9. Conclusions and perspectives

9.1. Concluding remarks

This study, which deals with the problematical determination of long-term indoor 222Rn progeny equilibrium factor using NTDs to well assess the annual effective dose in private homes and in workplaces, has led to the following conclusions:

1. The review of the most relevant parameters and processes affecting indoor 222Rn and 220Rn progeny concentrations has shown that their behaviour is very complex and that the equilibrium factor may change significantly from one house to another, depending on the geometry of the house, on the aerosol concentration, on the air mass movement, on the ambient conditions and on the inhabitants habits. Therefore, there is the need of measuring the long-term equilibrium factor indoors.

2. A detailed study of the measurement principles of airborne 222Rn, 220Rn and their progeny by means of NTDs, taking into account the range of variation of the parameters influencing their concentration, has shown that it is not possible for the existing methods to obtain the long-term equilibrium factor with an appropriate accuracy.

3. A new approach for long-term equilibrium factor determination from the measurement of airborne 222Rn and its α-emitter daughters is presented in this PhD dissertation. This approach is based on the new concept of reduced equilibrium factor (F_{red}), which is defined as $F_{\text{red}} = \frac{0.105 C_{\text{218Po}} + 0.380 C_{\text{214Po}}}{C_{\text{222Rn}}}$. We have shown that the equilibrium factor can be obtained with the best precision if proper optimisation of experimental conditions for the F_{red} measurement by means of NTDs is performed. In this method, assumptions about ventilation, aerosol attachment and deposition (attached and unattached) rates are not necessary.

4. We have designed a new passive, integrating and multi-component dosimeter to measure simultaneously the individual airborne concentration of 222Rn, 220Rn, 218Po and 214Po. It consists of: i) two Makrofol detectors, namely detectors A and B, which are...
enclosed within two diffusion chambers — each one with different filter membrane — to measure indoor $^{222}\text{Rn}+^{220}\text{Rn}$ and ^{222}Rn, together with ii) two Makrofol detectors (C and D) that are kept in direct contact with air and are electrochemically etched at different conditions to obtain the airborne ^{218}Po and ^{214}Po concentrations. The measurement method is based on the fact that the half-lives of ^{222}Rn and ^{220}Rn are different, that both isotopes have the same diffusion coefficient in a given medium and that the response of the Makrofol detector depends on the electrochemical etching conditions used.

5. From the slowing down spectrum of α-particles emitted by the airborne ^{222}Rn, ^{220}Rn and their progeny, and in order to avoid the plate-out peaks of these last, two α-energy windows of interest are chosen, one from 3.0 to 5.0 MeV for the detector A, B and C and another one from 6.3 to 7.5 MeV for the detector D. With these α-energy windows, the detector B lets the measurement of ^{222}Rn concentration. The concentration of ^{220}Rn can be obtained as a response difference of the detectors A and B. The reading of detector D allows the determination of the airborne ^{214}Po concentration. From this quantity and the information given by the detector C the airborne ^{218}Po concentration can be determined.

6. We have developed a Monte-Carlo computer code, called SIMAR, to obtain the sensitivity of each Makrofol detector, taking into account: (1) the Bethe-Bloch expression for the stopping power of heavily charged particles in a medium, (2) the behaviour of ^{222}Rn, ^{220}Rn and their progeny in the open air and within the diffusion chamber, and (3) the α-energy window response of each detector. The estimated sensitivity values have been validated by reproducing the response of an ideal detector, both in the free air and enclosed within a diffusion chamber.

7. The semi-automatic track counting system has been improved without any excessive cost, by connecting a photo video camera of an optical field area of $8.4 \times 6.3 \text{ mm}^2$ to a digital TV-graphic card and using a public domain Java image processing software, called ImageJ, for track analysis.

8. We have performed the initial phase of constructing a small exposure chamber, for both ^{222}Rn and ^{220}Rn, and we have set up an irradiation device to generate mono-energetic α-particles from 2 MeV up to 8 MeV with an α-energy resolution lower than 10%.

9. By studying the ^{222}Rn diffusion through some of the commercially available filters, we have shown that the glass fiber and the polyethylene are very appropriate for the
detectors A and B, respectively, to perform separate measurement of indoor 222Rn and 220Rn concentration.

