bound
to the transition variables enter their chosen destination scenes. Depending on
the semantics of the type of path followed by the agents, they will either start a
new scene —for *-arcs—, or incorporate into a single scene —for 1-arcs—, some
—for some-arcs—, different scenes, or all scenes —for and-arcs— of a given scene
node. Therefore, basically the agents will be either starting new scene executions
or incorporating to existing scene executions.

The occurrence of a transition involves a change in the state of a performative
structure because of the starting of scene executions and the incorporation of
some agents to some scene executions.

The following operation formally defines the processes involved in firing a
transition.
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fire_transition(Ilpg, 7¢)

Pre-conditions.
(cl) 7+ = (Ag,Q, o) enabled by A" = {ay,...,a,} C Ag so that the bindings
o(z1) =a1,...,0(zy) = an apply and (a;, s;,7;,0%,7}) € Q Va; € A’

Operations.

add_agents(Xi, Ag, p) V(t,s) € E such that type((t,s)) # *, VX! € § where
Ag = {o(@) | (z.7) € fu((t,5)}, 8 = Urevar((e. 87"

and p(o(x)) = r where (z,7) € fL((t,s))

start(s, Ag, p)V(t,s) € E such that type((t,s)) # *
where Ag = {0(z) | (z,7) € fu((t,5))} and p(o(z)) = r where (z,1) € f1((t,5))
refrain_request(t, {a;, S;, i, 0% 7)) Va; € A’

i

unbind(z) Yo € Vary

Figures 3.8, 3.12 and 3.13 contain examples of graphical specifications con-
taining the several types of transitions explained above that will be conveniently
dissected along Sections 3.4.3 and 3.5.

Figure 3.5: Transition Equivalences: Choice/Choice to Sync/Parallel
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Figure 3.6: Transition Equivalences: Sync/Choice to Sync/Parallel.
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Figure 3.7: Transition Equivalences: Choice/Parallel to Sync/Parallel.

Examples

In what follows we attempt at illustrating how agents traverse the several types
of transitions introduced above, and how they incorporate into other scenes de-
pending on the types of paths connecting the transitions with the output scenes
nodes. Figure 3.8 depicts some possible combinations of transitions and arcs for
an electronic auction house inspired on the case study introduced in Chapter 1.
Figure 3.8 (a) contains the specification of a choice point (represented as an
choice/choice transition) for an agent playing either the role of buyer or seller.
Connected to the output of the transition, there might be several Dutch auction
scenes running simultaneously. An agent traversing the choice/choice transition
following the arc of type some must select which of such scenes to enter. Below
Figure 3.8 (b) shows how a buyer agent and a seller agent synchronise at the
input of an sync/parallel transition, and then they traverse it together towards
the very same Double auction scene that they must have previously chosen as
destination. In this way we ensure that any Double auction scene is integrated by
the same number of buyers and sellers. Recalling our definition of sync/parallel
transitions, it is compulsory that both agents agree on their destination prior to
traversing the transition, otherwise they remain waiting within the transition for
any other, accompanying agent aiming at the same destination. Similarly in Fig-
ure 3.8 (¢) agents also synchronise on the input side likewise those in Figure 3.8
(b), with the exception that they are allowed to choose several Double auction
scenes as their destination. Finally, the case depicted by Figure 3.8 (d) shows
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Figure 3.8: Examples
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how an auctioneer (x:a) and an accountant (y:ac) synchronise on the input side
of an sync/choice transition. Once traversed the transition they independently
choose their destinations. Thus, the auctioneer might decide to either open a
Dutch auction scene or an English auction scene, whereas there is no choice here
available for the accountant.

x1: client x1: client
x2: server
X2: serverT SERVICE

x2: serveF——

x1: client
x2: server

x1: client
x2: server

0

Figure 3.9: A Client-server Model

Now let us consider a radically different example which is depicted in Fig-
ure 3.9: a performative structure that models the behaviour of a multi-threaded
client-server application. Here we will start understanding the use of container
scenes. According to the specification having a client agent and a server agent
they both proceed through the sync/parallel transition and start an instance of
the scene labelled as service where the client agent is expected to receive a service
by interacting with the server agent according to the scene protocol. Once the
service is over, both client and server make it for an output scene. The interest of
this example roots in the behaviour of the server agent. Notice that a container
scene has been introduced before the transition for the agent server. Recall that
the purpose of a container scene is to mark execution points to which we plan
to eventually send back agents. From the point of view of a server agent bound
to y, the container scene has no effect. The server understands that traversing
the transition spawns two execution threads: one devoted to serve the client and
another one which must loop back to the transition to wait for another client.

Lastly we present another example which shows a more complex pattern of
iterative structure. Further on in Section 3.5 we shall find the usefulness of the
very same structure when specifying the auctioning of goods in the fish market.
Departing from the specification provided in Figure 3.10 we wonder whether we
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Figure 3.10: Loop Specification (1)
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Figure 3.11: Loop Specification (2)
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can make the roles r1,r2,r3 loop back after finishing in So’. The answer is no.
Although we can add a new sync/parallel transition that links 1,72 to So, the
problem is that we cannot do the same for r3. Although we need to return 73
to the execution point prior to the traversing of the transition in order to meet
again rl and r2, we cannot make r3 go back to Si’ because that obliges r3 to
re-play in an activity that it intentionally left. Figure 3.10 proposes a solution
by adding a container scene that marks the execution point where the iterative
activity originates.

3.4.4 Electronic Institution

Up to now, we have considered how agents evolve within a performative structure
execution by means of their illocutionary actions. Nonetheless, nothing has
been said about how the consequences of their actions affect and condition their
current and subsequent behaviour. Recall from Section 3.3.5 that agents commit
to obligations that either restrict or enlarge their subsequent acting possibilities
in the context of an electronic institution. We have not detailed yet how an
institution keeps track of agents’ pending obligations. Furthermore, neither
have we made explicit how agents are allowed to join in or leave an institution.
Fundamentally, the execution of an electronic institution amounts to:

e determining how agents enter and leave;
e executing a performative structure; and
e keeping track of the obligations adopted by its players (agents).

On the one hand, accessing and leaving an institution will depend on the role
hierarchy and the set of static separation of duties defined for the institution,
along with agents’ pending obligations. On the other hand, the determination
of individual (per agent) obligations shall be based on the triggering of the
institution’s normative rules considering the illocutions uttered by each agent
within each scene execution.

Next we depart from our definitions of electronic institution and performative
structure execution to introduce our formal view of an electronic institution
execution.

Definition 3.4.9. Given an electronic institution E = (PS, IR, >, ssd, Nps, M L),
we define an execution descriptor of E as a tuple T = (Ilpg, k, H) where

e lIps = (A, (Zs)seps, (T¢)ter) an execution descriptor of the PS performa-
tive structure;

o k: A — 2ML ig a function that assigns to each agent a list of pending
obligations®; and

8 According to the defintion in Section 3.3.5.
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e H is a list of triples (¢, 0,t) —where ¢ stands for an illocution and ¢ and ¢
stand respectively for the scene where the illocution was uttered and the
time at which the utterance took place— containing the trace (history of
utterances) of the institution.

In order to produce new agents’ obligations, normative rules are triggered
fed with the illocutions in H, i.e. the illocutions uttered in the institution. New
obligations will be kept by & on an individual basis. Recall from Section 3.3.5
that once an obligation is fulfilled by an agent it is disregarded as a pending
obligation according to the following rule:

obliged(z, ¢, s) A done(¢p, s) = —obliged(z, d, s)

Next, we define the operations needed to add agents to (grant access to
agents) and remove agents from (allow agents to leave) an electronic institution.

Given an electronic institution execution descriptor Y, an agent a can be
added to an electronic institution with a set of roles R whenever a is not already
participating in the performative structure execution and there are not conflict-
ing roles in R. If so, the agent is authorised to play the roles in R along with
the roles subsumed by the roles in the same set R.

add_agent(Y,a,R)

Pre-conditions.
(clyag A
(c2) A(r,r"YERXR | (r,r') € ssd

Post-conditions.

A'=AU{a}

assigned_roles(a) = R

active_roles(a) = ()

authorised_roles(a) = RU{r' € Roles | Ir€R and r=7'}

An agent a can be removed from an electronic institution execution Y when
it is no longer in any scene execution but only in the output scene and a has no
pending obligations. In other words, agents are only allowed to leave when they
have fulfilled all their pending obligations.

Recall that by looking at the marking of the performative structure execution
we can readily find out the scene executions wherein agents are active.
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remove_agent(Y, a)

Pre-conditions.
(cl)ae A

(c2) k(a) =

(c3) Ir € authomsed roles(a) such that (a,r) € M(Zs,)

(c4) X € (B4)seps and XL # X, such that (a,r) € M(X!) for some
r € authorised_roles(a)

Post-conditions.
¥, = substract_agents(X,,{a})
AI = A — {a}

3.5 Practical Specifications

The purpose of this section is to practically illustrate how to specify electronic
institutions employing the case studies presented in Chapter 1. For both cases,
we concentrate on the graphical specification of their performative structures.

3.5.1 The Fish Market

Firstly, let us consider the modelling of the fish market as our initial case, whose
complete graphical specification is shown in Figure 3.12. First of all, the boss
starts a registry scene through which any agent, no matter the role, departing
from the root scene must go. The registry scene is employed by the boss of the
market to keep a directory (white pages) of all agents entering and eventually
participating in the market. Notice that for this example we make the boss
service agent registrations iteratively. When a registration process is completed,
the boss may loop back to open a new registry scene execution or go ahead to
start a closing scene execution to close down the market session.

When the rest of institutional agents arrive, namely a buyer admitter, an
auctioneer (auc), a seller admitter (sa), a buyers’ admitter (ba), a sellers’ ac-
countant (sac), and a buyers’ accountant (bac), they all synchronise to start
the scene executions corresponding to the tasks that they will be responsible
for,namely the admission of trading agents, the auctioning of goods and the ac-
counting of transactions. But before that, they jointly start an execution of the
opening scene, the starting point of the market activity. There the institutional
agents acknowledge one another before engaging in the services that they are
in charge of. Simultaneously (because of the and output followed), institutional
agents also make for the transition which leads to the closing scene, where they
will stand still until the boss of the market shows up to communicate the closing
of the market session and start out the closing processes.

And then it is time to start the market activity involving trading agents.
But first buyers and sellers arriving into the market are required to have their
participation granted in the market session by successfully completing an ad-



3.5. Practical Specifications

111

Fishmarket] x1:ba,x2:sa,x3:bac
x4:sac,x5:auc,x6:b,x7:s
x1:boss x1:ba,x2:sa,x3:bac N
x4:sac,x5:auc,x6:b,x7:s | /
3
e xB8:h0SS 7y
. x8:boss
x1:ba,x2:sa,x3:bac x8:boss ‘ l'bax2-sa
X‘lx:g_atf,igi_auc S x3:bac,x4:sac,
S x5:auc, x6:boss
~ Y.y x1:ba,x2:sa,x3:bac ue x
T registry x4:sac,x5:auc
x1:ba,x2:sa,x3:bac
x4:sac,x5:auc * :
opening
x1:ba,x2:sa,x3:bac
X4:sac.xs:ale x1:ba,x2:sa,x3:bac
\ x4:sac,x5:auc
[
© 8
]
r S ™\ a8, x3:bac,x4:sac,x5:aue———p]
§ XX 3
= 8¢9
> g9
© x3:bac,x4:sag %
v x5:auc x3:bac
L x4:sac
Qo s
53
E 28 good x3:bad
= x = adjudic. /7|
x| xltba
v x5:auc
x3:bac credit X5:aud
line
x1fba
x2:b x3:pad
x5:auc Dutch
auction
:sac J
N X2 |
b 2
&
29 x2:b
x1:ba G4 : o : !
h.x3: )
/ x2:b x3:bac
v X3:bac x3:hac x3:bac x3:bat
x2:b x2{b buyer x2:b)
" settlementg
x4:sac
x4:saq
x1:s
admissio

Figure 3.12: Graphical Specification of the Fishmarket Performative Structure.
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mission process. In order to specify the admission of both buyers and sellers we
make use of the client-server model depicted in Figure 3.9. When leaving the
opening scene, both buyer admitter and seller admitter go over two containers
which lead to the transitions where they wait for buyers and sellers to arrive.
When a trading agent shows up, the admitter and the trading agent move for-
ward towards an admission scene wherein the admission process takes place.
In parallel, the admitter goes back to the transition leading to the admission
scene to wait for other trading agents. As to buyer agents, when succeeding in
the admission process, they can make its way to the Dutch auction scene, and
otherwise they can only leave the institution following the path that leads to the
output scene. Sellers, on their side, after their successful admission are allowed
to deliver their goods at the good delivery scene, where the goods composing the
lots that they deliver are typified by the seller admitter before conveying them
to the auctioneer so as to be put at auction. If either the admission or the good
delivery do not succeed, the seller agent is forced to leave the market by making
its way to the output scene.

Say that there are already buyers ready to take part in the auctioning of goods
and, very importantly, goods to be put at auction. In fact, the auctioneer does
not start a Dutch auction scene execution till it receives some lot(s) of goods to
put at auction from the sellers’ accountant (sac) at the RFG (request for goods)
scene. Having goods to sell, the auctioneer starts the Duth auction and, at the
same time, the credit line scene and the good withdrawal scene. The purpose of
the credit line scene, occupied by the auctioneer and the buyers’ accountant, is
to determine the validity of the bids submitted by the buyers participating in
a bidding round within the Dutch auction scene. Thus the buyers’ accountant
must check whether every bid received by the auctioneer can be backed up by
the bidder. If not, the buyers’ accountant might either impose a penalty on
the bidder, or even order its sending-off from the Dutch auction scene. Notice
that buyers are allowed to update their credit at the buyer settlements scene.
In parallel, the auctioneer communicates the result of every bidding round —
either a sale or a withdrawal due to the reaching of the reservation price— to
the sellers’ accountant at the good adjudication scene.

When there are no more goods to be sold, all the institutional agents leave
their scenes and synchronise at an sync/choice transition to either start out the
auctioning of a new lot of goods or they simple leave the institution by jumping
into the output scene. In general, the process may be started over unless the
boss has already declared the closing of the market at the closing scene.

When completing their transactions, buyers and sellers have to respectively
make effective the payment of their purchases and collect their earnings before
leaving the market. On the one hand, sellers are not allowed to leave the market
until all their goods have been auctioned unless the boss suspended the market
in the middle of the auctioning of a lot of goods. Anyhow they can collect their
earnings at the sellers’ settlements scene. On the other hand, buyers are not
allowed to leave the market till they make effective their pending payments and
collect the acquired goods at the buyers’ settlements scene.
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Finally, when the boss declares the closing of the market all scene are closed
and all agents synchronise to leave for the output scene.

3.5.2 The Conference Centre

INSTITUTION
ROLES

r PRA
p PA
a attendant

Figure 3.13: Graphical Specification of the Conference Centre Environment Per-
formative Structure.

A conference takes place in a physical setting, the conference centre, where differ-
ent activities take place in different locations by people that adopt different roles
(speaker, session chair, organization staffer, etc.). During the conference, people
pursue their interests moving around the physical locations, and engaging in dif-
ferent activities. In a moment in time people are physically distributed along the
conference, possibly interacting with other people. We can easily think about
the spatial proximity relations that exist among people in this physical space.
However, if we think about an informational space where the past background
and current interests of the conference attendees are represented, we could think
of a new kind of prozimity relation that is a function of the similarity among
people’s interests and backgrounds.
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We can imagine software agents inhabiting the virtual space that take up
some specific activities on behalf of some interest of an attendee in the confer-
ence. Specifically, a Personal Representative Agent (PRA) is an agent inhabit-
ing the virtual space that is in charge of advancing some particular interest of a
conference attendee by searching for information and talking to other software
agents.

Attendees have to instruct their PRAs specifying a presentation (e.g. a topic
and possibly a collection of related subtopics), an appearance (a collection of
features describing the view an agent wants to offer to the other agents) for
interacting with other PRAs, and a collection of tasks (e.g. meeting people,
attending to talks, making appointments, etc) in which the PRA can participate
for achieving the attendees’ interests. The collection of tasks is provided by the
Conference Centre definition as a set of scenes and roles in which a PRA can
participate.

When a PRA has gathered information that may be of interest to an attendee
it will try to push that information to that attendee. We can imagine another
kind of agent the Personal Assistant (PA) agent which filters the information
to an attendee. For each conference attendee there could be a PA agent in the
virtual space that decides which information is more relevant for the attendee
at any moment taking into account the attendee physical context. PRAs could
only communicate to the attendee throw her PA. Attendees could receive those
informations either by going to computer screens distributed along the conference
building or by a wearable computer device, nicknamed the parrot, that runs a
speech-generation program.

In the Conference Centre there are three types of agents: Attendees, Personal
Representative Agents (PRAs), and Personal Assistants. Below we describe the
roles that can take each of them:

Attendees are people participating in the conference. During the conference
people can adopt different roles such as speaker, listener, session chair,
panelist, workshop organizer, or conference staffer.

PR As are software agents that are in charge of pursuing interests of attendees.
Each attendee can launch several PRAs, each of them pursuing a different
interest. During the conference a PRA can adopt different roles—and
several at the same time if the PRA is participating in several scenes.
The PRA roles are information gatherer, proposer, advertiser, information
filterer, and context manager. These roles are determined by the roles that
her attendee can adopt—i.e. only PRAs belonging to a workshop organizer,
a demonstrator, or a both owner can adopt the role of advertisers.

PAs are software agents that are in charge of elaborating the information that
is delivered to the attendees. Each attendee has one PA. The PA roles are
context pusher and deliverer.

The Conference Centre supports six scenes. It is important to remark here
that, in order to perform these scenes, the PRAs use both the conference centre
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ontology and the context information to infer the situation of the user. That is
to say, knowing that the user is in a particular place, the current time, and the
activity scheduled by the Conference for that place at that time, the PRA can
infer the social activity in which the user is involved. We will briefly summarize
the conference centre scenes:
e Interest-Based Navigation (IBN): The participants in an IBN scene are two
PRAs adopting the role of information gatherers. In this scene PRAs establish
initial conversations among them for estimating the interestingness of the atten-
dees or conference events they represent. We say that in the IBN scene PRAs
construct the interest landscapes of their attendees. The interest landscape holds
all the information considered as useful for the interest of the attendee and is
used and refined in the further scenes. When a PRA in a IBN scene assesses a
conference event with a high interestingness valuation, the information is directly
delivered to the attendee by means of the CfA scene. This delivery strategy was
adopted for biasing the future decisions of the attendee.
In CAPTA advertisers, this task has been specialized for attracting persons that
might be interested in the conference events (exhibition booths or conference
sessions) they represent.
e Appointment Proposal: in this scene, using the interest landscape, the PRAs
try to arrange an appointment between two attendees. First, PRAs negotiate a
set of common topics for discussion (the meeting content). When they reach an
agreement, PRAs negotiate about the appropriate meeting schedule. This scene
will be detailed in the next section. Both PRAs participating in an appointment
scene play the role of proposers.
e Propagandist: in this scene a PRA, adopting the role of advertiser, tries to
attract to other PRAs, adopting the role of information filterer, to the conference
event that represents (workshop, booth, or demonstration).
e Competition for Attention (CfA): in this scene PRAs, playing the role of pro-
posers, try to convince PAs, playing the role of deliverers, about the importance
of a given information. The CfA scene works like a sealed-bid auction. First at
all the PA announces a new round and the time for accepting proposals. Then,
the PRAs have to decide if are interested in sending a proposal and have to send
it to the PA. When the time for proposals is exceeded, the PA informs about
the decision and the scene begins again.
e Context Scene: in this scene a PRA, playing the role of information manager,
can subscribe to a PA’s context list for and track the physical context of a given
attendee. When an attendee is physically near to another person, exhibition
booth, or thematic session with similar interests,the PRA tries to inform the
attendee by means of the CfA scene.
e User Interaction (UI): in this scene an attendee is informed by her PA about the
information provided by the winner of the competition for attention scene. The
attendee, can assess the information indicating a positive or negative feedback
to the PA.

The performative structure holding all these previous scenes is given in Fig-
ure 3.13. Remark that PRAs can participate in all activities excepting the UI
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scene; PAs can participate in the context, CfA, and UI scene; and attendees only
can participate in the UI scene.

Textual Representation

Finally, the resulting specification presented above can be translated into its
XML-based textual counterpart in order to be manipulable by an agent, accord-
ing to the Document Type Definition in Appendix A. Below we offer part of the
specification corresponding to the conference centre environment:

<?xml version ="1.0" standalone = ’no’?>
<!DOCTYPE AMEI SYSTEM "http://www.iiia.csic.es/~jar/AMEI/dtd/amei.dtd">
<AMEI ID="comris-01">
<DESCRIPTION>
The Conference Centre Environment
Agent-mediated Electronic Institution
</DESCRIPTION>
<ROLESET>
<ROLEITEM>
<ROLEID> pa </ROLEID>
<DESCRIPTION> personal assistant </DESCRIPTION>
<CARDINALITY> 100 </CARDINALITY>
</ROLEITEM>
<ROLEITEM>
<ROLEID> pra </ROLEID>
<DESCRIPTION> personal representative assistant </DESCRIPTION>
<CARDINALITY> 1000 </CARDINALITY>
</ROLEITEM>
<ROLEITEM>
<ROLEID> att </ROLEID>
<DESCRIPTION> attender </DESCRIPTION>
<CARDINALITY> 100 </CARDINALITY>
</ROLEITEM>
</ROLESET>
<INHERITANCE>
<INHITEM>
<ROLEID> pa </ROLEID>
<ROLEID> pra </ROLEID>
</INHITEM>
</INHERITANCE>
<SSD>
<ROLEPAIR>
<ROLEID> pa </ROLEID>
<ROLEID> att </ROLEID>
</ROLEPAIR>
<ROLEPAIR>
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<ROLEID> pra </ROLEID>
<ROLEID> att </ROLEID>

</ROLEPAIR>
</SSD>
<NPS>
</NPS>
<PS ID="ps-01" HREF="pslib.xml#ps-01"/>

</AMEI>

3.6 Summary

In agree with [Ferber and Gutknetch, 1998], although organisational design is
widely admitted as a fundamental issue in multi-agent systems, social concepts
have been introduced in a rather informal way. Hence the need for formally
incorporating organisational terms and concepts into multi-agent systems.

In this chapter we have argued that open agent multi-agent systems can be
effectively designed and constructed as electronic institutions. Then we have
adopted a formal approach to specify electronic institutions. But why a formal
technique? We believe that the following tip [Dav, 1993](page 215) answers the
question:

Use a formal technique when we cannot afford to have the require-
ments misunderstood.

And this is our case if we consider the high complexity of what we have iden-
tified as our main goal: the design and development of architecturally—neutral
electronic institutions inhabited by heterogeneous (human and software) agents.
In general, the presence of an underlying formal method underpins the use of
structured design techniques and formal analysis, facilitating development, com-
position and reuse. Thus, we consider that the development of an electronic
institution must be preceded by a precise specification that fully characterise
the institutional normative environment (its rules). Some important advantages
derive from the creation of specifications (models) of electronic institutions:

e An electronic institution model is a description of the modelled institution
that can be used either as a specification or as a presentation. Such a
model allows to investigate a new institution before being constructed.
This possibility is particularly useful for institutions where design errors
may jeopardise security or be expensive to correct.

e Graphical specifications are extremely easy to understand. They are sim-
ilar to the informal diagrams employed by engineers and designers while
designing, constructing and analysing a system.

e An electronic institution’s specification offers an explicit description of
both states and actions, in contrast to most description languages which
describe either the states or the actions.
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e The behaviour of an electronic institution model can be analysed, either
by means of simulation or by means of more formal analysis methods.

e The process of creating the description and performing the analysis al-
lows the modeller to gain a dramatically improved understanding of the
modelled institution.



Chapter 4

Designing Agent-mediated
Electronic Institutions

The main goal of this chapter is to present a computational model that arises
from and fully captures the formalisation of electronic institution provided in
Chapter 3. For this purpose, in Section 4.1 we start arguing on the capital im-
portance of mediation for founding the realisation of infrastructures for agent-
based systems in general and for electronic institutions in particular. Next,
in Section 4.2 we introduce a particular type of facilitators, the so-called in-
teragents, as autonomous software agents devoted to mediating the interaction
among agents in an agent society in agent-based systems. In Section 4.3 we dis-
cuss how to extend this basic interagent model so that interagents can be also
employed in the framework of an electronic institution. Furthermore, we also
detail a computational model of institutional agents, i.e. the agents to which
the institution delegates its services. Finally, we present how to fully realise an
electronic institution based on interagents and institutional agents.

4.1 On the Need of Mediation

Agent-based systems provide a way of conceptualising sophisticated software
applications that face problems involving multiple and (logically and often spa-
tially) distributed sources of knowledge. In this way, they can be thought of
as computational systems composed of several agents that interact with one
another to solve complex tasks beyond the capabilities of an individual agent.

The development of agent-based systems can be regarded as a process com-
posed of two well-defined, separate stages concerning respectively:

e the agents’ logics: from the agents’ inner behaviour (knowledge representa-
tion, reasoning, learning, etc.) to the agents’ social behaviour responsible
for high-level coordination tasks (the selection, ordering, and communica-
tion of the results of the agent activities so that an agent works effectively

119
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in a group setting [Lesser, 1998, Jennings, 1995]).

o the agents’ interactions taking place at several levels: content level, con-
cerned with the information content communicated among agents; inten-
tional level, expressing the intentions of agents’ utterances, usually as per-
formatives of an agent communication language (ACL), e.g. KQML, FIPA
ACL, etc.; conversational level, concerned with the conventions shared be-
tween agents when exchanging utterances; transport level, concerned with
mechanisms for the transport of utterances; and connection level, contem-
plating network protocols (TCP/IP, HTTP, etc.).

Notice that nowadays a large amount of time during the development of
agent-based systems is devoted to the management of the aforementioned time-
consuming, complex agents’ interactions. Since most of these appear to be
domain-independent, it would be desirable to devise general solutions that can
be subsequently reused for the deployment of other multi-agent systems. In this
manner, and very importantly, agent engineers could exclusively concentrate on
the domain-dependent agents’ logics responsible of decision-making. And for
this purpose, they can largely benefit from their previous experiences in the
application of Artificial Intelligence techniques.

We defend that infrastructures for agent-based systems in general, and for
electronic institutions in particular, can be successfully deployed making use of
middle-agents, mediators, that take charge of the cumbersome interaction issues
inherent to these types of systems. This observation motivates the introduction
of a special type of facilitator, the so-called interagent, an autonomous software
agent that mediates the interaction between each agent and the agent society
wherein this is situated. Thus, interagents constitute the unique mean through
which agents interact within a multi-agent scenario. And consequently, we re-
gard interagents as the fundamental element for the construction of any agent-
based system’s infrastructure. Whereas agents’ external behaviour is managed
by interagents, their individual logics, knowledge, reasoning, learning and other
capabilities are internal to agents.

As stated in Chapter 3, we consider electronic institutions as a particular
case of agent-based systems. However, electronic institutions must be regarded
as more restrictive environments. Thus, when realising electronic institutions we
must not be exclusively concerned about guaranteeing the correct coordination
among the participating agents when engaged in conversations (likewise any
agent-based system), but also about guaranteeing that agents effectively abide by
the institutional rules. From this follows that we must by some means enforce the
institutional rules to the participants. For this purpose, we propose to add a new
dimension to interagents and extend their basic functionality so that they can
encapsulate and handle institutional rules. In this way, the interagent employed
by each participant keeps track of the participant’s current commitments and
prohibitions, and furthermore either enables or disables paths in the performative
structure depending on the participant’s roles.

Notice that in fact we conceive interagents in electronic institutions as part
of the institution itself. Therefore, interagents must be regarded as a kind of
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Figure 4.1: The Fish Market as an Agent-mediated Electronic Institution.

institutional agents. Interagents are customised by the institution before de-
livering them to participants, which are obliged to have their social behaviour
mediated by interagents. As a major advantage of using interagents, we shall
successfully manage to separate the rules (of the institution) from the players,
an issue upheld as fundamental for institutional design [North, 1990].

Finally, there is the matter of realising the services provided by the institu-
tion. At this aim, we also propose to employ agents to which the institution
delegates its services. We show that these institutional agents along with inter-
agents will suffice to computationally realise an electronic institution. Observe
the distinction that we draw between institutional agents in charge of services
(service providers) and institutional agents in charge of mediation. Hence, by
agent-mediated electronic institution (henceforth denoted as AmEI for shorter)
we mean an electronic institution fully realised by means of agents.

In what follows firstly, in Section 4.2, we present a general-purpose model of
interagents [Martin et al., 2000b] as the basis for building agent-based systems
founded on the notion of conversation protocols [Martin et al., 2000a]. Secondly,
in Section 4.3 we discuss the extensions required by an interagent in order to
be effectively used for the development of AmFEIs. Then we follow with the
description of the other type of institutional agents, service providers, in order
to finally detail how both types of institutional agents are effectively integrated
to manage the operation of an electronic institution.
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4.2 Agent-based Systems

4.2.1 Overviewing Interagents

Our proposal regarding the construction of infrastructures for agent-based sys-
tems relies upon two fundamental elements: conversations and interagents.

We view conversations as the means of representing the conventions adopted
by agents when interacting through the exchange of utterances [Winograd and
Flores, 1988, Barbuceanu and Fox, 1995] —”utterance suggests human speech
or some analog to speech, in which the message between sender and addressee
conveys information about the sender” [Parunak, 1996]. More precisely, such
conventions define the legal sequence of utterances that can be exchanged among
the agents engaged in conversation: what can be said, to whom and when.
Therefore, conversation protocols are coordination patterns that constrain the
sequencing of utterances during a conversation.

Interagents mediate the interaction between an agent and the agent society
wherein this is situated. In fact, the management of conversation protocols must
be considered as the raison d’étre of interagents. Here we differentiate two roles
for the agents interacting with an interagent: customer, played by the agent
exploiting and benefiting from the services offered by the interagent; and owner,
played by the agent endowed with the capability of dynamically establishing
the policies that determine the interagent’s behaviour. Needless to say that an
agent can possibly play both roles at the same time. Moreover, several owners
can even share an interagent’s property (collective ownership), whereas several
customers can make use of the same interagent (collective leasing).

In what follows we provide a detailed account of the full functionality of in-
teragents —mostly from the point of view of customers— to illustrate how they
undertake conversation management. An interagent is responsible for posting
utterances of its customer to the corresponding addressee and for collecting the
utterances that other agents address to its customer. This utterance manage-
ment abstracts customers from the details concerning the agent communication
language and the network protocol.

Each interagent owns a collection of relevant conversation protocols (CP)
used for managing its customer conversations. When its customer applies for
starting a new conversation with another agent the interagent instantiates the
corresponding conversation protocol. Once the conversation starts, the intera-
gent becomes responsible for ensuring that the exchange of utterances conforms
to the CP specification.

Before setting up any conversation the interagent must perform a CP ne-
gotiation process with the interagent of the addressee agent. The goal of CP
negotiation is to reach an agreement with respect to the conversation protocol
to be used (see Section 4.2.2)!. Finally, an interagent allows its customer to hold

IEventually the negotiation process might be extended to include a CP verification process
as a subprocess. Such a process would check whether the CP to be used verifies the necessary
conditions (liveness, termination, deadlock and race condition free) for guaranteeing the correct
evolution of an interaction.
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several conversations at the same time. This capability for multiple conversa-
tions is important because conversations with any number of participants can
be built as a collection of simultaneous CP instances. In other words, the agent
views a conversation as involving n participants while its interagent views such
conversation as a collection of simultaneous dialogues represented as multiple
CP instances.

For explanatory purposes, in this chapter we consider again the example of
the auction scene, the main activity in the fish market, already introduced in
Chapter 3. Recall that the auctioning of goods is governed by an auctioneer
under the rules of the so-called downward bidding protocol (DBP). When the
auctioneer opens a new bidding round to auction a good among a group of
agents, he starts quoting offers downward from the chosen good’s starting price.
For each price called, three situations might arise during the open round: i)
several buyers submit their bids at the current price. In this case, a collision
comes about, the good is not sold to any buyer, and the auctioneer restarts the
round at a higher price; ii) only one buyer submits a bid at the current price.
The good is sold to this buyer whenever his credit can support his bid. Whenever
there is an unsupported bid the round is restarted by the auctioneer at a higher
price, the unsuccessful bidder is punished with a fine, and he is expelled out from
the auction room unless such fine is paid off; and iii) no buyer submits a bid at
the current price. If the reserve price has not been reached yet, the auctioneer
quotes a new price which is obtained by decreasing the current price according
to the price step. If the reserve price is reached, the auctioneer declares the good
withdrawn and closes the round.

The conventions that buyer agents have to comply with when interacting
with the auctioneer during a bidding round are represented by means of a con-
versation protocol managed by the so-called trading interagents, a special type
of interagents owned by the institution, the auction house, but used by trading
agents.

4.2.2 Conversation Protocols

A conversation protocol (CP) defines a set of legal sequences of utterances that
can be exchanged between two agents holding a conversation. We model and
implement a CP as a special type of Pushdown Transducer (PDT), which can
be seen in turn as a combination of a Finite-State Transducer (FST) and a
Pushdown Automaton (PDA):

e An FST is simply a Finite State Automaton (FSA) that deals with two
tapes. To specify an FST, it suffices to augment the FSA notation so that
labels on arcs can denote pairs of symbols [Roche and Schabes, 1997];

e A PDA is composed of an input stream and a control mechanism —like an
FSA— along with a stack on which data can be stored for later recall [Aho
and Ullman, 1972, Brookshear, 1989].
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Therefore, a PDT is essentially a pushdown automaton that deals with two
tapes. A PDA can be associated to a PDT by considering the pairs of sym-
bols on the arcs as symbols of a PDA. The choice of PDTs as the mechanism
for modelling CPs is motivated by several reasons. First, analogously to other
finite-state devices a few fundamental theoretical basis make PDTs very flexible,
powerful and efficient [Roche and Schabes, 1997]. They have been largely used
in a variety of domains such as pattern matching, speech recognition, crypto-
graphic techniques, data compression techniques, operating system verification,
etc. They offer a straightforward mapping from specification to implementa-
tion. The use of pairs of symbols allows labelling arcs with (p/d) pairs (where
p stands for a performative, and d stands for a predicate symbol?). This adds
expressiveness to the representation of agent conversations. PDTs, unlike other
finite state devices, allow us to store, and subsequently retrieve, the contextual
information of ongoing conversations.

In the rest of this section we explain CPs in depth, whose management is
the main task of interagents. We start introducing a conceptual model of CPs.
Next, the formalism underpinning our model is presented in order to provide
the foundations for a further analysis concerning the properties that CPs must
exhibit. Finally, the way of negotiating, instantiating, and employing CPs is
also explained.

Conceptual Model

Conceptually, we decompose a CP into the following elements (see Figure 4.3): a
finite state control, an input list, a pushdown list, and a finite set of transitions.

First, the finite state control contains the set of states representing the com-
munication state of the interagent’s customer during an ongoing conversation.
We shall distinguish several states based on the communicative actions that they
allow:

e send, when only the utterance of performatives is permitted;
e receive, when these can be only received; and

e mized, when both the utterance and reception are feasible.

The utterances heard by an interagent during each conversation are stored
into an input list. In fact, this input list is logically divided into two sublists:
one for keeping the utterances’ performatives, and another one for storing their
predicates. It is continuously traversed by the interagent in search of a (p/d)
pair which can produce a transition in the finite state control. Notice that
the continuous traversing of the input list differs from the type of traversing
employed by classic FSAs whose read only input tapes are traversed from left to
right (or the other way around).

Let us consider a particular CP related to an ongoing conversation. We say
that an utterance is admitted when it is heard by the interagent and subsequently

2Henceforth simply predicate.
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stored into the input list. Admitted utterances become accepted when they can
cause a state transition of the finite state control. Then they are removed from
the input list to be forwarded to the corresponding addressee, and thereupon
the corresponding transition in the finite state control takes place. Notice that
all utterances are firstly admitted and further on they become either accepted
or not. Therefore, the input list of each CP keeps admitted utterances that have
not been accepted for dispatching yet. From now on, these criteria will be taken
as the message sending and receiving semantics used in Section4.2.2.

The context of each conversation can be stored and subsequently retrieved
thanks to the use of a pushdown list. Such context refers to utterances previ-
ously sent or heard, which later can help, for example, to ensure that a certain
utterance is the proper response to a previous one. For instance, an utterance in
the input list —represented in a KQML-like syntax— will be processed only if
its sender, receiver and the value of the keyword :in-reply-to match respectively
the receiver, sender and value of the keyword :reply-with of the topmost message
on the pushdown list.

Finally, each transition in the finite set of transitions of a CP indicates: i)
what utterance can be either sent or received to produce a move in the finite
state control (henceforth we shall employ the notion of polarity of an utterance to
express whether it can be either sent or received); and ii) whether it is necessary
to store (push) or retrieve (pop) the context using the pushdown list.

@ x p/d;Z|op @

Figure 4.2: Transition

Each arc of the finite state control is labelled by one or more transition
specifications. The structure of a transition specification is shown in Figure 4.2:
a transition from state i to state j occurs whenever an utterance with polarity
z, performative p, and predicate d is found in the input list and the state of the
pushdown list is Z. In such a case, the chain of stack operations indicated by op
is processed. In order to fully specify a transition, the following definitions and
criteria must be observed:

e the polarity of an utterance u, denoted as polarity(u), can take on one
of two values: +, to express that the utterance is sent, or -, to indicate
that the utterance is received. From this, for a given CP p we define its
symmetric view P as the result of inverting the polarity of each transition;

e the special symbol p/* represents utterances formed by performative p
and any predicate, whereas the special symbol */d stands for utterances
formed by any performative and predicate d;

e when several transitions py/di; Z|op, ... ,pn/dn; Z|op label an arc, they
can be grouped into a compound transition as (p1/di]...|pn/dn); Z|op;
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e our model considers the following stack operations:

push pushes the utterance selected from the input list onto the stack;
pop pops the stack by removing the topmost utterance; and

nop leaves the stack unchanged. Usually this operation is omitted in
specifying transitions;

e when the state of the pushdown list is not considered for a transition, it
is omitted in the transition specification. In CPs, e-moves, i.e. moves that
only depend on the current state of finite state control and the state of the
pushdown list, are represented using the transition specification Z|op.

