Appendix F

Appendix B: Lightcurves and ALPHA plots
F.1 The complete daily lightcurve

The following pages present the daily lightcurves of Mkn 421 with more than 7 runs per night from February 2001 until June 2001 as recorded with the CT1 telescope in La Palma, altogether 259 hours of observation. As explained before, a simple flare model

\[F(t) = a + \frac{b}{2(t-t_0)/c + 2-(t-t_0)/d} \]

has been fitted to each night, if a simple straight line fit gave a reduced \(\chi^2/\text{NDF} \) worse than 1.5. As starting values have been chosen: \(a= \) the constant term from the line fit, \(b=8.0 \), \(c=d=25 \) minutes, \(t_0= \) the highest flux point in the curve. The fastest flares are not covered by the fit. Some nights like 51966 contain flares that are very fast and are significantly outside the flare model.
Figure F.2: Lightcurve of the nights 51930, 51931, 51932 and 51933
Figure F.3: Lightcurve of the nights 51934, 51935, 51936 and 51937
Figure F.4: Lightcurve of the nights 51938, 51939, 51940 and 51941
Figure F.5: Lightcurve of the nights 51942, 51928, 51929 and 51930
Figure F.6: Lightcurve of the nights 51959, 51960, 51961 and 51963
Figure F.7: Lightcurve of the nights 51964, 51966, 51968 and 51970
Figure F8: Lightcurve of the nights 51982, 51983, 51984 and 51985
Figure F.9: Lightcurve of the nights 51986, 51987, 51988 and 51989
Figure F.10: Lightcurve of the nights 51990, 51991, 51992 and 51993
Figure F.11: Lightcurve of the nights 51994, 51996, 51997 and 50210
Figure F.12: Lightcurve of the nights 52012, 52013 and 51927
F.2 The estimation of the background for the spectrum

For completeness the plots for the background estimation for the spectrum calculation are shown here. For each energy bin a ALPHA plot has been made and the background from zero up to 18° is estimated by means of a polynomial fit with two free parameters in the ALPHA region without signal. The fit regions have been chosen energy dependent and are: 30°-80° for energies below 1 TeV, 15°-70° for energies from 1 TeV to 5 TeV and 10°-50° for energies above 5 TeV. These values have been chosen to be adequate to the width of the ALPHA distribution of the signal (which becomes wider for lower energies) and to the shape of the background (which becomes more curved for higher energies).
Figure F.14: ALPHA plots for energies from 1.3 TeV to 7.5 TeV
Figure F.15: ALPHA plots for energies from 7.5 TeV to 31.6 TeV
Bibliography

[Ame00] Giovanni Amelino-Camelia and Tsui Piran, Cosmic rays and TeV photons as probes of quantum properties of space time, hep-ph/0006210, June 2000

[Ame96] G. Amelino-Camelia et al., Distance Measurement and Wave Dispersion in a Liouville-String Approach to Quantum Gravity, May 1996

[Aha99/1] Aharonian, Astrophysics and Astronomy, 349, 29, 1999

[Bir02] J.A. Biretta, W. Junor, M. Livio, Evidence for initial jet formation by an accretion disc in the radio galaxy M87, New Astronomy Reviews 46

[Bla01] O. Blanch, M. Martinez, Exploring the gamma ray horizon with the next generation of gamma ray telescopes, astro-ph/0107582, July 2001

[Fab97] B. Fabbro, Linear Discriminant analysis with stepwise method. Application for MSSM Higgs boson search in the $hA \rightarrow b\bar{b}bb$ channel at LEP2, ALEPH 97-012, February 1997

[Hsu02] S. Hsu, A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets, astro-ph/0202380, February 02

[Kes01] M. Kestel, A method to correct HILLAS Parameters of Imaging Cherenkov Telescope Data taken at different Background Light levels, Proc. 27th ICRC (Hamburg), OG269, 2001

[Kra01] D. Kranich, Temporal and spectral characteristics of the active galactic nucleus Mkn 501 during a phase of high activity in the TeV range, PhD thesis at the Technische Universität München, March 2001

[LiMa83] Ti-Pei Li and Yu-Qian Ma, Analysis Methods for Results in Gamma-Ray Astronomy, The astrophysical Journal, 272:317-324, September 83

[LON97/1] Longair, High energy astrophysics, volume 2, p340, 1997

[LON97/2] Longair, High energy astrophysics, volume 2, p326, 1997

[MagCom] Norbert Magnussen, private communication

[Mar02] Alan Marscher et al., Observational evidence for the accretion-disk origin for a radio jet in an active galaxy, Nature vol 417, 6 June 2002

[Mir00] Mirzoyan, Conversion factor calibration for MAGIC based on the use on measured F-factor of PMTs, MAGIC internal note, April 2000

[MirCom] Razmik Mirzoyan, MPI für Physik, Munich, private communication

[Sch00] T. Schweizer and M. Dosil, Measurements of the NSB in La Palma on the Roque de los muchachos, September 2000

[Ste95] F. W. Stecker, O. C. De Jager, Absorption of high energy gamma rays by low energy intergalactic photons, astro-ph/9501065, Jan 95

[Tan98] Tanimori et al., TeV gamma-ray observations of southern BL LACs with the CANGAROO 3.8m imaging Telescope, astro-ph/9811260, 1998

[TW] This thesis

[Vas99] V. V. Vassiliev, Extragalactic background light absorption signal in the TeV γ-ray spectra of Blazars, astro-ph/9908088, August 99

[Wan02] Y. Wang ad P. Biermann, Efects of galaxy mergers on the faint source counts and the backgound, to be published in Astronomy and astrophysics

[WitCom] Wolfgang Wittek, MPI für Physik, Munich, private communication