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General Introduction

The maps showing countries1 in the world have undergone dramatic changes

during the last few decades. Since 1946 the number of independent countries

has risen from 74 to 193. Several countries, like the former Soviet Union,

Czechoslovakia or Yugoslavia have broken-up. Germany has re-uni�ed. The

European Union is moving towards more economic integration by introduc-

ing the Euro and it is not clear how far the political integration will go. In

almost all continents of the world con
icts about regional power, autonomy

or even independence still await a solution.

Inevitably such important changes and con
icts attract the attention of

academics and among them economists who want to understand what drives

these changes and attempt to predict the future trends they give rise to.

The seminal paper by Alesina and Spolaore (The Quart. J. of Econ. 112,

1997, 1027-1056) is a cornerstone of the recent political economy literature

addressing these issues. (See the survey by Bolton, Roland and Spolaore

in Europ. Econ. Rev. 40, 1996, 697-705.) Alesina and Spolaore provide

an analytical framework for the positive and normative analysis of country

formation. They raise the fundamental question: What is the \optimal"

number and size of countries and how does this structure compare to the

1 Throughout this thesis we use the words "country", "jurisdiction" and "coalition"

interchangeably.



2 General Introduction

one resulting from the democratic process? The basic model they consider

has the following features:

They use a spatial model where the world's population is a continuum

of agents distributed uniformly on the line segment [0; 1]. Each individual

consumes a (local) public good and incurs a transportation cost proportional

to the distance between her location and the location of the public good in

her country. In each country the location of the public good is decided by

majority rule and the costs to produce the public good are covered using

a proportional tax scheme. Thus, driving force of the process of country

formation is a trade-o� between the bene�ts of large countries and the costs

of heterogeneity in large populations. The main implication of this model

is that in equilibrium one generally observes an ineÆciently large number of

countries.

The fact that individuals join each other in order to form a country can

be seen as the formation of a \coalition" and the formation of countries can

therefore be interpreted as an application of another economic literature -

the one on coalition formation. (See the survey by Greenberg in Handbook

of Game Th. Vol. 2, ed. by Aumann and Hart, 1994, 1305-1337.) However,

the connections between the Alesina and Spolaore model and this litera-

ture are not immediately evident and its most important di�erences are the

following two:

1. This literature traditionally assumes a �nite number of consumers. The

use of the logical construct of a continuum of agents is very convenient

because it allows to apply very elegant and powerful mathematical tools.

However, it is desirable that the conclusions derived in this way are con-

�rmed for a large, but �nite, number of agents.

2. The equilibrium concepts employed by both approaches are di�erent. A

concept frequently used in the literature on coalition formation has been
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called by Greenberg and Weber (J. of Econ. Th. 38, 1986, 101-117)

strong Tiebout equilibrium. Alesina and Spolaore employ some ideas

of this concept in an apparently weak form and complete it by some

requirements special to the formation of countries which are usually not

used in the literature on coalition formation.

The purpose of this thesis is to clarify these two di�erences and to carry

out a test of robustness of the ineÆciency result of Alesina and Spolaore to

a ceteris paribus change to a �nite number of consumers on one hand and

to the concept of a strong Tiebout equilibrium on the other. The thesis is

divided in three Chapters.

Chapter 1. We start by analyzing the second di�erence and apply the con-

cept of a strong Tiebout equilibrium to the Alesina and Spo-

laore model. We �nd that the ineÆciency result is robust to

this change in the sense that one can understand their equi-

librium as the unique outcome of a selection among all strong

Tiebout equilibria where the selection is driven by speci�c rules

of country formation. However, the concept of a strong Tiebout

equilibrium in itself has no inherent forces that con�rm the in-

eÆciency result. We also modify the speci�c rules of country

formation which Alesina and Spolaore employ in order to make

them closer to the rules used in reality. This leads to the problem

of nonexistence of an equilibrium.

Chapter 2. We proceed by analyzing the �rst di�erence and introduce a

�nite number of consumers in the model. We determine eÆcient

coalition structures and employ a weak equilibrium concept that

uses only ideas common to strong Tiebout equilibria and the

Alesina and Spolaore concept. Since our notion is very weak, a
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multiplicity of equilibria arises for some of which the ineÆciency

result of Alesina and Spolaore is true while for others it is not.

Chapter 3. We extend the analysis of the previous Chapter. Since we show

that it is not convenient to apply the equilibrium concept of

Alesina and Spolaore in a model with a �nite number of con-

sumers, we are forced to employ another notion. We choose

again the concept of a strong Tiebout equilibrium. While this

helps to re�ne the multiplicity of equilibria found in the second

Chapter, it does not lead to a unique equilibrium. Again the

concept of strong Tiebout equilibria does not allow to con�rm

the ineÆciency result of Alesina and Spolaore.

The general conclusion to draw from this thesis is rather ambiguous. On

the one hand the formation of countries in itself is a very complicated �eld

of study and the comparison of \optimal" con�gurations to the ones result-

ing from a democratic process is a very ambitious question. Alesina and

Spolaore provide a very elegant analysis and their merits become even more

visible in the light of this thesis. Their equilibrium has even more desirable

properties. The simplifying assumptions in their analysis are carefully cho-

sen and modifying them in order to make the model more realistic leads to

problems of the existence of the equilibrium. But this shows on the other

hand that there is much left for future research.



Chapter 1

Stability in the Alesina and

Spolaore Country Formation

Model

1.1 Introduction

The maps showing countries1 in the world have undergone dramatic changes

during the last few decades. Since 1946 the number of independent countries

has risen from 74 to 193. Several countries, like the former Soviet Union,

Czechoslovakia or Yugoslavia have broken-up. Germany has re-uni�ed. The

European Union is moving towards more economic integration by introduc-

ing the Euro and it is not clear how far the political integration will go. In

almost all continents of the world con
icts about regional power, autonomy

or even independence still await a solution.

1 Throughout this paper we use the words "country", "jurisdiction" and "coalition"

interchangeably.
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In their seminal paper Alesina and Spolaore [1] - AS henceforth - address

these issues.2 They provide a simple positive and normative framework for

the analysis of country formation. AS use a spatial model where the world's

population is a continuum of agents distributed uniformly on the line seg-

ment [0; 1]. Each individual consumes a (local) public good and incurs a

transportation cost proportional to the distance between her location and

the location of the public good in her country. In each country the location

of the public good is decided by majority rule and the costs to produce the

public good are covered using a proportional tax scheme. Thus, driving

force of the process of country formation is a trade-o� between the bene�ts

of large countries and the costs of heterogeneity in large populations. The

main implication of this model is that in equilibrium one generally observes

an ineÆciently large number of countries.

The purpose of this paper is to carry out a test of robustness of this

result to ceteris paribus changes in the equilibrium concept. Our result is

rather ambiguous. Some ingredients of the AS equilibrium concept can be

strengthened while the modi�cation of others leads either to a multiplicity

or to the nonexistence of equilibria.3

The �rst ingredient of the AS-equilibrium concept is the idea that agents

have, to some extend, the possibility to migrate between existing countries

and to create new countries. These are frequent requirements for an equi-

librium in the literature on coalition formation or on local public goods

economies. A concept which strengthens considerably both requirements

and assures therefore additional desirable properties has been called by

2 For other papers o�ering an economic analysis of these issues see Le Breton and

Weber [10] Haimanko, Le Breton and Weber [8], Bolton and Roland [2] or the survey of

the literature in Bolton, Roland and Spolaore [3].
3 In a multiplicity of equilibria there may be too many, too few or exactly the eÆcient

number of countries.
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Greenberg and Weber [5] strong Tiebout equilibrium.4 We characterize

strong Tiebout equilibria and show that there always exists an eÆcient one.

However, the ineÆciency result of AS is robust to the use of this concept in

the sense that one can understand the unique ineÆcient equilibrium in AS

as the outcome of a selection among strong Tiebout equilibria by means of

speci�c rules of country formation. This is nice because it implies that the

fact that all coalitions consist exactly of one interval on the line segment is

an implication and not an assumption of the model.

These speci�c rules of country formation are the second ingredient of

the AS-equilibrium concept. First, there is the requirement that after a per-

turbation at borders agents should move as to restore the initial situation.

We show that this condition is very important because it rules out many

reasonable strong Tiebout equilibria. Second, there is a rule that models in-

ternational agreements over modi�cations of borders which must be rati�ed

by simple majority rule. Because of the fact that in reality di�erent countries

specify very di�erent rules that govern the rati�cation of these international

agreements it is reasonable to ask for some robustness of the AS-ineÆciency

result to changes in the majority requirements. Unfortunately, under quali-

�ed majority rule an equilibrium does not exist.

The remainder of this paper is organized as follows. The next Section

reviews the AS country formation model. Section 3 characterizes eÆcient

coalition structures. The following Section deals with stable structures. It

is divided in three parts which analyze the implications of free mobility, the

consequences of the possibility to form new coalitions and the application of

country formation. We conclude in the last Section. All proofs are relegated

to the Appendix.

4 For papers that use one or both requirements see also e.g. Greenberg and Weber [6],

Demange [4], Jehiel and Scotchmer [9] or Haeringer [7] among others.
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1.2 The Model

AS consider an economy with a population P consisting of a continuum of

agents with mass one, uniformly distributed over the line segment [0; 1]. We

denote a generic member of P and its location by i.

A coalition S is any subset of P with jSj > 0, where jSj denotes its size.5

A coalition structure W = fS1; :::; SNg is any partition of P in coalitions,

ful�lling that jSn \ Sn0 j = 0;8n 6= n
0 and [Nn=1 Sn = P. This de�nition

allows to think of coalitions as unions of closed intervals where boundary

points of these intervals are intersections of coalitions.6 We assign coalitions

their subindex by the following procedure. Coalition S1 has its left border

at point 0. Starting at 0 and going to the right, the �rst agent belonging

to another coalition than S1 belongs to S2. The next agent belonging to

another coalition than S2 forms part of either S1 or S3 and so on.

A connected coalition consists exactly of one interval and we say that

a coalition structure is connected if all its coalitions are connected.

If a coalition Sn consists of several closed intervals, we denote them by

Sn;1; :::; Sn;K .
7

We say that an agent i belongs to the border of two coalitions Sn and Sm

if she belongs to both Sn and Sm. We denote these agents by b(Sn;k; Sm;l)

(where n < m). Neighboring coalitions are those which share a border. The

set B(W) is the set of all border agents given W.

For a given coalition structure W, Si(W) is the coalition i belongs to.

To save on notation, we often simply write Si or even S for Si(W), b instead

of b(Sn; Sm) and B for B(W). Also, given W, we denote by jSmax(W)j and

5 The assumption that jSj > 0 assures a �nite number of coalitions.
6 This implies that every agent i belongs to at least one coalition but some agents (those

located at boundary points) belong to more than one coalition. However, the measure of

these agents is zero.
7 Note that Sn;k may be a singleton.
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jSmin(W)j the largest and smallest coalition size in W. For simplicity we

will write jSmaxj and jSminj whenever it is clear which coalition structure

W is meant.

Coalitions have to provide a local public good bundle l(S) 2 [0; 1]. All

agents have the same utility function, which is decreasing in the distance

to l(S) and increasing in jSij. This function can be represented by the

individual cost function

ci(S) = cdi(S) +
1

jSij
; (1.1)

where di(S) = ji � l(S)j and the nonnegative parameter c measures the

relative importance of the costs of being in a heterogeneous coalition with

respect to the 'public good provision' costs.8 For convenience we will also

use the simplifying notation ci(W).

The decision over the location of the public good l(S) is taken by ma-

jority voting. This implies, since individual utilities are single-peaked with

respect to l(S), that the median voter determines l(S). In case of ties in

unconnected coalitions we suppose that l(S) coincides with the left median

position.9

1.3 EÆcient Coalition Structures

A coalition structure is eÆcient if it minimizes the sum of the individual cost

functions subject to the constraint that the sum of individual contributions

to public good provision must equal its total costs. This implies the following

important result.

8 AS postulate Ui(S) = �(1� �di(S)) + y � 


jSij , where y represents income and �, �

and 
 are positive parameters. Hence c = ��



.

9 This assures that each location l(S) of a local public good is an element of the union

of intervals which constitute the coalition S.
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Proposition 1.1 If W is an eÆcient coalition structure, then it is con-

nected.

The other properties of eÆcient coalition structures are characterized by

proposition 1 in AS.

Proposition 1.2 [Alesina and Spolaore 1997] The social planner (i) lo-

cates the local public good in the middle of each coalition, and (ii) chooses

N
� coalitions of equal size, such that

N
� =

p
c

2
; (1.2)

provided that
p
c

2 is an integer. Otherwise the eÆcient number of coalitions

N
� is given by either the largest integer smaller than

p
c

2 , or the smallest

integer larger than
p
c

2 .

1.4 Stable Coalition Structures

1.4.1 Tiebout equilibria

The purpose of this Section is to analyze the consequences of free mobility of

agents for coalition structures. A partition into coalitions is a Tiebout equi-

librium if no individual wants to migrate to any other existing coalition.10

More formally:

Definition 1.1 A coalition structure W = fS1; :::; SNg is a Tiebout equi-
librium [TE] if for all i 2 [0; 1], we have,

ci(Si) � ci(S
0);8S0 2 W: (1.3)

10 Di�erent from AS or Jehiel and Scotchmer [9] we do not require a stability condition.

But we will investigate the implications of such a requirement in a later Section.
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Since we work with individual cost instead of utility, condition (1.3) states

that each individual prefers his own coalition to any existing coalition. An

important consequence of this requirement is the following result.

Lemma 1.1 If a coalition structure W is a Tiebout equilibrium, then W is

connected.

Remark: An important consequence of this result and proposition 1.1 is

that the implicit assumption of AS that coalition structures must be con-

nected can in fact be derived as resulting from the requirements of eÆciency

and free mobility of agents.

The next proposition characterizes TE.

Proposition 1.3 A coalition structure W = fS1; :::; SNg is a Tiebout equi-

librium if and only if W is connected and

� either all coalitions have the same size

� or there exist exactly two di�erent sizes of coalitions with jSminjjSmaxj = 2
c
.

This result says that the requirement of free mobility of agents implies

a very speci�c structure for W. Coalitions are intervals and there can be at

most two di�erent coalition sizes.

Remark: The de�nition of a Tiebout equilibrium is stronger than the de�-

nition of an A-equilibrium in AS because it allows any agent (and not only

individuals located at borders) to move to any coalition (and not only to

neighboring ones). However, the reader familiar with the work of AS will

have noticed that the set of Tiebout equilibria coincides with the set of A-

equilibria. Therefore, in the AS-model the ful�llment of a very weak free

mobility condition (A-equilibrium) assures the desirable properties of a free
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mobility (Tiebout) equilibrium. This is true because in a given coalition Sn

everyone is at least as well o� as the agents at the border. Moreover, if an

agent joins another coalition Sm she will be worse o� than the border agents

in Sm. Since in an A-equilibrium all border agents get the same utility, no

agent has an incentive to move.

1.4.2 Strong Tiebout Equilibria

The purpose of this Section is to impose on Tiebout equilibria the additional

requirement that there should be no group of agents that can all become

better o� by creating a new coalition.

One reason for the creation of a new coalition may be that, given c,

coalitions in the initial structure may be so small that agents would like

to form larger coalitions. Note that proposition 1.3 does not imply any

minimum size for coalitions in a Tiebout equilibrium. A �rst step is to look

if there exist two coalitions whose agents would unanimously agree to merge

to one large coalition S
M . A coalition structure in which such a consent

cannot be reached is pairwise-merger-proof.

Definition 1.2 A coalition structureW = fS1; :::; SNg is pairwise-merger-

proof [PMP] if in any two coalitions Sn and Sm of W there is no unan-

imous consent to merge and form S
M , that is, there exists i 2 Sn [ Sm

with,

ci(S
M ) � ci(W): (1.4)

This requirement just says that in any merger of coalitions that can be

proposed, there should be at least one agent who cannot (strictly) increase

her utility. Note that in principle proposed mergers do not necessarily in-

volve neighboring coalitions. But proving the following proposition, which
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characterize pairwise-merger-proof Tiebout equilibria, we show that if no

neighbors merge non-neighbors do not merge either.

Proposition 1.4 A Tiebout equilibrium W is pairwise-merger-proof if and

only if one of the following is true

(i) W contains two coalitions of di�erent sizes and there are no neighboring

coalitions both of size jSminj or
(ii)

jSminj �
r

1

c

: (1.5)

The requirement of pairwise-merger-proofness puts a lower bound on coali-

tion sizes. There exist some Tiebout equilibria in which, given c, coalitions

may be too small and it pays to merge. However, in some Tiebout equilibria

the lower bound on coalition sizes is automatically ful�lled.11

A second reason for the creation of new coalitions may be that, given

c, coalitions in the initial structure are too large and it is advantageous to

create smaller ones. Again, proposition 1.3 puts no upper bound on the

size of coalitions. We investigate now when agents from two neighboring

coalitions do not want to secede and create a smaller (connected) coalition.

