Capitulo 5

Calculo de curvas
hiperelipticas modulares
nuevas

En el capitulo 3 se demostré que hay un nimero finito de curvas hiperelipticas
modulares nuevas. En el capitulo 4 se determiné que el niimero total de estas
curvas para el caso en el cual tienen género 2, es de 213. Ademas, se calcularon
ecuaciones para cada una de ellas. Para encontrar todas estas curvas tuvimos
que calcular un conjunto de candidatos entre los cuales se encontraban aquéllas
y el proceso de calculo de estos candidatos se realiz6 en varios ordenadores que
estuvieron funcionando ininterrumpidamente para tal efecto durante varios
meses. Aunque en teoria el calculo del resto de curvas hiperelipticas modulares
nuevas es posible de realizar, en la practica, usando algoritmos del mismo tipo,
esto llevaria varios anos de cdlculo con los ordenadores actuales. Debido a este
motivo, hemos optado por calcular todas las curvas hiperelipticas modulares
nuevas hasta un cierto nivel.

Este capitulo se divide en las siguientes secciones:

1. La proposicién 3.5 nos proporciona un criterio que nos permite reconocer
si una variedad abeliana A cociente de Ji(N) corresponde a una curva
hipereliptica modular nueva. En esta secciéon, mostramos resultados adi-
cionales relativos a los coeficientes de las g-expansiones de las formas
nuevas asociadas a A y del nivel N, los cuales nos permitiréan reducir el
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80 Capitulo 5. Calculo de curvas hiperelipticas modulares nuevas

tiempo de cdlculo para determinar todas las curvas hiperelipticas modu-
lares nuevas para un nivel dado.

2. Exponemos un proceso general, similar al caso de género 2, para calcu-
lar las curvas hiperelipticas modulares nuevas de género 3 cuando la
jacobiana es Q-simple.

3. Mostramos el algoritmo que hemos implementado en MAGMA, que es la
aplicacién directa de los resultados de la primera seccion.

4. Utilizando el algoritmo de la seccién anterior, hemos calculado todas
las curvas modulares hasta un determinado nivel. Aqui expondremos las
conclusiones a las que hemos llegado tras haber analizado los resultado
obtenidos en este calculo.

5.1 Criterios de determinacion

En primer lugar presentamos el criterio de comprobacién que utilizaremos para
realizar los calculos de este capitulo. Este es la adaptacién de la proposicién
3.6 al caso que nos ocupa.

Criterio 5.1. Sean fi,..., fm € S2(N) formas nuevas tales que el espacio
vectorial complejo @;", S2(Ay,) tiene dimension g > 2. Sea {h1,...,hg} la
base de @, S2(Ay,) como en la Proposicion 3.5 y pongamos

_ g ey qdz/dq
hg hg

Si existe un polinomio F(x) € Q[X] de grado 2g+2 6 29+1 sin raices repetidas
tal que

v — F(z) = 0(¢°Y) con ¢y =2grado(F)(g1 —1)+1,

donde g1 es el género de X1(N), entonces C : y?> = F(x) es una curva hipe-
reliptica modular nueva de género g tal que

JC) R Ay x o x Ay,
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Observacion 5.1. Si J(C) S Ay para alguna forma nueva f € Sa(N,e¢), en-
tonces podemos reemplazar g; por g. n, el género de X (NN,e). Ademas, si
¢ = 1 entonces para cada involucién de Atkin-Lehner Wy, se tiene la siguiente
igualdad

Wi f = e(M)*f para o € Gal(@/Q),

donde ¢(M) € {—1,1}. Consideramos el grupo
B'(N)={Wy € B(N) : (M) = 1},

donde B(N) es el grupo de involuciones de Atkin-Lehner. Entonces la curva
C puede ser recubierta desde la curva modular X)(N) = Xo(N)/B'(N) y
podemos reemplazar g; por ¢’, donde ¢’ denota el género de X (V). Nétese
que B'(N) = B(N) 6 B(N)/B'(N) ~7Z/2Z y B'(N) = {id} si y s6lo si N es
la potencia de un primo y €(N) = —1.

La proposicién siguiente mejora el resultado de la parte (iii) del lema 3.4
cuando 00 se proyecta en un punto de Weierstrass.

Proposicién 5.1. Sea (C,7) una curva hipereliptica modular nueva de nivel
N de género g tal que m(ico) € Wei(C'). Si J(C) S I[%, Ay, donde cada f; =
D>t aq(f) q" € S2(N,e;) es una forma nueva normalizada, entonces aéﬂ =0
para todon > 1,1 =1,...,m. En particular, 4N .

Demostracion: El caso g = 2 ha sido demostrado en el capitulo 4 (ver pro-
posiciones 4.2 y 4.10). Por lo tanto, sélo nos queda probarlo para g > 2.
Diferenciaremos dos casos, dependiendo de si J(C') es un Q-factor de Jo(N) o
no, o lo que es lo mismo, si todos los caracteres son triviales o no.

En primer lugar, lo demostraremos para el caso en el cual la jacobiana de
C no es un Q-factor de Jo(INV). En esta situacién vimos en el teorema 3.10 que

g =3y que J(CO) S Ayp x Ay, donde dim Ay, = 1,dim Ay, = 2 y existe una
curva modular nueva C’ de género 2 tal que J(C") R4 f»- Probamos en la

proposicién 4.2 que entonces agi) = 0 para todo n > 1y que 4|N; por lo tanto,

. . .. 1 ,
como fi1 tiene caracter trivial, obtenemos que agn) = 0. Asi completamos la
demostracién.

Ahora, supongamos que J(C') es un Q-factor de Jy(N). Denotemos por

Kz:Kf“ mZ:[KZQ}, 2:1,m
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Parai=1,...,m, sean a( D, K — R, j=1,...,m; las Q-inmersiones de Kj;
o
en R y definamos fi]) _ oy fi yan W) = o a() para j=1,...,m;.
Sea B = Ky x ---x Kp,. Se denotard por @ = (a1, ..., a(™) a un elemento

de E , donde a9 € K; para i = 1,...m. El producto natural
a-b= (a(l) B et b(m))
y la inclusiéon natural

Q — E

c — (¢,m,c),

proporcionan a E una estructura de Q-dlgebra de dimension g sobre Q. Con-
sideremos las aplicaciones siguientes

Tr:E—Q  Tr@=)» Trg,gla”

(,V:ExE—Q, (@b =Tr@-b).
La aplicacién Tr es Q-lineal y ( , ) es bilineal y no degenerada.

~ 1 m
Para un entero n > 1 denotamos por a, = (ag ), o, a ( )) € E. Por cons-
truccion se tienen las siguientes leyes de recurrencia:

(1) @Gmn = Gm - Gy si (m,n) = 1.

(ii) @yr = @pr—1dp — PE(P)a,n-2 para todo primo p.

donde £(p) = (e1(p), ..., em(p)).

Se tienen las siguientes propiedades:
(1) ¢g=1parai=1,...,m.
(2) det(agn DFOparal<n<g,1<i<m,1<j<m,.

(3) Existe una tnica base formada por hq,...,hy con g-expansiones racio-
nales tales que para j =1,...,g¢,

2] 1+ch2nq +chnq

29<n



5.1 Criterios de determinacion 83

De (2) obtenemos que {az;j—1 : 1 < j < g} es una Q-base de E. Sea
{@1,..., a4} la base de E tal que para todo i,j = 1,..., g se tenga

~ ~ 0 sii = 7,

Entonces se cumple

hy=>"al™™ o = 3" T @; - G,

n>0

)

(m)
donde a(-n’m) = n agn

: . Como Tr(a; - a2n) = 0 cuando n < j < g, obtenemos

ag; € @ Qazp—1.
1<n<j
En particular, as € Q, es decir, ag = agj) € Q para todo j. Por lo tanto,
agn € Qy agm = agn) € Q para todo j.
Ahora, probaremos que

Cg2g = Cg2g+2 = Cg—1,2g—2 = Cg—1,29 = 0.

Obsérvese que ¢; j = Tr(@; - a;). Ahora, usando (5.1) y las leyes de recurrencia
antes descritas para a,, obtenemos

‘ g impar g par

09729 0 0
Cg,2g+2 0 0
Cg—1,2g—2 0 0
Cg—1,2g B 0

donde

5= as sig=3,
1 0 si g # 3.

Ahora, probaremos que 8 = 0 cuando g = 3. En efecto, si ¢ = 3 tenemos

ha ¢ +asg® +aq” +0(¢7),
hs = ¢®+bq" +0(d),
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y
x = s = ?—b—i-cmq—i—O(q),
_ qdz/dg 1 b as _3
y - hS - q7 q5 2q4 q+0(q )

Igualando coeficientes de x e y obtenemos
y? — (27 + 5b2%) = —8az ¢ + O(¢71Y).
Por lo tanto, ao = 0. Asi, para g > 2 se tiene

hg—
r=-22 =g 2 +a+0(),
hg

y la base formada por hy_; = z'hy, 0 <4< g—1, cumple

r_ 21 2i+1 r
hi =q t Ci2it14 + § Cij Q-
2i+3<j

(%) (4)

Esta tltima condicién implica que ay” = a,’ = 0 para todo ¢ y, a su vez, que
2|N. Por lo tanto, agr)L = 0 para todo enteron > 1, 1 <47 < m. Como f; es un
forma nueva de nivel N y cardcter trivial, se tiene 4|N. 0

Como consecuencia de este resultado, del lema 3.4 y del teorema 3.10, obte-

nemos las condiciones necesarias que se presentan en la siguiente proposicién.

Proposicién 5.2. Sea (C,7) una curva hipereliptica modular nueva de nivel
N y de género g > 2 tal que J(C) es un Q-factor de Jo(N). Pongamos P =
m(ico) € C. Entonces g < 10 y ademds

(i) Si J(C) es Q-simple y

— P ¢ Wei(C), entonces ningiun primo p < g divide a N.

— P € Wei(C), entonces 4|N y ningin primo impar p < 2g — 1 divide
a N.

(ii) Si J(C) no es Q-simple y

— P ¢ Wei(C), entonces para todo primo p < g se tiene que p*JN; si,
ademdas, p|N entonces g = 3.
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— P € Wei(C), entonces 4N y para todo primo impar p < 2g — 1 se
tiene que p?|N; si, ademds, p|N entonces g = 3.

Para un nivel fijado N, podemos calcular todas las curvas hiperelipticas
modulares nuevas correspondientes a este nivel. En concreto, el criterio 5.1 nos
permite comprobar la modularidad de una curva hipereliptica, mientras que
la proposicién 5.2 nos permite hacer una bisqueda maés selectiva y, en conse-
cuencia, con menos gasto de tiempo. Con estos resultados implementaremos
un programa en MAGMA, que sera mostrado en la seccion 5.3, para hacer efec-
tivo este calculo. Asi, calcularemos todas las curvas hiperelipticas modulares
nuevas de nivel N < 3000 con jacobiana Q-simple y de nivel N < 2000 con
jacobiana no Q-simple. No obstante, antes de proceder a dicho calculo, expon-
dremos el proceso que seguiriamos para calcular todas las curvas hiperelipticas
modulares nuevas.

5.2 Procedimiento general de determinacién

Siguiendo un razonamiento similar al mostrado en el capitulo 4 para género
2, podriamos calcular todas las ecuaciones, niveles y formas nuevas cuando
el género es mayor que 2. Sin embargo, el gran nimero de posibilidades para
los coeficientes de las g-expansiones de las formas nuevas nos impide, en la
practica, realizar estos calculos.

Ahora nos restringiremos al caso de género 3 y jacobiana QQ-simple. Para
este caso se tiene que los tnicos subcuerpos de Ky son Q y K. Asi, sabemos
que:

Kf = { Q(a2) = Q(as) si P ¢ Wei(C),
Q(a3) = Q(as)  si P € Wei(C).

