
Caṕıtulo 5

Cálculo de curvas
hipereĺıpticas modulares
nuevas

En el caṕıtulo 3 se demostró que hay un número finito de curvas hipereĺıpticas
modulares nuevas. En el caṕıtulo 4 se determinó que el número total de estas
curvas para el caso en el cual tienen género 2, es de 213. Además, se calcularon
ecuaciones para cada una de ellas. Para encontrar todas estas curvas tuvimos
que calcular un conjunto de candidatos entre los cuales se encontraban aquéllas
y el proceso de cálculo de estos candidatos se realizó en varios ordenadores que
estuvieron funcionando ininterrumpidamente para tal efecto durante varios
meses. Aunque en teoŕıa el cálculo del resto de curvas hipereĺıpticas modulares
nuevas es posible de realizar, en la práctica, usando algoritmos del mismo tipo,
esto llevaŕıa varios años de cálculo con los ordenadores actuales. Debido a este
motivo, hemos optado por calcular todas las curvas hipereĺıpticas modulares
nuevas hasta un cierto nivel.

Este caṕıtulo se divide en las siguientes secciones:

1. La proposición 3.5 nos proporciona un criterio que nos permite reconocer
si una variedad abeliana A cociente de J1(N) corresponde a una curva
hipereĺıptica modular nueva. En esta sección, mostramos resultados adi-
cionales relativos a los coeficientes de las q-expansiones de las formas
nuevas asociadas a A y del nivel N , los cuales nos permitirán reducir el
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tiempo de cálculo para determinar todas las curvas hipereĺıpticas modu-
lares nuevas para un nivel dado.

2. Exponemos un proceso general, similar al caso de género 2, para calcu-
lar las curvas hipereĺıpticas modulares nuevas de género 3 cuando la
jacobiana es Q-simple.

3. Mostramos el algoritmo que hemos implementado en Magma, que es la
aplicación directa de los resultados de la primera sección.

4. Utilizando el algoritmo de la sección anterior, hemos calculado todas
las curvas modulares hasta un determinado nivel. Aqúı expondremos las
conclusiones a las que hemos llegado tras haber analizado los resultado
obtenidos en este cálculo.

5.1 Criterios de determinación

En primer lugar presentamos el criterio de comprobación que utilizaremos para
realizar los cálculos de este caṕıtulo. Éste es la adaptación de la proposición
3.6 al caso que nos ocupa.

Criterio 5.1. Sean f1, . . . , fm ∈ S2(N) formas nuevas tales que el espacio
vectorial complejo

⊕m
i=1 S2(Afi) tiene dimensión g > 2. Sea {h1, . . . , hg} la

base de
⊕m

i=1 S2(Afi) como en la Proposición 3.5 y pongamos

x =
hg−1

hg
e y =

qdx/dq

hg
.

Si existe un polinomio F (x) ∈ Q[X] de grado 2g+2 ó 2g+1 sin ráıces repetidas
tal que

y2 − F (x) = O(qcN ) con cN = 2 grado(F )(g1 − 1) + 1 ,

donde g1 es el género de X1(N), entonces C : y2 = F (x) es una curva hipe-
reĺıptica modular nueva de género g tal que

J(C)
Q∼ Af1 × · · · ×Afm .
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Observación 5.1. Si J(C)
Q∼ Af para alguna forma nueva f ∈ S2(N, ε), en-

tonces podemos reemplazar g1 por gε,N , el género de X(N, ε). Además, si
ε = 1 entonces para cada involución de Atkin-Lehner WM se tiene la siguiente
igualdad

WM
σf = ε(M)σf para σ ∈ Gal(Q/Q),

donde ε(M) ∈ {−1, 1}. Consideramos el grupo

B′(N) = {WM ∈ B(N) : ε(M) = 1},

donde B(N) es el grupo de involuciones de Atkin-Lehner. Entonces la curva
C puede ser recubierta desde la curva modular X ′0(N) = X0(N)/B′(N) y
podemos reemplazar g1 por g′, donde g′ denota el género de X ′0(N). Nótese
que B′(N) = B(N) ó B(N)/B′(N) ' Z/2Z y B′(N) = {id} si y sólo si N es
la potencia de un primo y ε(N) = −1.

La proposición siguiente mejora el resultado de la parte (iii) del lema 3.4
cuando i∞ se proyecta en un punto de Weierstrass.

Proposición 5.1. Sea (C, π) una curva hipereĺıptica modular nueva de nivel

N de género g tal que π(i∞) ∈Wei(C). Si J(C)
Q∼∏m

i=1Afi , donde cada fi =∑
n≥1 a

(i)
n qn ∈ S2(N, εi) es una forma nueva normalizada, entonces a

(i)
2n = 0

para todo n ≥ 1, i = 1, . . . ,m. En particular, 4|N .

Demostración: El caso g = 2 ha sido demostrado en el caṕıtulo 4 (ver pro-
posiciones 4.2 y 4.10). Por lo tanto, sólo nos queda probarlo para g > 2.
Diferenciaremos dos casos, dependiendo de si J(C) es un Q-factor de J0(N) o
no, o lo que es lo mismo, si todos los caracteres son triviales o no.

En primer lugar, lo demostraremos para el caso en el cual la jacobiana de
C no es un Q-factor de J0(N). En esta situación vimos en el teorema 3.10 que

g = 3 y que J(C)
Q∼ Af1 × Af2 , donde dimAf1 = 1, dimAf2 = 2 y existe una

curva modular nueva C ′ de género 2 tal que J(C ′)
Q∼ Af2 . Probamos en la

proposición 4.2 que entonces a
(2)
2n = 0 para todo n ≥ 1 y que 4|N ; por lo tanto,

como f1 tiene carácter trivial, obtenemos que a
(1)
2n = 0. Aśı completamos la

demostración.

Ahora, supongamos que J(C) es un Q-factor de J0(N). Denotemos por

Ki = Kfi , mi = [Ki : Q] , i = 1, . . .m.
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Para i = 1, . . . ,m, sean σ
(i)
j : Ki ↪→ R, j = 1, . . . ,mi las Q-inmersiones de Ki

en R y definamos f
(j)
i = σ

(i)
j fi y a

(i,j)
n = σ

(i)
j a

(i)
n para j = 1, . . . ,mi.

Sea E = K1×· · ·×Km. Se denotará por â = (a(1), . . . , a(m)) a un elemento
de E , donde a(i) ∈ Ki para i = 1, . . .m. El producto natural

â · b̂ = (a(1) · b(1), . . . , a(m) · b(m))

y la inclusión natural
Q ↪→ E
c 7→ (c, m. . ., c) ,

proporcionan a E una estructura de Q-álgebra de dimensión g sobre Q. Con-
sideremos las aplicaciones siguientes

Tr : E→ Q, Tr(â) =
m∑

i=1

TrKi/Q(a(i))

y
〈 , 〉 : E× E→ Q, 〈â, b̂〉 = Tr(â · b̂).

La aplicación Tr es Q-lineal y 〈 , 〉 es bilineal y no degenerada.

Para un entero n ≥ 1 denotamos por ân = (a
(1)
n , . . . , a

(m)
n ) ∈ E. Por cons-

trucción se tienen las siguientes leyes de recurrencia:

(i) âmn = âm · ân si (m,n) = 1.

(ii) âpk = âpk−1 âp − p ε̂(p)âpk−2 para todo primo p.

donde ε̂(p) = (ε1(p), . . . , εm(p)).

Se tienen las siguientes propiedades:

(1) εi = 1 para i = 1, . . . ,m.

(2) det(a
(i,j)
2n−1) 6= 0 para 1 ≤ n ≤ g, 1 ≤ i ≤ m, 1 ≤ j ≤ mi.

(3) Existe una única base formada por h1, . . . , hg con q-expansiones racio-
nales tales que para j = 1, . . . , g,

hj = q2j−1 +

g−1∑

n=j

cj,2n q
2n +

∑

2g≤n
cj,n q

n .
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De (2) obtenemos que {â2j−1 : 1 ≤ j ≤ g} es una Q-base de E. Sea
{α̂1, . . . , α̂g} la base de E tal que para todo i, j = 1, . . . , g se tenga

Tr(α̂i · â2j−1) =

{
0 si i 6= j,
1 si i = j.

(5.1)

Entonces se cumple

hj =
∑

n,m

α
(n,m)
j f (m)

n =
∑

n≥0

Tr(α̂j · ân)qn,

donde α
(n,m)
j = σ

(m)
n α

(n)
j . Como Tr(α̂j · â2n) = 0 cuando n < j ≤ g, obtenemos

â2j ∈
⊕

1≤n≤j
Q â2n−1.

En particular, â2 ∈ Q, es decir, a2 = a
(j)
2 ∈ Q para todo j. Por lo tanto,

â2n ∈ Q y a2n = a
(j)
2n ∈ Q para todo j.

Ahora, probaremos que

cg,2g = cg,2g+2 = cg−1,2g−2 = cg−1,2g = 0.

Obsérvese que ci,j = Tr(α̂i · âj). Ahora, usando (5.1) y las leyes de recurrencia
antes descritas para ân, obtenemos

g impar g par

cg,2g 0 0
cg,2g+2 0 0
cg−1,2g−2 0 0
cg−1,2g β 0

donde

β =

{
a2 si g = 3,
0 si g 6= 3.

Ahora, probaremos que β = 0 cuando g = 3. En efecto, si g = 3 tenemos

h2 = q3 + a2 q
6 + a q7 +O(q9),

h3 = q5 + b q7 +O(q9),
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y

x =
h2

h3
=

1

q2
− b+ a2 q +O(q2),

y = −q dx/dq
h3

=
1

q7
− b

q5
− a2

2q4
q +O(q−3).

Igualando coeficientes de x e y obtenemos

y2 − (x7 + 5b x6) = −8a2 q
−11 +O(q−10).

Por lo tanto, a2 = 0. Aśı, para g > 2 se tiene

x =
hg−1

hg
= q−2 + c0 +O(q2),

y la base formada por h′g−i = xi hg, 0 ≤ i ≤ g − 1, cumple

h′i = q2i−1 + c′i,2i+1 q
2i+1 +

∑

2i+3≤j
c′i,j q

j .

Esta última condición implica que a
(i)
2 = a

(i)
4 = 0 para todo i y, a su vez, que

2|N . Por lo tanto, a
(i)
2n = 0 para todo entero n ≥ 1, 1 ≤ i ≤ m. Como fi es un

forma nueva de nivel N y carácter trivial, se tiene 4|N .

Como consecuencia de este resultado, del lema 3.4 y del teorema 3.10, obte-
nemos las condiciones necesarias que se presentan en la siguiente proposición.

Proposición 5.2. Sea (C, π) una curva hipereĺıptica modular nueva de nivel
N y de género g > 2 tal que J(C) es un Q-factor de J0(N). Pongamos P =
π(i∞) ∈ C. Entonces g ≤ 10 y además

(i) Si J(C) es Q-simple y

– P /∈Wei(C), entonces ningún primo p ≤ g divide a N .

– P ∈Wei(C), entonces 4|N y ningún primo impar p ≤ 2g− 1 divide
a N .

(ii) Si J(C) no es Q-simple y

– P /∈Wei(C), entonces para todo primo p ≤ g se tiene que p2|/N ; si,
además, p|N entonces g = 3.
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– P ∈Wei(C), entonces 4|N y para todo primo impar p ≤ 2g − 1 se
tiene que p2|/N ; si, además, p|N entonces g = 3.

Para un nivel fijado N , podemos calcular todas las curvas hipereĺıpticas
modulares nuevas correspondientes a este nivel. En concreto, el criterio 5.1 nos
permite comprobar la modularidad de una curva hipereĺıptica, mientras que
la proposición 5.2 nos permite hacer una búsqueda más selectiva y, en conse-
cuencia, con menos gasto de tiempo. Con estos resultados implementaremos
un programa en Magma, que será mostrado en la sección 5.3, para hacer efec-
tivo este cálculo. Aśı, calcularemos todas las curvas hipereĺıpticas modulares
nuevas de nivel N ≤ 3000 con jacobiana Q-simple y de nivel N ≤ 2000 con
jacobiana no Q-simple. No obstante, antes de proceder a dicho cálculo, expon-
dremos el proceso que seguiŕıamos para calcular todas las curvas hipereĺıpticas
modulares nuevas.

5.2 Procedimiento general de determinación

Siguiendo un razonamiento similar al mostrado en el caṕıtulo 4 para género
2, podŕıamos calcular todas las ecuaciones, niveles y formas nuevas cuando
el género es mayor que 2. Sin embargo, el gran número de posibilidades para
los coeficientes de las q-expansiones de las formas nuevas nos impide, en la
práctica, realizar estos cálculos.

Ahora nos restringiremos al caso de género 3 y jacobiana Q-simple. Para
este caso se tiene que los únicos subcuerpos de Kf son Q y Kf . Aśı, sabemos
que:

Kf =

{
Q(a2) = Q(a3) si P /∈Wei(C),
Q(a3) = Q(a5) si P ∈Wei(C).