This is the case which AS analyze. They call a coalition structure in which

those secessions do not take place C'-stable.12

Definition 1.3 A coalition structure W = fS1; :::; SNg is C'-stable if in

any two neighboring coalitions Sn and Sn+1 of W there is no connected set

11 Note that the proof of proposition 1.4 focuses on the new border agents of the merged

coalition SM and that exactly one-half of the population in both coalitions experience the

same change in utility as their border agent. This implies that the unanimous approval

can be weakened to simple majority without a�ecting the result.
12 AS also investigate the possibility of secessions involving only agents from one coali-

tion, which they call C-stability. C-stability implies C'-stability.
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of individuals z with jzj � jSminj that unanimously agrees to form z, that

is, there exists i 2 z with,

ci(z) � ci(W): (1.6)

C'stability requires that in any proposed secession of a connected set of

agents with cardinality smaller than jSminj there is at least one agent who
puts her veto on the proposal because her utility will not (strictly) increase.

We have the following result.13

Proposition 1.5 A Tiebout equilibrium W is C'-stable if and only if one

of the following is true

(i) W contains two coalitions of di�erent sizes or

(ii)

jSj �
p
2 + 2p
c

: (1.7)

This result is very surprising. On one hand it says in part (ii), as we ex-

pected, that depending on c coalitions should not be too large. But on the

other hand it says that Tiebout equilibria containing coalitions of di�erent

sizes do have a structure assuring that it is never bene�cial to create smaller

coalitions.14

We incorporate now the last two concepts into a stronger one. A coali-

tion structure is a strong Tiebout equilibrium if it is a Tiebout equilibrium

and no group of individuals can form a new coalition that makes all of them

better o�.

Definition 1.4 A coalition structureW = fS1; :::; SNg is a strong Tiebout
13 If W is the grand coalition condition (1.7) becomes jSj �

p
6+2p
c
.

14 The crucial information in proposition 1.3 is that jSminjjSmaxj =
2
c
. For Tiebout

equilibria containing coalitions of the same size, jSj �
q

2
c
(which assures jSj2 � 2

c
) is a

suÆcient condition for C'-stability.
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equilibrium [STE] if it is a Tiebout equilibrium and for any coalition

z =2 W there exists i 2 z such that

ci(z) � ci(W): (1.8)

Remark: The de�nition of a strong Tiebout equilibrium is stronger than

both pairwise-merger-proofness and C'-stability. On one hand it allows for

secession proposals of any size and on the other these proposals may be

unconnected.

Proposition 1.6 A Tiebout equilibrium W is a strong Tiebout equilibrium

if and only if it is pairwise-merger-proof and it is C'stable.

This result establishes that saying W is a strong Tiebout equilibrium is

equivalent to saying that its coalition sizes lie in an interval depending on

c. The lower bound comes from the possibility to create larger coalitions.

If coalitions are too small it pays to form larger ones. It turns out that

pairwise-merger-proofness is a suÆcient condition to prevent such a creation.

The upper bound comes from the possibility to create smaller coalitions. If

coalitions are too large they will break up in smaller ones. Here C'-stability

is suÆcient.

Remark: Note that Tiebout equilibria containing coalitions of di�erent

sizes are almost always automatically strong Tiebout equilibria.

The last result of this Section concerns the existence of eÆcient strong

Tiebout equilibria.

Proposition 1.7 An eÆcient strong Tiebout equilibrium always exists.
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1.4.3 Stable Countries

Strong Tiebout equilibria have many nice properties. However, given the

speci�c application one has in mind, other additional properties may be

desirable. One such application is the formation of countries. AS model

speci�c rules for country formation and establish the existence of a unique

stable equilibrium W( eN ) in which all coalitions are equally sized and the

number of coalitions eN is too large. Since this ineÆciency result holds

(strictly) if and only if c > 50, we assume in what follows that this holds for

c.

There are three additional requirements AS impose. The �rst one is

called \stability under rule A". For our purpose the following de�nition is

suÆcient.15

Definition 1.5 A coalition structure W = fS1; :::; SNg is stable under

rule A if after any small perturbation that shifts any border between two

neighboring coalitions and moves a small amount of agents from one coali-

tion to the other one, these agents will move in such a way to restore the

initial coalition structure.

From proposition 2 in AS it follows directly the following corollary.

corollary 1.1 A coalition structure W = fS1; :::; SNg is a strong Tiebout

equilibrium which is stable under rule A if and only if all coalitions are of

the same size and
p
cp

2 + 2
� N <

r
c

2
:
16 (1.9)

15 Jehiel and Scotchmer [9] also impose such a condition.
16 Note that, since c > 50 implies N � 2, the lower bound is unambiguous.
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Remark: Note that stability under rule A has two important consequences.

On one hand it strengthens pairwise-merger-proofness by establishing a

lower upper bound for the number of coalitions. On the other hand and

most importantly it excludes all coalition structures that contain coalitions

of di�erent sizes.

The second requirement that AS impose is called B-stability. It is in-

tended to capture border rearrangements obtained by international agree-

ments among existing countries, rati�ed by majority rule votes within each

country. We test the robustness of the AS-ineÆciency result to changes in

the votes necessary to ratify an agreement.

Definition 1.6 Consider strong Tiebout equilibria which are stable under

rule A. A coalition structure W = fS1; :::; SNg changes to another structure

with N � 1 or N +1 coalitions (of the same size) by applying rule B(Q) if

the modi�cation is approved by a population share of Q in each coalition of

W.

Definition 1.7 A coalition structureW = fS1; :::; SNg is B(Q)-equilibrium
if rule B(Q) is not applied.

Definition 1.8 A B(Q)-equilibrium W = fS1; :::; SNg is B(Q)-stable if

after any perturbation in the number of coalitions the system returns to W
with repeated applications of rule B(Q).

We analyze two di�erent majority requirements.
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Simple Majority Rule

AS analyze the case in which for rati�cation a simple majority is necessary.

The following result follows directly from the two facts that AS apply B(12 )-

stability to a larger set than we do and that their unique B(12 )-equilibrium

is a strong Tiebout equilibrium.17

corollary 1.2 Let eN be the largest integer strictly smaller than
p

c
2 . The

unique B(12)-stable coalition structure has eN coalitions of the same size. For

c > 50, eN > N
�.

Remark: This shows that the ineÆciency result of AS is robust to strength-

ening the ideas of giving agents the possibility to migrate freely among ex-

isting coalitions and to create new coalitions. The selection of W( eN ) can

be understood as the selection of one speci�c strong Tiebout equilibrium

motivated by the rules of country formation.

Quali�ed Majority Rule

In many countries changes of the territory, of the borders or the indepen-

dence of regions require a modi�cation of the constitution. For constitutional

changes normally more than a simple majority is required. For simplicity in

what follows we require Q = 2
3 .
18 We have the following result.

17 The set of A-equilibria that are stable under rule A is strictly larger than the set of

strong Tiebout equilibria that are stable under rule A, since the former does not include

the requirement of C'-stability.
18 In Spain the independence of any region needs a change of the constitution. The

constitutional change requires in this case a majority of 2
3
in both the Congress (Congreso

de los diputados) and the Senate (Senado). Then there are general elections (to both
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Proposition 1.8 All strong Tiebout equilibria which are stable under rule

A, including the eÆcient coalition structure, are B(23)-equilibria. There ex-

ists no B(23)-stable coalition structure.

This result has a simple intuition. When a higher quorum is needed fewer

people can block a proposal. Thus, one should expect more B(Q)-equilibria.

Once there are multiple B(Q)-equilibria any perturbation from one B(Q)-

equilibrium to another persists because we reached a new B(Q)-equilibrium.

Thus with multiple B(Q)-equilibria the requirement of B(23 )-stability is too

strong.

Remark: Note that proposition 1.8 is robust to the following two modi�-

cations of rule B(Q). First, enlargements of countries must be approved by

simple majority while secessions need the approval of a quali�ed majority.

Second, a rule B'(Q) in which the majority must be reached in each of the

regions that would constitute new countries under the proposed modi�ca-

tion.19

the congress and the senate), both newly elected organs have to ratify the decision and

approve the new text of the constitution with a majority of 2
3
. Afterwards a referendum

takes place. In Germany any change of the constitution must be approved by a majority

of 2
3
in both the Lower House of Parliament (Bundestag) and Upper House of Parliament

(Bundesrat).
19 This is true, since in the proof of proposition 1.8 we use the results of AS concerning

the enlargements of countries. In secessions we show that some agents who in both coali-

tion structures form part of the �rst country are enough to block the proposal. Since the

new country is smaller than the old one, our result is robust. Moreover, since AS claim

that their result holds through for rule B'(Q), ours does, too.



20 Stability in the Alesina and Spolaore Country Formation Model

1.5 Conclusions

In this paper we have carried out a test of robustness to the equilibrium

concept used in the Alesina and Spolaore [1] country formation model. This

concept draws from two ideas. On the one hand agents have (to some ex-

tend) the possibility to migrate between existing coalitions or to create new

coalitions. On the other hand it models speci�c features of the formation of

countries.

(i) A large part of this paper dealt with strengthening the �rst ingredi-

ent. The concept of a Tiebout equilibrium in which no agent wants to move

to any other existing coalition gives a rational for the implicit assumption

in AS that coalitions consist of exactly one interval on the line segment. An

interesting question for future research is to determine general conditions

on the utility function and on the distribution of agents such that this nice

result holds still through.

(ii) We have shown that the concepts of A-equilibria and C'-stability,

that seem very weak on �rst sight, can be seen as a kind of \suÆcient

conditions" for more desirable properties. Together with another intuitive

requirement that we called pairwise-merger-proofness they assure that an

equilibrium has all the properties of a strong Tiebout equilibrium. Here

also it is an interesting question (that we leave for future research) to ask

under which more general conditions these three conditions are still suÆ-

cient for assuring the properties of strong Tiebout equilibria.

(iii) We have proved that an eÆcient strong Tiebout equilibrium always

exists and have not identi�ed a force inherent in this concept that goes in

the direction of the AS ineÆciency result. Therefore, in other applications

of local public goods economies than the formation of countries there is no

reason to expect the ineÆciency result to hold true.

(iv) One drawback of the AS-model is that it predicts that in equilibrium
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all countries are of the same size. This comes from the requirement that after

a perturbation of the border between any two countries the system should

return to its initial position (stability under rule A). Our analysis has shown

that this requirement rules out many equilibria with very nice properties in

which countries are of di�erent sizes.

(v) Our last result concerns international agreements which modify the

partition of the world in countries. We have shown that the quorum neces-

sary for such an agreement to become rati�ed in each country is crucial. Our

change from simple to quali�ed majority is motivated by rules that exist in

the real world for these questions and has two consequences. First, in order

to assure the existence of an equilibrium one has to skip the part requiring

immunity to perturbations. Second, one is left with a multiplicity of equilib-

ria which moreover coincides with the set of strong Tiebout equilibria which

are stable under rule A. This means that this concept provides no longer a

re�nement of the initial multiplicity of equilibria.
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Appendix: Proofs

Proof of Proposition 1.1:

Let W be an unconnected coalition structure. We show that W cannot

be eÆcient, since there exists another coalition structureW 0 with the same

number of coalitions where the sum of distances between agents and its local

public good is strictly lower. Let S 2 W be the unconnected coalition with

the lowest subindex in W. Then there exists a line segment T such that for

some agents i 2 T holds i =2 S but their locations lie between the highest and

the lowest agent in S. Note that T cannot be a singleton because then S were

connected. Construct W 0 such that it is identical to W but all but the �rst

part of S are moved to the left such that S is connected. Since jT j > 0, on

one hand, the sum of distances between agents in coalition S and l(S) must

be strictly lower in W 0 than in W. On the other, since all coalitions with

a lower subindex than S are connected in W 0, for the remaining coalitions

the sum of distances cannot have increased in comparison to W. �

Proof of Lemma 1.1:

Let W be an unconnected Tiebout equilibrium and let S 2 W be the un-

connected coalition with the lowest subindex in W. Denote the �rst part

of S by SL. Since S has at least two parts choose SR in the following way.

If l(S) 2 SL, then choose the second part. Otherwise choose SR such that

l(S) 2 SR. Call b2 and b3 the right border agent of SL and the left border

agent in SR, respectively. Denote the coalition immediately on the right of

SL by S
0. It is suÆcient to distinguish four cases.

Case 1: Suppose l(S) � b2 < l(S0) � b3. Denote i = l(S0). Observe that

because W is a Tiebout equilibrium, b2 is indi�erent between the two coali-

tions that are closest to her. This implies ci(S) > cb2(S) = cb2(S
0) > ci(S

0).

But ci(S) > ci(S
0) if and only if

jSj�jS0j
jSjjS0j < c(l(S0) � l(S)). Consider now
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j = b3. Here cj(S) � cj(S
0) if and only if

jSj�jS0j
jSjjS0j � c(l(S0)� l(S)), which is

a contradiction.

Case 2: Suppose l(S) � b2 < b3 < l(S0). Denote i = b2. We have that

ci(S) = ci(S
0) if and only if

jS0j�jSj
jSjjS0j = c(l(S0) + l(S) � 2b2). Consider now

j = b3. Here cj(S) � cj(S
0) if and only if

jS0j�jSj
jSjjS0j � c(l(S0) + l(S) � 2b3).

Both conditions imply b3 � b2, which contradicts the de�nition of those

agents.

Case 3: Suppose l(S0) � b3 < l(S). Denote i = b2. Now it holds that

ci(S) = ci(S
0) if and only if

jSj�jS0j
jSjjS0j = c(l(S) � l(S0)). Note that, since

l(S0) < l(S), we have also that jSj > jS0j. Denote the agent with the highest

position in S
0 whose position is on the left of l(S) by j. Suppose l(S0) < j.

The fact that cj(S
0) � cj(S) leads to

jSj�jS0j
jSjjS0j � c(l(S) + l(S0) � 2j). Both

conditions imply l(S0) � j, a contradiction. Suppose now l(S0) = j. It

follows that there must exist an agent k 2 S
0 with k > l(S). We have that

ck(S
0) � ck(S) leads to

jS0j�jSj
jSjjS0j � c(l(S) � l(S0)). Here l(S0) < l(S), implies

that jSj < jS0j, also a contradiction.

Case 4: The case b3 < l(S) < l(S0) is proven along the lines of the third

case. One just has to interchange each S and S
0. �

Proof of proposition 1.3:

Because of lemma 1.1 consider a TE W which is connected. Suppose

there are at least two coalitions. Border agents are indi�erent between

the two coalitions they belong to if and only if [1.3.1] cb(Sn) = cb(Sn+1),

8b(Sn; Sn+1) 2 B(W). This holds if either [1.3.2] jSnj = jSn+1j or [1.3.3]
jSnjjSn+1j = 2

c
.

We show �rst that W contains at most two di�erent coalition sizes. Sup-

pose there are three or more di�erent sizes jSlj, jSmj and jSnj. Then there

exists at least two borders at which [1.3.3] must hold. That is, jSljjSmj = 2
c

and jSmjjSnj = 2
c
. This implies jSlj = jSnj, a contradiction.
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We show now that if [1.3.1] cb(Sn) = cb(Sn+1), 8b 2 B, then ci(Sn) �
ci(Sm), 8i 2 Sn and 8Sn; Sm 2 W. Suppose [1.3.1], take (by symmetry)

any Sn 2 W with n � N � 1, consider b = b(Sn; Sn+1) and choose Sm such

that m � n+ 1. Observe that because of [1.3.1] and since all coalitions are

symmetric, cb(W) = c, 8b 2 B(W). De�ne b
0 = (Sm�1; Sm). Note that

since db(Sm) � db0(Sm), we have that cb(Sm) � c. hence cb(Sn) � cb(Sm).

On one hand, since di(Sn) � db(Sn) for all i 2 Sn, we have for all i 2 Sn

that ci(Sn) � cb(Sn). On the other hand it is true that di(Sm) � db(Sm) for

all i 2 Sn. This implies cb(Sm) � ci(Sm) for all i 2 Sn. Thus the desired

inequality ci(Sn) � ci(Sm), for all i 2 Sn and for all Sn; Sm 2 W follows. �

Proof of proposition 1.4:

Let W be a TE. We show �rst that the proposition holds for neighboring

pairs of coalitions. Take any pair of neighboring coalitions Sn and Sn+1 in

W and focus �rst on Sn. If the merger occurs all agents in Sn have the same

advantage of lower public good provision costs, but the left border agent

b = b(Sn�1; Sn) is among those agents who have to support the biggest in-

crease of distance to the public good. Agent b refuses to form S
M if and only

if cb(Sn) = c =
jSnj
2 c+ 1

jSnj �
jSnj+jSn+1j

2 c+ 1
jSnj+jSn+1j = cb(S

M ). This gives

[1.4.1] jSnj2 + jSnjjSn+1j � 2
c
. Suppose jSnj 6= jSn+1j. By proposition 1.3

condition [1.4.1] is ful�lled. Suppose jSnj = jSn+1j = jSj. Condition [1.4.1]

boils down to jSj � 1p
c
. SupposeW is a TE containing coalitions of di�erent

sizes and some coalitions of size jSmaxj are neighbors. Suppose jSmaxj < 1p
c
.

This contradicts
q

2
c
< jSmaxj, which must be true by proposition 1.3.