A continuacién, mostramos como calculamos las curvas en el caso més sencillo,
esto es, cuando P ¢ Wei(C) o, equivalentemente, ay # 0:

1. Determinamos todos los posibles polinomios Ha(x) = H?Zl(X — %igy)

como en la demostracion del teorema 3.8. Es decir, todos los polinomios
monicos de grado 3 con coeficientes enteros que son irreducibles sobre
Q y tales que todas sus raices son reales y con valor absoluto menor o
igual que 2v/2. En total, hay 80 posibilidades para Ho.
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. Para cada polinomio Hs, fijamos as € Q tal que Hs(as) = 0. Entonces

para cada primo impar p < M = 16 consideramos sélo los valores de £(p)
y ap tales que €(p) € {0,1} y a, es un entero algebraico en Q(az) con
lap| < 24/p. En el caso particular en que p = 3, impondremos ademés

que Q(az) = Q(az) y €(3) = 1.

. Tomamos
M
f=q+) angd"+0("
n=2
y
3 M
h=) "f=3q+) Trg,olan)q" + O(¢"™*).
i=1 n=2
. Calculamos
M
hTy = Trg,glaz)q+ Y Tri,jglasan) ¢ +O(gM ™),
nﬂ2
hT3 = Trg,oa3)q+ > Try,gladan) ¢" + O,
n=2

Asi, el conjunto {h,h|Ts, h|T5} es una base de Sa(Af) con g-expansién
racional, ya que Q ® Endg(Af) = Q(T2) y h # 0. Como consecuencia,
calculamos la base {hi, ho,h3} como en la proposicién 3.5 y, también,
las funciones

ha qdx/dq
— e y=-—".
hs hs

. Calculamos un polinomio F' € Q[X] de grado 8 tal que 2 —F(z) = O(q).

Requeriremos que F' no tenga raices miltiples y ademas

dr o, d
e 22 % e (hy, ho, hs).
y 'y

. Cuando las curvas candidatas se han obtenido, debemos calcular el con-

ductor geométrico de la jacobiana de cada una de ellas, y quedarnos sélo
con aquellas tales que el correspondiente conductor sea el cubo de un
entero. Para cada una de estas curvas, buscamos una forma nueva en
So(N), donde N? es el conductor, cuyas correspondientes funciones z e
y satisfagan la ecuacién y? = F(x). Para la comprobacién de este tltimo
paso utilizamos el criterio 5.1.
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Tras calcular todas las posibilidades, hemos obtenido sélo dos curvas, de-
notadas por Cy14 y Cos4, que aparecen en la tabla 6.6.

Cuando as = 0, el ntimero de posibilidades que debemos tener en cuenta
crece considerablemente, ya que el niimero de valores para as incrementa nota-
blemente el nimero de posibles cuerpos K. Ademds, en este caso es necesario
conocer cada a, con p < 19 para poder determinar la relacién y? = F(z).

Debido a que este proceso es extremedamente costoso en tiempo, hemos
decidido calcular todas las curvas hiperelipticas modulares nuevas hasta un
cierto nivel. Para ello hemos implementado en MAGMA un programa que re-
conoce si un Q-factor de Ji(N) es Q-is6geno a la jacobiana de una curva
hipereliptica modular nueva de nivel N. Los detalles del programa aparecen
en la siguiente seccién.

5.3 Determinacion efectiva con MAGMA

Usando el paquete de Simbolos Modulares de W. A. Stein, hemos implementa-
do un programa en MAGMA que detecta si un Q-factor de J; (V) tiene asociada
una curva hipereliptica modular nueva de nivel N y calcula una ecuacién de
dicha curva. Esta funcién estd basada en los resultados expuestos en la primera
seccién de este capitulo.

intrinsic CurvaHiperelipticaModular(F::SeqEnum) -> RngUPolElt
{Curva hipereliptica modular asociada a un Q-factor B de J_1(N),

si existe, donde F son las g-expansiones de los elementos de
una base racional de H"0(B,Omega~1)q/dq}

g:=#F;

Mg:=MatrixAlgebra(Rationals(),g);
Q<g>:=LaurentSeriesRing(RationalField());
QQ<x>:=PolynomialRing(RationalField());
MQg:=MatrixAlgebra(Q,g);
MQgl:=KMatrixSpace(Q,g,1);

mF:=Mg! [Coefficient(F[j],i) : i in [1..g] , j in [1..gl];
L,P,Q:=SmithForm(mF) ;
FF:=(MQg!P)*(MQgl!F);

v:=[Valuation(FF[i] [1]):i in [1..g]]1;
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if v eq [1{ : i in [1..g]] then
h1:=FF[g-1][1];
h2:=FF[g] [1];
X:=h1/h2; X:=(X-Coefficient(X,0))/Coefficient(X,Valuation(X));
Y:=qg*Derivative(X)/h2; Y:=Y/Coefficient(Y,Valuation(Y));
Mpar:=KMatrixSpace(RationalField(),1,2*g+2);
a:=Mpar![0: i in [0..2xg+1]];
for i in [0..2%g+1] do
a[1] [2%g+2-i] :=Coefficient (Y"2- (X" (2xg+2) +&+[a[1] [i+1]*X"1i:
i in [0..2xg+1]]),i-(2xg+1));
end for;
Res:=Y"2-(X~ (2xg+2)+&+[a[1] [1+1]*X"i: i in [0..2*xg+1]]1);
P:=x"(2*xg+2)+&+[al[1] [i+1]*x"i: i in [0..2%g+1]];
else
mF:=Mg! [Coefficient(F[j],2%i-1) : i in [1..g] , j in [1..g]];
L,P,Q:=SmithForm(mF) ;
FF:=(MQg!P)*(MQgl!F) ;
v:=[Valuation(FF[i] [1]):i in [1..gl];
if v eq [2%i-1 : i in [1..g]] then
h1:=FF[g-1]1[1];
h2:=FF([g] [1];
X:=h1/h2; X:=(X-Coefficient(X,0))/Coefficient(X,Valuation(X));
Y:=q#Derivative(X)/h2; Y:=Y/Coefficient(Y,Valuation(Y));
Mimpar:=KMatrixSpace(RationalField(),1,2*g+1);
a:=Mimpar! [0: i in [0..2%gl];
for i in [0..2*g] do
al[1] [2*#g+1-i] :=Coefficient (Y 2- (X~ (2*g+1)+&+[a[1] [i+1]*X"i:
i in [0..2%g]]),2%(i-2%g));
end for;
Res:=Y"2- (X" (2*g+1)+&+[a[1] [i+1]*#X"i: i in [0..2%gl]l);
P:=x"(2*g+1)+&+[a[1] [i+1]*x"1i: 1 in [0..2x%g]l];
else
return "ERROR 1: No hay curva hipereliptica modular";
end if;

end if;
if IsWeaklyZero(Res) then
return P;
else
return "ERROR 2: No hay curva hipereliptica modular";
end if;

end intrinsic;
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Ahora, describimos el uso de la funcién CurvaHiperelipticaModular. Sea
B un Q-factor de J1(N) de dimensién g, entonces H'(B, ') tiene una base
formada por g formas diferenciales regulares asociadas a formas parabdlicas
hi,...,hg € So(N) cuyas g-expansiones tienen coeficientes racionales. La en-
trada del programa es un vector con las g-expansiones de estas g formas pa-
rabdlicas hasta el coeficiente de grado igual a una determinada cota. Obsérvese
que si B es nueva de nivel N, esta cota es cy (ver criterio 5.1). La salida del
programa sera la ecuacion de la curva hipereliptica modular nueva de nivel N
y género g asociada a B, si existe. En caso contrario, la salida dard un error.

Ejemplo 5.1. Célculo de una ecuacién para X (23):

> N:=23;M:=ModularSymbols(N,2,+1); M;

Full Modular symbols space of level 23, weight 2, and dimension 3
> S:=CuspidalSubspace(M); S;

Modular symbols space of level 23, weight 2, and dimension 2

> g0:=DimensionCuspFormsGammaO(N,2) ;

> cota:=4*(Dimension(8)+1)*(g0-1)+1;

> F:=qIntegralBasis(S,cota); F;

L

Q"2-2%q"3-q 4+2%q"5+q 6+2%q"7-2%q"8-2%q"10-2%q~11+q~12+0(q"13) ,
q-q"3-q"4-2%q"6+2%q"T-q 8+2%q"9+2+q~10-4*q~11+3%q~12+0(q"13)

]

> CurvaHiperelipticaModular(F);

X"6 - 8%x"b + 2*%x"4 + 2%x"3 - 11*x72 + 10*x - 7

Ejemplo 5.2. Vamos a estudiar si los Q-factores de Jy(63)"" corresponden a

curvas hiperelipticas modulares nuevas. Primero, calculamos la descomposi-
cién de Jyp(63)"" sobre Q:

Jo(63)"Y 2 FEg34 x Ag3B,

donde Agzp tiene dimensién 2 y Fgz4 es una curva eliptica. La salida del
programa es la siguiente

N:=63;M:=ModularSymbols(N,2,+1);
S:=CuspidalSubspace(M); NewS:=NewSubspace(S);
New:=NewformDecomposition(NewS) ;New; // Decomposition of J_O(N) “new

—, VvV V V

Modular symbols space of level 63, weight 2, and dimension 1,
Modular symbols space of level 63, weight 2, and dimension 2
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g0:=DimensionCuspFormsGammaO(N,2) ;
cota:=4x(2+1)*(g0-1)+1;
F:=qIntegralBasis(New[2],cota);
CurvaHiperelipticaModular (F) ;

x"6 - 26%xx"3 - 27

vV V V V

Por lo tanto, con la notacién da la tabla 6.2, se tiene que Agsp 2 J(CesB)-

5.4 Evidencias numéricas

Utilizando el programa CurvaHiperelipticaModular, hemos intentado calcu-
lar todas las curvas hiperelipticas modulares nuevas con género mayor que 2.
En primer lugar, hemos obtenido todas estas curvas en el caso en el cual sus
jacobianas no son Q-factores de Jo(N) (¢ = 3). Después, calculamos todas
aquéllas tales que sus jacobianas son Q-factores de Jy(IN), para N < 3000 si
las jacobianas son Q-simples y para N < 2000 en el caso en el cual las jaco-
bianas no son QQ-simples. Las ecuaciones hiperelipticas de todas estas curvas
aparecen en el capitulo 6.

Los siguientes resultados muestran cuantitativamente el niimero de curvas
hiperelipticas nuevas que hemos calculado:

Teorema 4.1. #MC5°Y = 213.
Teorema 5.3. #{C € MC"V(2) : J(C) no es un cociente de Jo(N)} = 36.
Teorema 5.4. 288 < #MC"V(2) < oo.

Es decir, hemos determinado todas las curvas hiperelipticas modulares nue-
vas de género 2 y todas las que sus jacobianas no aparecen como un Q-factor
de Jo(N). El tercer de los resultados muestra que al menos hay 288 curvas
hiperelipticas modulares nuevas. Mostraremos algunas evidencias que nos per-
mitirdn conjeturar que éstas son todas la curvas del conjunto MC"*V(2).

Primero mostramos, para cada género menor o igual que 10, el cardinal de
curvas obtenidas con jacobianas Q-simples y niveles N < 3000, que compara-
mos con el cardinal de tales curvas de género 2 cuyas jacobianas son Q-factores
de J()(N )

2 3 4 5 6 7 8 9 10
114 14 13 3 0 0 0 0 O
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Obsérvese que para el caso de género 2 s6lo hay seis curvas de niveles mayores
que 3000, concretamente de niveles 3159, 4160, 7280, 7424 y 7664. El nivel méas
alto para el caso de género mayor a 2 es 1664 y no aparece ninguna curva
de género mayor que 5. Todo esto nos permite pensar que éstas son todas las
curvas hiperelipticas modulares nuevas con jacobianas Q-simples y Q-factores
de J[)(N)

La siguiente tabla es andloga a la anterior para el caso de jacobianas no
Q-simples y niveles N < 2000.