Input list

(QUESTION [1] request [ 2] (request 3 [anForm 4

:conversation c-91 :conversation c-87 :conversation ¢-03 :conversation c-87

:sender KQLAT :sender Akira :sender Akira :sender Auctioneer

:receiver Akira ‘receiver Auctioneer :receiver Jim :receiver Akira

:reply-with KQLAT-1 sin-reply-to Auctioneer-1869 :reply-with Akira-225 :reply-with Auctioneer-1901

:language LISP :reply-with Akira-256 :language ACL :language FM

:ontology Research :language FM :ontology JM :ontology FishMarket
:ontology FishMarket

:content (Squash? today) :content (bid)) :content (GET http://www)) | :content (offer cod-21 1560))

Pushdown list

) RB (INFORM
(‘JB.pOP-POp.Popgfq—\ :sender Auctioneer
9 :receiver Akira

:reply-with Auctioneer-1869
:language FM

:ontolofy FishMarket
+R/5;pop.push :content (offer cod-21 1580))

-1/11.pop

-FI7, /FiI8, -FI9)

(INFORM

:sender Auctioneer

‘receiver Akira

:reply-with Auctioneer-1821
:language FM

:ontolofy FishMarket

:content (buyersjack akirajar))

(117, <118, -1/9);pop

Finite State Control .

Figure 4.3: Partial view of the CP DBP used by trading interagents in the
Fishmarket.

For instance, Figure 4.3 depicts the CP handled by a trading interagent
to allow its customer (buyer agent Akira) to participate in a bidding round
open by the auctioneer agent. Notice that the performatives of the utterances
considered in the figure follow the syntax of Table 4.1, and the predicates within
such utterances belong to the list in Table 4.2.

Several remarks apply to this simple example. First, notice that this specifi-
cation respresents a buyer agent’s view of the auction scene. This fact explains
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the apparent mismatch between this specification and the auction scene specifi-
cation provided in Chapter 3. In addition to this, the example also intends to
illustrate the use of the pushdown list: i) for saving the state of the bidding round
(round number, good in auction, list of buyers, etc.); and ii) for ensuring that
whenever a request for bidding is dispatched, the bid conveyed to the auctioneer
will be built by recovering the last offer pushed by the trading interagent onto
the pushdown list. From this follows that we also contemplate decision-making
capabilities for interagents in the course of a mediated conversation. For the
moment, we put this consideration aside to be brought up back in Section 4.3.3,
and subsequently exemplified in Chapter 5. Finally, though the specification in
Chapter 3 was synchronous —the auctioneer asked the buyers in turns whether
they accepted to bid at the current offer price—, the specification in Figure 4.3
is built considering a more realistic asynchronous version of the scene. In this
way, each buyer continuously receives the offers called by the auctioneer till some
event comes about.

ID | Speech Act Description
QUESTION SOLICIT the addressee to INFORM the sender of some

proposition

R REQUEST SOLICIT the addressee to COMMIT to the sender concerning
some action

I INFORM ASSERT + attempt to get the addressee to believe the content

C COMMIT ASSERT that sender has adopted a persistent goal to achieve
something relative to the addressee’s desires

F REFUSE ASSERT that the sender has not adopted a persistent goal to
achieve something relative to the addressees desires

A ACKNOWLEDGE | SOLICIT the addressee to ACKNOWLEDGE the sender the
reception of some performative

Table 4.1: Types of performatives following Cohen and Levesque [Cohen and Levesque,

1995] ( [Parunak, 1996])

#Message | Predicate Parameters

1 open_round | round-number

2 good good_id good_-type
starting_price resale_price

3 buyers {buyerlogin}*

4 offer good_id price

5 bid

6 sold good_id buyerlogin price

7 sanction buyerlogin fine

8 expulsion buyerlogin

9 collision price

10 withdrawn good_id price

11 end_round round_-number

12 end_auction | auction_number

Table 4.2: DBP Trading Interagent Predicates
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Formal Definition

It is time to formally capture the conceptual model introduced above to be
able to reason, later on, about the properties that we must demand from CPs.
Therefore, formally we define a conversation protocol as an 8-tuple :

CP= <Q7 Ela 227F767 qo, Z07F>
such that:

e () is a finite set of state symbols that represent the states of the finite state
control.

e Y, is a finite alphabet formed by the identifiers of all performatives that
can be uttered during the conversation.

e Y, is a finite input list alphabet composed of the identifiers of all predicates
recognized by the speakers.

e ' is the finite pushdown list alphabet.

e ¢ is a mapping from @ X X1 X Xo x ['* to @ x I'* which indicates all possible
transitions that can take place during a conversation.

e ¢o € () is the initial state of a conversation.
e 7y € I' is the start symbol of the pushdown list.

e F C (@ is the set of final states representing possible final states of a
conversation.

CPs only contemplate a finite number of moves from each state that must
belong to one of the following types:

moves using the input list these depend on the current state of the finite
state control, the performative and predicate of a message into the input list and
the state of the pushdown list. For instance, the move expressed by the following
transition allows a trading interagent to convey to the auctioneer a request for
bidding received from its customer (a buyer agent) whenever an offer, received
from the auctioneer, has been previously pushed upon the pushdown list

5(gs, +REQUEST, bid, offerZ) = (gy, bid(price) Z);

e-moves these depend exclusively on the current state of the finite state control
and the state of the pushdown list. e-moves are specifically employed to model
and implement time-out conditions within CPs, so that interagents can handle
expired messages and automatically recover from transmission errors

0(qg,e,e,bidZ) = {(gs, Z)}-
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It should be noted that at present we are only interested in deterministic
CPs (DCP): a CP is said to be deterministic when for each state ¢ € @, p € ¥4,
d € ¥y and Z € T* there is at most one possible move, that is |d(q, p,d, Z)| < 1.

Instantiation

CPs can be defined declaratively and stored into conversation protocol reposito-
ries open to interagents. Each CP is identified by a unique name anonymously
set by the agent society. When an interagent is requested by its customer to
start a conversation with another agent it must retrieve the appropriate CP from
a conversation repository, and next proceed to instantiate it. In fact, the CP
must be instantiated by each one of the interagents used by the agents intending
to talk.

We say that a CP becomes fully instantiated when the interagent creates a
CP instance, i.e. after setting the values for the following attributes:

CP name CP class to which the CP instance belongs;

speakers identifiers of the agents to engage in conversation. Notice that we
shall restrict a CP instance to consider exactly two speakers: the agent that pro-
poses to start a conversation, the originator, and his speaker, the helper. In spite
of this limitation, we are not prevented from defining multi-agent conversation
as a composition of multiple CP instances;

conversation identifier a unique identifier created by the originator;

polarity this property indicates how to instantiate the polarity of each transi-
tion of the CP: if the instance polarity is positive, each transition is instantiated
just as it is, whereas if it is negative each transition polarity is inverted. Notice
that the helper must instantiate the symmetric view of the originator’s CP in
order to ensure protocol compatibility as shown in Section 4.2.2.

transport policies such as time-out or maximum time allowed in the input
list. These can be altered during the course of a conversation whereas the rest of
attributes of a CP instance remain fixed. The use of transport policies require
to extend the CP being instantiated with e-moves that enable to roll back to
previous conversation states.

Then, and considering the definition above, from the point of view of in-
teragents the conversations requested to be held by its customer can progress
through several states:

pre-instantiated after retrieving the requested CP;
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instantiated a CP becomes instantiated when the originator creates a CP
instance, and subsequently asks the helper for starting a new conversation ac-
cepting the terms (attributes) of the interaction expressed by the CP instance;

initiated this state is reached when both speakers agree on the value of the
attributes of a new conversation, as a result of the negotiation phase described
in Section 4.2.2;

running state attained after the first utterance;

finished a conversation is over whenever either the final state of the CP is
reached, the helper refuses to start it, or an unexpected error comes about.

Figure 4.4 shows the evolution of the states of a CP by means of a finite state
diagram.

instantiated

Figure 4.4: CP States.

Instantaneous Description

An instantaneous description describes the state of a CP instance at a particular
time. An instantaneous description of a CP instance p is a 7-tuple:

(0,h,p,t,q,1, )

such that:

o is the originator agent; h is the helper agent; p is the polarity of the CP
instance; t is the current setting of transport policies; ¢ is the current state of
the finite state control; i represents all utterances currently kept by the input
list; and « is the current state of the pushdown list.

Figure 4.3 depicts the instantaneous description for an instance of the CP
DBP employed by a trading interagent to allow its customer (a buyer agent) to
participate in a bidding round open by the auctioneer agent. We identify buyer
Akira as the originator, the auctioneer as the helper, and the coloured node ¢g
as the state of the finite state control.
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A deterministic CP has at most —without taking into account possible e-
moves for dealing with expired utterances— one possible move from any instan-
taneous description. However, continuously traversing the input list in search of
an utterance that causes a transition can lead to race conditions. For instance,
in the CP instance of Figure 4.3 the second and fourth utterances can originate
a race condition since both utterances can cause a move in the finite state con-
trol. Thus, it is necessary to define criteria for deciding which utterance must
be accepted as we show in the next section.

Compatibility Semantics

In order to ensure the correct exchange of utterances during a conversation,
there are important, desirable properties such as termination, liveness, and lack
of deadlocks and race conditions that CPs must verify. In what follows we
concentrate exclusively on the two last properties, since to guarantee both ter-
mination and liveness it suffices to assume that every CP whose set of final states
is non-empty does not remain forever in the same state.

First we formulate our notion of CP compatibility, following the notion of
protocol compatibility proposed by Yellin and Strom in [Yellin and Strom, 1997],
whose work provides, in fact, the foundations of our analysis.

CPs can be assigned two different semantics: asynchronous or synchronous.
Although asynchronous semantics may facilitate implementation, it makes gen-
erally harder reasoning about certain properties, such as deadlock which has
proven undecidable under these semantics [Yellin and Strom, 1997]. On the con-
trary, under synchronous semantics, reasoning about such properties is easier,
though an implementation technique must map these semantics to a particular
implementation.

For our purposes, we have opted for a synchronous semantic for CPs and,
consequently, for devising the adequate mechanisms for implementation. Such a
type of semantic requires to assume that a speaker can send an utterance to the
other speaker only if that is willing to receive the utterance. Therefore, we must
assume that the finite state controls of both CP instances advance synchronously,
and hence that sending and receiving an utterance are atomic actions. Upon this
assumption, Yellin and Strom introduced the following notion of compatibility
of protocols: “Protocols p; and ps are compatible when they have no unspecified
receptions, and are deadlock free”. On the one hand, in terms of CPs, the absence
of unspecified receptions implies that whenever the finite state control of a CP
instance corresponding to one of the speakers is in a state where an utterance
can be sent, the finite state control of the CP instance of the other speaker must
be in a state where such utterance can be received. On the other hand, deadlock
free implies that the finite state control of both CP instances are either in final
states or in states that allow the conversation to progress. Interestingly, the
authors prove the existence of an algorithm for checking protocol compatibility.
By applying such algorithm, it can be proved that under synchronous semantics
a CP instance p and its symmetric view p are always compatible. From this
follows that two CP instances are compatible if both belong to the same CP
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class, and both have the same speakers but different polarity. In this way,
the complete agreement on the order of the utterances exchanged between the
speakers is guaranteed.

Concerning the implementation, observe that the atomicity of sending and
receiving utterances cannot be guaranteed. Nonetheless, when compatible CP
instances lack mixed states, the unspecified receptions and deadlock free prop-
erties can still be guaranteed. But the presence of mixed states can lead to race
conditions that prevent both speakers from agreeing on the order of the mes-
sages, and therefore unexpected receptions and deadlocks might occur. In order
to avoid such situations, low-level synchronization mechanisms must be provided
in accordance with the interpretation given to message sending and receiving in
Section 4.2.2.

For this purpose, we consider that the speakers adopt different, conflicting
roles —either leader or follower— when facing mixed states. The leader will de-
cide what to do, whereas the follower will respect the leader’s directions. By ex-
tending CP instances with a new attribute —which can take on the values leader
or follower— we include the role to be played by each speaker in front of mixed
states. Besides, we consider two special symbols —TRY and OK— that alter
the interpretation of message sending. Thus, on the one hand when a message is
sent under the TRY semantics, the receiver tries to directly accept the message
without requiring previous admission. On the other hand, the OK symbol con-
firms that the TRY was successful. Then given a CP (Q,%,%5,T, 6, qo, Zo, F)
for each mixed state x € Q the CP instance corresponding to the follower will
be augmented in the following way:

Vp € ¥1,Vd € ¥5,VZ € T*,VZ' € T* Vq € @Q such that 3§(z, +p,d, Z) =
{(g,Z")} then a new state n ¢ @ will be added @ = @ U {n} along with the
following transitions:

(i) 0(z,+TRY (p),d,Z) ={(n, Z)}
(11) 6(”5 —OK,@, Z) = {(q7 Z,)}
(ifi) Vp' € £1,Vd' € £5,YZ" € T* then 8(n, —p',d', 2") = &(z, —p', d', Z")

Therefore, when the leader is in a mixed state and sends an utterance, the
follower admits it and subsequently accepts it. Conversely, when the follower is
in a mixed state and sends an utterance, the leader, upon reception, determines
if it is admitted or not. Figure 4.5 illustrates how the CP instance on the left
should be augmented to deal with the mixed state gs. However, we will not
unveil yet how the whole bidding process proceeds. We hold the explanation till
Chapter 5 where we offer a thorough dissection of an agent-mediated electronic
auction house where it is currently employed.

Notice that the conflict role played by each speaker must be fixed before the
CP becomes completely instantiated. This and other properties of CP instances
need be negotiated by the speakers as explained along the next section.
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Figure 4.5: Augmented CP instance

CP Negotiation

In Section 4.2.2 we introduced the several attributes of a CP instance that have
to be fixed before the conversation between the speakers becomes fully instanti-
ated, and subsequently started. The value of each one of these attributes has to
be mutually agreed by the speakers in order to guarantee conversation sound-
ness. For this purpose, interagents have been provided with the capability of
negotiating such values by means of the so-called handshake phase, following the
directions of their customers. During this process, the initial connection between
the originator and the helper is established, and next the originator conveys its
multi-attribute proposal (the set of attributes’ values) to the helper. Then, we
distinguish two models of negotiation based on the helper’s response: one-step
and two-step negotiation.

In one-step negotiation the helper either automatically accepts or refuses the
originator’s proposal. The following sequence depicts a typical exchange for this
model of negotiation, where q values indicate the degree of preference over each
proposal.

originator: START

helper: 0K
originator: CP/DBP; id=21; polarity=+; leader=me; q=0.7
helper: CP/DBP; id=21; polarity=-; leader=you; q=0.3

originator: CP/DBP; id=21; polarity=+; leader=me

In this example the helper accepts the second proposal from the originator.

In two-step negotiation, instead of directly accepting or refusing the origi-
nator proposal, the helper can reply with a a list of counterproposals ranked
according to its own preferences. Then, the originator can either accept one of
these proposals or cancel the process.

originator: START
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CP/DBP; id=22; polarity=+; leader=me; timeout=500; q=0.7

CP/DBP; id=22; polarity=-; leader=you; timeout=1000; q=0.3
helper: NOT

CP/DBP; id=22; polarity=-; leader=me; timeout=200; q=0.4

CP/DBP; id=22; polarity=+; leader=you; timeout=200; q= 0.6
originator: OK

CP/DBP; id=22; polarity=+; leader=you; timeout=200

In this example the helper refuses the proposals of the originator, who finally
accepts the first helper’s counterproposal.

It should be noted here that the concrete conversation protocol to be instan-
tiated can be negotiated too. For this purpose, we have introduced the CP type
(fi. the CP/DBP for the downward bidding protocol), analogously to MIME
content types (text/html, image/gif, etc.). On the other hand, it is nonsense to
negotiate certain attributes for some CPs. For instance, the polarity of the CP to
be employed by an auctioneer attempting to open a DBP round is unnegotiable
since the auctioneer cannot play the role of a buyer and vice versa.

4.2.3 Implementing Interagents

In this section we introduce JIM [Martin et al., 1998], a general-purpose intera-
gent enabled with the capability of managing CPs. We precede the presentation
of JIM by the introduction of the SHIP protocol since this has profoundly shaped
its architecture.

The extenSible and Hierarchical Interaction Protocol (SHIP) offers a layered
approach to support all levels of agent interaction (a layer per level introduced
in Section 4.1). Each layer groups a set of protocols with similar functionality
together, and provides an abstract interface to higher layers that hides the details
related to the particular protocol in use. For instance, two agents can exchange
utterances without worrying about the underlying communication mechanism
—message passing, tuple-space® or remote procedure call. In addition to this,
the hierarchical structure of SHIP allows agents to choose their interaction level.
This involves the use of the sub-hierarchy of SHIP represented by the chosen
layer and the layers below, but not higher layers, e.g. an agent may decide to
use the transport layer and the lower levels (the connection layer in this case)
but not the higher layers of SHIP. Lastly, SHIP is extensible, in the sense that
it permits the incorporation (plug-in) of new protocols into each layer.

SHIP is a request/response protocol which distinguishes two roles: client and
server. An interagent may play both roles at the same time, e.g. it can act as
a server for its customer, and as a client for another interagent. In a typical
message flow a client sends a request to the server, and this sends a response
back to the client. All messages exchanged between a client and a server are
encapsulated as either requests or responses of the SHIP protocol as depicted
in Figure 4.6. Observe that both requests and responses are represented as

3A tuple space is a name space shared between distributed clients.
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Figure 4.6: All messages between an interagent and its customer are encapsu-
lated as either requests or responses of the SHIP protocol.
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XML [Connolly, 1997] messages that nest the information corresponding to each
level of interaction. On the sender side, messages to be sent are wrapped at each
layer and passed down till arriving to the communication layer responsible for
the sending. Upon reception, on the receiver side, messages are unwrapped at
each layer and passed up to higher layers till the message arrives at the layer
chosen by the agent for interacting.

SHIP has been built upon the following hierarchy of layers (from top to
bottom): content, agent communication, conversation,transport and connection.
In what follows we describe the functionality of each one of these layers taken as
example the SHIP request in Figure 4.6 corresponding to a request for bidding
of a buyer agent.

The content layer is concerned with the language for representing the infor-
mation exchanged between agents. Such information refers to terms of a specific
vocabulary of an application domain (ontology [Gruber, 1993a]). For example,
a piece of information at this level might be the predicate (bid) encoded in a
first-order language using the ontology e-auctions.

The intentional layer codifies and de-codifies performatives in a given ACL.
For example, a performative requesting for bidding at this level wraps the pred-
icate (bid) received from the content layer with the illocution REQUEST of a
basic ACL whose performatives are shown in Table 4.1.

The conversational layer is in charge of providing the necessary mechanisms
for the negotiation, instantiation, and management of CPs. Following the ex-
ample above, the performative is wrapped with the information related to the
context in which it is uttered (conversation protocol in use, sender, receiver,
etc.).

The transport layer is concerned with the transport of utterances. For
this purpose, we have devised the Inter-Agent Protocol (IAP), an extensible
application-level protocol based on the Hypertext Transfer Protocol (HTTP).
TAP constrains the body of a message to be an utterance. Moreover TAP over-
rides the set of request methods provided by HTTP. For instance, on the one
hand the POST method is used to indicate that the utterance enclosed in the
message body must be addressed to the receiver specified in the context. On the
other hand, the GET method is used to retrieve the utterance accepted by an
interagent that matches the pattern of utterance enclosed in the message body.
Furthermore, a new addressing scheme has been introduced (iap://) and a new
default port (2112).

TAP allows messages to be tagged with different headers to specify their
lifetime:

e the delay header indicates how long an utterance queued in an interagent
is postponed before being processed. In this way, an agent can tell its
interagent to deliver a given utterance after a certain period of time;

e the time-out header indicates the maximum period of time that an agent
commits to wait for receiving the response to a given utterance;

e the time-to-live header indicates the lifetime of the utterance once admitted
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Figure 4.7: An Overview of JIM’s Architecture.

by an interagent —thus, when this time expires, the utterance is thrown
away by the receiving interagent and the sender receives (back) an error
message.

We have introduced TAP due to the lack of an adequate transport protocol for
agents’ communicative acts. Currently, most ACLs such as FIPA ACL [FIPA,
1998] or KQML [Mayfield et al., 1996] only define minimal message transport
mechanisms —in FIPA ACL terms “a textual form delivered over a simple byte
stream” [FIPA, 1998]. As an alternative to simple TCP/IP sockets, other trans-
port protocols such as HTTP, SMTP or even GSM have been proposed. How-
ever, on the one hand these protocols offer many unnecessary features for this
task, and on the other hand they lack many desirable features. Hence the conve-
nience of designing IAP as a specialized protocol for the transport of utterances.

The connection layer occupies the lowest level of the SHIP protocol. Tt is
responsible for the creation of connections for SHIP requests. We consider a
connection as a virtual circuit established between two agents for the purpose
of communication. Different network protocols can be employed to establish
such connections. Currently, JIM interagents support a wide variety of network
protocols: memory I/O streams, (TCP/IP) stream sockets, and SSL sockets;
others like RMI and ITOP will be supported in the near future.

As a final remark, notice that SHIP has required the introduction of several
MIME (Multipurpose Internet Mail Extensions) types for declaring the types
of conversation protocol (e.g. CP/DBP), of ACL (e.g. text/basil, text/kqml,
text/fipaacl, etc.), etc.

Architecture

The architecture of JIM(outlined in Figure 4.7) is best explained in terms of its
components:
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Interagent Directory This component offers interagent naming services (white
pages) that translate from unique identifiers of interagents into their logical ad-
dresses and vice versa. Each interagent can communicate with a subset of inter-
agents of the agent society, named its acquaintances. A reflexive and symmetric,
but not transitive, relation acquaintance-of can be established among intera-
gents. An interagent’s acquaintanceship is a set of unique identifiers and can
vary dynamically, allowing that a collection of agents grow dynamically.

Director This component directs the behavior of the rest of components. It
can receive specific directives from both its owner and its customer. Each CP
defines a set of constraints that the director takes into account to sort the ut-
terances stored in the different buffers.

CP repository This component stores all CP classes that can be instantiated
by an interagent. Such repository can be updated in either statically or dynam-
ically, e.g. in FM only the market intermediaries working for the institution,
the auction house, can define, and store at run-time new CP classes into the CP
repository of each interagent. Notice that the conversation protocol repository
can either be owned by only one interagent or shared among several interagents.

Ongoing conversation protocols This component stores all running CPs
(see Section 4.2.2). A CP instance is kept for each conversation in which the
interagent’s customer is involved. Once a CP is over (reaches the finished state)
is thrown away (or alternatively kept for tracing purposes).

Buffer for admitted utterances This component is responsible for storing
all utterances coming from other interagents in the agent society. An utterance
is stored here until either it is accepted or it expires due to a time-out condition.

Buffer for accepted utterances This component stores utterances that have
already been accepted by a CP but which have not been required by the customer
yet. Once one of these utterances is required by the customer it is packaged up
as a SHIP response and forwarded to it.

Buffer for outgoing utterances This component stores utterances that have
been forwarded from a customer agent, and received by its interagent but that
have not been accepted yet. Notice that the input list of each CP instance can be
seen as a composition of the buffers for both incoming and ongoing utterances.

Buffer for delayed utterances This component stores the utterances that
have been sent by the customer specifying a lapse of time (using the delay header
of the TAP protocol) before they are actually transmitted. When such lapse
of time expires, they are automatically transferred to the buffer for outgoing
utterances.
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Observe that the architecture of JIM presents up to four different facades:
owner, customer, society and web facades. Each facade represents a different
entry for each type of agent requesting the services provided by JIM. The services
provided through each facade differ. For instance, only the owner facade allows
an agent to upgrade the CP repository. The web facade simply provides access
to World-Wide Web resources. For instance, this facade allows a human agent
to interact with the JIM’s customer through a standard WWW browser. Each
fagade is built on top of a different instance of the SHIP protocol. In JIM a chain
of responsibility is established through the different protocol layers that conform
the SHIP instance of each facade. That is to say, each layer is responsible for
managing some of the services provided by JIM.

4.3 Agent-mediated Electronic Institutions

In the introductory section of this chapter we argued that an agent-mediated
electronic institution can be realised by means of the articulation of institu-
tional agents and interagents. In this section we propose a computational model
of AmFEIs based on this assumption. This computational model must fundamen-
tally guarantee both the proper workings of the coordination mechanisms and
the enforcement of the institutional norms contained in any AmEI specification.

In what follows we firstly present our conception of institutional agents. Next,
in Section 4.3.2 we give the details of a general computational model intended
to capture an AmFEI specification. This explanation will serve also for motivat-
ing and introducing the extensions that the basic, general model of interagent
presented in Section 4.2 —exclusively devoted to conversation management—
need to be incorporated in order to permit an interagent to mediate the inter-
action of agents within an AmFEI Finally, in Section 4.3.3 the extended model
of interagents for AmFEIs is presented.

4.3.1 Institutional Agents
Functionality

Institutional roles are created for some particular purpose, in general for provid-
ing some service(s). An institution delegates part of its tasks to agents adopting
institutional roles (f.i. recall from Chapter 1 that in the fish market the auc-
tioneer is responsible for auctioning goods, the sellers’ admitter for registering
goods, and the accountant for the accounts’ book-keeping). We refer to this type
of agents as institutional agents. Although each institutional (human) agent in
the fish market played a single institutional role, this is too hard a restriction
that must not be generalised when considering AmFEIs. Henceforth we assume
that an institutional agent can possibly adopt multiple institutional roles.

We define institutional roles’ functionalities by means of the responsibilities
that they are assigned. Hence specifying a role’s functionality is equivalent to
making explicit its responsibilities. Furthermore, we could also think of speci-
fying how an agent playing a given institutional role must handle such respon-
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sibilities. Summarising, in order to fully specify an institutional role we must
specify its life-cycle within an institution in terms of its responsibilities along
with the policy of responsibilities’ management.

More concretely, we specify an institutional role’s life-cycle as a regular ex-
pression built by combining the operators listed in Table 4.3. Each resulting
expression is to contain the execution trajectories associated to the institutional
role over the scenes composing a performative structure specification correspond-
ing to the activities in which the role is involved.

z.y  z followed by y x|y  or y occurs
x* x occurs 0 or more times T 2 occurs 1 or more times
z|ly = and y interleaved [z] =z is optional

Table 4.3: Operators for regular expressions (z and y stand for scene names)

The general form of an institutional role specification is:
roleName = expression

where roleName is the name of the role and ezpression is a regular expression
defining its life-cycle whose atomic components are scene names.

Notice that our proposal for the specification of institutional roles resembles
the conception of roles presented in [Wooldridge et al., 1999] and the way in-
stitutional agents are specified in [Padget and Bradford, 1998]. However, we do
not consider the notions of safety and infinite repetition that they borrow from
reactive systems [Pnueli, 1986].

For illustrative purposes, let us turn back to the specification of the fish
market performative structure depicted in Figure 3.12 (Page 108). For example
consider the institutional role buyers’ admitter. An institutional agent playing
this role must firstly enter at the registry scene with the boss of the market. Next,
it is expected to meet other institutional agents (auctioneer, buyers’ accountant,
sellers’ admitter and sellers’ accountant) at the opening scene. Afterwards it can
start processing buyers’ requests for admission.

More precisely, the buyers’ admitter role could be specified as follows:

admission = (buyer_admission.output) || admission

ba = registry.((opening.admission) || closing).output

Table 4.4: Example of role specification via regular expressions.

where ba stands for an abbreviation of the role name (buyers’ admitter), output
stands for the output scene and admission is only an auxiliary regular expression.

After registering with the boss, the buyers’ admitter makes in parallell for
the opening scene and the closing scene. However typically it will not readily
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enter the closing scene because this must be firstly started by the boss when
it decides to close the market (surely not right after opening it), and so it will
wait, along with the rest of institutional agents, till the boss signals the creation
of the closing scene. While waiting for the boss, the buyers’ admitter progresses
towards the opening scene, and after that it is ready to admit buyers. Notice
that the specification of admission permits a buyers’ admitter agent to process
multiple requests for admission at the same time. It is enabled to process requests
but also to keep on listening for new requests for admission from buyers.

From this example follows that an agent playing an institutional role might
be required to comply with several responsibilities at the same time. In such
a case, an institutional agent must know how to prioritise (schedule) simulta-
neous responsibilities. For this purpose, responsibilities are ranked according
to their relevance. As an example, Table 4.5 lists the priorities assigned to the
responsibilities of a buyers’ admitter:

Responsibility Priority
registry high
opening medium
buyer_admission low
closing high

Table 4.5: Example of priority assignment to an agent’s responsibilities.

where high, medium and low denote different priority degrees. Thus, registry
and closing are the highest prioritized tasks, whereas buyer_admission is the
lowest prioritized task, and opening lies in the middle.

So far an institutional role specification provides an institutional agent adopt-
ing the role with a description of its responsibilities and even with a prescription
of how to handle them. In this way, an institutional agent knows precisely in
which scenes it is expected to take part and when. Therefore, the institutional
agent knows how to move around within the institution.

And yet there remains the matter of deciding how to behave within each scene
in which the agent will get involved. When participating in a scene, at some
states an institutional agent will be expected to act by uttering an illocution as
a result of an inner decision-making process. For instance, an auctioneer must
know how to select the winner of a bidding round, a buyers’ admitter must
decide whether to admit a buyer or not, and a sellers’ admitter must know how
to tag the incoming goods to be put at auction. As a result, these inner activities
should ideally yield illocutions to be uttered by the institutional agent. However,
notice that not any illocution is valid, but an illocution that fires a transition
whose source state is the scene’s current state.
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Figure 4.8: Buyers’ Admission Scene.

Intuitively notice that an institutional agent must only know which method*
to fire at those scene states at which it is expected to act. Continuing with the
example of the buyers’ admitter, consider the example of a buyers’ admission
scene depicted in Figure 4.8. Observe that there is a single state, w;, requiring
the intervention of the buyers’ admitter. This is expected either to accept the
buyer into the market session, or turning down his request, or perhaps give him
another chance after informing him about an error in his request. Whatever the
result, the buyers’ admitter must decide what to say while at w;. At this aim,
we suggest also to specify which method to fire at wi (processAdmission in the
example).

With all the ingredients introduced so far, next we show how to articulate
an architecture for an institutional agent.

4Here the term method is used as defined in object-oriented programming. In object-
oriented programming, a procedure that is executed when an object receives a message. A
method is really the same as a procedure, function, or routine in procedural programming
languages. The only difference is that in object-oriented programming, a method is always
associated with a class.
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Figure 4.9: An Institutional Agent’s Architecture.

Architecture

Figure 4.9 depicts the typical architecture of an institutional agent whose com-
ponents are detailed below:

Control Unit. This component controls the behaviour of the rest of compo-
nents.

Behaviour, Scene Protocol, Performative Structure and Institution
Repositories. Local repositories that contain respectively specifications of be-
haviours (methods), scenes, performative structures and electronic institutions
available to the institutional agent.

Responsibilities’ Agenda. This component contains the specification of the
responsibilities corresponding to each role to be played by the agent. In fact, it
contains triples of the form < role, reponsibilities, priority > where role is the
name of the role to be played, responsibilities is a regular expression specifying
the responsibilities attached to the role, and priority is a priority assignment
to each responsibility composing the responsibilities’ expression. Table 4.4 and
Table 4.5 show examples of a role specification and a priority assignment respec-
tively.

Agenda. This component contains the specification of the methods to be fired
within each scene execution. It is the responsibility of the Director to fire the
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method corresponding to a given scene execution state. For instance, this compo-
nent must keep annotated that the processAdmission method must be called
by the buyers’ admitter when reaching the w; state.

It also keeps track of all the ongoing scenes in which the agent is involved as
well as of the ongoing methods fired by the institutional agent within each scene
execution.

Knowledge Base. While a scene is running, the methods fired by the institu-
tional agent may annotate facts onto the knowledge base. Within the knowledge
base, facts are grouped depending on the role and the instance of the role that
stored them, and so we can consider that it is divided by the different roles
adopted by the agent.

Communication Layer. Component in charge of shipping the performatives
generated during the activity of the agent to its interagent.

Notice that the proposed architecture for institutional agents is clearly con-
current. This is motivated by the fact that mostly institutional agents will
be involved in several scenes at the same time. Going back to our graphical
specification of the fish market in Page 108, consider for instance the buyers’
accountant. In general, he simultaneously services multiple transactions from
buyers and requests from the auctioneer concerning the auction process. Similar
situations apply to the rest of institutional agents.

Observe also that the architecture of the institutional agent presents, dif-
ferently to interagents, only two facades: society and WWW. But likewise in-
teragents, each facade represents a different entry. Thus, while the web facade
allows for a human agent to interact with the institutional agent through a stan-
dard WWW browser, the society facade connects the agent to its interagent,
and hence to the rest of the institution. However, it is not compulsory for an
institutional agent to offer a graphical user interface for a human agent to inter-
act. The human - institutional agent interaction may only occasionally occur.
For instance, in the agent-mediated electronic auction house to be described in
Chapter 5 most institutional agents offer a graphical interface that simply dis-
plays the agents’ activities for them to be locally monitored by humans. But
differently the auctioneer and the boss do permit human agents to act on them.
Thus, for example, a human agent is allowed to stop a bidding round, or even
order the closing of the market. Evidently, institutional agents allowing to have
their behaviour altered by human agents lose part of (or perhaps all) their auton-
omy when doing so, and in that case they must be regarded as semi-autonomous
agents.

4.3.2 Computational Model

Henceforth we assume that interagents constitute the sole and exclusive means
through which agents interact with the rest of agents within the institution.
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Interagents are all owned by the institution but used by both institutional and
external agents.

Regarding the flow of agents from scene to scene within an institution, agents
must request the institution for the type of scenes of the performative structure
that they intend to start and for the active scenes that they aim at joining in.

Under these basic assumptions, picture the following situation: an AmEI is
set up and then it becomes populated by a large amount of both institutional
and exogeneous agents. Then two major questions arise:

e how can agents find other agents aiming at starting new scenes?; and

e once there are active scenes, how can agents find the active scenes that
they are interested in participating?

In other words, one of the basic problems faced by an AmEI is the well-known
connection problem [Davis and Smith, 1983]. Its solution will permit agents to
jointly start and access scenes in order to interact.

We propose to devise a special type of institutional agent, the so-called insti-
tution manager (henceforth i-manager for shorter) endowed with the necessary
capabilities for solving the connection problem. Below we list the tasks for which
the i-manager will be responsible:

e Scene generation authorisation. The i-manager shall authorise a group
of agents to start a new scene when they satisfy the conditions expressed
by the scene’s specification. For instance, no more scenes of a given type
can be started if the maximum number of active scenes of that type has
been reached.

e Scene book-keeping. It keeps track of the active scenes along with their
participants.

e Scene Yellow pages. It employs the book-keeping information above to
facilitate information to agents about the active scenes —ongoing activities—
within the institution.

¢ Request for scene (RFS) validation. It validates the requests received
by agents to either start or join in scenes. If valid, the requests are anno-
tated for future dispatching.

e Agent name service (ANS). The i-manager keeps track of all the agents
taking part in the institution, along with their roles and the logical ad-
dresses of their interagents.

Let us briefly overview how an i-manager behaves. First, recall that an
active scene was introduced in Chapter 3 as a multi-agent conversation (jointly)
started by some agent(s) whose set of participants may vary dynamically: some
participating agents may leave and others join in. In order for the i-manager to
keep track of active scenes, it must know when a new scene starts, when some
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agents leave an active scene, when some agents enter an active scene, and when
an active scene is over.

But prior to having any active scene, agents must have been granted access
to the institution. Any agent intending to enter the institution must firstly
contact the i-manager and apply for the roles to be played. The i-manager
will authorise the requested roles to a given agent according to the policy of
static separation of duties (SSD) and the cardinality of each requested role,
both established when specifying the electronic institution. Once admitted an
agent, the i-manager registers the identity of the agent, along with its authorised
roles and its interagent’s logical address.

Typically the i-manager receives requests from agents to either start or enter
active scenes. Upon reception, the i-manager must validate these requests for
scenes (RFSs) before accepting them and annotating them as pending requests.
This validation process is basically based on the existence of the requested target
scenes as active scenes. As a result, agents having issued invalid RFSs have
them refused by the i-manager. Otherwise, the i-manager keeps them to check
whether they can be indeed serviced. While being on wait, an agent has the
right to withdraw its request.

Considering the admitted RFSs, the i-manager checks them in order to detect
whether a given group of agents can be authorised to start a scene or some agents
waiting to enter active scenes can be authorised so. Say that a group of agents
are authorised to jointly start a scene. In such a case, the i-manager accepts
the request of the group by sending them a unique scene identifier and the list
of participants. Furthermore, and very importantly, the i-manager chooses an
interagent to play the role of scene leader and broadcasts to all interagents the
parameters of the newly created scene along with the identity of the scene leader.
Notice that there is no handshake between interagents as it happened when
negotiating conversation protocols. Here the parameters of the scene protocol
to employ are fixed by the i-manager.

We do not claim that our proposal for starting scenes is the most appropriate,
but we regard it as a natural extension of our proposal for maintaining the
soundness of conversation protocols presented in Section 4.2. Thus, we regard
the scene leader as the responsible for guaranteeing the correct operation of a
scene execution in a transparent way to its participants.

Scene leaders synchronise with the i-manager for allowing agents to incor-
porate to active scenes. Thus, a scene’s access states establish synchronisation
points between the scene leader and the the i-manager at which the first asks
the second for agents requesting for joining the scene. If so, agents on wait are
allowed to enter.

