
9. Conclusions and perspectives

9.1. Concluding remarks

This study, which deals with the problematical determination of long-term indoor
222Rn progeny equilibrium factor using NTDs to well assess the annual effective dose in

privates homes and in workplaces, has led to the following conclusions:

1. The review of the most relevant parameters and processes affecting indoor 222Rn and
220Rn progeny concentrations has shown that their behaviour is very complex and that

the equilibrium factor may change significantly from one house to another, depending

on the geometry of the house, on the aerosol concentration, on the air mass movement,

on the ambient conditions and on the inhabitants habits. Therefore, there is the need

of measuring the long-term equilibrium factor indoors.

2. A detailed study of the measurement principles of airborne 222Rn, 220Rn and their

progeny by means of NTDs, taking into account the range of variation of the parame-

ters influencing their concentration, has shown that it is not possible for the existing

methods to obtain the long-term equilibrium factor with an appropriate accuracy.

3. A new approach for long-term equilibrium factor determination from the measure-

ment of airborne 222Rn and its α-emitter daughters is presented in this PhD disser-

tation. This approach is based on the new concept of reduced equilibrium factor

(Fred), which is defined as FRed =
0.105C218Po+0.380 C214Po

C222Rn
. We have shown that the

equilibrium factor can be obtained with the best precision if proper optimisation of

experimental conditions for the Fred measurement by means of NTDs is performed.

In this method, assumptions about ventilation, aerosol attachment and deposition

(attached and unattached) rates are not necessary.

4. We have designed a new passive, integrating and multi-component dosimeter to mea-

sure simultaneously the individual airborne concentration of 222Rn, 220Rn, 218Po and
214Po. It consists of: i) two Makrofol detectors, namely detectors A and B, which are
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enclosed within two diffusion chambers – each one with different filter membrane –

to measure indoor 222Rn+220Rn and 222Rn, together with ii) two Makrofol detectors

(C and D) that are kept in direct contact with air and that are electrochemically

etched at different conditions to obtain the airborne 218Po and 214Po concentrations.

The measurement method is based on the fact that the half-lives of 222Rn and 220Rn

are different, that both isotopes have the same diffusion coefficient in a given medium

and that the response of the Makrofol detector depends on the electrochemical etching

conditions used.

5. From the slowing down spectrum of α-particles emitted by the airborne 222Rn, 220Rn

and their progeny, and in order to avoid the plate-out peaks of these last, two α-energy

windows of interest are chosen, one from 3.0 to 5.0 MeV for the detector A, B and C

and another one from 6.3 to 7.5 MeV for the detector D. With these α-energy windows,

the detector B lets the measurement of 222Rn concentration. The concentration of
220Rn can be obtained as a response difference of the detectors A and B. The reading

of detector D allows the determination of the airborne 214Po concentration. From this

quantity and the information given by the detector C the airborne 218Po concentration

can be determined.

6. We have developed a Monte-Carlo computer code, called SIMAR, to obtain the sensi-

tivity of each Makrofol detector, taking into account: (1) the Bethe-Bloch expression

for the stopping power of heavily charged particles in a medium, (2) the behaviour of
222Rn, 220Rn and their progeny in the open air and within the diffusion chamber, and

(3) the α-energy window response of each detector. The estimated sensitivity values

have been validated by reproducing the response of an ideal detector, both in the free

air and enclosed within a diffusion chamber.

7. The semi-automatic track counting system has been improved without any excessive

cost, by connecting a photo video camera of an optical field area of 8.4× 6.3 mm2 to
a digital TV-graphic card and using a public domain Java image processing software,

called ImageJ, for track analysis.

8. We have performed the initial phase of constructing a small exposure chamber, for

both 222Rn and 220Rn, and we have set up an irradiation device to generate mono-

energetic α-particles from 2 MeV up to 8 MeV with an α-energy resolution lower than

10%.

9. By studying the 222Rn diffusion through some of the commercially available filters,

we have shown that the glass fiber and the polyethylene are very appropriate for the
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detectors A and B, respectively, to perform separate measurement of indoor 222Rn

and 220Rn concentration.

10. We have confirmed experimentally using the irradiation device that the electrochem-

ical etching conditions for the detectors A, B and C to generate an α-energy window

response of [3.0 - 5.0] MeV are:

Etchant : KOH 6 M mixed with 50% ethanol

Temperature : 40 oC

Pre-etching duration : 4 h

Frequency : 3 kHz

Electric field strength : 33 kV cm−1

ECE duration : 1.5 h

11. A detailed study of the main parameters influencing the electrochemical etching

process of the Makrofol detectors have shown that the optimal etching conditions

for the detector D to generate an α-energy window response of [6.3 - 7.5] MeV are:

Etchant : KOH 7.5 M mixed with 50% ethanol

Temperature : 40 oC

Pre-etching duration : 6 h

Frequency : 3 kHz

Electric field strength : 33 kV cm−1

ECE duration : 1 h

12. The detectors A and B have been calibrated in pure 222Rn atmospheres showing iden-

tical, consistent, and reproducible responses. The experimental sensitivity obtained

for these detectors is very close to that given by the Monte-Carlo simulation.