A continuación, mostramos como calculamos las curvas en el caso más sencillo,
esto es, cuando P /∈Wei(C) o, equivalentemente, a2 6= 0:

1. Determinamos todos los posibles polinomios H2(x) =
∏3
i=1(X − σia2)

como en la demostración del teorema 3.8. Es decir, todos los polinomios
mónicos de grado 3 con coeficientes enteros que son irreducibles sobre
Q y tales que todas sus ráıces son reales y con valor absoluto menor o
igual que 2

√
2. En total, hay 80 posibilidades para H2.
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2. Para cada polinomio H2, fijamos a2 ∈ Q tal que H2(a2) = 0. Entonces
para cada primo impar p ≤M = 16 consideramos sólo los valores de ε(p)
y ap tales que ε(p) ∈ {0, 1} y ap es un entero algebraico en Q(a2) con
|ap| ≤ 2

√
p. En el caso particular en que p = 3, impondremos además

que Q(a3) = Q(a2) y ε(3) = 1.

3. Tomamos

f = q +

M∑

n=2

an q
n +O(qM+1)

y

h =
3∑

i=1

σif = 3 q +
M∑

n=2

TrKf/Q(an) qn +O(qM+1) .

4. Calculamos

h|T2 = TrKf/Q(a2) q +
M∑

n=2

TrKf/Q(a2an) qn +O(qM+1) ,

h|T 2
2 = TrKf/Q(a2

2) q +
M∑

n=2

TrKf/Q(a2
2an) qn +O(qM+1) .

Aśı, el conjunto {h, h|T2, h|T 2
2 } es una base de S2(Af ) con q-expansión

racional, ya que Q ⊗ EndQ(Af ) = Q(T2) y h 6= 0. Como consecuencia,
calculamos la base {h1, h2, h3} como en la proposición 3.5 y, también,
las funciones

x =
h2

h3
e y =

qdx/dq

h3
.

5. Calculamos un polinomio F ∈ Q[X] de grado 8 tal que y2−F (x) = O(q).
Requeriremos que F no tenga ráıces múltiples y además

x
dx

y
, x2 dx

y
∈ 〈h1, h2, h3〉.

6. Cuando las curvas candidatas se han obtenido, debemos calcular el con-
ductor geométrico de la jacobiana de cada una de ellas, y quedarnos sólo
con aquellas tales que el correspondiente conductor sea el cubo de un
entero. Para cada una de estas curvas, buscamos una forma nueva en
S2(N), donde N3 es el conductor, cuyas correspondientes funciones x e
y satisfagan la ecuación y2 = F (x). Para la comprobación de este último
paso utilizamos el criterio 5.1.
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Tras calcular todas las posibilidades, hemos obtenido sólo dos curvas, de-
notadas por C41A y C95A, que aparecen en la tabla 6.6.

Cuando a2 = 0, el número de posibilidades que debemos tener en cuenta
crece considerablemente, ya que el número de valores para a3 incrementa nota-
blemente el número de posibles cuerpos Kf . Además, en este caso es necesario
conocer cada ap con p ≤ 19 para poder determinar la relación y2 = F (x).

Debido a que este proceso es extremedamente costoso en tiempo, hemos
decidido calcular todas las curvas hipereĺıpticas modulares nuevas hasta un
cierto nivel. Para ello hemos implementado en Magma un programa que re-
conoce si un Q-factor de J1(N) es Q-isógeno a la jacobiana de una curva
hipereĺıptica modular nueva de nivel N . Los detalles del programa aparecen
en la siguiente sección.

5.3 Determinación efectiva con Magma

Usando el paquete de Śımbolos Modulares de W. A. Stein, hemos implementa-
do un programa en Magma que detecta si un Q-factor de J1(N) tiene asociada
una curva hipereĺıptica modular nueva de nivel N y calcula una ecuación de
dicha curva. Esta función está basada en los resultados expuestos en la primera
sección de este caṕıtulo.

intrinsic CurvaHiperelipticaModular(F::SeqEnum) -> RngUPolElt

{Curva hiperelı́ptica modular asociada a un Q-factor B de J_1(N),

si existe, donde F son las q-expansiones de los elementos de

una base racional de H^0(B,Omega^1)q/dq}

g:=#F;

Mg:=MatrixAlgebra(Rationals(),g);

Q<q>:=LaurentSeriesRing(RationalField());

QQ<x>:=PolynomialRing(RationalField());

MQg:=MatrixAlgebra(Q,g);

MQg1:=KMatrixSpace(Q,g,1);

mF:=Mg![Coefficient(F[j],i) : i in [1..g] , j in [1..g]];

L,P,Q:=SmithForm(mF);

FF:=(MQg!P)*(MQg1!F);

v:=[Valuation(FF[i][1]):i in [1..g]];
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if v eq [i : i in [1..g]] then

h1:=FF[g-1][1];

h2:=FF[g][1];

X:=h1/h2; X:=(X-Coefficient(X,0))/Coefficient(X,Valuation(X));

Y:=q*Derivative(X)/h2; Y:=Y/Coefficient(Y,Valuation(Y));

Mpar:=KMatrixSpace(RationalField(),1,2*g+2);

a:=Mpar![0: i in [0..2*g+1]];

for i in [0..2*g+1] do

a[1][2*g+2-i]:=Coefficient(Y^2-(X^(2*g+2)+&+[a[1][i+1]*X^i:

i in [0..2*g+1]]),i-(2*g+1));

end for;

Res:=Y^2-(X^(2*g+2)+&+[a[1][i+1]*X^i: i in [0..2*g+1]]);

P:=x^(2*g+2)+&+[a[1][i+1]*x^i: i in [0..2*g+1]];

else

mF:=Mg![Coefficient(F[j],2*i-1) : i in [1..g] , j in [1..g]];

L,P,Q:=SmithForm(mF);

FF:=(MQg!P)*(MQg1!F);

v:=[Valuation(FF[i][1]):i in [1..g]];

if v eq [2*i-1 : i in [1..g]] then

h1:=FF[g-1][1];

h2:=FF[g][1];

X:=h1/h2; X:=(X-Coefficient(X,0))/Coefficient(X,Valuation(X));

Y:=q*Derivative(X)/h2; Y:=Y/Coefficient(Y,Valuation(Y));

Mimpar:=KMatrixSpace(RationalField(),1,2*g+1);

a:=Mimpar![0: i in [0..2*g]];

for i in [0..2*g] do

a[1][2*g+1-i]:=Coefficient(Y^2-(X^(2*g+1)+&+[a[1][i+1]*X^i:

i in [0..2*g]]),2*(i-2*g));

end for;

Res:=Y^2-(X^(2*g+1)+&+[a[1][i+1]*X^i: i in [0..2*g]]);

P:=x^(2*g+1)+&+[a[1][i+1]*x^i: i in [0..2*g]];

else

return "ERROR 1: No hay curva hipereliptica modular";

end if;

end if;

if IsWeaklyZero(Res) then

return P;

else

return "ERROR 2: No hay curva hipereliptica modular";

end if;

end intrinsic;
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Ahora, describimos el uso de la función CurvaHiperelipticaModular. Sea
B un Q-factor de J1(N) de dimensión g, entonces H0(B,Ω1) tiene una base
formada por g formas diferenciales regulares asociadas a formas parabólicas
h1, . . . , hg ∈ S2(N) cuyas q-expansiones tienen coeficientes racionales. La en-
trada del programa es un vector con las q-expansiones de estas g formas pa-
rabólicas hasta el coeficiente de grado igual a una determinada cota. Obsérvese
que si B es nueva de nivel N , esta cota es cN (ver criterio 5.1). La salida del
programa será la ecuación de la curva hipereĺıptica modular nueva de nivel N
y género g asociada a B, si existe. En caso contrario, la salida dará un error.

Ejemplo 5.1. Cálculo de una ecuación para X0(23):

> N:=23;M:=ModularSymbols(N,2,+1); M;

Full Modular symbols space of level 23, weight 2, and dimension 3

> S:=CuspidalSubspace(M); S;

Modular symbols space of level 23, weight 2, and dimension 2

> g0:=DimensionCuspFormsGamma0(N,2);

> cota:=4*(Dimension(S)+1)*(g0-1)+1;

> F:=qIntegralBasis(S,cota); F;

[

q^2-2*q^3-q^4+2*q^5+q^6+2*q^7-2*q^8-2*q^10-2*q^11+q^12+O(q^13),

q-q^3-q^4-2*q^6+2*q^7-q^8+2*q^9+2*q^10-4*q^11+3*q^12+O(q^13)

]

> CurvaHiperelipticaModular(F);

x^6 - 8*x^5 + 2*x^4 + 2*x^3 - 11*x^2 + 10*x - 7

Ejemplo 5.2. Vamos a estudiar si los Q-factores de J0(63)new corresponden a
curvas hipereĺıpticas modulares nuevas. Primero, calculamos la descomposi-
ción de J0(63)new sobre Q:

J0(63)new Q∼ E63A ×A63B,

donde A63B tiene dimensión 2 y E63A es una curva eĺıptica. La salida del
programa es la siguiente

> N:=63;M:=ModularSymbols(N,2,+1);

> S:=CuspidalSubspace(M); NewS:=NewSubspace(S);

> New:=NewformDecomposition(NewS);New; // Decomposition of J_0(N)^new

[

Modular symbols space of level 63, weight 2, and dimension 1,

Modular symbols space of level 63, weight 2, and dimension 2

]
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> g0:=DimensionCuspFormsGamma0(N,2);

> cota:=4*(2+1)*(g0-1)+1;

> F:=qIntegralBasis(New[2],cota);

> CurvaHiperelipticaModular(F);

x^6 - 26*x^3 - 27

Por lo tanto, con la notación da la tabla 6.2, se tiene que A63B
Q∼ J(C63B).

5.4 Evidencias numéricas

Utilizando el programa CurvaHiperelipticaModular, hemos intentado calcu-
lar todas las curvas hipereĺıpticas modulares nuevas con género mayor que 2.
En primer lugar, hemos obtenido todas estas curvas en el caso en el cual sus
jacobianas no son Q-factores de J0(N) (g = 3). Después, calculamos todas
aquéllas tales que sus jacobianas son Q-factores de J0(N), para N ≤ 3000 si
las jacobianas son Q-simples y para N ≤ 2000 en el caso en el cual las jaco-
bianas no son Q-simples. Las ecuaciones hipereĺıpticas de todas estas curvas
aparecen en el caṕıtulo 6.

Los siguientes resultados muestran cuantitativamente el número de curvas
hipereĺıpticas nuevas que hemos calculado:

Teorema 4.1. #MCnew
2 = 213.

Teorema 5.3. #{C ∈MCnew(2) : J(C) no es un cociente de J0(N)} = 36.

Teorema 5.4. 288 ≤ #MCnew(2) <∞.

Es decir, hemos determinado todas las curvas hipereĺıpticas modulares nue-
vas de género 2 y todas las que sus jacobianas no aparecen como un Q-factor
de J0(N). El tercer de los resultados muestra que al menos hay 288 curvas
hipereĺıpticas modulares nuevas. Mostraremos algunas evidencias que nos per-
mitirán conjeturar que éstas son todas la curvas del conjunto MCnew(2).

Primero mostramos, para cada género menor o igual que 10, el cardinal de
curvas obtenidas con jacobianas Q-simples y niveles N ≤ 3000, que compara-
mos con el cardinal de tales curvas de género 2 cuyas jacobianas son Q-factores
de J0(N).

2 3 4 5 6 7 8 9 10

114 14 13 3 0 0 0 0 0
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Obsérvese que para el caso de género 2 sólo hay seis curvas de niveles mayores
que 3000, concretamente de niveles 3159, 4160, 7280, 7424 y 7664. El nivel más
alto para el caso de género mayor a 2 es 1664 y no aparece ninguna curva
de género mayor que 5. Todo esto nos permite pensar que éstas son todas las
curvas hipereĺıpticas modulares nuevas con jacobianas Q-simples y Q-factores
de J0(N).

La siguiente tabla es análoga a la anterior para el caso de jacobianas no
Q-simples y niveles N ≤ 2000.

2 3 4 5 6 7 8 9 10

62 32 5 0 1 0 0 0 0

Sólo hay dos curvas modulares nuevas de género 2 con jacobianas no Q-simples
y niveles mayores que 2000, concretamente de nivel 2208. Para el caso en que
existe una curva con jacobiana no Q-simple y género mayor que 2, el nivel más
alto encontrado es 944 y sólo aparece una curva con género mayor que 5, que
es la curva X0(71) que tiene género 6. Estos hechos nos permiten pensar que
éstas son todas las curvas hipereĺıpticas modulares nuevas con jacobianas no
Q-simples y Q-factores de J0(N).

Frente a estas evidencias, nos parece bastante razonable hacer la siguiente
conjetura.

Conjetura 5.1. El conjunto MCnew(2) está formado por las curvas de las
tablas del caṕıtulo 6. En particular, #MCnew(2) = 288.

Finalmente, notamos que todos los niveles de las curva hipereĺıpticas mo-
dulares nuevas de género 2 tienen como máximo tres divisores primos impares
distintos, mientras que si el género es mayor que 2 como máximo hay dos.
Además, en este último caso, el único nivel tal que el cuadrado de un primo
impar divide a éste es N = 734.
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Caṕıtulo 6

Tablas de curvas
hipereĺıpticas modulares
nuevas

En este caṕıtulo presentamos las ecuaciones de las curvas hipereĺıpticas mo-
dulares nuevas calculadas en esta tesis.

La sección 6.2 está dedicada a mostrar todas estas curvas para el caso de
género 2. El método para calcularlas ha sido descrito en el caṕıtulo 4. Para
el caso en el cual la jacobiana es Q-simple y no Q-simple, hemos calculado
también ecuaciones de Q-curvas cocientes, que presentamos en la tabla 6.4.