Exit and final states must also be regarded as synchronisation points between
scene leaders and the i-manager. When reaching either an exit or a final state
the scene leader conveys to the i-manager the list of agents leaving the scene.

Following these intuitions we shall attempt at illustrating the dynamics of
the i-manager by example. First, how does the i-manager handles requests for
new scenes and active scenes? It will be keeping the requests for starting or
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entering scenes issued by agents and the description of the active scenes in two
separate blackboards. For instance, Tables 4.6 and 4.7 illustrate respectively the
possible states of the blackboards containing the agents’ requests and the active
scenes in the fish market.

Agent Transition Scene Types Target Scenes Target Roles

pere and#06 [buyer_admission] M [buyer_admitter]
martin and#06 [buyer_admission] 0n [buyer]
marc or#03 [Dutch_auction] [auction#01] [buyer]

Table 4.6: Example of an i-manager’s Blackboard of Pending Requests

Scene Type Active Scenes Participants Leader
Dutch_auction auction#01 (peyman,b) (KQLAT,a)
(carles,b)
(KQLAT,a)
buyer_admission buyer_admission#01 (pere,ba) (pere,ba)
(lluis,b)

Table 4.7: Example of an i-manager’s Blackboard of Active Scenes

In Table 4.6 agent pere and agent martin request both for starting a buyer_admission
scene (denoted as [ ] in the column labelled Target Scene) playing respectively
the buyer_admitter and buyer roles.

In Table 4.7 there appear two active scenes: one Dutch auction scene identi-
fied as auction#01 and one buyer_admission scene identified as buyer_admission#01.
Two buyers (b), peyman and carles, and an auctioneer (a), KQLAT, participate
in auction#01; while a buyers’ admitter (ba), pere, and a buyer, lluis, participate
in buyer_admission#01. Looking back at Table 4.6, we see that agent marc has
requested for joining auction#01. Moreover, we distinguish agents KQLAT and
pere as the leaders of the current active scenes. Observe that pere is taking part
in a buyer_admission scene and, at the same time, keeps a request for starting
a new buyer_admission scene. This is consistent with the specification of the
buyer_admitter role provided above when presenting institutional agents.

Consider now that a new agent, lucas, which has already registered as a buyer
requests for entering a new buyers’ admission scene®. For this purpose, it issues
the following illocution to its interagent:

51t may sound confusing that a buyer requests for admission. Here we understand that
agent lucas was granted the access to the institution as a buyer. But in order to be registered
for participating in auctions, it must go through a separate process.
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request(lucas : b,[ ], goto(and#06, [buyer_admission], [[ 1], [b]))

Notice that this illocution contains no recipient indicating that the message
is addressed to the institution®, and then it is collected and managed by the
interagent transparently to the agent. Agent lucas is requesting for starting
a new buyer_admission scene ([ ]] stands for the list of target scenes) playing
the buyer role ([b] stands for the list of requested roles). In general, RFSs
are pre-validated by interagents, which locally filter them before finally posting
them to the i-manager, as we explain later on in Section 4.3.3. If valid the
received RFS, the interagent autonomously starts a scene with the i-manager
whose specification is depicted in Figure 4.10, where 7z and r are an agent
variable and a role variable respectively to be instantiated with the values of the
agent identifier and role of the agent submitting the RFS.

1. request(?x:?r,?y:i-manager,goto(?transition,?scene_types,?target_scenes,?roles))
2. commit(?y:i-manager,?x:?r,authorise(?scene_types,?target_scenes,?roles))

3. refuse(?x:?r,?y:i-manager,goto(?transition,?scene_types,?target_scenes,?roles))
4. withdraw(?x:?r,?y:i-manager,goto(?transition,?scene_types,?target_scenes,?roles))

& %

Figure 4.10: Scene for the management of RFSs (Request for Scenes)

Upon reception of the request, the i-manager writes it down on the black-
board of pending RFSs as depicted in Table 4.8.

At this point, consider for instance that the i-manager authorises agent pere
and agent martin to start a new execution of a buyer_admission scene. Next, and
according to the specification of the buyer_admitter role, pere will also request
for starting a new buyer_admission scene. And then consider that pere and lucas
are also authorised to start a new buyer_admission scene. The resulting situation
is illustrated by Tables 4.9 and 4.10.

Once admitted a buyer, he is permitted to participate in the auctioning of
goods. But first it must know whether there any ongoing auctions, and if so
which one to apply for taking part. For this purpose, it asks the institution

6We keep this syntax for historical reasons since it was the syntax employed when developing
the AmEI presented in the next chapter.
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Agent Transition Scene Types Target Scenes Target Roles

pere and#06 [buyer_admission] M [buyer_admitter]
martin and#06 [buyer_admission] M [buyer]

marc or#03 [Dutch_auction] [auction#01] [buyer]
martin and#06 [buyer_admission] 0n [buyer]

Table 4.8: i-manager’s Blackboard of Pending Requests (I)

Agent Transition Scene Types Target Scenes Target Roles |

pere and#06 [buyer_admission] M [buyer_admitter]
marc or#03 [Dutch_auction] [auction#01] [buyer]

Table 4.9: i-manager’s Blackboard of Pending Requests (IT)

Scene Type Active Scenes Participants Leader
Dutch_auction auction#01 (peyman,b) (KQLAT,a)
(carles,b)
(KQLAT,a)
buyer_admission buyer_admission#01 (pere,ba) (pere,ba)
(lluis,b)
buyer_admission  buyer_admission#02 (pere,ba) (pere,ba)
(martin,b)
buyer_admission buyer_admission#03 (pere,ba) (pere,ba)
(lucas,b)

Table 4.10: i-manager’s Blackboard of Active Scenes
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about the current running auctions by conveying the following illocution to his
interagent:

question(?z : b,[ |, active_scenes(Dutch_auction))

This question is collected and handled by an interagent by automatically
starting with the i-manager the scene depicted in Figure 4.11. As a result, the
agent is informed about the ongoing Dutch auctions.

Notice that requesting about active scenes is only an example of the type of
information that the i-manager can provide to agents.

question(?x:?r,?y:i-manager, inform(?y:i-manager,?x:?r,? ,
acitve_scenes(?scene_name)) active_scenes(?scene_name,?list_of_scenes)))
0 =

Figure 4.11: Querying Active Scenes.

As an example consider that after being informed, lucas requests for entering
auction#01. Tts RFS is annotated as a pending request. When do buyers get
admitted in auction#01?7 Here it comes the importance of counting on a scene
leader. When auction#01 reaches an access state, its scene leader asks the
i-manager for agents that have applied for entering. If any, the scene leader
receives a list of new participants which is forwarded to the rest of interagents
in the scene so that they can inform their agents. The incorporation of new
agents is complete when the i-manager confirms the agents on wait that their
RFSs have been accepted, and so finishing the scenes corresponding to their
RFSs. For example, Table 4.11 depicts the new situation after lucas and marc
are accepted.

Scene Type Active Scenes Participants Leader

Dutch_auction auction#01 (peyman,b) (KQLAT,a)
(carles,b)
(KQLAT,a)
(lucas,b)
(marc,b)
buyer_admission buyer_admission#01 (pere,ba) (pere,ba)
(lluis,b)
buyer_admission buyer_admission#02 (pere,ba) (pere,ba)
(martin,b)

Table 4.11: i-manager’s Blackboard of Active Scenes

Some scenes do allow for agents to leave through exit states. For instance,
the Dutch auction scene allows for buyers to leave through the w; exit state.
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Thus w; will allow participating buyers to leave and new buyers to join in before
a new bidding round starts. Say that marc wants to leave auction#01. At this
aim he applies for it by sending the following illocution to its interagent:

request(marc : b, [ |, exit(auction#01))

This time the interagent does not need to contact the i-manager, but directly
the scene leader. The type of interaction started between the agent and the
scene leader is depicted in Figure 4.12. Several situations may arise. First, if an
exit state for buyers is reached, the scene leader lets marc leave and updating
information is conveniently sent to the i-manager for scene book-keeping and to
the rest of interagents in the scene in order to keep their agents informed.

s N

I| 1 o 3

1. request(?x:?r,?y:scene_manager,exit(?active_scene))
2. commit(?y:scene-manager,?x:?r,exit(?active_scene))
3. refuse(?y:scene-manager,?x:?r,exit(?active_scene))

4. withdraw(?x:?r,?y:scene_manager,exit(?active_scene))

Figure 4.12: Request for Exit Scene.

Consider now that in the meantime buyers lluis and martin have success-
fully completed their admission processes and have subsequently requested for
entering auction#01. Then for instace if buyer lluis gets tired of waiting he can
cancel his RFS by issuing the following illocution to its interagent:

request(lluis : b, [ |, withdraw([Dutch_auction], [[auction#01]], [0]))

which is then forwarded to the i-manager. Later on, auction#01 continues till
reaching a final state. At that moment, the scene leader contacts the i-manager
to inform him about the closing of the scene which implies its removal from the
blackboard of active scenes. Consequently, the i-manager must refuse the RFS
submitted by buyer martin and remove it also from the blackboard of pending
requests. And so buyer martin receives:

refuse([ |, martin : b, goto(or#03, [Dutch_auction], [[auction4£01]], [b]))
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finishing the scene depicted in Figure 4.10 corresponding to his RFS.

But the closing of an active scene is not the only cause for the i-manager
to refuse an RFS. It might be also the case that the i-manager cannot find a
proper ”binding” for the requesting agent”. If this is the case, the RFS is readily
refused.

Summarising, notice that in order to move around within the institution
agents employ goto commands and ezit commands. An agent’s interagent and
the i-manager are in charge of validating the agent’s RFS according to the per-
formative structure specification and the current set of active scenes within the
AmEI Furthermore, they issue questions to the i-manager about the ongoing
scenes within the institution in order to decide which activities to apply for ei-
ther starting or joining in. In all cases, notice that we do not consider the scenes
spawned by these commands as part of the specification of an AmEL

Notice also that the management of the agent flow within the electronic in-
stitution is realised by means of coordinating the i-manager with the interagents
playing the role of scene leaders.

So far we have been referring to accessing or leaving a single scene. Nonethe-
less, the most intricate situations arise when some agents aim at entering several
scenes concurrently. These situations appear when agents traverse transitions of
type and on the output side (concretely sync/parallel and choice/parallel) and
are in general very demanding because they do require the coordinated activity
of all scene leaders of the active scenes involved with the i-manager. In or-
der to illustrate the difficulty inherent to the institutional management of these
types of transitions , we take the sample of performative structure depicted in
Figure 4.13.

Figure 4.13: A Fragment of a Performative Structure’s Specification.

For this example we consider two agents a1, a2 playing respectively the roles
rl and r2 and arriving at the transition shown in Figure 4.13. Let s;#01,
s9#01 stand for scene executions of s; and sy respectively. Say that a; issues
request(ay : r1,[ ], goto(and#01, [s1], [s1#01]], [r1])) and as issues request(as :
ra, [ ], goto(and#01, [s2], [[s2#01]], [r2])). Provided this setting, when the scene

"Here we use the term binding in the sense proposed in Chapter 3.
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leader of either s;#01 or so#01 reaches an access state, he asks the i-manager
for new agents, and then the i-manager waits (till a time-out expires) for being
asked by the other scene leader. If not, he sends a negative answer so that the
requesting scene leader can let his scene progress. Otherwise, the i-manager
sends to both scene leaders the lists of new agents. Therefore, it might be the
case that agents never reach their requested destinations when trying to traverse
sync/parallel and choice/parallel transitions. But that is something that we
can only observe dynamically, either via simulation or at run-time, during the
insitution’s life-cycle.

4.3.3 Interagents for Electronic Institutions

In Section 4.2 we presented a basic model of interagent devoted to the man-
agement of conversation protocols. Though enough to be employed for putting
through agents in agent-based systems, it is apparent that that basic model is
required to have its capabilities extended in order to mediate the interaction of
agents within an e-institution. Fundamentally, extending the functionality of
interagents must permit them to provide support for addressing the following
issues:

e the management of scenes;

e the management of performative structures;
e the management of normative rules; and

e the accountability of an agent’s activities.

Therefore, the resulting interagents must not be only capable of enforcing
a particular conversation protocol, but also capable of guaranteeing that every
agent behaves according to the rules of the institution.

The purpose of the rest of this section is to answer the fundamental question
of how to evolve interagents to agents’ mediators within electronic institutions.
Firstly we will be focusing on the management of scenes and secondly on the
rest of the issues above.

Scene Management

Given the definition of scene provided in Chapter 3 we shall distinguish the
following scene types:

e One-to-one. Scenes involving solely two agents.

e One-to-many. Scenes involving multiple agents in which a single agent
talks to a group of agents and these in turn can also talk to the agent but
cannot talk among themselves.

e Many-to-many. Scenes involving multiple agents such that any agent
can talk to any agent(s).
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Conversation protocols such as introduced in Section 4.2.2 suffice to model
one-to-one scenes and even one-to-many scenes. In this second case, the scene
can be effectively realised by having the agent talking to a group of agents holding
multiple CPs in parallel. In particular, this is the case of the auctioneer in the
auction scene wherein he is considered to be holding multiple conversations at the
same time with the several buyers taking part in the bidding round. In addition
to this, some basic extensions need to be incorporated in order to permit the
treatment of access and exit states.

In practice, one-to-one scenes and one-to-many scenes proved to be enough in
the practical realisation of the AmFEI presented in Chapter 5 (the computational
counterpart of the fish market), as well as in the development of the AmEI
described in [Plaza et al., 1999]. Nonetheless the design of other AmFEIs might
eventually need the inclusion of the most general type of scenes, i.e. many-to-
many scenes, whose realisation cannot be exclusively achieved by means of CPs.
Thus, in what follows we analyse what is required for interagents to be capable
of managing scenes.

Fundamentally, the management of many-to-many scenes demands the coor-
dination of interagents so that the maintainance of the global state of the scene
is guaranteed. At this point, we must distinguish between the interagents’ view
and the agents’ view of the scene. While all interagents are expected to see and
keep a global scene state, their agents have a partial view of the scene in which
they are taking part. Thus, depending on their roles, agents only see those states
at which either they are recipients of some illocution or they are allowed to send
an illocution.

Mainly, we identify two synchronisation problems arising in the management
of scenes. Firstly, notice that at some scene states there might be multiple agents
intending to utter an illocution that can make the scene state evolve. This is the
case of states at which any agent playing a given role is allowed to send some
type of illocution. The question is how to handle this type of states. Secondly,
we must consider what happens when the scene evolves transparently to some
participants, but then it reaches a state that allows them to talk. It must be the
responsibility of an interagent to signal its customer, its agent, when its turn
arrives.

As to the first issue, it somewhat resembles the case of mized states in CPs.
There we proposed to prevent eventual race conditions motivated by mixed states
by making the speakers adopt the conflicting roles of leader and follower and
by augmenting CP instances (see Figure 4.5). The leader was said to determine
whether to accept or not the follower’s messages, while the follower was said
to always accept the leader’s messages. Considering scenes, we adopt a similar
strategy. First, at the outset, when a scene starts, one of the participants’ intera-
gents is chosen to play the role of manager or leader while the rest of interagents
play the role of follower. One of the tasks of the leader is to accept the illocution
that makes the scene state evolve and broadcast it to all interagents in the scene
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so that they all can maintain the global state®. Say that the scene reaches a
state at which various agents playing the very same role utter an illocution, but
only one of them can make the scene evolve. All the illocutions are sent under
the TRY semantics introduced for mixed states, i.e. the interagents receiving
illocutions from their agents forward them to the leader and wait for the leader’s
acceptance or refusal. Upon reception of the illocutions, the leader chooses one
of them as the winning illocution and forwards it to all the interagents in the
scene. Then the sender of the winning illocution is signaled its acceptance by its
interagent while the rest of agents that submitted an illocution have it refused
by their interagents. Importantly, the recipient of the winning illocution receives
it via its interagent. Notice also that the winning illocution transparently trav-
els from the sender to the addressee via the scene leader, instead of directly
going from the sender to the addressee. As a result of the whole process, all the
interagents can keep the global state of the scene.

Likewise institutional agents, scene specifications can be also grouped to-
gether into a scene repository. Moreover, we can also think of incorporating
behaviour into intergents. Instead of being exclusively devoted to guaranteeing
the soundness of the interactions taking place within a scene, the institution
might need that interagents act at some scene states. We can find a good ex-
ample in a Dutch auction scene. A buyer receiving the prices called by the
auctioneer can only send a request for bidding to its interagent that does not
contain the price. Upon reception of the request, the interagent composes the
bid to be submitted to the auctioneer with the price of the last offer received by
the agent. In this way, buyers cannot cheat by manipulating their bids. Notice
that the method to be fired at a given scene state will depend on the role played
by the interagent’s agent. Observe also the analogy with the specification of an
institutional agent’s behaviour within a scene (see Figure 4.8).

Consequently, interagents must be also endowed with a scene behaviour
repository containing the methods to be fired at the different states of each
scene contained in the scene repository.

Requests for leaving scenes and for moving into other scenes, along with
questions and requests for withdrawal are handled by the interagent as com-
mands. The starting of the scenes depicted in Figures 4.10, 4.11 and 4.12 with
the i-manager are the consequences of these commands.

Institution Management

Recall from Chapter 3 that an agent may possibly adopt various roles at the
same time. Moreover, an agent may simultaneously participate with the very
same role in different active scenes of an electronic institution. However, an
agent can only play a single role within an active scene.

Here arises the question of how to manage an agent’s roles. Consider the
following example. In a conference centre environment an agent playing the
personal representative agent(PRA) role can be negotiating several appointments

8 Alternatively a token-ring-based approach would be also a good way of achieving the same
purpose.
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at the same time with other PRAs. While in an auction house, an agent playing
the buyer role can be participating in multiple auctions simultaneously. From
this follows that an agent can have several threads corresponding to the very
same role. For each role, an interagent differentiates between a role’s threads
involved in some active scenes or running threads and a role’s threads that are
not taking part in any active scene or idle threads. For instance, Table 4.12
lists an example of running and idle threads of the buyer role in an auction
house. Along the first column we find the scenes in which the buyer took part,
while along the second column we find the active scenes in which he is currently
involved.

Idle Role Threads Running Role Threads

(Dutch_auction,auction#03)  (First_price_sealed_bid_auction,auction#01)
(English_auction,auction#04) (Vickrey_auction,auction#02)

Table 4.12: An Example of Running and Idle Role Threads for an agent with
the buyer role.

A role thread is switched from running to idle when either the agent leaves the
active scene wherein the running thread participates or the scene itself reaches
a final state forcing its participants to leave.

In this simple way, an interagent can keep track of all the scenes where the
agent either is or has been involved for each adopted role. An interagent manages
each role’s threads separately, as if each role corresponded to a different agent.
Notice that in fact the running and idle role threads represent the current state
of the agent within the institution.

At this point we can start considering how an agent can navigate within an
electronic institution. For this purpose we require an interagent to contain not
only a repository of scene specifications, but also repositories with performative
structures’ and electronic institutions’ specifications likewise institutional agents.

Ouly idle role threads are considered by an interagent when its agent (its
customer) requests for either starting or joining an active scene by issuing a
request for scene. When receiving this request, the interagent itself carries out
a pre-validation process prior to the starting of the scene shown in Figure 4.10
with the i-manager.

First of all, the interagent checks whether the agent requests for entering
an active scene wherein there is a running thread of the same agent. If so, the
RFS is readily refused without needing to disturb the i-manager. Otherwise,
the interagent continues the checking of the pre-validity of the RFS by testing
whether the request is consistent with the performative structure’s specifica-
tion. For this purpose, it suffices for the interagent to certify that the source
scene, represented by an idle role thread, and the requested target scenes are
indeed connected by means of a transition indicated in the RFS. Furthermore,
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the request must be consistent with the semantics of the transition. Thus, for
instance, for an choice/choice transition the agent must only choose one of the
output active scenes.

Finally, once guaranteed that the request is structurally valid, the pre-validation
process finishes checking that the conditions over the arcs to be followed are sat-
isfied considering the facts referring to the role stored onto the knowledge base.

Next we provide some examples that illustrate the pre-validation process.

First we consider the agent martin playing the buyer role finishes a buyer
admission scene (and so has an idle role thread situated in the buyer admission
scene) and intends to enter the active Dutch auction scene auction#01. It sends
the following request to its interagent:

request(martin : b, [ ], goto(or#03, [Dutch_auction], [[auction#01]],[b]))

The interagent finds that the choice/choice transition labelled as OR03 in
Figure 3.12 (Page 108) connects the source scene (buyer admission) and the
target scene (Dutch-auction). The RFS is pre-validated and consequently the
scene depicted in Figure 4.10 is started with the i-manager. If not, the interagent
itself refuses the RFS.

Consider now the example of an agent playing the buyer role and simultane-
ously participating in several active auctions of different types. Besides, during
their activity the different running threads have succeeded in winning several
bidding rounds, i.e. they have made some purchases. If some of these running
threads leaves the active auction scene in which he is taking part and requests
for going to the output scene (i.e. for leaving the institution), his interagent will
refuse the request because the agent has pending obligations: the payment of
the acquired goods (according to the C2 condition in Figure 3.12).

Notice that here we are referring to the pending obligations of agents. Recall
that in Chapter 3 we argued that agents’ actions within each active scene may
introduce future commitments interpreted as obligations in a certain direction
that lead to the limitation or enlargement of an agent’s acting possibilities,
depending on whether an agent fulfills or not its acquired commitments.

Normative rules were introduced as general institutional rules expressing the
establishment of obligations and prohibitions within an electronic institution.
Evidently these rules are evaluated on an individual basis because they affect
the actions made by each agent. This fact suggests the local management of
normative rules or, in other words, its interagent-based management. Thus
an interagent having the institutional normative rules and the facts resulting
from the participation of its customer (its agent) in active scenes is capable of
determining which obligations and prohibitions to trigger. Both normative rules
and facts are grouped together into the very same knowledge base handled by
the interagent.

We address the reader to Section 3.3.5 for some examples of normative rules
employed in the fish market.
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4.4 Summary

In this chapter we have explored the interrelated issues of designing agent-based
systems and designing AmFEIs.

First, we have started introducing conversation protocols CPs as the method-
ological way to conceptualise, model, and implement conversations in agent-
based systems. CPs allow to impose a set, of constraints on the communicative
acts uttered by the agents holding a conversation. We have also introduced inter-
agents as autonomous software agents that mediate the interaction between each
agent and the agent society wherein this is situated. Interagents ease the devel-
opment, of agent-based systems by taking charge of the complex, time-consuming
interaction issues inherent to the construction of this type of systems. In this
way, the overhead related to the management of the interaction tasks needed
by an agent is shifted to its interagent. Interagents employ CPs for mediating
conversations among agents, and so the management of CPs is identified as their
main task. Two major benefits, from the point of view of the agent developer,
are achieved by employing interagents to articulate the infrastructure of agent-
based systems: on the one hand, their agents can reason about communication
at higher levels of abstraction, and on the other hand they are released from
dealing with interaction issues, and so they can concentrate on the design of the
agents’ logics. We have also introduced JIM, a general-purpose interagent.

However, the basic model of interagent exclusively devoted to conversation
management presented in Section 4.2 does not suffice when facing the devel-
opment of AmFEIs. In order to be useful for being employed in this type of
systems, we have showed how to extend the functionality of interagents so that
the following issues can be successfully addressed:

e the management of scenes;

e the management of performative structures;
e the management of normative rules; and

e the accountability of an agent’s activities.

Complementarily, we have also introduced a general model of institutional agent
whose roles are specified as responsibility plans. We have also identified a special
type of institutional agent, the so-called i-manager, as the agent responsible for
solving the connection problem between both the institutional and exogenous
agents participating in an AmFEIL

Finally, we have presented an integrated computational model of AmFEIs
founded on the coordinated activity of interagents and institutional agents guided
by an electronic institution’s specification.



Chapter 5

Realising Agent-mediated
Electronic Institutions

It is time to prove the usefulness of the computational model proposed in Chap-
ter 4 by making use of it in the development of a practical agent-mediated
electronic institution. In this chapter we present the computational counter-
part of the fish market institution presented as a case study in Chapter 1. Thus,
we detail the design and implementation of an agent-mediated electronic auction
house inspired by the age old institution of the fish market, where heterogeneous
(software and human) agents may trade.

In Section 5.1 we motivate the solution adopted to cope with the issue posed
by the development of an electronic auction house. Next, in Section 5.2 we argue
on the scientific and economic importance of auction-based e-commerce as well
as the implications of agent technology in this sparkling area. Sections 5.3, 5.4
and 5.5 show how the computational model presented in Chapter 4 is practically
deployed, whereas Section 5.6 describes the resulting architecture. Section 5.7
argues on the capital need of counting on accountability processes that can be
exploited by the institution itself to verify and validate its own activity and to
found monitoring mechanisms that help gain human agents’ trust.

5.1 Motivation

Internet is spawning many new markets. One that is particularly attractive for
agent technologies is network-based trading. But if that market is to become an
effective actual market various non-trivial issues need to be addressed. Three
issues appear to be particularly significant:

e diversity of goods, trading conventions, participants, interests;

e dispersion of consumers and producers, and also of resources and oppor-
tunities; and
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o safety and security of agent and network-mediated transactions.

Thus it is not surprising that they have been the object of concern and
positive attention both by the commercially interested parties as well as the
academic community.

We propose to address those issues through a mimetic strategy, i.e. by adapt-
ing to the new context created by the Information Highway those traditional in-
stitutions that have proven effective in dealing with those same issues, as upheld
in Chapter 3.

Traditional trading institutions such as auction houses —and the fish market
in particular— have successfully dealt with the issues of diversity and dispersal.
For instance, by defining strict trading conventions where goods of specified kinds
(e.g. fish of certain quality) are traded under explicit time/location restrictions
(e.g. twice a day at fixed times at the fish market building) under strict ne-
gotiation protocols (e.g. downward bidding protocol). Participating agents are
subject to terms and conditions —involving identity, credit and payment, guar-
antees, etc.— whereby the soundness of transactions becomes a responsibility of
the institution itself, who in turn enforces those terms and conditions on its own
behalf. In practice, the auction house upholds the fairness of the negotiation
process and the accountability of transactions by defining and enforcing stable
conditions on:

e the eligibility requirements for participating buyers and sellers;
e the availability, presentation and delivery of goods;
e acceptable behaviour of participants within the site;

e the satisfaction of public commitments made by participants.

In this chapter we show how this mimetic strategy can lead to an actual elec-
tronic auction house. We present a proof of concept-level release, FM96.5 [Rodriguez-
Aguilar et al., 1997], of an electronic auction house that is a rather complete im-
plementation of the trading conventions of the fish market. It includes, among
other features, a sound and fair implementation of a real-time downward bidding
protocol and the capability of allowing for the fair and secure participation of
heterogeneous human and software agents' thanks to the effective deployment of
interagents. Interagent-based mediation guarantees that participants are subject
to the explicit —and enforceable— behavioural conventions of the institution.

Originally, FM96.5 only allowed for the auctioning of goods under the rules
of the downward bidding protocol, likewise the fish market. At a further stage,
the auction house was evolved in order to accommodate other classic auction
protocols, namely English, Vickrey, and First-price Sealed-bid. Two major ben-
efits stem from the evolution of FM96.5. On the one hand, an electronic auction
house capable of auctioning goods under various auction protocols (the classic

1By heterogeneous we mean agents of arbitrary complexity, with different architectures,
and written in different languages.
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ones) was obtained. On the other hand, and more importantly, a more flexible
implementation derived ready to incorporate other price-fixing mechanisms if
required in a smoothly, non-expensive way.

Lastly, an important aspect to consider is that the implementation presented
in this Chapter is founded on the specification depicted in Figure 3.12 (see
Chapter 3).

5.2 Auction-based e-Commerce

5.2.1 Why Auctions?

Auctions have gained enormous popularity in the Internet. The proliferation
of on-line auctions —such as Auctionline [AuctionLine, www], Onsale [Onsale,
], InterAUCTION [InterAUCTION, www], eBay [eBay, www]|, more recently
amazon [Amazon, www| and many others— has established auctioning as a
main-stream form of electronic commerce. Typically negotiation on the Internet
amounted to the seller offering his products at fixed prices. Instead, auctions
appeared offering a more general, dynamic mechanism for price determination,
benefitting from the existence of a vast range of auction protocols. Auctions
have succeeded as a convenient mechanism for automated trading, due mainly to
the simplicity of their conventions for interaction when multi-party negotiations
are involved, but also to the fact that on-line auctions may successfully reduce
storage, delivery or clearing house costs in many markets. Moreover, the digital
world does not require that parties be geographically co-located (only virtually
co-located). Interestingly, and according to [Economist, 1999], auction-based
commerce is predicted to continue growing:

Bid-ask auction markets will proliferate, enabling commodity goods
in over-supply to be sold efficiently at market-clearing prices instead
of either clogging channels or being dumped. Perishable or time-
sensitive goods, such as unused space in lorries or unsold media ad-
vertising, can be sold economically, allowing intelligent yield manage-
ment across industries, even in highly fragmented markets. Indeed,
Forrester predicts that yield-management pricing will become the
norm in automated purchasing.

Furthermore, the success of auctions has led to the rapid creation of sub-
industries such as newsletters [AuctionLand, www], auction software providers [Open-
site, www], and specialised search engines [Bidfind, www, mysimon, www].

From the AI point of view, this popularity has spurred AI research and
development in auction houses [Wurman et al., 1998, Rodriguez-Aguilar et al.,
1997, Collins et al., 1998]? as well as in auction strategies for agents [Preist,
2000, Boutilier et al., 1999, Garcia et al., 1998a]. Moreover, we must not forget

2Tn fact, the work presented in [Collins et al., 1998] is a test-bed for multi-agent negotiation,
but we include in this group because it also includes auction mechanisms.
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that automated auctions are not only employed in web-based trading, but also
as one of the most prevalent coordination mechanisms for market-based resource
allocation problems (f.i. energy management [Ygge and Akkermans, 1997, Ygge
and Akkermans, 1996], climate control [Huberman and Clearwater, 1995], flow
problems [Wellman, 1993]).

5.2.2 On the Role of Auctions in e-Commerce

Generally speaking, software agents can help automate a wide range of tasks in-
cluding trading over the Internet. Thus, software agents (or multi-agent systems
in a more general sense) can function as mediators in electronic commerce over
the Internet. To understand the roles that agents or multi-agent systems are
called to play as e-commerce mediators, we agree with [Guttman et al., 1998] in
the need to explore such roles in the framework of a common model.

In [Guttman et al., 1998] a model is presented inspired on traditional mar-
keting Consumer Buying Behaviour(CBB) research useful for analysing these
roles in the context of a common model. This model considers the actions and
decisions involved in buying and using goods and services. According to the
model there are six fundamental stages guiding consumer buying behaviour:

e Identification. At this stage the consumer becomes aware of some need,
and so he becomes receptive to product information.

¢ Product Brokering. Retrieval of product information based on the con-
sumer criteria leading to the consideration set, the set of product alterna-
tives, that helps determine what to buy.

e Merchant Brokering. This stage combines the consideration set with
merchant-based information so as to determine who to buy from.

e Negotiation. This stage is concerned with fixing the terms (price and
others) of the transaction that will be highly varying in duration and com-
plexity depending on the type of market (retail market, stock market, etc.).
The main benefit of dynamically negotiating a price is that the merchant
is relieved from pre-determining the value of the good, and therefore it is
the market itself which does the job for the merchant. Ideally, the good is
to be allocated to those who value them most.

e Purchase and Delivery. This stage either signals the termination of the
negotiation stage or occurs some time afterwards.

e Product Service and Evaluation. This stage highly depends on the
degree of satisfaction achieved by the buyer and the quality of product and
costumer service offered by the seller.

Considering the nature of agents, they are most suited for the product bro-
kering, merchant brokering and negotiation stages of the model presented above.
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We identify several commercial products devoted to the product brokering
stage of the CBB model. For example PersonaLogic [Personalogic, | is a system
endowed with a constraint satisfaction engine that helps the consumer filter out
products based on his preferences specified as constraints. Or Firefly [Firefly,
www]|, which acts as a recommendation system using the opinions of like-minded
people. The recommendation mechanism employed by Firefly, the so-called au-
tomated collaborative filtering (ACF) [Shardanand and Maes, 1995], is based on
the comparison of product ratings of shoppers with similar taste.

There are also systems assisting consumers at the merchant brokering stage:
BargainFinder [Bargainfinder, |, and its successor Jango [Jango, www] too, com-
pare merchant alternatives on the sole basis of their on-line prices, while Kas-
bah [Chavez et al., 1997, Chavez and Maes, 1996, Kasbah, | allows to create
agents that pro-actively look for potential buyers and sellers to negotiate with
them on the consumers’ behalf.

As to the negotiation stage, auctions come into play when considering au-
tomated negotiation. At a web-based auction house, analogously to traditional
auctions, goods are sold using a choice of auction protocols. The fixed rules
defining each auction protocol highly constrain the negotiation process, and so
reduce its complexity. Within an auction setting, the auction house mediates
the interaction and transaction between potential buyers and sellers. Buyers’
and sellers’ interactions are in most cases quite natural and simple:

e Goods —which may be inscribed directly by external sellers, or otherwise
obtained by the auction house— are catalogued and even sometimes dis-
played —electronically and/or physically— before and during an auction.

e After registering in a given auction —usually a simple e-mail inscription—
a buyer can submit his bids either by e-mail, by fax, by submitting a
web-form or interacting with a web-based interface or even by post.

e Payments are usually through credit cards, and sales are definite up to
actual payment, but most of the time the physical transactions (actual
payments) are explicitly relinquished by the auction houses. Some sales
are defeasible if protested —and properly supported— within a period of
time.

e Most auction servers include several auction formats, and yet in general
the most popular auction format is a sealed-bid English protocol —the
item goes to the highest bidder.

e The evolution of each bidding round is displayed on a browser or sent by
e-mail to participating buyers. Special mention deserve the live auctions
conducted at [Amazon, www], where traders can even watch and listen live
the auction event.

e In most cases, single bidding rounds are open for an extended period of
time —though there are some exceptions such as [Amazon, www, Auction-
Line, www] that host live bidding rounds— and terminate on a previously
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announced closing date, though sometimes the auctioneer determines when
a bidding round closes.

In general, buyers must mainly concern about managing their own trading
strategies. And so far they do not receive much support in this respect. How-
ever, it has become fashionable for some auction houses (f.i. eBay [eBay, www],
amazon [Amazon, www], Adauction [Adauction, www]) to offer a bidding agent,
the so-called prozy bidder, to save the buyers’ time by automating their bidding:
since some auctions may last for several hours or even days, a buyer can tell his
proxy bidder the maximum price that he is prepared to pay for a specific good
without letting other bidders know, and let the proxy bidder do.

In order to somewhat support them in such a task, some auction houses allow
for the enablement of proxy bids. Nonetheless, this capability is fundamentally
based on the definition of a reserve price, disregarding the specification of bidding
strategies.

On the other hand, and alternatively to these specialised auction houses,
there are already examples of agent-based systems that deal with non-automated
negotiation transactions. For instance, Kasbah is a multi-agent system where
users create buying and selling agents to help transact products. Unfortunately,
negotiation in Kasbah has been largely simplified, because, after matching buyers
and sellers, buyers can only offer a bid to sellers without restrictions as to time
or price, and sellers can only accept it or refuse it. Negotiation across multiple
terms is not conducted by Kasbah’s agents. This drawback does not appear
in Téte-a-Téte [Guttman and Maes, 1998, Tete-a-Tete, |, an agent-based system
that profits from the results obtained during the first stages of the CBB model to
make the agents cooperatively negotiate across multiple terms of a transaction
based on [Parsons et al., 1998].

5.3 Market Blueprint

Following the description and analysis presented in Chapter 1 the actual fish
market can be described as a place where several scenes take place simultane-
ously, at different places, but with some causal continuity. Each scene involves
various agents who at that moment perform well-defined functions. These agents
are subject to the accepted market conventions, but they also have to adapt to
whatever has happened and is happening at the auction house at that time. The
principal scene is the auction itself, in which buyers bid for boxes of fish that are
presented by an auctioneer who calls prices in descending order —the downward
bidding protocol. However, before those boxes of fish may be sold, fishermen
have to deliver the fish to the fish market (in the sellers’ admission scene) and
buyers need to register for the market (at the buyers’ admission scene). Likewise,
once a box of fish is sold, the buyer should take it away by passing through a
buyers’ settlements scene, while sellers may collect their payments at the sellers’
settlements scene once their lot has been sold.

One important aspect of the actual fish market —which can be transferred
directly to the computational version— is the presence of market intermediaries
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playing different roles: the auctioneer, the market boss, a receptionist, a credit
officer. These intermediaries interact with buyers and sellers on behalf of the
institution, and therefore have authority to request, acknowledge, dismiss or
accept all the actions that sellers and buyers need to perform within the fish
market. Furthermore, all those interactions between the market intermediaries
and external agents (buyers and sellers) can in fact be associated with standard-
ised speech acts, some of which are probably tacit in the actual fish market, but
explicitable nonetheless in the computational model. In fact, we have tried to
mirror all actual fish market illocutions, tacit or explicit, to produce a purely
dialogical computational version. FM96.5 has been designed to show the full
complexity of those interactions while keeping as strong as possible a similarity
with the ontological elements of the actual fish market.

For instance, we have tried to identify computational agents in FM96.5 with
either buyers or sellers or actual market intermediaries —we identify agents not
with functions of intermediation, but with actual persons. We have also tried to
mirror all actual fish market illocutions, tacit or explicit, with agent illocutions
that are always explicit. Illocutions can be regarded as the basic unit of analysis
in the actual-world fish market. These illocutions are performed by humans with
some intention in mind and eventually change the state of the world in a way
analogous to the way physical actions do [Searle, 1969].