13. With our passive, integrating and multi-component dosimeter, the a priori lower limit

of detection can be estimated only for 222Rn. The minimum detectable 222Rn concen-

tration is equal to 10 Bq m−3 for an eventual exposure time of 90 days.

14. By using well-control exposures in a reference laboratory, we have shown that the

equilibrium factor values determined with our system agree with those obtained by

active methods.
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15. The results of an application indoors of our dosimeter in an inhabited Swedish single-

family house suggest the usefulness of the method used in this study to carry out

routine surveys for 222Rn level measurements in private homes and in workplaces in

order to estimate the associated annual effective dose received by the general public

and the workers.

9.2. Future outlooks

In this PhD dissertation a novel approach has been proposed for long-term equilib-

rium factor determination from the measurement of 222Rn and its α-emitter progeny (218Po

and 214Po), and, therefore, new implications for future works have been opened. The main

perspectives of this study are:

1. The sensitivity of the detector A in front of 220Rn should be improved in order to

extent its detectability to concentrations of the same order as those of 222Rn. Further

investigations of the parameters affecting the response of the other detectors should

be also performed to optimise the system precision and to determine the sources or

causes of errors.

2. A series of calibration exercices must be carried out in well-controlled 222Rn and 220Rn

exposure facilities to complete the experimental determination of the sensitivities of

the detectors A, B, C and D with respect to 222Rn, 220Rn and their α-emitter decay

products. In addition, the response of our dosimeter at different equilibrium factors,

ambient relative humidities and temperatures should be studied and evaluated.

3. The concept of the reduced equilibrium factor introduced in this work offers a lot of

possibilities for the design and the development of new methods based on active or

passive detectors for 222Rn progeny equilibrium factor measurement.

4. With the passive integrating system set up in this study, it will be of great interest

to carry out a national survey, in private homes and workplaces, in order to estimate

the annual effective dose due to inhalation of indoor 222Rn daughters and to identify

those sites with high concentrations of 220Rn.
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A. Recoil energy determination
from α-decay

Most of the heavy nuclei are energetically unstable against the spontaneous emis-

sion of a mono-energetic α-particle (or 4He nucleus). The α-decay process can be written

schematically as

A
ZX −→A−4

Z−2 Y +
4
2 α (A.1)

where X and Y are the initial and the final nuclear species, A is the mass number

of the nuclei X and Z its atomic number. For each distinct transition between initial and

final nucleus, a fixed energy difference or Q-value characterises the α-decay as follows

Q = (mX −mY −mα)c
2 (A.2)

where mX , mY and mα are the mass of the nuclei X, Y and the α-particle,

respectively, and c is the light celerity.

In general, the kinetic energy of α-particle is usually lower than Q-value because

of the recoil energy carried out by the residual nuclei Y . Thus, by applying the mass-

conservation law, the kinetic energy of both α-particle and residual nuclei are given by

Eα =
mY

mY +mα
Q =

A− 4
A

Q and EY =
mα

mY +mα
Q =

4

A
Q (A.3)

As the α-particle energy is a well known quantity for all the α-emitter radionuclide,

the recoil energy can be estimated by the following expression

EY =
4

A− 4Eα (A.4)

Table A.1 summarises the recoil energy of interest in the 222Rn and 220Rn chains.
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Table A.1. The recoil energy of interest in the 222Rn and 220Rn chains.

X Eα (MeV) Y EY (keV)
226Ra 4.77 222Rn 86
222Rn 5.49 218Po 101
218Po 6.00 214Pb 112
224Ra 5.69 220Rn 103
220Rn 6.29 216Po 117
216Po 6.78 212Pb 128
212Bi 6.07 212Po 115
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B. Stopping power and range of
α-particle in a medium

It is well known that the heavy ion (∼8000 times the mass of the electron), when
passing through matter loses, its energy predominantly via electronic interactions with the

absorber atoms. The energy transferred in such collisions per unit of path length can be

obtained from the well known Bethe-Bloch formula as follows (Bethe, 1930; Bloch, 1933)

(−dE
dx
) (MeV cm−1) =

nZ2effe
4

4πε20mev2

·
ln
2mev

2wmax

I2(1− β2)
− 2β2 − δ − U

¸
(B.1)

where Zeff is the effective charge of the heavy ion, v is its velocity, e is the electron charge,

n is the electronic density of the absorber medium, ε0 is the free space permittivity, me is

the electron mass, I is the ionisation potential of the medium, β is the ion velocity relative

to that of the light, wmax is the maximum energy transferred to the medium atoms, δ is a

correction factor for polarisation of the medium, and U is a term that takes into account

the participation of inner electron shells.

