Medical image registration based on a creaseness measure

A dissertation submitted by David Lloret i Villalonga at Universitat Autònoma de Barcelona to fulfil the degree of Doctor en Informática.

Bellaterra, November 19, 2001
a la Maria Dolors i en Josep
Acknowledgments

Writing a thesis has often been compared to giving birth because no matter how well one may plan the stages, inevitably it arises the moment when one must devote all strength and thoughts to a task which in fact will take no longer than two hours to complete. Many people have contributed to make this thesis possible. Following, I intend to enumerate them (names are without titles). To all, my gratitude for their generous support:

- Projects have been funded by the CICYT (TIC97–1134–C02–02 and TAP96–0629–C04–03), while the Generalitat supported my stage abroad: (1997 BEAI 200246). My research has been full time during last year and half thanks to a grand from the Computer Vision Center.

- Almost all the software I have designed is based on an image processing package called VILI, which is the results of the cooperation of people from my unit, and specially Xavi Sanchez. Xavi, Ramon Baldrich and Felipe Lumbreras helped me generously with the programming. Also I would like to thank the authors of Linux, Latex, gcc and large body of software I have employed which still remains free of charge.

- Medical images are always difficult to obtain because source machines are normally closed to public access. Petra van den Elsen, from Utrecht University, gave us our first sets of CT and MR images. Afterwards we joined the project "Evaluation of Retrospective Image Registration" headed by J. M. Fitzpatrick, at the Vanderbilt University (project number NIH R01 NS33926-01), which provided us with more than 50 pairs of CT and MR images. Retinal images were obtained thanks to C. Barry and N. Ritter at the McCusker Glaucoma Foundation, and Manuel F. González. Penedo and M.J. Carreira at Universidade da Coruña provided the SLO series.

- The medical team of the Unitat de Neurocirurgia at the Hospital the Sant Pau, and specially Joan Molet, Pere Parés and their assistant Olga Membrado have been our contact with the medical world.

- Some of the code I rely on has been designed by other people: Manuel Ramos Carballar developed a friendly environment for real use in stereotaxis studies as his final year project, and Cástor Pérez Mariño tuned and improved the algorithm for LSO series.
• I credit the staff at the administration of the CVC for their efficient and smooth work: M. Culleré, M. Granados, P. Villa, C. Ramírez, E. Estruga and Ana Célia Vilchez. J. Masoliver, Raquel Gómez, here in the CVC, and Collin Renshaw, during my stage in London, as system administrators, deserve special mention for the patience at my continuous requests for more resources, in disk, memory, and programs.

• My stage at the Computational Imaging Science Group in Radiological Sciences at UMDS, Guy’s & St Thomas’ Hospital in London in 1998 was extremely important for me. With them, I learned procedures and ways of thinking which I could not have learned at home. Specially rewarding was to work under the supervision of Derek Hill, my tutor, and David Hawkes. Together with Calvin Maureer, Eddy Edwards, Daniel Rueckert and the rest of the team, they were source of both intellectual and personal amusement. I extend my gratitude to Colin Studholme, whose programs I have used.

• All the members of the CVC: R. Baldrich, X. Binefa, J. Lladós, F. Lumbraeras, E. Martí, D. Ponsa, A. Pujol, P. Radeva, X. Roca, J. Saludes, J. Sánchez, G. Sánchez, J. Serrat, A. Solé, R. Toledo, M. Vanrell, X. Varona, J. Vitríà, and specially my office mates, O. Pujol, E. Valveny and, at the first years, J.R. Serra. Thanks to them, the CVC is a place were discussions, lunches and projects have always had a pleasant side.

• Juan José Villanueva welcome me to the CVC not only as his director but also as a person who took personal interest that new-lyers and members would feel at easy and motivated. I owe him the chance to do my thesis, and the confidence I could teach properly in the university. Moreover, I have been supported during my final year by one of the grands of the CVC, which had permitted me a full dedication to the research.

• My thesis director, Joan Serrat, has taken with enthusiasm not only my advising but a countless number of tasks I could not have done alone. He has brought his vitality at many stages: designing the research lines, getting the funds, writing the papers and amending the code. At any time I have felt his support and encouragement, for which I express my gratitude.