In this version we have chosen to build agents that correspond to actual fish
market intermediaries. A market boss, in FM96.5, acts as auction supervisor and
ultimate authority in the auction house. An auctioneer takes care of the bidding
process. Two buyer intermediaries are deployed in this version: a buyer admitter
who handles identity and acceptability conditions of buyer candidates, and a
buyer manager who takes care of the financial dealings and physical location of
buyers. There are also two seller intermediaries, a seller admitter who registers
sellers and goods, and a seller manager responsible for the sellers’ accounts.

As to trading (buyer and seller) agents, they participate in the FM96.5 always
and exclusively through interagents which must be regarded as software incar-
nations of the electronic mineing devices to which we referred when introducing
the actual fish market in Chapter 1. Interagents receive all the (significant)
market illocutions, and transmit to the market only those illocutions that trad-
ing agents are allowed to express; always in a standardised form and only in
scenes and moments when these illocutions are acceptable. Notice that human
traders will be treated differently by interagents, since their interaction is han-
dled through a graphical user interface which collects the users’ actions to be
subsequently translated by interagents into their corresponding illocutions.

Conceptually we conceive the computational marketplace composed of sev-
eral wvirtual places, locations, corresponding to the physical places composing
the actual fish market. Then we associate each scene to a single virtual location
and this in turn may have associated multiple scenes or, in other words, scenes
are logically grouped into virtual places. Typically, each virtual place is com-
posed of a vast amount of agents that might be physically running at different
sites but virtually situated in the same place, and possibly involved in different
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scenes within the place. Under these assumptions, one should distinguish an
agent, flow corresponding to buyers and sellers moving from virtual location to
virtual location and from scene to scene (i.e. from activity to activity), and a
communication flow caused by illocutions exchanged between agents. We regard
virtual locations as particularly useful for assisting human agents’ navigation
through the market’s activities.

Next, in Section 5.4 we present the computational realisations of the different
types of agents participating in the marketplace, while in Section 5.5 we describe
how these agents interact in the framework of the several activities (scenes)
composing the market’s activity.

5.4 Market Agents

We shall distinguish three types of agents:
(i) institutional agents;

(ii) interagents; and

(iii) trading agents,

whose features are presented next.

5.4.1 Institutional Agents

Though in Chapter 4 we presented a very general model of institutional agent
some simplifications apply to the actual realisation of institutional agents in
FM96.5. In fact, the general model presented in the preceding chapter arose as
a generalisation of the institutional agents developed for FM96.5.

First, as noted above, we employ an institutional agent for each institutional
role identified in the fish market or, in other words, each institutional agent
adopts a single institutional role. Therefore there will be an agent for each one of
the following roles: boss, buyers’ admitter, sellers’ admitter, auctioneer, sellers’
admitter and sellers’ manager. Henceforth we will be referring to each institu-
tional agent by the role that it plays. Note that institutional agents must be
regarded as the institution’s service providers (trading agents’ admission, credit
management, auctioning, etc.) from which trading agents profit. Henceforth we
will be also referring to institutional agents as market intermediaries.

In order to specify the responsibilities assigned to each institutional agent,
we make use of regular expressions composed of scene names as introduced in
Section 4.3.1 in Chapter 4. The specifications in Table 5.1 have been elaborated
according to the final specification of the fish market performative structure
shown in Figure 3.12 (see Page 108).

When introducing our general model of institutional agent, we referred to the
assignment of priorities as a means of handling the responsibilities ascribed to a
role. Thus, in FM96.5 institutional agents have their responsibilities ranked ac-
cording to their importance. In general, scenes involving the boss are ranked the
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boss = registry.opening.closing
ba = registry.((opening.(buyer_admission)*)||closing)
sa = registry.((opening.(seller_admission.good_delivery)*)||closing)

auctioneer = registry.((opening.(RFG.(Dutch||credit_line))*)||closing)

bac = registry.((opening.((credit_line.good_adjudication)*||
buyer_settlements*))||closing)

sac = registry.(opening.(good_adjudication*||seller_settlements*)||closing)

Table 5.1: Institutional agents’ responsibilities specification.

highest, next follows those scenes involving exclusively institutional agents, and
lastly those scenes wherein trading agents, buyers and sellers, participate. From
this follows that inner coordination activities among the institutional agents
themselves are considered more important than servicing trading agents. Ta-
bles 5.2 and 5.3 list the assignment of priorities for each institutional agent:

boss ba, sa
(registry,H) (registry,H) (registry,H)
(opening,H) (opening,H) (opening,H)
(closing,H) (closing,H) (closing,H)
(buyer_admission,L)) | (seller_admission,L)
(good_delivery,L)

Table 5.2: Assignment of responsibilities’ priorities for the boss, the buyers’
admitter and the sellers’ admitter.

where each pair (scene,priority) stands for a scene name and the priority degree
(H = high, M = medium, L = low).

Though highly similar to the general model of institutional agent introduced
in Chapter 4, FM96.5 institutional agents differ in the way they communicate
both among themselves and with trading agents. Thus, institutional agents
in FM96.5 do not employ interagents to communicate with the rest of institu-
tional agents in the electronic institution. Instead their communication layer
was turned into a built-in conversation layer. However, we could costlinessly do
away with this conversation layer and substitute it by an interagent containing
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auctioneer bac sac
(registry,H) (registry,H) (registry,H)
(opening,H) (opening,H) (opening,H)
(closing,H) (closing,H) (closing,H)
(RFG,M) (credit_line,M) (good-adjudication,M)
(Dutch,L) (good-adjudication,M) | (seller_settlements,L)
(credit_line,M) | (buyer_settlements,L)

Table 5.3: Assignment of responsibilities’ priorities for the auctioneer, the buy-
ers’ accountant and the sellers’ accountant.

the protocols needed by each institutional agent.

As to the communication of institutional agents with human agents, only the
auctioneer and the boss of the market offer GUIs that allow humans to eventually
alter their behaviour. Table 5.4 depicts the simple GUIs corresponding to the
boss and the auctioneer respectively. While the boss’ GUI monitors the boss
operations and allows for the automatic launching of the market and its eventual
interruption, the auctioneer’s GUI allows a human supervisor to decide whether
an ongoing auction must be suspended. Notice that the rest of institutional
agents operate in a completely autonomous way.

A distinguishing feature of the institutional agent playing the boss role is
that it also acts as institution manager. Recalling the general functions of an in-
stitution manager (i-manager) identified in Chapter 4, the i-manager in FM96.5
implements some of them (but applying some simplifications as detailed in Sec-
tion 5.5):

e scene generation authorisation;
e scene book-keeping;
e request for scene (RFS) validation; and

e agent name service (ANS).

Furthermore, the i-manager is also in charge of controlling the static sepa-
ration of duties of the agents requesting for participating in the electronic mar-
ketplace. The policy of separation of duties in FM96.5 is rather simple:

e institutional agents are only permitted to play a single role; and

e trading agents are permitted to play both the buyer and seller role.

5.4.2 Interagents

Recalling our conception of AmEI presented in Chapter 4, we argued that an
AmEIs infrastructure is articulated based on institutional agents and intera-
gents, being interagents a particular type of institutional agents responsible for
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Table 5.4: (a) Boss Graphical User Interface (GUI); (b) Auctioneer GUI.
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mediating agent interactions. In the most general model, interagents were said
to mediate interactions for both institutional and non-institutional (external)
agents.

But the general model of interagents presented in Chapter 4 has its origins
in the interagent model implemented in FM96.5. In order to achieve the most
realistic implementation of the auction house activity, we decided to standardise
as much as possible all conceivable external agent interactions with the market.
We took advantage of the highly structured negotiation convention of auctions,
and of the fact that in actual fish markets all bidding round interactions can be
mediated through an electronic mineing device.

Thus, we mimeticly built interagents as the counterparts of the electronic
mineing devices employed in the actual fish market to be used as universal in-
terfaces by buyer and seller agents. Interagents are expected to be installed
in the external agent’s computer and become the only channel through which
messages can pass between external agents and institutional agents. Since inter-
actions are all linked to illocutions in FM96.5, this interface is all that is needed,
in principle, to participate effectively in the electronic auction house. But in
fact, interagents comply with other necessary duties as well: they sustain the
identity of participants, validate illocution emission and reception, and, gener-
ally speaking, enforce the auction-house rules —including the bidding protocol.
Through institution-owned interagents buyer and seller agents —developed and
owned elsewhere or even human buyers or sellers— can participate in electronic
auctions.

The versatility of interagents in FM96.5 falls along several directions:

e First, they allow the user to determine the scene where it wants to be
active (external agents can only act —or more properly, engage in dialogue
with institutional agents— at one scene —and so at one place—at a time).

e Secondly, depending on the specific scene, and the prevalent market condi-
tions, it either displays or conveys market information and habilitates the
transmission of the pertinent standardized illocutions.

e Finally, since interagents are market-owned, some accounting, liveness and
fault-tolerance functions are performed in the background.

Consequently interagents are capable of managing the navigation of trading
agents within the performative structure depicted in Figure 3.12, enforcing the
institutional rules among and within scenes.

Here we solely concentrate on describing how interagents operate for man-
aging trading agents’ inter-scene behaviour, putting off the discussion about
intra-scene behaviour for Section 5.5. Therefore, the fundamental issue is the
representation of the performative structure and the institutional norms. For
this purpose, looking back at the specification we firstly obtain the projection
of the performative structure for buyers and sellers, i.e. the sub-performative
structure whose scenes involve buyers and sellers. From the result we observe
that trading agents, either buyers or sellers, do only participate in a single scene
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at any time. Therefore we represent the performative structure corresponding
to be handled by interagents as a directed acyclic graph whose states are scenes
and whose labels are expressions representing arcs’ constraints.

Figures 5.1 and 5.2 depict the representations to be handled by a buyer’s
interagent and a seller’s interagent respectively.

[ not(commit(x:b.y:bac,pay(?g,?price, 2card)

Auction

buyers
settlements

ist buyers
registry admission

Figure 5.1: Performative structure projection for buyer agents.

| not(goodsftofauction(x:5)1

sellers
settlements

registry sellers
admission

Figure 5.2: Performative structure projection for seller agents.

From Figure 5.1 we observe that a buyer’s interagent will allow for his buyer
to move to either the auction scene —to take part in the ongoing auction— or the
settlements scene —to either update his credit or pay for the acquired goods—
after being admitted into the market session. Thereafter, the buyer can move
between the Dutch auction scene and the buyers’ settlements scene till deciding
to leave the market. A buyer will not be allowed to leave the market if there
are pending payments deriving from his purchases in the auction scene (when
acquiring a good by auction the buyer makes the commitment to subsequently
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pay for it in the settlements scene). This is captured by a constraint over the
arc connecting buyers’ settlements and the output scene.

In Figure 5.2 a seller admitted in the market session at the sellers’ admission
scene is permitted to deliver his goods at the good delivery scene to be subse-
quently put in auction. Once completed the delivery, the seller can make it for
the sellers’ settlements scene where he can monitor the sale of his goods. From
there a seller can step back to the good delivery scene if required to submit more
goods. In the end, once a seller’s goods have been auctioned —and so have been
either sold or withdrawn—, he can collect his earnings and leave the market;
otherwise —some of his goods remain to be auctioned— he must wait for the
completion of his goods’ auctioning. This is captured by the constraint over the
arc connecting sellers’ settlements and the output scene.

Notice that in both cases we solely refer to norms affecting the inter-scene
behaviour of trading agents, and so we postpone those affecting their intra-scene
behaviour to Section 5.5 where a full account of the activities occurring in the
market place is provided.

A trading agent’s interagent will keep track of his agent when moving from
scene to scene and will guarantee that his agent behaves according to the speci-
fication.

5.4.3 Trading Agents

Interagents are the only interface for (human and software) trading agents to the
auction house. Note that interagents are coupled with a graphic interface when
dealing with human agents, while when interacting with external trading agents
they transmit and receive message-shaped illocutions between these external and
the internal institutional agents. Figure 5.3 shows the web interface offered to
human buyers for remotely participating in the auction house.

Regarding the connection between a trading agent and an interagent, we
must choose one of the following models based on their physical locations:

e Local-local: Trading agent and interagent running on the trading agent’s
host.

e Local-remote: Trading agent running on his local host machine and in-
teragent running remotely on the auction house’s host.

¢ Remote-remote: Trading agent running along with the interagent in the
auction house’s host.

In FM96.5 we have opted for the local(trading agent)-local(interagent) model,
discarding trading agents’ mobility. Thus, interagents are shipped over to be
hosted in trading agents’ host machines, instead of having each trading agent
sent over to the auction house. Although we do see mobile agents opening new
possibilities for e-commerce —particularly for both data-intensive applications
and disconnected computing—, we think that at the same time they raise new
security threats. The main problem with mobile agents from the host view
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is that one can never know what mobile agents are going to do in the host
computer. Securing the host from malicious agents is a quite demanding task,
because we can only confine where a mobile agent can operate, but we might
not recognise if an agent does something ilegal within his constraint operation
domain. Furthermore too much restrictions may seriously limit an honest agent’s
mission.

As to interagents, we prefer to have them sent over to their trading agents’
hosts motivated by several reasons:

e they can filter out and discard unnecessary messaging that consumes auc-
tion house’s resources—eventually avoiding denial of service attacks;

e they guarantee that any communication issued from trading agents’ host
is conveniently encrypted and secured;

e they are small, trustworthy pieces of code (since they belong and are dis-
tributed by the institution itself).

Now consider software trading agents. An interagent works as a Java process
which uses its standard input and standard output to communicate with trading
agents via pipes. In adopting such a simple convention, software agents written
in any programming language can interact with the auction house via intera-
gents. Thus, a trading agent must firstly spawn the interagent received from the
auction house as a child process and subsequently plug to it. Thereafter trading
agent and interagent communicate in a rather straightforward way by exchanging
string—based illocutions according to the protocol of the scene wherein the trad-
ing agent is situated. Tables 5.5 and 5.6 list respectively the possible contents
of the illocutions employed in an interagent-mediated market-buyer exchange,
while Table 5.7 lists their intended meanings. Messages 0 to 3 are employed by
a buyer to move from scene to scene within the market; messages 3 to 7 stand
for the buyers’ allowed actions; and messages 8 to 32 correspond to the messages
that buyers may receive from the market during a market session.

Interagents allow agents to access all of the features of the auction house
present in the Web interface. Thus software agents can interact with the auction
house as they would do through the web interface by simply sending to their
interagents string-based messages encoding commands.

Notice also that interagents convey to buyers and sellers other information
that human buyers and sellers in the fish market would have available in situ.
For instance, buyers receive the list of participating buyers (which would be
seen by a human buyer taking part in the auction), the list of auctionable goods
(which are scattered over the floor in the auction room), details of the next good
to be auctioned, his own current credit and the list of purchases, etc.

To the best of our knowledge, FM96.5 and AuctionBot [Wurman et al., 1998]
are the only auction houses with explicit support for user-written software agents
though based on different approaches. AuctionBot defines a message-based API,
a communication specification, that agent developers must follow to implement
agents that communicate with AuctionBot via TCP. The specification defines
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Figure 5.3: Human Buyer Applet
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message formats for API operation. The API was developed for agent developers
to provide a method of interaction with the AuctionBot server through software
calls. Notice that trading agents are allowed to directly interact with Auction-
Bot. Differently, in FM96.5 trading agents are obliged to have their interactions
with the auction house mediated by interagents.

However, in both cases the API is complete enough that developers can use it
to build their own front end to the auction house. This flexibility is particularly
useful for researchers who wish to use the functionality of the auction houses
but would rather provide an alternative interface.

In order to ease the implementation of trading agents, FM96.5 provides
skeleton programs for buyer agents written in Java, C, and Common Lisp?.
By providing such a set of templates, we attempted to isolate agent builders
from low-level details so that they could concentrate on the design of trading
strategies. The Java piece of code below shows the main part of a Java agent
template. An agent developer must simply concern about implementing the
to_bid_or_not_to_bid function corresponding to the agent’s bidding strategy.

public void run(){
streams = catchInteragent();
DataInputStream pannel = (DatalnputStream)streams.elementAt(0);
PrintStream remote = (PrintStream)streams.elementAt(1);
new ChannelIn(pannel,queueln,Thread.MAX_PRIORITY).start();
new ChannelQut(remote,queueOut,Thread.MAX_PRIORITY).start();
goIntoAuctionRoom();
while (auctionOn){
String message = receive();
if (message !'= null){
processMessage (message) ;
to_bid_or_not_to_bid(remote);
}
}
goOutOfMarket () ;

Notice that so far interagents have been identified to be useful for coping with
agent heterogeneity —allowing for the participation of agents (possibly) written
in different languages with different architectures— and with societal change —
thanks to their capability of managing performative structures’ specifications.
Furthermore, interagents importantly contribute to the robustness of the auction
house by handling trading agent failures that may jeopardise the overall opera-
tion of the institution. In general, when an interagent’s trading agent crashes,
the interagent pro-actively leaves the auction house after informing the buyers’
accountant about the failure so that pending payments are postponed. A typical
dysfunctional behaviour of trading agents observed in the experiments presented
in Chapter 6 comes about during the bidding rounds. Typically some agents

3 Analogously to the Standard Template Library provided by AuctionBot.
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#Message | Predicate Parameters
0 goto admission|auction|settlements
1 leave auction
2 ezt
3 admission buyerlogin password
4 bid [price]
5 update_credit card-code credit
6 statement_state | buyer_login
7 pay purchasevalue
Table 5.5: Messages that (software) buyer agents can utter during a market
session

#Message | Predicate Parameters

8 deny deny-code

9 accept admission|settlements|auction auction_state

10 open_auction auction_number

11 open_round round-number

12 good good_id good_type
starting_price resale_price auction_protocol

13 buyers {buyerlogin}*

1/ goods {good_id good_type
starting_price resale_price}*protocol

15 offer good_id price

16 sold good_id buyerlogin price

17 sanction buyerlogin fine

18 expulsion buyerlogin

19 collision price

20 withdrawn good_id price

21 bidders {#bidders|buyerlogin®} + price

22 going {1,2}

23 gone

24 tie_break buyerlogin

25 start_bidding bidding_time

26 bidding_time step

27 end_bidding

28 statement [round{sale| fine}good_type
sellerstarting_price{sale_price| fine}]*
purchase_value current_credit

29 end_round round-number

30 end_auction auction_number

31 closed-market | closing_code

Table 5.6: Messages that (software) buyer agents can receive during a market

session.
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Predicate Semantics

goto Goto scene.

leave Leave scene.

exit Leave the marketplace.

admission Request for admission.

bid Bid at the current or specified price.

update_credit

Update my current credit.

statement_state

Request current state of a trader’s statement.

pay Pay for the acquired goods.
deny Refuse requested action.
accept Accept access to scene.

open_auction

The auctioneer opens a new auction.

open_round

The auctioneer opens a new bidding round.

good Features of the good in auction.

buyers List of participating buyers.

goods Lot of goods to be auctioned.

offer Current offer called by the auctioneer.
sold The good in auction has been sold.
sanction Sanction imposed on a given buyer.
expulsion Buyer expelled out of the market.
collision Multiple bids at the same price (DBP).
withdrawn Reserve price reached. Good withdrawn.
bidders Bidders accepting the called price (UBP).
going Going.

gone Gone.

tie_break Draw among bidders undone.

start_bidding

Authorises to start bidding.

bidding_time

Bidding time counter.

end-bidding

End of bidding time.

statement

Description of the statement of acquired goods.

end-round

Bidding round over.

end-auction

Auction over.

closed-market

End of market session..

177

Table 5.7: Semantics of the messages exchanged between a buyer and the auction

house.
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collapse when engaging in lengthy deliberative processes for elaborating their
trading strategies and so they may either crash or simply fail to consume the
offers called by the auctioneer. In such a case the interagent takes the initiative
and leaves on behalf of the trading agent.

5.5 Scenes

Generally speaking, the market activity sequentially progress through three
stages: the opening of the market, the auctioning of goods and the closing
of the market. Each stage involves multiple scenes. In order to understand and
explain how scenes are started, joined and left by agents, i.e. how the institu-
tion dynamically evolves, we resort to the computational model introduced in
Chapter 4.

First, we dissect the opening of the market, its general dynamics and the
closing of the market. Next we treat the auctioning of goods separately due to
its higher complexity.

In FM96.5 once the market boss agent starts, the rest of market intermedi-
aries are forced to check in at the registry scene by identifying themselves. In
fact, no auction can take place until all the market intermediaries check in. The
activation of the market is started by the market boss agent who opens the mar-
ket place at the opening scene once all market intermediaries have checked in.
Thereafter, upon registration at the registry scene, traders (buyers and sellers)
may start entering the scenes where they are to conduct business, but always
subject to the market rules and illocutory constraints.

In FM96.5 the market boss agent plays also the role of institution manager®.
We must recall that one of the functionalities of the institution manager is to act
as the ANS of the institution. Therefore, the market boss will be keeping the list
of participating agents along with their roles and logical addresses. Note that the
participants’ addresses will be exclusively handled by market intermediaries and
trading agents’ interagents. Thus trading agents know the agents participating
in the institution by their logical names.

According to the role specifications of the market intermediaries (institutional
agents) provided above, the i-manager will be permanently keeping requests from
the market intermediaries to start new scenes whenever the market is not closed.
Thus the i-manager will keep the request of the boss for starting a new registry
scene, of the buyers’ admitter and the sellers’ admitter for respectively starting
a new admission scene and registering goods, and from the buyers’ and sellers’
accountants. Furthermore, notice that all these market intermediaries are ready
to handle multiple scenes at the same time.

In order to start new scenes trading agents are required. According to our
computational model, traders must explicitly request which scene they want
to either start or join. However some simplifications apply in FM96.5. Thus,
traders do not need to specify either which transition to follow or which active

4Henceforth we will be referring to the boss to mean the agent playing both roles: boss and
i-manager.
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scene is chosen as target since all scenes involving traders must be created, except
from the auction scene. But as there is a single, central auction scene in FM96.5,
specifying which auction scene to enter is not required either.

For explanatory purposes we will only refer to buyer agents. In general, a
software buyer requests for starting or entering new scenes through goto mes-
sages (see Table 5.5 above), and requests for leaving scenes with exit messages.
In Figure 5.3 a human buyer can also choose where to go by simply clicking the
button corresponding to the target scene. When succeeding, software buyers re-
ceive accept messages, while human buyers have their change of scene displayed.

Consider the case of a software buyer aiming at starting an admission pro-
cess. For this purpose, it issues a goto admission request to its interagent that
validates it, taking into account whether the agent satisfies the preconditions to
apply for the scene®, and subsequently forwards it to the i-manager. Then the
i-manager authorises (or perhaps refuses) the buyer’s interagent to contact the
buyers’ admitter to start a new buyers’ admission scene. The buyer receives the
response to its request through its interagent as either an accept or a deny mes-
sage. Observe that the process described corresponds to the Request for Scene
scene introduced in Chapter 4.

When starting a new scene with any external trading agent, market interme-
diaries are always the leaders of the scene. Notice also that the scenes between
market intermediaries (except from the auctioneer) and external trading agents
are 2-agent scenes and so can be readily realised by means of conversation pro-
tocols.

An important difference with respect to the general computational model
presented in Chapter 4 is that the i-manager in FM96.5 does not keep track of
active scenes, except from the auction scene. This is motivated by the fact that
the auction scene is the only scene whose participants may vary —mnew buyers
may enter and others leave. Furthermore, market intermediaries do not inform
either the i-manager about the end of an active scene.

Regarding the auction scene, when reaching an access state the auctioneer,
which plays also the role of scene leader, requests the i-manager for buyers having
solicited to join the scene —buyer agents by sending a goto auction request
and human buyers by pressing the Auction room button. Then, the auctioneer
directly contacts the buyers on wait and accepts them into the auction scene.
Thus a buyer agent receives an accept message from its interagent, while a human
buyer has the change of scene displayed. Importantly, whatever the case buyers
also receive information about the current state of the auctioning (goods left
and good in auction).

On the other hand, when reaching an exit state the auctioneer considers
the requests for leaving the auction scene, if any, submitted by buyers —buyer
agents do it by posting a leave auction request, while human buyers by requesting
either for jumping into the settlements office or for leaving the marketplace. If
any buyer leaves the auction "room”, the i-manager is informed about the new

5For instance a buyer participating in the auction scene cannot apply for starting an ad-
mission scene since it has been already admitted.
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composition of the scene.

So far we observe that indeed the i-manager in FM96.5 is in charge of most of
the functions for an i-manager identified in our general computational model —
namely scene generation authorisation, scene book-keeping, RFS validation, and
ANS. Nonetheless we feel obliged to highlight that they are largely simplified
in FM96.5. Although in Chapter 4 we employed the fish market for explana-
tory purposes to introduce a general computational model of agent-mediated
electronic institutions, we shall see that the actual computational realisation
represented by FM96.5 does not faithfully comply with the general model, con-
taining some simplifications. These obey to two main factors: the need for easing
the implementation and the fact that the general model arises in part from the
implementation of FM96.5
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Figure 5.4: Closing Scene

Market closing involves some artificiality in FM96.5. The market boss may
stop an auction through a closing declaration —whose triggering conditions are
explicit, albeit varied— but actual closing requires that all pending activities
of market intermediaries be properly terminated. Figure 5.4 depicts the spec-
ification of the closing scene, which involves the co-ordination of all market
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intermediaries as well as the interagents employed by trading agents.
We could briefly summarise the termination of the market in the following
steps:

(i) the boss sends a closing signal to the auctioneer (the boss has the right to
close the market at any time);

(ii) the auctioneer acknowledges this closing signal as soon as the current bid-
ding round is over;

(iii) the boss multicasts a closing signal to the rest of market intermediaries
and to all interagents employed by trading agents to indicate that they
have to finish their activities;

(iv) the buyers’ admitter and sellers’ admitter close the doors of the market to
buyers and sellers intending to enter the market session by rejecting their
requests;

(v) trading agents in the transient to other scenes have their requests for scenes
refused;

(vi) trading agents not participating in any scene are also notified the closing
of the market;

(vii) market intermediaries and interagents acknowledge the closing signal once
the scenes in which they are involved are over and once they have conve-
niently annotated the pending obligations of trading agents;

(viii) the boss declares the definitive closing of the market.

Ideally, the institution should not finish the activity till every single agent has
finished off his pending obligations. Nonetheless in our current implementation
we opted for simply storing each agent’s individual commitments in his agenda
for future market sessions.

5.5.1 Auction

FM96.5 originally exclusively included the Dutch auction protocol since it is
the protocol employed in the real-world fish market. However, later on the
auctioneer was redesigned in order to make it flexible enough to ease the task of
adding other auction protocols. At present, FM96.5 is also capable of auctioning
goods under the rules of the English, Vickrey and First-price Sealed-bid auction
protocols.

It is worth recalling that the auctioning of goods requires the coordinated
activity of the auctioneer with several market intermediaries.

First, the auctioneer obtains from the sellers’ admitter the lot of goods to be
sold at the RFG (request for goods) scene. Afterwards the auctioneer can start
the auction scene in order to sell the received lot. While auctioning goods, the
auctioneer will hold an additional scene, the credit line scene, with the buyers’
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accountant with the aim of determining whether a buyer’s bids can be supported.
In turn, the buyers’ accountant will hold the good adjudication scene with the
sellers’ accountant to keep him informed about eventual sales and withdrawals.
Next we exclusively concentrate on the activity taking place in the auction
scene. Thus we describe how our original specification of auction scene intro-
duced in Chapter 3 must be enlarged in order to host other bidding protocols.

Downward Bidding Protocol (DBP)

We can identify several situations that may arise during each bidding round in
the actual fish market:

e Proper sale. When a single buyer submits a bid that his credit can support,
it is turned into a sale.

o Unsupported bid. When a buyer submits a bid that his credit cannot
guarantee. The buyers’ manager fines this bidder and the round is restarted
by the auctioneer who calculates the new starting price by increasing 25%
the price within the bid.

e Collision. When two or more buyers simultaneously submit the same bid.
The auctioneer declares a collision and restarts the round. Again, the new
starting price is calculated by increasing 25% the collision price.

FM96.5 implements faithfully all theses cases, plus two more:

e FExpulsion. When a buyer is overdrawn and cannot back up a fine, he is
sent off the market and the round is restarted as usual

e Minimum price. Each good is assigned a minimum price when passing
through the sellers’ admitter office. If minimum prices are reached, the
round is restarted as usual.

Our main concern when implementing the downward bidding protocol has
been to ensure fairness while preserving realistic response time®. In FM96.5 we
achieve it —without supposing common fixed delay intervals— through a clever
alternative to common clocks.

In FM 96.5 we regard the termination of a bidding round as the synchro-
nisation point of the round participants. All buyers receive syncopated price
sequences. If a buyer is going to submit a bid, he will signal this as soon as the
price quotation reaches his target bid. The signal sent back from the interagent
to the auctioneer includes the price at which the buyer signalled his intention
and the time stamp. As soon as the auctioneer receives a bid, he multicasts to
the buyers’ interagents the information that a bid is in, which these interagents
must acknowledge. Since we can assume a reliable network, the order in which

6In the fish market this corresponds to time delays between prices that are short enough
to be imperceptible to human buyers but long enough to allow for collisions (i.e. one or two
seconds between successive prices).
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messages are transmitted is never altered, thus the auctioneer must receive any
delayed bids before we receive the corresponding acknowledgements from these
bidders. Hence we have the standard two cases:

e Proper sale. One bidder.

e Collision. Multiple bidders at the same price.
and a new case:

o Multiple bidders at different prices. In this case, the highest price bid wins
if there is just one, or we restart as usual.

I 1000)| | 1000)| | ,1000) |

Figure 5.5: DBP Case Study

Figure 5.5 illustrates the synchronisation between the auctioneer and the
buyer agents’ interagents when a proper sale occurs. We see that buyer#2
submits a bid when the offer called by its interagents reaches 1000. Next its
interagent posts the agent’s bid to the auctioneer who requests for acknowledging
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the received bid to the rest of buyers’ interagents. The rest of buyers are given
the chance to see the same offers that buyer#2 received, but if they do not submit
any bid their interagents acknowledge buyer#2’s bid so that the auctioneer closes
the round by publicly declaring the sale.

Recall that in Chapter 3 we already provided a specification of the auction
scene considering that all goods were auctioned following a Dutch auction pro-
tocol. Next in Chapter 4 we anticipated that the realisation of the scene is
achieved by means of conversation protocols held between the auctioneer and
the agents participating in the auctioning. Thus each buyer has the view of
the auction scene represented by the conversation protocol in Figure 4.3 (see
Chapter 4), while the auctioneer holds a protocol compatible to that one for
each buyer, i.e. holds multiple conversation protocols in parallel. When there is
some bid(s), that means that some conversations have reached the ¢g state (bid-
ding) while others are still at the ¢g state (no bid). The auctioneer stops calling
prices and requests for bid acknowledgement to the interagents of the buyers
that have not bid yet (their conversations are at the gg state). The firing of the
auctioneer’s method callACK starts the synchronisation between the auctioneer
and the non-bidding buyers’ interagents. In fact, the synchronisation between
auctioneer and interagents must be regarded as an interleaved, inner protocol
transparent to buyers. And then the process proceeds as described above.

In this version of the downward bidding protocol, synchronism is achieved
not within each price quote —as in the actual fish market room— but within
the sequence of price quotations that are needed to sell one good”. By doing so,
and thanks to the fact that a reliable network is assumed, fairness conditions
are preserved. Thus, premature bids, foot-dragging, and spoofing are adequately
avoided directly by the protocol implementation, while malicious impersonation
and snooping are dealt with through interagents.

Upward Bidding Protocol (UBP)

The English auction is perhaps the most popular protocol. It is also known as
the open-outcry auction or the ascending-price auction.

We take the definition of the English auction provided by Paul Milgrom [Mil-
grom and Webber, 1982]:

Here the auctioneer begins with the lowest acceptable price —the
reserve price— and proceeds to solicit successively higher bids from
the customers until no one will increase the bid. The item is ’knocked
down’ (sold) to the highest bidder.

Notice that not all goods at an English auction are actually sold. Eventually,
when the reserve price is not reached, the item is declared unsold. Therefore, the
auctioneer must state at the conclusion of bidding whether the item has been
sold or not.

In America typically the auctioneer calls out the amount he has in hand and
the amount he is seeking as well. This is precisely how the auctioneer in FM96.5

"Here that (complete) sequence is called a bidding round.
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acts.® Furthermore, an English bidding round in FM96.5 does not start from the
reserve price, but from some price above the reserve price. Then the auctioneer
starts quoting prices in descending order till some buyer(s) stops the sequence by
submitting a bid before the reserve price is reached. When reaching the reserve
price, the good is withdrawn, else the auctioneer informs the participating buyers
about the bid that he is in hand and starts calling out prices in ascending order.

Thus the auctioneer employs the downward bidding protocol to fix the start-
ing price of an English bidding round. Thereafter the auction takes place as
explained above. This is why we treat the specification of an English bidding
round as an extension of the specification of the auction scene in Figure 3.3 (see
Chapter 3). The former specification of auction scene exclusively considered a
Dutch protocol as the only auction format. Figure 5.6 depicts the specification
of an English bidding round departing from the wz state in the auction scene
specification. The wy is the state at which some buyer(s) stops the descending
sequence being quoted by the auctioneer. Henceforth, we shall refer to our com-
putational version of the English auction protocol as upward-bidding protocol

(UBP).

The auctioneer proceeds as follows. When having bids in hand, the auctioneer
announces it by multicasting to all buyers the value of the current bid along with
either the list of buyers or the number of buyers involved® (state wi»). Next
the auctioneer calls another price corresponding to a new offer (state wq3z). If
any bids are submitted at the called offer, the auctioneer announces again the
existence of bidders; otherwise, he starts multicasting to all buyers the going,
going, gone sequence (states wi4,wrs,we). If the sequence is not interrupted by
any bidder accepting the auctioneer’s offer, the good is "knocked down” and sold.
Notice that it might be the case that the end of the bidding round is reached
with multiple buyers bidding at the same price. In such a case the auctioneer
must undo the tie by choosing out a single bidder from the set of bidders.

Similarly to the implementation of the downward-bidding protocol, the im-
plementation of the upward-bidding protocol also employs the synchronisation
of the auctioneer with the buyers’ interagents. There are three synchronisation
points corresponding to the states representing the going, going, gone sequence.
Thus, when receiving a going message, a buyer’s interagent must either post to
the auctioneer its buyer’s bid or, otherwise, acknowledge it. Before closing the
bidding round with a gone message, the auctioneer asks all buyers’ interagents
whether their buyers have any bid to be submitted. If so, the auctioneer restarts
the round announcing a higher bid; otherwise the auctioneer sends the gone
message and the bidding round is closed by announcing the winner.

8Differently, in England the auctioneer waits to be told what a bidder’s offer.

9FM96.5 allows for the configuration of the degree of information revelation required. Thus
depending on the chosen configuration the buyers’ and sellers’ identity might be hidden from
the rest of traders.
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LABEL LIST (\)

5. inform(?x:a,all:b,offer(?good_id, ?price))

7. {commit(?y,x:a,bid(?good_id, ?price)) | 2y:b}

12. inform(?x:a,all:b,sold(?good_id, ?price, ?buyer _id)
15. inform(?x:a,all:b,end_auction(?n))

16. inform(?x:a,all:b,bidders(?bidders, ?bid))

17. inform(?x:a,all:b,going(1,?bid))

18. inform(?x:a,all:b,going(2, ?bid))

19. inform(?x:a,all:b,gone())

20. inform(?x:a,all:b,tie_break(?buyer_id))

O~ )

Figure 5.6: Extension of the Auction Scene to handle English bidding rounds.
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First-Price Sealed Bid and Vickrey

We group together the first-price sealed bid and Vickrey auction'® protocols
because they are almost identical, only differing in the price payed by the winner.
This analogy also appears at the design and implementation levels.

Both auction protocols share the distinguishing feature of being sealed —
differently to the open-outcry format of the Dutch and English auction protocols—
, and consequently hidden from other bidders, i.e. each bidder is ignorant of other
bids. As to the first-price sealed bid, the item is awarded to the highest bidder,
who pays exactly the amount that he bid. However, though in a Vickrey auction
the item is also awarded to the highest bidder, he must pay an amount equal to
the second highest bid (i.e. the highest unsuccessful bid).

Again we specify the first-price sealed bid and Vickrey auction protocols as
an extension of the auction scene in Figure 3.3 (see Chapter 3). Figure 5.7
depicts such extensions. Notice that we employ the same specification for both
protocols. They only differ in the behaviour of the auctioneer at state wig when
determining the sale price to be payed by the winning bidder.

V. Y
/-~ )

w
~

23
17
22
21 22 23 8
22

LABEL LIST (\)

7. {commit(?y,x:a,bid(?good_id,?price)) | ?y:b}

8. inform(?x:a,all:b,withdrawn(?good_id, ?price))

12. inform(?x:a,all:b,sold(?good_id,?price,?buyer_id)
21. inform(?x:a,all:b,start_bidding(?bidding_time))
22. inform(?x:a,all:b,bidding_time(?time))

23. inform(?x:a,all:b,end_bidding())

& Z/

Figure 5.7: Extension of the Auction Scene to handle First-price sealed-bid and
Vickrey bidding rounds.

In the current implementation built in FM96.5 the auctioneer starts by in-
forming all buyers that they can start submitting their bids (state w4). From
that moment on, the auctioneer starts the count-down of the bidding time and
buyers commence to send their bids. till the bidding time expires. This time we
establish a single synchronisation point between the auctioneer and the buyers’

10K nown also as the uniform second-price auction.
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interagents. In this case, once the bidding time is over, the auctioneer asks all
buyers’ interagents whether their buyers have any unsent bids.

Auctioneer Design

Figure 5.8 depicts the Coad diagram [Dav, 1993] representing the auctioneer
agent’s behaviour in the auction scene. All rectangular boxes are objects except
from the box named Protocol, which is a generic interface. Each box is divided
into three parts. The upper area contains the name of the object, the middle area
its attributes, and the lower area the object’s services. The Auctioneer object
contains general services, while DBPProtocol, UBPProtocol, FirstProtocol and
VickreyProtocol contain specific service for each bidding protocol required in
the auction scene. For instance, the BestBid service in FirstProtocol and Vick-
reyProtocol whose output is in both cases the winning bidder and bid produce
different results since the highest bidder in a Vickrey auction pays an amount
equal to the second highest bid, instead of the amount that he bids as occurs in
a First-price sealed bid auction.