It remains to show that if neighbors do not merge, non-neighboring coali-

tions do not merge either. Take two non-neighboring coalitions Sn and Sm.

Suppose jSnj 6= jSmj. Since now distances are higher than in the case of

neighbors, we know that the merger does not take place. The same holds

in the case that jSnj = jSmj = jSmaxj. Suppose jSnj = jSmj = jSminj. If
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there are only coalitions of size jSminj in between it is clear that the fact

that neighboring coalitions do not merge implies that Sn and Sm do not

merge either. Assume now that there is one coalition of size jSmaxj in be-

tween. Consider the agent with the highest position in the merger. Similar

reasoning as above leads to 2jSmaxjjSminj+ jSminj2 � 1
c
, which is ful�lled. �

Proof of proposition 1.5:

Since part (ii) follows from equation (11) on page 1036 in AS, we show

(i) only. Suppose W is a TE containing two neighboring coalitions Sn and

Sn+1 of di�erent sizes. Let jSnj > jSn+1j. We know from proposition 1.3 that

[1.5.1] jSnjjSn+1j = 2
c
holds. We show that no i 2 W wants to secede to any

z with jzj � jSn+1j where i will be border agent. Consider S 2 fSn; Sn+1g.
We have that ci(W) � jSj

2 c +
1
jSj �

jzj
2 c +

1
jzj � ci(z) must hold (the last

inequality is strict if z is unconnected). If jSj = jzj this is trivially ful�lled,

if not it implies [1.5.2] jSjjzj � 2
c
. Since jSj > jzj for all S 2 fSn; Sn+1g and

[1.5.1], [1.5.2] is true. For later reference note that the proof holds through

for unconnected z. �

Proof of Proposition 1.6:

Step 1: We show �rst that C'stability implies that there is no z with jzj �
jSminj that blocks W. If W contains two coalitions of di�erent sizes this fol-

lows from the proof of proposition 1.5. Suppose W contains only coalitions

of the same size. It remains to show that for any unconnected z, denoted

by zu with jzuj � jSj, which blocks W there exists a connected, denoted

by zc, which also blocks W. It is immediate that equation (1.8) is ful�lled

for individuals with di(S) = 0. Denote the individuals with the lowest and

highest position in a secession proposal by b1(zu) and b2(zu), respectively.

If the interval between b1(zu) and b2(zu) contains at least one position of

government, then there exists an individual in zu with a higher or equal

distance to government than in S. If the unconnected secession proposal
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zu does not contain any government location, then it is possible to con-

struct a connected proposal zc with the government at the same position

and jzuj = jzcj. Consider the border agent who is closest to l(S). The fact

that cb(zc)(z) > cb(zc)(S) implies cb(zu)(z) > cb(zu)(S).

Step 2: For the reminder of this proof suppose jzj > jSminj. Fix a secession

proposal z and consider its border agents b(z). Since individuals on the bor-

der of S have the minimum utility in W, equation (1.8) is ful�lled for b(z)

if [1.6.1] cb(z)(z) � jzj
2 c+

1
jzj �

jSj
2 c+

1
jSj � cb(z)(S) holds (the �rst inequality

is strict if and only if z is unconnected).

Step 2.1: Suppose W contains two coalitions of di�erent sizes and

jzj � jSmaxj. Note that [1.6.1] is trivially ful�lled if jSj = jSmaxj = jzj.
Let jSj = jSmaxj < jzj. Equation [1.6.1] becomes [1.6.2] jSjjzj � 2

c
which is

ful�lled since jzj > jSminj and jSminjjSmaxj = 2
c
. If jSj = jSminj we reach

again [1.6.2] which is true again, since jzj � jSmaxj.
Step 2.2: Suppose W contains two coalitions of di�erent sizes and

jSmaxj > jzj > jSminj. Assume furthermore that z is such that l(z) = l(S)

for some coalition S.

Step 2.2.1: Suppose there exists b 2 b(z) with jSbj = jSmaxj. Note that,
since if jSj = jSmaxj then b can not be closer to l(z) than she is to l(S),

we focus on jSj = jSminj. For a secession proposal z of size jzj, denote by

jzj + u the line segment between its lowest and highest agent. Note that

if z is connected, then u = 0. Suppose the position of b lies between l(z)

and l(S) (otherwise his distance increases in z). Agent b rejects z if and

only if cb(z) =
jzj+u
2 c + 1

jzj �
jSmaxj�jzj�u�jSminj

2 c + 1
jSmaxj = cb(z)(S) which

implies that jzjc+ 1
jzj �

jSmaxj�2u�jSminj
2 c+ 1

jSmaxj . Hence it is suÆcient that

minjzjfjzjc + 1
jzjg �

jSmaxj�jSminj
2 c + 1

jSmaxj . Since the solution to the mini-

mization problem is 1p
c
, it is enough to show that 2

p
c � jSmaxj

2 c + 1
jSminj .

By PMP 2
p
c � 2

jSminj �
jSmaxj

2 c + 1
jSminj , where the last inequality is holds
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by jSminjjSmaxj = 2
c
.

Step 2.2.2: Suppose that for at least one b 2 b(z) holds jSbj = jSminj or
that W contains only coalitions with size jSminj. Denote jzj = jSminj +
m with 0 < m < 1. Condition [1.6.2] jSjjzj � 2

c
can be written as

jSminj2 + jSminjm � 2
c
. If m � jSminj this is true by PMP. Suppose now

0 < m < jSminj.
Note that if jSj = jSmaxj, then there exists an agent who rejects z if

jSminj+jSmaxj
2 c + 1

jzj � 1
jSminj . This gives jzjjSminj � 1

c

2(jzj�jSminj)
jSminj+jSmaxj and is

ful�lled by PMP since 4jSminj > 2jzj.
De�ne the interval between both border agents in z as n+ jSminj. We have

that z is connected if and only if n = m. Let n < jSminj. Equation [1.6.1] can
be written as [1.6.3] cb(z)(z) =

jSminj+n
2 c + 1

jSminj+m � jSminj�n
2 c + 1

jSminj =

cb(z)(S). This gives n
m
jSminj(jSminj + m) � 1

c
, which is true because of

PMP, n
m
� 1 and jSminjm � 0. Let 2jSminj > n � jSminj. Equation [1.6.3]

becomes [1.6.4] cb(z)(z) =
jSminj+n

2 c + 1
jSminj+m � (jSminj � n

2 )c +
1

jSminj =

cb(z)(S). From this we get (n � jSminj
2 )c � jSminj

2 c � m
(jSminj+n)jSminj or

jSminj2 jSminj+m
2m � 1

c
. This is true since PMP and jSminj +m > 2m. It is

clear that z with n � 2jSminj are also rejected.

Step 2.2.3: Note that by construction both border agents in z reject z.

Therefore, for other locations l(z) 6= l(S) there is always one border agent

closer to l(S) than in the numerical expressions above. This implies that

such a z does not block W.

Step 2.2.4: It remains to show that if W contains two coalitions of

di�erent sizes and jSmaxj > jzj > jSminj, all z that lie entirely in a coalition

of size jSmaxj or between two of the same size are not successful. We use the

results of AS which say that it suÆces that jSmaxj �
p
2+2p
c
. We show that

2
c
�

p
2+2p
c
jSminj. Since jSminj � 1p

c
, we need that 2

c
�

p
2+2
c

, which is true.

For unconnected z one can argue as in step 1. �
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Proof of Proposition 1.7:

We show that the eÆcient coalition structure determined in AS (which we

review in proposition 1.2) is always a STE. From the proof of proposition 1 in

AS (page 1047) we know that for c < 8 the grand coalition is eÆcient. Note

that in this case it is not possible to form a larger coalition. Hence the lower

bound for STE does not apply. For this range of values of c the condition

1 �
p
6+2p
c

is always ful�lled. For c � 8 take the eÆcient coalition structure

consisting of N� coalitions of the same size. We express the conditions for

N
� to be a STE also in the number of coalitions and not in its size. We

know that N� 2 [maxf2;
p
c

2 � 1g;
p
c

2 +1). Note that 2 �
p
c

2 � 1 if and only

if c � 36. For this values of c it is true that
p
cp

2+2
< 2. On one hand we have

p
cp

2+2
<

p
c

2 � 1, which is also ful�lled for c > 36. Consider now the upper

bound for N�. We have that
p
c

2 + 1 <
p
c if and only if c > 4, which is also

ful�lled. �

Proof of Proposition 1.8:

Consider strong Tiebout equilibria which are stable under rule A.

Step 1: Application of rule B(23) in order to increase the number of

coalitions. A change from a coalition structure W with N coalitions of size

jSj = 1
N
to W 0 with N+1 coalitions of size jS0j = 1

N+1 is carried out if there

is a majority of 2
3 in every coalition of W. Hence this change is not carried

out if there is a coalition with 1
3 of its population against it.20 Consider

the �rst coalition in W. If the change is carried out, coalitions get smaller,

which implies that all agents have to pay more for public good provision.

Denote the population share between the old local public good l(S1) and

the new border b(S01; S
0
2) as P1. Note that all agents in P1 = jS0j � jSj

2 get

20 We assume here that exactly 1
3
is enough. This is motivated by the fact that in

most countries 2
3
of the parliament is not an integer and therefore strictly more than 2

3

is needed. This assumption is not crucial for our result because the only change in which

we have ties is the one from N = 2 to N 0 = 3.
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unambiguously worse o� by the change. We have that P1 � 1
3 jSj if and only

if N � 5. Note that for c > 50, the grand coalition is not a STE. We are

left with N 2 f2; 3; 4g. Consider the change from N = 2 to N
0 = 3 and

the �rst country. The agents who get unambiguously worse o� are those

located in the interval [ 524 ;
3
8 ]. This is a total of 1

6 or 1
3 of the population

of the �rst country. Consider the change from N = 3 to N
0 = 4 and the

second country. The agents in [ 716 ;
9
16 ] get unambiguously worse o�. Their

cardinality is 1
8 which is more than the necessary 1

9 . For the change from

N = 4 to N
0 = 5 consider again the �rst country. The agents in [18 ;

17
80 ] get

unambiguously worse o�. Their cardinality is 7
80 which is again more than

the necessary 1
12 . Thus, there are always enough agents against the change.

Step 2: Application of rule B(23) in order to decrease the number of

coalitions. From the analysis of AS (lemma 4, page 1053) we know that

stability under rule A implies that there is always a majority (in at least

one coalition) against the change. A majority is more than enough under

rule B(23 ).

Step 3: B(23)-equilibria. Because of step 1 and 2 all STE which are stable

under rule A are B(23 )-equilibria.

Step 4: B(23)-stability. Note that for c > 50 there are multiple B(23 )-

equilibria. Suppose a perturbation to any STE which is stable under rule

A. Since the latter is a B(23 )-equilibrium (step 3), rule B(23 ) is not applied

and the system does not return to its initial position. Thus, there exists no

B(23 )-stable coalition structure. �
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2.1 Introduction

This paper studies eÆcient and stable country con�gurations in a simple

model of country formation. Driving force of the model is a trade-o� between

the bene�ts of large countries and the costs of heterogeneity of large and di-

verse populations. Large jurisdictions bring several bene�ts with them. For
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Jesenn�a 5, 041 54 Ko�sice, Slovakia.
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example there may be economies of scale in public good provision or simply

the fact that the (�xed) costs of government provision are shared among

many citizens. On the other hand there is an opposite force. Since larger

populations are less homogeneous, the choice of the type of government may

become less similar to the individuals' most preferred type when the size of

the country increases.

The focus of our model on the trade-o� between bene�ts and costs of

large groups is a frequent feature of the literature seeking to explain the

formation of groups in societies see e.g. Demange (1994). For a detailed

exposition of the bene�ts and costs concerning the organization of the world

in countries see Alesina and Spolaore (1997) (henceforth AS) or Le Breton

and Weber (2000).

Both our model and the questions we want to answer are inspired by AS.

Alesina and Spolaore assume that the world population is one-dimensional

and uniformly distributed on the unit interval. Individuals join together

to form 'countries', that are intervals with the 'government' located in its

middle. Each individual has the utility function of the same form, piecewise

linear, directly proportional to the negative of its distance from the govern-

ment and indirectly proportional to the negative of the size of its country.

AS then consider two criteria for country formation: eÆciency (the average

utility of a citizen should be maximized) and stability (for precise de�nitions

see the paper in question). They show that under eÆciency as well as under

stability criterion all countries are intervals of the same size. One of their

main conclusions is that the eÆcient number of countries is always smaller

than the stable one, from which they conclude that

': : : The democratic process leads to an ineÆciently large num-

ber of countries. Namely, when countries are formed through
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a democratic process, more countries are created than with a

social planner who maximizes world average utility. : : : '

Our aim is to test how reliable the conclusions of AS are. The main dif-

ference of our model and that of AS is that they work in a continuous setting

and our model is discrete. Further, we slightly modi�ed the stability notion

to make a better sense for the discrete model. We show that for each value

of the parameter determining the exact form of the utility function (more

precisely, expressing the relative importance of its 'distance dependent' part

to its 'country-size dependent' part) eÆcient con�gurations as well as sta-

ble con�gurations exist, however, there is no unambiguous relation between

them. Moreover, although in an eÆcient con�guration the country sizes

are 'almost equal', in a stable one they may assume any integer value in a

certain (not very small) interval.

One explanation of the di�erences obtained may be that in a discrete

model the forces at play are changed considerably, since adding a player

to a coalition alters substantially the coalition, whereas in the continuous

model the measure (and the power) of a single player is zero. Is some sit-

uations however, a discrete model may be more appropriate. One reason

may be that the real world is discrete and world population is large but not

in�nite. Another consideration may be that the formation of countries is

driven by regions and a region may be a set of individuals with similar ge-

ogra�c position and utility (consider the disintegration of the Former Soviet

Union, Yogoslavia, Czechoslovakia, as well as the movements for regional

authonomy or even independence in e.g. Canada, Spain, France or Italy).

The �rst discretizations of AS have been attempted by Dahm (1999) and

(2000). Dahm uses the same stability notions as AS and shows that in the

discrete case a stable con�guration may fail to exist. Moreover, in situations
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where a stable con�guration exists, the relation to eÆcient con�gurations is

not so clear as in AS.

Other papers dealing with relations between eÆciency and stability of

coalitional structures are Dr�eze and Greenberg (1980) and LeBreton and

Weber (2000). In the �rst one the authors consider a model of an economy

as a cooperative game where the utility function of each individual has two

arguments: his consumption bundle and the coalition to which he belongs.

An example is presented with three agents and two commodities where ef-

�cient allocations are not stable. The second paper focuses on one country

and analyses when it is eÆcient to maintain a uni�ed country as well as

when this country is stable, that is, no region wants to secede. The paper

shows that it is possible to reconcile both requirements.

The AS paper belongs to political economy literature on country for-

mation which is reviewed in Bolton, Roland and Spolaore (1996). The AS

model has recently been extended by Le Breton and Weber (2000). Unlike

our paper, the latter focuses on group deviations. Another related work is

Haeringer (2000). He also uses a discrete model, but deals only with stable

structures. On the other hand, his model is more general than ours. How-

ever this generality makes it impossible to describe stable structures in more

detail.

Our model can also be understood as a hedonic coalition formation game.

This notion was introduced by Dr�eze and Greenberg (1980), who de�ned a

hedonic game as such in which the utility of a member of a given coalition

is not a�ected by the way outsiders organize themselves but depends only

on the identity of the other members of her coalition. Recent contributions

include Banerjee, Konishi and S�onmez (1998) and Bogomolnaia and Jackson

(1998). These papers deal solely with various de�nitions of stable coalition
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structures and restrictions of the admissible preferences.

Inspired by the seminal work of Tiebout (1956) are the papers on local

public good economies like Guesnerie and Oddou (1981), Greenberg and

Weber (1986), (1993), Weber and Zamir (1986) and Jehiel and Scotchmer

(1997). They mainly investigate the existence and characterization of stable

partitions of individuals into jurisdictions rather than providing a detailed

comparison of stable and eÆcient structures.

This paper is organized as follows. In Section 2 we present the basic

model. Section 3 characterizes eÆcient con�gurations and Section 4 is de-

voted to our main stability notion which is slightly extended in Section 5.

Section 6 concludes.

2.2 The Model

We suppose that the world population is �nite, its cardinality will be denoted

by W . Individuals are located in discrete points on the line, the distance

between any two neighbouring locations is 1. Individuals join together in

order to provide a (local) public good which is nonrival and excludable. We

interpret the public good as 'government'. It may represent a bundle of

administrative, judicial, economic services and public policies. Each govern-

ment identi�es a country. (We will use from now on the terminology country

for coalitions that form and government for the public good that must be

provided.)

The cost of the public good provision is constant and is independent

from the size of the country. Each individual has to belong exactly to one

country. Because of excludability, the bene�ts arise only to citizens of a
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given country, who in turn have to �nance their government.

The policy space we analyze is unidimensional. Each point in this in-

terval represents a type of government and for each individual there exists

a unique ideal policy. This allows us to identify each individual unambigu-

ously with a point in the policy space. Hence we consider the individual's

ideal point to be its 'location'.