2 3 4 5 6 7 8 9 10
62 32 5 0 1 0 0 O O

Sélo hay dos curvas modulares nuevas de género 2 con jacobianas no Q-simples
y niveles mayores que 2000, concretamente de nivel 2208. Para el caso en que
existe una curva con jacobiana no Q-simple y género mayor que 2, el nivel mas
alto encontrado es 944 y sélo aparece una curva con género mayor que 5, que
es la curva Xo(71) que tiene género 6. Estos hechos nos permiten pensar que
éstas son todas las curvas hiperelipticas modulares nuevas con jacobianas no
Q-simples y Q-factores de Jy(N).

Frente a estas evidencias, nos parece bastante razonable hacer la siguiente
conjetura.

Conjetura 5.1. El conjunto MC"V(2) estd formado por las curvas de las
tablas del capitulo 6. En particular, #MC"V(2) = 288.

Finalmente, notamos que todos los niveles de las curva hiperelipticas mo-
dulares nuevas de género 2 tienen como maximo tres divisores primos impares
distintos, mientras que si el género es mayor que 2 como maximo hay dos.
Ademas, en este ultimo caso, el tnico nivel tal que el cuadrado de un primo
impar divide a éste es N = 734.
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Capitulo 6

Tablas de curvas
hiperelipticas modulares
nuevas

En este capitulo presentamos las ecuaciones de las curvas hiperelipticas mo-
dulares nuevas calculadas en esta tesis.

La seccién 6.2 estd dedicada a mostrar todas estas curvas para el caso de
género 2. El método para calcularlas ha sido descrito en el capitulo 4. Para
el caso en el cual la jacobiana es Q-simple y no Q-simple, hemos calculado
también ecuaciones de Q-curvas cocientes, que presentamos en la tabla 6.4.

En la seccién 6.3.1 mostramos las tnicas siete curvas de esta clase que
tienen género mayor que 2 y tales que sus jacobianas no son Q-factores de
Jo(IN). Asi, hemos calculado todas las curvas hiperelipticas modulares nuevas
tales que sus jacobianas no son Q-factores de Jo(NV).

Por tltimo, en la seccién 6.3.2 aparecen todas las curvas hiperelipticas
modulares nuevas de género mayor que 2 cuyas jacobianas son QQ-factores de
Jo(N) hasta un determinado nivel N. En concreto hasta N = 3000 si la
jacobiana es Q-simple y hasta N = 2000 si no lo es.

En orden a especificar la clase de Q-isogenia de las jacobianas de las curvas
presentadas, introducimos previamente una seccién destinada a etiquetar las
formas nuevas.

93
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6.1 Etiquetacion de formas nuevas

Vamos a mostrar un método para clasificar las clases de conjugacién de Galois
de formas nuevas. Para ello, primero identificaremos los caracteres de Dirichlet
y después etiquetaremos las formas nuevas para un nivel y un carécter fijados.

6.1.1 Caracteres de Dirichlet

En este apartado explicamos como describiremos los caracteres de Dirichlet
moédulo N, de manera que éstos queden determinados.

Definiciéon 6.1. Sea N un entero positivo. Un cardcter de Dirichlet mdédulo
N es un homomorfismo de grupos multiplicativos

e: (Z/NZ)* — C*.

El conductor de e, que denotaremos por f., es el minimo divisor M | N para
el cual € factoriza a través de la proyeccién natural (Z/NZ)* — (Z/M Z)*.
Denotaremos, asimismo, por orde al orden de e, es decir, al minino entero
positivo n tal que ™ = 1.

Si la factorizacién de IV en potencias de primos es de la forma
n
N=]]p" conpi<pi1yei>0,
se tiene la siguiente descomposicion
n
(Z/N Z.)* = H (Z/p5'Z

Por lo tanto, podemos definir caracteres de Dirichlet mdédulo potencias de
primos de la forma ¢y, : (Z/p;' Z)* — C*, de modo que

n
=
=1

Asi, es suficiente determinar los caracteres de Dirichlet médulo potencias de
primos. Para éstos, utilizaremos el siguiente resultado.
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Lema 6.1. Sea p un primo y e un entero positivo, entonces:

(i) Sip#2, (Z/p°Z) = Z/p* ' (p—1)Z.
(ii) (Z)27)* = {1}.

(iii) Sie> 1, (Z)2°7)* = Z/27 x 7.]2°"2 7 y cada factor estd generado por
—1 y 5 respectivamente.

Asi, para dar un caricter de Dirichlet médulo la potencia de un primo p,
es suficiente con dar la imagen de un generador explicito de (Z/p®Z)*, salvo
en el caso en el cual p =2y e > 2, en el que habrd que dar la imagen de los
dos generadores de (Z/2°7Z)*.

Ahora, si G es un grupo ciclico finitamente generado por gy x : G — C* es
un homomorfismo de orden n, entonces x queda determinado por x(g). Concre-
tamente, si elegimos ¢, = e2™/", se tiene x(g) = (»* para a, € {0,...,n—1}.
Denotaremos a x por {a, }.

Asi, si p es un primo tal que G = (Z/p®Z)* es ciclico, tomaremos como
g al menor entero positivo que genera G y si €, : G — C* es un carédcter
de Dirichlet, denotaremos por a, a a.,. El tunico caso en el cual el grupo
G = (Z/p°7Z)* no es ciclico sucede cuando p = 2 y e > 2. En este caso,
si eg : G — C* es un cardcter de Dirichlet se tiene que €9 = x2x5 donde
Xo: Z/27 — C*y Xy : Z/2¢72Z — C*, entonces tomaremos como generadores
de Z/2Z (vesp. Z/2°72Z) a —1 (resp. 5). Al cardcter €3 lo denotaremos por

as = {ay,, axé}'
En definitiva, si € es un cardcter de Dirichlet médulo N tal que la des-

composicién en factores primos de N es de la forma [];" | pi*,

;> denotaremos al
cardcter € por {ap,,...,ap, } N, donde a,, es como antes.

Cuando previamente se haya dado el nivel del cardcter suprimiremos el
subindice que denota dicho nivel.

Esta representacién determina de forma univoca los caracteres de Dirichlet.
El siguiente ejemplo ilustra esta notacion.

Ejemplo 6.1. Los caracteres € = {2,4}205 vy x = {4,4}225 son caracteres de
Dirichlet médulo 225 = 3252 pares de orden 15 y conductor 225. Ademds, se
tiene que orde3 = ord x3 = 3, ordes = ord x5 = 5 y los caracteres €, x no son
conjugados de Galois.
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6.1.2 Formas nuevas

A continuacion, vamos a ordenar y etiquetar las clases de conjugacion de
Galois de las formas nuevas; para ello, utilizaremos el método introducido
por J. Cremona en [Cre97] para formas nuevas asociadas a curvas elipticas
definidas sobre QQ y extendido para formas nuevas en general por W. A. Stein
en [Ste00]. Nos limitaremos al caso de peso 2 e introduciremos una nueva
etiquetacién para el caso de caracter no trivial.

Para el caso de formas nuevas con g-expansion racional, seguiremos la
notacién cldsica de J. Cremona. Para el resto de los casos, la forma en que
vamos a ordenar las clases de conjugacion de Galois de las formas nuevas de
nivel N y carédcter ¢ es la siguiente:

1. Ordenamos de menor a mayor dimension las variedades abelianas mo-
dulares asociadas.

2. Para el caso de caracter trivial: agrupamos las formas en clases tales que
dos formas estdan en la misma clase si tienen los mismos autovalores para
todas las involuciones de Atkin-Lehner. Si p; < --- < pg son los primos
que dividen a N, ordenamos estas clases lexicograficamente considerando
que el autovalor +1 precede al —1.

3. En cada una de estas clases (si el cardcter no es trivial tenemos una
unica clase) ordenamos por el valor absoluto de la traza (desde el cuerpo
de nimeros asociado a cada una de las g-expansiones) de los autovalores
de los operadores de Hecke T}, pJN, comenzando por el menor primo
que no divide al nivel. En el caso en que dos valores coincidan para un
mismo primo, precede el que tiene traza positiva, y si ambas son positivas
pasamos al siguiente primo que no divide al nivel.

Por lo tanto, tenemos un orden en el conjunto de clases de conjugacion de
Galois de las formas nuevas de nivel N y cardcter €. A cada clase se le asigna
una letra del conjunto

A,B,C,...,Z,AA,BB,..., 77, AAA, BBB, . ...

dependiendo del lugar que ocupe en el proceso anterior.

El formato de las etiquetas es el siguiente:

N|[Clase de conjugacion de Galois|, ,
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donde la clase de conjugacién de Galois es una letra del anterior conjunto.
Para el caso en que el caracter es trivial omitiremos el subindice .

Ahora, como a cada clase de conjugacion de Galois de formas nuevas de
nivel N le corresponde una clase de Q-isogenia de variedades abelianas mo-
dulares de nivel N, también tenemos ordenadas y etiquetadas las clases de
Q-isogenia de estas variedades. Asi, si por ejemplo f € So(N,¢) es una forma
nueva con etiqueta NA., a f la denotaremos por fy4. y a la variedad abelia-
na Ay por Aya,.. En el caso en el cual Ay es una curva eliptica, denotaremos
por En4 a esta variedad y, como hemos dicho anteriormente, seguiremos la
clasificacién de J. Cremona.

El cuerpo de coeficientes de una forma nueva serd denotado por una letra
K y el polinomio minimo de un generador de K por una letra P, ambas con
el subindice correspondiente a la etiqueta de la clase de conjugacién de Galois
de esta forma nueva.

Observacion 6.1. Obsérvese que esta notacién también coincide con la de J.
Cremona para el caso de curvas elipticas definidas sobre Q, salvo para los
niveles que van del 56 al 450 en donde hay casos en los que difiere.

El ejemplo siguiente ilustra esta notacion.

Ejemplo 6.2. Sea € un caracter de Dirichlet de orden 6 moédulo 13, es decir,
e = {2}. Se tiene que en S2(13,£)"*V sélo hay una clase de conjugacién de
Galois de formas nuevas; por lo tanto, a esta tnica clase la denotaremos por
f134 (230 @ SU variedad abeliana modular asociada por Ai3a @ Y al cuerpo de
coeficientes de su g-expansion por Kiza,,. Obsérvese que S2(13,¢) = S2(13),

por lo tanto, J1(13)QA13A{2}.

6.2 Género 2

En esta seccién presentaremos en primer lugar las ecuaciones hiperelipticas
de todas las curvas modulares nuevas de género 2. Para el caso de jacobiana
Q-simple, también mostraremos el cuerpo de coeficientes de la g-expansién de
la forma nueva correspondiente, es decir, la Q-algebra de Q-endomorfismos de
la jacobiana de la curva. Por tdltimo, para el caso de jacobiana Q-simple y no
Q-simple, mostraremos ecuaciones de Q-curvas cocientes. Si la jacobiana no es
Q-simple, daremos las clases de Q-isogenia de las dos curvas elipticas cociente.
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6.2.1 Tablas de curvas modulares nuevas de género 2

Mostraremos tres tablas con las ecuaciones hiperelipticas de todas las curvas
modulares nuevas de género 2. En la primera de ellas apareceran aquéllas que
tienen jacobiana Q-simple, en la segunda las que tienen jacobiana Q-simple
pero no Q-simple, y en la tercera aquéllas que tienen jacobiana no Q-simple.

A cada curva la denotaremos por la clase de QQ-isogenia de su jacobiana.
Esto es, si la curva es modular nueva de nivel NV y su jacobiana es Q-simple,
entonces su jacobiana serda QQ-iségena a alguna variedad abeliana modular. Si
por ejemplo la clase de Q-isogenia de esta variedad es N A., entonces deno-
taremos por Cy 4. a esta curva. Si la jacobiana de la curva no es Q-simple,
denotaremos a la curva por C']‘?,’B, donde N A y N B son las clases de Q-isogenia,
de las curvas elipticas cociente. Estas clases de Q-isogenia han sido calculadas
utilizando las tablas de Cremona, tanto las que aparecen en [Cre97] como las
que se pueden obtener electrénicamente via web [Cre] o mediante MAGMA
[BCPIT].