5.6 Market Architecture

Figure 5.9 shows our conceptual view of the architecture of FM96.5 as a multi-
layered AmEI:

e Market kernel. Composed by agents playing the roles of market inter-
mediaries. Each market intermediary is implemented as a Java agent that
interacts with the rest of market intermediaries via TCP streams. All
the events generated by each market session is recorded onto the market
database using the JDBC!! [JDBC, www] database access API, which also
contains a library of agent templates (currently in C, Lisp and Java) for
agent developers to construct their own agents. Monitoring agents also
post monitoring information to the auditor(audit) via Remote Method In-
vocation(RMI) [RMI, www] calls'? that permit the access to the reposito-
ries containing the monitoring information handled by the auditor.

e Middle-ware layer. Consisting of the interagents employed by trading
agents. They are also completely implemented in Java. Interagents in-
teract with the market intermediaries via TCP and also post monitoring
information to the auditor via RMI.

¢ External agents layer. On the one hand, human agents employ a GUI to
interact with interagents situated in the middle-ware layer, and hence with
the auction house. On the other hand, software agents communicate with
interagents via string-based messages exchanged through pipe channels.

1 Java Database Connection.
12The discussion about trust and accountability follow in Section 5.7.
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Auctioneer DBPParameters
e
FirstParameters Goods Ps
Bt Buyers To
MINBUYERS Cmax
Sf pi
toString Sf
callSALE -
callFINE toString
callBUYEROFF
callCHECKIFGOODOU
callCOLLISION
callWITHDRAWAL —_—
— callOPENROUND EBPParameters
VickreyParameterg callSTARTBIDDING Ps
Bt callENDBIDDING Sf
Sf 1| callACK 1 To
callPRICE Spf
toString callGOING
callGONE toString
Protocol
BiddingRound
— .
DBPProtocol EBPProtocol FirstProtocol VickreyProtocol
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Ps Ps Sf Sf
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Cmax To MINBUYERS MINBUYERS
Sf
To I\S/IFI)lf\lBUYERS BiddingRound BiddingRound
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Figure 5.8: Coad diagram representing the design of the auctioneer agent’s be-
haviour in the auction scene.
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EXTERNAL AGENTS LAYER
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AGENT  MARKET

BRARY SESSION:

Figure 5.9: Market Architecture



5.7. Accountability 191

Notice that in fact the institution is composed of the two inner layers. Notice
also that all agents depicted above are assumed to be possibly running at different
sites distributed over the Internet.

We believe that this multi-layered view of the architecture of FM96.5 can be
readily generalised as the general architecture of an AmEL

In our choice of development languages, we profited from our previous expe-
riences too. Having already developed prototypes using C and Eu-Lisp [Padget
et al., 1993] with PVM [Napoli et al., 1996, Gei, 1994] and MPI [Forum, 1994]
(see Table 5.8), Java suggested relevant advantages [Gosling, 1996] that were
worth testing in the implementation of FM96.5:

e it provides the advantages of object-oriented languages (reusability, modu-
larity, encapsulation, etc.) and claims to be designed for maximum porta-
bility;

e its ease of programming and safety features help produce debugged code
quickly shortening the development stage;

e it is highly powerful for constructing distributed applications;

e there is available an increasingly large collection of specialised packages
which allow the programmer to count on powerful tools to successfully
handle distributed computing [Sun, www, RMI, www]|, database connec-
tivity [JDBC, www], security [SSL, www], graphics, etc.

Besides, given the recent industrial commitment and investment as well as
generalised commercial activity around Java, it seems to us there is strong in-
dication that Java may become a de-facto standard, therefore having perma-
nence and complementary developments that would facilitate taking FM96.5 to
a product-level stage.

5.7 Accountability

In Chapter 3 we identified heterogeneity, exception handling, societal change and
trust and accountability as the major issues arising in the practical development
of robust open agent organisations. So far fundamentally the use of interagents
has allowed us to provide an answer to the first three issues. Nothing has been
said yet about the not less important issue concerning trust and accountability
within an agent-mediated electronic institution.

Trust and accountability must be regarded as a fundamental issue when
practically deploying electronic institutions.

From an institution’s point of view, monitoring is essential for detecting trad-
ing agents’ deviating behaviours, and so subsequently gain protection against
those that corrupt the trading activity. Moreover, monitoring the market ac-
tivity can also help an institution to detect unexpected behaviours exhibited by
its own agents, and act consequently in order to fix the defective institutional
agents or interagents.
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Trust builds upon the transparency that institutions demonstrate by facili-
tating accountability information to the trading agents involved in the market
transactions. In general, any institution must specially care about guarantee-
ing the soundness of the services that it provides so that the participants trust
it. But in the particular case of electronic institutions, gaining the confidence
of humans appears as a delicate issue, specially if we consider that humans re-
gard the events taking place in the institution as unobserved and they wonder
whether they indeed ever occurred. Furthermore, we must not forget the fact
that some humans may be participating in the market through some personal
trading assistant. Evidently, trading assistants’ owners will be extremely inter-
ested in checking whether they behaved as expected. And this is also a relevant
matter from the point of view of the trading assistants’ developers.

Technically speaking, monitoring the behaviour of multi-agent applications
(and of agent-mediated computational institutions in particular) with distributed
data, control and process is extremely difficult. However, the increasing number
of multi-agent applications has made agent researchers face the matter of mon-
itoring multi-agent systems (see f.i. [Ndumu et al., 1999, Kaminka and Tambe,
1999] for a sample of two very interesting approaches). Typically, agents are
geographically distributed over a network, each one having its local view of the
organisation. The challenge then is to integrate into a coherent whole the vast
amounts of information provided by individual agents in order to:

e picture, understand and analyse the behaviour of the system as a whole;
e detect violations and eventual dysfunctional behaviours; and

e debug the system (even though the individual agents behave correctly, the
system might not behave as expected).

In this section we describe a new institutional agent, the so-called monitoring
agent or auditor'®, incorporated to FM96.5 so as to provide support for the
monitoring of market sessions. One of the main tasks of the monitoring agent will
be to collect and collate the information resulting from the interactions coming
about in the market place in order to present it to the user in an understandable,
appropriate manner.

Next, we succinctly summarise the main features of the monitoring agent:

e on-line (monitoring of live interactions in a market session) and off-line
(video-like replay of saved market sessions) monitoring modes;

e monitoring mechanism based on the use of logical clocks;

e Multi-level representation. In order to visualise the operation of FM96.5,
the monitoring agent defines a virtual market place divided into a set of
virtual locations corresponding to their counterparts in the actual fish mar-
ket. The virtual market place must be regarded as a blackboard employed

131 what follows we employ both terms indistinctly.
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by the monitoring agent to depict in a centralised manner the distributed
market activity. Within this setting, it offers two representation levels:

— Societal (macro). Visualisation of the agent flow (i.e., the flow of
agents from virtual location to virtual location) and the main events
taking place during an auction.

— Agent-centered (micro). Messages sent and received by each agent
(agent-centered communication flow).

e Customisable and Scalable. Its design and implementation have suc-
ceeded in producing a flexible framework capable of adapting to future
structural changes of the market-place.

The purpose of this section is to discuss in more detail the features of the
monitoring agent. First, in Section 5.7.1 we start with some introductory ma-
terial concerning logical time and logical clocks so that subsequently we can
describe how these concepts have currently applied to the monitoring of market
sessions. Next Section 5.7.2 argues on how to produce a flexible monitoring
policy which allows to adapt the monitoring agent to changes in the structure
and ontology of the market place. Section 5.7.3 provides a thorough descrip-
tion of the architecture and functionality of the actual implementation of the
monitoring agent.

5.7.1 Logical Time and Logical Clocks

When considering any single process, events are solely ordered by times shown
on the local clock. Nonetheless, Lamport pointed out that in general we cannot
use physical time to find out the order of any arbitrary pairs of events occurring
within a distributed system because we cannot synchronize clocks across the
system [Lamport, 1978].

To order some of the events occurring at different processes, a scheme sim-
ilar to physical causality, applied to distributed systems, can be utilized. The
resulting ordering is based on two extremely intuitive assumptions:

e Assumption #1.Two events that occurred in the same process happened
in the order in which this process observes them.

e Assumption #2.The event of sending a message occurs before the event
of receiving it when the message is sent between processes.

The ordering resulting from the generalisation of these two relationships is
the so-called happened-before relation, or also causal ordering or potential causal
ordering.

Formally speaking, we will write z 'y if two events z e y occurred in a
single process p and besides = happened before y. From this, we define the
happened-before, denoted as —, as follows:

() fp: 2Py =>2—>9.
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(ii) For any message m, send(m) — receive(m), where send(m) stands for the
event of sending the message, while receive(m) for the event of receiving
it.

(iii) Transitivity. If x, y and z are events such that z — y and y — 2, then
T — 2.

p1 @ >

a b time
ml

p2

c d time
m2

p3 @ >

e f time

Figure 5.10: Events occurring in three processes.

Figure 5.10 illustrates the relation rightarrow for three processes py, p> and
p3. We observe that a — b, since the events follow this order in process p1,
and similarly ¢ = d; b — ¢, corresponding to the sending and the reception of
message mp, and finally d — f. The combination of these relations lead us to
new conclusions. For instance, we can also assert that a — f.

We can also infer from Figure 5.10 that not all events are related by rightarrow.
For example, a — e and e — a, because these two events occur in different pro-
cesses and there is no chain of messages intervening between them. We will call
concurrent those events not ordered by —, and they will be denoted as a || e.

Notice that:

e The relation — captures a flow of data intervening between two events.

o If the happened-before relation holds between two events, then the first
might or might not have caused the second.

Logical Clocks

Lamport devised a simple mechanism for numerically capturing the happened-
before ordering called logical clock. This is a monotonically increasing software
counter generally unrelated to any physical clock. Each process keeps its own
logical clock, Cp, to time-stamp events. Let us denote the time-stamping of
event a in p as Cp(a), and as C(b) the time-stamping of event b in any process.
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Processes update their logical clocks and transmit their values as follows so
as to capture the happened-before relation:

LCy: C) incremented before each event is issued in process p: Cp, := C)p + 1.

LCy: (i) When a process p sends a message m, it includes in m the value
t=0C,.

(i) When a process ¢ receives (m,t), it calculates C; = max(Cy,t) and
subsequently applies LC before time-stamping rcv(m,).

It can be proved by induction on the length of any sequence of events relating
two events ¢ and b that a - b= C(a) < C(b). But more importantly observe
that the converse is untrue. In other words, although C(a) < C(b), we cannot
infer that a — b.

1 2
pl o >
a b time
ml
3 4
p2
c d time
m2
1 2 5
p3 ‘ @ >
e f g time

Figure 5.11: Logical times for the events in Figure 5.10

We exemplify the use of logical clocks in Figure 5.10. There, all processes’
logical clocks are initially set to 0. The evolving clock values are represented
immediately after the event to which they are adjacent.

Totally Ordered Logical Clocks

Observe that logical clocks impose a partial order on the set of all events. In
order to obtain a total ordering, we simply consider the identifiers of the pro-
cesses in which events occur. If a occurs at p, at local time T, and b occurs
at pp at local time T3, we define the global logical time for these events to be
(T.,p.) and (Ty,py) respectively. Thus (Ty,p.) < (Th, ps) iff either T, < T}, or
T, =T, and p, < pp.
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5.7.2 Flexible Monitoring of Market Sessions

FM96.5 is a distributed system. Therefore, and based on the arguments intro-
duced in the sections above, time-stamping each illocution uttered in the market
will not help us much to obtain the ordering of the market events — agents will
be running in different computers that contain their own physical clocks. Alter-
natively we propose to use logical time, instead of physical time, to time-stamp
market illocutions.

In practice, the use of logical clocks by agents for time-stamping market
illocutions is straightforward. When starting a new market session, both mar-
ket intermediaries and interagents have their own local, logical clocks set to 0.
During the market session, Lamport’s algorithm is locally applied by them to
tag both incoming and outgoing illocutions with the logical time of their log-
ical clocks. In this manner, a partial ordering of the communication flow is
built. Then the monitoring agent can employ the logical time accompanying
each illocution to monitor a market session. In fact, monitoring market sessions
fundamentally reduces to running a logical clock and depicting the illocutions
occurring at the logical time displayed by the logical clock.

It is worth highlighting the capital role of interagents in the monitoring pro-
cess. Apart from posting monitoring information to the auditor (as discussed
later on in Section 5.7.3), they will also help detect trading agents’ deviating be-
haviour. An interagent keeps account of all illocutions uttered by an agent, both
valid and non-valid. While valid illocutions are conveniently sent to some institu-
tional agent, non-valid illocutions are filtered out and rejected by the interagent
itself. However, non-valid illocutions can be pictured during the monitoring
process to show agents’ dysfunctional behaviours.

Notice that the use of logical clocks does not (in general) help us order con-
current events'4, i.e. illocutions uttered in different scenes. However, considering
that the boss, when acting as institution manager, must authorise agents to start
or access scenes, the following orderings are guaranteed:

e the ordering of the events within every market scene;
e the order in which scenes are created and accessed; and
e the flow of trading agents from scene to scene.

Therefore, when employing logical time we cannot tell whether a buyer is bidding
in the auction scene before or after another buyer updates his credit with the
buyers’ accountant. Nonetheless we can tell whether a scene started by a buyer
to update his credit occurs prior to another scene started by a seller for having
his goods registered. Furthermore, we can also tell whether a buyer paying for his
goods did previously acquire it in the auction scene. And these are precisely the
kind of orderings that we are interested in preserving for monitoring purposes.
Figure 5.12 illustrates how logical clocks are used in practice by the mar-
ket intermediaries and trading agents’ interagents. The diagram only depicts a

14We employ the term concurrent such as defined in Section 5.7.1.
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Figure 5.12: A sample of the use of logical times for ordering the exchange of

illocutions among agents in the market place.
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sample of the interaction among the market intermediaries and two sellers repre-
sented by their interagents. In the figure, agents are represented by circles while
each rounded rectangle contains the history of illocutions sent and received by
each agent. In fact, for the sake of simplicity, the histories do not contain the
actual illocutions, but the logical time corresponding to either the sending or
the reception as well as the sender or addressee.

So far we know how the events, illocutions, distributedly generated during
a market session are partially ordered by employing logical times. Nevertheless
still remains the matter of transforming this information into a centralised, un-
derstandable visual representation that pictures and helps us understand and
analyse the behaviour of the system as a whole. Thus recall that we have de-
manded that the resulting representation captures both the agent flow (from
virtual location to virtual location) and the communication flow (the exchange
of illocutions among agents) within each scene composing the market activity.
Furthermore, we also intend that the monitoring of the market activity help us
detect defective behaviours, particularly those appearing on the external agents’
side.

Therefore we regard the construction of a visual picture of the market ac-
tivity as the main function of the monitoring agent. For this purpose, it will
be employing a virtual market place composed of virtual locations (the counter-
parts of the places composing the actual fish market). The virtual market place
must be regarded as a blackboard on which the distributed market activity is
depicted in a centralised manner. Figure 5.13 depicts the GUI representing the
virtual market place used by the monitoring agent divided into the following
virtual locations: out of market, staff room, buyers’ admission room, sellers’ ad-
mission room, buyers’ settlements room, sellers’ settlements room, and auction
room. Observe that agents are represented by different icons, depending on the
role that each one plays.

Apart from displaying how agents move from virtual location to virtual lo-
cation, the monitoring agent also must show the illocutions sent and received
by each agent within the virtual market place as shown in Figure 5.14. Each
illocution is either sent or received in the context of a particular scene occurring
in the virtual location wherein the sender/receiver is situated.

The way the monitoring agent represents the market activity depends on
several factors:

e the virtual locations composing the virtual market place;
e how agents move from a virtual location to another; and
e the scenes considered to be taking place within each virtual location.

Notice that in fact scenes are logically grouped into virtual locations. There-
fore the transition of an agent from a virtual location to another is equivalent
to going from one scene to another belonging to a different virtual location.

It is apparent that the monitoring agent must count on a specification similar
to the performative structure that contains the virtual locations composing the
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Figure 5.13: Virtual locations composing the virtual market place.
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Figure 5.14: Local communication flow and virtual location of a trading agent.
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market place, the scenes contained within each location, and the connections
among scenes belonging to different locations. In this manner the monitoring is
not sensitive to future changes in the market structure.

Although this is the most general approach, the current version of the mon-
itoring agent built into FM96.5 departs from some simplifications. However,
the description that follows abut the monitoring process in FM96.5 must not be
understood as an ad-hoc solution. On the contrary, in fact the lessons learned
in deploying the monitoring agent in FM96.5 have lead us to the observations
in Section 5.7.4. There we discuss the drawbacks of the monitoring such as re-
alised for FM96.5 and propose how to solve them in order to monitor AmEIs in
general.

In practice, monitoring the behaviour of market intermediaries is fairly sim-
ple. Thus, upon registration market intermediaries make for the virtual loca-
tions containing scenes in which they are involved, and they remain there till the
market closes. However, things get more complicated when considering trading
agents. They may move from scene to scene (and eventually from virtual loca-
tion to virtual location) back and forth, and even abandon an ongoing market
session to join it back later on.

Currently the monitoring agent in FM96.5 solely handles specifications of
communication behaviours corresponding to trading agents. In fact, the moni-
toring agent counts on the specification of the global, communication behaviour
of trading agents’ interagents. This is motivated by the need of capturing
both the trading agent—interagent communication flow and the trading agent—
institutional agents communication flows. In this manner, for each scene state
an interagent can tell whether a given trading agent attempted to produce a
non-legal illocution or even if it went down. Therefore, monitoring the activity
of market intermediaries is somewhat hard-wired while the monitoring of the
activity of trading agents is flexible and interpreted.

Since trading agents can only be present in a single scene, and so in a virtual
place, we have opted for an FSM model to encode the specification of a trading
agents’ interagent communication behaviour. Concretely we employ an exten-
sion of a Mealy-like automaton model, a deterministic automaton model with
output. Thus the communication behaviour of trading agents’ interagents will
be specified as a tuple (@,X,Q,d, A, ) such that:

e () is the set of internal states. It stands for the possible communication
states of a trading interagent during a market session.

e Y is the input alphabet, containing patterns of illocutions, i.e. illocutions’
schema, represented according to the following syntax:;

(< particle >, < predicate >, < argument_type >, [values(: key < value >*)])

where particle stands for an illocutionary particle, predicate stands for a
predicate name, argument_type stands for the type of the argument, and
[values(: key < value >*)] is an optional element denoting a list of values.



202 Chapter 5. Realising Agent-mediated Electronic Institutions

e () is the output alphabet, the set containing all virtual locations of the
market place in which the trading agent using the interagent can partici-
pate.

e § is the transition function: § : Q x ¥ — . The transition function ¢
determines the progress of a trading agent’s interagent from a communi-
cation state to another when either sending/receiving illocutions to/from
trading agents and to/from institutional agents.

e ) is the output function: A : @ x ¥ — . The output function X yields the
new virtual place wherein the agent is to be situated after a state transition.
In this way, we capture the agent flow from virtual location to virtual
location within the marketplace. Moreover, it provides the monitoring
agent, with the information necessary to visually represent the location of
the agent at each moment.

Before proceeding further, the definition above deserves some comments con-
cerning the terms employed by the input alphabet. In order to comprehend why
we employ such alphabet, we must take into account that we are trying to specify
the behaviour of an interagent by representing the exchange occurring between
the interagent and the market. Thus such specification puts aside the exchange
of messages between a trading agent and the interagent and exclusively con-
siders the communication flow between the interagent and the market. It is in
the context of such exchange that the chosen alphabet makes sense since the
contents of the messages sent and received by an interagent have been chosen to
be encapsulated into objects.

But surely the best way to illustrate how to specify a trading agent’s in-
teragent behaviour, and so the notions introduced so far, is by example. Then
Figures 5.15, 5.16 and 5.17 depict part of the specification corresponding to a
buyer’s interagent by means of an automaton'®. Some simplifications have been
introduced in this example. The most important has to do with the auction
room, wherein, for the sake of simplicity, only the downward bidding protocol is
considered. Furthermore, the out_of-market virtual location is considered.

Observe that Figures 5.15, 5.16 and 5.17 consider not only the illocutions
that a buyer can utter but also its interagent’s illocutions.

The set of states @ = {bo, ... ,bar} corresponds to the communication states
of the interagent during its interactions with the institutional agents. The out-
put function is represented by shading the area containing the communication
states occurring at a same virtual location. In the particular case of buyers,
the set of virtual places is defined as Q = {auction_room,buyer_admission,
buyer_settlement, out_of _market}. In the picture, labellings preceded by /
stand for the reception of a message by the interagent, while labellings followed
by / denote the sending of a message by the interagent. Illocutions sent by a
buyer’s interagent may correspond to either the translation of a legal illocution

15Notice that they all can be connected with one another in order to obtain a global speci-
fication.
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uttered by the buyer or to an inner coordination illocution to coordinate the
activity of institutional agents and interagents. For instance, in Figure 5.15 the
transition from by to b; occurs when the interagent posts a request for admission
submitted by the buyer to the market, while the transition from by5 to bi3 in
Figure 5.16 corresponds to a bid acknowledgment generated by the buyer itself
without intervention of the buyer.

Each non-final state is also extended with a transition that leads to the very
same state corresponding to non-legal messages uttered by the buyer.

Recall that we argued that interagents are enabled to deal with agent failures.
Thus interagents were said to pro-actively leave the market on behalf of the agent
undergoing a failure. Before leaving the market, the interagent communicates
the failure so that the pending payments of a buyer remain annotated. This is
captured by the transition between big and by in Figure 5.16.

At this point, we must think of a method for representing the FSM-based
specification of an interagent’ behaviour so that it can be interpreted by the
monitoring agent. Figure 5.18 contains the translation from the automata in
Figures 5.15, 5.16 and 5.17 to a plain text description that can be conveniently
parsed by the monitoring agent. Observe that the information displayed in
Figure 5.18 can be divided into two parts:

e State-Place mapping. In the section headed by the PLACES label, we
find the specification of the virtual place by a buyer when its interagent
reaches a given state b; € ). In other words, it captures the output
function of the automaton.

¢ Automaton Representation. In the section headed by the STATES la-
bel, we find the definition of the automaton. Notice that each line describes
each internal state b; € @ by encoding the transition 0(b;,¢) where ¢ € 3.
Each transition, corresponding to each one of the arcs in Figures 5.15, 5.16
and 5.17, is represented as:

(< particle >, < predicate >, < arguments_type >, [values(: key < value >")], < next_state >)

where < particle >, < predicate >, < argument_type >, [values(< value >*
)] stands for the input ¢+ and < next_state > stands for the new internal
state d(bj,¢), where b; is the internal state when receiving the input.

Observe that some states are not mapped to any virtual location. That is be-
cause those states correspond to transition states between two virtual locations.
In practice, the monitoring agent does not depict a transition from a virtual
location to another till the buyer is accepted in the target location.

5.7.3 Monitoring Agent Architecture

Figure 5.19 depicts the architecture of the monitoring agent or auditor included
in FM96.5. Likewise the other institutional agents, the monitoring agent has
been also implemented in Java.
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Figure 5.15: Communication behaviour of a buyer’s trading agent in the admis-
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PLACES
buyers_admission b0 bl b2
auction_room b5 b6 b7 b8 b9 b10 b1l b12 b13 b14 bl5 b1l6 bl7
buyers_settlements b19 b20 b21 b22 b23 b24 b25 b26 b27
STATES

b0 (request,admission,structures.LoginRecord,bl)

bl (accept,admission,structures.marketRecord,b2) (deny,,Integer,b0)

b2 (request,goto,String,values(auction_room),b3) (request,goto,String,values(buyers_settlements),b4)

b3 (accept,goto,String,values(auction_room),b5)(accept,goto,sceneState,values(:scene auction_room),b10)
b4 (accept,goto,String,values(buyers_settlements,b19)

b5 (inform,open_auction,Integer,b6)

Figure 5.18: Encoding a buyer’s interagent behaviour. A sample.
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Figure 5.19: Monitoring Agent Architecture
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Figure 5.20: Coad design of the interpreter component of the monitoring agent.
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Fundamentally, we distinguish five main components:

RMI-enabled server. A server in charge of collecting the monitoring in-
formation posted by market intermediaries and interagents. It has been
realised as an RMI object whose methods can be remotely accessed via
remote calls by market intermediaries and interagents. Notice that in
this way institutional agents and interagents are responsible themselves
of conveniently storing the monitoring information to be processed by the
monitoring agent. For this purpose, both market intermediaries and in-
teragents had their capabilities extended in order to enable them to post
monitoring information via RMI calls.

Regarding interagents, observe that the incorporation of this extension
habilitates them to hold three different communication channels:

e via pipes with trading agents;
o via TCP streams with institutional agents;

e via RMI with the monitoring agent.

Repository of market sessions. The repository is organised into directo-
ries, each one containing the monitoring information corresponding to a
particular market session. Each market session is composed of a collection
of files containing monitoring information. There are as many monitoring
data files as agents participating in the market session. In general there
are the monitoring data corresponding to the market intermediaries plus a
varying number of monitoring data files corresponding to trading agents.

An agent’s monitoring data file stores a list of all illocutions sent and
received by the agent along with the logical time of either the sending or
reception of each illocution.

Agents’ Behaviour Library. Repository containing the specification of the
trading agents’ communication behaviour such as depicted in Figure 5.18.

Graphical user interface (GUI). The monitoring agent offers a graphical
user interface composed of two main areas:

e the virtual market place (see Figure 5.13) on which both the agent
and communication flow are graphically represented; and

e the control panel (see Figure 5.21), which allows for the interaction
with the monitoring agent.

Since the monitoring agent can run as either a stand-alone application or
an applet, participating agents can have access to the monitoring agent
GUI through a standard browser in order to monitor live or past market
sessions.

On the one hand, the control panel permits users interacting with the mon-
itoring agent the video-like replay of live and saved market sessions. On
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Figure 5.21: Monitoring Agent Control panel.

the other hand, apart from showing the agent flow, along with the most
significant events occurring during a bidding round, the virtual market
place panel also allows to access to agent-centered views of the commu-
nication flow (see Figure 5.14 where all illocutions sent and received by a
given agent are shown).

Interpreter. The interpreter is a fundamental component of the monitor-
ing agent. At the outset, the monitoring agent initialises the monitoring
session by processing the activation of the market, i.e. by situating each
market intermediary within the virtual location wherein its activities take
place. Next, the monitoring agent starts an interpreter for each monitor-
ing data file corresponding to a trading agent. FEach interpreter runs in
a separate thread processing the illocutions stored in the monitoring data
file corresponding to its trading agent. An illocution is processed by an
interpreter when the illocution’s logical time is equal to the global logical
time counted by the monitoring agent. If so, a transition in the automaton
representing the communication behaviour of the agent occurs and proba-
bly a change in its virtual location. Therefore, the illocution is depicted in
the virtual market place and also the transition of the agent from a virtual
location to another when required.

Figure 5.20 shows the compositional design of the interpreter component.
Observe that an interpreter is part of the monitoring agent and may include
several finite state machine (FSM) specifications composed of states and
arcs.

The RMI-enabled server, the GUI and the interpreters run concurrently thanks
to the multi-threaded architecture of the monitoring agent.
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5.7.4 Monitoring Agent-mediated Electronic Institutions

There are two major drawbacks of our approach for monitoring market sessions.
On the one hand, it is not valid if we consider that trading agents may participate
in multiple scenes (possibly belonging to different virtual locations) at the same
time. On the other hand, the institutional agents’ behaviour is not specified
likewise trading agents’ behaviour.

But perhaps the first drawback is the most important, though we think that
can be overcome in a rather straightforward manner.

The monitoring of market sessions in FM96.5 cannot be generalised for mon-
itoring AmFEIs in general. This is mainly due to the fact that we originally
chose illocutions as the atomic unit of monitoring information. Instead, we pro-
pose that interagents also enclose the scene wherein each illocution is uttered
when posting monitoring information. Therefore, the monitoring agent would
be capable of depicting the behaviour of each agent based on the specification
of scenes, the monitoring information posted by interagents and institutional
agents and a mapping from scenes to virtual locations that indicates where to
virtually situate an agent participating in a given scene.

5.8 Summary

In this chapter we have put in practice the general computational model for
building AmFEIs proposed in Chapter 4 by deploying FM96.5, an actual agent-
mediated electronic auction house. Some distinguishing features of the resulting
electronic institution include:

e fair, live downward-bidding protocols;

e support for the participation of human and software traders of any type
(openness);

e the accountability of the market activity that permits the global and local
monitoring of market sessions.

The two first features are worth highlighting since FM96.5 was one of the
first sytems achieving both. Nowadays there are more auction sites running live
auctions (see for instance the auctions conducted at [Amazon, www]). Nonethe-
less to the best of our knowledge AuctionBot and FM96.5 were the first auction
houses to permit the participation of software trading agents in market sessions.
Furthermore, in both cases explicit support is provided for the development of
software agents.

Originally, FM96.5 exclusively included a single auction protocol, namely
the downward-bidding protocol. Thanks to the flexible design pursued in its
development right from the beginning, it was readily evolved to include other
auction protocols that allow it currently to operate as a multi-protocol auction
house.
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Version Place Language Concerns Advantages
FM96.0 IITA C (CGI) Fast development Demonstrability
FM96.1 IITA & Naples PVM Synchronisation, Bidding protocol  Proof of concept
FM96.2 IITA-Bath C/MPI Open Network Portability
FM96.3 ITTA-Bath C/MPI Scalability, Market functionality Modularity
FM96.4 IIIA-Bath EULisp/MPI Protocols Expressiveness
FM96.5 ITTA-Bath Java Modularity, concurrency, Full functionality
functionality, fairness, Robustness
livelihood of bidding protocol Extendibility

mediation, accountability

Table 5.8: History of the implementations produced in the course of the fish
market project.

Undoubtedly interagents are the key element in the development of FM96.5.
Thus the use of mediation by means of interagents has demonstrated its useful-
ness along several directions:

(i) to achieve the openness of the market, allowing the participation of het-
erogeneous agents;

(ii) to contribute to the accountability processes undertaken by the market
auditor (monitoring agent);

(iii) to locally manage eventual trading agents’ exceptions so that the global
market activity is not jeopardised; and

(iv) to be prepared to accommodate societal changes by managing the projec-
tions of the performative structure for trading agents as specifications.

Observe that the use of interagents allows us to provide answers to the questions
posed in Chapter 3 when analysing the difficulties inherent to the development
of open agent organisations.

At this point, we must acknowledge that all the advantages and niceties of
FM96.5 did not come for free. They are the result of a systematic analysis of a
more general problem —that of structured agent interactions— and the empirical
testing of the conviction that multi-agent systems can be fruitfully applied to
model and automate social interactions, such as the ones present in electronic
trading. In [Napoli et al., 1996] a prototype implementation of a simple version
of the fish market was presented. FM96.5 is a far more thorough implementa-
tion. In between we have addressed different aspects of the problem all in the
framework of the fish market project [Fishmarket, www], and gone through the
exercise of exploring specific technical or methodological issues (as shown in Ta-
ble 5.8). Therefore, FM96.5 must be regarded as the resulting implementation
emerging from of our previous empirical study.



Chapter 6

An Auction-based
Agent-mediated Test-bed

In this chapter we present a framework for experimenting with auction-based
trading scenarios. In these scenarios, trading (buyer and seller) heterogeneous
(human and software) agents of arbitrary complexity participate in auctions un-
der a collection of standardised market conditions and are evaluated according
to their actual market performance. We argue that such competitive situations
constitute convenient problem domains in which to study issues related with
trading agent architectures in general and agent-based trading strategies in par-
ticular.

The proposed framework, FM, conceived and implemented as an extension
of FM96.5 —the agent-mediated e-auction house described in Chapter 5—, con-
stitutes a test-bed for trading agents in auction tournament environments.

We illustrate the practical usage of the resulting framework by commenting
on the experiences acquired from actual tournaments hosted by FM involving
some rudimentary buyer agents.

6.1 Motivation and Goals

Auctions are an attractive domain of interest for Al researchers in at least two
areas of activity: web-based trading and resource allocation.

From the point of view of multi-agent interactions, auction-based trading
is deceivingly simple. Trading within an auction house demands from buyers
merely to decide on an appropriate price on which to bid, and from sellers,
essentially only to choose a moment when to submit their goods. But those de-
cisions —if rational— should profit from whatever information may be available
in the market: participating traders, available goods and their expected re-sale
value, historical experience on prices and participants’ behaviour, etc. However,
richness of information is not the only source of complexity in this domain. The
actual conditions for deliberation are not only constantly changing and highly
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uncertain —new goods become available, buyers come and leave, prices keep
on changing; no one really knows for sure what utility functions other agents
have, nor what profits might be accrued— but on top of all that, deliberations
are significantly time-bounded. Bidding times are constrained by the bidding
protocol which in the case, for instance, of Dutch auctions —like the traditional
fish market— proceeds at frenetic speeds.

Consequently, if a trading agent intends to behave aptly in this context, the
agent’s decision-making process may be quite elaborate. It could involve proce-
dural information—when to bid, how to withdraw—, reasoning about individual
needs and goals, information and reasoning about supply and demand factors—
which may involve other agents’ needs and goals— and assessment of its own
and rivals’ performance expectations—which in turn may require knowledge or
reasoning about the external conditions that might affect the auction.

Evidently, many approaches can be taken to deal with this decision-making
process. From highly analytical game-theoretic ones, to mostly heuristic ones.
From very simple reactive traders, to deliberative agents of great plasticity.
Moreover, it should be noted that the type of decision-making process involved
in auctions is inherent in other common forms of trading and negotiation, and
specifically in those that are being identified as likely applications of multi-
agent systems [Giménez et al., 1998, Ygge and Akkermans, 1997, Huberman and
Clearwater, 1995, Wellman, 1993]. However, it is not really obvious which of the
many possible approaches for automatic trading strategies’ modelling are better,
or under what conditions. We do not intend to present any such evidence in this
thesis, but instead to sketch a blueprint for the production, assessment and per-
haps communication of such evidence. Actually, this chapter will focus on the
description of a testbed—which permits the definition, activation and evaluation
of experimental trading scenarios that we shall refer to as tournaments—and will
illustrate how it can be used.

As the starting platform for that test-bed, we use FM96.5, the agent-mediated
e-auction house thoroughly described in Chapter 5. Departing from FM96.5 we
have constructed a framework wherein agent designers can perform controlled
experimentation in such a way that a multitude of experimental market scenar-
ios of varying degrees of realism and complexity can be specified, activated, and
recorded; and trading agents compared, tuned and evaluated.

This exercise will ideally serve to show how one can conveniently devise
experimental conditions to test specific features in agent architectures. How,
for example, any-time strategies and off-line deliberation may be put to work
coherently in a practical way. Or how and when reasoning about other agents’
intentions and goals may be profitably turned into a trading advantage. Or how
to couple a learning device with a human trader to discover market-dependent
heuristics or with a trading agent so as to watch it perform the task. Or how to
apply data mining techniques to discover patterns of behaviour of rival agents.

We trust this proposal may motivate AT theorists and developers to look
into auctions as a challenging problem domain where they can investigate and
put their creations through a strenuous test, but we realise that our proposed
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framework can serve other purposes as well. For instance, these tools may also
interest economists who would like to examine issues of Mechanism Design un-
der flexible theoretical and experimental conditions ( [Varian, 1995]), since our
trading scenarios may be seen as pseudo-markets with different degrees of inde-
termination. Moreover, financial regulatory bodies, and market developers may
take advantage of this kind of framework for the design and experimentation
with electronic market places, both in terms of those characteristics that new
Internet-based trading institutions should have, but also in terms of features and
components that new market practices may be requiring to facilitate agent-based
trading that are practical, reliable and safe.

6.2 Test-bed Features

In order to obtain an auction tournament environment, more functionality has
been added to FM96.5 to turn it into a domain-specific test-bed that models and
simulates an e-auction house. A distinguishing feature of the resulting test-bed is
that it is realistic since it has been built out of a complex real-world application.

Being an extension of FM96.5, FM inherits interagents, the mechanism of
interaction between trading agents and the market. Consequently FM shows a
crisp distinction between agents and the simulated world, a desirable requirement
for any multi-agent test-bed. Furthermore, the use of interagents permits also
to consider FM as an architecturally meutral environment since no particular
agent architecture (or language) is assumed or provided, analogously to Tile-
world [Pollack and Ringuette, 1990a], Teems [O’Hare and Jennings, 1996], and
Mice [Montgomery et al., 1992]. However, some support for agent developers
is provided by including a library of agent templates in various languages (C,
Java, and Lisp) for building agents. Furthermore, the test-bed also offers the
possibility of generating customisable dummy agents at the aim of providing
agent, developers with contenders for training purposes.

FM inherits also all the auction protocols included in FM96.5, namely Dutch,
English, First-price sealed-bid and Vickrey. All these auction protocols are clas-
sified as single-sided since bidders are uniformly of type buyer or uniformly of
type seller.! Double-sided auctions admit multiple buyers and sellers at once.
Figure 6.1 depicts a possible taxonomy for a small part of the auction space. The
classification is made on the basis of whether the auction is single or double, bids
are sealed (SB) or public (outcry), and prices are called in either ascending or
descending order. FM contains the auction protocols hanging along the left
branch, i.e. the classic auction types. Consequently FM can be classified as a
multi-agent test-bed for classic auctions.