10. We have confirmed experimentally using the irradiation device that the electrochemical etching conditions for the detectors A, B and C to generate an α-energy window response of [3.0 - 5.0] MeV are:

- **Etchant**: KOH 6 M mixed with 50% ethanol
- **Temperature**: 40 °C
- **Pre-etching duration**: 4 h
- **Frequency**: 3 kHz
- **Electric field strength**: 33 kV cm$^{-1}$
- **ECE duration**: 1.5 h

11. A detailed study of the main parameters influencing the electrochemical etching process of the Makrofol detectors have shown that the optimal etching conditions for the detector D to generate an α-energy window response of [6.3 - 7.5] MeV are:

- **Etchant**: KOH 7.5 M mixed with 50% ethanol
- **Temperature**: 40 °C
- **Pre-etching duration**: 6 h
- **Frequency**: 3 kHz
- **Electric field strength**: 33 kV cm$^{-1}$
- **ECE duration**: 1 h

12. The detectors A and B have been calibrated in pure 222Rn atmospheres showing identical, consistent, and reproducible responses. The experimental sensitivity obtained for these detectors is very close to that given by the Monte-Carlo simulation.

13. With our passive, integrating and multi-component dosimeter, the a priori lower limit of detection can be estimated only for 222Rn. The minimum detectable 222Rn concentration is equal to 10 Bq m$^{-3}$ for an eventual exposure time of 90 days.

14. By using well-control exposures in a reference laboratory, we have shown that the equilibrium factor values determined with our system agree with those obtained by active methods.
The results of an application indoors of our dosimeter in an inhabited Swedish single-family house suggest the usefulness of the method used in this study to carry out routine surveys for ^{222}Rn level measurements in private homes and in workplaces in order to estimate the associated annual effective dose received by the general public and the workers.

9.2. Future outlooks

In this PhD dissertation a novel approach has been proposed for long-term equilibrium factor determination from the measurement of ^{222}Rn and its α-emitter progeny (^{218}Po and ^{214}Po), and, therefore, new implications for future works have been opened. The main perspectives of this study are:

1. The sensitivity of the detector A in front of ^{220}Rn should be improved in order to extend its detectability to concentrations of the same order as those of ^{222}Rn. Further investigations of the parameters affecting the response of the other detectors should be also performed to optimise the system precision and to determine the sources or causes of errors.

2. A series of calibration exercises must be carried out in well-controlled ^{222}Rn and ^{220}Rn exposure facilities to complete the experimental determination of the sensitivities of the detectors A, B, C and D with respect to ^{222}Rn, ^{220}Rn and their α-emitter decay products. In addition, the response of our dosimeter at different equilibrium factors, ambient relative humidities and temperatures should be studied and evaluated.

3. The concept of the reduced equilibrium factor introduced in this work offers a lot of possibilities for the design and the development of new methods based on active or passive detectors for ^{222}Rn progeny equilibrium factor measurement.

4. With the passive integrating system set up in this study, it will be of great interest to carry out a national survey, in private homes and workplaces, in order to estimate the annual effective dose due to inhalation of indoor ^{222}Rn daughters and to identify those sites with high concentrations of ^{220}Rn.

136
A. Recoil energy determination from α-decay

Most of the heavy nuclei are energetically unstable against the spontaneous emission of a mono-energetic α-particle (or 4He nucleus). The α-decay process can be written schematically as

$$\frac{4}{2}X \rightarrow \frac{A-4}{Z-2}Y + \frac{4}{2} \alpha$$ (A.1)

where X and Y are the initial and the final nuclear species, A is the mass number of the nuclei X and Z its atomic number. For each distinct transition between initial and final nucleus, a fixed energy difference or Q-value characterises the α-decay as follows

$$Q = (m_X - m_Y - m_\alpha)c^2$$ (A.2)

where m_X, m_Y and m_α are the mass of the nuclei X, Y and the α-particle, respectively, and c is the light celerity.