En la sección 6.3.1 mostramos las únicas siete curvas de esta clase que
tienen género mayor que 2 y tales que sus jacobianas no son Q-factores de
J0(N). Aśı, hemos calculado todas las curvas hipereĺıpticas modulares nuevas
tales que sus jacobianas no son Q-factores de J0(N).

Por último, en la sección 6.3.2 aparecen todas las curvas hipereĺıpticas
modulares nuevas de género mayor que 2 cuyas jacobianas son Q-factores de
J0(N) hasta un determinado nivel N . En concreto hasta N = 3000 si la
jacobiana es Q-simple y hasta N = 2000 si no lo es.

En orden a especificar la clase de Q-isogenia de las jacobianas de las curvas
presentadas, introducimos previamente una sección destinada a etiquetar las
formas nuevas.

93
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6.1 Etiquetación de formas nuevas

Vamos a mostrar un método para clasificar las clases de conjugación de Galois
de formas nuevas. Para ello, primero identificaremos los caracteres de Dirichlet
y después etiquetaremos las formas nuevas para un nivel y un carácter fijados.

6.1.1 Carácteres de Dirichlet

En este apartado explicamos como describiremos los caracteres de Dirichlet
módulo N , de manera que éstos queden determinados.

Definición 6.1. Sea N un entero positivo. Un carácter de Dirichlet módulo
N es un homomorfismo de grupos multiplicativos

ε : (Z/N Z)∗ → C∗.

El conductor de ε, que denotaremos por fε, es el mı́nimo divisor M | N para
el cual ε factoriza a través de la proyección natural (Z/N Z)∗ → (Z/M Z)∗.
Denotaremos, asimismo, por ord ε al orden de ε, es decir, al mı́nino entero
positivo n tal que εn = 1.

Si la factorización de N en potencias de primos es de la forma

N =
n∏

i=1

peii con pi < pi+1 y ei > 0,

se tiene la siguiente descomposición

(Z/N Z)∗ ∼=
n∏

i=1

(Z/peii Z)∗.

Por lo tanto, podemos definir caracteres de Dirichlet módulo potencias de
primos de la forma εpi : (Z/peii Z)∗ → C∗, de modo que

ε =
n∏

i=1

εpi .

Aśı, es suficiente determinar los caracteres de Dirichlet módulo potencias de
primos. Para éstos, utilizaremos el siguiente resultado.
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Lema 6.1. Sea p un primo y e un entero positivo, entonces:

(i) Si p 6= 2, (Z/pe Z)∗ ∼= Z/pe−1(p− 1)Z.

(ii) (Z/2Z)∗ ∼= {1}.

(iii) Si e > 1, (Z/2e Z)∗ ∼= Z/2Z× Z/2e−2 Z y cada factor está generado por
−1 y 5 respectivamente.

Aśı, para dar un carácter de Dirichlet módulo la potencia de un primo p,
es suficiente con dar la imagen de un generador expĺıcito de (Z/pe Z)∗, salvo
en el caso en el cual p = 2 y e > 2, en el que habrá que dar la imagen de los
dos generadores de (Z/2e Z)∗.

Ahora, si G es un grupo ćıclico finitamente generado por g y χ : G→ C∗ es
un homomorfismo de orden n, entonces χ queda determinado por χ(g). Concre-
tamente, si elegimos ζn = e2πi/n, se tiene χ(g) = ζ

aχ
n para aχ ∈ {0, . . . , n− 1}.

Denotaremos a χ por {aχ}.
Aśı, si p es un primo tal que G = (Z/pe Z)∗ es ćıclico, tomaremos como

g al menor entero positivo que genera G y si εp : G → C∗ es un carácter
de Dirichlet, denotaremos por ap a aεp . El único caso en el cual el grupo
G = (Z/pe Z)∗ no es ćıclico sucede cuando p = 2 y e > 2. En este caso,
si ε2 : G → C∗ es un carácter de Dirichlet se tiene que ε2 = χ2χ

′
2 donde

χ2 : Z/2Z→ C∗ y χ′2 : Z/2e−2 Z→ C∗, entonces tomaremos como generadores
de Z/2Z (resp. Z/2e−2 Z) a −1 (resp. 5). Al carácter ε2 lo denotaremos por
a2 = {aχ2 , aχ′2}.

En definitiva, si ε es un carácter de Dirichlet módulo N tal que la des-
composición en factores primos de N es de la forma

∏n
i=1 p

ei
i , denotaremos al

carácter ε por {ap1 , . . . , apn}N , donde api es como antes.

Cuando previamente se haya dado el nivel del carácter suprimiremos el
sub́ındice que denota dicho nivel.

Esta representación determina de forma uńıvoca los caracteres de Dirichlet.
El siguiente ejemplo ilustra esta notación.

Ejemplo 6.1. Los caracteres ε = {2, 4}225 y χ = {4, 4}225 son caracteres de
Dirichlet módulo 225 = 3252 pares de orden 15 y conductor 225. Además, se
tiene que ord ε3 = ordχ3 = 3, ord ε5 = ordχ5 = 5 y los caracteres ε, χ no son
conjugados de Galois.
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6.1.2 Formas nuevas

A continuación, vamos a ordenar y etiquetar las clases de conjugación de
Galois de las formas nuevas; para ello, utilizaremos el método introducido
por J. Cremona en [Cre97] para formas nuevas asociadas a curvas eĺıpticas
definidas sobre Q y extendido para formas nuevas en general por W. A. Stein
en [Ste00]. Nos limitaremos al caso de peso 2 e introduciremos una nueva
etiquetación para el caso de carácter no trivial.

Para el caso de formas nuevas con q-expansión racional, seguiremos la
notación clásica de J. Cremona. Para el resto de los casos, la forma en que
vamos a ordenar las clases de conjugación de Galois de las formas nuevas de
nivel N y carácter ε es la siguiente:

1. Ordenamos de menor a mayor dimensión las variedades abelianas mo-
dulares asociadas.

2. Para el caso de carácter trivial: agrupamos las formas en clases tales que
dos formas están en la misma clase si tienen los mismos autovalores para
todas las involuciones de Atkin-Lehner. Si p1 ≤ · · · ≤ pk son los primos
que dividen a N , ordenamos estas clases lexicográficamente considerando
que el autovalor +1 precede al −1.

3. En cada una de estas clases (si el carácter no es trivial tenemos una
única clase) ordenamos por el valor absoluto de la traza (desde el cuerpo
de números asociado a cada una de las q-expansiones) de los autovalores
de los operadores de Hecke Tp, p|/N , comenzando por el menor primo
que no divide al nivel. En el caso en que dos valores coincidan para un
mismo primo, precede el que tiene traza positiva, y si ambas son positivas
pasamos al siguiente primo que no divide al nivel.

Por lo tanto, tenemos un orden en el conjunto de clases de conjugación de
Galois de las formas nuevas de nivel N y carácter ε. A cada clase se le asigna
una letra del conjunto

A,B,C, . . . , Z,AA,BB, . . . , ZZ,AAA,BBB, . . . .

dependiendo del lugar que ocupe en el proceso anterior.

El formato de las etiquetas es el siguiente:

N [Clase de conjugación de Galois]ε ,
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donde la clase de conjugación de Galois es una letra del anterior conjunto.
Para el caso en que el carácter es trivial omitiremos el sub́ındice ε.

Ahora, como a cada clase de conjugación de Galois de formas nuevas de
nivel N le corresponde una clase de Q-isogenia de variedades abelianas mo-
dulares de nivel N , también tenemos ordenadas y etiquetadas las clases de
Q-isogenia de estas variedades. Aśı, si por ejemplo f ∈ S2(N, ε) es una forma
nueva con etiqueta NAε, a f la denotaremos por fNAε y a la variedad abelia-
na Af por ANAε . En el caso en el cual Af es una curva eĺıptica, denotaremos
por ENA a esta variedad y, como hemos dicho anteriormente, seguiremos la
clasificación de J. Cremona.

El cuerpo de coeficientes de una forma nueva será denotado por una letra
K y el polinomio mı́nimo de un generador de K por una letra P , ambas con
el sub́ındice correspondiente a la etiqueta de la clase de conjugación de Galois
de esta forma nueva.

Observación 6.1. Obsérvese que esta notación también coincide con la de J.
Cremona para el caso de curvas eĺıpticas definidas sobre Q, salvo para los
niveles que van del 56 al 450 en donde hay casos en los que difiere.

El ejemplo siguiente ilustra esta notación.

Ejemplo 6.2. Sea ε un carácter de Dirichlet de orden 6 módulo 13, es decir,
ε = {2}. Se tiene que en S2(13, ε)new sólo hay una clase de conjugación de
Galois de formas nuevas; por lo tanto, a esta única clase la denotaremos por
f13A{2} , a su variedad abeliana modular asociada por A13A{2} y al cuerpo de
coeficientes de su q-expansión por K13A{2} . Obsérvese que S2(13, ε) = S2(13),

por lo tanto, J1(13)
Q∼A13A{2} .

6.2 Género 2

En esta sección presentaremos en primer lugar las ecuaciones hipereĺıpticas
de todas las curvas modulares nuevas de género 2. Para el caso de jacobiana
Q-simple, también mostraremos el cuerpo de coeficientes de la q-expansión de
la forma nueva correspondiente, es decir, la Q-álgebra de Q-endomorfismos de
la jacobiana de la curva. Por último, para el caso de jacobiana Q-simple y no
Q-simple, mostraremos ecuaciones de Q-curvas cocientes. Si la jacobiana no es
Q-simple, daremos las clases de Q-isogenia de las dos curvas eĺıpticas cociente.
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6.2.1 Tablas de curvas modulares nuevas de género 2

Mostraremos tres tablas con las ecuaciones hipereĺıpticas de todas las curvas
modulares nuevas de género 2. En la primera de ellas aparecerán aquéllas que
tienen jacobiana Q-simple, en la segunda las que tienen jacobiana Q-simple
pero no Q-simple, y en la tercera aquéllas que tienen jacobiana no Q-simple.

A cada curva la denotaremos por la clase de Q-isogenia de su jacobiana.
Esto es, si la curva es modular nueva de nivel N y su jacobiana es Q-simple,
entonces su jacobiana será Q-isógena a alguna variedad abeliana modular. Si
por ejemplo la clase de Q-isogenia de esta variedad es NAε, entonces deno-
taremos por CNAε a esta curva. Si la jacobiana de la curva no es Q-simple,
denotaremos a la curva por CA,B

N , donde NA y NB son las clases de Q-isogenia
de las curvas eĺıpticas cociente. Estas clases de Q-isogenia han sido calculadas
utilizando las tablas de Cremona, tanto las que aparecen en [Cre97] como las
que se pueden obtener electrónicamente v́ıa web [Cre] o mediante Magma
[BCP97].

Para el caso en el que la Q-álgebra de Q-endomorfismos de la jacobiana
de algunas de las curvas es Q(

√
d) , con d ≡ 1 (mod 4), hemos realizado un

cambio de variables para obtener un modelo sobre Z. En este caso, hemos
tomado h1 − h2 y −2h2 en lugar de h1, h2 para calcular x e y.

De las 149 curvas que tienen jacobiana Q-simple hemos obtenido 99 clases
de Q-isomorfismo. Para el caso no Q-simple, de 64 hemos obtenido 43.

Tabla 6.1: Jacobiana Q-simple

C : y2 = F (x)

C23A : y2 = x6 − 8x5 + 2x4 + 2x3 − 11x2 + 10x− 7

C29A : y2 = x6 + 2x5 − 17x4 − 66x3 − 83x2 − 32x− 4

C31A : y2 = x6 − 14x5 + 61x4 − 106x3 + 66x2 − 8x− 3

C35B : y2 = x6 − 4x5 + 2x4 − 32x3 − 27x2 − 64x− 76

C39B : y2 = x6 + 6x5 − 5x4 − 66x3 − 59x2 − 12x

C67B : y2 = x6 + 2x5 + x4 − 2x3 + 2x2 − 4x+ 1

C68A : y2 = x5 − 11x4 + 7x3 + 7x2 − 12x+ 8

C73B : y2 = x6 + 2x5 + x4 + 6x3 + 2x2 − 4x+ 1

C85B : y2 = x6 + 2x5 + 7x4 + 6x3 + 13x2 − 8x+ 4
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C : y2 = F (x)