Each individual has the same utility function, separable in the public

good and money which takes the piecewise linear form similar to the one in

AS

u(i) = u(1� a`i) + y � k

jPij
; (2.1)

where u; a; k are nonnegative parameters, y is an exogeneous income of the

individual (the same for all individuals), u measures the maximum utility

derived when the location of individual coincides with the location of the

government, `i is the distance of individual i from his government and jPij
the number of citizens of the country of individual i.

Since the constant terms in the utility function are irrelevant, its maxi-

mization is equivalent to minimization of the individuals' cost function

w(i) = ua`i +
k

jPij
: (2.2)

In order to make our treatment more concise, we shall consider the normal-

ized cost

wn(i) = c`i +
1

jPij
; (2.3)

where the nonnegative parameter c = ua
k

measures the relative importance

of the 'heterogeneity' costs with respect to the 'government provision' costs.

It will turn out that it is suÆcient to consider 'connected countries'. We

say that a country P is connected if P contains with any two citizens i; j all
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the intermediate citizens. Hence, a country P is connected if and only if the

distance between any two neighbouring citizens of P is equal 1. Therefore

we shall denote a con�guration of countries as a vector (p1; p2; : : : ; pN ) of

country sizes, assuming that the �rst country from the left has p1 citizens,

the second one p2, etc.

We shall look at two di�erent criteria for the formation of countries:

� EÆciency. How many countries should be created and of what size if

the sum of costs of all the world inhabitants is to be minimized?

� Stability. We consider the following three possibilities for deviations:

{ A citizen leaves his original country and forms a new country of

his own.

{ A citizen leaves one country to join a neighbouring country.

{ A citizen of one country and a citizen of a neighbouring country

leave their countries to form a new country.

2.3 EÆciency

Let us call the sum of distances of all the citizens of a country P from

its government the heterogeneity H(P) of P. The heterogeneity H(E) of
a con�guration E is the sum of heterogeneities of all countries in E . The

minimum possible heterogeneity of a country with p inhabitants will be

denoted by h(p).

In the proof of the following assertions we shall call each citizen located

to the left of the government of his country a left citizen and the one located

to the right a right citizen. For a real number a, bac and dae denote the
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greatest integer not greater than a and the smallest integer not smaller than

a, respectively.

Lemma 1 Let P be any country. Then the heterogeneity of P is minimal

if its government is located at a median position, i.e. when the number of

the left citizens of P is equal to the number of the right citizens of P.

Proof. Let jPj = p and let the government be located at a median position.

We shall denote by H
�(P) the heterogeneity of P and by p

�
L and p

�
R the

number of the left and right citizens of P. Clearly, p�L = p
�
R = bp

2c. Now, let
the position of the government be w.l.o.g. in the distance x to the left of the

original position. Let the heterogeneity of P be now H
0(P). Now, all the

right citizens remain right, but each one of them has now his distance from

the government increased by x. Of the left citizens some remain left (and

the distance from the government of each one of them will be decreased by

x) and some may be 'jumped' over. Let us denote the number of jumped-

over citizens by j. If their distances from the government were originally

y; d1 + y; d2 + y; : : : ; dj�1 + y (where y 2 (0; d1)) from the rightmost one to

the leftmost one, now they are x�y; x�y�d1; : : : ; x�y�dj�1 in the same

order. So

H
�(P)�H

0(P) = �p�Rx+ (p�L � j)x+ j(2y � x) = 2j(y � x);

if the government was originally not located in any citizen and

H
�(P) �H

0(P) = �p�Rx+ (p�L � j)x+ j(2y � x)� x = 2j(y � x)� x

otherwise. Since y� x < 0 if j � 1 and x > 0, we have H�(P)�H
0(P) � 0,

which implies the claim.

Let us notice here that in case jPj is even, the minimum heterogeneity
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is achieved also if the government is located in anyone of middle citizens,

which are not median positions according to the de�nition.

Moreover, the above theorem is true for any, not only uniform distances

between citizens, but the next one already uses this uniformity.

Lemma 2 Let a country P have p citizens. Then H(P) = h(p) if and only

if P is connected and in this case

h(p) =

8><
>:

p2

4 ; if p is even;

p2�1
4 ; if p is odd.

Proof. The necessity of connectedness of a country is implied by the fact

that the distances of citizens from the government used in the following

expressions for the heterogeneity of a country are obtained when P is con-

nected and they are lower bounds for the distances in a country that is not

connected.

Case p = 2k. Let the government be located in the segment between the

two middle citizens, at distance x 2 h0; 1i from the left one of them. Then

h(2k) =

kX
m=1

(m� 1 + x) +

kX
m=1

(m� x) = k(k + 1)� k = k
2 =

p
2

4
:

For p = 2k + 1 we have

h(2k + 1) = 2

kX
m=1

m = k(k + 1) =
p
2 � 1

4
:

In an eÆcient con�guration the heterogeneity of each country P with

p citizens must be equal to h(p). Now we shall prove that the sequence
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h(p); p = 1; 2; : : : is convex, which will ensure that in an eÆcient con�gura-

tion the sizes of countries are approximately equal.

Lemma 3 For each p � 2 and q; 0 < q < p we have

h(p+ q) + h(p� q) � 2h(p);

while equality occurs only if p is even and q = 1.

Proof. From Theorem 2 we have

h(p+q)+h(p�q) � (p+ q)2 � 1

4
+
(p� q)2 � 1

4
=

p
2 + q

2 � 1

2
� p

2

2
� 2h(p):

The �rst inequality is ful�lled as equality if and only if both p+ q and p� q

are odd; the second one is equality if and only if q = 1 and the third one if

and only if p is even. Hence the desired result follows.

Theorem 1 In an eÆcient con�guration E the sizes of two countries may

di�er by at most 2, and if this occurs, the maximum and the minimum sizes

of a country in E are odd.

In general, it is now easy to see how to generate an eÆcient con�guration

for the world population of W citizens and a �xed number N � W of

countries. First of all, we divide W by N . If W mod N = M is zero, then

all the countries will have the same size W
N
. Otherwise M is nonzero but

smaller than N , hence we will have M countries of size dW
N
e and N �M

countries of size bW
N
c. Con�gurations obtained in this way will be called

standard con�gurations and for given W and N they will be denoted by

E(W;N).

Moreover, if M is at least 2 and dW
N
e is even or if N �M is at least 2

and bW
N
c is even, we can choose several pairs of countries with equal even
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size q = dW
N
e or q = bW

N
c, replace each such pair by two countries with sizes

q � 1 and q + 1 and obtain another eÆcient con�guration.

Example. If W = 6 and N = 3, the sizes of countries in an eÆcient

con�guration are (2,2,2) or (3,2,1); for W = 8 and N = 3 the only possible

eÆcient con�gurations are (3,3,2) and its permutations.

Now consider W = 100; N = 8. Here b1008 c = 12 and 100 mod 8 = 4,

hence

E(100; 8) = (13; 13; 13; 13; 12; 12; 12; 12); (2.4)

other possibilities are

(13; 13; 13; 13; 11; 13; 12; 12) and (13; 13; 13; 13; 11; 13; 11; 13); (2.5)

so all the eÆcient con�gurations for W = 100 and N = 8 ca be expressed

as permutations of (2.4) and (2.5).

It is clear that for a given W and each value of parameter c there exists

at least one eÆcient con�guration. In what follows we shall describe an

approach for �nding the eÆcient con�gurations for given W and c with the

number of countries not prescribed in advance .

The total cost of the standard con�guration E(W;N) is a linear function

of c

CW;N (c) = N +H(E(W;N))c: (2.6)

To �nd the eÆcient number of countries N� for a given c, we have to �nd

the global minimum of functions of the form (2.6) for N = 1; 2; : : : ;W .

Fortunately, it is not necessary to compare CW;N�(c) with CW;N (c) for all

values of N , as we will just prove. We shall denote by cMN (W ) forM < N the

point where the functions CW;M(c) and CW;N (c) intersect. To begin with,
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we �rst compute the intersection c
N
N+1(W ) of two `adjacent' costs, which

has to ful�ll

N +H(E(W;N)):cNN+1(W ) = N + 1 +H(E(W;N + 1)):cNN+1(W ): (2.7)

From equation 2.7 we get

c
N
N+1(W ) =

1

H(E(W;N)) �H(E(W;N + 1))
(2.8)

Lemma 4 The sequence c01(W ) = 0; c12(W ); c23(W ) : : : ; cW�1
W (W ); cWW+1(W ) =

1 de�ned by (2.8) is nondecreasing for each W .

Proof. We need to show that cN�1
N (W ) � c

N
N+1(W ) for allN = 1; 2; : : : ;W�

1, which is equivalent, since H(E(W;N)) �H(E(W;N + 1)) > 0 for all N ,

to

H(E(W;N)) +H(E(W;N)) � H(E(W;N � 1)) +H(E(W;N + 1)): (2.9)

Now both sides of (2.9) correspond to the heterogeneity of some con�gura-

tion with 2N countries of the world population 2W ; but in the left hand

side we have in fact the heterogeneity of an eÆcient con�guration E(2W; 2N)

with 2N countries and in the right hand side we have heterogeneity of some

other con�guration for 2W citizens. Therefore the desired inequality follows.

Theorem 2 For given W and c 2 h0; 1i, an eÆcient con�guration exists

and it has N� � W countries if and only if c 2 hcN��1
N� (W ); cN

�
N�+1(W )i. If

c > 1 then there is a unique eÆcient con�guration having W one-citizen

countries.
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Figure 2.1:

Proof. Since CW;1(0) = 1 < CW;2(0) = 2 < ::: < CW;W (0) = W and

CW;1(1) � CW;2(1) � � � � � CW;W (1), we immediately have that 0 <

c
N
N+1(W ) � 1 and it remains to show that

(8N < N
�)cNN�(W ) � c

N��1
N� (W )

and

(8N > N
�)cN

�
N (W ) � c

N�
N�+1(W ):

We shall show the �rst inequality, the proof of the second one is similar.

Due to Lemma 4 we have cN
��2

N��1(W ) � c
N��1
N� (W ). If this inequality is

ful�lled strictly, we have for c = c
N��2
N��1(W ) that CW;N�(c) > CW;N��1(c) =

CW;N��2(c) and since the rate of growth of CW;N��2(c) is greater than that

of CW;N��1(c), the former function must intersect CW;N�(c) earlier than

the latter. (See Figure 2.1 for illustration.) Hence we get c
N��2
N� (W ) �

c
N��1
N� (W ) and the desired inequality follows by induction.
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To simplify the search for eÆcient con�guration even further, we have

the following assertions.

Lemma 5 Let W and N be such that dW
N
e � 3. Then N +H(E(W;N)) =

W +H(E(W;W )).

Proof. If dW
N
e � 3 then the only possible sizes of countries in E(W;N) are

1,2 and 3. Let us denote their numbers n1; n2 and n3 respectively. Then

CW;N (c) = n1 + n2 + n3 + (n1:0 + n2:1 + n3:2)c, hence N +H(E(W;N)) =

n1 + 2n2 + 3n3 =W =W +H(E(W;W )).

Corollary 1 For a given W and N such that N < W and dW
N
e � 3, if

there exists N 0
< N such that dW

N 0 e � 3, then E(W;N) is eÆcient if and

only if c = 1.

For illustration, we consider W = 24. Table 1 gives the eÆcient struc-

tures and Figure 2.2 depicts the cost functions C24;N (c) for variousN . Corol-

lary 1 ensures that it is not necessary to consider N > 8, since con�gurations

E(24; N) for N = 9; 10; : : : ; 23 are eÆcient if and only if c = 1 and E(24; 24)
is eÆcient for all c � 1.

2.4 Stable con�gurations

The notion of stability is based on an assumption that an individual can

leave his country and/or join another country without obtaining the con-

sent of any of the countries a�ected (see Tiebout (1956), Westhof (1977),
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N EÆcient con�gurations CW;N (c) Global optimum for

1 (24) 1 + 144c c 2 h0; 1
72i

2 (12,12), (11,13) 2 + 72c c 2 h 1
72 ;

1
24i

3 (8,8,8), (7,9,8) 3 + 48c c 2 h 1
24 ;

1
12i

4 (6,6,6,6), (5,7,6,6), (5,7,5,7) 4 + 36c c 2 h 1
12 ;

1
8i

5 (5,5,5,5,4) 5 + 28c c 2 h18 ; 14i

6 (4,4,4,4,4,4), (3,5,4,4,4,4) 6 + 24c c = 1
4

(3,5,3,5,4,4), (3,5,3,5,3,5)

7 (4,4,4,3,3,3,3), (4,5,3,3,3,3,3) 7 + 20c c = 1
4

8 (3,3,3,3,3,3,3,3) 8 + 16c c 2 h14 ; 1i

Table 2.1: EÆcient con�gurations for W = 24.

Haeringer (2000)). We suppose that the position of the government in a

country is always in the middle of the country (which is one of the eÆcient

locations of the government for that country, as proved in Lemma 1). In

case a change in the con�guration occurs, the location of the government in

each of the a�ected countries will move to recover the minimal possible het-

erogeneity (this may be justi�ed by voting of the citizens over the location

of the government, see Alesina and Spolaore (1997) for a justi�cation of this

assumption). Formally we shall de�ne a stable con�guration as follows:

De�nition 1 A con�guration E of countries is said to be stable if none of

the players can obtain a higher utility when leaving his country in E and

either

1. creating a country of his own or
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Figure 2.2:

2. joining a neighbouring country.

Haeringer (2000) proved in a more general model (with a monotone

distribution of individuals on the line, identical concave utility function for

each citizen and under the rule that an individual can join any country he

wishes) the following assertion:

Lemma 6 If a con�guration E is stable then all the countries in E are

connected.

In our model, increasing utility is equivalent to decreasing cost. More-

over, it is easy to see that the citizens with the highest cost in a country are

its border citizens. So the necessary conditions for a stable con�guration

can be summarized in the following two assertions.
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Lemma 7 Let P be a connected country with p > 1 citizens. Then no

citizen of P wants to separate and create a country of his own if and only if

c � 2

p

: (2.10)

Proof. We have to compare the cost of a border citizen of the original

country with the cost of a citizen in a one-citizen country, i.e. 1
p
+ p�1

2
c

should not be higher than 1. Suitable algebraic rearrangements yield the

desired result.

Lemma 8 Let two neighbouring countries, P and Q, have sizes p and q; p �
q respectively. Then

1. the border citizen of Q, who is closest to P, does not want to jump to

P if and only if q = p+ 1; in case q > p+ 1 it must hold

c � 2

(p+ 1)q
; (2.11)

2. the border citizen of P, who is closest to Q does not want to jump to

Q if and only if

c � 2

p(q + 1)
: (2.12)

Proof.

1. Consider the border citizen from the bigger country, Q. If he prefers
to stay in his original country than to join the smaller country, then

his old cost is lower than his cost in the smaller country which will

have p+ 1 citizens and its government located in its middle:

1

q

+
q � 1

2
c � 1

p+ 1
+
p

2
c;
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The above inequality is equivalent to

q � p� 1

2
c � q � p� 1

(p+ 1)q
:

Clearly, if q = p + 1, this inequality is trivially ful�lled and further

manipulations give the desired inequality.

2. If the border citizen from the smaller country P with p > 1 citizens

prefers to stay in P rather than to joinQ, then the following inequality
must be ful�lled:

1

p

+
p� 1

2
c � 1

q + 1
+
q

2
c;

which is equivalent to

p� q � 1

2
c � p� q � 1

p(q + 1)
:

Since p < q+1, after dividing by p�q�1 we get the desired inequality.

(If p = 1, the starting inequality 1 � 1
q+1 +

q
2c also leads to the desired

claim.)

Corollary 2 A con�guration containing two neighbouring countries of sizes

p and q � p+ 2 can never be stable.

Proof. According to Lemma 8, instability on the border of two neighbouring

countries of sizes p and q � p+ 2 will not occur if and only if

2

p(q + 1)
� c � 2

(p+ 1)q
;

but since (p+ 1)q > p(q + 1) holds for each pair of integers p; q with q > p,

such c can never exist.

Since in a con�guration with just one country Lemma 8 is irrelevant,

Lemma 7 implies
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Corollary 3 For a given world population W and a value of parameter c,

the con�guration E = (W ) is stable if and only if W:c � 2.

Corollary 4 The con�guration in which all countries have size 1 is the

only stable con�guration for c > 1. Conversely, this con�guration cannot be

stable if c < 1.

Proof. If c > 1 and there exists a country with size p � 2 in a con�guration,

then the inequality c � 2
p
cannot be ful�lled. Conversely, if in a con�guration

E all countries have size 1, then the only constraint that applies is the

converse of inequality (2.12), which in this case implies c � 1.