In general, the kinetic energy of α-particle is usually lower than Q-value because of the recoil energy carried out by the residual nuclei Y. Thus, by applying the mass-conservation law, the kinetic energy of both α-particle and residual nuclei are given by

$$E_\alpha = \frac{m_Y}{m_Y + m_\alpha}Q = \frac{A-4}{A}Q$$ and $$E_Y = \frac{m_\alpha}{m_Y + m_\alpha}Q = \frac{4}{A}Q$$ (A.3)

As the α-particle energy is a well known quantity for all the α-emitter radionuclide, the recoil energy can be estimated by the following expression

$$E_Y = \frac{4}{A-4}E_\alpha$$ (A.4)

Table A.1 summarises the recoil energy of interest in the 222Rn and 220Rn chains.
Table A.1. The recoil energy of interest in the 222Rn and 220Rn chains.

<table>
<thead>
<tr>
<th>X</th>
<th>E_α (MeV)</th>
<th>Y</th>
<th>E_Y (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>226Ra</td>
<td>4.77</td>
<td>222Rn</td>
<td>86</td>
</tr>
<tr>
<td>222Rn</td>
<td>5.49</td>
<td>218Po</td>
<td>101</td>
</tr>
<tr>
<td>218Po</td>
<td>6.00</td>
<td>214Pb</td>
<td>112</td>
</tr>
<tr>
<td>224Ra</td>
<td>5.69</td>
<td>220Rn</td>
<td>103</td>
</tr>
<tr>
<td>220Rn</td>
<td>6.29</td>
<td>216Po</td>
<td>117</td>
</tr>
<tr>
<td>216Po</td>
<td>6.78</td>
<td>212Pb</td>
<td>128</td>
</tr>
<tr>
<td>212Bi</td>
<td>6.07</td>
<td>212Po</td>
<td>115</td>
</tr>
</tbody>
</table>
B. Stopping power and range of \(\alpha\)-particle in a medium

It is well known that the heavy ion (\(\sim 8000\) times the mass of the electron), when passing through matter loses, its energy predominantly via electronic interactions with the absorber atoms. The energy transferred in such collisions per unit of path length can be obtained from the well known Bethe-Bloch formula as follows (Bethe, 1930; Bloch, 1933)

\[
\left(-\frac{dE}{dx}\right)_{\text{(MeV cm}^{-1})} = \frac{nZ_{\text{eff}}^2e^4}{4\pi\varepsilon_0m_ev^2} \left[\frac{2m_ev^2w_{\text{max}}}{I^2(1-\beta^2)} - 2\beta^2 - \delta - U \right]
\]

(B.1)

where \(Z_{\text{eff}}\) is the effective charge of the heavy ion, \(v\) is its velocity, \(e\) is the electron charge, \(n\) is the electronic density of the absorber medium, \(\varepsilon_0\) is the free space permittivity, \(m_e\) is the electron mass, \(I\) is the ionisation potential of the medium, \(\beta\) is the ion velocity relative to that of the light, \(w_{\text{max}}\) is the maximum energy transferred to the medium atoms, \(\delta\) is a correction factor for polarisation of the medium, and \(U\) is a term that takes into account the participation of inner electron shells.

The most direct application of energy loss data is the determination of the ion ranges in medium materials. These last are regarded as having well defined ranges usually approximated to a straight line. The range of \(\alpha\)-particles in a given medium can be calculated from the following integral

\[
R(E) = \int_{0}^{E} \left(-\frac{dE}{dx}\right)^{-1}dE
\]

(B.2)

where \(E\) (MeV) is the ion energy. According to this equation, theoretical calculation of ion ranges within medium materials is not trivial. Instead, semi-empirical expressions, based on experimental data and guided by theory, are usually used.

In this study, we used the Srim-2000 code as a reference for the stopping power and range calculation. The range-energy results obtained for a given medium are fitted using the least-square minimisation method to establish the range-energy relationship. Figure
B.1 presents the range-energy data obtained for α-particles in Makrofol and in air using the Srim-2000 code. As shown in this figure, the α-particle range-energy relationships in both Makrofol and air are polynomial and the corresponding least-square fitting parameters obtained are

$$R_{\text{Makrofol}}(E) = 1.05 + 2.50E + 0.666E^2 \quad (R^2 = 0.998) \quad (B.3)$$
$$R_{\text{air}}(E) = 0.12 + 0.297E + 0.07E^2 \quad (R^2 = 0.998) \quad (B.4)$$

where the α-energy, E, is given in MeV and its corresponding range in Makrofol and in air are respectively given in μm and in cm. The uncertainties introduced by the fit were found to be less than 1%. These results differ from those obtained in a previous work of our group (Amgarou et al., 2001b) in which the Makrofol and air range-energy data calculated by the Srim-2000 code were adjusted to the common power function of the form $R(E) = aE^b$, suggested by the Bragg’s rule and denoted by a dot line in Figure B.1. Nevertheless, as can be clearly seen in this figure, the polynomial adjustment is much more better for the Srim-2000 energy-range data than the function $R(E) = aE^b$.