As to the systematisation of our experiments, the complete parametrisability
of FM allows for the generation of different market scenarios. This capability of
scenario generation appears as a fundamental feature of any multi-agent test-
bed if it intends to guarantee the repeatability of the experiments to be con-

IParticularly single auctions have been the main focus of theoretical studies of auc-
tion [McAfee and McMillan, 1987].
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FPSB
Vickrey Dutch English Call Market CDA

Figure 6.1: A classification of classic auction types [Wurman et al., 1998].

ducted likewise f.i. Tileworld [Pollack and Ringuette, 1990b], Phoenix [Cohen
et al., 1989], DVMT [O’Hare and Jennings, 1996], TAEMS [O’Hare and Jen-
nings, 1996]. Concretely, the customisability of FM allows for the specification,
and subsequent activation, of a large variety of market scenarios: from simple
toy scenarios to complex real-world scenarios, from carefully constructed sce-
narios that highlight certain problems to randomly generated scenarios useful
for testing trading agents’ average performance. Figure 6.2 displays a snapshot
of the graphical display provided by FM to specify the particular features of a
tournament scenario.

As to the matter of evaluating a trading agents’ performance, FM keeps
track of all events taking place during an auction, so that a whole auction can
be audited step-by-step, and the evolving performance of all the agents involved
in a tournament can be traced, calculated, and analysed. On the one hand,
FM extends the database employed by FM96.5 such as shown in the design of
Figure 6.3. On the other hand, the monitoring agent presented in Chapter 5 had
its capabilities extended —likewise the rest of institutional agents as we discuss
later on— in order to be capable of monitoring not only market sessions but
tournament sessions. Furthermore, FM also offers graphical displays that plot
the evolution of each agent during each competition.

Lastly we would like to mention a very important feature that seems to
be somewhat skipped by test-bed designers: the problem of scalability. When
running multi-agent experiments, an experimenter usually faces serious resource
limitations that may prevent him from having all agents up and running. We say
that FM is scalability-aware in the sense that it provides support for distributing
an experimenter’s agents across several machines in a network. This does not
mean that all agents involved in a tournament must belong to the very same
user. Tournament designers are free to define open tournaments accessible by
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agents owned by multiple users.
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Figure 6.2: FM Tournament Definition Panel

Notice that the resulting environment, FM, thus constitutes a multi-agent
testbed where a very rich variety of experimental conditions can be explored
systematically and repeatedly, and analysed and reported with lucid detail if
needed. Table 6.2 summarises the features of FM.

6.3 Standard Market Conditions for Tournament
Scenarios

A trading scenario will involve a collection of explicit conventions that char-
acterise an artificial market. Such conventions define the bidding conditions
(timing restrictions, increment/decrement steps, available information, etc.), the
way goods are identified and brought into the market, the resources buyers
may have available, and the conventions under which buyers and sellers are go-
ing to be evaluated. This proposal departs from our previous work presented
in [Rodriguez-Aguilar et al., 1998c] and shares some commonalities with [Mullen
and Wellman, 1996, Wurman et al., 1998] in the identification of auction param-
eters. In this section we discuss these underlying ideas from a formal point of
view and introduce some of the elements needed to make precise specifications
of actual tournament scenarios in Section 6.4. Any specification is intended
to convey all the information necessary for a trading agent to participate in a
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Test-bed Features

B domain-specific

B realistic

B architecturally neutral

Bl scenario generation and reapeatibility capabilities

B monitoring and evaluation facilities

B library of agent templates (C,Java,Lisp)

B dummy agents

W scalability aware

B open (multi-user) and closed (single-user) tournaments
B market scenarios as tournament scenarios

Table 6.1: Features of the FM test-bed.

tournament.

We shall start by studying the characterizing parameters of the auction proto-
cols governing the main activity within FM. For this purpose, next we introduce
the notions of round, auction and tournament as the basic elements of a tour-
nament scenario. Finally, we close this section defining how buyers and sellers
may be evaluated.

6.3.1 Bidding Protocols’ Descriptors

When auctioning a good, a seller can choose an auction protocol out of a set
of auction protocols. Whatever the seller’s choice, each auction protocol can be
characterised by a set of parameters that we refer to as bidding protocol dynamics
descriptors, so that different instantiations of such descriptors lead to different
behaviours of their corresponding bidding protocols.

The algorithm in Figure 6.4 codifies the downward bidding protocol such as
described in Section 5.5.1. The description helps us to explicitly identify the
parametrisation of the bidding protocol.

Six parameters that control the dynamics of the bidding process are implicit
in this protocol definition. We shall enumerate them now, and require that
they become instantiated by the tournament designer as part of a tournament
definition.

Definition 6.3.1 (DBP Dynamics Descriptor). We define a Downward Bid-
ding Protocol Dynamics Descriptor Dppp as a 5-tuple (Aprice, Aoffers, Leolls
Wsanctions rebid > such that

e Aprice € IN (price step). Decrement of price between two consecutive
quotations uttered by the auctioneer.
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Function round (B:, g, p,coll, Dppp) =
let Function check_credit(b;) =
if Ci(b;) > p then
update_credit(b;, p);
sold(g;, bi,p);
dﬁ ﬁ C;, (bz) 2 p* Msanction thﬁ

in

update_c_rec_iit(bi,p * Hsanction)?
round (B}, g;,p * (1 + Iyepia), 0, PpBP);
else . 4
round(Bﬁ - {bl}a g:ﬂp * (1 + Hrebid)y OaDDBP)§

offer(g;., p);
Walt(Aoﬁers);

let

B = {b;|bid(b;) = true,b; € B.} in

case _
[|B]|=0: if p=p, then withdraw(g;.);

else I‘Ollnd(Bi,gi,p - Apricey 0, DDBP);

B = {b;} : check_credit (b;);
[|IB]| > 1: if coll < X0y then

round(Bi,gi,p * (1 + Hrebid)a coll + 17 DDBP);
else check_credit(random_select(B));

end case
end

end

DBP(BL, ¢%.) = round(B., g%, po,0)

Figure 6.4: Downward bidding protocol

Aogers € IN (time between offers). Delay between consecutive price quo-
tations.

Yeou € IN (maximum number of successive collisions). This parameter
prevents the algorithm from entering an infinite loop. This occurs when
two or more buyers repeatedly submit the very same bid.

Msanction € IR (sanction factor). This coefficient is utilized by the buyers’
manager to calculate the amount of the fine to be imposed on buyers
submitting unsupported bids.

I,epiqg € IR (price increment). This value determines how the new offer is
calculated by the auctioneer from the current offer when either a collision,
or an unsupported bid occur.

Note that the identified parameters impose significant constraints on the
trading environment. For instance, Aggers and Ayounas affect the agents’ time-
boundedness, and consequently the degree of situatedness viable for bidding
strategies.

Analogously, we can also identify the parameters that determine the dy-
namics of the rest of auction protocols contained in FM. Thus, the following
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definitions account for the dynamic descriptors of the UBP, FPSB and Vickrey
protocols.

Definition 6.3.2 (UBP Dynamics Descriptor). We define an Upward Bid-
ding Protocol Dynamics Descriptor Dygp as a 6-tuple (Appice; Agfers, Hsanctions
start B, ) such that

e Ayrice € IN (price step). Decrement of price between two consecutive
quotations uttered by the auctioneer.

o A,pers € IN (time between offers). Delay between consecutive price quo-
tations.

o Isunction € IR (sanction factor). This coefficient is utilised by the buyers’
manager to calculate the amount of the fine to be imposed on buyers
submitting unsupported bids.

e Iyt € IR (price increment). This value determines how the starting
price is calculated by the auctioneer from the reserve price.

e B; € IN is the total bidding time.

e 7 € IN is the identifier of the tie-breaking method necessary to undo col-
lisions when the closing time is reached.

Definition 6.3.3 (FPSB Dynamics Descriptor). We define both an FPSB
Dynamics Descriptor Dygp as a tuple (Apidgding, Lsanction, T) such that

e B; € IN is the total bidding time.

o Iiunction € IR (sanction factor) is the coefficient utilised by the buyers’
manager to calculate the amount of the fine to be imposed on buyers
submitting unsupported bids.

o 7 € IN is identifier of the tie-breaking method necessary to undo collisions
when the closing time is reached.

Notice that a Vickrey dynamics descriptor is defined likewise an FPSB dy-
namics descriptor since both protocol are dynamically equivalent, only deferring
in their resolutions.

6.3.2 Tournament Descriptor

By auction rounds we shall refer to the set of parametrisable ontological elements
involved in each bidding round.

Definition 6.3.4 (Auction Round). For a given round r of auction ¢ we de-
fine the auction round A% as the 4-tuple

A:" = (Bfﬂagi’Cvﬁ’d”

where
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e Biis a non-empty, finite set of buyers’ identifiers such that B: C B, the
set of all participating buyers.

e g = (1,7, PasPrsvs Sj, P, Prsi; bi) is a good where ¢ stands for the good
identifier, 7 stands for the type of good, p, € IN stands for the starting
price, ps, € IV stands for the reserve price, s; € S—the set of all partici-
pating sellers—is the seller of the good, p, € IN stands for the sale price,
prst stands for the expected resale price, and by, € Bl is the buyer of the
good. Notice that gi is precisely the good to be auctioned during round
r of auction ¢, and that p, and by might take on empty values when the
round is over, denoting that the good has been withdrawn.

e Ci: B — IR assigns to each buyer in B! his available credit during round
r of auction ¢.

e di stands for an instance of a bidding protocol dynamics descriptor.

Finally, our notion of auction is based on the definition above.

Definition 6.3.5 (Auction). We define an auction A° as a sequence of auction
rounds

Al =[ALL . AL

Each auction is devoted to the auctioning of a particular lot of goods. Typ-
ically a tournament session (and a market session too) will be composed of a
sequence of auctions such as defined above.

So far we have identified all the essential elements characterising bidding
rounds: the participating buyers and their credits, the sellers and their goods and
those features typifying the bidding protocol. On the basis of these definitions,
we are ready to determine what elements and parameters are necessary to wholly
characterise a tournament scenario, i.e. all the relevant information needed by an
agent to participate in an auction-based tournament, compiled in the definition
of tournament descriptor. A tournament descriptor is intended to be the sole
information on which trading agents count prior to the starting of a tournament
session.

Definition 6.3.6 (Tournament Descriptor). We define a Tournament De-
scriptor 7 as the 11-tuple

T = <naAauctions:Arounds:DaPBapSaBasafa C, M7€7E>

such that:

e n is the tournament length expressed either as the number of auctions to
take place during a tournament or the closing time.

o A,uctions 18 the time between consecutive auctions.
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e A,ounds € IN (time between rounds) stands for the delay between consec-
utive rounds belonging to the same auction.

e D is a finite set of bidding protocols’ dynamics descriptors.

e PSp is the projection of the institution’s performative structure from the
point of view of buyer agents, i.e. the parts of the market accessible to
buyers.

e PSg is the projection of the instituion’s performative structure from the
point of view of seller agents, i.e. the parts of the market accessible to
sellers.

o B={bi,...,by} is a finite set of identifiers corresponding to all partici-
pating buyers.

e S ={s1,...,8,} is a finite set of identifiers corresponding to all partici-
pating sellers.

o F = [F',...,F" is a sequence of supply functions. A supply function
Fi:(TxS— INxRxRx R) — 2T<SXEXEXE qutputs the lot of
goods to be auctioned during auction ¢, where 7" and S stand respectively
for a finite set of good types and a finite set of seller identifiers. Each lot is
composed of a set of goods described by a good type, a seller identifier, a
starting price, a reserve price and a resale price. Depending on the supply
function, part of the information describing a given good can be omitted.

e (' : B — IN is the credit initially endowed to each buyer. For some tourna-
ments, all buyers are assigned the same credit, while for others they may
either have assigned different credits or alternatively declare themselves
the credit they want to have available.

e M = (b,s,r,r"y where b,s,r,7" € {0,1} is the information revelation mask.
It determines whether the identity of buyers (b) and sellers (s) is revealed
to the contenders, and whether the reserve price () and expected resale
price (') of a good are revealed too.

€ stands for the fees charged to an agent for participating in a bidding
round.

e F = (E,E;) is a pair of winner evaluation functions that permit to cal-
culate respectively the score of buyers and sellers.

From the definition follows that a tournament descriptor contains:

e all the relevant parameters that characterise the dynamics of the auctioning
process;

e the procedural information that allows trading agents to participate in the
market by means of their interagents;
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e the degree of information revelation (transparency) (i.e. the degree of
uncertainty concerning the identity of traders and some particular, relevant
features of goods); and

e the way the performance of trading agents is evaluated.

A remarkable aspect of the definition of tournament descriptors roots in the
inclusion of the specification of performative structures for buyers and sellers.
These are included to define which scenes are accessible to buyers and sellers
during a tournament, and which protocols are employed within each one of these
scenes. For instance, though evidently an auction scene is always considered, it
may only include the auctioning of goods under a single or a limited collection
of bidding protocols. As shown in next section, the tournaments hosted so far
by FM include an auction scene in which goods are solely auctioned under the
conventions of the downward bidding protocol.

6.3.3 Specifying Tournaments

It is the task of the experimenter to conveniently set up the parameters of the
tournament, descriptor in order to generate the desired type of tournament sce-
nario. For this purpose, FM provides the graphical configuration tool shown in
Figure 6.2 to assist the tournament designer to configure tournament scenarios.

Additionally FM incorporates the so-called tournament modes that constrain
the type of tournament descriptor that can be defined. The purpose of this stan-
dard tournament modes is to allow an experimenter to define tournament sce-
narios of different degrees of complexity: from toy scenarios where, for instance,
the same lot of goods is repeated over and over with complete information to
actual-world auction scenarios.

Thus in FM tournament designers can choose among the following standard
tournament modes:

One auction (data set) This mode permits a tournament designer to specify
a fixed set of goods to be repeatedly auctioned a finite number of times.
Notice that no sellers are involved in this type of tournament.

Automatic The lots of goods to be auctioned are artificially generated by the
sellers’ admitter based on supply functions of arbitrary complexity spec-
ified by the tournament designer in the set F. Notice that likewise one
auction (data set) no sellers are allowed to participate in these tourna-
ments.

This tournament mode allows to artificially generate a large variety of
markets. For instance, markets with more demand than supply or the
other way around, markets with high quality goods more appropriate for
restaurant owners, or markets with large supply of low-quality goods more
appropriate for wholesale buyers?. In general, this tournament mode allows
to create tournaments focusing on particular market scenarios.

2Note that for all the examples we consider fishmarket-like tournament scenarios.
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Type #Bozxes | Starting price(p,) | Resale price(p,s) | Reserve price(prsy)
cod | UL, 15] | U[1200,2000] UT1500, 3000] U04,0.5]
tuna fish | U[1,15] | U[800,1500] U[1200, 2500] U[0.3,0.45]
prawns | U[1,15] | U[4000,5000] U[4500, 9000] U[0.35,0.45]
halibut | U[1,15] | U[1000,2000] U[1500, 3500] U[0.4,0.6]
haddock | U[1,15] | U[2000,3000] U[2200,4000] U[0.35,0.55]

Table 6.2: Example of uniform distributions employed to generate heterogeneous
lots.

Uniform This mode is a particular case of the preceding tournament mode.
Lots of goods are randomly generated by the sellers’ admitter based on
uniform distributions in F defined by the tournament designer. Notice that
again no sellers are involved in the resulting tournaments either. Table 6.2
shows some examples of uniform distributions that can be employed for
generating lots of goods.

This tournament mode is intended to generate scenarios wherein the av-
erage performance of buyer agents can be tested. Along with one auction
(data set) it must be considered as a mode to generate game-like scenarios.

One auction (with sellers) Once all participating sellers have submitted their
goods, the same auction is repeated over and over with the same lot of
goods. This tournament mode is particularly useful to test the adaptivity
of trading agents to an actual market scenario.

Fishmarket The mode closest to the workings of an actual auction house?.
The tournament designer simply specifies the starting and closing times.
During that period of time buyers and sellers can enter, submit goods,
bid for goods, and leave at will. Fishmarket is the more realistic mode,
standing for an actual market scenario.

Depending on the tournament mode chosen by the experimenter, some fea-
tures of the tournament descriptor will be either enabled or disabled in the
parameter setting panel at Figure 6.2. Notice that all parameters identified as
part of the tournament descriptor lie down on the parameter setting panel.

Once specified a tournament scenario, there are still two fundamental issues
to be considered. On the one hand, there is the matter of explicitly stating how
a tournament specification is encoded and conveyed to trading agents so that
these can conveniently parse it. On the other hand, how institutional agents, and
interagents, have their behaviours altered to operate in the several tournament
modes.

Considering the first issue, upon reception of the tournament descriptor (in
the shape of a serialized Java object), interagents transform it into a string-based

3We name it fishmarket for historical reasons, though the term must not be misleading
since under this mode goods can be auctioned through several auction protocols.
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message analogously to the messages in Tables 5.5 and 5.6 (see Section 5.4.3) that
is subsequently conveyed to trading agents. The actual syntax of the message
corresponds to message #32 in Table 6.3. In it the tournament_descriptor
predicate is accompanied by a long list of parameters encoding the tournament
definition.

Observe that neither evaluation functions nor supply functions are part of
the tournament descriptor conveyed to trading agents. Instead of encoding them
and posting them to trading agents, the evaluation of both types of functions is
offered as a service by interagents (see messages 2 and 3 in Table 6.3) that can
be requested by trading agents at any time. In this way, a buyer can request his
interagent for the expected composition, if available, of the i-th lot to be auc-
tioned or for the score of his rivals. However, notice that supply and evaluation
functions must be made public prior to the tournament so that agent developers
eventually consider them for designing their trading strategies.

# Predicate Parameters

32 | tournament_descriptor | auction n Aguctions Drounds € bidding_protocols dbp Aprice
start FPSB Bt Wganction vickrey Bt Wganction (buyers

{sellerlogin*|Market} mode {automatic, uniform
one_auction_data, one_auction_sellers, fishmarket}

Aoffers Ecoll Msanction Hrebid UBP Aprice Aoffers Msanction

{buyerlogin*|#buyers} credit {credit*|creditjunkown} sellers

33 | get_goods auction_number

34 | eval {buyerlogin | all}
35 | score buyerlogin score
36 | ranking {buyerlogin score}*

Table 6.3: Messages handled by interagents to encode the tournament descriptor
and manage the evaluation of supply and evaluation functions.

Regarding institutional agents, some extensions are needed in order to enable
them to act not only in market scenarios but also in tournament scenarios.
But changes are not so significant. They basically reduce to slight changes in
their roles’ specifications. Thus, while the fishmarket mode does not require
institutional agents to alter the behaviour that they exhibit in FM96.5, other
tournament modes such as automatic, one auction (data set) and uniform require
that the sellers’ admitter and the sellers’ accountant do not offer any access or
services to sellers since these are not allowed to participate. Some changes
in the institutional agents’ behaviour are also required. For instance, in the
RFG (request for goods) scene, the sellers’ admitter itself composes a lot of goods
to be conveyed to the auctioneer.

Observe that FM96.5 becomes one of the operation modes offered by FM. In
fact, FM has been evolved from FM96.5 respecting its architecture but benefit-
ting from its flexibility and extendibility to enlarge its functionality. This is the
reason why we claim FM to be an agent-mediated test-bed.
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n 21

Aguctions 5000 msec

A ounds 3000 msec

D {dpep} = {(10ptas, 1000msec, 3,0.25,0.25)}

PSp ({tournament_admission, Dutch_auction, output},

{(tournament_admission, Dutch_auction), (Dutch_auction, output)})
PSg 0
B warakaman akira fishbroker tindalos dolphin 2422080
panipeixos josnat satan ranquete e0934125

S [z}

Fi(i=1...n)
T #Bozes | pa Prsi Prsv
cod UTL,15] | U[1200,2000] | U[1500,3000] | U[0.4,0.5]
tuna fish | U[L,15] | U[800,1500] | U[1200,2500] | U[0.3,0.45]
prawns | U[1,15] | U[4000,5000] | U[4500,9000] | U[0.35,0.45]
halibut | U[L,15] | U[1000,2000] | U/[1500,3500] | U[0.4,0.6]
haddock | U[1,15] | U[2000,3000] | U]2200,4000] | U[0.35,0.55]

C C(b) = 50000ptas. Vb € B

M <1,0,0,1>

€ 0

E (By, B ) = (s Ba [ (n(r —m)], @)

Table 6.4: UPC’97 Tournament Descriptor

6.4 The Fish Market Tournaments

In this section we illustrate the type of tournament scenarios that can be gen-
erated with the aid of FM by reporting on the experiences gained with the
Fishmarket tournaments. These tournaments took off in 1997 at the Techni-
cal University of Catalonia (UPC). Thereafter they have been regularly (yearly)
organised at the UPC till a final, international tournament held in the frame-
work of the Fourth International Conference on Autonomous Agents [Béjar and
Rodriguez-Aguilar, 2001]. The purpose of these tournaments is to spur research
on both trading agents’ architectures and trading strategies.

In what follows we comment on the type of scenarios and outcoming results
of three tournaments samples?.

6.4.1 UPC’97

The first Fishmarket tournament took place at the Technical University of Cat-
alonia in 1997 and involved a group of undergraduate students. For this very
first tournament, we opted for a rather simple scenario fully featured by the
tournament descriptor in Table 6.4.

We opted for a simple scenario characterised by the tournament descriptor
in Table 6.4. There are some comments to be made on the resulting scenario:

4For more detailed information, we address the reader to the tournament web page where
all tournament experiences held so far are thoroughly reported [Fishmarket, www].
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e All buyer agents were assigned the same credit (50000 ptas.) at the begin-
ning of each auction of the tournament.

e Because the tournament mode was set to uniform, the number of fish boxes
for each type of fish (7) were randomly generated for each auction A¢, and
the starting price (pg), resale price (p,s), and reserve price (pysy) of each
box were also randomly generated according to the uniform distributions
in Table 6.2. All distributions except those referring to the reserve prices
were known by contenders.

e Agent templates for buyer agents were provided in Java, C, and Common
Lisp.

e The chosen evaluation function (Ejp) calculates the performance for each
buyer at round number r of auction number a based on the accumulated
benefits (47), the accumulated number of purchases (r), and the number
of rounds (r) where that buyer is active.

In these tournaments we tried to keep things as simple as possible concerning
the performative structure specification of buyers. The performative structure
can be regarded as a simplified, slightly modified version of the performative
structure in Figure 5.1 that can be also represented as a simple graph of pro-
tocols such as depicted in Figure 6.5. In fact, a single FSM specification was
constructed by connecting the scenes in the graph to produce the specification
in Figure 6.6 accounting for the specification of the protocol that buyers must

use for interacting with their interagents.
Dutch
auction

tournament
admission

Figure 6.5: Performative structure for buyer agents in the Fishmarket tourna-
ments.

Notice that the simplicity of this definition does not prevent us from defin-
ing more complex tournaments in which a larger performative structure was
employed containing other scenes (f.i. negotiation, settlements, etc.).

In spite of the simplicity of the rudimentary agents taking part in this tour-
nament, some considerations are worth reporting:

e The experimental conditions defined (mainly starting prices, available en-
dowments, and evaluation functions) favoured voracious strategies (buy as
much as possible, as soon as possible).
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e The setting of time-delays (like A fers, Arounds and Agyctions) acted
against deliberative agents.

e Most of the contenders calculated their bids by multiplying the starting
price by a bidding rate that was dynamically tuned depending on the
success or failure of the agent’s former bids.

e Surprisingly, those agents using their opponents’ models assumed that all
the contenders acted according to the strategy described above.

e Curiously, the winning agent did not need as much information as the
others to succeed in this tournament. His extremely simple, purely reactive
strategy consisted in bidding when the ratio between the resale price and
the offer price was considered to be high enough, and this sufficed to beat
the rest of agents.

De Toro (in [de Toro, 1997]) devised variants to these tournament condi-
tions and showed that deliberative agent performance, relative to simple reactive
heuristics, improved with scarcity of resources and experience, as long as time
delays between rounds and between auctions were kept above a threshold®.

6.4.2 EPFL’99

The third Fishmarket tournament took place at the Ecole Polytechnique Fédérale
de Lausanne (EPFL) and involved this time a group of graduate students.

Some changes apply to the tournament descriptor in Table 6.4. Firstly, the
credit endowed to each buyer was reduced to 10000 ptas. In this way, buyers
had to face different situations at each auction depending on the size of the
lot: from scarce auctions (few products, much market money) to auctions with
excess of supply. Secondly, the evaluation function is defined for each buyer b as
E(b) =31, In(i + 1)B;(b) where B;(b) stands for the accumulated net benefit
of buyer b during the i-th auction. This evaluation function was intended to
promote those buyers that improved their performance over time adapting better
than others.

This competition turned out to be highly levelled and very interesting with
respect to the variety of strategies developed by the contenders. Next we com-
ment some relevant features concerning the most successful agents:

e No agent did model his rivals.

e The benefit of goods was employed for elaborating strategies in different
manners. Thus, while agents did and Bond based their strategies on the
expected benefits of goods, buyer baidy considered the average benefit
obtained by successful bidders in past rounds and buyer LostAgent defined
values of desired benefits (difference between each resale price and his
own bid) for each type of good. LostAgent tunes these values depending

5Using a more standard relative-performance common-value evaluation function.
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on success and failure. When succeeding, LostAgent lowers his degree of
aggressiveness, whereas he increases it when losing.

e The most winning agent showed the most sophisticated approaches, char-
acterised by attempting at pursuing adaptability.

e Agents employing more conservative strategies, such as did, obtained very
high scores in auctions with high supply (lengthy auctions), while agents
employing more aggressive strategies, such as Bond, did very well in scarce
auctions (short auctions).

— The winner, aai4, employed a rule base making use of the category
of goods —goods were classified according to their expected resale
price—, his own market opportunity, and the market opportunity of
his rivals (considered as a whole). The result of applying these rules
for each bidding round was a collection of factors used for generating
the buyer’s bid. These factors were tuned prior to the tournament by
means of off-line training.

— Buyer yves presented an interesting approach based on the use of

case-based reasoning for determining his bid. His default strategy
consisted in being very conservative. Then, it employed the infor-
mation generated during past auctions to obtain the most similar
cases to the current bidding round. He departed from the assump-
tion that similar situations lead to similar results. Thus the similar
cases were used for calculating the average benefit obtained by the
winners. From this average benefit, yves tuned his default bid.
The major drawbacks of this approach have to do with the length of
the tournament and the cases selected. Tournaments were composed
of at most twenty auctions, and so eventually could not count on
past cases similar enough to the current bidding round. On the other
hand, some cases may not be worth considering since they correspond
to small benefits. And yet, yves took them also into account.

6.5 AMEC’2000

At the time of writing, the last tournament was held in Barcelona in the frame-
work of the Fourth International Conference on Autonomous Agents (Agents’2000).

Some changes apply to the tournament descriptor in Table 6.4 summarised by
the tournament descriptor in Tables 6.5. A total of sixteen agents participated
in the tournament. All the students had time to study the environment, and to
experiment with toy agents provided by the platform and agents from previous
tournaments. Nevertheless the source code of agents participating in former
tournaments was not available.

Each agent development team was asked —before running the tournament—
for identifying what they considered as relevant information to design agents’
bidding strategies. They agreed on the relevance of the following information:
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n 10

Aguctions 8000 msec

A ounds 4000 msec

D {dpsp} = {(30.0EUR, 500msec, 3,0.25,0.25)}

Pp Ppep

Pgs 0

{b17b27b37b4}

S [Z]

Fi(i=1...n)
T #Bozes | pa Prsi Prsv
cod U[L,15] | U[1200,2000] | U[L500,3000] | U[0.4,0.5]
tuna fish | U[L,15] | U[800,1500] | U[1200,2500] | U[0.3,0.45]
prawns U[1,15] | U[4000,5000] | U[4500,9000] | U[0.35,0.45]
halibut | U[L,15] | U[1000,2000] | U/[L500,3500] | U[0.4,0.6]
haddock U[1,15] | U]2000,3000] | U[2200,4000] | U[0.35,0.55]

C C(b) = 17.500EUR Vb € B

M <1,0,0,1>

€ 0

E By e ) = (0 p In(k + 1B, (1), 2)

Table 6.5: AMEC’2000 Tournament Descriptor

From the market: Number of rounds, number of boxes, initial credit, remain-
ing credit (after each bidding round), last benefit obtained.

From the goods: Starting price, resale price, reserve price (if the good is with-
drawn), good type, ratio between sale price and resale price.

From the competitors: Mean benefit, accumulated benefit of the leading agent,
remaining credit, behaviour.

From the agent state: Own benefit, remaining credit, number of boxes bought.

Because of the time restrictions, not all the information above was actually
employed during the tournament. Each group reduced all the information above
to a subset containing the most relevant infromation. Surprisingly there was a
great consensus among most agent developers about what information had to be
considered. First, the length of the auction. Almost all agent developers consid-
ered a length-based classification of auctions. Thus, the number of classes ranged
from two to four, being three the most frequent value. Typically, classifications
distinguised short-sized auctions (approximately 20 boxes), medium-sized auc-
tions (approximately 45 boxes) and long-sized auctions (up to 75 boxes). Then
each kind of auction leads to a different strategy:

e In short auctions aggressive strateges were mostly used, attempting at buy-
ing close to the starting price. If the credit is enough, this is an admissible
strategy because the total market money is higher than the cost of all the
goods. There is no time to consider the characteristics of the goods, be-
cause probably not all the money could be spent. The better good is the
one with a better ratio between starting price and resale price.
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e In medium auctions a more deliberative strategy is necessary. The total
money of the agents is almost enough to buy all the goods, so the agents
had to be selective and compete for the best goods. The last goods of the
auction can be interesting because their price can be lower.

e In long auctions the planning is very important. The cost of the goods are
more than the total market money. The agent has to decide what goods
are interesting because its price and its position in the auction. It could
be an interesting strategy to wait until all the competitors had spent all
their money in order to obtain better prices. In this kind of auctions an
accurate estimation of the reserve price is very important.

The other information from the auction that had almost all the consensus
was the quotient between the total resale value of the goods of the auction and
the total market money. This value can be uses as an estimation of the mean
expected benefit. To outperform or underperform this value is an indicator of
the performance of the agent. This measure is correlated to the behavior of the
auction and allow to not to observe individually to each competitor.

This expected benefit can be updated during the auction by the bought of
the agents. This allow to change the behavior of the agent because the raise or
fall of the expected benefit.

Almost all the agents used this ratio as base value in order to decide its bid.
If the initial benefit of the good is lower than the mean benefit, then the good is
not interesting and, either the bid is not done, or the agent wait until the price
drops to a more interesting one.

The agents used other complementary values to correct the bidding price
obtained from the calculation of the mean benefit. For example, the benefit of
the best agent, the remaining credit of the competitors and heuristical factors
obtained by experimentation during the private auctions that were held before
the official tournament.

Due to that in long auctions to wait until almost the end of the auction is a
profitable policy, the estimation of the reserve price becomes important. Every
agent has a way to estimate the reserve price. Some agents do the estimation
dynamically, trying to learn this price from the auction, others used a constant
percentage from the initial price. Obviously, the agents that try to estimate the
reserve price dynamically obtained better results.

The strategies to determine the reserve price were diverse, but based on
statistical estimation. Because the real reserve price is unknown, the difference
between starting price and the lower price payed for the goods is a good initial
estimation. This estimation can be corrected using the price observed when a
good goes out of market, circumstance that can be observed in long auctions.
Some agents tried to estimate the reserve price for each kind of good. Due to
the relative shortness of observations those estimations were less accurate that
those from the agents that tried to estimate a global reserve price.

Planning and learning were rare among the agents of the tournament. Some
agents tried to plan beforehand the goods more attractive, estimating the op-
timal bid and distributing the available money among them. All allowed a
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dynamical redistribution of the bids if the chosen goods were bought by another
competitor.

Just two agents tried to use learning between auctions to improve their per-
formance. The first, used the comparison between the benefit obtained and the
benefit of its competitors in order to reduce or increase the bidding price in the
next auction. the second used a more sophisticated learning mechanism based
on reinforcement learning. This strategy used Q-learning in order to decide
the optimal benefit for each good from the own actions and the actions of its
competitors.

The competition was organized in three eliminatory rounds. The first round
divided the agents randomly in four groups. Each group competed in a tourna-
ment. From each group only the two best were chosen.

In this round the agents with a weak strategy obtained a significant less per-
formance than the more elaborated agents. This year, in contrast with previous
tournaments, the level of cooperation between the groups were very low. Only a
small number of agents participated on private tournaments. Most of the agents
that were eliminated in this round were the non cooperative ones. This gives an
idea of how important is cooperation and interaction during the developement
of agents.

The second round paired the winning agents of the first and second group
and the agents of the third and fourth group. In this round also the two best of
each group passed to the final round.

In this round the competition was hardest. In the first group the difference
among the three firsts agents were very short. In the second group there was a
clear difference between the first two agents and the other two competitors.

The strategies of the winners of this round were not significantly different
from the rest, but included some the agents that used some kind of learning and
adaptation.

Surprisingly, the winner of the final round was the agent with the simplest
strategy of the four competing agents. Those are the four agents of the final
round and their strategies:

HumbleJES: This is the winner agent. The basis of this agent is the ratio
between the resale price of the remaining goods and the total credit of the
agents. This ratio is weighted using a value that is an estimation of the
desired benefit. This expected benefit is a constant that is not changed
during the competition.

This value is used to estimate the bid for the actual good. This price is
corrected with the information about the money available for the other
agents. If this value is greater than the price that can be paid by their
competitors, it is adjusted to a little more than this quantity. If the com-
petitors can not buy the good, then the price is adjusted to the estimated
reserve price.

garsa: This is the second agent. The basis of this agent is also the expected
benefit obtained as a ratio of the resale price of the goods and the money
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available, but in this case, this ratio is calculated at the beginning of each
auction. This value is modified using the behavior of the other agents. If
the rest of agents bid to a price higher that the calculated, the value is not
touched. If the other agents bid to a lower price, the benefit is adjusted to
obtain a bid slightly higher that the bid of the competitors, increasing the
own benefit.

This agent detects when the competitors have not enough money to buy
more goods. When this happens, the bid is adjusted to a statistically
estimated reserve price.

Pretender: This is the third agent. This is the more sophisticated agent,
it uses reinforcement learning (Q-learning)in order to learn what is the
better price for a good. It uses a probability matrix indexed by resale price
and expected benefit. This matrix stores the probability distribution of the
optimal benefit for a given resale price. The matrix was initialized with a
priori probability distributions obtained from the private tournaments.

Three different reinforcements are used during the auction. A positive
reinforcement, if the current bid is successful and is considered a good bid,
a negative reinforcement if it is considered that the actual bid benefit has
to change and a negative reinforcement if the actual did benefit of the
agent is high. A set of rules allow to decide what kind of reinforcement
is necessary. These rules evaluate different information, as the number of
remaining rounds, the performance of the competitors or the number of
competitors with enough money. The learning is done in each auctions, so
the information of the previous auctions is not maintained.

This probability matrix adapts to the behavior of the market, and predicts
the most probable benefit that the competitors desire to obtain. This in-
formation allow to advance the bid and to buy before than the competitors.

TokOchons: This is the fourth agent. The strategy of this agent uses two

information. The first is a variation of the ratio between the resale price of
the remaining goods and the remaining market money. This information
allow to guess the expected benefit. The second source of information is a
function that give a measure of how interesting is a good. This function
combines the relative and absolute benefit obtained for a given bid.

This bid is corrected using different parameters. The more interesting is
a value that measures the proportion of the market money that the agent
owns. If the proportion is great, this means that the agent almost has not
competitors, so, the expected benefit can be raised.

This agent stores the past auctions in order to analyze them. If the current
auction has a similar number of rounds that a past auction, its information
is recalled. If in this past auction some money was not spent, the bids are
raised in order to spent all the money, increasing the benefit by buying
more goods. If the winner of this past auction obtained a benefit higher
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than ours, the expected benefit for the current auction is raised in order
to pay less for the goods.

Figure 6.7 depicts the evolution of the objective function that measured the
performance of agents. We see that agent HumbleJES performs significantly
better that the others from the very start of the competition. The rest of agents
are in a tie until auction number seven, when agent garsa starts outperforming
the other two agents. It seems that the learning procedures of this two agents
are not a real advantage against the other two strategies.

Tournament Evolution (Final)
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Figure 6.7: Evolution of the last round of the AMEC tournament.

Some conclusions can be drawn from this tournament. First of all, that more
sophisticated strategies has not evident advantage against simple ones. The
best agents use an strategy based on market information without neither trying
to model the other agents not use learning from experience to improve their
performance. This does not means that this characteristics are not desirable. An
adequate learning policy could overperform simple strategies in a more dynamic
environment,.

The other conclusion is the significance of competition in the developement
of this kind of agents. At has been said, only the agents from the people that
decided to share their knowledge and competed in private tournaments were
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successful. The need to test a strategy are crucial for its developement. It is
difficult to have success without interaction.

6.6 Summary

Research in e-commerce is producing an increasing number of agent-based mar-
kets (refer to Chapter 2 for a complete survey on computational markets). Such
efforts have succeeded in producing electronic markets where both buying and
selling agents can trade on behalf of their users. Nonetheless there is the intri-
cate matter of providing agent developers (and agent users) with some support
to help them face the arduous task of designing, building, and tuning their trad-
ing agents, before letting them loose in wildly competitive scenarios. In this
sense we regard as paradoxical the lack of test-beds for trading agents. We have
attempted to contribute in that direction. We have developed a test-bed, FM,
that can be used to test and tune trading agents, as an extension of an actual
agent-mediated electronic auction house.

The resulting test-bed is domain-specific and realistic because it has been
grown out of FM96.5, the actual-world computational market presented in Chap-
ter 5.

FM allows for the generation, recording and repeatability of competitive
auction-based trading scenarios of varying degrees of complexity. Such scenarios
may correspond to either open or closed tournaments, depending on whether
they are accessible to trading agents owned by multiple users or by a single
user respectively. Experiments defined and subsequently hosted by FM can be
monitored with the aid of the extended version of the monitoring agent inherited
from FM96.5, and their performance can be obtained thanks to the built-in
evaluation facilities.