Para el caso en el que la Q-algebra de Q-endomorfismos de la jacobiana
de algunas de las curvas es Q(v/d) , con d = 1 (mod 4), hemos realizado un
cambio de variables para obtener un modelo sobre Z. En este caso, hemos
tomado h; — hg v —2ho en lugar de hy, he para calcular x e y.

De las 149 curvas que tienen jacobiana @Q-simple hemos obtenido 99 clases
de QQ-isomorfismo. Para el caso no Q-simple, de 64 hemos obtenido 43.

Tabla 6.1: Jacobiana Q-simple

C cy? = F(x)

Cosa 2 =a%—825 4224 +223 — 1122 + 102 — 7
Coga : y?> =a0 + 225 — 172% — 6623 — 8322 — 322 — 4
Csia @ y% =25 — 1425 4+ 612* — 1062> + 6622 — 8z — 3
Cssp @ y? =% — 42® 4 22% — 3223 — 2722 — 642 — 76
Csop  : y? =25 +62° — 52% — 662° — 5922 — 122

Cerp :y?=a8 4205+ 2% — 223 + 222 — 4o + 1

Cesa : y>=a°—11a* 4+ 723 + 72> — 122+ 8

Crsp > =a84+205+a* +623 +22%2 —dx + 1

Cssp @ y>=a0 +22°5 4 72 + 623 + 1322 — 8z + 4




6.2 Género 2

99

C

sy = F(x)

Csra

Cssp

Co3za

C1o34
Cro4B
Clo7a
Ci15B
Cla254
C133a
C13sp
C1s6c
Ciatp
Ci61B
Cle54
Cle7A
Ci7sE
C176D
Ci77a
Cis4E
C1ssa
C1ssB
Cr914
C205D
Coo7B
Ca0sE
C209B
C213B
Ca10
Co240
C24pD

y? = 2% — 62 + 1321 — 1823 + 1022 — 3

s y? = 2% — 8xt — 42® 4 3622 — 322

: y2:$6+6x5+5m4—6m3—|—2m2+1

: y2:x6+6x5+5x4+2x3+2$2+1

cy? =2° — 8xt + 23 + 302 — 20z + 8

: y2::c6—4:c5+109:4—18:L‘3+17:c2—10$+1
y? =28 + 625 + 5zt +102% 4 222 + 1

ty? =28 — 425 + 102" — 1023 + 522 + 22 — 3

cy? =28 +102° + 1721 + 142° + 1022 + 42 + 1
:y? =28 — 625 + 212" — 5423 + 902? — 108z + 45
cy? =25 — 1923 — 1422 4+ 282 — 8

cy? =28 4 62° + 112t 4 623 + 522 + 4

: y2:x6+2x4—6x3+17x2—18x+5

s y? =20 + 625 + 112t + 1423 + 522 — 122

cy? =28 — 42 + 22t — 22% — 322 + 20 -3

cy? =28 + 225 — 321 + 623 — 142% + 82 — 3

: y2:x5+3x4—26x3+14x2+x+7

: y2:x6+2x4—6m3+5m2—6m+1

syt =20 — 142’ — 72?192 -7

s y? =ab — bat 4+ 523 — 1522 + 62 — 11

syt =2t a4 a? - 2041

s y? =28 4 224 + 203 + 522 — 62+ 1

s y? =25+ 224 + 1023 + 522 — 62 + 1

y? = ab + 62° + 32t — 262% — 2722 — 122

:y? =25 + 32t — 212 + 52% + 167 — 12

cy? =8 — 42 + 82 — 823 + 822 +4x + 4

py? =28+ 220 +22% — 722 4+ 62— 3

syt =28+ 425 + 200 + 623 + 22 — 220+ 1

cy? =ad + 3zt — 1623 — 2022 + 64z — 32

o y? = 2% — 132* + 4823 — 362 — 327 + 32
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C sy = F(x)

Cosia @ y> =a8 —62* + 1023 + 2122 — 302 + 9

Corop @ y?> =% — 102* 4 2123 + 4822 — 1762 + 128
Corp Y2 =a® + 112t 4+ 72% — T2? — 122 — 8

Corsc @ y?> = a8 — 425 + 22% — 2223 — 1522 — 302 — 35
Cosop  : Y% =ax° — bt + 322 + 922 — 20w

Cogra : y?> =ab — 425 + 22* + 623 — 1522 + 140 — 7
Cogrre @ y? = 28 4+ 625 + 32* — 3623 — 6922 — 54 — 15
Cogoa  : y? =28 — 102° + 412* — 7823 + 6622 — 282 + 5
Csi5c ¢ y? = 28 4+ 625 + 32% — 1823 — 2722 — 242 — 4
Css14 : y> =a% —62% + 1822 + 922 — 18z +5

Cssre : y? = ab + 824 — 822 + 2022 — 122 + 12

Csesr @ y> = a° — bt — 4a® + 3922 — 322 4+ 8

Cs6a : Y2 =a° — 62+ 112% —42? — 22+ 1

Cse Y2 =a®—a3+222 -2 +1

Cssop @ Y2 =a® — bzt + 323 + 722 — 32 + 2

Cuec : y>=a5—3a* + 723 — 22 — 82 + 20

Cuep : y? =a°—22* + 523 — 1222 + 42— 16

Cuor : y°> =a° — bzt +122% — 2722 4 252 — 30
Cuoc Y2 =2 —223 — 722 —8x 48

Cusr @ y> =a° — 3z + 1223 — 822 — 200 + 4

Cusgy : y>=a® — Tzt + 2822 — 7222 4 762 — 12
Cuiep : y>=a° -3z +52% —22 —22+1

Cirsp : Y2 =a° =22+ 323 — 622 - 7

Csosp @ y? =28+ 22% — 1023 — 722 — 302 49

Cseonr : y°> =a® — Tz + 222 — 8z + 12

Cenip : y°> =ab — 625 + 212t — 4223 + 4222 — 242 + 5
Cesor  : y> = + 223 + 422 — 8z + 16

Cesor, : y°> =a® — 102 4+ 4222 — 9622 4+ 1122 — 64
Cessc : y°> = a0 +8z% + 2022 + 122 + 4

Croams : Y2 =a® — 32 +122% — 1022 + 72+ 9
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C sy = F(x)

Croan  : y° = ax® — 22* + 1022 — 1822 4 162 — 16
Crsop @ Y2 =% — 52t + 923 — 922 + 42 — 1
Crsoc 2 =25 +a* —32% - 322 + 40— 1
Crsop @ y? =a° —dat + 72% — 822 + 42 — 1
Crsor @ y% = a® — b3 + 202? — 242 + 19

Crssa @ y* = a0 — 62% + 1023 — 1522 + 62 — 3
Cssore @ 42 = 2 +22% + 112% — 8z + 24

Cssonr @ y* = 2° — bt + 823 + 322 — 232 + 8
Cosop  : y°> =a® — 8x* 4+ 2723 — 3022 4+ 18z — 7
Chossr © y? =2 — 62 + 182° — 2722 + 182 — 7
Cii2or : y* =a2° — 5ot + 1723 — 1522 — 14a
Chi20s : y2 = 2° + 5t + 1723 + 1522 — 14a
Chasoc : y? = 2° + 521 + 2223 + 1422 — 3z + 1
Cragor : y? = a° — ba* + 2223 — 1422 — 3z — 1
Cisoonr : Y2 = + 5t + 323 — 722 — 32 — 2
Crrgore : y? = 2° + 32% — 223 — 222 + 10z — 6
Crroor, @ y?> =% — 32% — 223 + 222 + 102 + 6
Cigoop : y? =% +72% — 1622 + 122 + 1

Crouc : y> =a+ 32t +52% — 1322 + 120 — 1
Crooar @ y> =a° +22% + 323 + 622 + 7

Crooar : y? = a° — 20% + 323 — 622 + 42 — 1
Crotea : y> =2 +32* — 723 4522 — 22+ 1
Coosopp: y? = x° + 52* + 1723 + 3322 + 402 + 30
Cossopp: y? = 2° — 5t +172% — 3322 + 40z — 30
Cs1s06 : y? = 28 — 62° + 212 — 2623 4 1822 — 3
Crosopp: Y2 = 2° — bat 4+ 1723 — 1522 + 62 — 5
Cregan : y> =a° — 32 — 723 — 522 — 22 — 1
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Tabla 6.2: Jacobiana Q-simple y no Q-simple

[

C = F(x)

=20 45+ 62 + 203 + 22+ 20+ 1
=20 4225 — 2t — 2?2 20 +1

=20 + 225 + 52t + 1023 + 1022 + 42 + 1
=% — 4zt — 1323 — 922 — 2
=25 — 3zt — 1222 — 162
=20 + 2223 + 125

= 2% — 5zt + 2022 — 162

[

Cisapy

[

Cl64 (0.1

[

Cigagg .

N

Cas40.)

[

C40A{{o,0},2}

[

Ci54(0.9

[

C18A1.01y

2_ .5 3 2
C52A{0y2} =x° —bx’ — b —1x
Ce3n 2 =26 2623 — 27
2_ .5
06414{{0’8}} =z° — 16z

[

=% — 22— 222 —x

=2° + 3z + 1222 — 162

= 2% — 1823 — 27

= 2% + 523 + 5z — 11
=254+ 32t + 2% - 222 — 2
=2° -3t 423 +22% -2
=a° + 42t — 1323 + 922 — 2

Co14(0.4)

N

CSOA{{o,o},z}

N

Cs14

[

C1004 0,10y

[

Cri2ag 0y

N

C112B((10y1) °

[

C124(00y.23 °

Cii7B 2 =26 1023 — 27
0128B{{0,16}} sy =2 + 64x

Cl484 6 2 =25 4 8t + 1123 4+ 322 — 2
Ci60c 2 = 2% — 1223 — 64

[

=z — 1zt — 1122 — 2

=S +at+a? -z
=2+ 12t + 1122 — 2

=2 -zt —2? -2

=20 — 223 — 27

= 2% — 5zt + 202® — 4022 + 442 — 20
=2° - 523 + 522 —x

C160A((1.03.1) *

[

C160B((1,07.)

)

C160C {1011y °

N

C160D((1.0,1) *

[

Cig9E

[

Cr9241. 07

Q@M@@@@@@@@@@@@@@@@@@@@@@@@@@@@

C2084( 00323 °




6.2 Género 2 103

C 2 = F(x)

Cousc 2 =20 4+ 623 — 27
CoseE 2 — 2% — 64z

C300c 2 = 2% + 1223 — 64z

[

C100A 100y Y° = 2° +52% + 52 411

Cs12B 2 = g5 4+ 423 — 4z
Cs12E 2 = g5 — 423 — 4z
Csaac 2 =25 — 2% —dx

N

=% -8zt + 1123 — 322 — 2
=542t +22% — 222 — 22 + 2
=2 — 2+ 203+ 222 — 22— 2
=% -5zt —ba? — 2
=25+ 52 + 522 — 2z

C5924 10,016y

[

Cr68A 111,07y

[

Cr68C 11,011y

[

Co28 411017}

N

Co28B( (1057

SSURR S ST ST ST T U~ SO SO SO~ U SO SO S SR SO SO S SO SR SO SO S IS

C1o880 2= 42— 4
Cha804 2 =25 4223 — 4z
Ch280D 2 — g% — 223 — 4z
Clos0E 2 =25 4 823 — 4
Chasor 2 =25 — 83 — 4z
Closog 2 =% + 2223 — 4z
ClagoN 2 =25 -2223 — 4
Ci3120 2 =% — 523 — 4z
Ca080.7 2 =25 472 — 4
Cosoumr 2 =25 4+ 523 — 4a
Cui6011 2= 2% -T2 — 4
Cr4044 2 =25 - 1023 — 4z
Cr424B 2= 2% + 1023 — 4a
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Tabla 6.3: Jacobiana no Q-simple