Corollary 5 A con�guration E containing at least two countries, but all

with the same size p > 1 is stable if and only if

2

p(p+ 1)
� c � 2

p

:

Corollary 6 A con�guration E containing countries with sizes p1 < p2 <

� � � < pk for k � 2, but such that the size di�erence of two neighbouring

countries is never more than 1 and there are no neighbouring countries with

size p1 is stable if and only if

2

p1(p1 + 2)
� c � 2

pk

:

If there exist neighbouring countries with size p1 then p1 has to ful�ll the

stronger condition
2

p1(p1 + 1)
� c:

We shall interpret the statements of Corollaries 5 and 6 from a di�erent

angle, namely enabling us to compute the possible country sizes for a given
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c. Let us therefore denote

t
L
1 =

r
2

c

+
1

4
� 1

2
(2.13)

t
L
2 =

r
2

c

+ 1� 1 (2.14)

t
U =

2

c

(2.15)

and Corollary 6 can now be reformulated as:

Theorem 3 For a given value of parameter c � 1, the size p of any country

in a stable con�guration E with at least two countries must ful�ll p 2 htL1 ; tU i;
if there are no neighbouring countries both with their sizes equal to the min-

imum size of a country in E, then the lower bound has to be weakened to

t
L
2 .

A simple algebraic procedure will show that tL1 � t
U � 1 for each c � 1,

which means that there is always an integer p in interval htL1 ; tU i; however
this does not automatically imply that for each c and each W there will

always exist a stable con�guration.

Theorem 4 For each W and c � 1 a stable con�guration exists, namely it

is the con�guration E(W;N) for suitable N .

Proof. If W � t
U = 2

c
then con�guration (W ) is stable. So we have to deal

with the case W >
2
c
and for each value of such W and c < 1 we construct

a stable con�guration.

For c 2 h23 ; 1) we have t
L
2 � 1 and country sizes 1 and 2 are possible.

So for W even we set E = (2; 2; : : : ; 2) and for W odd we shall have E =

(1; 2; : : : ; 2). For c 2 h13 ; 23i we have t
L
1 � 2 and t

U � 3, so for W even
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we have again a con�guration consisting of solely two-citizen countries and

for W odd we have E = (3; 2; : : : ; 2) (remember, that now W > 3). If

c � 1
3 , then there are always at least two feasible country sizes if and only if

t
L
1 � t

U � 2, which is equivalent to the quadratic inequality c2 � 4c+ 2 � 0

with the solution set equal to (�1; 2 �
p
2i [ h2 +

p
2;1). This solution

set contains the interval (0; 13 i. So suppose that we choose for the size of a

country k = dtL1 e, so k+1 is also feasible. Now consider the divisibility ofW

by k. If W mod k = 0, we set E = (k; k; : : : ; k); if W mod k = 1, there will

be just one country of size k + 1 in E , the rest will have size k. In general,

if W mod k = r for some r < k, E will contain r countries of size k + 1 and

the rest will have size k.

This construction will be possible for all values of k and r if W is suÆ-

ciently large, i.e. at least equal to (k�1)(k+1) = k
2�1. Due to our choice of

k we know that k � t
L
1 +1 and sinceW � 2

c
, we must have (tL1 +1)2�1 � 2

c
,

which trivially holds.

The following example shows that the set of stable con�gurations may

be quite diverse for some values of parameters.

Example. If c = 1
4 then p 2 f3; 4; 5; 6; 7; 8g, or p 2 f2; 3; 4; 5; 6; 7; 8g if there

are no neighbouring countries with size 2.

If W = 5 then the sizes 6; 7; 8 are irrelevant, so we get that the only

stable con�gurations are (5) and (2; 3). However, if W = 24, the number of

stable con�gurations is already very high. All of them, apart from suitable

permutations of countries, are listed in Table 2, sorted according to the

number of countries N . Those, that are also eÆcient for c = 1
4 , are marked

with a star. On the other hand, there exist con�gurations eÆcient for c = 1
4 ,

which cannot be stable, even with a suitable permutation of countries, for
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example (3; 3; 3; 5; 5; 5).

N Stable con�gurations

3 (8; 8; 8)

4 (6; 6; 6; 6); (5; 6; 6; 7)

5 (4; 5; 5; 5; 5)� ; (4; 4; 5; 5; 6); (3; 4; 5; 6; 6)

6 (4; 4; 4; 4; 4; 4)� ; (3; 4; 4; 4; 4; 5)� ; (3; 3; 4; 4; 5; 5)� ; (2; 3; 4; 5; 5; 5); (2; 3; 4; 4; 5; 6)

7 (3; 3; 3; 3; 4; 4; 4)� ; (2; 3; 3; 3; 4; 4; 5); (2; 3; 2; 3; 4; 5; 5); (3; 3; 3; 3; 3; 4; 5)�

8 (3; 3; 3; 3; 3; 3; 3; 3)� ; (2; 3; 3; 3; 3; 3; 3; 4); (2; 3; 2; 3; 3; 3; 4; 4)

9 (2; 3; 2; 3; 2; 3; 2; 3; 4)

Table 2.2: Stable con�gurations for c = 1
4 and W = 24.

2.5 Group deviations

Since the set of stable con�gurations may be so large, we try to see what hap-

pens, if we allow for group deviations. The simplest possibility is that two

people, who originally were not in the same country, leave their countries

and form a new country. Now again we suppose that the original coun-

tries cannot prevent the secession, but both deviating citizens must strictly

increase their utilities (or, equivalently, strictly decrease their cost).

De�nition 2 A con�guration is called strongly stable if it is stable and no

two citizens from two di�erent neighbouring countries want to leave their

original countries and form a country of their own.

If a con�guration contains just one country, then only Lemma 7 applies

and we have similarly as in Section 4:
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Corollary 7 For a given world population W and a value of parameter c,

the con�guration E = (W ) is strongly stable if and only if W:c � 2.

Clearly, no citizen of a two-citizen country will be willing to participate in

a deviation according to De�nition 2. On the other hand, a deviation of this

sort brings the greatest improvement compared to their original situation

to a pair of neighbouring citizens. Therefore it is suÆcient to consider only

the following case:

Lemma 9 Let E be a stable con�guration and P and Q two neigbouring

countries in E with sizes p and q; p � q respectively. Then the two neigh-

bours, one from P and the other from Q will not unanimously want to leave

P and Q respectively and form a country of their own if and only if one of

the following cases occurs:

1. p = q = 1 and c � 1,

2. p = 2 or q = 2;

3. 2 < p and c � 1
p
.

Proof. A border citizen from a country with p > 1 citizens prefers staying

in his original country before creating a two-citizens country if and only if

1

p

+
p� 1

2
c � 1

2
+

1

2
c;

which is equivalent to

p� 2

2
c � p� 2

2p
:

This inequality is trivialy ful�lled if p = 2; if p > 2 we get c � 1
p
. On the

other hand, the 'nondeviation' inequality for a citizen from a one-citizen

country is 1 � 1
2 +

1
2c, equivalent to c � 1.
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Corollary 8 For a given c, the size p > 2 of a country in a strongly stable

con�guration which has a neighbouring country with size q � p cannot exceed

1
c
.

Now we can summarize the conditions for the country sizes in a strongly

stable con�guration in the following assertion:

Lemma 10 For a given value of parameter c, the con�guration (1; 1; : : : ; 1)

is strongly stable if and only if c � 1. For c < 1 in a strongly stable con-

�guration E with at least two countries each country P either must have a

neighbour of size 2 or p � t
L
1 if P has no neighbour of size p, otherwise it

is suÆcient to have p � t
L
2 ; and p � 1

c
+ 1 if P has no neighbour with size

exceeding 1
c
, otherwise p � 1

c
.

Theorem 5 For each value of W and c there exists a strongly stable con-

�guration.

Proof. If c � 1 then the con�guration containing only countries of size 1

is strongly stable. For c < 1 we can repeat the construction in the proof of

Theorem 4. For c � 1
3 in the constructed con�guration each country has a

neighbouring country of size 2, so the construction gives a strongly stable

con�guration. For c < 1
3 we need to ensure that k + 1 � 1

c
, which means

that we need t
L
1 + 2 � 1

c
, which is equivalent to the quadratic inequality

2c2 � 5c + 1 � 0. Its solution set (�1;
5�

p
17

4 i [ h5+
p
17

4 ;1) however does

not include the whole interval (0; 13 i, but at least (0; 15i is covered by this

case.

For c 2 h14 ; 13i we have 2 � t
L
1 � 3 � 1

c
and t

L
2 � 2, so 2 is also an

admissible country size, if no neighbours of size 2 exist. So we can take
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con�guration (3; 3; : : : ; 3) ifW � 0(mod 3) and for cases W � 1(mod 3) and

W � 2(mod 3) con�gurations (2; 3; : : : ; 3; 2) and (2; 3; : : : ; 3) respectively.

This will be possible for all W that ful�ll W � 2
c
� 6.

For c 2 h15 ; 14) the smallest possible country size is 3, but now 1
c
� 4, so 4

as the size of a country is possible. So we can take con�guration (3; 3; : : : ; 3),

(3; 3; : : : ; 3; 4) and (4; 3; : : : ; 3; 4) for ifW � 0; 1; 2(mod 3) respectively. Here

again W is suÆciently large, since W � 2
c
> 8.

However, the set of strongly stable con�gurations is smaller than that

of stable con�gurations. Again for c = 1
4 , the feasible intervals of country

sizes are f3; 4g and f2; 3; 4g if there are no neighbouring countries with sizes

2. However, countries of size 5 are also admissible, as long as all their

neighbours have size at most 4. All the possible con�gurations for W = 24

are summarized in Table 3.

N Strongly stable con�gurations

6 (4; 4; 4; 4; 4; 4)� ; (3; 4; 4; 4; 4; 5)� ; (3; 3; 4; 5; 4; 5)�

7 (3; 3; 3; 3; 4; 4; 4)� ; (2; 3; 3; 3; 4; 4; 5); (3; 3; 3; 3; 3; 4; 5)�

8 (3; 3; 3; 3; 3; 3; 3; 3)� ; (2; 3; 3; 3; 3; 3; 3; 4); (2; 3; 2; 3; 3; 3; 4; 4)

9 (2; 3; 2; 3; 2; 3; 2; 3; 4)

Table 2.3: Strongly stable con�gurations for c = 1
4 and W = 24.

2.6 Conclusion and directions for further research

In this paper we studied a simple one-dimensional model of country forma-

tion. We considered optimality as well as stability critera and have shown

that con�gurations that arise in the two cases may be quite di�erent.
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For each parameter value of a particular instance of our problem, the

set of eÆcient con�gurations is always nonempty and its structure is quite

simple. On the other hand, although stable con�gurations always exists,

they are very diverse if we only allow individual moves, and are still quite

variable if the simplest possibility of group deviations is allowed.

It would be interesting to see how these results change if some of the

characteristics of the model are modi�ed, for example, we may have:

� the distances between two neigbours arbitrary, and/or

� in each discrete point an arbitrary �nite population size, and/or

� secessions of larger groups of citizens allowed, and/or

� possible only if the majority of citizens in a�ected countries approve

them,

� di�erent forms of utility functions.

We expect that some algorithms for obtaining eÆcient and stable con-

�gurations in each case could be derived, possibly using methods of discrete

location theory, described in [6] and [17].
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Chapter 3

Optimality of Strong Tiebout

Equilibria in a Finite Local

Public Goods Economy

3.1 Introduction

The Tiebout [18] hypothesis asserts that an equilibrium in local public good

economies exists, and moreover that it is Pareto optimal. The mechanism

for attaining this equilibrium is that of agents who reveal their true prefer-

ences for the public goods by \voting with the feet" among a given (large)

number of jurisdictions which solves the \free rider problem".1

The purpose of this paper is to study this assertion in a location model

1 We use the words \jurisdiction" and \coalition" interchangeably. Also, we apologize

that although Chapter 2 and 3 analyze the same model, they use di�erent notation. The

reason for this is that, when Chapter 2 was already published, it turned out that its

notation was not convenient for the analysis carried out in Chapter 3.
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of local public good economies in which the number of jurisdictions is not

exogenously �xed but endogenously determined, the number of consumers is

�nite and the decision over the location of the public goods is taken by ma-

jority voting. In particular we want to answer the question whether or not

there are forces that always lead to the creation of too many jurisdictions,

as shown in the seminal work by Alesina and Spolaore [1] (AS henceforth)

who used a model very similar to ours but with a continuum of agents.

In economic modeling a continuum of agents is used to approximate

large numbers of agents. Its main advantage is that it allows the use of nice

mathematical tools. When the number of agents is �nite each agent has a

non-negligible impact on the economy which depending on the type of ap-

plication one has in mind may be more realistic.2 Moreover, it is desirable

that the conclusions derived using the logical construct of a continuum of

agents are con�rmed for a large, but �nite, number of agents. In this sense

our model provides a test of robustness of the AS ineÆciency result at the

costs of technical complications.

The main result of this paper is that with a �nite number of agents,

even if this number is very large, eÆciency and stability may be reconciled.

In other words, our results do not \converge" to the ones of AS when the

number of agents becomes large.3 However, ineÆciencies may follow much

2 A �nite number of agents allows another interpretation concerning the application

of country formation, analyzed by AS. In our model a single agent may be understood as

an indivisible region or ethnic group. In this interpretation a region represents types of

individuals whose distinguishing feature may be a common history, language, religion or

any other group speci�c characteristic that implies similar preferences over possible coun-

try membership. This captures the ethnic division of many countries (e.g. Afghanistan

is formed by 55 ethnic groups) and that in reality those groups (want to) separate from

existing countries (e.g. Basque region, Catalunya, north and south Italy, Qu�ebec, former

Yugoslavia, former Tchecoslovakia) or join each other in order to create a new one (e.g.

reuni�ed Germany, the European Union).
3 As we will explain below our change from a continuum of agents to a �nite number of

agents requires also modi�cations in the equilibrium concept. Otherwise an equilibrium
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more irregular pattern as in AS. On one hand in equilibrium there may be

less coalitions than eÆciency requires. On the other hand, while in the AS

model in equilibrium all coalitions have the same size, this is no longer true

in our model. We �nd that the size of coalitions may di�er too much.

We carry out our analysis in the �nite version of the AS-model developed

in Cechl�arov�a et al. [3]. This means that our model follows Demange [5], Le

Breton and Weber [17], Haeringer [12] or Haimanko et al. [13] and models

coalition formation as the result of a speci�c trade-o� between the bene-

�ts of large jurisdictions and the costs of heterogeneity in large populations.

Like Greenberg and Weber [9] or Jehiel and Scotchmer [14] jurisdictions con-

sist of consumers who choose the same public project and share the costs

equally. Individuals have identical quasi-linear utility functions but di�er in

their most preferred location of the public good. We assume that there is a

�nite set of equidistant points on a line at each of which exactly one agent

is located.

The combination of a �nite model with the presence of majority voting

in order to determine the location of the local public good is an important

element of our model. It implies that adding a single individual to an exist-

ing coalition creates two types of externalities. A positive externality arises

since public good provision costs decrease for all (initial) members of the

jurisdiction, while a negative externality stems from the fact that the deci-

sion over the location of the local public good is taken by majority voting.

The latter causes (under our tie-breaking rule) the location of the public

good to shift necessarily, implying that for a part of the (initial) members

of the jurisdiction the public good becomes farther away. In a continuous

model with decision scheme, like AS or Westho� [19], both externalities are

absent.4 In �nite models without decision scheme like Greenberg and We-

may not exist.
4 An exception is the paper by Jehiel and Scotchmer [15] who also use a continuum of

agents but only allow a positive measure of agents to move.



62 Optimality of Strong Tiebout Equilibria in a Finite Local Public Goods Economy

ber [9] the negative externality is absent.5

Our stability analysis builds on the notion of a stable con�guration in-

vestigated in Cechl�arov�a et al. [3] and uses their results concerning eÆcient

coalition structures. The concept of stable con�gurations generates multiple

equilibria for some of which the AS-ineÆciency result is true while for oth-

ers it is not. The purpose of this paper is to re�ne this concept, to sharpen

the prediction concerning equilibrium structures and compare them again

to eÆcient structures.

We adapt �rst the AS-stability concept to our model. This approach is

not fruitful, since in many situations an equilibrium does not exist.6

Instead, we follow the literature on coalition formation and local pub-

lic good economies and consider the concept that Greenberg and Weber [9]

have called strong Tiebout equilibrium.7 This means on one hand that

there is no set of agents who unanimously decide to leave their coalition

and join each other in a new coalition because all become better-o�. And

on the other hand, there is no agent who prefers to leave her coalition and

to join another existing one. At least one of these ideas underlies the work

in Westho� [19], Greenberg [7] and [8], Guesnerie and Oddou [11], Dr�eze

and Greenberg [6], Greenberg and Weber [9] and [10], Demange [5], Konishi

et al. [16], Haeringer [12], or recently Bogomolnaia and Jackson [2], among

others.

We prove that a strong Tiebout equilibrium exists, provided either the

5 Haeringer [12] shows the importance of majority voting (or more in general a decision

scheme) in a model with a �nite number of agents by pointing out that an important result

of Greenberg and Weber [9] is no longer true.
6 Interestingly, we also show that in situations in which an equilibrium exists, too few

jurisdictions may be created.
7 See the discussion of these authors on the formalization of Tiebout's idea by this

concept.
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number of agents or heterogeneity costs are high enough.8 Moreover, we

show that these conditions are not necessary. However, a slight weakening

of our concept allows to prove general existence.

Strong Tiebout equilibria may contain coalitions of di�erent sizes. Al-

though our model is very symmetric, the size di�erences between coalitions

in this coalition structures may be too large and generate an ineÆciency.