• Maria Dolors and Josep, my parents, have encouraged me, from my childhood to now, to love knowledge as an aim for itself. They offered always a hand whenever I needed it.

• Hours have passed lightly at the company of Mia. She has been with me, working cheek to cheek, sharing joyful moments and, also, standing me these days when registrations simply don’t work.

Without the aid of all of them this work would not have been possible.

David Lloret i Vilallonga
Abstract

Today many advances in medicine are motivated by the emergence of new acquisition devices and the increasing capabilities of computers. Processing the generated digital information represents an engineering challenge: volume images, video sequences and new modalities are combined in order to provide new diagnosis tools for clinicians.

This thesis is concerned with the automatic alignment of medical images. When several images of the same patient are taken, inevitably some sort of misalignment will occur, causing features in the images will not be shown at the same location. But, for the images to be compared point-wise, it is necessary to establish some geometric correspondence between them. This task, when done manually, is lengthy, user-dependent and prone to errors, and therefore automatic alignment algorithms are necessary.

We propose a generic algorithm applicable to images having a particular requisite: they must depict crest or valley-like features. That is possible if we model the images as sampled scalar functions, being the intensity or gray level the scalar magnitude. These features are extracted automatically by means of a differential operator sensible to these particular shapes, and designed to be invariant to translations and rotations, and robust against noise and low contrast. Examples of detectable features are the bone issue in volume CT and MR, the vessels in ophthalmologic images and sulci in ecographies.

The output of the operator will depict relevant landmarks which, since they appear in all the images, can be used as the reference for the alignment algorithm. The operator is specially useful for images that can not be directly compared because they are too different, either because they belong to different modalities, or because the features contained in the original image have been altered.

Once the features have been extracted, one image has to be iteratively transformed until an alignment assessment function reaches a maximum. But this simple iterative scheme works only for almost identical images with small misregistration values. Real data requires to sample the function at a coarse step, and the best way to do it is by means of a hierarchical approach. Exhaustive, costly search is done only for levels where transformations are fast to compute, and results are refined through the hierarchical pyramid until a single transformation is selected.

We have made full reports of the performance of this algorithm for several modalities and conditions. Firstly, we have applied it to CT to MR volume image registration. We designed and ran several experiments to test its robustness under severe misregistrations, and compared favourably its results to those of a mutual infor-
mation based method. Then, we participated in a project to evaluate the accuracy against a golden standard, for a database of about one hundred pairs of images, whose results ranked us to be very accurate for some modality pairs.

A different medical subject was the registration of ophthalmologic images. In this modality, 2–D images with a high rate of noise and varying contrast must be aligned to correct for the involuntary movement or blinking of the eye. Our algorithm worked better and more generally than previous papers in literature, and could be applied also to long sequences of SLO video images. We performed exhaustive tests to permit a fast and robust convergence which contributed, in collaboration with another research group, to set a real medical application already working in a hospital.

Finally, we explored several registration issues in the area of intra-operative ecographies. After designing a system to grab and locate the ecography transducer, we started the experiments with an in vitro human brain. We could compound a volume with the acquired B-frames and register it accurately to an MR volume (3D–3D), and also register each individual B-scan to the corresponding area in the volume (2D–3D). The registration algorithm for the latter case followed the same general scheme as the others.
Molts dels avanços de la medicina actual són possible per l’aparició de noves modalitats d’imatges mèdiques i ordinadors cada vegada més potents. El processament d’alts volums d’informació digital (imatges 3D i seqüències de vídeo) és un repte per l’enginyeria informàtica i origina noves eines de diagnosi mèdica.

El tema principal d’aquesta tesi és la posada en corresponentia automàtica d’imatges mèdiques. Quan es prenen diverses imatges del mateix pacient, és inevitable que aquestes no estiguin en línia, és a dir, que els seus continguts no tinguin les mateixes coordenades espacials. Malgrat això, per tal de comparar les imatges, cal establir entre elles alguna mena de corresponentia geomètrica. Aquesta feina, si es fa manualment, és llarga, depenent de l’usuari i susceptible a errors, i per tant és convenient fer-la d’una manera automàtica.