Q

cy? = F(x)
CB g2 = 26 4 425 — 122 — 1142% — 30822 — 3842 — 191
CibB o g2 = 26 — 425 — 402* + 34823 — 107222 + 1532z — 860
CAB L 42 = 46 4 245 — 5at — 3023 — 5522 — 48z — 16
iyt =ab - 342 4+ 1
CiB: y? = 2 4 6% — 4503 — 49022 — 1503z — 1564
CAP . 2 = 26 — 225 4 112% — 2223 + 212 — 122 + 4
CAB . 2 = 46 1 205 — 504 — 2243 — 312 — 24z — 8
CABL 2 = 4P 1 224 — 2645 — 13202 — 231z — 142
CHB: y? = 2P 4 4t — 2503 — 17222 — 339z — 222

CatP 2 =2 — 1803 +1
C{;‘l’B: y? =20 +22% —2* —82% — 22+ 22+ 1
Cgé;B: y? =25 — 3423 4+ x

CAS 2 = a5 — 220 +102% — 1622 + 21z — 14
CAB. 2 = 4P — 6t — 4523 + 49027 — 1503z + 1564
ClBQ’SD: y? = x5 — 2423 + 162
Cé’go: y? = 25 4 2423 4 162

5t yP=a% 4+ 821 + 623 + 822 +1
Cﬁ’QD! y? = 26 — 22° — 52* + 1823 — 1922 + 127 — 4
Cfg’ég: y? = 25 4+ 1223 + 162
C’{%’QD: y? =28 + 1423 4+ 1

6y s yP=a2%—102% +1
CGP: 2 =25 — 1003 — 1522 — 92 — 7

Cﬁgbc: y? = 2% — 122 + 362 — 4822 + 362 — 12

CAD g2 = ab — 1204 + 1223 + 2422 — 362 4 12
Clcg’QD: y?=2a% — a3 + o
CRP: 2 = ab 4+ 42 — 62° — 5822 — 111z — 70
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C y?> = F(x)
Cﬁ)’zci 92 = 2% — 4zt — 623 + 5822 — 111z + 70
CAP. 2 =25 4 3423 4+ 2

CSE: y? =25 — 100 — 1522 48

CSP 2 = ab — 2% +62° — 1322 + 120 — 4
C%’éj: y? = 2° + 16z

OB 42 = 45 4 2% — 62 — 2322 — 24z — 8
CoY 2 =ab — 2% —a® + 822 — 92 + 3

03?2700: y? =% — 2zt — 223 — 2% + ¢

ngbE: y? = 2® — 1223 + 162
Con  y? =% +20* — 223 + 222 + &

Caxl' y? = 25 — 4t — 2523 4 17222 — 339z + 222

CAC 42 =25 —102% + 1522 — 92 + 7
CAP: )2 =25 4 102° + 2
C'fgf: y? =25 — 1023 4+ x

Cioo  ¥2 = a5 — 2522 + 202 — 4

C'ﬁ)’({]: y? = 2% — 1023 + 1522 — 8

OAF . 2 = 26— 1924 + 9823 — 2402 + 120 — 4

CBF. 2 = 26 _ 1924 4 202° — 120 +4

Cﬁngi y2 =25 — 224 + 1023 — 222 + z

CoS: y? =ad + 20" 41023 + 2202 + &

CBC: 2 = a5 4204 —42® — 1722 — 182 — 6
wo P yi=at =Tt o

ngf: y? =25 — 2% — 423 + 1722 — 182 + 6

CP: 2 = a5 — 2% — 60° + 2322 — 242 + 8

Cﬁ’f: y? = 2® — 923 + 162
COP: y? = a® + 201 — 2% — 822 — 92 — 3
Cirs'+ y? =a% + 52 + 2
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C

s y? = F(x)

AE
(7760 .

D,F
Cs:

768 -
B,H
Cres

AF

(7960
L,N

C ’

1088 -
C7F .
Clguy:

B,D
C ’

1520°
FG .
Céea:

0, .
Clgea:

CA,E

2208
Gl
Cogos:

y? = 2° + 323 + 1422 + 150 + 5
y?=a® —dad + 2

y? =25 +423 + o

cyt =2+ Tt 4o

y? = 25 + 923 4 162

y? =25 — 523 + o

y? =% + 323 — 142% + 152 — 5
yP=ab — 22t + 234+ 20 —4
y2:m5+2x4+x3+21‘+4

sy =25 4 204 4+ 823 + 1922 + 182 + 6
y? =25 — 22% + 8% — 1922 + 182 — 6

Q-algebra de (Q-endomorfismos

En este apartado mostraremos la Q-algebra de Q-endomorfismos de la jaco-
biana de cada una de las curvas modulares nuevas de género 2 que tienen
jacobiana Q-simple, es decir, el cuerpo de coeficientes de la g-expansién de la
forma nueva correspondiente.

Kiza,, =Q(V=3)  Kisage.;, =Q6)
Kaza =Q(v5) Kogap, =Q(W=3)
K314 =Q(v5) Kssp =Q(V17)
K104 0,012y =Q(7) Kisa oo, =Q(V-5)
524000 =Q(WV=3)  Kgp =Q(V3)
Keaa o, =Q() Kern =Q(v5)
Kr3p =Q(v5) K304 (0.0,.2y =Q(3)
Kssp =Q(v2) Kgra =Q(V5)
Koza =Q(v5) Ki004;0,0, =Q(0)
Kiosp =Q(V17) Kiora =Q(V5)
K112B{{1,0},1}:Q(\/—73) K112A{{0,0},2}=Q(\/—_3)
Ki7s =Q(V3) K254 =Q(v5)
K334 =Q(V5) Ki3sp =Q(V13)
Kia7p =Q(v2) Kigagn, =QW-3)
K160A({1,o},1}:Q(i) KlGOB{{l,O},l}:Q(i)

K18A{0,2} :Q(\/__S)
Koga =Q(v2)
Ksgp =Q(v2)
K48A{{1,0},1} :Q(\/__?’)
Kean 05, =Q3)
Kesga =Q(V3)
Kgia =Q(v3)
Kssp =Q(V17)
K034 =Q(v5)
Ki12441.0y.0,=Q(V-3)
K158 =Q(V/5)
K128B (0161, = Q(V-2)
Kisec =Q(v5)
Kigoc =Q(v2)
Ki160011.0y.1, = Q(4)
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K160D(1.0y.1, = Q(4)
Kie7a =Q(v/5)
Ki77a =Q(v5)
Kissp =Q(V5)
K1024, (.00, = Q(V-3)
Koosr =Q(V17)
Koi3p =Q(v5)
Ka24p =Q(V5)
Kog1a =Q(V5)
Korse =Q(V13)
Koorp =Q(v3)
K320 =Q(v2)
K363m =Q(V17)
K3g0p =Q(v3)
Kyi6r =Q(V17)
Kyasr =Q(v5)
Ky7ep =Q(Vv13)
Kso5E =Q(V13)
K502, (0.07.0) = Q(V=3)
Keaor =Q(V5)
Kroan =Q(v17)
Krs2p =Q(V/5)
K688 (.00, = Q(V—2)
Ksggonr =Q(V17)
Kos2p =Q(V13)
Ki120r =Q(V17)
Ki280c =Q(v3)
Kias0r =Q(v2)
Kizson =Q(v2)
K792k =Q(V5)
Kig0ac =Q(v13)
Ki9164 =Q(v/5)
Koo40EE =Q(V17)
Kaie011 =Q(v2)
Kr424p =Q(v2)

Kie1B
Ki7se
Kisap
Kisop
Ka05D
K2084 (0,01 2)
Koo
Kauzc
Korop
Kogop
Kagga
K351

3555755555

EEE

K376
K400A{{0,0},10}
Kia0E
Kyagg
Ks128
Ksuc
Keo1p
Keasa
Krs0m
Kosor
Krg3a
Ko284( (1,01
Kios3F
Ki1205
K1280p
K280
Kiz120
Ki792r
Ki90ar
K080
Kogoans
K72308B
K764

~
S~—
%
N
—

EXEEIE

~.

S—
5555
S~— \_/w

L e e e e e e e e e e s e e e N e e S N T e e N . e W eSS
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K654 =Q(v?2)
Ki76p =Q(V17)
Kigsa =Q(V13)
Kig1a =Q(V5)
Koorm =Q(v2)
Kaoop =Q(v?2)
Koo =Q(V5)
Koser =Q(v?2)
Korr =Q(V3)
Kogra =Q(v5)
K350 =Q(v2)
Kssre =Q(v?2)
K37 =Q(V5)
K160 =Q(V17)
Kya0a =Q(V17)
Ky76B =Q(V/5)
Ks12E =Q(v?2)
Kseom =Q(V17)
Keaor =Q(V5)
Ka0ans =Q(V17)
K7so0 =Q(v5)
K684 (1.0y.0,= Q(V—2)
Ksgox =Q(V17)
K928B{{1,o}.7} =Q()
Ki0880 =Q(v2)
Ki2804 =Q(v2)
Ki1230E =Q(V2)
K280z =Q(v3)
Kis20m =Q(V3)
Kis20B =Q(V13)
Kigoar =Q(v5)
Ko240pD =Q(V17)
Ks150a =Q(V5)
Kr4244 =Q(v2)
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6.2.2 Ejemplos de Q-curvas modulares

Vimos en el capitulo 4 que todas las curvas modulares nuevas de género 2 con jacobiana
Q-simple y no Q-simple tienen involuciones no hiperelipticas. Los cocientes de estas
curvas por involuciones no hiperelipticas son curvas elipticas modulares sobre el cuerpo
de nimeros donde esta definida la involucién. Para cada una de estas curvas hemos
calculado, utilizando el lema 2.2 de [CGLR99], una ecuacién de Weierstras de la forma
y? = 3+ Az +B. Por lo tanto, estamos calculando ecuaciones de Q-curvas modulares.

La siguiente tabla muestra una ecuacién de Weierstrass para cada una de estas
Q-curvas cocientes. La notacion de las Q-curvas es similar a la de las correspondientes
curvas de género 2. Para cada una de ellas, se denota por L al minimo cuerpo donde
la jacobiana de la curva hipereliptica descompone completamente; dicho cuerpo es
el cuerpo de definicién de las involuciones no hiperelipticas. Las ecuaciones que se
presentan estan definidas sobre el minimo subcuerpo de L de manera que el morfismo
de la correspondiente curva hipereliptica a la Q-curva estd definido sobre L.

Tabla 6.4: Ejemplos de Q-curvas cocientes modulares

E sy = G(x)

Eisap, s y? = 2% 4 2808(13 + 27V/13) = + 44972928,
L=Q(/13,t), con t> + 12 — 4t +1=0.

Ei6a; 0y, Y0 =2+ 54(2163 4 33t — 142t — 229)x

_54(1183¢% + 153212 — 8080¢ — 10456),
Q(t), con t* — 82 +8 = 0.

Eisa. y =2% — 75z + 262,
Q(t), con t3 — 3t — 1 = 0.
Easag y =23 — 9261z — 64827,

Q(t), con t3 — 82 + 5t +1 = 0.
Ei0a; 00 1 Y2 =2% = 2734 V5)x +27(5 4 2v/5),
L =Q(/5).
Eisa0.0, s y? =23 4+ 3(—125 + 44v/5)x — 154(—21 4 10V/5),
L =Q(5).
Eisagpop, © Y2 =2 +45(=7+ 4V3)x + 66(—45 + 261/3),
L=Q(/3).

E524 .0 y? =3 — 1755(65 + 18v/13)x + 4563(3115 4 8641/13),
L=Q(13,t), con t3 —4t> +t +1=0.
Egsn s y? =% — 3(45 4 52/ =3)x + 2(41 — 546/=3),

L=Q(/73).
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E sy = G(o)
Esaai g, 1 y2=2%—135(3 +2v2)z — 378(10 + 7v/2),
L=Q(v2).

Ee1a 0y, @ ¥° =2 +54(2t° — 12t* + 6t + 5)x
—54(41t3 — 92¢% — 148t + 216),
L =Q(t), con t* — 82 +8 = 0.