C87A : y2 = x6 − 6x5 + 13x4 − 18x3 + 10x2 − 3

C88B : y2 = x5 − 8x4 − 4x3 + 36x2 − 32x

C93A : y2 = x6 + 6x5 + 5x4 − 6x3 + 2x2 + 1

C103A : y2 = x6 + 6x5 + 5x4 + 2x3 + 2x2 + 1

C104B : y2 = x5 − 8x4 + x3 + 30x2 − 20x+ 8

C107A : y2 = x6 − 4x5 + 10x4 − 18x3 + 17x2 − 10x+ 1

C115B : y2 = x6 + 6x5 + 5x4 + 10x3 + 2x2 + 1

C125A : y2 = x6 − 4x5 + 10x4 − 10x3 + 5x2 + 2x− 3

C133A : y2 = x6 + 10x5 + 17x4 + 14x3 + 10x2 + 4x+ 1

C135D : y2 = x6 − 6x5 + 21x4 − 54x3 + 90x2 − 108x+ 45

C136C : y2 = x5 − 19x3 − 14x2 + 28x− 8

C147D : y2 = x6 + 6x5 + 11x4 + 6x3 + 5x2 + 4

C161B : y2 = x6 + 2x4 − 6x3 + 17x2 − 18x+ 5

C165A : y2 = x6 + 6x5 + 11x4 + 14x3 + 5x2 − 12x

C167A : y2 = x6 − 4x5 + 2x4 − 2x3 − 3x2 + 2x− 3

C175E : y2 = x6 + 2x5 − 3x4 + 6x3 − 14x2 + 8x− 3

C176D : y2 = x5 + 3x4 − 26x3 + 14x2 + x+ 7

C177A : y2 = x6 + 2x4 − 6x3 + 5x2 − 6x+ 1

C184E : y2 = x5 − 14x3 − 7x2 + 19x− 7

C188A : y2 = x5 − 5x4 + 5x3 − 15x2 + 6x− 11

C188B : y2 = x5 − x4 + x3 + x2 − 2x+ 1

C191A : y2 = x6 + 2x4 + 2x3 + 5x2 − 6x+ 1

C205D : y2 = x6 + 2x4 + 10x3 + 5x2 − 6x+ 1

C207B : y2 = x6 + 6x5 + 3x4 − 26x3 − 27x2 − 12x

C208E : y2 = x5 + 3x4 − 21x3 + 5x2 + 16x− 12

C209B : y2 = x6 − 4x5 + 8x4 − 8x3 + 8x2 + 4x+ 4

C213B : y2 = x6 + 2x4 + 2x3 − 7x2 + 6x− 3

C221C : y2 = x6 + 4x5 + 2x4 + 6x3 + x2 − 2x+ 1

C224C : y2 = x5 + 3x4 − 16x3 − 20x2 + 64x− 32

C224D : y2 = x5 − 13x4 + 48x3 − 36x2 − 32x+ 32
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C : y2 = F (x)

C261A : y2 = x6 − 6x4 + 10x3 + 21x2 − 30x+ 9

C272E : y2 = x5 − 10x4 + 21x3 + 48x2 − 176x+ 128

C272F : y2 = x5 + 11x4 + 7x3 − 7x2 − 12x− 8

C275C : y2 = x6 − 4x5 + 2x4 − 22x3 − 15x2 − 30x− 35

C280D : y2 = x5 − 5x4 + 3x3 + 9x2 − 20x

C287A : y2 = x6 − 4x5 + 2x4 + 6x3 − 15x2 + 14x− 7

C297E : y2 = x6 + 6x5 + 3x4 − 36x3 − 69x2 − 54x− 15

C299A : y2 = x6 − 10x5 + 41x4 − 78x3 + 66x2 − 28x+ 5

C315C : y2 = x6 + 6x5 + 3x4 − 18x3 − 27x2 − 24x− 4

C351A : y2 = x6 − 6x4 + 18x3 + 9x2 − 18x+ 5

C357E : y2 = x6 + 8x4 − 8x3 + 20x2 − 12x+ 12

C368H : y2 = x5 − 5x4 − 4x3 + 39x2 − 32x+ 8

C376A : y2 = x5 − 6x4 + 11x3 − 4x2 − 2x+ 1

C376B : y2 = x5 − x3 + 2x2 − 2x+ 1

C380D : y2 = x5 − 5x4 + 3x3 + 7x2 − 3x+ 2

C416C : y2 = x5 − 3x4 + 7x3 − x2 − 8x+ 20

C416E : y2 = x5 − 2x4 + 5x3 − 12x2 + 4x− 16

C440E : y2 = x5 − 5x4 + 12x3 − 27x2 + 25x− 30

C440G : y2 = x5 − 2x3 − 7x2 − 8x+ 8

C448I : y2 = x5 − 3x4 + 12x3 − 8x2 − 20x+ 4

C448J : y2 = x5 − 7x4 + 28x3 − 72x2 + 76x− 12

C476B : y2 = x5 − 3x4 + 5x3 − x2 − 2x+ 1

C476D : y2 = x5 − 2x4 + 3x3 − 6x2 − 7

C525E : y2 = x6 + 2x4 − 10x3 − 7x2 − 30x+ 9

C560H : y2 = x5 − 7x3 + 2x2 − 8x+ 12

C621D : y2 = x6 − 6x5 + 21x4 − 42x3 + 42x2 − 24x+ 5

C640I : y2 = x5 + 2x3 + 4x2 − 8x+ 16

C640L : y2 = x5 − 10x4 + 42x3 − 96x2 + 112x− 64

C645G : y2 = x6 + 8x4 + 20x2 + 12x+ 4

C704M : y2 = x5 − 3x4 + 12x3 − 10x2 + 7x+ 9
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C : y2 = F (x)

C704N : y2 = x5 − 2x4 + 10x3 − 18x2 + 16x− 16

C752B : y2 = x5 − 5x4 + 9x3 − 9x2 + 4x− 1

C752C : y2 = x5 + x4 − 3x3 − 3x2 + 4x− 1

C752E : y2 = x5 − 4x4 + 7x3 − 8x2 + 4x− 1

C752F : y2 = x5 − 5x3 + 20x2 − 24x+ 19

C783A : y2 = x6 − 6x4 + 10x3 − 15x2 + 6x− 3

C880K : y2 = x5 + 2x3 + 11x2 − 8x+ 24

C880M : y2 = x5 − 5x4 + 8x3 + 3x2 − 23x+ 8

C952B : y2 = x5 − 8x4 + 27x3 − 30x2 + 18x− 7

C1053F : y2 = x6 − 6x4 + 18x3 − 27x2 + 18x− 7

C1120R : y2 = x5 − 5x4 + 17x3 − 15x2 − 14x

C1120S : y2 = x5 + 5x4 + 17x3 + 15x2 − 14x

C1280C : y2 = x5 + 5x4 + 22x3 + 14x2 − 3x+ 1

C1280L : y2 = x5 − 5x4 + 22x3 − 14x2 − 3x− 1

C1520M : y2 = x5 + 5x4 + 3x3 − 7x2 − 3x− 2

C1792K : y2 = x5 + 3x4 − 2x3 − 2x2 + 10x− 6

C1792L : y2 = x5 − 3x4 − 2x3 + 2x2 + 10x+ 6

C1820B : y2 = x5 + 7x3 − 16x2 + 12x+ 1

C1904G : y2 = x5 + 3x4 + 5x3 − 13x2 + 12x− 1

C1904I : y2 = x5 + 2x4 + 3x3 + 6x2 + 7

C1904K : y2 = x5 − 2x4 + 3x3 − 6x2 + 4x− 1

C1916A : y2 = x5 + 3x4 − 7x3 + 5x2 − 2x+ 1

C2240DD: y2 = x5 + 5x4 + 17x3 + 33x2 + 40x+ 30

C2240EE : y2 = x5 − 5x4 + 17x3 − 33x2 + 40x− 30

C3159G : y2 = x6 − 6x5 + 21x4 − 26x3 + 18x2 − 3

C7280BB : y2 = x5 − 5x4 + 17x3 − 15x2 + 6x− 5

C7664A : y2 = x5 − 3x4 − 7x3 − 5x2 − 2x− 1
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Tabla 6.2: Jacobiana Q-simple y no Q-simple

C : y2 = F (x)

C13A{2} : y2 = x6 + 4x5 + 6x4 + 2x3 + x2 + 2x+ 1

C16A{{0,1}} : y2 = x6 + 2x5 − x4 − x2 − 2x+ 1

C18A{0,2} : y2 = x6 + 2x5 + 5x4 + 10x3 + 10x2 + 4x+ 1

C28A{0,2} : y2 = x5 − 4x4 − 13x3 − 9x2 − x
C40A{{0,0},2} : y2 = x5 − 3x4 − 12x2 − 16x

C45A{0,2} : y2 = x6 + 22x3 + 125

C48A{{1,0},1} : y2 = x5 − 5x4 + 20x2 − 16x

C52A{0,2} : y2 = x5 − 5x3 − 5x2 − x
C63B : y2 = x6 − 26x3 − 27

C64A{{0,8}} : y2 = x5 − 16x

C64A{{0,4}} : y2 = x5 − 2x4 − 2x2 − x
C80A{{0,0},2} : y2 = x5 + 3x4 + 12x2 − 16x

C81A : y2 = x6 − 18x3 − 27

C100A{0,10} : y2 = x5 + 5x3 + 5x− 11

C112A{{1,0},1} : y2 = x5 + 3x4 + x3 − 2x2 − x
C112B{{1,0},1} : y2 = x5 − 3x4 + x3 + 2x2 − x
C112A{{0,0},2} : y2 = x5 + 4x4 − 13x3 + 9x2 − x
C117B : y2 = x6 − 10x3 − 27

C128B{{0,16}} : y2 = x5 + 64x

C148A{0,6} : y2 = x5 + 8x4 + 11x3 + 3x2 − x
C160C : y2 = x5 − 12x3 − 64x

C160A{{1,0},1} : y2 = x5 − 11x4 − 11x2 − x
C160B{{1,0},1} : y2 = x5 + x4 + x2 − x
C160C{{1,0},1} : y2 = x5 + 11x4 + 11x2 − x
C160D{{1,0},1} : y2 = x5 − x4 − x2 − x
C189E : y2 = x6 − 2x3 − 27

C192A{{1,0},1} : y2 = x5 − 5x4 + 20x3 − 40x2 + 44x− 20

C208A{{0,0},2} : y2 = x5 − 5x3 + 5x2 − x
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C : y2 = F (x)

C243C : y2 = x6 + 6x3 − 27

C256E : y2 = x5 − 64x

C320G : y2 = x5 + 12x3 − 64x

C400A{{0,0},10} : y
2 = x5 + 5x3 + 5x+ 11

C512B : y2 = x5 + 4x3 − 4x

C512E : y2 = x5 − 4x3 − 4x

C544G : y2 = x5 − x3 − 4x

C592A{{0,0},6} : y2 = x5 − 8x4 + 11x3 − 3x2 − x
C768A{{1,0},1} : y2 = x5 + x4 + 2x3 − 2x2 − 2x+ 2

C768C{{1,0},1} : y2 = x5 − x4 + 2x3 + 2x2 − 2x− 2

C928A{{1,0},7} : y2 = x5 − 5x4 − 5x2 − x
C928B{{1,0},7} : y2 = x5 + 5x4 + 5x2 − x
C1088Q : y2 = x5 + x3 − 4x

C1280A : y2 = x5 + 2x3 − 4x

C1280D : y2 = x5 − 2x3 − 4x

C1280E : y2 = x5 + 8x3 − 4x

C1280I : y2 = x5 − 8x3 − 4x

C1280J : y2 = x5 + 22x3 − 4x

C1280N : y2 = x5 − 22x3 − 4x

C1312C : y2 = x5 − 5x3 − 4x

C2080J : y2 = x5 + 7x3 − 4x

C2624M : y2 = x5 + 5x3 − 4x

C4160II : y2 = x5 − 7x3 − 4x

C7424A : y2 = x5 − 10x3 − 4x

C7424B : y2 = x5 + 10x3 − 4x
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Tabla 6.3: Jacobiana no Q-simple

C : y2 = F (x)

CA,B26 : y2 = x6 + 4x5 − 12x4 − 114x3 − 308x2 − 384x− 191

CA,B37 : y2 = x6 − 4x5 − 40x4 + 348x3 − 1072x2 + 1532x− 860

CA,B50 : y2 = x6 + 2x5 − 5x4 − 30x3 − 55x2 − 48x− 16

CA,B54 : y2 = x6 − 34x3 + 1

CA,B56 : y2 = x5 + 6x4 − 45x3 − 490x2 − 1503x− 1564

CA,B58 : y2 = x6 − 2x5 + 11x4 − 22x3 + 21x2 − 12x+ 4

CA,B66 : y2 = x6 + 2x5 − 5x4 − 22x3 − 31x2 − 24x− 8

CA,B80 : y2 = x5 + 2x4 − 26x3 − 132x2 − 231x− 142

CA,B84 : y2 = x5 + 4x4 − 25x3 − 172x2 − 339x− 222

CA,B90 : y2 = x6 − 18x3 + 1

CA,B91 : y2 = x6 + 2x5 − x4 − 8x3 − x2 + 2x+ 1

CA,B96 : y2 = x5 − 34x3 + x

CA,C112 : y2 = x5 − 2x4 + 10x3 − 16x2 + 21x− 14

CA,B112 : y2 = x5 − 6x4 − 45x3 + 490x2 − 1503x+ 1564

CB,D128 : y2 = x5 − 24x3 + 16x

CA,C128 : y2 = x5 + 24x3 + 16x

CA,C138 : y2 = x6 + 8x4 + 6x3 + 8x2 + 1

CB,D142 : y2 = x6 − 2x5 − 5x4 + 18x3 − 19x2 + 12x− 4

CA,B160 : y2 = x5 + 12x3 + 16x

CA,D162 : y2 = x6 + 14x3 + 1

CB,C162 : y2 = x6 − 10x3 + 1

CC,D184 : y2 = x5 − 10x3 − 15x2 − 9x− 7

CA,C189 : y2 = x6 − 12x4 + 36x3 − 48x2 + 36x− 12

CA,B189 : y2 = x6 − 12x4 + 12x3 + 24x2 − 36x+ 12

CC,D192 : y2 = x5 − 14x3 + x

CB,D192 : y2 = x5 + 4x4 − 6x3 − 58x2 − 111x− 70
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C : y2 = F (x)