Independently of this type of ineÆciency the number of coalitions in strong

Tiebout equilibria may be too large or too small. Both types of ineÆciencies

contrast with the results in AS.

Our result that a strong Tiebout equilibrium may be eÆcient con�rms

the result in Dahm [4], where this equilibrium concept is analyzed in the

original AS-model with a continuum of agents. Both paper together suggest

that in order to establish unambiguously the ineÆciency result of AS one

needs to combine both the continuous model and the AS-stability concept.

To our best knowledge the only other paper combining an endogenously

determined number of jurisdictions with a �nite number of agents and ma-

jority voting over the locations of the public goods is Haeringer [12]. Our

model is a special case of his' but his focus of analysis is very di�erent.

Rather than analyzing the eÆciency of stable equilibria, his main concern

is to �nd general conditions for the existence of stable equilibria.9

The remainder of this paper is organized as follows. In Section 2, we

describe the basic model and de�nitions. We review what is known from

Cechl�arov�a et al. [3] about stable con�gurations in Section 3. Then we

discuss the AS-stability concepts. Section 5 deals with the generalization

of stable con�gurations to free mobility equilibria, called Tiebout equilib-

ria. The last Section characterizes and discusses existence and optimality

8 This type of conditions are not uncommon in local public good economies with a

�nite number of agents. Compare e.g. to Wooders [20], where an equilibrium is shown to

exist provided the number of consumers of each type is suÆciently large.
9 Note that in the general model a strong Tiebout equilibrium does not always exist.



64 Optimality of Strong Tiebout Equilibria in a Finite Local Public Goods Economy

of strong Tiebout equilibria. In Appendix A we show how our model can

be adapted e.g. in order to have a continuum of consumers distributed uni-

formly on a �nite set of locations. All proofs are relegated to Appendix

B.

3.2 The Model

We consider an economy consisting of a �nite number T of agents, the set of

which is denoted by T = f1; :::; Tg. Typical members of T are denoted by

i. A coalition S is any subset of T , and jSj denotes its cardinality or \size".
A coalition structure W = fS1; :::; SNg is any partition of T in coalitions,

Sn \ Sn0 = ;;8n 6= n
0
; and [Nn=1 Sn = T :

We denote by � the set of all coalition structures and by P the set of

all coalitions that can form. For each coalition structure W we denote by

S
i(W) the coalition i belongs to. When it is clear which coalition structure

is meant, we write Si and sometimes S instead of Si(W).

We consider a spatial model in which at each integer on the line segment

[1; T ] one agent is located.10 To simplify notation we denote by i the location

of agent i. We assign coalitions their subindex by the following procedure.

Agent 1 belongs to coalition S1. Agent 2 belongs either to coalition S1 or

S2. The next agent who does not belong to neither S1 nor S2 forms part of

S3 and so on.

We say that a coalition is connected if, when considering two agents in

it, all agents with intermediate positions between those agents belong to the

10 For simplicity we choose [1; T ] and the �nite number T of agents. As shown in

Appendix A, the model can be easily adjusted to accommodate for a continuum of agents

partitioned equally over the �nite number of locations T as in Greenberg [8] and/or for

the line interval [0; 1] as in AS.
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same coalition. Moreover, a coalition structure W is connected, provided

the previous property holds across all coalitions. More formally:

Definition 3.1 Connectedness.

A coalition S is connected if i; i00 2 S implies that i0 2 S for all i0 such that

i � i
0 � i

00. A coalition structure W is connected if all coalitions S 2 W are

connected.

For any connected coalition structureW, the vector w(W) = (jS1j; :::; jSN j)
indicates coalition sizes. For coalition structures with this property we will

say that coalitions with subsequent subindexes, like Sn and Sn+1, are \neigh-

boring coalitions". Also, we will say that an agent i is a \border agent" in a

coalition S if she is either the agent with the highest or the lowest position

in S.

Coalitions have to provide a local public good bundle l(S) 2 [1; T ]. Each

agent i2T is endowed with the same positive amount y of a private good and

has preferences which are represented by the quasi-linear utility function

Ui(S) = �(1� �di(S)) + y � 


jSij ; (3.1)

where S is the coalition to which i belongs, �, � and 
 are positive param-

eters and di(S) = ji � l(S)j is the distance from agent i to its local public

good. The parameter � measures the maximum utility of the public good,

when i = l(S). The parameter � measures the loss in utility that an agent

su�ers when the location of government is far from her's. Finally the pa-

rameter 
 represents the provision costs for the local public good. These

costs are divided by the cardinality of the coalition S
i. This represents an

equal cost sharing rule which, since income is the same for all agents, may

be interpreted as proportional taxation.11

11 The same functional form of the utility function is used in AS. As in their model our

results generalize (without qualitative changes) to the case where government costs are
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Since it is completely tantamount but more convenient to use instead of

(3.1) the normalized individual cost function

ci(S) = cdi(S) +
1

jSij ; (3.2)

where c = ��


, we shall do so. The nonnegative parameter c measures the

relative importance of \heterogeneity" costs with respect to the \public good

provision" costs. For simplicity, we will also use the notation ci(W), instead

of ci(S).

The decision over the location of the public good l(S) is taken by ma-

jority voting. This implies, since individual utilities are single-peaked with

respect to l(S), that the median voter determines l(S). In case of ties we

suppose that l(S) is located exactly in the middle of the two median voters.12

3.3 Stable Con�gurations

We start by reviewing what is already known from previous work about

stable coalition structures in this model. Cechl�arov�a et al. [3] use the concept

of a stable con�guration.13

Definition 3.2 A coalition structure W = fS1; :::; SNg is a stable con-

�guration if for all i 2 T , we have, denoting S
i by Sn, that ci(Sn) �

ci(S
0 [ i);8S0 2 f;; Sn�1; Sn+1g:


 = Æ + �jSj, with Æ > 0, � > 0.
12 Formally the median voter in S is the agent im such that jfi 2 S : i � imgj = jfi 2 S :

i � imgj. The so de�ned decision scheme coincides in this model with what Haeringer [12]

calls the mean of the extremes and is a straightforward extension of the scheme used in

AS for a continuum of agents. We choose this tie breaking rule in order to insure the

existence of stable equilibria, see Haeringer [12].
13 These authors consider also strongly stable con�gurations, which are immune to

deviations of two neighboring agents of two di�erent coalitions. This is as a special case

included in the concept of C-stability which we consider below.
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Since we work with individual costs instead of utilities, this de�nition just

says that any agent should have at least the utility she could get by joining

a neighboring coalition or standing on her own.

For the corresponding result it is necessary to introduce some notations.

We denote by jSmax(W)j and by jSmin(W)j the largest and the smallest

coalition size in W, respectively. Again, when it is clear which coalition

structure W is meant, we simply write jSmaxj and jSminj. With this con-

ventions we de�ne c(W)
SC

= 2
jSmaxj . We de�ne c(W)SC to be equal to

2
jSminj(jSminj+1) if there exist two neighboring coalitions with size jSminj in
W and to 2

jSminj(jSminj+2)
otherwise.14 Cechl�arov�a et al. [3] show that the

following is true.

Proposition 3.1 (Cechl�arov�a et al. [3]) A connected coalition structure

W = fS1; :::; SNg is a stable con�guration if and only if

(1) neighboring coalitions have a size di�erence of at most one and

(2) c(W)SC � c � c(W)
SC

.

The intuition behind this proposition is that neighboring coalitions can not

be too di�erent in size and c must lie in an interval depending on W. If the

size di�erence between two neighboring coalitions is larger than one, then it

pays for one of the two border agents to join the other coalition. If the size

di�erence is at most one but we have that c < c(W)SC , then it pays for the

border agent in the smallest coalition to join the neighboring coalition. If

c(W)
SC

< c, then the worst o� in the largest coalition can become better

o� by creating a singleton coalition.

Since the notion of a stable con�guration is a weak requirement, in gen-

eral there exists a multiplicity of stable con�gurations. As a consequence

14 If W is the grand coalition, then, since there is no neighboring coalition to which

agents can deviate, we de�ne c(W)
SC

to be zero. Similarly, if W contains only singleton

coalitions, we de�ne c(W)
SC

to be in�nity.
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of this for some con�gurations the ineÆciency result of AS is true while

for others it is not. In order to have a sharper prediction we re�ne stable

con�gurations by other concepts in the following Sections.

3.4 The Alesina and Spolaore Stability Concepts

Since the purpose of this work is to analyze the AS-ineÆciency result in a

model with a �nite number of consumers, it is straightforward to employ

the AS stability concepts to our model. We will show that these concepts

are not appropriate when the number of agents is �nite.

AS re�ne the multiplicity of equilibria derived so far by means of a notion

which is called A-stability.15 Denote by B(W) all border agents in a coalition

structureW, that is, the agents with the highest and lowest position in each

coalition. AS require that after a 'small' perturbation that moves a 'small'

set of individuals to a neighboring coalition, the system returns to its initial

position. Since in our model at each location we have exactly one individual,

this individual is the smallest set we can think of. With this convention the

requirement of A-stability can be formalized as follows.16

15 To be fully precise, the �rst stability concept AS employ is not the notion of a

stable con�guration but that of A-equilibria. The former di�ers from the latter in two

aspects. First, it allows all agents (and not only agents at borders) to move to neighboring

coalitions. However, it turns out that it is suÆcient to check that no agent at a border

wants to deviate. Second, it includes, since we work with �nite model, the requirement

that no agents prefers to stand on its own. Skipping this requirement does not imply a

qualitative change in what follows. Because of both di�erences, the concept of a stable

con�guration is slightly stronger than the notion of an A-equilibrium.
16 In the case of a continuum of agents, which is uniformly distributed over the T

locations, one can de�ne smaller sets (than all agents located at a given point). See

Appendix A for the necessary modi�cations of the model. Still, under other de�nitions no

richer structures than A-equilibria can arise and what we will say about the re�nement of

A-equilibria will be true for these equilibria, too.
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Definition 3.3 A coalition structure W = fS1; :::; SNg is A-stable if for

all i 2 B(W), we have, denoting S
i by Sn, that ci(Sn) < ci(S

0 [ i);8S0 2
fSn�1; Sn+1g if jSnj = 1 and 8S0 2 f;; Sn�1; Sn+1g otherwise.

That is to say that all agents should get a strictly higher utility (lower costs)

in W than in neighboring coalitions or standing on their own.

Remark: Note that this requirement is very strong with a �nite number of

consumers, since it implies - as in Westho� [19] - that an individual switches

from one coalition to another even when she is indi�erent.

The corresponding result is very similar to proposition 2 in AS.17

Proposition 3.2 A connected coalition structure W = fS1; :::; SNg is A-

stable if and only if all coalitions are of the same size and

cT

2
< N <

Tq
1 + 2

c
� 1

:
18 (3.3)

Remark: Note that as in the model with a continuum of agents coalitions

must be of the same size. This is already a strong result in the model with a

continuum of agents but there it is still feasible. In the AS-model there exists

always an in�nity of possibilities to partition equally. This is no longer true

if we change to a model with a �nite number of consumers. The possibilities

to partition equally depend on the integer T { but in general there are

only a few. The limitations arising from this are clearest if T is a prime

number. In this case there are only two coalition structures possible: the

17 The left part of the numerical condition comes from the requirement of individual

rationality, which is absent in AS. If we modify the model as explained in Appendix A

and let T !1, then the right part of the condition becomes the one in AS.
18 Again, if W is the grand coalition the right inequality does not apply. If W consists

only of singleton coalitions, then the left inequality must be skipped.
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grand coalition or singletons. While this gives a sharp prediction concerning

equilibrium coalition structures, we believe that it is too sharp. Moreover,

this implies that the ineÆciency result of AS is no longer true. By choosing

c appropriately one can induce that only the grand coalition is A-stable,

while eÆciency requires a strictly larger number of coalitions.

Since in general A-stable coalition structures are not unique, AS re�ne

this set of equilibria via the notion of B-stability. An informal discussion

of this concept will suÆce for our purposes. The underlying idea is that

exactly one coalition can be created or eliminated by means of an inter-

national agreement which must be rati�ed by simple majority rule within

each coalition a�ected. A B-equilibrium is then an A-stable structure W
which confronted with another A-stable coalition structure W 0, containing

exactly one coalition more or less than W, is preferred by a majority in

at least one coalition of W. Such a B-equilibrium W is B-stable if after

a perturbation in the number of coalitions to any other A-stable structure

the system returns to W by repeatedly creating or eliminating exactly one

coalition.

In the model with a �nite number of consumers it is very often not pos-

sible to shift to another A-stable structure with exactly one coalition more

or less. If larger shifts are considered, problems of existence of a B-stable

coalition structure arise. Consider the following simple example.

Example Let T = 15 and c = 1
4 . Proposition 3.2 implies that coali-

tions are of equal size and that 1; 8 < N < 7; 5. Hence we have that

N 2 f3; 5g. Denote the corresponding coalition structures by W(3) and

W(5), respectively. The con�guration W(5) is not B-stable since agents 7,

8 and 9 prefer W(3) and these agents are a majority in the second coalition

of W(3). The second structure W(3) is not B-stable either. Consider the

�rst coalition in W(5), where agent 1 and 2 form a majority. We have that
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c1(W(5)) ' 7
12 <

7
10 ' c1(W(3)) and c2(W(5)) ' 1

3 <
9
20 ' c2(W(3)).19 �

All this suggests that maybe the notion of A-stability is too strong and

that one may apply B-stability directly to stable con�gurations. But then

coalition structures can no longer be unambiguously identi�ed with coalition

numbers and one is forced to modify the AS-stability concepts so much that

they become very di�erent from the concepts AS use in their model.

Since this approach is not straightforward, we prefer to go another way

and re�ne stable con�gurations by the concept of a strong Tiebout equilib-

rium - a concept merging ideas frequently used in the literature on coalition

formation. We develop this notion step by step and consider in the next

Section Tiebout equilibria.

3.5 Tiebout Equilibria

The idea of this Section is to strengthen the concept of a stable con�guration

to a free mobility equilibrium in which agents can deviate to all existing

coalitions. We follow Haeringer [12] and call a free mobility equilibrium

Tiebout equilibrium. His de�nition applied to our setting reads as follows:

Definition 3.4 A coalition structure W = fS1; :::; SNg is a Tiebout equi-
19 Note that this existence problem comes from the fact that we compare two coalition

structures with an odd number of coalitions and not directly from having a �nite number

of agents. It would also arise if the number of agents were a continuum and two odd

numbers are compared. In this example the grand coalition is excluded by individual

rationality, which is absent in AS. However, it can be shown that in general no other

coalition structure than the one with the largest coalition number, in the example W(5),

may be B-stable. Note that this is also true in AS, where this coalition structure turns

out to be the unique stable one.
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librium [TE] if for all i 2 T , we have, ci(Si) � ci(S
0 [ i);8S0 2 W[;; S0 6=

S
i
:

Intuitively, a coalition structure W is a Tiebout equilibrium if no agent

wants to move to another existing coalition, because she can not increase

her utility (or in our formulation decrease her costs). From Theorem 1 in

Haeringer [12] we know that a Tiebout equilibrium always exists. The next

proposition characterizes these equilibria in our model.

Proposition 3.3 A coalition structure W = fS1; :::; SNg is a Tiebout equi-

librium if and only if

(1) it is connected,

(2) neighboring coalitions have a size di�erence of at most one and

(3) c(W)SC � c � c(W)
SC

.

Proposition 3.3 di�ers from proposition 3.1 only by the fact that connect-

edness is no longer an assumption. Because \heterogeneity costs" are an

important element in our model, the requirement of free mobility becomes

a 'local' stability condition. Stability depends on pairs of neighboring coali-

tions. The fact that a coalition structureW is a stable con�guration implies

a minimum size for neighboring coalitions, which in turn implies that devi-

ations to coalitions further away are not pro�table.
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3.6 Strong Tiebout Equilibria

3.6.1 De�nition of Strong Tiebout Equilibria

Strong Tiebout equilibria add to Tiebout equilibria the requirement that

there should not exist a group of agents who by creating a new coalition

could all become strictly better o�.

Definition 3.5 A coalition structureW = fS1; :::; SNg is a strong Tiebout
equilibrium if it is a Tiebout equilibrium and for any coalition z 2 PnW
there exists i 2 z such that ci(z) � ci(W).20

3.6.2 Characterization of Strong Tiebout Equilibria

Again, for our next result we need to introduce some more notation. De�ne

jS0max(W)j to be the size of the largest coalition which is a neighbor of

a coalition with size jSmax(W)j. Note that this is not automatically the

second largest coalition size. We may have that jSmax(W)j = jS0max(W)j.
Now we will de�ne c(W)

STE
. If W is the grand coalition, c(W)

STE
is equal

to minjzj2[1;T+2
3

)[
2

jzjT
T�jzj

T�3jzj+2
]. Again, if W consists only of singletons, we

set c(W)
STE

equal to in�nity. Otherwise it is equal to the minimum of,

on one hand 2
jzjjSmaxj

jSmaxj�jzj
jSmaxj�2jzj+1 over all jzj 2 [1;

jSmaxj+1
2 ) which are odd,

and on the other 2
jzjjS0maxj

jS0maxj�jzj
jS0maxj�2jzj+2

over all jzj 2 [2;
jS0maxj+2

2 ) which are

even. Note that c(W)
STE � c(W)

SC
. With this conventions we can state

the corresponding result.