The participation of agents is mediated by the interagents inherited from
FM96.5. Notice that the use of interagents makes FM architecturally neutral.
However, in order to provide some support to agent developers, FM includes
a library of agent templates. In addition to this, the capability of generating
dummy agents is also included for training purposes. Lastly, FM has been
constructed to be scalability aware, in the sense that it provides support for
distributing an experimenter’s agents across several machines in a network.

Our proposal is close to the Double auction tournaments held by the Santa
Fe Institute [Andrews and Prager, 1994] where the contenders competed for de-
veloping optimised trading strategies. Though similar enough, our approach has
a wider scope. We are interested not only in providing a framework for test-
ing agent strategies and building trading agents [Vidal and Durfee, 1996, Garcia
et al., 1998b,Boutilier et al., 1999], or in the use of artificial intelligence to study
economic markets [Rajan and Slagle, 1996]. We are also interested in the study
of market conditions and market conventions, thus our emphasis on the flexibility
of the specification framework, and the generality of the underlying definitions.
Thus FM shares many commonalities with AuctionBot [Wurman et al., 1998],
a highly versatile online auction server that permits the generation of a wide
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range of auction environments wherein both human and software agents can
participate. AuctionBot has already proven its usefulness as a research platform
hosting large-scale experiments to study computational market mechanisms and
agent strategies.

Finally, we would like to comment on what we regard as an interesting prob-
lem that could be investigated with the aid of the test-bed presented in this
chapter. Observe that FM permits the creation of several auction-based market
scenarios, each one possibly exhibiting a different behaviour. Thus we could
think of having agents simultaneously participating in some markets so that
should not only care about their trading strategies in a single market, but also
about choosing the most appropriate market. This is in fact the actual problem
that agents must face over the Internet when intending to acquire goods at an
on-line auctions.



Chapter 7

Conclusions and Future
Work

This thesis addressed the formalisation, design and construction of agent-mediated
electronic institutions. The proposed methodology is exemplified through the
practical realisation of an agent-mediated electronic auction house that is subse-
quently evolved into a test-bed, an experimental environment, for trading agents.

In what follows we present the lessons learned from the several problems
faced during this exercise.

7.1 Formal Specification of Electronic Institu-
tions

Although up to date most of the work produced by MAS research has focused
on closed systems —systems in which agents and their infrastructure are de-
signed, developed and enacted under centralised control [Klein, 2000]—, open
systems [Hewitt, 1986] —systems whose components are unknown beforehand,
can change over time and can be both human and software agents developed by
different parties— have recently started to be considered by agent researchers
as arguably the most important application of multi-agent systems. Typical ex-
amples of open systems include electronic marketplaces, virtual supply chains or
collaborative design applications to name a few.

It is our view that open systems require the deployment of a normative en-
vironment which encapsulates the rules of the game, including any (formal or
informal) form of constraint aimed at shaping agents’ interactions. In other
words, a framework within which interactions take place, defining what individ-
uals are forbidden and permitted and under what conditions. We argue that
a clear distinction must be drawn between the rules and the players of open
systems.

We have proven that much can be learned in the exercise of producing such
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normative environments by adopting a mimetic strategy based on the formal
introduction of organisational structures. More concretely, institutions —which
have for long demonstrated their effectiveness in dealing with similar issues in
human societies— are also effective for the successful realisation of open systems.
Notice that the ultimate goal of engineering electronic institutions —the coun-
terparts of institutions in electronic environments— requires the precise, formal,
rigorous identification of all their components along with their relationships and
behaviours. Since mostly open systems can be regarded as critical applications,
the use of a formal technique is more than motivated because we cannot afford
to have the requirements misunderstood. Along this exercise we have observed
that it is fundamental to adopt a macro, societal perspective that helps identify
the processes in the system and their relationships, the roles of the participating
agents and their associated rights, and the obligations and restrictions deriving
from agents’ observable, external actions.

Several major advantages derive from producing (graphical) formal specifi-
cations of electronic institutions:

e The process of creating the description and performing the analysis al-
lows the modeller to gain a dramatically improved understanding of the
modelled institution.

e Graphical specifications are extremely easy to understand since they are
similar to the informal diagrams employed by engineers and designers while
designing, constructing and analysing a system.

e A specification offers an explicit description of both states and actions
which any subsequent implementation is aimed at capturing.

e Formal reasoning can be applied in order to analyse and validate the prop-
erties of the specification.

e The knowledge acquired after the specification of scenes and institutions
naturally leads to the creation of scene patterns and institutional patterns
for future reuse.

Although it’s apparent the urgent need for methodologies and techniques
that underpin the development of agent systems, in general these are still at a
very embryonic stage. Along these lines, we understand our contribution as a
modest, early approach in the field, and not as a breakthrough. In general, we
argue that in order for any methodology to be successfully deployed, there is
the fundamental issue of counting on a well-defined semantics which allows the
formal reasoning which founds validation techniques for complex and critical
applications. And yet there is still a long way to go. As an example of the
embryonic stage of the field, consider the recent extensions of UML which have
recently appeared at the time of writing [Odell et al., 2000]. Although interesting
enough since they build upon UML, which has succeeded as a de-facto design
tool in industry, UML still lacks of precise semantics. Therefore, UML does
not support so well the formality and rigour needed to early detect errors in
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requirements and design. It is not surprising then that this is widely admitted
as one of the major challenges for UML in order to enhance its applicability to
the modelling of complex systems [uml2000, www].

7.2 Agent-based Architectures for Electronic In-
stitutions

We have also presented a computational model that arises from and fully cap-
tures our formal view of electronic institution in an effort to link theory and prac-
tice. For this purpose, we build upon the key notion of mediation. We argue that
mediation is capital to found the realisation of infrastructures for agent-based
systems in general and for electronic institutions in particular. Thus, we defend
that infrastructures for agent-based systems in general, and for electronic insti-
tutions in particular, can be successfully deployed making use of middle-agents,
mediators, that take charge of the cumbersome interaction issues inherent to
these types of systems. This observation motivated our introduction of a special
type of facilitator, the so-called interagent, an autonomous software agent that
mediates the interaction between each agent and the agent society wherein this
is situated. Thus, interagents constitute the unique mean through which agents
interact within a multi-agent scenario. Whereas an agent’s external behaviour
is managed by an interagent, his individual logics, knowledge, reasoning, learn-
ing and other internal capabilities must be exploited and managed by the agent
himself. Recall that not only an interagent is capable of handling the interac-
tions of a given scene protocol, but the whole navigation of an agent across all
the activities involved in an institution. Furthermore, an interagent must keep
track of the commitments and prohibitions applying to a given agent in order
to determine how these enlarge or restrict his actions.

But not only interactions within an electronic institution are mediated by
agents, but also its services, delegated to the so-called institutional agents. We
refer to institutions whose interactions and services are mediated by agents as
agent-mediated electronic institutions. We have proposed a novel computational
model to fully realise electronic institutions by means of the articulation of in-
stitutional agents and interagents. Thus, the (institutional) normative envi-
ronment is accomplished by means of the coordinated, cooperative activity of
institutional agents and interagents. Or, in other words, an agent-mediated elec-
tronic institution takes the shape of a cooperative agent society: institutional
agents and interagents work together to enforce the institutional rules and to
offer institutional services.

Next we summarise the main features and benefits of our computational
model for agent-mediated electronic institutions:

e Purely agent-oriented design founded on institutional agents and intera-
gents.

o Flexible agent architecture. All institutional agents share the very same,
highly flexible architecture. Nevertheless, they exhibit different behaviours
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in accordance with the responsibilities they’re endowed with expressed as
specifications. Likewise, interagents do all share the same architecture,
deferring solely on the scenes being mediated for their customer agents.
A major benefit arises from employing such generic, flexible architectures:
savings in development effort when carrying out institutional changes.

Macro(societal) and micro(agent-centered) views. As a follow-up of the
item above, notice that not only our computational model is concerned
with societal issues (scenes, performative structures, roles, etc.) but also
with the inners of the agents that make possible the institutional environ-
ment.

Enforcement of institutional rules. The mediation of interagents guar-
antees that agents abide by the institutional roles when participating in
activities (scenes) and when transiting from activity to activity.

Openness. Any agent (no matter his architecture nor his language) can
participate in an institution as long as he can communicate with an inter-
agent.

Scalability. The services offered by an institution can be distributed among
several institutional agents or simply delegated to the very same agent.
Furthermore, interactions with external agents can be either handled by a
single agent or by multiple agents (e.g. one interagent per agent).

Modularity. The notions of agents and their roles and performative struc-
tures and their scenes allow us to introduce a much higher degree of mod-
ularity that what we would obtain by plainly using objects.

Security issues concerning external agents can be effectively handled via
their interagents. Notice that external agents are not allowed to directly
interact with either institutional agents or other agents within the institu-
tion. Instead, an agent must be granted access to the institution through
his assigned interagent in order to have his illocutions conveyed to their
addressees. In this way we reduce the likelihood of an agent jeopardising
the institution.

Robustness. Malicious behaviour and failures of external agents can be
effectively controlled by coordinating interagents and institutional agents.
For instance, bid spamming in FM96.5 is easily controlled by having in-
teragents plugging off spammers.

Accountability support. Since all illocutions uttered and received by agents
within an electronic institution are filtered by interagents, they can all be
kept for accountability purposes.

We have demonstrated the pragmatic value of our computational model de-

veloping an actual agent-mediated electronic auction house. Apart from exhibit-
ing the features and benefits listed above, to the best of our knowledge FM96.5
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(along with AuctionBot) was the first auction house that permitted the partici-
pation of software trading agents in market sessions. Furthermore, it includes a
fair, live implementation of the challenging Dutch auction protocol.

7.3 Agent Test-beds

North [North, 1990] argues that a distinguishing feature of institutions is the
clear distinction drawn between the rules and the players. Most of this thesis
has focused on the rules through the formal specification, design and realisation
of institutions’ normative environments. However, departing from the agent-
mediated electronic auction house presented in Chapter 5 to illustrate the prag-
matic value of our computational model, we have shifted our interest from the
rules to the players to produce an original, novel test-bed for trading agents in
auction markets. In this way we have contributed to providing agent developers
with support to help them face the intricate matter of designing, building, and
tuning their trading agents, before letting them loose in auction marketplaces.
It is our view that such experimental support is fundamental in the construction
of trading agents, since these must be regarded as highly critical applications.

Notice that the lack of agent test-beds is mainly due to the costly devel-
opment, effort required by this type of systems. But this is not the case with
our testbed. Evolving the agent-mediated electronic auction house presented in
Chapter 5 to the testbed presented in Chapter 6 has not been expensive be-
cause of the high flexibility of our computational model. Thus realising different
experimental scenarios amounts to specifying and loading different behavioural
(social and internal) specifications into institutional agents. Needless to say that
this favours the future specification of new experimental scenarios.

But more importantly, the exercise of constructing an auction-based testbed
has led us to infer the general, desirable features of an open agent test-bed:

e Realistic. Although at the expense of being domain-specific, it is desir-
able that testbeds support empirical work in realistic scenarios. It is our
view that testbeds must be intended to help researchers progress in their
solutions to real-world, instead of artificial, problems.

e Generation and repeatability of scenarios with varying degrees of complez-
ity. From simple toy scenarios to complex real-world scenarios, from care-
fully constructed scenarios that highlight certain problems to randomly
generated scenarios useful for testing agents’ average performance.

o Architecturally neutral. The participation of agents possibly written in
different languages and possibly with different architectures should be al-
lowed.

e Scalability aware. The possibility of distributing agents across several ma-
chines has demonstrated to be necessary to tackle scalability problems.
Executions in multiple processors eventually guarantee the appropriate
performance of experiments which otherwise would collapse.
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e Open and closed experimental scenarios. Open scenarios are intended to
allow the participation of agents owned by multiple users (multi-user),
whereas closed scenarios are intended for a single user’s controlled experi-
mentation.

o Monitoring and Evaluation facilities. Testbeds must keep track of all
events taking place during an experiment, so that a whole empirical ses-
sion can be audited step-by-step, and the evolving performance of all the
agents involved can be traced, calculated, and analysed.

e Agent development support. Since the major concern of agent develop-
ers must be their agents’ logics in the testbed’s domain, it is desirable
to provide them with agent templates to ease and speed their develop-
ment. Needless to say that such templates are eventually committed to
some particular architecture, but still they can save agent developers’ time
preventing them to depart from scratch.

e Generation of customizable training agents. Facilities for the generation of
customisable agents for training purposes.

Analogously to our exercise of proving the pragmatic value of our computa-
tional model for electronic institutions, we have also illustrated the value of the
testbed developed in Chapter 6 to host several auction contests, along the lines
of the Double auction tournaments held by the Santa Fe Institute [Andrews and
Prager, 1994] where the contenders competed for developing optimised trading
strategies.

7.4 Future Work

Nowadays, there is an evident lack of methodologies for designing, implement-
ing, analysing and ultimately validating agent-based systems in general, and
electronic institutions in particular. One of the key reasons roots in the inad-
equacy of existing software development approaches such as early pointed out
in [Fisher et al., 1997]. Nonetheless it is widely agreed by the agent community
that there is an urgent need of methodological foundations for agent-based sys-
tems. This fact has motivated and spurred the very recent appearance of some
purely agent-based software engineering approaches such as [Wooldridge et al.,
2000] and [Odell et al., 2000]. Nonetheless, agent-oriented software engineering
is still in its infancy, and therefore a remarkable amount of research is bound to
be produced in this area in the very near future. These research efforts must not
only include and handle the notion of agent as first class citizen, but also societal
and organisational patterns for which agents become players with various roles.

Although extensions of object-oriented software engineering techniques, such
as UML, may prove successful and eventually become daily tools for multi-agent
systems’ engineers, we still believe that formal techniques will have a say. Need-
less to say that formal techniques coming from the domain of process algebra,
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structural operational semantics, temporal and modal logics or Petri nets have
been largely employed for the specification, design and verification of distributed
and concurrent systems. For instance, coloured Petri nets have demonstrated to
be useful in the specification and validation of network protocols [Jen, 1995b].

The work reported in Chapter 3 has attempted at making headway in this
matter, and yet there remain major, open issues that must be solved by future
work in order to enable formal reasoning: the formal analysis of specifications.
Formal analysis techniques are needed in order to study static (structural) and
dynamic (behavioural) properties of specifications. On the one hand, static
properties can be derived from an electronic institution’s specification, with-
out taking into account its dynamics. The main purpose of static properties
will be to characterise and classify specifications into subclasses. On the other
hand, dynamic properties can be studied from two different perspectives. First,
simulation appears as the most straightforward kind of analysis. However, in
order to implement simulators, it is necessary to count on a well-defined se-
mantics which unambiguously defines the behaviour of electronic institutions
from specifications. Though simulation can prove to be extremely useful for the
understanding and debugging of an electronic institution —in particular, when
designing and validating large systems—, it is important to develop formal anal-
ysis methods. We regard these methods as an indispensable complement to
simulation techniques.

Once specified an electronic institution a sound implementation must follow.
It is our view that agent engineers are to need guidance through both the intri-
cate specification and development phases. Thus, we envision the construction
of development environments as a fundamental future task if we aim at obtaining
assisted principled developments. Ideally development environments must suc-
ceed in providing institutions’ builders with the necessary tools to cope with the
high complexity inherent to the types of systems that they aim at constructing.
These tools must not only support the construction of electronic institutions,
but also, and very importantly, the analysis and debugging of the system so
that designers can be assisted in diagnosing faulty systems both at design and
run time.

Notice that in Chapter 3 we pictured a component-based formal conception
of electronic institutions. Scenes can be regarded as independent components
which model different types of multi-agent conversation. Peformative structures
can be also regarded as independent components that are finally integrated into
an electronic institution. And lastly, the specification of an electronic institution
can also be seen as a component itself. From this follows that specifications of
scenes, performative structures and electronic institutions might be organised
into repositories, ready to be used as building block for new specification. If
S0, in practice, designers could easily compose a new specification of an elec-
tronic institution by eventually retrieving and tuning available specifications.
If that is not the case, and totally new specifications are needed, these can be
easily realised as intuitive graphical specifications, drawings, like those shown,
for instance, in Figures 3.3 and 3.12. In this case, it is very likely that the de-
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signer makes hand of design patterns also available as part of the repository. For
these purposes, we suggest the implementation of a development environment,
that permits designers to specify electronic institutions employing the graphical
language introduced in Chapter 3. Moreover, the environment might also offer
a textual specification language as the counterpart of the graphical language.
Complementarily, the environment must also include facilities for the specifi-
cation and development of institutional agents and interagents based on their
general models presented in Chapter 4. Notice that in both cases we contem-
plate the development of both types of agents as a largely automated task, since
for all institutions we shall be using the same general models of institutional
agents and interagents. They will be differing in the specification each agent is
endowed with.

Observe that we argue in favour of the construction of development environ-
ments that support both the specification and development of both the rules
and the players. However, much effort must be dedicated to the production of
infrastructures for agents (the players). At present, agent developers create sep-
arately the infrastructures required by their applications in an ad-hoc manner.
And indeed infrastructures are needed to support agents, yet it seems apparent
that much effort is replicated and unfortunately the resulting infrastructures are
costly and usually only fulfil general requirements but those of the particular
applications they are intended to support. Therefore, further developments may
prevent reusing the same infrastructure or, in the best case, may require a re-
engineering effort. Initiatives such as DARPA COABS [coabs, www] attempt at
making headways in this direction —the COABS research community is devel-
oping a prototype agent grid as an infrastructure for the run-time integration of
heterogeneous multi-agent and legacy systems.

Next we shall discuss further extensions and uses of the test-bed presented
in Chapter 6. Recall that the auction house fully described in Chapter 5 is no
more that one of the working modes of our test-bed.

Firstly, we regard as necessary the extension of the library of price-fixing
mechanisms with the inclusion of additional auction protocols. In particular,
not only single and multi-item auctions might be included, but also combinato-
rial auction where bidders can bid on combination of items [Sandholm, 1999a]
—auction protocols largely used in multitude of markets such as f.i. electricity
markets, equities trading and bandwith auctions to name a few. Complementar-
ily, negotiation protocols are planned also to be introduced in order to turn our
test-bed into a general experimental environment for exchanges with support for
both automated and non-automated price-fixing mechanisms.

Secondly, more elaboration is needed in order to generate more realistic sce-
narios. Let us step back to Chapter 1 to recall that when referring to the actual
fish market, we distinguished several types of buyers (wholesale buyers, fish-
mongers, restaurant owners). It is apparent that a buyer in a morning session
(participated by a reduced number of wholesale buyers) is to behave differently
to a buyer in an afternoon market session (participated by large numbers of fish-
mongers and restaurant owners). In general, when designing an agent’s trading
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strategy for an actual scenario, it is fundamental to pitch the agent against oth-
ers to evaluate it in the most similar scenarios to those that the agent is deemed
to confront. For this purpose, it would be desirable for the agent designer to
count on the possibility of generating artificial scenarios composed of agents with
different profiles. In order to enable this possibility, some extensions should be
made to the test-bed in order to provide facilities to generate populations of
agents with different profiles.

Lastly we envision our test-bed as an appropriate tool to undertake research
in both sequential strategies and multi-market auction strategies. Most agent
research concerning bidding strategies has been applied to Double auction mar-
ketplaces [Park et al., 1999, Cliff and Bruten, 1998, Preist and van Tol, 1998, Fried-
man and Rust, 1991]. Limited work has considered the design of bidding strate-
gies for sequential auctions using other auction protocols apart from Double
auction. To the best of our knowledge, only Boutilier’s [Boutilier et al., 1999]
work and our own work [Garcia et al., 1998b] have started addressing this issue.
Bidding in sequential auctions is difficult and with no doubt a challenging, open
research problem. Notice that to determine his valuation for an item, the bidder
needs to guess what items he will receive in the future. This requires speculating
about what his rivals will bid in the future, and in turn what these bid in the
future depends on what they believe the others will do.

As to simultaneous bidding strategies —i.e. bidding strategies for simultane-
ously participating in several auctions at the same time—, this is an issue still
at his early infancy (f.i. [Preist, 2000] in the context of multiple marketplaces
and [Excelente-Toledo et al., 2001] in the context of multi-agent coordination).
Preist presents an algorithm that allows an agent to participate in many auctions,
capable of coordinating the agent’s bids across them. It is surprising the lack of
work concerning this issue in spite of its value for both consumer-to-consumer
and business-to-business marketplaces, and we believe that our test-bed can help
experimental research in this direction.

Finally, we comment on the issues concerning reputation systems, which we
find of pragmatic value to cope with deception and fraud in open agent-mediated
electronic institutions. We believe that research in reputation systems is chal-
lenging and still in its infancy and so much work is needed in order to consoli-
date open agent-based systems. We find compelling that open agent-mediated
electronic institutions count on reputation systems that provide guidance to
participants when choosing partners in their activities.

Why reputation? Reputation matters. In fact, reputation is the main basis
of our economic system. People stop doing business with those they don’t trust,
or who mistreat them, or those who just don’t seem to be reputable.

At present, the mechanisms appearing in the literature have fallen short to
cover a broad range of delicate issues. Firstly, there is the issue of combining
reputation values stemming from several sources of information. But then, the
reliability of sources of information must be considered since agents might be ly-
ing when providing reputation information. Preliminary models have considered
this issue [Schillo et al., 1999] tring to find cheaters to undervalue their credibil-
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ity. However it seems to us that a different approach is needed, and perhaps the
deployment of mechanisms that make agents act as truthfully as possible can
succeed.

In general, reputation systems are not foolproof. Another major source of
cheating is the discriminatory use of rating among agents. Thus, a group of
agents might collude to destroy the reputation of a common competitor, whereas
they migth also collude rating one another well enough to wake the interest of
other agents in the community. This is a particular case of collusive behaviour
among agents to cheat on reputation systems, but more generally collusive be-
haviour is a tremendously delicte problem in cybercommunities. Collusive be-
haviour in auctions and to orchestrate a distributed denial of services attack
are just a two important examples of this tpe of phenomenon. Although highly
challenging (f.i. in the economics literature collusive behaviour has not been
dealt with profoundly and although it is admitted to be a very hard and impor-
tant problem, just a few works have made headway in this issue [Hendricks and
Porter, 1989, Porter and Zona, 1993]).

Turning our attention to reputation values, we observe that the vast majority
of research considers reputation as a unidemensional. Contrarily, we argue that
reputation is clearly multi-dimensional. For instance, an agent migth be able
to deliver perfect quality but repeatedly late. Both dimensions, quality and
delivery time, should be considered by other agents when assessing an eventual
deal.

And then, what to do with reputation values? No much work has been done
relating reputation and decision-making processes. Mostly the focus has been
on the use of reputation to avoid to choose wrong partners in the context of
task delegation [Biswas et al., 2000]. Nevertheless, to the best of our knowledge
reputation information has not been integrated yet into negotiation mechanisms.
We believe that it is worthy researching on how agent’s trustwortyness can affect
the strategic behaviour of negotiating parties.

Finally, in some cases reputation cannot only be used as a discriminatory
value for trading partners, but also for institutions themselves. Think of multi-
ple electronic institutions scattered around in the Internet. For instance, actual
fish markets may have their electronic counterparts, and so a network of elec-
tronic fish markets could exist over the Internet. Since the fish market is in
charge of assessing quality to incoming fish (by fixing a starting price), it might
be the case that the institution overrates (some) sellers’ products, eventually
producing market inefficiencies. Feedback provided by buyers after acquiring
goods can be valuable to rate sellers and for the institution itself to discover
whether sellers are being overrated (ideally the institution should employ this
information to tune its quality assessment process). But reputation informa-
tion from different marketplaces can help agents decide where to buy. From the
reputation information produced in a marketplace, an agent can infer the ex-
pected quality of different types of goods. Furthermore, such information might
be taken into account by the agent when elaborating his bidding strategy by
considering both the expected quality and the institutional quality assessment.



Appendix A

AmEI Document Type
Definition

In this Appendix we provide the Document Type Definitions for the XML-based
textual representations of the graphical specifications of scenes, performative
structures, and electronic institutions presented in Chapter 3!.

SCENE.DTD |

<VELEMENT SCENE (DESCRIPTION,DF,ROLES,SD*,STATE+,LINK*)>
<V'ATTLIST SCENE
1D CDATA #REQUIRED
>
<VELEMENT DESCRIPTION (#PCDATA)>
<'ELEMENT DF (ONTOLOGY,LANGUAGE,CL,PERFORMATIVES)>
<VELEMENT ONTOLOGY (#PCDATA)>
<VELEMENT LANGUAGE (#PCDATA)>
<VELEMENT CL (#PCDATA)>
<VELEMENT PERFORMATIVES (PNAME+)>
<VELEMENT PNAME (#PCDATA)>
<VELEMENT ROLES (ROLE+)>
<V'ELEMENT ROLE (ROLEID,MIN,MAX)>
<VELEMENT ROLEID (#PCDATA)>
<VELEMENT MIN (#PCDATA)>
<'ELEMENT MAX (#PCDATA)>
<VELEMENT TOP (#PCDATA)>
<VELEMENT SD (ROLEPAIR+)>
<VELEMENT ROLEPAIR (ROLEID,ROLEID)>
<VELEMENT STATE (ACCESS?,EXIT?,EDGELIST*)>

IThe DTDs are available at http://www.iiia.csic.es/ jar/PHD/AMEI/XML
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<!ATTLIST STATE
ID
TYPE

>

Appendix A. AmEI Document Type Definition

CDATA

(initial|intermediate|final) "intermediate"

<!ELEMENT ACCESS (ROLEID+)>
<!ELEMENT EXIT (ROLEID+)>
<!ELEMENT EDGELIST (EDGE+)>

<!ATTLIST EDGELIST
XML-LINK
ROLE
TITLE
INLINE
CONTENT-ROLE
CONTENT-TITLE
SHOW
ACTUATE
BEHAVIOR

>

CDATA

CDATA

CDATA

(TRUE | FALSE)

CDATA

CDATA
(EMBED | REPLACE | NEW)
(AUTO|USER)

CDATA

<!ELEMENT EDGE (ILLOCUTION)>

<!ATTLIST EDGE
ID
XML-LINK
ROLE
HREF
TITLE
SHOW
ACTUATE
BEHAVIOR

>

CDATA

CDATA

CDATA

CDATA

CDATA
(EMBED | REPLACE | NEW)
(AUTO|USER)

CDATA

<!ELEMENT ILLOCUTION (#PCDATA)>

#REQUIRED

#FIXED "EXTENDED"
#IMPLIED
#IMPLIED

"TRUE"

#IMPLIED
#IMPLIED

"EMBED"

"USER"

#IMPLIED

#REQUIRED
#FIXED "LOCATOR"
#IMPLIED
#REQUIRED
#IMPLIED

llNEwll

"USER"

#IMPLIED

<!ELEMENT PS (DESCRIPTION,ROLES,NODE+,TRANSITION+,DSD?)>

<!ATTLIST PS
ID
>

CDATA

<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT ROLES (ROLEID+)>
<!ELEMENT NODE (ARCLIST?)>

<!ATTLIST NODE
ID
XML-LINK
ROLE
HREF
TITLE

CDATA
CDATA
CDATA
CDATA
CDATA

#REQUIRED

#REQUIRED
#FIXED "SIMPLE"
#IMPLIED
#REQUIRED
#IMPLIED



INLINE
CONTENT-ROLE
CONTENT-TITLE
SHOW
ACTUATE
BEHAVIOR
MAX

>

(TRUE | FALSE)

CDATA

CDATA
(EMBED | REPLACE | NEW)
(AUTO|USER)

CDATA

CDATA

<!ELEMENT ARCLIST ANY>

<!'ATTLIST ARCLIST
XML-LINK
ROLE
TITLE
INLINE
CONTENT-ROLE
CONTENT-TITLE
SHOW
ACTUATE
BEHAVIOR

>

CDATA

CDATA

CDATA

(TRUE | FALSE)

CDATA

CDATA
(EMBED | REPLACE | NEW)
(AUTO|USER)

CDATA

<!ELEMENT ARC (LABEL,CONDITION?)>

<!ATTLIST ARC
ID
XML-LINK
ROLE
HREF
TITLE
SHOW
ACTUATE
BEHAVIOR

>

CDATA
CDATA

CDATA

CDATA

CDATA
(EMBED | REPLACE | NEW)
(AUTO|USER)

CDATA

<!ELEMENT ROLEID (#PCDATA)>
<!ELEMENT LABEL (AGENTVAR,ROLEID)+>
<!ELEMENT AGENTVAR (#PCDATA)>
<!ELEMENT CONDITION (#PCDATA)>

<!ATTLIST CONDITION

ML
>

CDATA

<!ELEMENT TRANSITION (ARCLIST?)>
<!'ATTLIST TRANSITION

ID
TYPE
>

CDATA

(AND | OR | AND-OR | OR-AND)

<!ELEMENT DSD (ROLEPAIR+)>
<!ELEMENT ROLEPAIR (ROLEID,ROLEID)>

"TRUE"
#IMPLIED
#IMPLIED
"REPLACE"
"USER"
#IMPLIED
#REQUIRED

#FIXED "EXTENDED"
#IMPLIED
#IMPLIED

I|TRUEI|

#IMPLIED
#IMPLIED

"EMBED"

"USER"

#IMPLIED

#REQUIRED
#FIXED "LOCATOR"
#IMPLIED
#REQUIRED
#IMPLIED

"NEW"

llUSERll

#IMPLIED

#REQUIRED

#REQUIRED
llANDll

251



252 Appendix A. AmEI Document Type Definition

AMEILDTD

<!ELEMENT AMEI (DESCRIPTION,ROLESET,INHERITANCE?,SSD?,PS,NORMS?)>
<!ATTLIST AMEI
ID CDATA #REQUIRED
>
<!ELEMENT ROLESET (ROLEITEM+)>
<!ELEMENT ROLEITEM (ROLEID,DESCRIPTION,CARDINALITY)>
<!ELEMENT ROLEID (#PCDATA)>
<!ELEMENT DESCRIPTION (#PCDATA)>
<!ELEMENT CARDINALITY (#PCDATA)>
<!ELEMENT INHERITANCE (INHITEM+)>
<!ELEMENT INHITEM (ROLEID,ROLEID)>
<!ELEMENT SSD (ROLEPAIR+)>
<!ELEMENT DSD (ROLEPAIR+)>
<!ELEMENT ROLEPAIR (ROLEID,ROLEID)>
<!ELEMENT PS ANY>
<!ATTLIST PS

1D CDATA #REQUIRED
XML-LINK CDATA #FIXED "SIMPLE"
ROLE CDATA #IMPLIED
HREF CDATA #REQUIRED
TITLE CDATA #IMPLIED
INLINE (TRUE | FALSE) "TRUE"
CONTENT-ROLE CDATA #IMPLIED
CONTENT-TITLE CDATA #IMPLIED
SHOW (EMBED | REPLACE |INEW) "REPLACE"
ACTUATE (AUTO|USER) "USER"
BEHAVIOR CDATA #IMPLIED

>
<!ELEMENT NORMS (NORMITEMx)>
<!ATTLIST NORMS
ML CDATA #REQUIRED
>
<!ELEMENT NORMITEM (#PCDATA)>



Bibliography

[Dav, 1993] (1993). Software Requirements. Objects, Functions and States.
Prentice Hall International, Inc.

[Gei, 1994] (1994). PVM: Parallel Virtual Machine. A Users’ Guide and Tuto-
rial for Networked Parallel Computing. The MIT Press.

[Dor, 1994] (1994). Simulating Societies, chapter The EOS Project: Modelling
Upper Paleolithic Social Change. UCL Press.

[Jen, 1995a] (1995a). Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use, volume 1. Springer.

[Jen, 1995b] (1995b). Coloured Petri Nets. Basic Concepts, Analysis Methods
and Practical Use, volume 2. Springer.

[Fis, 1996] (1996). Foundations of Distributed Artificial Intelligence, chapter
AGenDA - A General Testbed for Distributed Artificial Intelligence Applica-
tions, pages 401-427. John Wiley & Sons, Inc.

[Som, 1996] (1996). Foundations of Distributed Artificial Intelligence, chapter
The Evolution of the CooperA Platform, pages 365—447. John Wiley & Sons,
Inc.

[Bra, 1997] (1997). Software Agents, chapter KAoS: Toward an Industrial-
strength Open Agent Architecture. AAAT/MIT Press.

[Pro, 1999] (1999). Proceedings of the International Workshop on Knowledge-
based Planning for Coalition Forces.

[Adauction, www] Adauction (www). Adauction URL. http://www.-
Adauction.com.

[Agentbuilder, www] Agentbuilder (www). Agentbuilder URL. http://www.-
agentbuilder.com.

[Agha, 1986] Agha, G. (1986). Actors, A Model of Concurrent Computation in
Distributed Systems. The MIT Press.

253



254 Bibliography

[Aho and Ullman, 1972] Aho, A. V. and Ullman, J. D. (1972). The Theory of
Parsing, Translation, and Compiling, volume I: Parsing of Series in Automatic
Computation. Prentice-Hall.

[Albers et al., 1999] Albers, M., Jonker, C. M., Karami, M., and Treur, J.
(1999). An electronic market place: Generic agent models, ontologies
and knowledge. In Proceedings of the Fourth International Conference on
the Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM’99), pages 211-228.

[Alberts, 1993] Alberts, L. K. (1993). YMIR: An Ontology for Engineering De-
sign. PhD thesis, University of Twente.

[Amazon, www| Amazon (www). Amazon URL. http://www.amazon.com.

[Andrews and Prager, 1994] Andrews, M. and Prager, R. (1994). Genetic Pro-
gramming for the Acquisition of Double Auction Market Strategies, pages 355—
368. The MIT Press.

[AuctionLand, www] AuctionLand (www). AuctionLand URL. http://www.-
neomax.com.

[AuctionLine, www] AuctionLine (www). AUCTIONLINE. http://www.-
auctionline.com.

[Austin, 1962] Austin, J. L. (1962). How to Do Things With Words. Oxford
University Press.

[Barbuceanu and Fox, 1995] Barbuceanu, M. and Fox, M. S. (1995). Cool: A
language for describing coordination in multi-agent systems. In Proceedings
of the First International Conference in Multi-Agent Systems (ICMAS-95),
pages 17-24. AAAT Press.

[Barbuceanu et al., 1998] Barbuceanu, M., Gray, T., and Mankovski, S. (1998).
Coordinating with obligations. In Proceedings of the Third International Con-
ference on Autonomous Agents (AGENTS’99), pages 62—69.

[Bargainfinder, | Bargainfinder. BargainFinder URL. http://bf.cstar.ac.com/bf.

[Barkley, 1997] Barkley, J. (1997). Comparing simple role based access control
models and access control lists. In Proceedings of the Second ACM Workshop
on Role-based Access Control.

[Barkley et al., 1997] Barkley, J., Cincotta, A. V., Ferraiolo, D. F., Gavrilla, S.,
and Kuhn, D. R. (1997). Role based access control for the world wide web.
In 20th National Information System Security Conference.

[Becht et al., 1999] Becht, M., Gurzki, T., Klarmann, J., and Muscholl, M.
(1999). Rope: Role oriented programming environment for multiagent sys-
tems. In Proceedings of the Fourth IFCIS Conference on Cooperative Infor-
mation Systems (Coopls’99).



Bibliography 255

[Beegent, www| Beegent (www). Bee-gent URL. http://www2.toshiba.co.jp/-
beegent.

[Béjar and Rodriguez-Aguilar, 2001] Béjar, J. and Rodriguez-Aguilar, J. A.
(2001). To Bid or not To Bid. Agent Strategies in Electronic Auction Games.
In Dignum, F. and Cortés, U., editors, Agent-mediated Electronic Commerce
III. Current Issues in Agent-based FElectronic Commerce Systems, number
2003 in Lecture Notes in Artificial Intelligence, pages 173-191. Springer-
Verlag.

[Belakhdar and Ayel, 1996] Belakhdar, O. and Ayel, J. (1996). Modelling ap-
proach and tool for designing protocols for automated negotiation in multi-
agent systems. In van de Velde, W. and Perram, J. W., editors, Agents
Breaking Away, number 1038 in Lecture Notes in Artificial Intelligence, pages
100-115. Springer-Verlag.

[Bidfind, www] Bidfind (www). bidfind URL. http://www.bidfind.com.

[Biswas et al., 2000] Biswas, A., Sen, S., and Debnath, S. (2000). Limiting de-
ception in groups of social agents. Applied Artificial Intelligence Journal. To
appear.

[Boutilier et al., 1999] Boutilier, C., Goldszmidt, M., and Sabata, B. (1999).
Sequential auctions for the allocation of resources with complementarities.
In Proceedings of the Sixteenth International Joint Conference in Artificial
Intelligence (IJCAI-99).

[Brazier et al., 1998] Brazier, F., Jonker, C., and Treur, J. (1998). Principles
of compositional multi-agent system development. In cuena, J., editor, Pro-
ceedings of the 15th IFIP World Computer Congress (WCC’98), Conference
on Information Technology and Knowledge Systems (ITEKNOWS’98), pages
347-360.

[Brazier et al., 1997] Brazier, F. M. T., Keplicz, B. D., Jennings, N. R., and
Treur, J. (1997). Desire: Modelling multi-agent systems in a compositional

formal framework. International Journal of Cooperative Information Systems,
6(1):67-94.

[Briot, 1998] Briot, J.-P. (1998). Agents and concurrent objects. jean-pierre
briot interviews less gasser. IEEE Concurrency.

[Brookshear, 1989] Brookshear, J. G. (1989). Theory of Computation, Formal
Languages, Automata, and Complezity. The Benjamin/Cummings Publishing.

[Buhr et al., 1997] Buhr, R. J. A., Elammari, M., Gray, T., Mankowski, S.,
and Pinard, D. (1997). Understanding and defining the behaviour of systems
of agents with use case maps. In Proceedings of the Second International
Conference on the Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM’97).