E80a; 00y 1 Y =2 —27(34 v5)x — 27(5 4 2v/5),

L =Q(V5).

Egia syt =23 =35+ 4vV=3)x + 2(5 + 14V/-3),
L=Q(v=3).

Eiooag. ¢ Y2 =2 —270(3 + Vb)z — 1485(5 + 2V/5),
L=Q(V5).

Enoa oy, ¢ Y2 =2 —756(49 + 18v/7)z + 10584(356 + 135V/7),
L=Q(V7,t),cont?—t> -2t +1=0.

EN2B 0y, Y2 =a° —189(175 + 66v/7)x + 1323(2381 + 900v/7),
L=Q/7,t),cont’—t>—2t+1=0.

E1194 000y * Y° = 2 — 564921 + 163428867,
L =Q(t), con t3 4+ 5t — 8t +1 = 0.

Ei17B s y? =23 — 15(9 + 4y/=3)x — 2(247 + 210/=3),
L=Q(/-3).

E198B 016y @ Y° = 2% — 1352 + 378V/2,
L=Q(v2).

Eusagn, ¢ y° =% —999(2701 4 282v/37)x 4 406593 (4394 + 720+/37),
L =Q(+v/37,t) con t3 +4t> — Tt +1 = 0.

Ers0c cy? = 23 4 27(9 4 20i)x — 108(55 + i),
L =Q(i)

Ei604 0y, ¢ ¥ = 2 +1976535(2t — 12962 + 6t + 122)z
+8696754(42857t3 — 1810625t — 39250t + 1821375),
L =Q(¢t), con t* — 125¢2 4+ 125 = 0

E160B,(1.0p0y ¢ Y7 =2 +135(2t3 — 9t + 6t 4 2)
+270(103> — 175t% — 230t + 345),
L=Q(t), con t* —5t2 +5=0.
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E sy = G(o)

E1600(1.0y.1y * Y7 = ° +1976535(2t — 129> + 6t + 122)x
—8696754(42857t3 — 1810625t% — 39250t + 1821375),
L = Q(t), con t* — 125t% + 125 = 0.

E160D(1.0y.1y ° y? =23 +135(2t3 — 92 + 6t + 2)z
—270(103t> — 175t* — 230t + 345),
L =Q(t), con t* =5t +5 = 0.

Fisor s y? = 2% — 3(45 + 4v/3)x — 2(295 + 42/3),
L=Q(V3).

E1024,1.0p0y ¢ Y7 = 2 41802 + 528/=3,
L =Q(/=3).

BE208A 0.0y ¢ Y7 = 2 — 14040(13 + 3v/13)2 + 292032(125 + 361/13),
L =Q(v/13,t), con t3 +12 — 4t +1 = 0.

FEay3c s y? = 2% 4+ 9(—15 + 4v/3)x + 18(—31 + 14/3),
L=Q(V3).

FEaser : y? =23 + 540iz — 3024(1 +14),
L = Q).

E3200 y? =23 4+ 27(—9 + 20i)x — 108(1 + 55i),
L = Q).

E10040.07.10,° ¥° = @® —270(3 + v/5)z + 1485(5 + 2V/5),
L=Q(V5).

E5123 : y2 = .173 + 27(—3 + 52).’E — 108<—1 + 82),
L = Q).

Es128 y? = 2% +27(3 + 5i)x + 108(—8 + i),
L = Q).

Fsuc : y? = 2% + 108(3 + 204)x — 864(37 + 19i),
L = Q).

E5024 10,0y ¢ Y° = 3% — 7992(185 + 27V/37)z — 26021952,
L =Q(\37,t), con t3 — 7t +- 4t + 1 = 0.

Er684,11.0y.0y @ Y =% —6(11+ 4v3)x + 8(11 + 3v/3),
L= Q(3).

Er68C (1.0p0y ¢ Y2 = 3% — 6(11 +4v3)x — 8(11 4 3v/3),
L=Q(V3).




6.2 Género 2 111

E sy = G(o)

E9284( 1107y ° y? = % + 489375(2t3 — 33t% + 6t + 26)x
+4893750(1577t3 — 16385t% — 754t + 16095),
L = Q(t), con t* —29¢% + 29 = 0.

Eossa oy r ¢ Y% = @® +489375(263 — 332 + 6t + 26)x
—4893750(1577t3 — 16385t% — 74t + 16095),
L = Q(t), con t* —29¢% + 29 = 0.

E10ss0 :y? =23 + 108(—3 + 20i)x — 864(19 + 374),
L=Q().

F9804 sy =% 4 216(—3 + 10i)x — 1728(5 + 234),
L =Q().

F1280D s y? = 2% + 216(3 4 10i)z — 1728(23 + 5i),
L =Q(%).

Fias0r s y? =2 4 27(—6 + 5i)x — 54(—11 + 250),
L =0Q(%).

Eras0r sy =23 +27(6 + 5i)x + 54(—25 + 114),
L =Q(i).

F1as807 cy? = 2% + 216(—33 + 10i)z — 1728(—85 4 1134),
L=0Q(%).

FEia80n cy? = 2% + 216(33 + 104)x + 1728(—113 + 850),
L =Q().

Ei312¢ sy = 2% + 540(3 + 4i)z + 864(—73 + 17i),
L=Q(%).

Eaos0. cy? = 2 +108(—21 + 20i)z — 6048(—5 + 134),
L =Q().

Eogoant y? = a3 + 540(—3 + 4i)x — 864(—17 + 730),
L =Q(%).

Es6011 :y? =23 + 108(21 + 204)x + 6048(—13 + 5i),
L =0Q(%).

Ery04a :y? = 2% +1080(3 + 2i)z 4 1728(—59 + 31i),
L =Q(i).

Erioup s y? = 2% +1080(—3 + 2i)x — 1728(—31 + 59i),

L =Q().
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6.3 Género mayor que 2

Distinguiremos dos casos segin que las curvas estén dominadas por la curva modular
Xo(N) o no.

6.3.1 Con jacobiana que no es Q-factor de Jy(N)

Sea C una curva hipereliptica modular nueva de nivel N de género g > 2 tal que J(C)
no es un Q-factor de Jy(NN). En el teorema 3.9 se demostré que entonces existen dos
curvas C’ y C” modulares nuevas de nivel N tales que

J(CVRJ(C) x J(C").

Ademsds, C' tiene género 2 y J(C/)’@’Af tal que f € So(N,¢), conorde =2y J(C”) es
un Q-factor de Jo(N) con C” de género 1 6 3 (en este tltimo caso C” es hipereliptica).
Ademas, en el capitulo 4 se calcularon todas las curvas modulares nuevas de género 2,
que aparecen en la secciéon 6.2. De todas estas curvas, sélo hay 11 posibilidades para
C’, como se puede ver en la tabla 6.2. De ellas conocemos los niveles y las formas
nuevas. Por lo tanto, sélo nos queda calcular, para cada uno de los niveles, las curvas
hiperelipticas modulares nuevas que cumplan las condiciones antes descritas. Para
ello, hemos utilizado el programa CurvaHiperelipticaModular de MAGMA descrito
en el capitulo 5. Todas estas curvas, que aparecen en la siguiente tabla, son de género
3y, por lo tanto, sus jacobianas son el producto de una curva modular nueva de género
2 y de una curva eliptica del mismo nivel. La notacién de las curvas es como las de
género 2 correspondientes, junto con un superindice que denota la clase de Q-isogenia
de la curva eliptica cociente definida sobre Q.

Este cdlculo se ha utilizado en la demostracion del teorema 3.10.

Tabla 6.5: J(C) no Q-simple y no Q-factor de Jo(NV)

C L y? = F(a)
CﬁJAuo,O},z} syt =z + 1) (z+2)(2? — 20 — 4) (2% + 3z + 1)
0414814{{1,0},1} syl =(z+ 1) (@2 -2 -2) (22 + 2+ 1)(22 + 22+ 2)
C’&A“M” =z -1)(z+1)(2? -2z - 1)(2® + 22— 1)
2=z(x—1)(z - 2)(2% — 3x + 1)(2® + 22 — 4)

22—z —1)(z* + 422 + 8z +4)
22 — 2z — 1)(z* — 622 — 162 + 41)
2% + 22 — 1)(z* — 622 + 162 + 41)

08014{{0,0},2} :

CB

Yy

Yy

Yy
A ) _
08014{(0,0}.,2}' vy =
H y
128B{0,161}" ¢

D y

V)

|
~—~ o~

8

I

[\
~— — ~—
—~ o~

ClQSB{{oﬁls}) :
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Asi, hemos calculado todas las curvas hiperelipticas modulares nuevas tales que
sus jacobianas no son Q-factores de Jy(NN). En la siguiente seccién trataremos el tinico
caso que nos queda, es decir, cuando las jacobianas si son Q-factores de Jo(N). En
este caso, no demostramos haber calculado todas las curvas, pero si que intentaremos
calcularlas todas.

6.3.2 Con jacobiana que es Q-factor de Jy(N)

En la subseccion anterior hemos tratado el caso de curvas hiperelipticas modulares
nuevas de género mayor que 2 y tales que sus jacobianas no son Q-factores de Jo(N).
En esta seccién trataremos el caso en que si lo son. Hemos calculado todas estas curvas
de niveles N < 3000 en el caso de jacobianas Q-simples y de niveles N < 2000 en el
caso de jacobianas no Q-simples.

Esto lo hemos realizado con el programa CurvaHiperelipticaModular y restrin-
giéndonos a las condiciones, expuestas en la proposicién 5.2, que se han de dar entre
los niveles y el género. Las curvas modulares nuevas de género 2 aparecen en la pri-
mera seccién de este capitulo. Aqui calcularemos las de género mayor que 2, ademés,
se ha de tener en cuenta que el género es menor que 10, por el teorema 3.10.

Tras este cdlculo, hemos encontrado 30 curvas hiperelipticas modulares nuevas de
nivel N < 3000 y jacobiana Q-simple y 38 de nivel N < 2000 y jacobiana no Q-simple.
Todas ellas son de género mayor que 2 y tales que sus jacobianas son Q-factores de
Jo(N).

En las primeras tres tablas aparecen las curvas con jacobiana Q-simple y en las
tres siguientes las que tienen jacobiana no Q-simple; todas ellas estan agrupadas por
el correspondiente género.

La notacion de las curvas que hemos seguido es anédloga a la expuesta para el caso
de género 2. Es decir, a cada curva la denotaremos por la clase de (Q-isogenia de su
jacobiana. Asi, si la jacobiana de la curva es Q-simple, pondremos un subindice que
denota la clase de Q-isogenia de la variedad modular correspondiente. En el caso en
que no es Q-simple, pondremos un subindice que denota el nivel de la curva y un
superindice que denota las letras de las clases de Q-isogenia de la descomposiciéon de
la jacobiana de la curva en Q-factores de Jo(N).