Proposem un algorisme genèric aplicable a imatges amb un requisit determinat: han de contenir trets que tinguin forma de cresta o de vall. Això és possible si modelem les imatges com a funcions mostrejades, on la intensitat o nivell de gris esdevé la magnitud escalar. Aquests trets són extrets automàticament per mitjà d’un operador diferencial, sensible a aquest tipus de característiques i dissenyat per ser invariant a translacions i rotacions, i per tractar imatges sorolloses i amb poc contrast. En són un exemple les tomografies i ressonànies magnètiques de crani, els vasos sanguinis en oftalmologies i els solcs cerebrals en ecografies.

L’operador de crestes extreu marques comunes a totes les imatges, que fem servir com a referència per alinear-les. L’operador és útil sobretot per imatges massa diferents per ser comparades, sigui perquè són de diferents modalitats, sigui perquè el teixit examinat ha canviat entre les adquisicions.

Un cop extretes les marques, una de les imatges es transforma iterativament fins que la funció d’alineament assoleix un màxim. Aquest esquema simple, però, funciona només pels casos més triviais de parelles d’imatges. Per casos reals, cal mostregar la funció en intervals significatius, i una de les maneres de fer-ho eficientment és per mitjà d’un model jerarquic. La cerca inicial, exhaustiva, es fa doncs només en l’últim nivell, on el càlcul de les transformacions és més ràpid, i els resultats parciaus es passen d’un nivell al següent fins que en queda només un, el de major valor.

Hem fet un estudi exhaustiu de les prestacions del nostre algorisme per diverses modalitats i condicions. En primer lloc, l’hem aplicat a la posada en corresponentia de tomografies (TAC) i ressonànies 3D. En un experiment, l’hem posat a prova davant d’imatges amb un desalineament alt i conegut, i els seus resultats han estat comparables als d’un altre algorisme de referència basat en informació mútua. Així

Resum
mateix, hem participat en un projecte d’avaluació extern sobre una base de dades d’un centenar de parells d’imatges, que ha establert la seva precisió per una modalitat determinada com la millor , i acceptable per les altres.

Un altre camp d’aplicació són les imatges oftalmològiques. En aquesta modalitat les imatges, amb molt de soroll i contrast canviant, els canvis d’una imatge a l’altra poden arribar a ser molt grans. El nostre algorisme funciona més ràpid i és més genèric que els que existeixen en la literatura, i, a més, pot ser aplicat a una modalitat, les seqüències d’imatges SLO, encara més difícilment. Hem executat bateries de tests per refinarn la velocitat i robustesa, la qual cosa ens ha permès incorporar-lo amb fiabilitat a una aplicació mèdica que es troba ja en funcionament en un hospital.

Per acabar, hem explorat diversos problemes de posada en correspondència que apareixen en l’àrea d’ecografies intraoperatives. Per fer-ho ens ha calgut, en primer lloc, construir un sistema capaç d’adquirir imatges de vídeo i de localitzar la posició del capçal de l’ecògraf, tot en temps real. Hem fet els experiments amb un cervell humà in vitro; hem composat una imatge ecogràfica volumètrica i l’hem posat en correspondència amb una resonància del mateix òrgan, fent servir el nostre algorisme genèric. A més, hem ampliat aquest esquema per alinear les ecografies individuals 2D en una imatge 3D. En tots els casos els resultats han estat satisfactoris, i són el primer pas d’un algorisme que permetrà mesurar la deformació que experimenta el cervell durant una operació quirúrgica.
Contents

Acknowledgments
Abstract
Resum
1 Introduction
1.1 Motivation
1.2 A brief chronology
1.3 A summary on registration
1.3.1 Image modality: Monomodality versus multimodality and dimensions
1.3.2 Image contents: imaged area and patient
1.3.3 Transformation model
1.3.4 Comparison paradigm
1.3.5 Short description of the mutual information method
1.3.6 Optimisation method
1.4 Objectives of the thesis
1.5 Organisation of the thesis
2 CT to MR volume registration
2.1 Introduction
2.2 Creaseness operator
2.2.1 Three classical definitions of creases
2.2.2 New creaseness operators
2.3 Correlation as a measure of matching
2.4 The hierarchical approach to optimisation
2.4.1 Building the pyramid
2.4.2 Exhaustive search
2.4.3 Iterative optimisation
2.4.4 Initial alignment
2.5 Results of the assessment
2.5.1 Visual validation
2.5.2 Experimental choice of algorithm parameters
2.5.3 Comparison with a mutual information algorithm
CONTENTS