Figure B.1. Range-energy dependence for α-particles in Makrofol and in air.
C. A note on Monte-Carlo simulation

The name Monte-Carlo was applied for the first time by scientists working on the nuclear weapon project in Los Alamos, during the Second World War, to design a class of numerical methods based on the use of random numbers. A good review of the Monte-Carlo techniques and their application to simulate the physical systems could be found in Kalos and Whitlock (1986). The essential ingredient of the Monte-Carlo techniques is the numerical sampling of random variables with specified probability distribution functions (PDFs), which are positive function normalised to unity. Thus, considering a variable \(x \) that is randomly distributed in the interval \((a, b)\) according to a given PDF, \(p(x) \), we have

\[
p(x) \geq 0 \text{ and } \int_a^b p(x) \, dx = 1 \tag{C.1}
\]

The cumulative distribution function of \(x \) is defined by

\[
P(x) = \int_a^x p(x) \, dx \tag{C.2}
\]

This function increases monotonically from \(P(a) = 0 \) to \(P(b) = 1 \) and, therefore, has an (univaluate) inverse function. The transformation \(\xi = P(x) \) defines a new random variable, which takes values uniformly distributed in the interval \((0, 1)\); so that,

\[
\xi = \int_a^x p(x) \, dx \tag{C.3}
\]

This equation is referred to as the sampling equation of the variable \(x \). This procedure for random sampling is known as the inverse transform method; it is particularly adequate for PDFs, given by simple analytical expressions, such that the sampling equation can be solved analytically.

In general, random sampling algorithms are based on the computer generation of a pseudo-random number sequence between zero and unity from a given seed using a linear
congruential method. The name pseudo reflects the fact that the generated sequence is not truly random, since it is obtained from a deterministic algorithm. In this study, as a pseudo-random number generator algorithm we employed the subroutine RANDOM_NUMBER that is included in the Fortran 90 Scientific Function Package. This subroutine produces 32-bit floating point numbers uniformly distributed in the interval (0, 1) and have a periodic sequence of the order of 10^{18}, which is virtually infinite for practical simulations.

Consider, for instance, the example of particle emission from a given radioactive source. The random numbers are then used to choose the coordinates and the direction of emission. By supposing that the variable Cartesian coordinate x is uniformly distributed in the interval (a, b), we can write

$$p(x) = \frac{1}{b - a} \quad (C.4)$$

Then, the sampling equation (C.3) leads to the well-known sampling formula

$$x = a + \xi (b - a) \quad (C.5)$$

On the other hand, in order to simulate an isotropic particle emission (i.e., in all directions) from a radioactive source, the following angular distribution probability density is adopted

$$p(\theta, \varphi) \, d\theta \, d\varphi = \frac{1}{4\pi} \sin \theta \, d\theta \, d\varphi \quad (C.6)$$

where θ and φ are, respectively, the zenith and azimuthal angles. Notice that $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq 2\pi$. Since these variables are independent, the term $p(\theta, \varphi)$ can be factorise as the product of two associated PDFs $f(\theta)$ and $g(\varphi)$, which are given by

$$f(\theta) d\theta = \frac{1}{2} \sin \theta \, d\theta \quad \text{and} \quad g(\varphi) d\varphi = \frac{1}{2\pi} \quad (C.7)$$

By choosing two independent random values, ξ_1 and ξ_2, with uniform probability between 0 and 1, the initial direction of emission of a particle from an isotropic source can be generated by imposing that

$$\xi_1 = \int_0^\theta f(\theta) d\theta \quad \text{and} \quad \xi_2 = \int_0^{\varphi} g(\varphi) d\varphi \quad (C.8)$$