Tabla 6.6: Jacobiana Q-simple y Q-factor de Jo(N) :
Género 3 (N < 3000)

C cy? = F(x)
Cpa :y?=a%+427 — 825 — 662° — 1202* — 5623 + 5322 + 362 — 16
Cosa : y? = (2 + 2% — 622 — 10z — 5)(2* + 23 — 222 + 22 — 1)
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c y? = F(a)
Cisaoc @ y2 = (23 — 222 — Tz — 8)(x3 + 422 + 4a + 4)
Cossp Y2 = (23 + 2 —1)(2* —22° — 322 — 4z + 4)
Cosaa Y2 =27 —7x° — 11z* + 523 + 1822 + 4z — 11
Cosap y2:z7+4x6+5x5+x4—3x3—2x2+1
Csoac ¥ = x(a® — 42? + 4z — 4) (23 + 222 — Tz + 8)
Cioes :y2= (2> +x+1)(at + 223 — 322 + 42+ 4)
Csar  : y2=(x—1)(2? -2 —4)(2* — 2% — 4)
Csaay Y2 =(z+1)(a® +2—4) (2 — 22 —4)
Cgosr @ y2 = (2 —2)(2% 4+ 2z — 1)(z* — 222 - 7)
Csoss : y> = (z+2)(2® — 22 — 1)(z* — 222 - 7)
Criser : y>=a" —4x8 +52° —z* =323+ 222 — 1
Crsey : y>=a" —7x® + 11a* + 523 — 1822 + 4z + 11

Tabla 6.7: Jacobiana Q-simple y Q-factor de Jo(N) :

Género 4 (N < 3000)

C s y? = F(x)
Ciua v = (25— 52% — 2022 — 242 — 19)(2° + 4a* + 72° + 822 + 4z + 1)
Crion : y? = (2° —22% + 323 — 622 — 7)(2® + 22* + 323 + 622 + 42 + 1)
Cieaa : 9% = x(2® + 427 — 825 — 662° — 1202* — 5623 + 5322 + 362 — 16)
Csrec : y? = (2% — 223 — 322 + 4z — 4) (25 — 23 + 222 — 22 + 1)
Csrep @ y2 = (2% — 203 — 322 + 4o — 4)(2® + 42t + 323 — 222 + 22 +5)
Cuer ¥ =xz(x?+4)(23 222 + 2 —4)(2® + 22% + x + 4)
Csioc  : y* = x(a? — 42? — 4)(2* + 422 — 4)
Ceser  : 2 = x(2® — 427 — 825 + 6625 — 1202* + 5623 + 5322 — 362 — 16)
Crsac : y? = (2% + 223 — 322 — 4o — 4) (25 — 23 — 222 — 22 — 1)
Crsor ¢ y2 = (2% + 203 — 322 — 4o — 4)(2® — 42t + 323 + 222 + 22 — 5)
Cs3op @ Y2 = (x +2)(z — 2)(2® + 22* — 1522 + 16)
Craiew : ¥* = (2® — 20 + 2)(25 + 22* — 722 +8)
Ci2i6x : y* = (2% — 20 — 2)(25 + 22 — 722 +8)
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Tabla 6.8: Jacobiana Q-simple y Q-factor de Jo(N) :
Género 5 (N < 3000)

C sy = F(x)

Cson  :y? = (294228 427 —212% 4425 - 602* —61 23 —46 22 —242—11)
(23 + 222 +1)

Creay Y2 = (22 + 22+ 2)(2® — 2 + 2)(a® + 22* + 22 + 4)
Ciseapn: Y2 = (22 — 20 + 2) (23 — v — 2) (28 + 22 + 22 + 4)

Tabla 6.9: Jacobiana no Q-simple y Q-factor de Jo(N)
Género 3 (N < 2000)

c Ly’ = Fx)

CAB Ly = (2% + 32+ 1)(a° + 25 — 102* — 392% — 622 — 51z — 19)
C%’B cy? = (2t — 323 — 42? — 22 — 1)(2* + 52 + 822 + 6 + 3)
CEI;%’B s y? = (v —2) (2 — 222 + 4o — 4) (23 + 222 — 42 + 8)

CAP 2 = (04 2) (a8 + 42 — 122* — 1142 — 30822 — 384z — 191)
CABC 2 = (24 2)(2 + 22° — 172* — 662° — 8322 — 320 — 4)
CABD .2 — (- 2)(a? — 22 + 2)(a* — 1202 + 322 — 28)

CBOD 2 = (24 2)(a® + 22 + 2)(a* — 1202 — 322 — 28)

C’f},oc cy? = (2 —2) (2% + 20 — 7)(z* — 423 + 102 — 202 + 17)
CEC 2 = (¢ +2)(2? — 20 — T)(x* + 42° + 1022 + 202 + 17)
0{47’6[) cy? = (o4 2) (2% — 222 — 4o — 8) (23 + 222 + 4w + 4)

cBl = (e -1)@P—202 43z - 1)@+ 22—z +7)
CislP y? = (2 —1)(@® — 2% + ot — 23 + 222 + 22 + 1)

CEC 2 = (0P 4222 — 2 —1)(2* — 223 — 922 + 10z — 3)

CEBE 2 = (- 2)(a — 42° — 122 + 11423 — 30822 + 384z — 191)
CAP 2 = a(z — 1)(z + 1) (2 — 622 + 16z — 7)

Coy  +y? = a(z—1)(z+1)(a* — 622 — 162 —7)

Cois vy = (2% +42% + 52+ 3) (2 — 22° — 322 — 4o + 4)

Cod +y? = 2(2® +2)(2* + 1227 + 4)

Ozcsg s y? = 2(2? — 4o+ 2) (2 — 2) (2 + 42 + 2)

Cal o2 = (2 — 1)(a® —2° + T2 — 1622 + 152 — 5)
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B,M
Crox
C,N
Cro1
G,N
Crg1

(
= x(2® — 4z + 4)(23 + 222 — 2)
= x(2® — 222 + 2)(2® — 4w — 4)
= (2% =222 — 2+ 1)(2* + 223 — 922 — 10z — 3)

C y? = F(r)
Cssad 1y = (@ +1)(@® — 22—z —7)(2° + 22% + 3z + 1)
Coa @ v = (2 +1) (2% + 25 + 42 + 2% + 222 — 22+ 1)
Che y? = a(a® - 225 — 220 + 207 — 22— 1)
Cﬁ’ec y? = o(28 + 225 — 22* + 222 + 220 — 1)
CREF 42 = (2 —2)(a — 205 — 172" + 662° — 832 + 32z — 4)
CHe y? = (08 — 42 4 50 — 3)(at + 203 — 302 + 4u + 4)
Cao’ +y? = (v +1)(a® + 2% — 7a® — 1622 — 152 — 5)
C’&OL y? = x(x? — 22— 1)(2* +22° — 20 + 1)
Ceio y? = z(z? + 22— 1)(a* — 223 + 22 + 1)
2
y2

Tabla 6.10: Jacobiana no Q-simple y Q-factor de Jy(N)
Género 4 (N < 2000)

C s y? = F(x)

B
cBC

D4 ? = 2%+ 228 — 4™ — 212 — 442° — 602" — 612% — 462% — 242 — 11
CB,F,I

Yy
Yy
365 y? = (2% — 2% —x — 7) (b + 25 + 4ot + 23 4+ 202 — 20 + 1)
CREO 2 = (28 — g — 4)(2® — 4o+ 4)(2® + 222 — 2)
CIRIP g2 = (23 — 227 4 2)(a® — 4z — 4)(a® — 4z + 4)
Yy

704
Cii 2 2998 437 4 212 — 4425 + 6024 — 612% + 4622 — 24w + 11

Tabla 6.11: Jacobiana no Q-simple y Q-factor de Jo(NV)
Género 6 (N < 2000)

C s y? = F(x)
Y

Coy® 2 = (27 — 72° — 112* + 52 + 182” + 4z — 11)
(27 + 428 + 52° + 2% — 32% — 222 + 1)
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Cuerpos de coeficientes

En este apartado, para cada curva presentada en esta subsecciéon, mostramos los
cuerpos de coeficientes de las correspondientes formas nuevas. Para cada uno de estos
cuerpos daremos el polinomio minimo de un generador del cuerpo. En el caso de
jacobiana no Q-simple, daremos tantos polinomios como Q-factores tenga la jacobiana.

Cys” Pysp=1t-1, Pysp =124+t —4
Cé%’B P39A:t—1, P3932t2+2t—1

Ch Ppa=t>+t*-5t—1
Cp Pyza=t"—13 -5t +5t—1
c4 Psga =1° — 913 +2¢% + 16t — 8

CAB Pua=t3—5t+3,  Pup=t3+1t2—4t—3
CikP® Puga=t—1, Pygp=t12—t—4

Cas Posa =13 —12 -3t +1

Ciox Pioga =t —1, Pop=1t>—t—4
CAPC  Puga = Puen = Piec = t—1
Ctio Pliga=t" 4+t —5t2—t+3

Cl3s”  Piasa = Pisp = Plasp = t—1
Cg’sc’D Piosp = Piasc = Prasp = t—1
Cis Pisoc =13 —t2 — 10t + 8

Cids Preoa =1 -1, Pigoc =t> — 8
Cly Pisop =t — 1, Pigoc =t2 — 8

Cita Pioga = t* — 283 — 10> +22¢ — 2
0{47’(? Pirga =1t —1, Pirgp =t2+t—4
Ciat Pigap=t—1, Pigyp=t*+t—4
CHOP  Pigya = Pigac = Praap = t—1
Cios Puwe=t—1, Piosc =12 — 8
Cos  Pusp=t—1, Poosp =12+t — 4
Cazt Proga =t -1, Pogyp =t* — 2t —4
02%40 Proap =t -1, Pogyc =t> + 2t — 4

CEC Pugp=t—1,  Pugo=t>—9t+1
Cls Poygp =t — 2t — 6t +8

Ozi’sD Pogp =1 —1, Poysp =2 + 2t — 32
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CQBS’GE Posgp =1 —1, P256E=t2—8
020576E P25GC:t—1, P256E:t2_8
C;goD Prgoa =1t —1, Pygop=t2—t—4

Csky Poggn =13 — 12 — 4t +1
02384 Pygyp =t3+3t2 -3
CSa Pyyg =3+ 12— 10t —8

C?%é{ Psgge =1t —1, P368H:t2—t—4
A,D,G
Cies Pygsa = Pyesp = Piggg = t—1
C?%EF’I Pygsp = Pigsr = t—1, Pagsr =12 —5

CS%e  Psrgo =t* —3t3 =512+ 16t — 8
Ci Pyrp =t* +t3 -9t — 4t + 16
Chis Pyer =t — 1312 + 32

Cirs Ppga=1t—1, Puep =t2—t—4
Ciis  Puep=t-1, Ppge =t +t—4
CREF  Puap = Pigap = Pioar = t—1
Cilo Pyogy =t3+2t> — 6t —8

Cise Pyosc =t —1, Py =2+ Tt +4

CSis Ps1og = t* — 10812 + 1764

Clu Psgar =13 =212 — 4t + 4

Cdu Psjag =13 +21% — 4t —4

Oiis’c{{ Psgop =1t — 1, Pigog =12+t —4
Ceio Psgoc =t — 1, Pogor, =t2—2t—4
Coio Pssoa =1 -1, Psgor =t> 4+ 2t — 4
Ciso Peser = t* + 213 — 1012 — 22t — 2

Ciot' Proap=t—1, Pooans =12+t — 4
C%iv Prose =t -1, Poouny =12 —t—4
C7L())74E7O Proap = Prure = t—1, Progo =t +t—4
CELP Pryp = Proar = t—1, Prup=t2—t—4

C%y Prsac =t4+ 383 — 542 — 16t — 8
CH, Posop =t — 13 —9t2 + 4t + 16

784 Prgag =1t —1, Prgany = 2 -8
Céso Pggop =t — 1312 + 32
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I
0896
J
0896
J,L
C’944
CI
1136
J
01136
w
C’1216
X
01216
Y
01664

BB
C’1664

Pgoer =t + 21 — 6t — 8

Pgogy =13 — 212 — 6t +38

Pogag =1 -1, Poyur =t3—9t—1
Priger =3 =3t +3

Priggs =t3+t2 -4t —1

Piogw = t* + 513 — 13942 — 497t + 3742
Piojex = t* — 413 — 591% + 1261 + 784
Piogay =17 +t4 — 1113 — 1142+ 8t + 4
Piosapp =10 —t* — 1113 + 111> + 8t — 4
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Capitulo 7

Ejemplos de curvas modulares
no nuevas

En este capitulo vamos a mostrar ejemplos de curvas hiperelipticas modulares no
nuevas que han sido calculadas utilizando los resultados del capitulo anterior. La
notacién que se seguird para denotar la clase de Q-isogenia de variedades modulares
es la introducida en la seccién 6.1.

Utilizando las tablas del capitulo 6 hemos comprobado que para la mayoria de los
casos en los que hay dos curvas en el mismo nivel es posible tomar la misma funcién
modular  en ambas ecuaciones hiperelipticas. En concreto, esta situacién se presenta
para los siguientes niveles:

64, 184, 188, 224, 248, 284, 320, 368, 376, 416, 440, 448, 476, 496, 512, 544,
640, 704, 752, 768, 880, 896, 1088, 1136, 1216, 1280, 1664, 1792, 1904, 2204.