2.5.4 The Vanderbilt database .. 67
2.6 Conclusions .. 74

3 Registration of retinographies 75
 3.1 Introduction ... 75
 3.2 Short review of registration methods for ophthalmologic images .. 78
 3.3 Our method .. 82
 3.3.1 Creaseness measures .. 88
 3.4 Robustness assessment ... 91
 3.4.1 Methods to validate the testbench 95
 3.4.2 Conclusion from the testbench 99
 3.3.3 Samples of a registered sequence 101
 3.4.4 Additional results for single 2-D pairs of retinographies 104
 3.5 Refining the search .. 107
 3.6 Some evaluations of accuracy 113
 3.6.1 Accuracy based on the width of accumulated creases 113
 3.6.2 Accuracy based on the automatic correspondence of landmark 117
 3.7 Preliminary study for a medical application 120
 3.8 An actual clinical application 128
 3.9 Future work ... 130
 3.10 Conclusions ... 130

4 Composition and registration of 3-D ecographies .. 133
 4.1 Ecography for diagnosis .. 134
 4.2 A system for free-hand ecography 136
 4.3 State of the art ... 140
 4.4 A system for compounding ecographies 141
 4.4.1 Technical considerations 142
 4.4.2 Calibration procedure .. 143
 4.4.3 Calibration using a Z-shape phantom 147
 4.4.4 Calibration by means of a flat surface 152
 4.4.5 Calibration using cross-wires 155
 4.5 Results .. 159
 4.5.1 Live fusion with MR images of a volunteer 159
 4.5.2 Composition of 3-D volume image of an in vitro human brain 162
 4.5.3 Improving accuracy by means of 2-D to 3-D self-registration 172
 4.5.4 3-D ecography to MR registration 182
 4.5.5 Live ecography to MR registration 187
 4.6 Conclusions ... 192

5 Conclusions .. 195

A Specifications of the transformations 201

B Graphical results for the Vanderbilt database. 203

C Specifications and transformations for the Vanderbilt experiment. 209
List of Tables

2.1 Computation times taken by Fourier transformations 46
2.2 Computation times in seconds taken by the correlation process 47
2.3 List of experiments ... 52
2.4 Specifications of the 5 pairs of images used in the first set of experiments. 53
2.5 Performance of our method for 50 trial misregistrations and two datasets. 61
2.6 Comparison between mutual information and our method 62
2.7 Some results of the robustness experiment for dataset 1 and 3 65
2.8 Some results of the robustness experiment for dataset 5 66
2.9 Numerical results of the Vanderbilt tests 69
2.10 Global results of the Vanderbilt test compared in groups 70

3.1 Comparison of registration times in literature 79
3.2 Outline of retinographies in the database. 83
3.3 Parameters to extract the creases. .. 88
3.4 Testbench for the registration algorithm 92
3.5 Specification of the SLO sequences used for testing 92
3.6 Results of testbench for patients A–C ... 98
3.7 Results of the experiment to recover random misregistrations 105
3.8 Settings for last-seed and local methods 107
3.9 Disimilar solutions for consecutive frames 108
3.10 Registration statistics for global and local methods 110

4.1 Coordinate systems involved in the composition 138
4.2 Identifiable parameters for each model to calibrate the transducer 144
4.3 Numerical values of calibration by means of a flat surface 155
4.4 Accuracy of calibration ... 155

C.1 Image specifications of the Vanderbilt’s database 209

H.1 Identifiable parameters for each model 236
H.2 Numerical results for experiment RP1. S, set; #, number of collected
 points. .. 237
H.3 Numerical results for experiment RP2 240
H.4 Numerical results of experiment RL .. 242
H.5 Numerical results for experiment SP .. 242
H.6 Numerical results for experiment SL .. 244
LIST OF TABLES