20 We require all blocking agents to become strictly better o� in order to prevent prob-

lems of existence, see Haeringer [12].
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Proposition 3.4 A coalition structureW = fS1; :::; SNg is a strong Tiebout
equilibrium if and only if

(1) it is connected,

(2) neighboring coalitions have a size di�erence of at most one and

(3) c(W)SC � c � c(W)
STE

.

We see from the comparison of proposition 3.3 and proposition 3.4 that

adding to Tiebout equilibria the requirement that there should not be a

group of agents who could all become better o� by creating a new coalition

has only the e�ect to lower the upper bound for c to c(W)
STE

. Saying a

coalition structureW is a strong Tiebout equilibrium is equivalent to saying

that W is connected, neighboring coalitions are similar in size and that the

parameter c, which shows the relative importance of \heterogeneity costs"

to public good provision costs, lies in an interval depending on W.

The possibility of free mobility of agents generates the �rst two condi-

tions and the lower bound for c. In any pair of neighboring coalitions there

exists an agent i who can induce living in a larger coalition. Since agent i

will be the worst-o� in this new coalition, such a move is not advantageous

if the \heterogeneity costs" are high enough. The upper bound for c comes

from the possibility that agents may create new coalitions. If c is too high,

then it pays for the individuals who form part of the largest coalitions (and

su�er the highest \heterogeneity costs"), to form smaller coalitions. Surpris-

ingly, it never pays to create larger coalitions. The fact that W is a Tiebout

equilibrium already implies a structure on W that prevents such a creation

to be bene�cial.

Unfortunately, the de�nition of c(W)
STE

is tedious. This is because it

is not possible to determine a global minimum jz�j independent of c. In

general jz�j depends on c. For example if c � 1
3 , then one can show that

the grand coalition is immune to secessions if and only if c � �c, where �c
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(jSmaxj; jS0maxj) (2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4)

c(W)
STE

1 1 2
3

1
3

1
3

1
4

1
4

(jSmaxj; jS0maxj) (5,5) (6,5) (6,6) (7,6) (7,7) (8,7) (8,8)

c(W)
STE 1

5
1
5

1
6

1
6

1
7

5
36

1
8

(jSmaxj; jS0maxj) (9,8) (9,9) (10,9) (10,10) (11,10) (11,11) (12,11)

c(W)
STE 1

9
5
54

1
15

1
15

3
40

7
110

7
110

Table 3.1: Upper bounds for c depending on W

is determined using the highest jzj for which T � 3jzj + 2 > 0. Since for

other values of c this is not true, one has to compute all upper bounds for c

corresponding to each value of jzj for which T �3jzmaxj+2 � 0 and take the

lowest bound. Table 3.1 displays some of those bounds for con�gurations

other than the grand coalition.21

Remark: Note that although the characterizations of strong Tiebout equi-

libria seem to be similar on �rst sight in both the model with a �nite number

of agents and the one with a continuum, there are substantial di�erences.

While with a continuum of consumers there are at most two di�erent coali-

tion sizes which can be quite di�erent, with a �nite number of consumers

more coalition sizes are allowed as long as neighboring coalitions do not dif-

fer by more than one agent. Since in principle in the model with a �nite

number of agents the bounds for c could be solved for jSj, both models es-

tablish bounds for jSj depending on c. It is interesting to note that with

a continuum of agents these bounds are very often automatically ful�lled if

there are two di�erent coalition sizes. In the �nite model such a tendency

does not exist. Furthermore, with a �nite number of agents the lower bound

comes from the possibility of free mobility, while with a continuum this

21 Note that these bounds are independent of T .
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bound comes from the possibility to create larger coalitions.

3.6.3 Existence of Strong Tiebout Equilibria

In this Section, we give suÆcient conditions for the existence of a strong

Tiebout equilibrium and show that these conditions are not necessary.

We de�ne now a lower bound T (c) for the number of agents T . Note

that the lower bound for c can be reformulated to give a minimum size for

coalitions. Call this size jSj. Since jSj may not be an integer denote by djSje
the smallest integer not smaller than jSj. We have that T (c) is equal to the

number of positions on the line segment contained in djSje � 1 coalitions of

size djSje.22 With this convention we have the following proposition.

Proposition 3.5 If T � T (c) or c � 1
3 , then there exists a strong Tiebout

equilibrium.

Some comments are in order. Firstly, for all but a relatively small range

of values for c, proposition 3.5 assures the existence of a strong Tiebout

equilibrium. Secondly, provided T is high enough, for the remaining param-

eter values a strong Tiebout equilibrium also exists. Only if both c and T

are very small, our proof technics do not allow to proof a general existence

result. The proof of proposition 3.5 relies on a construction using the two

smallest coalition sizes of a Tiebout equilibrium bigger than jSj
�
. Combina-

torial problems arise when those values cannot be combined such that the

sum of coalition sizes gives exactly T .

Note that these combinatorial problems do not imply that for c < 1
3 and

T < T (c) a strong Tiebout equilibrium does not exist. The opposite may

22 More formally, we have that the most restrictive bound for c implied by stable

con�gurations can be written as jSj
�

=
q

2
c
+ 1

4
� 1

2
. Hence T (c) = djSj

�
e(djSj

�
e � 1).
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be true for three reasons. Firstly, although T is small, the sum of coalition

sizes may give exactly T . Secondly, the grand coalition may be stable and

thirdly, other coalition sizes may be feasible. For example one can show that

for 8 < djSj
�
e the size djSj

�
e+ 2 is also possible. Moreover, depending on jSj

��
the size djSj

�
e � 1 may be feasible. The following example illustrates these

points.

Example Let c 2 [ 1
21
;
1
15
). The proof of proposition 3 uses coalition

sizes 6 and 7 and shows that a strong Tiebout equilibrium exists for all

T � 30. This example shows that for all other T there exists also a strong

Tiebout equilibrium.

The combinatorial problems do not arise for all T < 30 which can be ob-

tained as the sum of coalition sizes 6 and 7. Hence we are left with T � 11

and T 2 f15; 16; 17; 22; 23; 29g. From table 3.1 we see that for these values

of c a Tiebout equilibrium is \strong" if and only if jS0maxj � 10. There-

fore we can use the coalition sizes 6; 7; 8; 9 and 10 freely as well as the pair

(11; 10). Furthermore, it is immediate that this implies that the grand coali-

tion consisting of at most 11 agents is also a strong Tiebout equilibrium.

Thus, for T 2 f1; 2; :::; 11g choose the grand coalition, for T = 15 (7,8), for

T = 16 (8,8), for T = 17 (8,9), for T = 22 (7,7,8), for T = 23 (7,8,8) and for

T = 29 (7,7,7,8). �

However, although this example indicates a way to construct other strong

Tiebout equilibria than the ones used in the proof and makes the existence

very likely, this may not always be possible. Similar reasoning as in the

example guarantees existence at least for all c � 1
21 . We introduce now

a slightly weaker concept which guarantees existence. The idea is to give

still all agents the possibility to create new coalitions but now the agents
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in the last two coalitions cannot join an already existing coalition.23 More

formally:

Definition 3.6 A coalition structureW = fS1; :::; SNg is a strong Tiebout
equilibrium with rest [STEWR] if

(i) for all i 2 T nSN [ SN�1, we have, ci(S
i) � ci(S

0 [ i);8S0 2 W; S
0 6= S

i

(ii) and for any coalition z 2 PnW there exists i 2 z such that ci(z) � ci(W).

Given c, we can calculate the minimum size of a coalition implied by free

mobility and divide T by this size. If T divides this size only with non-

zero rest, we put these agents in the last coalition. The resulting coalition

structure is not a strong Tiebout equilibrium, because the agents in the last

coalition would prefer to join the second from last coalition. Since this is

not possible in a strong Tiebout equilibrium with rest, existence is given.

Note that the agent in the \rest" do not want to create a new coalition.

Proposition 3.6 For all values of c and T , there exists a strong Tiebout

equilibrium with rest.

3.6.4 Optimality of Strong Tiebout Equilibria

As in AS, we consider a coalition structure W to be eÆcient if it maximizes

the sum of individual utilities subject to the constraint that the sum of

23 Introducing the restriction that an agent can only deviate if the coalition she joins

is willing to absorb her (individual stability in the terminology of Bogomolnaia and Jack-

son [2]), can also help to overcome the computational problems. This is because it relaxes

both the restriction on the minimum size of a coalition and on the size di�erence of neigh-

boring coalitions implied by proposition 3.1. One can show for instance that for T = 100

and c = 3
10000

the con�guration (99; 1) is individual stable.
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N (strong) Tiebout equilibria and eÆciency

3 (8; 8; 8)TE

4 (6; 6; 6; 6)TE , (5; 6; 6; 7)TE

5 (4; 5; 5; 5; 5)�TE , (4; 4; 5; 5; 6)TE , (3; 4; 5; 6; 6)TE

6 (4; 4; 4; 4; 4; 4)�STE , (3; 4; 4; 4; 4; 5)
�
STE , (3; 3; 4; 5; 4; 5)

�
STE ,

(2; 3; 4; 5; 5; 5)TE , (2; 3; 4; 4; 5; 6)TE

7 (3; 3; 3; 3; 4; 4; 4)�STE , (2; 3; 3; 3; 4; 4; 5)STE , (2; 3; 2; 3; 4; 5; 5)TE ,

(3; 3; 3; 3; 3; 4; 5)�STE

8 (3; 3; 3; 3; 3; 3; 3; 3)�STE , (2; 3; 3; 3; 3; 3; 3; 4)STE , (2; 3; 2; 3; 3; 3; 4; 4)STE

9 (2; 3; 2; 3; 2; 3; 2; 3; 4)STE , (2; 3; 2; 3; 3; 3; 3; 3; 2)STE

Table 3.2: (strong) Tiebout equilibria and eÆciency for c = 1
4 and T = 24.

individual contributions to public good provision must equal its total costs.

Informally speaking, a coalition structure W is eÆcient if

(1) the local public good is located in the middle of the coalition,

(2) jSminj � jSmaxj � 2, with equality if jSmaxj is odd, and
(3) N lies within an interval that depends on c.24

In our model condition (1) is always ful�lled. We illustrate the second

and the third condition with an example for c = 1
4 and T = 24 in table

3.2.25 Strong Tiebout equilibria and Tiebout equilibria have the subindexes

STE and TE, respectively. EÆcient con�gurations are marked with a star

and permutations of the coalition structures contained are left out.

The �rst thing we learn from this table is that there exist strong Tiebout

equilibria that are eÆcient. Since this is important we show now that there

exist high values of T (as high as desired) for which one can �nd values of c

24 For more detailed and precise discussion see the analysis in Cechl�arov�a et al. [3].
25 In order to facilitate the comparison with the work of Cechl�arov�a et al. [3], we continue

their example. Note that, since in this example coalition sizes are relatively small, the

size of z which is most likely to block W is one or two. This is why the strongly stable

con�gurations in Cechl�arov�a et al. [3] are strong Tiebout equilibria.
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such that an eÆcient strong Tiebout equilibrium exists. This is true because

we can take the structure (4; 4; 4; 4; 4; 4) with N = 6 coalitions for T = 24

and replicate it r times. The coalition structure consisting of rN coalitions

of size 4 is an eÆcient strong Tiebout equilibrium for an economy with rT

agents. In the following proposition we use the notation W = (T;N; jSj) for
a coalition structure containing N coalitions of equal size jSj in an economy

with T individuals.

Proposition 3.7 Given c let W = (T;N; jSj) be an eÆcient and strongly

Tiebout stable coalition structure. Then for all r 2 N the coalition structure

Wr = (rT; rN; jSj) is also an eÆcient and strongly Tiebout stable coalition

structure for an economy with rT individuals and the same c.

This result is important, since our model can be adjusted, without induc-

ing any qualitative change in the results, for having a continuum of agents

distributed uniformly on an equally distant set of points in the line segment

[0; 1]. Letting T !1 is like letting our model approach the AS-model. Note

that the ineÆciency result of AS does not mean that there is a discontinuity

in the limit, because both papers use di�erent equilibrium concepts. But it

suggests that the unique eÆcient con�guration in the continuous model of

AS may be a strong Tiebout equilibrium.26

We come back now to table 3.2. It contains strong Tiebout equilibria

that are not eÆcient because the size di�erence between coalitions is too

large.27 Note that this source of ineÆciencies is much less sever in strong

Tiebout equilibria than in Tiebout equilibria. This is true because if some
26 Dahm [4] shows that the last conjecture is correct. Details about a continuum of

agents located on a �nite set of locations can be found in Appendix A.
27 Although our model is very homogeneous, the notion of a strong Tiebout equilibrium

allows to explain considerable di�erences in coalition sizes, like in (2; 3; 3; 3; 4; 4; 5). The

AS-stability concept (A-stability) implies equally sized coalitions. Note that locating

agents on a circle helps to reduce the number of equilibria, since the maximal size di�erence
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coalitions are very large it pays to create smaller ones and such a coalition

structure is not a strong Tiebout equilibrium.

From table 3.2 we also see that there may be strong Tiebout equilib-

ria that are not eÆcient because they involve too many coalitions. This is

a general tendency of strong Tiebout equilibria, because requiring that it

should not be bene�cial to create new coalitions puts an upper bound on

coalition sizes and implies therefore a relatively large number of coalitions.

This upper bound on coalition sizes is in general too high to conclude unam-

biguously that the stable number of coalitions is always strictly larger than

the eÆcient one. Moreover, there may be too few coalitions as the following

example shows.

Example Let T = 6 and c = 1
3 . By proposition 3.4 the grand coalition

is stable (since c � 1
3 ). The grand coalition implies a total cost of C(N =

1) = 4, while the structure (3; 3) inherits a cost of only C(N = 2) = 10
3 . �

Our last example shows that there does not always exists an eÆcient

(strong) Tiebout equilibrium, as the preceding analysis may suggest.28

Example Let T = 3 and c = 0; 8. There are only four con�gura-

tions possible (1; 1; 1), (1; 2), (2; 1) and (3). From proposition 3.3 we see

that the only Tiebout equilibria are (1; 2) and (2; 1). From table 3.1, we see

that these Tiebout equilibria are also \strong". However, the grand coalition

is uniquely eÆcient, since the overall costs implied by these con�gurations

are C(N = 3) = 3, C(N = 2) = 2+c ' 2:8 and C(N = 1) = 1+2c ' 2:6. �

between the �rst and the last coalition becomes then one. Still, both types of ineÆciencies

may arise.
28 This is an important di�erence to the continuous model, see Dahm [4].
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Appendix A: A Continuum of Agents located on a

�nite set of points

In this Section we modify the model in such a way that world population is

a continuum of agents with mass one and agents are uniformly distributed

over the set of points f0; 1
T�1 ;

2
T�1 ; :::;

T�2
T�1 ; 1g. The utility function (3.1) can

then be written as

Ui(S) = �(1 � �pi(S)) + y � 


si

; (3.4)

where �, �, 
 and y are de�ned as before. The distance from agent i to her

local public good is denoted by pi(S) = ji� l(S)j. We de�ne pi(S) =
di(S)
T�1 .

This implies that di(S) represents the number of locations between i and

l(S) plus one. The cardinality of a coalition S
i is interpreted as the integer

jSij which indicates the number of locations contained in S
i and si =

jSij
T

is

the population share contained in coalition Si. This implies that si is a frac-

tion of one and not an integer. Hence the notion of the size of a coalition si

coincides with AS. Equation 3.4 is equivalent to the individual cost function

(3.2) if and only if c = ��


T (T�1) . With c de�ned in this way all qualitative

results in Cechl�arov�a et al. [3] and in this paper hold through.29

Appendix B: Proofs

The implications of the di�erent stability notions are driven by compar-

isons of coalition membership. We de�ne 4ci(S; S
0) = ci(S)� ci(S

0). Hence

4ci(S; S
0) > 0 means that membership in coalition S0 implies a strictly lower

29 Note e.g. that in proposition 3.7 the structure in the replicate economy is eÆcient

for other values of c than the one in the initial structure.
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cost or higher utility than in S. Usually S indicates the status quo. The

gains or losses from the change in tax payments 4ti(S; S
0) = jS0j�jSj

jSjjS0j and

distance 4di(S; S
0) are de�ned analogously. We denote the border agents of

a given coalition S, that is, the agents with the lowest and the highest posi-

tion in S by b
�
(S) and �

b(S), respectively. When it is clear to which coalition

we refer we write b = fb
�
;
�
bg.

Proof of proposition 3.2:

Suppose jSnj = jSn+1j + 1. Denote the agent in Sn which is closest to

Sn+1 by j. We have that cj(Sn) = cj(Sn+1 [ j), violating the condition for

A-stability. Assume now that jSnj = jSj;8Sn 2 W. It is straightforward

that A-stability requires the inequalities in proposition 3.1 to become strict.

Taking into account that N = T
jSj gives the condition. �

Proof of Proposition 3.3: Note that, since our model is a special case

of the model in Haeringer [12], we use his Lemma 1 which says that if W is

a Tiebout equilibrium, then it is connected.