Solving these integrals, we finally obtain

$$\theta = \arccos(1 - 2\xi_1) \quad (C.9)$$

$$\varphi = 2\pi \xi_2 \quad (C.10)$$

142
References

146

153

156

List of Figures

2.1 Decay diagram of 238U series with the half-life of each radionuclide and the energies of α-emissions expressed in MeV. .. 7

2.2 Decay diagram of 232Th series with the half-life of each radionuclide and the energies of α-emissions expressed in MeV. .. 8

2.3 Decay diagram of 235U series with the half-life of each radionuclide and the energies of α-emissions expressed in MeV. .. 9

2.4 Schematic illustration of 222Rn and 220Rn emanation, transport and entry mechanisms from soil and building materials into indoor air — adapted from Knutson (1988). 226Ra (224Ra) atom, indicated by open circles, decays producing an α-particle and a 222Rn (220Rn) atom, which may end its recoil path at the point indicated by the solid circle. At A the parent atom is too deeply embedded within the grain for 222Rn or 220Rn atom to escape. At B and D the recoiling atom possesses sufficient energy after escaping the host to penetrate an neighbour grain. At C the 222Rn or 220Rn atom terminates its recoil in the pore water and, from there, it is readily transferred to the air-filled pore. .. 17

2.5 Schematic illustration of the 222Rn and/or 220Rn entry routes from soil into a house — adapted from (Font, 1997). .. 23

3.1 The basic processes influencing the indoor activity balance of 222Rn and 220Rn progeny — adapted from Knutson (1988). .. 41

3.2 Partitioning of indoor 222Rn and 220Rn decay product concentrations as a function of aerosol concentration within a reference room. 44

4.1 Schematic illustration of a chain scission in polymers caused by the passage of heavily charged particles — adapted from Durrani (1997). 52

4.2 Application of the Huygens principle to explain the latent track formation within polymer detectors. ... 53

4.3 The evolution of an etch pit profile with prolonged chemical etching — adapted from Durrani and Bull (1987). ... 54

4.4 Example of the tree-type damage tracks induced by the plutonium α-emissions in CR-39 — adapted from Tommasino (1997). 56
5.1 Illustration of the build-up and the cooling-off of 222Rn concentration inside the diffusion chamber. ... 67
5.2 222Rn progeny equilibrium factor vs. the 218Po, 214Pb and 214Po disequilibrium degrees and of the ratio f_T assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. ... 70
5.3 222Rn progeny equilibrium factor, F_{222}Rn, as a function of the corresponding reduced equilibrium factor, $F_{\text{Red}} = 0.105 f_{218}$Po + 0.380 f_{214}Po, assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. The values of the linear fitting parameters are given in the text. 74
5.4 222Rn progeny equilibrium factor, F_{222}Rn, as a function of the corresponding reduced equilibrium factor, $F_{\text{Red}} = 0.105 f_{218}$Po + 0.380 f_{214}Po, assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. The value of the linear fitting parameter is given in the text. 74
5.5 Frequency distribution in % of f^a_i, f^a_i, f^d_i, f_i, and F values obtained for 222Rn progeny assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. Data of these curves have been fitted to a log-normal distribution. 75
5.6 Frequency distribution in % of f^a_i, f^a_i, f^d_i, f_i, and F values obtained for 222Rn progeny assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. Data of these curves have been fitted to a log-normal distribution. 76
5.7 Slowing down spectrum in arbitrary units due to 222Rn (A) and 220Rn (B) α-emitter progeny in air and the corresponding peaks of the plate out effect on the detector surface. The coloured area shows the α-energy window response necessary for the NTDs to measure the airborne 214Po concentration. 79
5.8 The design of the passive integrating system used to measure 222Rn and its α-emitter progeny in the presence of 220Rn. 80