CA,C192 : y2 = x5 − 4x4 − 6x3 + 58x2 − 111x+ 70

CA,B192 : y2 = x5 + 34x3 + x

CC,E200 : y2 = x5 − 10x3 − 15x2 + 8

CC,D240 : y2 = x5 − 2x4 + 6x3 − 13x2 + 12x− 4

CA,D256 : y2 = x5 + 16x

CA,B264 : y2 = x5 + 2x4 − 6x3 − 23x2 − 24x− 8

CB,C312 : y2 = x5 − 2x4 − x3 + 8x2 − 9x+ 3

CA,C320 : y2 = x5 − 2x4 − 2x3 − 2x2 + x

CD,E320 : y2 = x5 − 12x3 + 16x

CB,F320 : y2 = x5 + 2x4 − 2x3 + 2x2 + x

CA,F336 : y2 = x5 − 4x4 − 25x3 + 172x2 − 339x+ 222

CA,G368 : y2 = x5 − 10x3 + 15x2 − 9x+ 7

CA,D384 : y2 = x5 + 10x3 + x

CB,C384 : y2 = x5 − 10x3 + x

CB,E400 : y2 = x5 − 25x2 + 20x− 4

CA,H400 : y2 = x5 − 10x3 + 15x2 − 8

CA,F405 : y2 = x6 − 12x4 + 28x3 − 24x2 + 12x− 4

CB,F405 : y2 = x6 − 12x4 + 20x3 − 12x+ 4

CA,D448 : y2 = x5 − 2x4 + 10x3 − 2x2 + x

CB,G448 : y2 = x5 + 2x4 + 10x3 + 2x2 + x

CB,C480 : y2 = x5 + 2x4 − 4x3 − 17x2 − 18x− 6

CB,G480 : y2 = x5 − 7x3 + x

CA,G480 : y2 = x5 − 2x4 − 4x3 + 17x2 − 18x+ 6

CA,D528 : y2 = x5 − 2x4 − 6x3 + 23x2 − 24x+ 8

CB,C544 : y2 = x5 − 9x3 + 16x

CC,D624 : y2 = x5 + 2x4 − x3 − 8x2 − 9x− 3

CA,G672 : y2 = x5 + 5x3 + x
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C : y2 = F (x)

CA,E760 : y2 = x5 + 3x3 + 14x2 + 15x+ 5

CD,F768 : y2 = x5 − 4x3 + x

CB,H768 : y2 = x5 + 4x3 + x

CA,F960 : y2 = x5 + 7x3 + x

CL,N1088 : y2 = x5 + 9x3 + 16x

CC,F1344 : y2 = x5 − 5x3 + x

CB,D1520 : y2 = x5 + 3x3 − 14x2 + 15x− 5

CF,G1664 : y2 = x5 − 2x4 + x3 + 2x− 4

CO,S1664 : y2 = x5 + 2x4 + x3 + 2x+ 4

CA,E2208 : y2 = x5 + 2x4 + 8x3 + 19x2 + 18x+ 6

CG,I2208 : y2 = x5 − 2x4 + 8x3 − 19x2 + 18x− 6

Q-álgebra de Q-endomorfismos

En este apartado mostraremos la Q-álgebra de Q-endomorfismos de la jaco-
biana de cada una de las curvas modulares nuevas de género 2 que tienen
jacobiana Q-simple, es decir, el cuerpo de coeficientes de la q-expansión de la
forma nueva correspondiente.

K13A{2} =Q(
√
−3)

K23A =Q(
√

5)

K31A =Q(
√

5)
K40A{{0,0},2} =Q(i)

K52A{0,2} =Q(
√
−3)

K64A{{0,4}} =Q(i)

K73B =Q(
√

5)

K85B =Q(
√

2)

K93A =Q(
√

5)

K104B =Q(
√

17)
K112B{{1,0},1}=Q(

√
−3)

K117B =Q(
√

3)

K133A =Q(
√

5)

K147D =Q(
√

2)
K160A{{1,0},1}=Q(i)

K16A{{0,1}} =Q(i)

K28A{0,2} =Q(
√
−3)

K35B =Q(
√

17)
K45A{{0,2}} =Q(

√
−5)

K63B =Q(
√

3)

K67B =Q(
√

5)
K80A{{0,0},2} =Q(i)

K87A =Q(
√

5)
K100A{0,10} =Q(i)

K107A =Q(
√

5)
K112A{{0,0},2}=Q(

√
−3)

K125A =Q(
√

5)

K135D =Q(
√

13)
K148A{0,6} =Q(

√
−3)

K160B{{1,0},1}=Q(i)

K18A{0,2} =Q(
√
−3)

K29A =Q(
√

2)

K39B =Q(
√

2)
K48A{{1,0},1} =Q(

√
−3)

K64A{{0,8}} =Q(i)

K68A =Q(
√

3)

K81A =Q(
√

3)

K88B =Q(
√

17)

K103A =Q(
√

5)
K112A{{1,0},1}=Q(

√
−3)

K115B =Q(
√

5)
K128B{{0,16}} =Q(

√
−2)

K136C =Q(
√

5)

K160C =Q(
√

2)
K160C{{1,0},1}=Q(i)
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K160D{{1,0},1}=Q(i)

K167A =Q(
√

5)

K177A =Q(
√

5)

K188B =Q(
√

5)
K192A{{1,0},1}=Q(

√
−3)

K208E =Q(
√

17)

K213B =Q(
√

5)

K224D =Q(
√

5)

K261A =Q(
√

5)

K275C =Q(
√

13)

K297E =Q(
√

3)

K320G =Q(
√

2)

K368H =Q(
√

17)

K380D =Q(
√

3)

K416E =Q(
√

17)

K448I =Q(
√

5)

K476D =Q(
√

13)

K525E =Q(
√

13)
K592A{{0,0},6}=Q(

√
−3)

K640L =Q(
√

5)

K704N =Q(
√

17)

K752E =Q(
√

5)
K768B{{1,0},1}=Q(

√
−2)

K880M =Q(
√

17)

K952B =Q(
√

13)

K1120R =Q(
√

17)

K1280C =Q(
√

3)

K1280I =Q(
√

2)

K1280N =Q(
√

2)

K1792K =Q(
√

5)

K1904G =Q(
√

13)

K1916A =Q(
√

5)

K2240EE =Q(
√

17)

K4160II =Q(
√

2)

K7424B =Q(
√

2)

K161B =Q(
√

5)

K175E =Q(
√

5)

K184E =Q(
√

17)

K189E =Q(
√

3)

K205D =Q(
√

5)
K208A{{0,0},2} =Q(

√
−3)

K221C =Q(
√

5)

K243C =Q(
√

3)

K272E =Q(
√

5)

K280D =Q(
√

17)

K299A =Q(
√

5)

K351A =Q(
√

5)

K376A =Q(
√

5)
K400A{{0,0},10}=Q(i)

K440E =Q(
√

17)

K448J =Q(
√

5)

K512B =Q(
√

2)

K544G =Q(
√

2)

K621D =Q(
√

5)

K645G =Q(
√

2)

K752B =Q(
√

5)

K752F =Q(
√

13)

K783A =Q(
√

5)
K928A{{1,0},7} =Q(i)

K1053F =Q(
√

5)

K1120S =Q(
√

17)

K1280D =Q(
√

2)

K1280J =Q(
√

2)

K1312C =Q(
√

2)

K1792L =Q(
√

5)

K1904I =Q(
√

13)

K2080J =Q(
√

2)

K2624M =Q(
√

2)

K7280BB =Q(
√

13)

K7664A =Q(
√

5)

K165A =Q(
√

2)

K176D =Q(
√

17)

K188A =Q(
√

13)

K191A =Q(
√

5)

K207B =Q(
√

2)

K209B =Q(
√

2)

K224C =Q(
√

5)

K256E =Q(
√

2)

K272F =Q(
√

3)

K287A =Q(
√

5)

K315C =Q(
√

2)

K357E =Q(
√

2)

K376B =Q(
√

5)

K416C =Q(
√

17)

K440G =Q(
√

17)

K476B =Q(
√

5)

K512E =Q(
√

2)

K560H =Q(
√

17)

K640I =Q(
√

5)

K704M =Q(
√

17)

K752C =Q(
√

5)
K768A{{1,0},1}=Q(

√
−2)

K880K =Q(
√

17)
K928B{{1,0},7}=Q(i)

K1088Q =Q(
√

2)

K1280A =Q(
√

2)

K1280E =Q(
√

2)

K1280L =Q(
√

3)

K1520M =Q(
√

3)

K1820B =Q(
√

13)

K1904K =Q(
√

5)

K2240DD =Q(
√

17)

K3159G =Q(
√

5)

K7424A =Q(
√

2)
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6.2.2 Ejemplos de Q-curvas modulares

Vimos en el caṕıtulo 4 que todas las curvas modulares nuevas de género 2 con jacobiana
Q-simple y no Q-simple tienen involuciones no hipereĺıpticas. Los cocientes de estas
curvas por involuciones no hipereĺıpticas son curvas eĺıpticas modulares sobre el cuerpo
de números donde está definida la involución. Para cada una de estas curvas hemos
calculado, utilizando el lema 2.2 de [CGLR99], una ecuación de Weierstras de la forma
y2 = x3+Ax+B. Por lo tanto, estamos calculando ecuaciones de Q-curvas modulares.

La siguiente tabla muestra una ecuación de Weierstrass para cada una de estas
Q-curvas cocientes. La notación de las Q-curvas es similar a la de las correspondientes
curvas de género 2. Para cada una de ellas, se denota por L al mı́nimo cuerpo donde
la jacobiana de la curva hipereĺıptica descompone completamente; dicho cuerpo es
el cuerpo de definición de las involuciones no hipereĺıpticas. Las ecuaciones que se
presentan están definidas sobre el mı́nimo subcuerpo de L de manera que el morfismo
de la correspondiente curva hipereĺıptica a la Q-curva está definido sobre L.

Tabla 6.4: Ejemplos de Q-curvas cocientes modulares

E : y2 = G(x)

E13A{2} : y2 = x3 + 2808(13 + 27
√

13)x+ 44972928,

L = Q(
√

13, t), con t3 + t2 − 4t+ 1 = 0.

E16A{{0,1}} : y2 = x3 + 54(21t3 + 33t2 − 142t− 229)x
−54(1183t3 + 1532t2 − 8080t− 10456),

L = Q(t), con t4 − 8t2 + 8 = 0.

E18A{0,2} : y2 = x3 − 75x+ 262,
L = Q(t), con t3 − 3t− 1 = 0.

E28A{0,2} : y2 = x3 − 9261x− 64827,
L = Q(t), con t3 − 8t2 + 5t+ 1 = 0.

E40A{{0,0},2} : y2 = x3 − 27(3 +
√

5)x+ 27(5 + 2
√

5),

L = Q(
√

5).

E45A{0,2} : y2 = x3 + 3(−125 + 44
√

5)x− 154(−21 + 10
√

5),

L = Q(
√

5).

E48A{{1,0},1} : y2 = x3 + 45(−7 + 4
√

3)x+ 66(−45 + 26
√

3),

L = Q(
√

3).

E52A{0,2} : y2 = x3 − 1755(65 + 18
√

13)x+ 4563(3115 + 864
√

13),

L = Q(
√

13, t), con t3 − 4t2 + t+ 1 = 0.

E63B : y2 = x3 − 3(45 + 52
√
−3)x+ 2(41− 546

√
−3),

L = Q(
√
−3).
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E : y2 = G(x)

E64A{{0,8}} : y2 = x3 − 135(3 + 2
√

2)x− 378(10 + 7
√

2),

L = Q(
√

2).

E64A{{0,4}} : y2 = x3 + 54(2t3 − 12t2 + 6t+ 5)x
−54(41t3 − 92t2 − 148t+ 216),

L = Q(t), con t4 − 8t2 + 8 = 0.

E80A{{0,0},2} : y2 = x3 − 27(3 +
√

5)x− 27(5 + 2
√

5),

L = Q(
√

5).

E81A : y2 = x3 − 3(5 + 4
√
−3)x+ 2(5 + 14

√
−3),

L = Q(
√
−3).

E100A{0,10} : y2 = x3 − 270(3 +
√

5)x− 1485(5 + 2
√

5),

L = Q(
√

5).

E112A{{1,0},1} : y2 = x3 − 756(49 + 18
√

7)x+ 10584(356 + 135
√

7),

L = Q(
√

7, t), con t3 − t2 − 2t+ 1 = 0.

E112B{{1,0},1} : y2 = x3 − 189(175 + 66
√

7)x+ 1323(2381 + 900
√

7),

L = Q(
√

7, t), con t3 − t2 − 2t+ 1 = 0.

E112A{{0,0},2} : y2 = x3 − 564921x+ 163428867,
L = Q(t), con t3 + 5t2 − 8t+ 1 = 0.

E117B : y2 = x3 − 15(9 + 4
√
−3)x− 2(247 + 210

√
−3),

L = Q(
√
−3).

E128B{{0,16}} : y2 = x3 − 135x+ 378
√

2,

L = Q(
√

2).

E148A{0,6} : y2 = x3 − 999(2701 + 282
√

37)x+ 406593(4394 + 720
√

37),

L = Q(
√

37, t) con t3 + 4t2 − 7t+ 1 = 0.