The most direct application of energy loss data is the determination of the ion

ranges in medium materials. These last are regarded as having well defined ranges usu-

ally approximated to a straight line. The range of α-particles in a given medium can be

calculated from the following integral

R(E) =

Z E

0
(−dE

dx
)−1dE (B.2)

where E (MeV) is the ion energy. According to this equation, theoretical calculation of ion

ranges within medium materials is not trivial. Instead, semi-empirical expressions, based

on experimental data and guided by theory, are usually used.

In this study, we used the Srim-2000 code as a reference for the stopping power and

range calculation. The range-energy results obtained for a given medium are fitted using

the least-square minimisation method to establish the range-energy relationship. Figure
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B.1 presents the range-energy data obtained for α-particles in Makrofol and in air using

the Srim-2000 code. As shown in this figure, the α-particle range-energy relationships in

both Makrofol and air are polynomial and the corresponding least-square fitting parameters

obtained are

RMakrofol(E) = 1.05 + 2.50E + 0.666E2 (R2 = 0.998) (B.3)

Rair(E) = 0.12 + 0.297E + 0.07E2 (R2 = 0.998) (B.4)

where the α-energy, E, is given in MeV and its corresponding range in Makrofol

and in air are respectively given in µm and in cm. The uncertainties introduced by the

fit were found to be less than 1%. These results differ from those obtained in a previous

work of our group (Amgarou et al., 2001b) in which the Makrofol and air range-energy

data calculated by the Srim-2000 code were adjusted to the common power function of the

form R(E) = aEb, suggested by the Bragg’s rule and denoted by a dot line in Figure B.1.

Nevertheless, as can be clearly seen in this figure, the polynomial adjustment is much more

better for the Srim-2000 energy-range data than the function R(E) = aEb.
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Figure B.1. Range-energy dependence for α-particles in Makrofol and in air.
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C. A note on Monte-Carlo
simulation

The name Monte-Carlo was applied for the first time by scientists working on the

nuclear weapon project in Los Alamos, during the Second World War, to design a class of

numerical methods based on the use of random numbers. A good review of the Monte-

Carlo techniques and their application to simulate the physical systems could be found in

Kalos and Whitlock (1986). The essential ingredient of the Monte-Carlo techniques is the

numerical sampling of random variables with specified probability distribution functions

(PDFs), which are positive function normalised to unity. Thus, considering a variable x

that is randomly distributed in the interval (a, b) according to a given PDF, p(x), we have

p(x) ≥ 0 and
Z b

a
p(x) dx = 1 (C.1)

The cumulative distribution function of x is defined by

P (x) =

Z x

a
p(x) dx (C.2)

This function increases monotonically from P (a) = 0 to P (b) = 1 and, therefore,

has an (univaluate) inverse function. The transformation ξ = P (x) defines a new random

variable, which takes values uniformly distributed in the interval (0, 1); so that,

ξ =

Z x

a
p(x) dx (C.3)

This equation is referred to as the sampling equation of the variable x. This

procedure for random sampling is known as the inverse transform method; it is particularly

adequate for PDFs, given by simple analytical expressions, such that the sampling equation

can be solved analytically.

In general, random sampling algorithms are based on the computer generation of

a pseudo-random number sequence between zero and unity from a given seed using a linear
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congruential method. The name pseudo reflects the fact that the generated sequence is not

truly random, since it is obtained from a deterministic algorithm. In this study, as a pseudo-

random number generator algorithm we employed the subroutine RANDOM_NUMBER

that is included in the Fortran 90 Scientific Function Package. This subroutine produces

32-bit floating point numbers uniformly distributed in the interval (0, 1) and have a periodic

sequence of the order of 1018, which is virtually infinite for practical simulations.

Consider, for instance, the example of particle emission from a given radioactive

source. The random numbers are then used to choose the coordinates and the direction of

emission. By supposing that the variable Cartesian coordinate x is uniformly distributed

in the interval (a, b), we can write

p(x) =
1

b− a
(C.4)

Then, the sampling equation (C.3) leads to the well-known sampling formula

x = a+ ξ(b− a) (C.5)

On the other hand, in order to simulate an isotropic particle emission (i.e., in all

directions) from a radioactive source, the following angular distribution probability density

is adopted

p(θ, ϕ) dθ dϕ =
1

4π
sin θ dθ dϕ (C.6)

where θ and ϕ are, respectively, the zenith and azimuthal angles. Notice that 0 ≤ θ ≤ π

and 0 ≤ ϕ ≤ 2π. Since these variables are independent, the term p(θ, ϕ) can be factorise as

the product of two associated PDFs f(θ) and g(ϕ), which are given by

f(θ)dθ =
1

2
sin θ dθ and g(ϕ) dϕ =

1

2π
(C.7)

By choosing two independent random values, ξ1 and ξ2, with uniform probability

between 0 and 1, the intial direction of emission of a particle from an isotropic source can

be generated by imposing that

ξ1 =

Z θ

0
f(θ)dθ and ξ2 =

Z ϕ

0
g(ϕ)dϕ (C.8)

Solving these integrals, we finally obtain

θ = arccos(1− 2ξ1) (C.9)

ϕ = 2πξ2 (C.10)
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