5.1 Illustration of the build-up and the cooling-off of 222Rn concentration inside the diffusion chamber. ... 67
5.2 222Rn progeny equilibrium factor vs. the 218Po, 214Pb and 214Po disequilibrium degrees and of the ratio f_T assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. ... 70
5.3 222Rn progeny equilibrium factor, F_{222}Rn, as a function of the corresponding reduced equilibrium factor, $F_{\text{Red}} = 0.105 f_{218}$Po + 0.380 f_{214}Po, assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. The values of the linear fitting parameters are given in the text. 74
5.4 222Rn progeny equilibrium factor, F_{222}Rn, as a function of the corresponding reduced equilibrium factor, $F_{\text{Red}} = 0.105 f_{218}$Po + 0.380 f_{214}Po, assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. The value of the linear fitting parameter is given in the text. 74
5.5 Frequency distribution in % of f^a_i, f^a_i, f^d_i, f_i, and F values obtained for 222Rn progeny assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. Data of these curves have been fitted to a log-normal distribution. 75
5.6 Frequency distribution in % of f^a_i, f^a_i, f^d_i, f_i, and F values obtained for 222Rn progeny assuming all the possible values for the free parameters λ_a, λ_v, λ_u^i and λ_d^i. Data of these curves have been fitted to a log-normal distribution. 76
5.7 Slowing down spectrum in arbitrary units due to 222Rn (A) and 220Rn (B) α-emitter progeny in air and the corresponding peaks of the plate out effect on the detector surface. The coloured area shows the α-energy window response necessary for the NTDs to measure the airborne 214Po concentration. 79
5.8 The design of the passive integrating system used to measure 222Rn and its α-emitter progeny in the presence of 220Rn. 80

6.1 Flow chart of the SIMAR program. ... 87
6.2 Schematic illustration of α-particle registration with electrochemical etched Makrofol detectors. ... 88
6.3 Representation of the α-emission in the considered airspace. 90
6.4 The effective volumes of 222Rn, 220Rn and their α-active progeny obtained for the α-energy window [3.0 - 5.0] MeV, the black line illustrates the cross-section between the effective volume and the hemispherical housing in the case of detectors A and B. 92
6.5 The effective volume of 222Rn, 220Rn and their α-active progeny obtained for the α-energy window [6.3 - 7.5] MeV. 92
6.6 Enclosed SBD within the FzK diffusion chamber. 95
6.7 Typical α-spectrum measured with the SBD inside the FzK diffusion chamber in a 222Rn-rich atmosphere. 96
6.8 Computed α-energy distributions of 222Rn and its progeny as well as the resulting α-spectrum for an ideal detector within the FzK diffusion chamber. FD, LD and DD are defined in the text. 96
7.1 Elements of the electrochemical etching equipment: (1) the high alternative voltage/frequency generator, (2) the digital frequency-meter with a frequency-voltage-current selector, (3) the electric stove, (4) the security device, and (5) the modular etching cell system.

7.2 Schematic illustration of the modular cell system used for electrochemical etching of the Makrofol detectors.

7.3 A typical image of electrochemically etched Makrofol detectors as captured by the new semi-automatic system using an optical field area of $8.4 \times 6.3 \, \text{mm}^2$.

7.4 Illustration of the procedures used by the ImageJ program to evaluate electrochemically etched Makrofol detectors. By defining automatically the lower and upper grey-level thresholds (see the bottom right dialog box), the tracks are isolated and marked in red on the corresponding image screen (high left dialog box). The results of track morphology measurements are listed in the program menu window (high right dialog box). If required, additional histogram of the track area distribution can also be displayed (bottom left dialog box).

7.5 Response of the new and the old semi-automatic systems for track evaluation of electrochemically etched Makrofol detectors with respect to the manual counting. The error bars correspond to one standard deviation.

7.6 Experimental arrangement for the ^{222}Rn facility test developed in the present work.

7.7 An example of ^{222}Rn concentration built-up inside the exposure chamber together with the subsequent environmental conditions as measured by the Prassi monitor and the weather station, respectively.

7.8 Schematic illustration of the device used to generate the $^{212}\text{Bi}/\text{Po}$ source.

7.9 Measured α-spectrum of the ^{241}Am source by the multichannel pulse analyser at different source-to-detector distances. The peaks of interest have been fitted to a normal distribution.

7.10 Measured α-spectrum of the $^{212}\text{Bi}/\text{Po}$ source by the multichannel pulse analyser at different source-to-detector distances. The peaks of interest have been fitted to a normal distribution.

7.11 Energy-distance curves obtained for both the ^{241}Am and $^{212}\text{Bi}/\text{Po}$ sources. The error bars correspond to one standard deviation.