E160C : y2 = x3 + 27(9 + 20i)x− 108(55 + i),
L = Q(i)

E160A{{1,0},1} : y2 = x3 + 1976535(2t3 − 129t2 + 6t+ 122)x
+8696754(42857t3 − 1810625t2 − 39250t+ 1821375),

L = Q(t), con t4 − 125t2 + 125 = 0

E160B{{1,0},1} : y2 = x3 + 135(2t3 − 9t2 + 6t+ 2)x
+270(103t3 − 175t2 − 230t+ 345),

L = Q(t), con t4 − 5t2 + 5 = 0.
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E : y2 = G(x)

E160C{{1,0},1} : y2 = x3 + 1976535(2t3 − 129t2 + 6t+ 122)x
−8696754(42857t3 − 1810625t2 − 39250t+ 1821375),

L = Q(t), con t4 − 125t2 + 125 = 0.

E160D{{1,0},1} : y2 = x3 + 135(2t3 − 9t2 + 6t+ 2)x
−270(103t3 − 175t2 − 230t+ 345),

L = Q(t), con t4 − 5t2 + 5 = 0.

E189E : y2 = x3 − 3(45 + 4
√

3)x− 2(295 + 42
√

3),

L = Q(
√

3).

E192A{{1,0},1} : y2 = x3 + 180x+ 528
√
−3,

L = Q(
√
−3).

E208A{{0,0},2} : y2 = x3 − 14040(13 + 3
√

13)x+ 292032(125 + 36
√

13),

L = Q(
√

13, t), con t3 + t2 − 4t+ 1 = 0.

E243C : y2 = x3 + 9(−15 + 4
√

3)x+ 18(−31 + 14
√

3),

L = Q(
√

3).

E256E : y2 = x3 + 540ix− 3024(1 + i),
L = Q(i).

E320G : y2 = x3 + 27(−9 + 20i)x− 108(1 + 55i),
L = Q(i).

E400A{{0,0},10} : y
2 = x3 − 270(3 +

√
5)x+ 1485(5 + 2

√
5),

L = Q(
√

5).

E512B : y2 = x3 + 27(−3 + 5i)x− 108(−1 + 8i),
L = Q(i).

E512E : y2 = x3 + 27(3 + 5i)x+ 108(−8 + i),
L = Q(i).

E544G : y2 = x3 + 108(3 + 20i)x− 864(37 + 19i),
L = Q(i).

E592A{{0,0},6} : y2 = x3 − 7992(185 + 27
√

37)x− 26021952,

L = Q(
√

37, t), con t3 − 7t2 + 4t+ 1 = 0.

E768A{{1,0},1} : y2 = x3 − 6(11 + 4
√

3)x+ 8(11 + 3
√

3),

L = Q(
√

3).

E768C{{1,0},1} : y2 = x3 − 6(11 + 4
√

3)x− 8(11 + 3
√

3),

L = Q(
√

3).
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E : y2 = G(x)

E928A{{1,0},7} : y2 = x3 + 489375(2t3 − 33t2 + 6t+ 26)x
+4893750(1577t3 − 16385t2 − 754t+ 16095),

L = Q(t), con t4 − 29t2 + 29 = 0.

E928A{{1,0},7} : y2 = x3 + 489375(2t3 − 33t2 + 6t+ 26)x
−4893750(1577t3 − 16385t2 − 754t+ 16095),

L = Q(t), con t4 − 29t2 + 29 = 0.

E1088Q : y2 = x3 + 108(−3 + 20i)x− 864(19 + 37i),
L = Q(i).

E1280A : y2 = x3 + 216(−3 + 10i)x− 1728(5 + 23i),
L = Q(i).

E1280D : y2 = x3 + 216(3 + 10i)x− 1728(23 + 5i),
L = Q(i).

E1280E : y2 = x3 + 27(−6 + 5i)x− 54(−11 + 25i),
L = Q(i).

E1280I : y2 = x3 + 27(6 + 5i)x+ 54(−25 + 11i),
L = Q(i).

E1280J : y2 = x3 + 216(−33 + 10i)x− 1728(−85 + 113i),
L = Q(i).

E1280N : y2 = x3 + 216(33 + 10i)x+ 1728(−113 + 85i),
L = Q(i).

E1312C : y2 = x3 + 540(3 + 4i)x+ 864(−73 + 17i),
L = Q(i).

E2080J : y2 = x3 + 108(−21 + 20i)x− 6048(−5 + 13i),
L = Q(i).

E2624M : y2 = x3 + 540(−3 + 4i)x− 864(−17 + 73i),
L = Q(i).

E4160II : y2 = x3 + 108(21 + 20i)x+ 6048(−13 + 5i),
L = Q(i).

E7424A : y2 = x3 + 1080(3 + 2i)x+ 1728(−59 + 31i),
L = Q(i).

E7424B : y2 = x3 + 1080(−3 + 2i)x− 1728(−31 + 59i),
L = Q(i).
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6.3 Género mayor que 2

Distinguiremos dos casos según que las curvas estén dominadas por la curva modular
X0(N) o no.

6.3.1 Con jacobiana que no es Q-factor de J0(N)

Sea C una curva hipereĺıptica modular nueva de nivel N de género g > 2 tal que J(C)
no es un Q-factor de J0(N). En el teorema 3.9 se demostró que entonces existen dos
curvas C ′ y C ′′ modulares nuevas de nivel N tales que

J(C)
Q∼J(C ′)× J(C ′′).

Además, C ′ tiene género 2 y J(C ′)
Q∼Af tal que f ∈ S2(N, ε), con ord ε = 2 y J(C ′′) es

un Q-factor de J0(N) con C ′′ de género 1 ó 3 (en este último caso C ′′ es hipereĺıptica).
Además, en el caṕıtulo 4 se calcularon todas las curvas modulares nuevas de género 2,
que aparecen en la sección 6.2. De todas estas curvas, sólo hay 11 posibilidades para
C ′, como se puede ver en la tabla 6.2. De ellas conocemos los niveles y las formas
nuevas. Por lo tanto, sólo nos queda calcular, para cada uno de los niveles, las curvas
hiperelipticas modulares nuevas que cumplan las condiciones antes descritas. Para
ello, hemos utilizado el programa CurvaHiperelipticaModular de Magma descrito
en el caṕıtulo 5. Todas estas curvas, que aparecen en la siguiente tabla, son de género
3 y, por lo tanto, sus jacobianas son el producto de una curva modular nueva de género
2 y de una curva eĺıptica del mismo nivel. La notación de las curvas es como las de
género 2 correspondientes, junto con un supeŕındice que denota la clase de Q-isogenia
de la curva eĺıptica cociente definida sobre Q.

Este cálculo se ha utilizado en la demostración del teorema 3.10.

Tabla 6.5: J(C) no Q-simple y no Q-factor de J0(N)

C : y2 = F (x)

CA40A{{0,0},2}
: y2 = x(x+ 1)(x+ 2)(x2 − 2x− 4)(x2 + 3x+ 1)

CA48A{{1,0},1}
: y2 = (x+ 1)(x2 − 2x− 2)(x2 + x+ 1)(x2 + 2x+ 2)

CA64A{{0,8}}
: y2 = x(x− 1)(x+ 1)(x2 − 2x− 1)(x2 + 2x− 1)

CA80A{{0,0},2}
: y2 = x(x− 1)(x− 2)(x2 − 3x+ 1)(x2 + 2x− 4)

CB80A{{0,0},2}
: y2 = (x+ 1)(x2 − x− 1)(x4 + 4x2 + 8x+ 4)

CB128B{{0,16}}
: y2 = (x− 2)(x2 − 2x− 1)(x4 − 6x2 − 16x+ 41)

CD128B{{0,16}}
: y2 = (x+ 2)(x2 + 2x− 1)(x4 − 6x2 + 16x+ 41)
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Aśı, hemos calculado todas las curvas hipereĺıpticas modulares nuevas tales que
sus jacobianas no son Q-factores de J0(N). En la siguiente sección trataremos el único
caso que nos queda, es decir, cuando las jacobianas śı son Q-factores de J0(N). En
este caso, no demostramos haber calculado todas las curvas, pero śı que intentaremos
calcularlas todas.

6.3.2 Con jacobiana que es Q-factor de J0(N)

En la subsección anterior hemos tratado el caso de curvas hipereĺıpticas modulares
nuevas de género mayor que 2 y tales que sus jacobianas no son Q-factores de J0(N).
En esta sección trataremos el caso en que śı lo son. Hemos calculado todas estas curvas
de niveles N ≤ 3000 en el caso de jacobianas Q-simples y de niveles N ≤ 2000 en el
caso de jacobianas no Q-simples.

Esto lo hemos realizado con el programa CurvaHiperelipticaModular y restrin-
giéndonos a las condiciones, expuestas en la proposición 5.2, que se han de dar entre
los niveles y el género. Las curvas modulares nuevas de género 2 aparecen en la pri-
mera sección de este caṕıtulo. Aqúı calcularemos las de género mayor que 2, además,
se ha de tener en cuenta que el género es menor que 10, por el teorema 3.10.

Tras este cálculo, hemos encontrado 30 curvas hipereĺıpticas modulares nuevas de
nivel N ≤ 3000 y jacobiana Q-simple y 38 de nivel N ≤ 2000 y jacobiana no Q-simple.
Todas ellas son de género mayor que 2 y tales que sus jacobianas son Q-factores de
J0(N).

En las primeras tres tablas aparecen las curvas con jacobiana Q-simple y en las
tres siguientes las que tienen jacobiana no Q-simple; todas ellas están agrupadas por
el correspondiente género.

La notación de las curvas que hemos seguido es análoga a la expuesta para el caso
de género 2. Es decir, a cada curva la denotaremos por la clase de Q-isogenia de su
jacobiana. Aśı, si la jacobiana de la curva es Q-simple, pondremos un sub́ındice que
denota la clase de Q-isogenia de la variedad modular correspondiente. En el caso en
que no es Q-simple, pondremos un sub́ındice que denota el nivel de la curva y un
supeŕındice que denota las letras de las clases de Q-isogenia de la descomposición de
la jacobiana de la curva en Q-factores de J0(N).

Tabla 6.6: Jacobiana Q-simple y Q-factor de J0(N) :
Género 3 (N ≤ 3000)

C : y2 = F (x)

C41A : y2 = x8 + 4x7 − 8x6 − 66x5 − 120x4 − 56x3 + 53x2 + 36x− 16

C95A : y2 = (x4 + x3 − 6x2 − 10x− 5)(x4 + x3 − 2x2 + 2x− 1)
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C : y2 = F (x)

C152C : y2 = x(x3 − 2x2 − 7x− 8)(x3 + 4x2 + 4x+ 4)

C248E : y2 = (x3 + x− 1)(x4 − 2x3 − 3x2 − 4x+ 4)

C284A : y2 = x7 − 7x5 − 11x4 + 5x3 + 18x2 + 4x− 11

C284B : y2 = x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1

C304G : y2 = x(x3 − 4x2 + 4x− 4)(x3 + 2x2 − 7x+ 8)

C496J : y2 = (x3 + x+ 1)(x4 + 2x3 − 3x2 + 4x+ 4)

C544I : y2 = (x− 1)(x2 − x− 4)(x4 − x2 − 4)

C544J : y2 = (x+ 1)(x2 + x− 4)(x4 − x2 − 4)

C896I : y2 = (x− 2)(x2 + 2x− 1)(x4 − 2x2 − 7)

C896J : y2 = (x+ 2)(x2 − 2x− 1)(x4 − 2x2 − 7)

C1136I : y2 = x7 − 4x6 + 5x5 − x4 − 3x3 + 2x2 − 1

C1136J : y2 = x7 − 7x5 + 11x4 + 5x3 − 18x2 + 4x+ 11

Tabla 6.7: Jacobiana Q-simple y Q-factor de J0(N) :
Género 4 (N ≤ 3000)

C : y2 = F (x)

C47A : y2 = (x5 − 5x3 − 20x2 − 24x− 19)(x5 + 4x4 + 7x3 + 8x2 + 4x+ 1)

C119A : y2 = (x5 − 2x4 + 3x3 − 6x2 − 7)(x5 + 2x4 + 3x3 + 6x2 + 4x+ 1)

C164A : y2 = x(x8 + 4x7 − 8x6 − 66x5 − 120x4 − 56x3 + 53x2 + 36x− 16)

C376C : y2 = (x4 − 2x3 − 3x2 + 4x− 4)(x5 − x3 + 2x2 − 2x+ 1)

C376D : y2 = (x4 − 2x3 − 3x2 + 4x− 4)(x5 + 4x4 + 3x3 − 2x2 + 2x+ 5)

C416F : y2 = x(x2 + 4)(x3 − 2x2 + x− 4)(x3 + 2x2 + x+ 4)

C512G : y2 = x(x4 − 4x2 − 4)(x4 + 4x2 − 4)

C656I : y2 = x(x8 − 4x7 − 8x6 + 66x5 − 120x4 + 56x3 + 53x2 − 36x− 16)

C752G : y2 = (x4 + 2x3 − 3x2 − 4x− 4)(x5 − x3 − 2x2 − 2x− 1)

C752H : y2 = (x4 + 2x3 − 3x2 − 4x− 4)(x5 − 4x4 + 3x3 + 2x2 + 2x− 5)

C832P : y2 = x(x+ 2)(x− 2)(x6 + 2x4 − 15x2 + 16)