H.7 Numerical results for experiment SS . 244
List of Figures

1.1 Typical printout of slices as used by physicians 2
1.2 CT print with markers used in stereotaxis 3
1.3 Interactive visualisation of orthogonal views of volume images 4
1.4 Landscape view of an image 6
1.5 Scheme of a registration procedure 8
1.6 Types of global transformations 11
1.7 Example of segmentation 15
1.8 Voxel-based registration scheme 17
1.9 CT image with grey values remapped to resemble MR image 20
1.10 Bone seen as crest in CT image 26
1.11 Comparing 2-D and 3-D creaseness operator 27
1.12 Irregular thickness of the bone 27
1.13 Scheme of the registration algorithm for CT and MR images 30
1.14 Ridges and valleys at level curves 32
1.15 Rothe creaseness of a heart gammagraphic image 33
1.16 L_{vv} operator 34
1.17 Comparison of the L_{vv} and $\tilde{\kappa}_d$ operators 36
1.18 Creaseness measures of the MR slice for κ, $\tilde{\kappa}$, $C\tilde{\kappa}$ 38
1.19 Correlation is maximum at misalignment 41
1.20 Algorithm to reduce the computational cost of correlation 42
1.21 Profile of the correlation function 44
1.22 Algorithm to compute the correlation at the Fourier domain 45
1.23 Partial overlapping 48
1.24 Detection of the main axis in CT and MR images 49
1.25 Estimating the initial translation 49
1.26 Steps before images are set to register 50
1.27 General scheme of our registration algorithm 51
1.28 Fusion of registered volumes of data set 1 54
1.29 Registered creases at two slices of data set 3 55
1.30 Fusion of registered volumes of data set 3 56
1.31 Experiment to check for the robustness of the registration method 57
1.32 Experiment to assess the robustness 58
1.33 Parameters optimised in the experiment: $\# ftol$ and $\#$ seeds per level 60
1.34 Visual comparison between MI and our method for dataset 4 64
LIST OF FIGURES

2.26 Alignment including scale improves results 68
2.27 Poor segmentation of patient 6–B CT–MR_T1 72
2.28 Bar graphics of error for all methods for each pair of modalities 73

3.1 Scheme of the eyeball .. 76
3.2 Samples of several retinographic modalities 77
3.3 SLO devices ... 78
3.4 Noise in SLO images ... 84
3.5 Graphic scheme of the alignment procedure. 85
3.6 Pseudo-code of the registration algorithm (1) 86
3.7 Pseudo-code of the registration algorithm (2) 87
3.8 Vessels change their brightness along the sequence 89
3.9 Extracting vessels in SLO images .. 90
3.10 Traslational and rotational values along the sequence 94
3.11 Clusters of valid and non valid registrations according to two measures. 97
3.12 Samples of sequence B after registration.(1) 101
3.13 Samples of sequence B after registration (2) 102
3.14 Samples of sequence B after registration (3) 103
3.15 Registered images for retinographies, green and angiographic images . 106
3.16 Different solutions for consecutive frames 108
3.17 Model of the eye ... 109
3.18 Grid for local registration ... 111
3.19 Measuring alignment by accumulating creaseness images 114
3.20 Profile along accumulated creaseness images (Patient A) 115
3.21 Profile along accumulated creaseness images (Patient B) 116
3.22 Landmarks used to estimate the accuracy of the registration for the landmark correspondence error ... 118
3.23 Mean error for global and local methods with the landmark correspon-dee error. ... 119
3.24 Points from serie A where we computed the dilution graphs. 121
3.25 Points from serie B where we computed the dilution graphs 122
3.26 Normalization of raw value for saturation curves 124
3.27 Saturation curve to local vs global methods 125
3.28 Dilution curves for patient A (1) .. 126
3.29 Dilution curves for patient B (1) .. 127
3.30 Dilution graphs obtained manually and automatically 129