8.1 Experimental set-up used to determine the ^{222}Rn and ^{220}Rn diffusion constants through filters.

8.2 The counting rate evolution of the Clipperton probes with and without the polyethylene filter inside the small exposure chamber. The dotted line shows the time needed to reach the steady-state equilibrium.

8.3 Bulk etch rate (v_B) as a function of the etchant molarity at different values of % ethanol and etching temperature. The horizontal dotted lines indicate the interval of the required optimum bulk etch rates (between $7 \mu\text{m h}^{-1}$ and $8 \mu\text{m h}^{-1}$).
8.4 The removed layer as a function of the chemical etching duration, t_{CE}, using as etchant a solution 7.5 M KOH mixed with 50 % ethanol and an etching temperature of 40 °C. The solid line is a least-square adjustment of the data. 120

8.5 Electrochemical etched Makrofol efficiency as a function of the energy of the incident α-particles at different pre-etching times. The CE and ECE conditions are given in the text. 121

8.6 The low and upper energy thresholds of electrochemical etched Makrofol detectors as a function of the pre-etching time. The CE and ECE conditions are given in the text. 122

8.7 Calibration curve for the detector A against pure ^{222}Rn atmospheres. 124

8.8 Calibration curve for the detector B against pure ^{222}Rn atmospheres. 125

8.9 The relative standard deviation of the detectors A, B, C and D as a function of the net track density. 127

B.1 Range-energy dependence for α-particles in Makrofol and in air. 140
List of Tables

2.1 Physical properties of radon. ... 6

2.2 Decay constants, λ_i, and potential α-energy per atom, $E_{p,i}$, and per Bq of activity, $\frac{E_{p,i}}{\lambda_i}$, of the short-lived ^{222}Rn and ^{220}Rn daughters. 12

2.3 Traditional units and their equivalents in the SI accepted units. 14

2.4 Summary of the dose conversion factors for ^{222}Rn and ^{220}Rn progeny at private homes and workplaces. .. 15

2.5 Typical values and normal range of variation for the outdoor concentration, the soil volume-specific entry rate, the building material exhalation rate and the predicted indoor concentrations for ^{222}Rn and ^{220}Rn. 26

3.1 Typical range of variation and baseline values of the indoor ventilation, attachment and deposition (airborne-unattached and aerosol-attached) rates. 43

4.1 Relative Standard Deviation (RSD) from the true annual average of different sampling periods (Swedjemark, 1984). 50

5.1 The comparison between the equilibrium factors obtained from the Reineking and Porstendörfer (1990) measurements of ^{222}Rn and its progeny concentrations in different German houses and those estimated from Equation (5.14). 72

5.2 The geometric means and the ranges of variation of f_i^n, f_i^a, f_i^d, f_i, and F values obtained for ^{222}Rn and ^{220}Rn progeny assuming all the possible values for the free parameters λ_a, λ_v, λ^a and λ^d as well as their geometric standard deviations (σ_g) and the corresponding correlation factors (R^2) of the fitted curves. 78

6.1 Characteristics of α-emissions ^{222}Rn, ^{220}Rn and their progeny and the calculated $\varepsilon^v_{m,n}$ and $\varepsilon^d_{m,n}$ values for the detectors A, B, C and D. 93

6.2 Comparison of the SIMAR program predictions with analytical method for an open ideal detector. ... 95

7.1 Reference α-energies used for the Makrofol detector irradiation. 113

163
8.1 Results of 222Rn and 220Rn diffusion coefficient in some filters together with the estimated delay time and the discrimination factor for the FzK diffusion chamber. .. 116

8.2 Characteristics of the exposure facilities as well as the relation of sets and measurement techniques used to calibrate the detector A against 222Rn. .. 123

8.3 Results of simultaneous irradiation of the detectors A and B to 222Rn and 220Rn under different values of their exposures. .. 130

8.4 The comparison between the values of 222Rn progeny equilibrium factor obtained by our passive integrating system and those given by the NRPB active monitor. .. 131

8.5 Results from indoor exposure of our passive integrating system in a Swedish house. .. 132

A.1 The recoil energy of interest in the 222Rn and 220Rn chains. 138