C1216W : y2 = (x3 − 2x+ 2)(x6 + 2x4 − 7x2 + 8)

C1216X : y2 = (x3 − 2x− 2)(x6 + 2x4 − 7x2 + 8)
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Tabla 6.8: Jacobiana Q-simple y Q-factor de J0(N) :
Género 5 (N ≤ 3000)

C : y2 = F (x)

C59A : y2 = (x9 +2x8−4x7−21x6−44x5−60x4−61x3−46x2−24x−11)
(x3 + 2x2 + 1)

C1664Y : y2 = (x2 + 2x+ 2)(x3 − x+ 2)(x6 + 2x4 + x2 + 4)

C1664BB : y2 = (x2 − 2x+ 2)(x3 − x− 2)(x6 + 2x4 + x2 + 4)

Tabla 6.9: Jacobiana no Q-simple y Q-factor de J0(N) :
Género 3 (N ≤ 2000)

C : y2 = F (x)

CA,B35 : y2 = (x2 + 3x+ 1)(x6 + x5 − 10x4 − 39x3 − 62x2 − 51x− 19)

CA,B39 : y2 = (x4 − 3x3 − 4x2 − 2x− 1)(x4 + 5x3 + 8x2 + 6x+ 3)

CA,B88 : y2 = (x− 2)(x3 − 2x2 + 4x− 4)(x3 + 2x2 − 4x+ 8)

CA,B104 : y2 = (x+ 2)(x6 + 4x5 − 12x4 − 114x3 − 308x2 − 384x− 191)

CA,B,C116 : y2 = (x+ 2)(x6 + 2x5 − 17x4 − 66x3 − 83x2 − 32x− 4)

CA,B,D128 : y2 = (x− 2)(x2 − 2x+ 2)(x4 − 12x2 + 32x− 28)

CB,C,D128 : y2 = (x+ 2)(x2 + 2x+ 2)(x4 − 12x2 − 32x− 28)

CA,C160 : y2 = (x− 2)(x2 + 2x− 7)(x4 − 4x3 + 10x2 − 20x+ 17)

CB,C160 : y2 = (x+ 2)(x2 − 2x− 7)(x4 + 4x3 + 10x2 + 20x+ 17)

CA,D176 : y2 = (x+ 2)(x3 − 2x2 − 4x− 8)(x3 + 2x2 + 4x+ 4)

CB,E184 : y2 = (x− 1)(x3 − 2x2 + 3x− 1)(x3 + x2 − x+ 7)

CA,C,D184 : y2 = (x− 1)(x6 − x5 + 4x4 − x3 + 2x2 + 2x+ 1)

CB,C196 : y2 = (x3 + 2x2 − x− 1)(x4 − 2x3 − 9x2 + 10x− 3)

CB,E208 : y2 = (x− 2)(x6 − 4x5 − 12x4 + 114x3 − 308x2 + 384x− 191)

CA,D224 : y2 = x(x− 1)(x+ 1)(x4 − 6x2 + 16x− 7)

CB,C224 : y2 = x(x− 1)(x+ 1)(x4 − 6x2 − 16x− 7)

CB,D248 : y2 = (x3 + 4x2 + 5x+ 3)(x4 − 2x3 − 3x2 − 4x+ 4)

CB,E256 : y2 = x(x2 + 2)(x4 + 12x2 + 4)

CC,E256 : y2 = x(x2 − 4x+ 2)(x2 − 2)(x2 + 4x+ 2)

CA,D280 : y2 = (x− 1)(x6 − x5 + 7x3 − 16x2 + 15x− 5)



116 Caṕıtulo 6. Tablas de curvas hipereĺıpticas modulares nuevas

C : y2 = F (x)

CC,H368 : y2 = (x+ 1)(x3 − x2 − x− 7)(x3 + 2x2 + 3x+ 1)

CA,D,G368 : y2 = (x+ 1)(x6 + x5 + 4x4 + x3 + 2x2 − 2x+ 1)

CA,E416 : y2 = x(x6 − 2x5 − 2x4 + 2x2 − 2x− 1)

CB,C416 : y2 = x(x6 + 2x5 − 2x4 + 2x2 + 2x− 1)

CD,E,F464 : y2 = (x− 2)(x6 − 2x5 − 17x4 + 66x3 − 83x2 + 32x− 4)

CC,G496 : y2 = (x3 − 4x2 + 5x− 3)(x4 + 2x3 − 3x2 + 4x+ 4)

CA,H560 : y2 = (x+ 1)(x6 + x5 − 7x3 − 16x2 − 15x− 5)

CC,L640 : y2 = x(x2 − 2x− 1)(x4 + 2x3 − 2x+ 1)

CG,I640 : y2 = x(x2 + 2x− 1)(x4 − 2x3 + 2x+ 1)

CB,M704 : y2 = x(x3 − 4x+ 4)(x3 + 2x2 − 2)

CC,N704 : y2 = x(x3 − 2x2 + 2)(x3 − 4x− 4)

CG,N784 : y2 = (x3 − 2x2 − x+ 1)(x4 + 2x3 − 9x2 − 10x− 3)

Tabla 6.10: Jacobiana no Q-simple y Q-factor de J0(N) :
Género 4 (N ≤ 2000)

C : y2 = F (x)

CB,C236 : y2 = x9 + 2x8− 4x7− 21x6− 44x5− 60x4− 61x3− 46x2− 24x− 11

CB,F,I368 : y2 = (x3 − x2 − x− 7)(x6 + x5 + 4x4 + x3 + 2x2 − 2x+ 1)

CD,E,O704 : y2 = (x3 − 4x− 4)(x3 − 4x+ 4)(x3 + 2x2 − 2)

CF,I,P704 : y2 = (x3 − 2x2 + 2)(x3 − 4x− 4)(x3 − 4x+ 4)

CJ,L944 : y2 = x9− 2x8− 4x7 + 21x6− 44x5 + 60x4− 61x3 + 46x2− 24x+ 11

Tabla 6.11: Jacobiana no Q-simple y Q-factor de J0(N) :
Género 6 (N ≤ 2000)

C : y2 = F (x)

CA,B71 : y2 = (x7 − 7x5 − 11x4 + 5x3 + 18x2 + 4x− 11)
(x7 + 4x6 + 5x5 + x4 − 3x3 − 2x2 + 1)
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Cuerpos de coeficientes

En este apartado, para cada curva presentada en esta subsección, mostramos los
cuerpos de coeficientes de las correspondientes formas nuevas. Para cada uno de estos
cuerpos daremos el polinomio mı́nimo de un generador del cuerpo. En el caso de
jacobiana noQ-simple, daremos tantos polinomios comoQ-factores tenga la jacobiana.

CA,B35 P35A = t− 1, P35B = t2 + t− 4

CA,B39 P39A = t− 1, P39B = t2 + 2 t− 1

CA41 P41A = t3 + t2 − 5 t− 1

CA47 P47A = t4 − t3 − 5 t2 + 5 t− 1

CA59 P59A = t5 − 9 t3 + 2 t2 + 16 t− 8

CA,B71 P71A = t3 − 5 t+ 3, P71B = t3 + t2 − 4 t− 3

CA,B88 P88A = t− 1, P88B = t2 − t− 4

CA95 P95A = t3 − t2 − 3 t+ 1

CA,B104 P104A = t− 1, P104B = t2 − t− 4

CA,B,C116 P116A = P116B = P116C = t− 1

CA119 P119A = t4 + t3 − 5 t2 − t+ 3

CA,B,D128 P128A = P128B = P128D = t− 1

CB,C,D128 P128B = P128C = P128D = t− 1

CC152 P152C = t3 − t2 − 10 t+ 8

CA,C160 P160A = t− 1, P160C = t2 − 8

CB,C160 P160B = t− 1, P160C = t2 − 8

CA164 P164A = t4 − 2 t3 − 10 t2 + 22 t− 2

CA,D176 P176A = t− 1, P176D = t2 + t− 4

CB,E184 P184B = t− 1, P184E = t2 + t− 4

CA,C,D184 P184A = P184C = P184D = t− 1

CB,C196 P196B = t− 1, P196C = t2 − 8

CB,E208 P208B = t− 1, P208E = t2 + t− 4

CA,D224 P224A = t− 1, P224D = t2 − 2 t− 4

CB,C224 P224B = t− 1, P224C = t2 + 2 t− 4

CB,C236 P236B = t− 1, P236C = t3 − 9 t+ 1

CE248 P248E = t3 − 2 t2 − 6 t+ 8

CB,D248 P248B = t− 1, P248D = t2 + 2 t− 32
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CB,E256 P256B = t− 1, P256E = t2 − 8

CC,E256 P256C = t− 1, P256E = t2 − 8

CA,D280 P280A = t− 1, P280D = t2 − t− 4

CA284 P284A = t3 − t2 − 4 t+ 1

CB284 P284B = t3 + 3 t2 − 3

CG304 P304G = t3 + t2 − 10 t− 8

CC,H368 P368C = t− 1, P368H = t2 − t− 4

CA,D,G368 P368A = P368D = P368G = t− 1

CB,F,I368 P368B = P368F = t− 1, P368I = t2 − 5

CC376 P376C = t4 − 3 t3 − 5 t2 + 16 t− 8

CD376 P376D = t4 + t3 − 9 t2 − 4 t+ 16

CF416 P416F = t4 − 13 t2 + 32

CA,E416 P416A = t− 1, P416E = t2 − t− 4

CB,C416 P416B = t− 1, P416C = t2 + t− 4

CD,E,F464 P464D = P464E = P464F = t− 1

CJ496 P496J = t3 + 2 t2 − 6 t− 8

CC,G496 P496C = t− 1, P496G = t2 + 7 t+ 4

CG512 P512G = t4 − 108 t2 + 1764

CI544 P544I = t3 − 2 t2 − 4 t+ 4

CJ544 P544J = t3 + 2 t2 − 4 t− 4

CA,H560 P560A = t− 1, P560H = t2 + t− 4

CC,L640 P640C = t− 1, P640L = t2 − 2 t− 4

CG,I640 P640G = t− 1, P640I = t2 + 2 t− 4

CI656 P656I = t4 + 2 t3 − 10 t2 − 22 t− 2

CB,M704 P704B = t− 1, P704M = t2 + t− 4

CC,N704 P704C = t− 1, P704N = t2 − t− 4

CD,E,0704 P704D = P704E = t− 1, P704O = t2 + t− 4

CF,I,P704 P704F = P704I = t− 1, P704P = t2 − t− 4

CG752 P752G = t4 + 3 t3 − 5 t2 − 16 t− 8

CH752 P752H = t4 − t3 − 9 t2 + 4 t+ 16

CG,N784 P784G = t− 1, P784N = t2 − 8

CP832 P832P = t4 − 13 t2 + 32
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CI896 P896I = t3 + 2 t2 − 6 t− 8

CJ896 P896J = t3 − 2 t2 − 6 t+ 8

CJ,L944 P944J = t− 1, P944L = t3 − 9 t− 1

CI1136 P1136I = t3 − 3 t2 + 3

CJ1136 P1136J = t3 + t2 − 4 t− 1

CW1216 P1216W = t4 + 5 t3 − 139 t2 − 497 t+ 3742

CX1216 P1216X = t4 − 4 t3 − 59 t2 + 126 t+ 784

CY1664 P1664Y = t5 + t4 − 11 t3 − 11 t2 + 8 t+ 4

CBB1664 P1664BB = t5 − t4 − 11 t3 + 11 t2 + 8 t− 4
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Caṕıtulo 7

Ejemplos de curvas modulares
no nuevas

En este caṕıtulo vamos a mostrar ejemplos de curvas hipereĺıpticas modulares no
nuevas que han sido calculadas utilizando los resultados del caṕıtulo anterior. La
notación que se seguirá para denotar la clase de Q-isogenia de variedades modulares
es la introducida en la sección 6.1.

Utilizando las tablas del caṕıtulo 6 hemos comprobado que para la mayoŕıa de los
casos en los que hay dos curvas en el mismo nivel es posible tomar la misma función
modular x en ambas ecuaciones hipereĺıpticas. En concreto, esta situación se presenta
para los siguientes niveles:

64, 184, 188, 224, 248, 284, 320, 368, 376, 416, 440, 448, 476, 496, 512, 544,
640, 704, 752, 768, 880, 896, 1088, 1136, 1216, 1280, 1664, 1792, 1904, 2204.

Por lo tanto, para esos valores de N tenemos

CN,1 : y2
1 = F1(x) , CN,2 : y2

2 = F2(x) ,

con F1(u), F2(u) ∈ Q[u] sin ráıces múltiples. Se tiene F1(u)F2(u) = Q(u)2 F (u),
donde Q(u), F (u) ∈ Q[u] y F no tiene ráıces múltiples. Aśı obtenemos otra curva
modular de nivel N que está dada por la ecuación af́ın

CN :

(
y1y2

Q(x)

)2

= F (x) .

Además, si el género de CN es mayor que uno, entonces CN es hipereĺıptica. Nótese
que esta misma construcción se puede utilizar de forma análoga con un número mayor
de curvas.

121
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7.1 Curvas primitivas no nuevas

La tabla siguiente muestra sólo las ecuaciones hipereĺıpticas de las curvas primitivas
no nuevas que se han obtenido mediante el procedimiento descrito anteriormente. En
ella, no se muestran los casos en los que la curva sea nueva o no primitiva. Este último
caso se detallará en la subsección siguiente. La notación de estas curvas es la siguiente:
el sub́ındice denota el nivel de la pareja de curvas del que proviene y el supeŕındice
denota los géneros de estas dos curvas. Aśı, por ejemplo, la curva C2,2

416 proviene de
las dos únicas curvas modulares nuevas de género 2 de nivel 416.