4.1 Ecographies’ poor image quality make automatic processing difficult. 134
4.2 Each b-scan I_i is related to a position P_i in some external coordinate system ... 136
4.3 Samples from an us sequence .. 137
4.4 Elements of a free-hand ecography system 138
4.5 Coordinates systems involved in the free-hand ultrasounding 139
4.6 Models to estimate M^R_U .. 145
4.7 System for calibration with an Optotrack 149
4.8 Calibration errors for Z–shape phantom 150
4.9 Calibration using a Z-shape phantom ... 151
4.10 Pseudo-code of the algorithm to detect the surface line. 153
4.11 Algorithm for automatic detection of a flat surface in ecographies ... 153
4.12 Samples of automatic detection of a flat surface in ecographies 154
4.13 Exercising all degrees of freedom to scan the phantom 156
4.14 Numerical values of calibrating the probes 157
4.15 Accuracy of the calibration using a cross wire. 157
4.16 Histogram of the calibration errors .. 158
4.17 Pictures of a volunteer wearing the bite block 160
4.18 Live ultrasound fused to MR volume of volunteer 161
4.19 Picture of the system to acquire the images with the Minibird tracker 163
4.20 Picture and MR image of the brain. ... 164
4.21 Samples of original ecographies frames 165
4.22 Orthogonal views of composed 3-D images 166
4.23 Physical characteristics of the ecographies’ video output 167
4.24 Display of 16 slices of the composed cuberille in experiment A (10Mhz probe). (Inverted graymap) ... 169
4.25 Display of 16 slices of the composed cuberille in experiment B (3.5 Mhz probe) (Inverted graymap) ... 170
4.26 Display of 16 slices of the composed cuberille in experiment C (6Mhz probe) (Inverted graymap). The horizontal band appearing on the left zone of slices in the third row corresponds to the sponges used to keep the brain stable. ... 171
4.27 Comparing ecographies for registration 173
4.28 Top left: profile of the translations in z for experiment C. Top right: percentage of successful and failure registrations for experiments A, B, C. Bottom: Corrections in the position for a number of frames in two areas of the volume. Arrows start at the position of the middle pixel of the frame and end where at the position given by the self-registration. Note that arrows in the same groups point to the same direction. 175
4.29 2D–3D registration algorithm ... 176
4.30 Optimising the registration algorithm .. 177
4.31 Visual samples of the 2D–3D algorithm for experiment B 178
4.32 Visual samples of the 2D–3D algorithm for experiment A 179
4.33 Visual samples of the 2D–3D algorithm for experiment C 180
4.34 Comparing composed volumes without and with registration (Exp. C) 181
4.35 Scheme of the coordinates systems from the video image to the registered MR volume ... 182
4.36 Orthogonal view of creases after registration 183
4.37 Two corresponding views of US (left) and MR (right) after registering the two volumes. ... 185
4.38 B-frame ecography with corresponding MR slice 186
4.39 Success of registration for experiments A,B,C for us to MR 189
4.40 Creases visually overlap for registered images 190
4.41 Visual assessment of registration of us B-frames to MR volume........ 191
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Visual registration for patient 1</td>
<td>204</td>
</tr>
<tr>
<td>B.2</td>
<td>Visual registration for patient 7–A</td>
<td>205</td>
</tr>
<tr>
<td>B.3</td>
<td>Visual registration for patient 2–B</td>
<td>206</td>
</tr>
<tr>
<td>B.4</td>
<td>Visual registration for patient 1–B, 2–B, 4–B, 5–B, 6–B and 7–B, modalities MR_RAGE to MR_T2</td>
<td>207</td>
</tr>
<tr>
<td>D.1</td>
<td>Interpolation grid with step $t = 4$</td>
<td>218</td>
</tr>
<tr>
<td>D.2</td>
<td>Bilinear interpolation</td>
<td>219</td>
</tr>
<tr>
<td>E.1</td>
<td>Geometric model of the eye</td>
<td>222</td>
</tr>
<tr>
<td>E.2</td>
<td>Anti-projecting the fundus image</td>
<td>224</td>
</tr>
<tr>
<td>F.1</td>
<td>Registration applied to Michelangelo's Pietà</td>
<td>226</td>
</tr>
<tr>
<td>G.1</td>
<td>Steepest descent</td>
<td>230</td>
</tr>
<tr>
<td>G.2</td>
<td>Parabolic approximation</td>
<td>231</td>
</tr>
<tr>
<td>G.3</td>
<td>Leveberg–Marquardt</td>
<td>232</td>
</tr>
<tr>
<td>H.1</td>
<td>Graphical results for experiment RP1</td>
<td>239</td>
</tr>
<tr>
<td>H.2</td>
<td>Graphics of errors for experiment RP3</td>
<td>241</td>
</tr>
<tr>
<td>H.3</td>
<td>Error as function of time for experiment SP</td>
<td>243</td>
</tr>
</tbody>
</table>