256 Bibliography

[Burmeister, 1996] Burmeister, B. (1996). Models and methodologies for agent-
oriented analysis and design. In Working Notes of the KI’96 Workshop on
Agent-oriented Programming and Distributed Systems. DFKI Document D-
96-06.

[Carley and Gasser, 1999] Carley, K. M. and Gasser, L. (1999). Distributed Ar-
tificial Intelligence, chapter Computational Organization Theory. MIT Press,
Cambridge, MA.

[Castelfranchi, 1995] Castelfranchi, C. (1995). Commitments: From individual
intentions to groups and organizations. In Proceedings of the First Interna-
tional Conference on Multi-Agent Systems (ICMAS-95), pages 41-48, Menlo
Park, CA. AAAT Press.

[Castelfranchi, 1996] Castelfranchi, C. (1996). Prescribed mental attitudes in
goal-adoption and norm-adoption. In Conte, R. and Falcone, R., editors,
Proceedings of the ICMAS-96 Workshop on Norms, Obligations, and Conven-
tions.

[Chauhan, 1997] Chauhan, D. (1997). JAFMAS: A Java-based Agent Frame-
work for Multiagent Systems Development and Implementation. PhD thesis,
ECECS Department, University of Cincinnati.

[Chavez et al., 1997] Chavez, A., Dreilinger, D., Guttman, R., and Maes, P.
(1997). A real life experiment in creating an agent marketplace. In Proceed-
ings of the Second International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology (PAAM’97).

[Chavez and Maes, 1996] Chavez, A. and Maes, P. (1996). Kasbah: An agent
marketplace for buying and selling goods. In First International Conference
on the Practical Application of Intelligent Agents and Multi-Agent Technology
(PAAM’96), pages 75-90.

[Cliff and Bruten, 1998] Cliff, D. and Bruten, J. (1998). Less than humans:
Simple adaptive trading agents for cda markets. In Proceedings of the 1998
Symposium on Computation in Economics, Finance, and Engineering: FEco-
nomic Systems.

[coabs, www] coabs (www). Control of Agent Based Systems. http://-
coabs.globalinfotek.com.

[Cohen et al., 1989] Cohen, P., Greenberg, M., Hart, D., and Howe, A. (1989).
Trial by fire: Understanding the design requirements for agents in complex
environments. AI Magazine, 10(3):33-48.

[Cohen and Levesque, 1991] Cohen, P. R. and Levesque, H. J. (1991). Confir-
mation and joint actions. In Proceeding of the Twelfth International Joint
Conference on Artificial Intelligence (IJCAI-91).



Bibliography 257

[Cohen and Levesque, 1995] Cohen, P. R. and Levesque, H. J. (1995). Commu-
nicative actions for artificial agents. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS-95), pages 65-72, Menlo Park,
CA. AAAT Press.

[Collins et al., 1998] Collins, J., Youngdahl, B., Jamison, S., Mobasher, B., and
Gini, M. (1998). A Market Architecture for Multi-agent Contracting. In
Proceedings of the Second International Conference on Autonomous Agents
(AGENTS’98), pages 285-292.

[Collins and Lee, 1998] Collins, J. C. and Lee, L. C. (1998). Building electronic
marketplaces with the zeus agent tool-kit. In Noriega, P. and Sierra, C.,
editors, Agent Mediated Electronic Commerce, number 1571 in Lecture Notes
in Artificial Intelligence.

[Connolly, 1997] Connolly, D. (1997). XML, Principles, Tools and Techniques.
O’REILLY.

[Corkill and Lesser, 1983] Corkill, D. D. and Lesser, V. (1983). The use of meta-
level control for coordination in a distributed problem solving network. In
Bond, A. H. and Gasser, L., editors, Proceedings of the Fighth International
Joint Conference on Artificial Intelligence, pages 748-756. Karlsruhe, Federal
Republic of Germany, Morgan Kaufmann Publishers.

[Cost et al., 1999] Cost, R. S., Chen, Y., Finin, T., Labrou, Y., and Peng, Y.
(1999). Modeling agent conversations with colored petri nets. In AGENTS’99
Workshop on Specifying and Implementing Conversation Policies.

[Cost et al., 1998] Cost, R. S., Finin, T., Labrou, Y., Luan, X., Peng, Y., Sobo-
roff, I., Mayfield, J., and Boughannam, A. (1998). Jackal: a java-based tool for
agent, development. In AAAI-98 Workshop on Software Tools for Developing
Agents.

[Davis and Smith, 1983] Davis, R. and Smith, R. (1983). Negotiation as a
metaphor for distributed problem solving. Artificial Intelligence, 20(1):63—
109.

[de Toro, 1997] de Toro, M. C. (1997). A hybrid buyer agent architecture for the
fishmarket tournaments. Master’s thesis, Universitat Autonoma de Barcelona.

[de Velde, 1997] de Velde, W. V. (1997). Co-habited mixed reality. In IJCAI’97
Workshop on Social Interaction in Communityware.

[Decker, 1987] Decker, K. S. (1987). Distributed problem solving: A survey.
IEEFE Transactions on Systems, Man, and Cybernetics, 17:729-740.

[Decker, 1995] Decker, K. S. (1995). Environment Centered Analysis and Design
of Coordination Mechanisms. PhD thesis, University of Massachussets.



258 Bibliography

[Decker, 1996] Decker, K. S. (1996). Distributed Artificial Intelligence Testbeds,
chapter 3. John and Wiley & Sons, Inc. Edited by G. M P. O’Hare and N. R.
Jennings.

[Dellarocas and Klein, 1999] Dellarocas, C. and Klein, M. (1999). Civil agent
societies: Tools for inventing open agent-mediated electronic marketplaces. In
Proceedings ACM Conference on Electronic Commerce (EC-99).

[Diller, 1990] Diller, A. (1990). Z An Introduction to Formal Methods. John
Wiley & Sons, Inc.

[d'Inverno et al., 1998a] d’Inverno, M., Kinny, D., and Luck, M. (1998a). Inter-
action protocols in agentis. In Proceedings of the Third International Confer-
ence on Multi-agent Systems (ICMAS-98), pages 112—-1109.

[d’Inverno et al., 1998b] d’Inverno, M., Kinny, D., Luck, M., and Wooldridge,
M. (1998b). A formal specification of dmars. In Rao, A. S. and Wooldridge,
M., editors, Fourth International Workshop on Agent Theories, Architectures
and Languages, number 1365 in Lecture Notes in Artificial Intelligence, pages
155-176. Springer-Verlag.

[d'Inverno and Luck, 1999] d’Inverno, M. and Luck, M. (1999). Development
and application of a formal agent framework.

[Dooley, 1976] Dooley, R. A. (1976). Repartee as a graph. Appendiz B in Lon-
gacre, (76):348-358.

[Durfee et al., 1987] Durfee, E. H., Lesser, V. R., and Corkill, D. D. (1987).
Coherent cooperation among communicating problem solvers. IEEE Trans-
actions on Computers, C-36(11):1275-1291. (Also published in Readings in
Distributed Artificial Intelligence, Alan H. Bond and Les Gasser, editors, pages
268-284, Morgan Kaufmann, 1988.).

[eBay, www] eBay (www). http://www.eBay.com.

[Economist, 1999] Economist, T., editor (1999). A Survey of Business and the
Internet. The Net Imperative.

[Esteva et al., 2000a] Esteva, M., Rodriguez-Aguilar, J. A., Arcos, J. L., Sierra,
C., and Garcia, P. (2000a). Institutionalising open multi-agent systems. a
formal approach. In Proceedings of the Fourth International Conference on
Multi-agent Systems (ICMAS-00).

[Esteva et al., 2000b] Esteva, M., Rodriguez-Aguilar, J. A., Sierra, C., Arcos,
J. L., and Garcia, P. (2000b). Furopean Perspectives on Agent-mediated Elec-
tronic Commerce, chapter On the Formal Specification of Electronic Institu-
tions. Springer-Verlag. to appear (expected 2000).

[Etzioni, 1964] Etzioni, A. (1964). Modern Organizations. Englewood Cliffs, NJ,
Prentice-Hall.



Bibliography 259

[Excelente-Toledo et al., 2001] Excelente-Toledo, C. B., Bourne, R. A., and Jen-
nings, N. R. (2001). Reasoning about commitments and penalties for coordi-
nation. In Proceedings fo the Fifth International Conference on Autonomous
Agents. To appear.

[Farhoodi et al., 1991] Farhoodi, F., Proffitt, J., Woodman, P., and Tunnicliffe,
A. (1991). Design of organizations in distributed decision systems. In AAAT
Workshop on Cooperative Heterogeneous Intelligent Systems, Anaheim,CA.

[Ferber and Gutknetch, 1998] Ferber, J. and Gutknetch, O. (1998). A meta-
model for the analysis of organizations in multi-agent systems. In Proceedings
of the Third International Conference on Multi-Agent Systems (ICMAS-98),
pages 128-135.

[Ferraiolo et al., 1999] Ferraiolo, D. F., Barkley, J. F., and Kuhn, D. R. (1999).
A role based access control model and reference implementation within a
corporate intranet. ACM Transactions on Information Systems Security, 1(2).

[Ferraiolo et al., 1995] Ferraiolo, D. F., Cugini, J. A., and Kuhn, D. R. (1995).
Role-based access control (rbac): Features and motivations. In Annual Com-
puter Security Applications Conference. IEEE Computer Society Press.

[Finin et al., 1995] Finin, T., Labrou, Y., and Mayfield, J. (1995). Kqml as an
agent communication language. In Bradshaw, J., editor, Software Agents.
MIT Press, Cambridge. invited chapter.

[FIPA, 1998] FIPA (1998). Fipa 97 specification version 2.0 part 2. Technical
report, FIPA - Foundation for Intelligent Physical Agents.

[Firefly, www] Firefly (www). Firefly URL. http://www firefly.com.

[Fischer, 1993] Fischer, K. (1993). The rule-based multi-agent system magsy.
In Cooperative Knowledge-based Systems SIG Proceedings Workshop, Keele,
UK.

[Fischer and al., 1996] Fischer, K. and al. (1996). Intelligent agents in virtual
enterprises. In First International Conference on the Practical Application of
Intelligent Agents and Multi-agent Technology (PAAM’96).

[Fisher et al., 1997] Fisher, M., Muller, J., Schroeder, M., Staniford, G., and
Wagner, G. (1997). Methodological foundations for agent-based systems. The
Knowledge Engineering Review, 12(3):323-329.

[Fisher and Wooldridge, 1997] Fisher, M. and Wooldridge, M. (1997). On the
formal specification and verification of multi-agent systems. International
Journal of Cooperative Information Systems, 6(1).

[Fishmarket, www] Fishmarket (www). The Fishmarket Project. http://-
www.iiia.csic.es/Projects/fishmarket.



260 Bibliography

[Forum, 1994] Forum, M. P. I. (1994). Mpi: A message-passing interface stan-
dard. International Journal of Supercomputer Applications, 8(3/4).

[Franklin and Grasser, 1996] Franklin, S. and Grasser, A. (1996). Is It an Agent,
or Just a Program?: A Taxonomy for Autonomous Agents, volume 1193 of
Lecture Notes in Artificial Intelligence, pages 21-35. Springer Verlag.

[Friedman and Rust, 1991] Friedman, D. and Rust, J., editors (1991). The Dou-
ble Auction Market: Institutions, Theories, and FEvidence. Addison-Wesley
Publishing Company. Proceedings of the Workshop on Double Auction Mar-
kets held June, 1991, Santa Fe, New Mexico.

[Galan and Baker, 1999] Galan, A. K. and Baker, A. D. (1999). Multi-agent
communication in jafmas. In AGENTS’99 Workshop on Specifying and Im-
plementing Conversation Policies.

[Garavel, 1996] Garavel, H. (1996). An overview of the eucalyptus toolbox. In
Vrezocnik, Z. and Kapus, T., editors, Proceedings of the COST2/7 Interna-
tional Workshop on Applied Formal Methods in System Design, University of
Maribor, Slovenia.

[Garcia et al., 1998a] Garcia, P., Giménez, E., Godo, L., and Rodriguez-Aguilar,
J. A. (1998a). Possibilistic-based design of bidding strategies in electronic
auctions. In The 13th biennial European Conference on Artificial Intelligence
(ECAI-98).

[Garcia et al., 1998b] Garcia, P., Godo, L., Rodriguez-Aguilar, J. A.; and
Gimenez, E. (1998b). Bidding strategies for trading agents in auction-based
tournaments. In Sierra, C. and Noriega, P., editors, Agent-Mediated Elec-
tronic Trading, number 1571 in Lecture Notes in Artificial Intelligence, pages
151-165. Springer-Verlag.

[Gasser et al., 1987] Gasser, L., Braganza, C., and Herman, N. (1987). Dis-
tributed Artificial Intelligence, chapter MACE: A flexible test-bed for dis-
tributed AT research, pages 119-152. Pitman Publishers.

[Gavrila and Barkley, 1998] Gavrila, S. I. and Barkley, J. F. (1998). Formal
specification for role based access control user/role and role/role relationship
management. In Proceedings of the Third ACM Workshop on Role-based Ac-
cess Control.

[Genesereth and Fikes, 1992] Genesereth, M. R. and Fikes, R. E. (1992). Knowl-
dege interchange format version 3.0 reference manual. Technical Report Re-
port Logic—92-1, Logic Group, Computer Science Department, Standford Uni-
versity.

[Genesereth and Ketchpel, 1994] Genesereth, M. R. and Ketchpel, S. P. (1994).
Software agents. Communications of the ACM, Special Issue on Intelligent
Agents, 37(7):48-53.



Bibliography 261

[Giménez et al., 1998] Giménez, E., Godo, L., Rodriguez-Aguilar, J. A., and
Garcia, P. (1998). Designing bidding strategies for trading agents in electronic
auctions. In Proceedings of the Third International Conference on Multi-Agent
Systems (ICMAS-98), pages 136-143.

[Ginsberg, 1991] Ginsberg, M. L. (1991). Knowledge interchange format: The
kif of death. AI Magazine, 12(3):57-63.

[Gosling, 1996] Gosling, J. (1996). The Java Programming Language. Addison-
Wesley, Reading.

[Gossip, www] Gossip (www). Gossip URL. http://www.tryllian.com.

[Gruber, 1993a] Gruber, T. R. (1993a). Toward principles for the design of
ontologies used for knowledge sharing. In Guarino, N. and Poli, R., editors,
Software Agents. Kluwer Academic.

[Gruber, 1993b] Gruber, T. R. (1993b). A translation approach to portable
ontology specifications. Technical Report KSL-92-71, Knowledge Systems
Laboratory, Computer Science Department, Standford University.

[Guttman and Maes, 1998] Guttman, R. and Maes, P. (1998). Agent-mediated
integrative negotiation for retail electronic commerce. In Proceedings of the
First International Workshop on Agent-mediated Electronic Trading. to ap-
pear.

[Guttman et al., 1998] Guttman, R. H., Moukas, A. G., and Maes, P. (1998).
Agent-mediated electronic commerce: A survey. The Knowledge Engineering
Review, 13(2):147-159.

[Hanks et al., 1993] Hanks, S., Pollack, M. E., and Cohen, P. R. (1993). Bench-
marks, test beds, controlled experimentation, and the design of agent archi-
tectures. AI Magazine, pages 17—42.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex
systems. Science of Computer Programming, (8):231-274.

[Hendricks and Porter, 1989] Hendricks, K. and Porter, R. H. (1989). Collusions
in auctions. Annales d’Economie et de Statistique, (15-16):217-230.

[Hewitt, 1986] Hewitt, C. (1986). Offices are open systems. ACM Transactions
of Office Automation Systems, 4(3):271-287.

[Huberman and Clearwater, 1995] Huberman, B. A. and Clearwater, S. (1995).
A multi-agent system for controlling builging environments. In Proceedings
of the First International Conference on Multi-Agent Systems (ICMAS-95),
pages 171-176. AAAT Press.

[IEEE, 1993] IEEE (1993). Special issue on computer support for concurrent
engineering. IEEE Computer, 26(1).



262 Bibliography

[Iglesias et al., 1999] Iglesias, C. A., Garijo, M., and Gonzalez, J. C. (1999). A
survey of agent-oriented methodologies. Lecture Notes in Artificial Intelli-
gence. Springer-Verlag.

[InterAUCTION, www] InterAUCTION (www). InterAUCTION. http://-

www.interauction.com.

[Jacobson et al., 1996] Jacobson, I., Christerrson, M., Jonsson, P., and Over-
gaard, G. (1996). Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

[Jango, www] Jango (www). Jango URL. http://www.jango.com.

[JDBC, www] JDBC (www). JDBC. The JDBC Database Access API.
http:/ /splash.javasoft.com/products/jdbc/index.html.

[Jennings, 1995] Jennings, N. R. (1995). Commitments and conventions: The
foundation of coordination in multi-agent systems. The Knowledge Engineer-
ing Review, 8(3):223-250.

[Jennings et al., 1998] Jennings, N. R., Sycara, K., and Wooldridge, M. (1998).
A roadmap of agent research and development. Autonomous Agents and Multi-
agent Systems, 1:275-306.

[Kaminka and Tambe, 1999] Kaminka, G. and Tambe, M. (1999). I'm ok, you’re
ok, we’re ok: Experiments in distributed and centralized socially attentive
monitoring. In Proceedings of the Third International Conference on Au-
tonomous Agents (AGENTS’99), pages 213-220.

[Kasbah, | Kasbah. Kasbah URL. http://kasbah.media.mit.edu.

[Kendall, 1998] Kendall, E. A. (1998). Agent roles and role models: New ab-
stractions for intelligent agent system analysis and design. In Proceedings of
Intelligent Agents for Information and Process Management (AIP’98).

[Kimborough and Moore, 1997] Kimborough, S. O. and Moore, S. (1997). On
automated message processing in electronic commerce and work support sys-
tems: Speech act theory and expressive felicity. Transactions on Information
Systems, 15(4):321-367.

[Kinny et al., 1996] Kinny, D., Georgeff, M., and Rao, A. (1996). A methodol-
ogy and modelling technique for systems of bdi agents. In de Velde, W. V.
and Perram, J. W., editors, Agents Breaking Away: Proceedings of the Sev-
enth European Workshop on Modelling Autonomous Agents in a Multi-agent
World, volume 1038 of Lecture Notes in Artificial Intelligence, pages 56-71.
Springer-Verlag.

[Kitano et al., 1997] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa,
E. (1997). Robocup: The robot world cup initiative. In Proceedings of the
First International Conference on Autonomous Agents, pages 340-347.



Bibliography 263

[Klein, 2000] Klein, M. (2000). The challenge: Enabling robust open multi-agent
systems. Project proposal.

[Klein and Dellarocas, 1999] Klein, M. and Dellarocas, C. (1999). Exception
handling in agent systems. In Proceedings of the Third International Confer-
ence on Autonomous Agents (AGENTS’99), pages 62-68.

[Koning, 2000] Koning, J.-L. (2000). European Perspectives on Agent-mediated
Electronic Commerce, chapter Designing Interaction Protocols for Electronic
Commerce Applications. Springer-Verlag. To appear (expected 2000).

[Koning et al., 1998] Koning, J.-L., Franois, G., and Demazeau, Y. (1998). For-
malization and pre-validation for interaction protocols in multiagent systems.
In Prade, H., editor, Proceedings of the 13th European Conference on Artificial
Intelligence, pages 298-302. John Wiley & Sons, Ltd.

[Kortenkamp et al., 1997] Kortenkamp, D., Nourbakhsh, I., and Hinkle, D.
(1997). The 1996 AAAT Mobile Robot Competition and Exhibition. AT Mag.,
18(1):25-32.

[Kuwabara, 1995] Kuwabara, K. (1995). Agentalk: Coordination protocol de-
scription for multi-agent systems. In Proceedings of the First International
Conference on Multi-agent Systems.

[Labrou, 1997] Labrou, Y. (1997). Semantics for an Agent Communication Lan-
guage. PhD thesis, University of Mariland Baltimore County.

[Lamport, 1978] Lamport, L. (1978). Time, clocks and the ordering of events in
a distributed system. Comm. of the ACM, 21(7):558-565.

[Lesser and Corkill, 1983] Lesser, V. and Corkill, D. (1983). The distributed
vehichle monitoring testbed. AI Magazine, 4(3):63-109.

[Lesser, 1995] Lesser, V. R. (1995). Multiagent systems: An emerging subdisci-
pline of ai. ACM Computing Surveys, 27:340-342.

[Lesser, 1998] Lesser, V. R. (1998). Reflections on the nature of multi-agent co-
ordination and its implications for an agent architecture. Autonomous Agents
and Multi-Agent Systems, 1:89-111.

[Lin et al., 1999] Lin, F., Norrie, D. H., Shen, W., and Kremer, R. (1999). A
schema-based approach to specifying conversation policies. In AGENTS’99
Workshop on Specifying and Implementing Conversation Policies.

[Martin et al., 1998] Martin, F. J., Plaza, E., and Arcos, J. L. (1998). Knowl-
edge and experience reuse through communication among competent (peer)
agents. To appear in International Journal of Software Engineering and
Knowledge Engineering.



264 Bibliography

[Martin et al., 2000a] Martin, F. J., Plaza, E., and Rodriguez-Aguilar, J. A.
(2000a). Conversation protocols: Modelling and implementing conversations
in agent-based systems. In Greaves, M. and Dignum, F., editors, Issues in
Agent Communication, number 1916 in Lecture Notes in Artificial Intelligence.
Springer-Verlag. To appear.

[Martin et al., 2000b] Martin, F. J., Plaza, E., and Rodriguez-Aguilar, J. A.
(2000b). An infrastructure for agent-based systems: An interagent approach.
International Journal of Intelligent Systems, 15(3). to appear.

[Martin et al., 1998] Martin, F. J., Plaza, E., Rodriguez-Aguilar, J. A., and
Sabater, J. (1998). Java interagents for multi-agent systems. In Proceedings
of the AAAI-98 Workshop on Software Tools for Developing Agents.

[Mayfield et al., 1996] Mayfield, J., Labrou, Y., and Finin, T. (1996). Evaluation
of kqml as an agent communication language. In Wooldridge, M. and Miiller,
J., editors, Intelligent Agents II, pages 347-360. Springer Verlag.

[McAfee and McMillan, 1987] McAfee, R. P. and McMillan, J. (1987). Auctions
and bidding. J. Ec Lit., XXV:699-738.

[Milgrom and Webber, 1982] Milgrom, P. R. and Webber, R. J. (1982). A theory
of auctions and competitive bidding. Econometrica, 50(5):1089-1122.

[Montgomery et al., 1992] Montgomery, T., Lee, J., Musliner, D., Durfee, E.,
Dartmouth, D., and So, Y. (1992). Mice users guide. Technical report, Dept.
of Electrical Engineering and Computer Science, Univ. of Michigan. Technical
Report, CSE-TR-64-90.

[Moore, 1999] Moore, S. A. (1999). On conversation policies and the need for
exceptions. In AGENTS’99 Workshop on Specifying and Implementing Con-
versation Policies.

[Moss and Edmonds, 1997] Moss, S. and Edmonds, B. (1997). A formal
preference-state model with qualitative market judgements. Omega — the In-
ternational Journal of Management Science, 25(2):155-169.

[Mullen and Wellman, 1996] Mullen, T. and Wellman, M. (1996). Market-based
negotiation for digital library services. In Second USENIX Workshop on Elec-
tronic Commerce, Oakland, CA.

[Muller and Pischel, 1994] Muller, J. P. and Pischel, M. (1994). An architec-
ture for dynamically interacting agetns. International Journal of Cooperative
Information Systems, 3(1):25-45.

[mysimon, www] mysimon (www). Mysimon.com. http://www.mysimon.com.

[Napoli et al., 1996] Napoli, C., Giordano, M., Furnari, M., Sierra, C., and Nor-
iega, P. (1996). A pvm implementation of the fishmarket. In IX International
Symposioum on Artificial Intelligence, Cancun, Mezico.



Bibliography 265

[Ndumu et al., 1999] Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collins,
J. C. (1999). Visualising and debugging distributed multi-agent systems.
In Proceedings of the Third International Conference on Autonomous Agents
(AGENTS’99), pages 326-333.

[Nguyen et al., 1993] Nguyen, D., Hanks, S., and Thomas, C. (1993). The truck-
world manual. Technical Report 93-09-08, Department of Computer Science
and Engineering, University of Washington.

[Nodine and Unruh, 1999] Nodine, M. H. and Unruh, A. (1999). Constructing
robust conversation policies in dynamic agent communities. In AGENTS’99
Workshop on Specifying and Implementing Conversation Policies.

[Noriega, 1997a] Noriega, P. (1997a). Agent-Mediated Auctions: The Fishmar-
ket Metaphor. PhD thesis, Universitat Autonoma de Barcelona. Also to appear
in ITTA mongraphy series.

[Noriega, 1997b] Noriega, P. (1997b). Agent-Mediated Auctions: The Fishmar-
ket Metaphor. Number 8 in IITA Monograph Series. Institut d’Investigacié en
Intel.ligencia Artificial (IITTA). PhD Thesis.

[Noriega and Sierra, 1996] Noriega, P. and Sierra, C. (1996). Towards layered
dialogical agents. In Third International Workshop on Agent Theories, Ar-
chitectures, and Languages, ATAL-96.

[North, 1990] North, D. (1990). Institutions, Institutional Change and Eco-
nomics Perfomance. Cambridge U. P.

[Odell et al., 2000] Odell, J., Parunak, H. V. D.; and Bauer, B. (2000). Extend-
ing uml for agents. Submitted.

[O’Hare and Jennings, 1996] O’Hare, G. M. P. and Jennings, N. R. (1996).
Foundations of Distributed Artificial Intelligence. John Wiley & Sons, Inc.

[Onsale, | Onsale. Onsale. http://www.onsale.com.

[Opensite, www] Opensite (www). Opensite Technologies URL. http://www.-
opensite.com.

[pa So and Durfee, 1998] pa So, Y. and Durfee, E. H. (1998). Simulating Organi-
zations. Computational Models of Institutions and Groups, chapter Designing
Organizations for Computational Agents, pages 47-63. The MIT Press.

[Padget and Bradford, 1998] Padget, J. and Bradford, R. (1998). A m-calculus
model of a spanish fish market. In Sierra, C. and Noriega, P., editors, Agent-
Mediated Electronic Trading, number 1571 in Lecture Notes in Artificial In-
telligence, pages 166-188. Springer-Verlag.

[Padget et al., 1993] Padget, J., Bretthauer, H., and Nuyens, G. (1993). An
overview of eulisp. Lisp and Symbolic Computation, 6(1/2):9-98.



266 Bibliography

[Park et al., 1999] Park, S., Durfee, E., and Birmigham, W. (1999). An adpative
bidding strategy based on stochastic modelling. In Proceedings of the Third
International Conference on Autonomous Agents.

[Parsons et al., 1998] Parsons, S., Sierra, C., and Jennings, N. (1998). Agents
that reason and negotiate by arguing. Journal of Logic and Computation. to
appear.

[Parunak, 1996] Parunak, H. V. D. (1996). Visualizing agent conversations:
Using enhanced dooley graph for agent design and analysis. In Proceedings of
the Second International Conference on Multi-Agent Systems.

[Patil et al., 1992] Patil, R. S., Fikes, R. E., Patel-Schneider, P. F., McKay, D.,
Finin, T., Gruber, T. R., and Neches, R. (1992). The darpa knowledge sharing
effort: Progress report. In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Reasoning.

[Pattison et al., 1987] Pattison, H. E., Corkill, D. D., and Lesser, V. R. (1987).
Distributed Artificial Intelligence, chapter Instantiating Descriptions of Orga-
nizational Structures, pages 59-96. Pitman Publishers.

[PersonaLogic, | PersonaLogic. Personalogic URL. http://www.personalogic.-
com.

[Pitt and Mamdani, 1999] Pitt, J. and Mamdani, A. (1999). A protocol-based
semantics for an agent communication language. In Proceedings of the Interna-
tional Joint Converence in Artificial Intelligence (IJCAI’99), pages 486—491.

[Plaza et al., 1999] Plaza, E., Arcos, J. L., Noriega, P., and Sierra, C. (1999).
Competing agents in agent-mediated insitutions. Personal Technologies,
(2):212-220.

[Pnueli, 1986] Pnueli, A. (1986). Specification and development of reactive sys-
tems. In Information Processing 86. Elsevier Science Publishers.

[Pollack and Ringuette, 1990a] Pollack, M. and Ringuette, M. (1990a). Intro-
ducing the tileworld: Experimentally evaluating agent architectures. In Pro-
ceedings of the Fighth National Conference on Artificial Intelligence, pages
183-189.

[Pollack and Ringuette, 1990b] Pollack, M. and Ringuette, M. (1990b). Intro-
ducing the tileworld: Experimentally evaluating agent architectures. In Pro-

ceedings of the Fighth National Conference on Artificial Intelligence, pages
183-189.

[Porter and Zona, 1993] Porter, R. H. and Zona, J. D. (1993). Detection of bid
rigging in procurement auctions. Journal of Political Economy, 101(3):518—
538.



Bibliography 267

[Preist, 2000] Preist, C. (2000). Algorithm design for agents which participate
in multiple simultaneous auctions. In Proceedings of the Third International
Workshop on Agent-mediated Electronic Trading (AMEC III).

[Preist and van Tol, 1998] Preist, C. and van Tol, M. (1998). Adaptive agents
in a persistent shout double auction. In Proceedings of the 1st International
Conference on the Internet, Computing and Economics. ACM Press.

[Rajan and Slagle, 1996] Rajan, V. and Slagle, J. R. (1996). The use of arti-
ficially intelligent agents with bounded rationality in the study of economic
markets. In AAAI-96.

[Riehle and Gross, 1998] Riehle, D. and Gross, T. (1998). Role model based
framework design and integration. In Proceedings of the 1998 Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’98), pages 117-133. ACM Press.

[RMI, www] RMI (www). RMI. Java Remote Method Invocation.
http://splash.javasoft.com /products/jdk/rmi/index.html.

[Roche and Schabes, 1997] Roche, E. and Schabes, Y. (1997). Finite State Lan-
guage Processing. The MIT Press.

[Rodriguez-Aguilar et al., 1998a] Rodriguez-Aguilar, J. A., Martin, F. J.,
Giménez, F. J., and Gutiérrez, D. (1998a). Fm0.9beta users guide. Technical
report, Institut d’Investigacié en Intelligéncia Artificial. Technical Report,
ITTA-RR98-32.

[Rodriguez-Aguilar et al., 2001] Rodriguez-Aguilar, J. A., Martin, F. J.,
Giménez, F. J., Gutiérrez, D., Molina, O., and Mateos, M. (2001). Fm 100
users’ guide. Technical report, Institut d’Investigacié en Intel.ligencia Artifi-
cial. Technical Report. in press.

[Rodriguez-Aguilar et al., 1998c] Rodriguez-Aguilar, J. A., Martin, F. J., Nor-
iega, P., Garcia, P., and Sierra, C. (1998c). Competitive scenarios for hetero-
geneous trading agents. In Proceedings of the Second International Conference
on Autonomous Agents (AGENTS’98), pages 293-300.

[Rodriguez-Aguilar et al., 1998b] Rodriguez-Aguilar, J. A., Martin, F. J., Nor-
iega, P., Garcia, P., and Sierra, C. (1998b). Towards a test-bed for trading
agents in electronic auction markets. AI Communications, 11(1):5-19.

[Rodriguez-Aguilar et al., 2000] Rodriguez-Aguilar, J. A., Martin, F. J., Nor-
iega, P., Garcia, P., and Sierra, C. (2000). Towards a formal specification of
complex social structures in multi-agent systems. In Padget, J. A., editor,
Collaboration between Human and Artificial Societies, volume 1624 of Lecture
Notes in Artificial Intelligence, pages 284-300. Springer-Verlag.



268 Bibliography

[Rodriguez-Aguilar et al., 1997] Rodriguez-Aguilar, J. A., Noriega, P., Sierra,
C., and Padget, J. (1997). Fm96.5 a java-based electronic auction house. In
Second International Conference on The Practical Application of Intelligent
Agents and Multi-Agent Technology(PAAM’97), pages 207-224.

[Rosenschein and Genesereth, 1985] Rosenschein, J. S. and Genesereth, M. R.
(1985). Deals among rational agents. In Proceedings of the Ninth International
Joint Conference on Artificial Intelligence (IJCAI-85), Los Angeles, CA.

[Sandholm, 1999a] Sandholm, T. (1999a). An algorithm for optimal winner de-
termination in combinatorial auctions. Technical Report WUCS-99-01, Wash-
ington University.

[Sandholm, 1999b] Sandholm, T. (1999b). emediator: A next generation elec-
tronic commerce server. Technical Report WUCS-99-02, Washington Univer-
sity.

[Sandhu et al., 1996] Sandhu, R., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role based access control models. IEEE Computer, 29(2).

[Schillo et al., 1999] Schillo, M., Funk, P., and Rovatsos, M. (1999). Who can
you trust: Dealing with deception. In Procedings of the Autonomous Agents
Workshop on Deception, Fraud and Trust in Agent Societies, Autonomous
Agents.

[Scott, 1992] Scott, W. R. (1992). Organizations: Rational, Natural, and Open
Systems. Englewood Cliffs, NJ, Prentice Hall.

[Searle, 1969] Searle, J. R. (1969). Speech acts. Cambridge U.P.

[Shardanand and Maes, 1995] Shardanand, U. and Maes, P. (1995). Social infor-
mation filtering: Algorithms for automating *word of mouth’. In Proceedings
of the Computer-Human Interaction Conference (CHI’95).

[Sierra and Noriega, 1998] Sierra, C. and Noriega, P. (1998). Institucions
electroniques. In Proceedings of the Primer Congrés Catala d’Intel.ligéncia
Artificial.

[Singh, 1998] Singh, M. P. (1998). Developing formal specifications to coordinate
heterogeneous autonomous agents. In Proceedings of the Third International
Conference on Multi-agent Systems (ICMAS-98), pages 261-268.

[Smith et al., 1998] Smith, I. A., Cohen, P. R., Bradshaw, J. M., Greaves, M.,
and Holmback, H. (1998). Designing conversation policies using joint intention
theory. In Proceedings of the Third International Conference on Multi-agent
Systems (ICMAS-98), pages 269-276.

[SSL, www]| SSL (www). SSLAVA. SSLava(tm) Information Center. http://-

www.phaos.com.



Bibliography 269

[Stone and Veloso, 1996] Stone, P. and Veloso, M. (1996). Multiagent systems:
A survey from a machine learning perspective. Submitted to IEEE Transac-
tions on Knowledge and Data Engineering (TKDE).

[Sun, www] Sun (www). JOS. Java Object Serialization. http://chatsubo.java-
soft.com/current/serial /index.html.

[Suttner and Sutcliffe, 1996] Suttner, C. B. and Sutcliffe, G. (1996). ATP Sys-
tem Competition, volume 1104 of Lecture Notes in Artificial Intelligence, pages
146-160. Springer Verlag.

[Tete-a-Tete, | Tete-a-Tete. Tete-a-Tete URL. http://ecommerce.media.mit.-
edu/Tete-a-Tete.

[um12000, www] uml2000 (www). UML 2000 WORKSHOP Dynamic Behaviour
in UML Models: Semantic Questions. http://www.disi.unige.it/person/-
ReggioG/UMLWORKSHOP /CALLFORPAPER.html.

[Varian, 1995] Varian, H. R. (1995). Economic mechanism design for computer-
ized agents. In First USENIX Workshop on FElectronic Commerce.

[Vidal and Durfee, 1996] Vidal, J. M. and Durfee, E. H. (1996). Building agent
models in economic societies of agents. In Workshop on Agent Modelling
(AAAI-96).

[Weiss and Send, 1996] Weiss, G. and Send, S., editors (1996). Adaption and
Learning in Multiagent Systems. Springer Verlag.

[Wellman, 1993] Wellman, M. P. (1993). A market-oriented programming en-
vironment and its application to distributed multicommodity flow problems.
Journal of Artificial Intelligence Research, (1):1-23.

[Werner, 1987] Werner, E. (1987). Distributed Artificial Intelligence, chapter
Cooperating Agents: A Unified Theory of Communication and Social Struc-
ture, pages 3—-36. Pitman Publishers.

[Winograd and Flores, 1988] Winograd, T. and Flores, F. (1988). Understand-
ing Computers and Cognition. Addison Wesley.

[Wooldridge et al., 1999] Wooldridge, M., Jennings, N. R., and Kinny, D.
(1999). A methodology for agent-oriented analysis and design. In Proceedings
of the Third International Conference on Autonomous Agents (AGENTS’99).

[Wooldridge et al., 2000] Wooldridge, M., Jennings, N. R., and Kinny, D.
(2000). The gaia methodology for agent-oriented analysis and design. Journal
of Autonomous Agents and Multi-agent Systems, 3(3). To appear.

[Wurman et al., 1998] Wurman, P. R., , Wellman, M. P., and Walsh, W. E.
(1998). The Michigan Internet AuctionBot: A Configurable Auction Server
for Human and Software Agents. In Second International Conference on Au-
tonomous Agents (AGENTS’98), pages 301-308.



270 Bibliography

[Yellin and Strom, 1997] Yellin, D. M. and Strom, R. E. (1997). Protocol speci-
fications and component adaptors. ACM Transactions on Programming Lan-
guages and Systems, 19(2):292-333.

[Ygge and Akkermans, 1996] Ygge, F. and Akkermans, H. (1996). Power load
management as a computational market. In Proceedings of the Second Inter-
national Conference on Multi-Agent Systems (ICMAS-96).

[Ygge and Akkermans, 1997] Ygge, F. and Akkermans, H. (1997). Making a
case for multi-agent systems. In Boman, M. and de Velde, W. V., editors,
Advances in Case-Based Reasoning, number 1237 in Lecture Notes in Artificial
Intelligence, pages 156—-176. Springer-Verlag.

[Zacharia, 1999] Zacharia, G. (1999). Collaborative reputation mechanisms for
online communities. Master’s thesis, Massachusetts Institute of Technology.