Tabla 7.1: Curvas modulares primitivas no nuevas

C : y2 = F (x)

C3,3
184 : y2 = (x3 − 2x2 + 3x− 1)(x3 + x2 − x+ 7)

(x6 − x5 + 4x4 − x3 + 2x2 + 2x+ 1)

C2,2
320 : y2 = (x4 − 2x3 − 2x2 − 2x+ 1)(x4 + 2x3 − 2x2 + 2x+ 1)

C3,4
368 : y2 = (x+ 1)(x3 + 2x2 + 3x+ 1)(x6 + x5 + 4x4 + x3 + 2x2 − 2x+ 1)

C2,4
376 : y2 = (x4 − 2x3 − 3x2 + 4x− 4)(x5 − x3 + 2x2 − 2x+ 1)

(x5 + 4x4 + 3x3 − 2x2 + 2x+ 5)

C2,2
416 : y2 = (x3 − 2x2 + x− 4)(x3 + 2x2 + x+ 4)

C3,3
416 : y2 = (x6 − 2x5 − 2x4 + 2x2 − 2x− 1)(x6 + 2x5 − 2x4 + 2x2 + 2x− 1)

C2,2
512 : y2 = (x4 − 4x2 − 4)(x4 + 4x2 − 4)

C2,2
544 : y2 = (x2 − x− 4)(x2 + x− 4)(x4 − x2 − 4)

C3,3
544 : y2 = (x− 1)(x+ 1)(x2 − x− 4)(x2 + x− 4)

C2,3,3
544 : y2 = x(x− 1)(x+ 1)(x2 − x− 4)(x2 + x− 4)(x4 − x2 − 4)

C2,2,3,3
544 : y2 = (x− 1)(x+ 1)(x4 − x2 − 4)

C2,2
640 : y2 = (x− 2)(x+ 2)(x2 − 2x+ 2)(x2 + 2x+ 2)

C3,3
640 : y2 = (x2 − 2x− 1)(x2 + 2x− 1)(x4 − 2x3 + 2x+ 1)(x4 + 2x3 − 2x+ 1)

C2,2
704 : y2 = (x3 − 2x2 + 2x− 2)(x3 + 2x2 + 2x+ 2)

C3,3
704 : y2 = (x3 − 2x2 + 2)(x3 − 4x− 4)(x3 − 4x+ 4)(x3 + 2x2 − 2)

C4,4
704 : y2 = (x3 − 2x2 + 2)(x3 + 2x2 − 2)

C3,4,4
704 : y2 = x(x3 − 4x+ 4)(x3 − 2x2 + 2)

C4,3,4
704 : y2 = x(x3 − 4x− 4)(x3 + 2x2 − 2)

C3,3,4,4
704 : y2 = (x3 − 4x− 4)(x3 − 4x+ 4)

C2,2
768 : y2 = (x4 − 4x3 + 8x2 − 12x+ 9)(x4 + 4x3 + 8x2 + 12x+ 9)
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C : y2 = F (x)

C
′2,2
768 : y2 = (x4 − 4x2 + 1)(x4 + 4x2 + 1)

C3,3
896 : y2 = (x− 2)(x+ 2)(x2 − 2x− 1)(x2 + 2x− 1)

C2,2
1088 : y2 = (x4 + x2 − 4)(x4 + 9x2 + 16)

C4,4
1216 : y2 = (x3 − 2x− 2)(x3 − 2x+ 2)

C2,2
1280 : y2 = (x4 − 2x2 − 4)(x4 + 2x2 − 4)

C5,5
1664 : y2 = (x2 − 2x+ 2)(x2 + 2x+ 2)(x3 − x− 2)(x3 − x+ 2)

C5,2
1664 : y2 = (x6 + 2x4 + x2 + 4)

C2,5
1664 : y2 = (x2 − 2x+ 2)(x2 + 2x+ 2)(x3 − x− 2)(x3 − x+ 2)

(x6 + 2x4 + x2 + 4)

C2,2
1792 : y2 = (x− 2)(x+ 2)(x4 − 4x3 + 4x2 + 4x− 7)(x4 + 4x3 + 4x2 − 4x− 7)

C2,2
2240 : y2 = (x3 + 2x− 2)(x3 + 2x+ 2)

La tabla siguiente muestra la descomposición, en clases de Q-isogenia, de las ja-
cobianas de las curvas de la tabla anterior. En ella, también aparece el polinomio
mı́nimo de un generador del cuerpo de coeficientes de las q-expansiones correspon-
dientes a cada factor de dimensión mayor que uno. Aśı, el nivel en el que dichas
curvas son primitivas es el nivel mayor de las variedades modulares que aparecen
en su descomposición. Por ejemplo, la curva C2,4

376 es primitiva de nivel 94 ya que

J(C2,4
376)

Q∼A47A ×A94B .

C Descomposición de J(C)

C3,3
184 E46A ×A2

23A, P23A = t2 − 5

C2,2
320 E20A × E80A × E80B

C3,4
368 A23A × E46A × E92B , P23A = t2 − 5

C2,4
376 A47A ×A94B ,

P47A = t4 − t3 − 5t2 + 5t− 1
P94B = t2 − 2

C2,2
416 E26B × E104A

C3,3
416 E26A × E26B × E104A ×A104B , P104B = t2 − 17

C2,2
512 E32A × E128B × E128D

C2,2
544 E17A ×A136C , P136C = t2 − 5

C3,3
544 E34A × E136B

C2,3,3
544 E32A × E544E × E544F ×A544H P544H = t2 − 10

C2,2,3,3
544 E17A × E136A
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C Descomposición de J(C)

C2,2
640 E20A × E160B

C3,3
640 E20A × E40B × E160B ×A160C , P160C = t2 − 2

C2,2
704 E11A × E176A

C3,3
704 E2

11A × E176A ×A176D, P176D = t2 − 17

C4,4
704 E11A × E176C

C3,4,4
704 E64A × E704J × E704L

C4,3,4
704 E64A × E704G × E704H

C3,3,4,4
704 E2

44A × E176B

C2,2
768 E48A × E2

64A

C
′2,2
768 E48A × E192C × E192D

C3,3
896 E14A × E224A

C2,2
1088 E17A × E272E

C4,4
1216 E19A × E304D

C2,2
1280 E80A × E320D × E320E

C5,5
1664 E26B × E52A ×A416C , P416C = t2 − 17

C5,2
1664 E26A × E416B

C2,5
1664 E26A ×A104B ×A416F ,

P104B = t2 − 17
P416F = t4 − 13 t2 + 32

C2,2
1792 E14A × E112B ×A448I , P448I = t2 − 5

C2,2
2240 E35A × E560A

Observación 7.1. La curva C2,5
1664 tiene género 7, que es el mayor género que conocemos

para una curva hipereĺıptica modular.

7.2 Curvas modulares no primitivas

En este apartado mostraremos ejemplos de curvas modulares no primitivas. Estas
curvas han sido encontradas utilizando el método descrito al inicio de este caṕıtulo.
En particular, estudiaremos en detalle el caso de nivel N = 376.

La parte nueva de la jacobiana de la curva modular X0(376) tiene la siguiente
descomposición en clases de Q-isogenia:

J0(376)new Q∼A376A ×A376B ×A376C ×A376D,
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donde las variedades abelianas correspondientes a las clases de Q-isogenia 376A y
376B tienen dimensión 2 y las correspondientes a 376C y 376D tienen dimensión
4. Como se puede ver en las tablas del caṕıtulo 6, cada uno de estos Q-factores
corresponde a una curva hipereĺıptica modular nueva. Las ecuaciones para cada una
de ellas son:

C376A : y2
A = FA(x), C376C : y2

C = FB(x)G(x),
C376B : y2

B = FB(x), C376D : y2
D = FA(x)G(x),

donde
x = q−2 + q2 + q6 + q8 + q10 + . . . ,

FA(x) = x5 + 4x4 + 3x3 − 2x2 + 2x+ 5 ,
FB(x) = x5 − x3 + 2x2 − 2x+ 1 ,
G(x) = x4 − 2x3 − 3x2 + 4x− 4 .

Utilizando el método descrito en la sección anterior podemos construir dos nuevas
curvas modulares:

C2,2
376 : Y 2 = FA(x)FB(x) , donde Y = yA yB ,

C2,4
376 : Y 2 = FA(x)FB(x)G(x) , donde Y = yA yC = yB yD .

Vamos a identificar el menor nivel en el que estas curvas son modulares.

Tomemos la forma propia h(q) = f47A(q)−2f47A(q2) ∈ S2(94, 1), entonces aplican-
do el programa CurvaHiperelipticaModular a una base racional de H0(Ah,Ω

1)q/dq,
comprobamos que Ah corresponde a una curva hipereĺıptica modular de nivel 94. De
hecho, esta curva es C2,2

376. Por lo tanto, se tiene que la jacobiana de esta curva es
Q-isógena a A47A = J0(47). Se puede comprobar que C2,2

376 y X0(47) no son isomorfas
y, en consecuencia, el mı́nimo nivel para el que C2,2

376 es modular es 94, mientras que
para su jacobiana es 47.

La curva C2,4
376 aparece en las tablas de la sección anterior. Como alĺı se indica, C2,4

376

es una curva hipereĺıptica modular primitiva no nueva de nivel 94 y la descomposición

de su jacobiana sobre Q es J(C2,4
376)

Q∼A47A×A94B . De hecho, se tiene que la curva está
asociada al subespacio de S2(94) generado por la conjugadas de Galois de f47A(q) +
2f47A(q2) y f94B .

La tabla siguiente muestra las ecuaciones hipereĺıpticas de todas las curvas mo-
dulares no primitivas que conocemos.

Tabla 7.3: Curvas modulares no primitivas

C : y2 = F (x)

C2,2
184: y2 = (x3 + 2x2 − 3x+ 1)(x3 + 2x2 + x+ 1)

C2,3
248: y2 = (x3 + x− 1)(x3 + 4x2 + 5x+ 3)

C2,2
376: y2 = (x5 − x3 + 2x2 − 2x+ 1)(x5 + 4x4 + 3x3 − 2x2 + 2x+ 5)



126 Caṕıtulo 7. Ejemplos de curvas modulares no nuevas

C : y2 = F (x)

C2,3
544: y2 = x(x− 1)(x2 + x− 4)(x4 − x2 − 4)

C3,4
704: y2 = x(x3 − 2x2 + 2)(x3 − 4x− 4)(x3 + 2x2 − 2)

La tabla siguiente muestra la base de formas parabólicas correspondientes a cada
curva no primitiva y el nivel mı́nimo en el cual son modulares.

C π∗(H0(C,Ω1)) qdq N

C3,3
184 〈σf23A(q)− 2σf23A(q2) : σ ∈ Gal(K23A/Q)〉 46

C2,3
248 〈σf31A(q)− 2σf31A(q2) : σ ∈ Gal(K31A/Q)〉 62

C2,2
376 〈σf47A(q)− 2σf47A(q2) : σ ∈ Gal(K47A/Q)〉 94

C2,3
544

〈f34A(q)− 4f34A(q4),
136σf68A(q)− 2σf68A(q2) : σ ∈ Gal(K68A/Q)〉

C3,4
704

〈f44A(q) + 4f44A(q4), f88A(q)− 2f88A(q2),
176σf88B(q) + 2σf88B(q2) : σ ∈ Gal(K88B/Q)〉

Por último, mostramos la descomposición, en clases de Q-isogenia, de las jacobia-
nas de las curvas no primitivas mostradas en este apartado. La notación es análoga a
la correspondiente tabla para el caso de curvas primitivas no nuevas.

C Descomposición de J(C)

C3,3
184 A23A, P23A = t2 − 5

C2,3
248 A31A, P31A = t2 − 5

C2,2
376 A47A, P47A = t4 − t3 − 5t2 + 5t− 1

C2,3
544 E34A ×A68A, P68A = t2 − 3

C3,4
704 E44A × E88A ×A88B , P88B = t2 − 17

Obsérvese que los Q-factores simples de dimensión mayor que uno de las jacobia-
nas de las curvas hipereĺıpticas modulares no nuevas expuestas en este caṕıtulo suelen
corresponder a jacobianas de curvas hipereĺıpticas modulares nuevas. De hecho, este
fenómeno sucede en todos los casos salvo para los Q-factores A94B y A544H .
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[BG97] P. Bayer y J. González. On the Hasse-Witt invariants of modular curves.
Experiment. Math. 6 (1), 57–76 (1997).

[BGG93] E. Bujalance, J. M. Gamboa y G. Gromadzki. The full automorphism
groups of hyperelliptic Riemann surfaces. Manuscripta Math. 79 (3-4),
267–282 (1993).

[Bol88] O. Bolza. On binary sextics with linear transformations into themselves.
Amer. J. Math. (10), 47–70 (1888).

[Bru95] A. Brumer. The rank of J0(N). Astérisque (228), 3, 41–68 (1995). Co-
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Internat. Press, Cambridge, MA (1994).

[Del71] P. Deligne. Formes modulaires et représentations l-adic. En Sém. Bour-
baki, 21e année, 1968/69, no.355 , págs. 139–172. Lecture Notes in Math.,
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