Por lo tanto, para esos valores de N tenemos
Cni:yi =Fi(z), Cna:ys = Fa(a),

con Fi(u), Fo(u) € Q[u] sin rafces miltiples. Se tiene F(u)Fy(u) = Q(u)? F(u),
donde Q(u), F(u) € Qu] y F no tiene raices multiples. Asi obtenemos otra curva
modular de nivel N que estd dada por la ecuacion afin

v (55) -

Ademss, si el género de C'y es mayor que uno, entonces Cy es hipereliptica. Nétese
que esta misma construccion se puede utilizar de forma anédloga con un niimero mayor
de curvas.
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7.1 Curvas primitivas no nuevas

La tabla siguiente muestra sélo las ecuaciones hiperelipticas de las curvas primitivas
no nuevas que se han obtenido mediante el procedimiento descrito anteriormente. En
ella, no se muestran los casos en los que la curva sea nueva o no primitiva. Este tltimo
caso se detallard en la subseccién siguiente. La notacion de estas curvas es la siguiente:
el subindice denota el nivel de la pareja de curvas del que proviene y el superindice
denota los géneros de estas dos curvas. Asi, por ejemplo, la curva C’Zfﬁ proviene de
las dos tinicas curvas modulares nuevas de género 2 de nivel 416.

Tabla 7.1: Curvas modulares primitivas no nuevas

C s y? = F(x)
3l =@ -2 43— D)@ a2 -+ 7)
(28 — 25 + 4ot — 23 + 222 + 22+ 1)
C??fo sy = (2t — 22 — 222 — 22 + 1)(2* +22° — 222 + 20 + 1)
O3t =92 = (e +1)(a® + 202 + 30+ 1)(28 + 2° + 2t + 23 + 222 — 22 + 1)
Cor o y? = (a* — 22 — 3% + 4z — 4)(a® — 2® + 222 — 22 + 1)
(25 + 42* + 323 — 222 + 22 + 5)

Cie 2= 222+ 2 —4)(2® + 22> + 2 +4)
C33 2 = (2% — 225 — 200 + 222 — 22— 1)(a® + 22° — 22 + 222 + 22 — 1)
O35 2= (2t —4a® —4) (2t + 42 — 4)
Cai v =@ -z -9 +z—4)(a* —2? - 4)
Coin =@ -D@+1)@?—z—4)(@?+z—4)
ca’ syt =a - )<x+1)(x2—x—4)(x - 4)(zt — a2 —4)
C3a™% = (@ =@+ 1)@t —a? —4)
Con 92 = (2 —2)(x +2)(a% — 22 +2)(a® + 20 +2)
cp y? = (22 — 22 — 1) (2% + 20 — 1)(z* — 223 + 22 + 1) (2% + 223 — 22 + 1)
Oz y? = (2 — 222 + 20 — 2)(2® + 22 + 22 + 2)
O3y = (% — 222 4 2)(2 — 4w — 4)(2° — 4z + 4)(a® + 222 — 2)
Cron : y? = (2® — 222 +2)(a® 4 227 - 2)
Cros” + y? = 2(a® — 4w + 4)(2® — 222 4 2)
Coxt 2 y? = a(2® — 4o — 4)(2® + 22° — 2)
Coub Y 2 = (a8 — da — 4) (2% — 4o + 4)
y?

Css 4 40% 4 822 — 122 + 9) (2 + 423 + 822 + 120+ 9)
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C s y? = F(x)

Crd o y? = (o — 42® +1)(* + 42> + 1)

Ciss : y2 = (z—2)(z +2)(a? — 20 — 1)(2? + 20 — 1)

C2e : y? = (¢* + 22 — 4)(a* + 922 + 16)

Cire = v2 = (2 — 22— 2)(a® — 22 + 2)

Chyso © Y2 = (a* — 222 — 4)(2* + 227 — 4)

Cir)é564 v = (22 -2+ 2)(2® + 20 +2)(2® — 2 — 2)(23 —z + 2)
Ciiga = y° = (2% 422" + 2% +4)

CHo 2= (12— 2w +2) (% 4 20+ 2) (2 — 2 — 2) (2 — 2 +2)

(2% +22* + 22 + 4)
Ci2y 2= (x—2)(z+2)(z* — 423 + 422 + 4z — 7)(2* + 42 + 42% — 4z — 7)

0225240 cy? = (23 + 22 — 2)(23 + 20+ 2)

La tabla siguiente muestra la descomposicion, en clases de Q-isogenia, de las ja-
cobianas de las curvas de la tabla anterior. En ella, también aparece el polinomio
minimo de un generador del cuerpo de coeficientes de las g-expansiones correspon-
dientes a cada factor de dimensién mayor que uno. Asi, el nivel en el que dichas
curvas son primitivas es el nivel mayor de las variedades modulares que aparecen
en su descomposicién. Por ejemplo, la curva Cgfé es primitiva de nivel 94 ya que

J(C??%)QAMA X Agap.

C Descomposicién de J(C)

Cisa Eysa x A3y, Py3a =12 =5

C350 FEs04 x Egoa X Egop

Cios Agza X Eiga X Egap, Pysg=t*—5

C’;% Agra X Agyp, izz’; i f; : t; - 517+ 5t -1
Che Eap X FE1044

Ciis Essa X Eosp X Eioaa X Arup,  Pioap =t =17

Ci E324 X E2sp X E128p

(o Ey74 x A1sec, Pissc =t =5

Csay E3y4 X E1368

2,3,3 42
Csiy Eso4 X Esgup X Esgar X Asaagr Psaag =% — 10

2233
Csiy E174 X Ei36a




124 Capitulo 7. Ejemplos de curvas modulares no nuevas

C Descomposicién de J(C')

Cgﬁ) Ea0a x Er60B

Co FEsoa X Egop X B0 X A1socs  Pieoc =12 — 2
Cao Eq14 X Er76a

Coon E?) 4 X Ei76a X A176D, Pigp =2 — 17
Cion Eq114 x Errec

3,4,4

Croa Eeaa x Eroag X Eroar,
4,3,4

Coia Egaa X Eroac X Eroan

3,3,4,4 o
Cros Eiya X Er76B

Cre Eusa X B2, 4
0%782 Eys4 X E192¢c X E192p
Caoe E144 x Eao4n
Cions Ey74 X Eopap
Cisi E194 x E304p
Cliso Egpa x E320p X F320E
Clios Exp X Espa x Agi6c, Pigc =t> — 17
Clies  Ea6a x Esien

2,5 P104B = t2 — 17
Ciges  Ea6a X Aroa X Asier, Prisp — 4 1312 4 32
Clro Ei44 X Ev12B X Auasr, Pusi =t>—5
Casao Es54 x Es604

- 25 . . .
Observacion 7.1. La curva Cgg, tiene género 7, que es el mayor género que conocemos
para una curva hipereliptica modular.

7.2 Curvas modulares no primitivas

En este apartado mostraremos ejemplos de curvas modulares no primitivas. Estas
curvas han sido encontradas utilizando el método descrito al inicio de este capitulo.
En particular, estudiaremos en detalle el caso de nivel N = 376.

La parte nueva de la jacobiana de la curva modular X((376) tiene la siguiente
descomposicion en clases de QQ-isogenia:

J0(376)neWgA376A X Azrep X Aszrec X Azrep,
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donde las variedades abelianas correspondientes a las clases de Q-isogenia 376A y
376B tienen dimensién 2 y las correspondientes a 376C' y 376D tienen dimensién
4. Como se puede ver en las tablas del capitulo 6, cada uno de estos Q-factores
corresponde a una curva hipereliptica modular nueva. Las ecuaciones para cada una
de ellas son:

Csr6a : Y53 = Fa(z), Caree @ yg = Fp(2)G(2),

Cstep : yp = F(x), Csrep :yh = Fa(z)G(x),

donde
r = ¢ 2+ +E+E+¢0+.
Fa(z) = a5+ 4a*+32%3 - 222 + 20+ 5,
Fp(r) = a°—a2®+222 -20+1,
G(r) = 2*—22%-322+42 4.

Utilizando el método descrito en la seccién anterior podemos construir dos nuevas
curvas modulares:

Cie Y2 = Fa(z)Fp(a), donde Y = y4yp,
Cy6:Y?2= Fa(z)Fp(z)G(z), dondeY =yayc=ypyp.

Vamos a identificar el menor nivel en el que estas curvas son modulares.

Tomemos la forma propia h(q) = fara(q)—2fara(q®) € S2(94,1), entonces aplican-
do el programa CurvaHiperelipticaModular a una base racional de H(A,, Q')q/dq,
comprobamos que Aj corresponde a una curva hipereliptica modular de nivel 94. De

2,2 . . .
hecho, esta curva es C37;. Por lo tanto, se tiene que la jacobiana de esta curva es
Q-is6gena a Ag7a = Jo(47). Se puede comprobar que Cg% y X0(47) no son isomorfas
y, en consecuencia, el minimo nivel para el que C’g% es modular es 94, mientras que
para su jacobiana es 47.

2,4 .2 . , . . 2.4
La curva C57; aparece en las tablas de la seccién anterior. Como alli se indica, C'354
es una curva hipereliptica modular primitiva no nueva de nivel 94 y la descomposicién

de su jacobiana sobre Q es J(Cg%)QAMA X Agsp. De hecho, se tiene que la curva esta
asociada al subespacio de S2(94) generado por la conjugadas de Galois de fq74(q) +
2fa74(¢%) ¥ foan-

La tabla siguiente muestra las ecuaciones hiperelipticas de todas las curvas mo-
dulares no primitivas que conocemos.

Tabla 7.3: Curvas modulares no primitivas

C :y?>=F(z)

Crd: v? = (2 +22% — 3w+ 1) (2 + 22% + 2+ 1)

Cgfg: y? = (2% + 2 — 1)(2® + 422 + 5z + 3)

Cg%%i 2= (2% — 2% + 222 — 20 + 1) (2% + 4a* + 32% — 222 + 20 + 5)

<
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C :y*=F(z)
C25: 12 = a(e —1)(@® + o — 4)(a* — 22 — 4)
Cout y? = 2(2® — 222 + 2) (2% — 4o — 4) (2% + 22 - 2)

La tabla siguiente muestra la base de formas parabdlicas correspondientes a cada
curva no primitiva y el nivel minimo en el cual son modulares.

C T (H°(C, Q! )) N
Cia (% fosa(@) — 27 f234(q?) : 0 € Gal(Ka34/Q)) 46
Coi (7 fa1a(q) — 27 fa14(q?) : 0 € Gal(K314/Q)) 62
Cire (7 faza(q) — 27 fara(q®) : 0 € Gal(Ky7a/Q)) 94
T B o SRR
cia (f124(q) + 4f144(q"), fssa(q) — 2fssa(q?), 176

7 fasp(q) + 27 fssp(q?) : 0 € Gal(Kgsp/Q))

Por 1ltimo, mostramos la descomposicion, en clases de Q-isogenia, de las jacobia-
nas de las curvas no primitivas mostradas en este apartado. La notacién es andloga a
la correspondiente tabla para el caso de curvas primitivas no nuevas.

C Descomposicién de J(C')

Cigy  Assa, Pyga=12—5

Co% Asia, Pyia=t*-5

Cie A, Ppza=t"—13 -5t + 5t — 1
C2% Bsaa x Agsa, Psga =12 — 3

C%y Buisa x Essa x Assp,  Pssp =12 — 17

Obsérvese que los Q-factores simples de dimensién mayor que uno de las jacobia-
nas de las curvas hiperelipticas modulares no nuevas expuestas en este capitulo suelen
corresponder a jacobianas de curvas hiperelipticas modulares nuevas. De hecho, este
fenémeno sucede en todos los casos salvo para los Q-factores Agsp y Assan.
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