It remains to show that if W is a stable con�guration, then it is a Tiebout

equilibrium. Let W be a stable con�guration and Sk; Sk+m 2 W;m > 1.

W.l.o.g suppose jSkj � jSk+mj. It suÆces to consider b1 = �
b(Sk) and

b2 = b

�
(Sk+m), since those agents have the lowest utilities in Sk and Sk+m

and are closest to the other coalition. Suppose jSkj = jSk+mj = jSj. By

symmetry focus on b1 who deviates if and only if cb1(Sk) =
jSj�1
2 c + 1

jSj >

cb1(Sk+m [ b1) � 2+jSj
2 c + 1

jSj+1
. This implies c <

2
3jSj(jSj+1)

contradict-

ing c � 2
jSj(jSj+2)

. Suppose jSkj > jSk+mj. Note that we can restrict to

the case in which jSk+m�1j > jSk+mj. Because if jSk+m�1j � jSk+mj, then
9Sn 2 W such that k < n � k + m � 1 with jSnj = jSk+mj and if no

one wants to deviate from Sk to Sn or the other way around, then, since

distances are higher, the same holds for the pair Sk; Sk+m. Consider b2.
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Since W is a stable con�guration we have that 4cb2(Sk+m; Sk+m�1 [ b2) =

cb2(Sk+m) � cb2(Sk+m�1 [ b2) � 0. Suppose by way of contradiction that

4cb2(Sk+m; Sk [ b2) = cb2(Sk+m) � cb2(Sk [ b2) > 0. This implies
jSkj
2 c +

1
jSkj+1

< cb2(Sk [ b2) < cb2(Sk+m) � cb2(Sk+m�1 [ b2) =
jSk+m�1j

2 c+ 1
jSk+m�1j+1

or c < 2
(jSkj+1)(jSk+m�1j+1)

. We know, since W is a stable con�guration, that

c � 2
(jSk+mj)(Sjk+m�1j+1)

. Both conditions together imply that jSkj < jSk+mj
which is a contradiction. Consider b1. It is true that 4tb1(Sk; Sk+m [ b1) �
0 and4db1(Sk; Sk+m [ b1) < 0. Therefore we have that4cb1(Sk; Sk+m [ b1) <

0. �

Proof of Proposition 3.4:

We begin by introducing some notation and de�nitions.

Notation and definitions: De�ne Z(Sn; Sn+1) = fz 2 P j l(Sn) < b

�
(z) �

�
b(z) < l(Sn+1)g and denote by Zjzj(Sn; Sn+1) � Z(Sn; Sn+1) all z 2 Z(Sn; Sn+1)

with cardinality jzj. When it is clear which pair of coalitions in W is meant

we write simply Z and Zjzj. De�ne ~
i(z) 2 z such that 4c~i(z)(W; z) �

4ci(W; z);8i 2 z and ~zjzj � Zjzj such that4c~i(~z)(W; ~z) � 4c~i(z)(W; z);8z 2
Zjzj. When the context is clear we will write ~i and ~z.

We shall prove �ve lemmatas �rst.

Lemma 3.4.1: Let W 2 � be a TE with N > 1 and z 2 PnW. The coalition

z does not block W if

(a) there exists b 2 b(z) with jzj � jSbj;
(b) z is connected and there exists i 2 z with jzj � jSij;
(c) 2

jSminj(jSminj+1)
> c � 2

jSminj(jSminj+2)
and there exists b 2 b(z) with

jzj < jSbj � jSminj+ 1;

(d) 2
jSminj(jSminj+1) > c � 2

jSminj(jSminj+2) , jzj � jSminj+ 1, z is connected

and there exists i 2 z with jSij � jSminj+ 1.

Proof of Lemma 3.4.1: Let W 2 � be a TE with N > 1 and z 2 PnW.
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(a) We have that 4cb(z)(W; z) = db(z)(W)c+ tb(z)(W)�db(z)(z)c� tb(z)(z) �
jSb(z)j�1

2 c + 1
jSb(z)j �

jzj�1
2 c � 1

jzj � 0. The last inequality is equivalent to

[3.4.1]
jSb(z)j�jzj

2 c +
jzj�jSb(z)j
jSb(z)jjzj � 0. If 9b 2 b(z) with jzj = jSbj [3.4.1] is

trivially ful�lled. For jzj > jSbj we obtain from [3.4.1] that c � 2
jSbjjzj . The

only case in which this is not immediately ful�lled is if jzj = jSminj + 1,

for all b 2 b(z) holds that jSbj = jSminj and each S with jSj = jSminj
has only neighboring coalitions of size jSminj + 1. Since this implies that

z is unconnected, we have that for all b 2 b(z) holds that db � jSminj+2
2 .

It follows that 4cb(W; z) � 0 , c � 2
3jSminj(jSminj+1) . This is true since

2
jSminj(jSminj+2)

>
2

3jSminj(jSminj+1)
.

(b) Suppose z is connected and contains i with jzj � jSij. Note that it

cannot be true that 8b 2 b(z) holds jzj < jSbj, since jzj � jSij+2+2jkj and
jSbj � jSij+jkj, where k is the number is de�ned by Si = Sn and S

b = Sn+k.

Hence 9b 2 b(z) such that jzj � jSb(z)j and, by part (a), z cannot block W.

(c) Suppose 2
jSminj(jSminj+1) > c � 2

jSminj(jSminj+2) . If 9b 2 b(z) with jzj <
jSbj � jSminj+ 1, then [3.4.1] becomes 2

jSbjjzj � c which is ful�lled.

(d) Let 2
jSminj(jSminj+1)

> c � 2
jSminj(jSminj+2)

, z be connected, jzj � jSminj+1

and i 2 z with jSij � jSminj + 1. If jSij � jzj, the conclusion follows from

part (b). If jSij > jzj, then 9b 2 b(z) \ S
i and we conclude by part (c).

Lemma 3.4.2: Let W 2 � be a TE. For any unconnected z 2 PnW it is true

that either z does not block W or there exists z0 2 PnW which is connected

and also blocks W.

Proof of Lemma 3.4.2: LetW be a TE and z 2 PnW be unconnected. It

follows that jzj < jSbj;8b 2 b(z) either from lemma 3.4.1 (a) or from N = 1.

Assume 9Sn; Sn+1 2 W such that z � Sn[Sn+1. If l(Sn) or l(Sn+1) lie in the

interval [b
�
(z);�b(z)], then 9i 2 z with 4ti(S; z) < 0 and 4di(S; z) � 0 which

implies4ci(S; z) < 0. If not, then l(Sn) < b

�
(z) < �

b(z) < l(Sn+1). Construct

a connected coalition z
0 such that jzj = jz0j and l(z0) 2 [l(z); l(z) + 1

2 ]. It
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follows that 4c~i(W; z
0) � 4c~i(W; z). Suppose now that z contains agents

from two not neighboring coalitions or from more than three coalitions.

Since z is unconnected 9b 2 b(z) such that db(z) � jSbj
2 >

jSbj�1
2 � db(S

b).

Hence 4cb(S
b
; z) < 0.

Lemma 3.4.3: Let W 2 � be a TE containing Sn and Sn+1. For any

connected z � Sn [ Sn+1, with jSnj � jSn+1j > jzj and z =2 Z(Sn; Sn+1) it is

true that either z does not block W or there exists z0 2 Z(Sn; Sn+1) which

also blocks W.

Proof of Lemma 3.4.3: Let W 2 � be a TE and z � Sn [ Sn+1, with

jSnj � jSn+1j > jzj and z =2 Z(Sn; Sn+1) be connected. Note that it is

impossible that both l(Sn) and l(Sn+1) lie in z. Suppose l(Sn) or l(Sn+1) lie

in z. W.l.o.g. assume l(Sn+1) 2 z and l(z) � l(Sn+1). Then there exists i 2
[l(Sn+1); l(Sn+1) +

1
2 ] with 4ti(W; z) < 0 and 4di(W; z) � 0 which implies

4ci(W; z) < 0. If neither l(Sn) nor l(Sn+1) lie in z, we have that either

�
b(z) < l(Sn) or l(Sn+1) < b

�
(z). W.l.o.g. assume the latter. By symmetry

consider z0 2 Z(Sn; Sn+1) with jz0j = jzj and l(z)� l(Sn+1) = l(Sn+1)� l(z0).

Lemma 3.4.4: Let W 2 � be a TE containing Sn and Sn+1 with jSnj �
jSn+1j and c � 2

jSn+1j(jSn+1j+1) . If z 2 Z(Sn; Sn+1) with jSn+1j > jzj blocks
W, then there exists z0 2 Z(Smax; S

0
max) that also blocks W.

Proof of Lemma 3.4.4: LetW 2 � be a TE containing Sn and Sn+1 with

jSnj � jSn+1j, c � 2
jSn+1j(jSn+1j+1) and let z 2 Z(Sn; Sn+1) with jSn+1j > jzj.

Suppose jSmaxj + jS0maxj = jSn+1j + jSnj + k, k > 0. Assume w.l.o.g. that

jSmaxj = jSnj + k. Construct z0 2 Z(Smax; S
0
max) such that jzj = jz0j and

l(z) � �
b(Sn) = l(z0) � �

b(Smax). Order the agents for which Sn \ z 6= ;
and Smax \ z

0 6= ; from the right to the left. For the agents with the

same number q in z and z
0 holds that 4cq(Sn; z) � 4cq(Smax; z

0), since
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4cq(Sn; z)�4cq(Smax; z
0) = �k

2 c+ k
jSnj(jSnj+k) � 0, c � 2

jSnj(jSnj+k) which

is true by assumption.

Lemma 3.4.5: Let W 2 � be a TE containing Sn and Sn+1 with jSnj �
jSn+1j + k; k � 0 and c � 2

jSn+1j(jSn+1j+1)
. If jzj is odd, then ~z is such that

l(~z) = �
b(Sn) and ~

i(~z) = b

�
(~z). If jzj is even, then ~z is such that l(~z) =

�
b(Sn) +

1
2
and ~i(~z) = �

b(~z).

Proof of Lemma 3.4.5: LetW 2 � be a TE containing Sn and Sn+1 with

jSnj � jSn+1j + k; k � 0. From the de�nition of 4ci(W; z) it is immediate

that ~i(z) 2 b(z). Suppose jzj is odd and jzj > 1. Consider ẑ 2 Zjzj such that

l(ẑ) = �
b(Sn). Since 4c�b(ẑ)(W; ẑ) �4c

b

�
(ẑ)(W; ẑ) = 2�k

2 c + k
jSnj(jSnj+k) � 0,

we have that ~i(ẑ) = b

�
(ẑ). Note that for jzj = 1 this is trivially true. In

order to prove that ~z = ẑ, we have to show that 8z 2 Zjẑj; z 6= ẑ;9b 2 b(z)

such that [3.4.5] 4cb(W; z) � 4c~i(ẑ)(W; ẑ). Choose b = b

�
(z) if l(z) < l(ẑ)

and b = �
b(z) otherwise. De�ne m = jl(z) � l(ẑ)j. Equation [3.4.5] be-

comes [3.4.5a]
k+2(m�1)

2 c + k
jSn+1j(jSn+1j+k) � 0, if l(z) > l(ẑ) and [3.4.5b]

mc � 0 otherwise. Both expressions are ful�lled, since m > 0. Suppose jzj
is even. Consider ẑ 2 Zjzj such that l(ẑ) = �

b(Sn) +
1
2 . Here it holds that

4c�b(ẑ)(W; ẑ)�4c
b

�
(ẑ)(W; ẑ) � 0, since the latter is either ful�lled with equal-

ity or equivalent to c � 2
jSn+1j(jSn+1j+1)

, which is true. Hence ~i(ẑ) = �
b(ẑ). In

order to prove that ~z = ẑ choose b and de�ne m as above. Here equation

[3.4.5] becomes [3.4.5b], if l(z) > l(ẑ) and [3.4.5c] 2m�k
2 c+ k

jSn+1j(jSn+1j+k) � 0

otherwise. Again both expressions are ful�lled, since m > 0.

We are now in a position to prove proposition 3.4.

Let W 2 � be a TE. Because of lemma 3.4.2 consider connected z 2 PnW.

Suppose N > 1. Lemma 3.4.1 (b) implies that z � Sn [ Sn+1 and that

jzj < minfjSnj; jSn+1jg. Assume w.l.o.g. jSnj � jSn+1j > jzj. Lemma 3.4.3

implies that it suÆces to consider z 2 Z. Note that we can suppose that
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c � 2
jSn+1j(jSn+1j+1)

. This is because if not lemma 3.4.1 (d) applies. Hence

from lemma 3.4.4 we know that we can restrict to z 2 Z(Smax; S
0
max). With

lemma 3.4.5, we identify the \less secession prone" agent in the \most seces-

sion prone" coalition for every Zjzj in Z. The coalition structure W is not

blocked by any z 2 Zjzj if and only if 4c~i(~z)(W; ~z) � 0, with ~z 2 Zjzj. This

is equivalent to the functional form in proposition 3.4, provided j~zj < jSj+h
2

with S 2 fSmax; S
0
maxg and h 2 f1; 2g as in the proposition. If j~zj � jSj+h

2 ,

then d~i(~z)(W; ~z) � 0. Since 4t~i(~z)(W; ~z) < 0 this implies 4c~i(~z)(W; ~z) < 0.

Suppose N = 1. It follows necessarily that jzj < jSj. It is immediate

that no connected z containing l(W) can block W. By symmetry focus

on z � [1; T2 ]. We have that for each jzj, ~z = f1; 2; :::; jzjg and ~
i = jzj.

Therefore 4c~i(~z)(W; ~z) � 0 implies the functional form in proposition 3.4,

provided jzj < T+2
3 . By a similar reasoning as above j~zj � T+2

3 leads to

4c~i(~z)(W; ~z) < 0. �

Proof of Proposition 3.5:

We introduce �rst some notation. For a real number a, denote by dae the
smallest integer not smaller than a. Similarly, denote by bac the highest inte-
ger not higher than a. It is useful to recall the following bounds for coalition

sizes from Cechl�arov�a et al. [3]: jSj
�

=
q

2
c
+ 1

4 � 1
2 , jSj

��
=
q

2
c
+ 1 � 1 and

�jSj = 2
c
.30 Using these bounds, condition (2) in proposition 3.1 reads as

(2') 8S 2 W holds jSj 2

8><
>:
[jSj
�
;
�jSj] if 9Sn; Sn+1 2 W s. th. jSnj = jSn+1j = jSminj

[jSj
��
;
�jSj] otherwise.

If c � 1 then the con�guration (1; 1; :::; 1) is a STE. For [23 ; 1), we have

f1; 2g � [jSj
��
;
�jSj]. Hence when T is even choose (2; 2; :::; 2) and when T is

odd choose (1; 2; :::; 2). This works for all T and the resulting structure is

a STE. For [13 ;
2
3 ), we have f2; 3g � [jSj

�
;
�jSj]. Hence when T is even choose

(2; 2; :::; 2) and when T is odd choose (3; 2; :::; 2). Again, this works for all T

30 Note that jSj
��

< jSj
�

and that all bounds are independent of T .
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and the resulting structure is a STE. For the remaining values of c proceed

as follows. For c 2 [ 2
(jSj+1)jSj) ;

2
(jSj�1)jSj)) take jSj (starting with jSj = 3) and

jSj+1. Suppose T � djSj
�
e(djSj

�
e� 1). Then coalition sizes can be combined

such that
P

n jSnj = T for all T . The lower bound on coalition sizes com-

ing from a TE is ful�lled by construction. Since 2
jzjjSj � 2

jzjjSj
jSj�jzj

jSj�2jzj+h ;8jzj
and h 2 f1; 2g such that 1 < jzj < jSj+2

2 , no new coalition is created if

c � 4
jSj(jSj+2)

. For the bigger size jSj+1 the latter becomes c � 4
(jSj+1)(jSj+3)

and we have that 2
(jSj�1)jSj) � 4

(jSj+1)(jSj+3)
holds if jSj � 7. For the remain-

ing sizes 3 � jSj � 6 we see from table 3.1 that these con�gurations are STE

if and only if c � 1
jSj which is implied by c <

2
(jSj�1)jSj) . �

Proof of Proposition 3.6:

Suppose proposition 3.5 does not apply. Consider the coalition structure

W = (djSj
�
e; djSj

�
e; :::; Srest), where Srest with jSrestj < djSj

�
e contains all re-

maining agents. Suppose 9z 2 PnW, containing i 2 Srest, that blocks W.

Note that for any such z and any i 2 Srest, there exists a symmetric z0 and

i
0 in the �rst coalition. This agent i0 has bigger incentives to block than i.

Thus, z can not block W. �

Proof of Proposition 3.7:

It suÆces to prove eÆciency. Let W = (T;N; jSj) be eÆcient. Note that

one can think of any Wr as (rT; (r � 1)N + N; jSj). Compare Wr to any

W 0
r containing (r � 1)N coalitions of size jSj and k 6= N coalitions of other

sizes. SinceW is eÆcient,Wr is at least as eÆcient asW 0
r. Overall eÆciency

follows then from theorem 2 in Cechl�arov�a et al. [3] (we are just choosing

di�erent units in �gure 2.1, p. 43). �


