Chapter 3

Candidate Stability and Probabilistic

Voting Procedures

3.1 Introduction

Social decision procedures can be described as two stages processes. In the first stage a set
of possible candidates decide whether they enter the election or they leave the fray. In the
second stage, once the agenda is formed, the social choice is taken from the voters’ preferences.
It seems desirable that the voting procedure does not provide incentives to the candidates to
strategically affect the social decision by withdrawing their candidacy. Only if this is the case,
we can consider the set of feasible alternatives as stable and exogenous and independent of any
individual decision.

In a recent paper Dutta, Jackson and Le Breton [17] have inaugurated the normative analysis
of candidates’ incentives to withdraw from an election by introducing a condition on the voting
rules called Candidate Stability. Given a set of initial candidates, a voting rule is candidate
stable if a candidate never prefers to leave the ballot unilaterally rather than to stay. They
prove that only dictatorial rules are candidate stable, unanimous and single-valued when the
candidates are not allowed to vote (Theorem 1, DJL.) If there are voting candidates the study

becomes problematic, but they obtain an impossibility result for a large class of single-valued

'Henceforth DJL.
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voting rules (Theorems 2 and 3, DJL.)

A drawback of DJL is that only resolute decision processes are taken into account. Although,
the single-valuedness assumption is reasonable, in many social choice environments it can be very
restrictive. For instance, think of a society with three voters who have to choose from three
candidates and assume that voters’ preferences are symmetrical among voters and lead to the
voting paradox. In that case, no anonymous and neutral argument can be applied to select a
single alternative and a tie would be natural. When ties are allowed, we can think of the voting
procedure as a first screening device which narrows the social choice from an initial agenda and
the individuals are not aware of how the final decision is to be made.

Another possible interpretation, which fits nicely our framework, is to suppose that in the
second stage voters play a voting mechanism that admits several equilibria. Candidates know
which are the possible equilibria and the final outcomes for each profile of voters’ preferences,
but they cannot use any backward induction argument to focus on a specific equilibrium. It
could be the case that they do not have enough information to know the strategies actually
played by the voters and the equilibrium that eventually arises. In this situation the candidates
may assess different probabilities to each candidate to be the final winner of the election.

In this chapter, we depart from DJL framework in two ways. Firstly, we model elections as
probabilistic voting procedures. We consider rules that for each configuration of the agenda and
each voters’ preference profile select a lottery on the set of running candidates and this chosen
lottery does not depend on the voters’ preferences over the candidates who are not at stake. In
addition, we also focus on the stability of any possible set of running candidates and not only on
the stability of a given agenda. Therefore, we consider a new stability condition stronger than
candidate stability, exit stability. A voting rule is exit stable if for any set of candidates at
stake, a candidate can never be better off by leaving the fray unilaterally.

In this article, it is assumed that candidates cannot vote and their preferences over lotteries
on the set of candidates consistent with the Expected Utility Theory. In Lemma 3.1 we show
exit stability is equivalent to a regularity condition: whenever a candidate drops the election
the probability of any of the remaining running candidates cannot diminish. This condition

was proposed by Pattanaik and Peleg [34] for the study of the distribution of power under
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probabilistic voting procedures. They proved that any efficient and regular probabilistic voting
procedure is a probabilistic combination of dictatorial rules (Theorem 4.14, [34].) In our Theorem
3.1, we show that the efficiency requirement can be weakened to unanimity. Therefore, only
probabilistic random dictatorships satisfy unanimity and exit stability.

The arguments in the proofs of [34] cannot be applied to obtain the characterization of
candidate stable probabilistic voting procedures. Regularity condition applies to all possible
configurations of the agenda, while candidate stability only focuses on the relation of the social
choice under the full agenda and the selection with the agendas in which only one candidate
withdraws. Nevertheless, we see that our characterizations are in line with the results and
examples proposed in [34]. The characterization depends crucially on the number of candidates
at stake. When there are at least four initial candidates, a candidate stable and unanimous
probabilistic voting procedure must be a convex combination of dictatorial rules whenever a
candidate leaves the election. Nevertheless, this does not imply that it should also be the
case when no candidate quits (Theorem 3.2.) Finally, if the initial agenda contains only three
candidates, we show that the decision power will be concentrated in the hands of an arbitrary
group of voters, but the distribution of the veto power is not necessarily additive. (Theorem
3.3.)

Closely related to this article are the works of Ehlers and Weymark [18], Eraslan and McLen-
nan [19] and Rodriguez-Alvarez [35].2 They study the implications of candidate stability in vot-
ing rules which for each configuration of the agenda and each preference profile choose a set of
candidates.® In [18] and [19] a strong version of candidate stability for correspondences is intro-
duced, and it is shown that only dictatorial rules satisfy it together with unanimity. Moreover,
n [19], the analysis is strengthened by allowing voters to express weak preferences it is shown
that only serially dictatorial rules are candidate stable and unanimous. On the other hand, in
[35] the incentives of the candidates to quit an election are explicitly modeled by endowing them

with preferences over sets of candidates. These preferences over sets are naturally restricted in

2See the previous Chapter 2.
3We address the interested reader to DJL and [35] for further references on the topic of endogenous agenda

formation and strategic candidacy.
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order to match the interpretation attached to the notion of sets of candidates. In [35] we propose
several domains of preferences over sets. For instance, these preferences may be consistent with
Expected Utility Theory and Bayesian updating from some prior assessment.* If these prior
assessments are unrestricted, candidate stability is equivalent to the condition introduced by
[18] and [19]. Nevertheless, if the candidates are constrained to assess even-chance lotteries on
the set of elected candidates, candidate stability is less compelling, but only rules that select
the best candidates of two arbitrarily fixed voters are admitted besides dictatorial ones. When
the candidates compare sets consistently with extreme attitudes towards risk (like for instance
leximin, mazimin, mazimaz criteria) candidate stability becomes even less stringent and new
possibilities arise.

The key point in the proofs of the theorems of this work relies on the relation between
candidate (exit) stable probabilistic voting procedures and leximin candidate stable voting cor-
respondences. By exploring this relation we can show that any unanimous and exit stable
probabilistic voting procedure only assigns a positive probability to efficient candidates. This
allows us to apply the results in [34] and also obtain the characterization for candidate stable
rules.

The remainder of the paper proceeds as follows. In Section 3.2, we introduce the set up and
notation, while in Section 3.3 we present some examples and the characterization theorems. We
devote Section 3.4 to the proofs of the theorems. In Section 3.5 we conclude by discussing the

case of voting candidates and the role played by unanimity.

3.2 Definitions and Notation

3.2.1 Voters, Candidates and Preferences

Let N be a society formed by a finite set of voters V, and an infinite set of candidates C,
N = CUV. We focus on the case in which there is no overlap between the sets of voters and

candidates (C NV = {@}.) In this scenario, we can isolate the incentives of the candidates to

“Barberd, Dutta and Sen [6] analyze this class of preferences over sets in the context of strategy-proof social

choice correspondences.
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participate in an election, regardless of their concerns as voters.’

Let 2¢ denote the set of all finite subsets of C. We call A € 2¢ an agenda. We assume that
only finite agendas are feasible for this society. The whole set of potential candidates cannot
run the election simultaneously.

Each individual i« € A is endowed with a linear order on C U {@},6 where the empty set
refers to the situation in which no candidate is elected. We assume that for all ¢ any candidate
is preferred to the empty set. We denote by P; a preference order of individual i, and by P’
the set of admissible preferences over candidates for individual 5. For any A € 2°\{@} and
P;, top (A, P;) refers to the best element of A according to the preference order P;. Preferences
of voters over candidates are unrestricted, but each candidate considers herself as the best
alternative, that is, for all @ € C, and for all P, € P?, a = top (C, P,). We denote by P € PY a
voters preference profile. For each A € 2€\{@}, P |4 denotes the restriction of P to the set A.
Abusing notation, for any set I C N, P! refers to the restriction of the profile P to the members
of I, P!, is defined as the set of admissible preferences profiles for I. For any set of voters I, we

denote by —I the set of voters V\I. Finally, let #B stand for the cardinality of the set B.
Preferences over Lotteries.
Let £ be the set of lotteries on the set C. That is:
L= {)\ € Rfc such that for all a € C, A(a) > 0 and Z)\(a) = 1}
acC

Candidates are endowed with complete, reflexive and transitive preferences on £ U {@} and
we assume that they are expected utility maximizers. Again, we assume that any candidate
always prefers any A € £ to the empty set. A utility function is a mapping u; : C — R. A utility

function fits the preference ordering P; € P if and only if for any a,b € C, u; (a) > u;(b) iff aP;b.

Then, given two lotteries A\, \' € £, a candidate a € C with preferences over candidates P, and

®When candidates can be voters, the analysis of stability becomes more complicated, because candidates’
preferences are assumed to favor their own election. We postpone the discussion of this interesting case to the

concluding section.

A linear order is a complete, antisymmetric and transitive binary relation.
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consistent utility function u, prefers the lottery A to the lottery A’ for a, if and only if:

D AB)ua(d) > >N (¥ )ua (V).

beC becC

Once defined the strict component of the candidates preferences over lotteries, the weak com-

ponent is defined in the usual way.

3.2.2 Probabilistic Voting Procedures

The object of interest of this article is an aggregation rule, a probabilistic voting procedure p,
that selects for each configuration of the ballot and each preference profile a lottery on the set

of the candidates.

Definition 3.1. A probabilistic voting procedure is a mapping p : 2 x PY — LU {3} such that
for all A€ 2¢,a €C and P € PV:

i) pla,A,P)=0, ifa¢ A, and p(A, P) = {2} if and only if A = {2},
ii) p(A,P)=p(A,P') for all P' € PV such that, P |a= P' |,

where p (a, A, P) denotes the probability assigned to candidate a at profile P when the agenda

is conformed by the candidates in A.

Item i) states that a candidate cannot be selected if she is not at stake. Moreover, whenever
a candidate runs the election, the election always results in somebody selected.

Finally, i7) is in the spirit of Arrow’s Independence of Irrelevant Alternatives. Namely, only
the preferences of voters over the candidates who eventually run the election are relevant.

Our definition of probabilistic voting procedures is less general than the one proposed in
[34], since we embed Independence of Irrelevant Alternatives in the definition. A probabilistic
voting procedure is a generalization of a single-valued voting procedure proposed in DJL. A
single-valued voting procedure is restricted to select degenerate lotteries that assign probability
one to a unique candidate. A probabilistic voting procedure is also more precise than a voting
correspondence as defined in [18], [19], and [35], since it assigns a specific probability distribution

to each preference profile and not only a set of possible outcomes. Thus, it is more flexible than a
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voting correspondence to meet voters’ preferences. Notice that a probabilistic voting procedure
may assign different probabilities to the candidates for different preference profiles even when
the set of selected candidates do not change. Finally, a probabilistic voting procedure is a family

of decision schemes as defined and analyzed in [22], one for each configuration of the agenda.

3.2.3 Unanimity and Efficiency

In this work, we care about probabilistic voting procedures which satisfy a minimal responsive-

ness condition. When all voters agree on the best candidate, she is uniquely selected.

Definition 3.2. A probabilistic voting procedure p is unanimous if and only if for all ¢ € C,

C € 2°\{@} and for all P € PV such that ¢ = top (C, P;) for alli €V, p(c,C,P) = 1.

For all A € 26\{@}, for all I C V and for all P; € P!, Pareto (A, P;) = {a € A, such that
there is no b € A, bP;a for all i € I}.

Definition 3.3. A probabilistic voting procedure p is (ex-post) Pareto efficient if and only if for
allceC, C € 2°\{@} and P € PY, ¢ ¢ Pareto(C, P) implies p(c,C, P) = 0.

Evidently, unanimity is less stringent than ex-ante and ex-post Pareto efficiency. Unanimity
does not rule out the possibility that Pareto dominated candidates receive a positive probability.
We discuss the consequences of its relaxation in Subsection 5.3.2.

3.2.4 Exit Stability and Candidate Stability

In this paper we are interested in designing elections for which the agenda can be considered
exogenous and independent of the preferences of voters. In order to consider an agenda C €

26\ {2} as exogenous it will be necessary that:

e The candidates who are in the ballot (¢ € C) never have incentives to leave the fray.

e The candidates who are not at stake (b € C\C) never improve by entering the election.

Although it seems uncontroversial to introduce a stability condition for candidates who are in

the ballot (they should not benefit by quitting), it is not clear which would be a correct statement
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of stability regarding the incentives of the non-running candidates. To ask for rules that never
provide incentives to outsiders to enter would be too compelling and it would lead immediately
to impossibility results. Hence, we only focus on the incentives of the running candidates to
withdraw. By doing so, we accommodate circumstances in which the candidates are free to leave
the election once they are at stake, but they cannot enter in the fray by themselves. Indeed, we
will see that our non-exit conditions are rather powerful and they will reduce considerably the
incentives of outsider candidates to run the fray.

We present two parallel stability conditions regarding strategic withdrawal of the candidates.
Candidate stability is defined as in DJL. Given a fixed agenda, candidate stability focuses on
the lack of candidates’ incentives to withdraw unilaterally from this agenda. On the other hand,
Exit Stability condition captures the same idea, but applying it to any possible agenda. We
say a probabilistic voting procedure p is exit stable if and only if a candidate never benefits by
withdrawing her candidacy, independently of the remaining candidates who stay in the fray.

Both exit stability and candidate stability imply that the set of candidates can be treated as
exogenous (since no candidate will have incentives to leave the poll.) Nevertheless, under exit
stability the results are independent of the set of candidates at stake, while the initial agenda
is crucial for candidate stability. For instance, by the self-preference of candidates, candidate
stability is empty of content for agendas with only two candidates. No candidate can prefer to
drop from the ballot because it implies that the remaining candidate will be the sure winner
of the election. In fact, we will see that the characterization of the family of candidate stable
and unanimous probabilistic voting procedures depends crucially on the size of the initial set of

candidates. We provide now the formal definitions:

Definition 3.4. A probabilistic voting procedure p is exit stable if and only if for all C €
20\{@}, a € C, for all P, € P, for all utility function u, consistent with P, and all P € PY:
> p(,C P ug(b) > > pt,C\{a}, P)u(¥).

beC yeC\{a}
Naturally, we do not include in the definition the empty set since no candidate can withdraw
from an agenda in which no candidate runs the election. We finish this section with the definition

of candidate stability.
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Definition 3.5. Given the agenda C € 2°\{@}, a probabilistic voting procedure is candidate
stable at C if to stay in the fray is always a Nash equilibrium strategy for all the candidates in
C. That is, for all a € C, for all P, € P*, for all utility function u, consistent with P, and all
P € PY, it holds that:

Zp(ba C, P)ug (b) > Z p(bl,C\{a},P)ua(bl).

beC beC\{a}

3.3 Implications of Exit Stability and Candidate Stability in

Probabilistic Environments

As it is mentioned before, in this paper we assume that the candidates cannot vote. Hence,
although exit stability and candidate stability are not conditions regarding the preferences of
the candidates, these are not an input of a probabilistic voting procedure. The preferences
of the candidates introduce restrictions on the social choice relating the outcome when all the
candidates are at stake to the outcome when a unique candidate drops the ballot. We start
this section by providing a crucial lemma that introduces the main implications of exit stability
in our probabilistic environment. Namely, a probabilistic voting procedure is exit stable if and
only if whenever a candidate withdraws from the poll, then no other candidate reduces her

probability of being finally elected.

Lemma 3.1. A probabilistic voting procedure p is exit stable if and only if for all C € 2°\{@}
for all a,b € C, and for all P € PY it holds that p (b,C\{a}, P) > p(b,C, P).

Proof. Assume ”ad contrarium” that the probabilistic voting procedure p is exit stable but there
exist C € 26\{@}, a,b € C, and P € PV such that p (b,C\{a}, P) < p (b,C, P). Consider P, €
P*, such that for any ¢ € C\{b}, cP,b. Notice first, that by 7) in the definition of probabilistic
voting procedure, for any d € (C\C), p(d,C,P) = 0. We can find a utility function u, fitting
Py with ug (b) small enough to get 3= oy gy P (¢, C\{a}, P)ua (¢) > Xucop (¢, C,P)uqa(c),
which contradicts exit stability.

On the other hand, assume that for all C' € 2°\{@}, a,b € C, and for all P € PV it holds
that p (b,C\{a}, P) > p (b,C,P). Consider P € PV, C € 2°\{@} and a € C such that for all
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b € C\{a}, p(b,C\{a},P) = p(b,C,P), then p(C,P) = p(C\{a}, P), and trivially a cannot
better off withdrawing. Finally, consider C € 2°\{@} , P € P and a € C such that there are
some b € C\{a} with p (b, C\{a}, P) > p(b,C, P) then it holds that,
> p((®,C\{a},P) —p(b,C,P) =p(a,C,P) > 0.
beC\{a}
And as for all P,, all u,, and all b € C\{a}, u, (a) > u, (b),
p(a,C,P)uqa(a) > > ((p(b,C\{a},P) —p(b,C,P))uy (b)),
beC\{a}

and then also,

Yo p(b,C P ua(b)> Y p(t,C\{a},P)u, V),

beC b eC\{a}
and candidate stability holds.

Remark 3.1. A probabilistic voting procedure p is exit stable if and only if for all P € PV and
C,C" € 2¢{@} with C C C', for all ¢ € C, p(c,C, P) > p(c,C', P).

The previous remark just implies that any exit stable probabilistic voting procedure satisfies
regularity as defined by Pattanaik and Peleg. ( Definition 3.8, [34].)
By using the same arguments for a specific agenda C, we can provide the following lemma,

characterizing the consequences of candidate stability in probabilistic environments.

Lemma 3.2. Given the agenda C € 26\{®}, a probabilistic voting procedure p is canidate stable
at C if and only if for all a,b € C, and for all P € PV it holds that p (b,C\{a}, P) > p(b,C, P).

Remark 3.2. If p is candidate stable at agenda C, then for all P € PV, and b € C such that
p(b7 C, P) =0, p(C, P) :p(C\{b},P)

Proof. Assume the contrary, then there are P € PY,b € C such that p(b,C,P) = 0, but
p(C, P) # p(C\b, P). In this case, it must be the case that there is a € C such that p(a,C, P) >
p(a, C\{b}, P), which contradicts candidate stability at agenda C.
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Notice that candidate stability is empty of content for agendas with less than three can-
didates. At agendas with only one candidate at stake, this candidate is always elected with
certainty. By the restrictions on candidates preferences, this outcome is strictly preferred to the
result of @ withdrawal, the empty set. On the same fashion, when candidate quits an agenda
with only two candidates, she cannot be better off. By leaving the fray, she gets the other
candidate elected (which cannot be better than the social choice when both candidates run the
election.)

DJL have proved that only dictatorial rules are candidate stable and unanimous in deter-
ministic environments. To check that they are also exit stable is immediate. We can expect that
probabilistic combinations of dictatorial rules, random dictatorships are also exit stable. Ac-
cording to a random dictatorship a group of vetoers have the possibility of becoming a dictator.
The vetoers are asked for their best candidate, they introduce a given number of ballots with
the name of their preferred candidate in a hat, and then a ballot is drawn at random. Hence,
a candidate has a positive probability of being elected if is the best candidate for some vetoer
and the probability of being elected is the proportion of ballots that have her name. We state

this formally.

Definition 3.6 (Dictatorship). A probabilistic voting procedure d; is dictatorial if and only

if there is a voter i € V, such that for all a € C, for all C € 2°\{@}, and for all P € PY,

1 =1 C,F),
di(a,C,P): Zfal Op( )

0 otherwise.

Definition 3.7 (Random Dictatorship). The probabilistic voting procedure p is a random
dictatorship if and only if it is a probabilistic combination of dictatorial rules. That is, there
is a group voters S C V, called the vetoers, a set of weights {;}ics, (o > 0 for all i € S and

Yics @ = 1) and a set of dictatorial probabilistic voting procedures {d;}ics such that for all
Ce 26\{®}7 Pe Pva p(Ca P) = ZiES aidi (07 P) .

It is easy to check that any random dictatorship is unanimous and candidate stable. Notice

that if a candidate withdraws then the ballots that did not have her name remain with the
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same name, while those which had her name are changed to another candidate. Hence, no other
candidate’s support is reduced, and no candidate can improve by leaving the fray.

In fact, just by rephrasing Theorem 4.14 in [34], we know that only probabilistic combinations
of dictatorial rules are exit stable and efficient. Our Theorem 3.1 extends that result by relaxing

efficiency to unanimity.

Theorem 3.1. A probabilistic voting procedure is unanimous and exit stable if and only if it is

a random dictatorship.

The proof of Theorem 3.1 appears in the next section, we provide now a sketch of the proof.
In order to prove that unanimity and exit stability imply efficiency, we exploit the results of
Theorem 3 in [35] on candidate stable voting correspondences. (Theorem 2.3 in the previous
chapter.) Given a unanimous and exit stable probabilistic voting procedure p, we can construct
an auxiliary voting correspondence v, in the following way, for any a € C, for all A € 2°\{2},
and for all P € PY, a € v, (4, P) iff p(a, A, P) > 0. It is easy to check that if p is unanimous
and exit stable, for any agenda C € 26\{@}, v, is also unanimous and candidate stable at C
when the voters compare sets according to the leximin extension criterion. By Theorem 3 in
[35], vp must be efficient and, moreover, there exists a group of voters holding veto power. Once
efficiency is proved, the result follows immediately from Theorem 4.14 in [34], since exit stability
is equivalent to regularity.”

At the light of Theorem 3.1 we can evaluate the incentives of an outsider candidate to enter
a unanimous and exit stable election. It is clear that only the candidates who are going to
become the best candidate at stake for some dictator can affect the social outcome. Moreover,
the effect of their entry will be that they will become elected (with some positive probability.)
Therefore, unanimous and exit stable probabilistic voting procedures do not provide incentives
to the entry of frivolous candidates. A candidate without any possibility of being elected does
not have incentives to enter the fray.

In order to analyze the implications of candidate stability, we cannot address directly to

the results in [34]. As candidate stability focuses on the stability of a given agenda, we cannot

"We present the results of [34] and [35] in the following section as Propositions 3.1 and 3.2.
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p(C\{a}, P)

p(C\{c}, P)

A\ A\
4 >

a p(C\{b}, P) c

Figure 3.1: Example 3.1: p(C, P)

apply the full power of regularity. In fact, candidate stability and unanimity no longer compel
the election to be driven by a random dictatorship. The following example shows the new

possibilities that arise when we focus on the stability of fixed agendas.

Example 3.1. Let V = {1,2}, C = {a, b,c}. Let the probabilistic voting procedure p be a random
dictatorship whenever only two candidates are at stake. That is for all d € C, for all P € PV,
w.lo.g. there is a € (3,1), such that p (C\{d}, P) = ad; (C\{d}, P)+ (1 — @) d2 (C\{d}, P) . Let
P € PV be such that aP,bPic , cPybPsa, Figure 1 shows that candidate stability does not imply
that p(C,P) = ady (C,P)+ (1 —a)d2 (C,P).

Nevertheless, if voter 2’s preferences are bPycPya, then p(C,P') = p(C\{c},P), as it is

shown in Figure 2.

Before following with the analysis of candidate stability and finite fixed agendas, we introduce
now a bit of notation.
Let p be a probabilistic voting procedure and C' € 2°\{@} a finite agenda. For any P € PV

and for any a € C, define
L, (a,C,P) ={X € L, such that for all b € C\{a}, X (b) < p(b,C\{a},P)}.

The set Ly (a,C, P) contains all the lotteries that are admissible for p (C, P) given the selection
of p when the candidate a withdraws. At this point, we can present a rephrasal of Lemma, 3.2

in terms of the sets of admissible lotteries. The probabilistic voting procedure p is candidate
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p(C\{e}, P)

p(C,P)

a p(C\{b}, P) c

Figure 3.2: Example 3.1: p(C, P')

stable at agenda C' if and only if p (C, P) € (¢ Lp (b, C, P) .

The following Theorem 3.2 characterizes the family of candidate stable and unanimous prob-
abilistic voting procedures when there are at least four candidates. As we have seen in the
previous example, candidate stability and unanimity allow for a certain flexibility in the social
choice when all the candidates are at stake, it is only at the cost of distributing the decision

power additively among the vetoers when a candidate leaves the ballot.

Theorem 3.2. Let C € 2°\{@} be a finite agenda containing at least four alternatives. A
probabilistic voting procedure p is unanimous and candidate stable at C if and only if there is a
group of vetoers S CV, a set of weights {c;}ics, (a; >0 foralli € S and ) ;cg; =1), and a
set of dictatorial probabilistic voting procedures {d;};cs, such that for all P € PV,
p(C\{a},P) =Y aid; (C\{a},P) for alla € C,
€S

p(C,P) € ()L, (b,C,P).

beC
Theorem 3.2 is parallel to the Theorem 4.11 in [34]. Nevertheless, we have already mentioned
it cannot be derived directly from it. The crucial point is that candidate stability focuses
on the stability of the full agenda, while the results in [34] apply regularity to all possible
agenda. Instead, this result is directly derived from the results in [35] on candidate stable voting

correspondences.
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In the following lemma we specify the restrictions that (),co Lp (b, C, P) satisfies whenever
a probabilistic voting procedure is a combination of dictatorial rules when a candidate leaves

the election.

Lemma 3.3. Let p be a probabilistic voting procedure candidate stable at agenda C. Then, for
all P € PV:

i) Xies aidi (C,P) € Nyeo Lp (b,C, P).
ii) If a,a’ € U;cgtop (C, P;), there is no A € yeo Ly (b, C, P) such that X (a) = X (a’) = 0.

iii) 3 ,cqidi (C,P) # (yee Lp (b,C, P) if and only if there is a € C, such that for all b €
C\{a}, there is i € S with a = top (C\{b}, P;) and a # top (C, F;) .

Proof. i) Notice that 3, ¢ o;d; (C,P) € L, and therefore for all a,b € C, ), g ;d; (a,C,P) <
Yies cudi (a,C\{b}, P).

ii) Notice that for all P € PY and a € J;cgtop (C, Py), if there is A € L, (a,C, P) with
A(a) =0, then A = ¥, g @;d; (C\{a}, P). Then for all @' € ((U;cqtop (C,P:)) \{a}), A(a') =
Y ics eidi (a’,C\{a}, P) > 0. Then as L, (a, P) is a convex subset of the #C — 1 simplex there
is no X' € L, (a, P) such that X (a) = X (a') =0.

iii) Assume that for P € PY there is not such candidate a, then for all a € C there is
b € C\{a} such that {i € S, a = top(C\{b},P;)} = {i € S, a = top(C, P;)}. Hence, for all a € C
we get ) ;¢ a;idi(a,C, P) = mingee\ () D 55 @idi(a,C\d, P). For any X\ € yee Lp(b, C, P), we
have that for all @ € C, Ma) < ;g idi(a,C, P). As ), g ;di(a,C,P) € L, it must be the
case that for all a € C, Ma) = ) ;cg aidi(a,C, P), and then Nyco Lp(b, C, P) = >, 0;d;(C, P).

Conversely, take P € PY such that for some a € C for any b € (C\{a}), there is i € S with

a = top(C\{b}, P;), whereas a # top(C, P;). Notice first that

Zaz (a,C, P;) <m1n{2a, aC\{d}P)}

€S 1€ES

This implies there is A € £ such that

Zaz (a,C,P;) < Aa <m1n{2:ozZ (a, C\{d}, P)}

1€S €S
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while for all b € C\{a},
€S 1€S
and therefore A\ € (,cc Lp(b, P) but A # 3 .o ;d;(C, P).

In item %) we show that the conditions of Theorem 3.2 define properly probabilistic voting
procedures since a random dictatorship always satisfies them.

Item 47) implies that only one of the best preferred candidates according to the vetoers
preferences can receive null probability when no candidate leaves the agenda C.

Finally, item i77) characterizes the preference profiles in which a candidate stable and unan-
imous probabilistic voting procedure may be different than a random dictatorship. Only at
preference profiles in which there is a candidate who becomes the best preferred candidate
among those remaining in the fray for some vetoer whoever is the other candidate who leaves
the fray, the choice when all the candidates run the election is different than the lottery that
the random dictatorship mechanism will yield. In those cases, this candidate will have more
possibility of being elected if any other candidate withdraws and then she can receive more
probability than the assigned by the random dictatorship lottery when all the candidates run
the election.

Notice that whenever the number of candidates exceeds the number of vetoers in two, our
characterization collapse to random dictatorships, since there is no preference profile in which
a candidate always increases her support when any other candidate leaves the ballot.® Never-
theless, this case corresponds to situations in which the set of vetoers is relatively small with
respect to the set of candidates and hence the power of decision is very concentrated in a few
voters.

Just as a matter of clarification we present now an example of a modified random dictatorship.

It resembles Example 5.6 in [34].

Example 3.2. Let C = {a,b,c,d}, and V ={1,2,3,4}; S ={1,2,3} and a1 = ag = a3 = % Let

P* C PV denote the set of preference profiles such that each vetoer has different top candidate

8This fact is also noted in [34] for regular probabilistic voting procedures.
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but the remaining candidate is the second best for all the vetoers and the best for voter 4. Then,
we define the probabilistic voting procedure p* in such a way that for all A € {C,{C\{a}}aecc}
and all P € PY:

1 1 11 .
RV EW) ’LPE’P*andA:C’
p*(A,P): (4444) f

Yies @idi (A, P) otherwise.

It is easy to check that p* satisfies the conditions of the Theorem 3.2. For this election method,

the set of admissible lotteries for p* is not a singleton if and only if all the vetoers report different

top candidates and the remaining candidate is the second best for all the vetoers. We have tailored
*

p* in such a way that the preferences of the voter without veto power are also relevant for the

social choice.

Theorem 3.2 does not cover the case of agendas with only three candidates. In fact, we need to
consider agendas with at least four candidates at several steps of the proof to obtain the result.
The following example shows that there exist unanimous and candidate stable probabilistic
voting procedures that are not modified random dictatorships when only three candidates are

at stake.

Example 3.3. Let C = {a,b,c}. Construct now a probabilistic voting procedure p' such that for
all a € C, for all A € 2°\{@}, and for all P € PV :

1 .
P (a, A, P) = FParcio(AP) if a € Pareto(A, P),
? 7 -

0 otherwise.

p' is unanimous and candidate stable. Newvertheless, it is not candidate stable for any agenda

with more than three candidates.

In [35], we provide a characterization of the family of unanimous candidate stable voting
correspondences when candidates are expected utility maximizers and consider that the ties are
solved using even chance probabilities. ® In this environment, a voting correspondence defines
immediately a candidate stable probabilistic voting procedure. Roughly speaking, almost any

oligarchical rule satisfy the requirements. The previous example is just an example. Notice that

9See the previous Chapter, Theorem 2.2.
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p' is not a random dictatorship even when a candidate leaves the election, since the distribution
of the veto power is not additive. Every group of voters has the same capacity to impose their
most preferred candidate when only two are at stake. In the next theorem, we see that any
monotonic and sub-additive distribution of the veto power suffices to reconcile unanimity and

candidate stability.

Theorem 3.3. Assume the agenda C contains only three candidates. A probabilistic voting
procedure is candidate stable and unanimous ot C if and only is there is a group of wvoters

S CV, a set of weights {ar}rcs such that:

p(a,O\{b}, P) = ar & T ={j € §, a=top(C\{b}, P})},

p(C,P) € (] Ly (b,C, P),
beC

for all P € PY and a,b € C; furthermore,

i) ajgy =0 and for alT €S, ar =1 — agr,

ii) (monotonicity) for all T,7'C S, T CT'; ar < ay,

iii) (sub-additivity) for all disjoint T,T' C S, ar + amr > arury).

Although Theorem 3.2 does not cover the case of three candidates, the main arguments in its
proof can be applied to get the result at agendas with only three candidates. On the other hand,
when there are only three initial candidates, a candidate stable probabilistic voting procedure
is indeed regular and we can also address to [34]’s Remark 4.15 to prove that sub-additive
distributions of the veto power among the vetoers are compatible with candidate stability and
unanimity. In the next section we provide the complete proof of Theorem 3.3 from the arguments
in [35].

It may seem surprising that the implications of candidate stability depend so much on the
number of candidates at stake. The differences between the results of Theorem 3.2 and Theorem
3.3 are due to the fact that when there are only three candidates, and one of them withdraws,
the choice of the lottery on the remaining candidates is a binary choice. Thus, we can expect

that the results when #C = 3 are in the line of those in [7] and [27] on stochastic social
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preferences (or probabilistic binary choice.) As it is remarked in [34],' when there are three
candidates, a candidate stable probabilistic voting procedure is rationalizable. That is, for every
profile of individual orderings one can specify a probability distribution r over linear orderings
of candidates, such that given a feasible agenda A, the probability of a candidate a being chosen
by the voters from A, is the sum of the probabilities assigned by r to all those linear orderings
P! € P where a = top(A, P'). Nevertheless, when there are at least four candidates, regularity
no longer implies rationalizability. But in this case, candidate stability forces the distribution

of the veto power to be additive.

3.4 Proofs of the Theorems

As we have already mentioned the proof of Theorem 3.1 relies on the results in [34]. Theorem
3.3 can also be proved by using the results in [34] but Theorem 3.2 cannot be proved with the
same arguments, since candidate stability is not equivalent to regularity. Hence, we exploit the
relation between exit (candidate) stable probabilistic voting procedures and leximin candidate
stable voting correspondences. The crucial argument relies on the application of the important
results of [35] and [34] to our environment. These results are expressed as Proposition 3.1 and
Proposition 3.2 below. But before we need the following definitions.

A wvoting correspondence v is a mapping v : 26\{@} x PY — 26\{@} such that:
i) For all A € 2°\{@}, v(4,P) C A.
ii) v (A, P) = v (A, P') for all P' € PV such that, P [4= P’ |4 .

A voting correspondence v is unanimous if whenever there is b € B C C and P € PY such
that top(B, P;) = b for all i € V, then v(B, P) = b. Finally, a voting correspondence v is leximin
candidate stable if for all P € PY and a € C, v(C,P) C v(C\{a}, P) U {a} if a € v(C,P) (no
harm), and v(C, P) = v(C\{a}, P) if a ¢ v(C, P) (insignificance.)

Proposition 3.1 (Theorem 3, Rodriguez-Alvarez [35]). A woting correspondence v is

unanimous and lezimin candidate stable at agenda C € 2°\{@} if and only if there is a set

19See Remarks 3.12 ; 4.15 and Lemma 3.13, [34].



3.4 Proofs of the Theorems 66

of voters S C V, called the vetoers, such that for all a € C, A € {C,C\{a}}qsec, v(4,P) C
Pareto(A, Ps) and moreover if v(A, P) # {a} if there isb€ A, i € S such that bP;a..

Proposition 3.2 (Theorem 4.14, Pattanaik and Peleg [34]). If there exists C € 2°\{@}
with #C > #V + 2 then a probabilistic voting procedure p satisfies regularity and efficiency if

and only if p is a random dictatorship.

For any probabilistic voting procedure p we can define an ancillary voting correspondence
v, in the following way, for any a € C, for all A € 2°\{@}, and for all P € PY, a € v, (4, P) if
and only if p (a, A, P) > 0. By 4) and %) of the definition of probabilistic voting procedures v,

is well defined as a voting correspondence.

Proof of Theorem 3.1.
Sufficiency is clear, so we focus on necessity. The crucial point in the proof of necessity is to check
that unanimity and exit stability imply efficiency. This is proved through the following lemma

that relates stable probabilistic procedures and leximin candidate stable voting correspondences.

Lemma 3.4. If p is a unanimous and exit stable voting procedure, then its associated voting

correspondence vy is unanimous and lezimin candidate stable at any agenda C € 2°\{@}.

Proof. The unanimity of p implies v, also is unanimous. Hence, we check now leximin candidate
stability. As p is exit stable, for any C € 2°\{@} a,b € C, and P € PY; p(a,C\{b},P) >
p(a,C,P). Take an arbitrary agenda C, and a preference profile P and find b € C such that
p(b,C, P) > 0. By exit stability, we know that for all a € C\{b} such that p (a,C, P) > 0, also
p(a,C\{b},P) > 0 and by the definition of v,, a € v,(C,P) and a € v, (C\{b}, P). As the
choice of C' and P was arbitrary, for all b € v, (C, P), v (C, P) C v, (C\{b}, P) U {b}.

Finally, for an arbitrary agenda C and an arbitrary preference profile P, find ¥’ € C such
that p (b, C, P) = 0, by Remark 3.2 we know that p (C, P) = p (C\{V'}, P). Again as the choice
of C' and P was arbitrary, for all ¥’ ¢ v, (C, P), v, (C, P) = v, (C\{b'}, P), and we get the desired
conclusion.
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By Proposition 3.1, we know that for any C' € 2€\{@} there is a group of voters S C V
holding veto power for v,, and therefore for all P € PY, v, (C,P) C Pareto(C, Ps), which
implies that p is efficient.

Once we know that a unanimous and exit stable probabilistic voting procedure is indeed
efficient, the result follows immediately. Notice that since C is an infinite set, we can always
find an agenda C such that #C > #V+2. Moreover, we have seen that an exit stable probabilistic
voting procedure satisfies regularity. Therefore, applying Proposition 3.2, we can see that any

unanimous and exit stable probabilistic voting procedure is a random dictatorship. =

Proof of Theorem 3.2.
We start with sufficiency. By Lemma 3.3, we know that a probabilistic voting procedure satisfy-
ing the requirements of Theorem 3.2 is well defined. In order to check unanimity, notice that a
random dictatorship is unanimous, and by 7) of Lemma 3.3, p may differ from a random dicta-
torship only at non-unanimous profiles. On the other hand, it is not difficult to see that the con-
ditions are enough to get candidate stable at C, since for all P € PY p (C, P) € N,ec Lp (b, C, P).
So from now on we assume that p is candidate stable at the agenda C, with #C > 4.
From the arguments of Lemma 3.4, we know there is a set of voters S, such that for all A €

{C,{C\{a}}acc}, b€ C and P € PY, p(b,C,P) > 0 only if b € Pareto(C, Ps).

Claim 3.1. There is a set of weights {ar}rcs with ap > 0, and ar + a@\r) =1 forallT C S
such that for all a,b € C, P € PV with Pareto(C, Ps) = {a,b}, it holds that:

p(a,C,P) =ar <— T = {i € S such that aP;b}.

Proof. Take a pair of candidates a,b € C and find P € PY, T & S such that a = top (C, P;),
b = top(C\{a}, P;) for all i € T while b = top (C,P;), a = top (C\{b}, P;) for all j € (S\T).
Let us denote p (a,C,P) = « and as Pareto (C, Ps) = {a,b}, p(b,C,P) = (1 — ). The proof
proceeds by a series of steps.

Step 1. First, we are going to prove that if we fix the preferences of the voters not in S,
whenever two candidates are the only efficient candidates (according to the preferences of the
vetoers) the probability of each candidate to be the winner only depends on the group of vetoers

who support each efficient candidate.
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Consider P’ € PY, such that Ps |1q01= P§ |{a}, Pareto(C, Ps) = {a,b} while P_g = P’ .
Take now the profile of preferences P € PY such that a vetoer i € S changes the order in
which she compares two contiguous candidates with respect to her initial preferences. That is,
there is i € S, d,e € C ({d,e} # {a,b}) such that P_; = P_;; P, lev{ay= P leviays Bi leviey=
P lc\{ey and dPje while eP,d. Notice that at least one of the candidates, say e, e ¢ {a,b}.
Moreover, e ¢ Pareto(C,Ps), e ¢ Pareto (C, ]55) . By Remark 3.2, p(C,P) = p(C\{e}, P),
and also p (C, ]5) =p (C\{e}, ]5) . Finally, applying i7) of the definition of probabilistic voting
correspondence p (C,P) = p (C, ﬁ) . Repeating the argument with one such a change at the
preferences of one vetoer as many time as necessary we get the desired result, that is p (a, C, P) =
p(a,C, P = a.

Step 2. Now, we prove that for all profiles P” € PY such that there two candidates such
that Pareto (C, Ps) = {d,e} and all the vetoers in T prefer d to e while the remaining vetoers
prefer e to d, we have that p (d,C, P") = a.

Consider a profile P € PY such that a = top (C, 15Z> ,b=top (C\{a}, 151) for all 4 € T while
b= top (c, Pj) ,a = top (C\{b}, 15j) for all j € (S\T) and ¢ = top (C\{a, b}, 15,-,> for all i’ € S.
By the arguments on the previous paragraphs, we know that p (a, C, P) =a,p (b, C, P) =
(1 — ), since Pareto (C, 155) = {a,b} and P |, 1= p l{a,p) - Take now the preference profile
P* € PY such that P, = P} for all k ¢ S while the voters in § the positions of the candidates
b and c¢ change their positions, that is aPcP;b for all i € T and cP/bP}a for all j € (S\T),
and Pg |\ (p)= Pg lovgey and also P§ [c\ (3= Pg lc\{c}- As ¢ ¢ Pareto (C,PS> ) (c,C,P) =
0. By Remark 3.2, we have that p (C, ]f’) =0p (C\{c},]s) and by 4i) in the definition of
probabilistic voting procedure, p (a, C\{c},]f’) = p(a,C\{c}, P*) = a. Finally, by candidate
stability p (a,C, P*) < a. We now check that p(a,C,P') = a. Assume "ad contrarium” that
p(a,C,P*) < a. Given that b ¢ Pareto (C, P§), from efficiency we obtain p (b, C, P*) = 0 and
by Remark 3.2, candidate stability implies p (a,C, P*) = p (a, C\{b}, P*) < «. Notice now that
by %) in the definition of probabilistic voting procedure p (a, C\{b}, P*) = p (a, C\{b}, 15) . This
is a contradiction with candidate stability, since p (a, C, P) = a > p(a, C\{b}, P). Therefore,
we must have that p (a,C, P*) = «, p(c,C,P*) = (1 — a) . Repeating the reasoning as many

times as necessary we obtain the desired result.
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Step 3. Finally, we prove that the probability of a being elected does not depend on the
preferences of the voters who are not oligarchs. That is, for all P’ € PY such that Py = Py,
p(a,C, P') = a (and therefore also p (b,C,P') = (1 — ) .)

Consider a profile of preferences P € PV, such that there is a voter k ¢ S that switches the
order in which she compares two continuous candidates (without lost of generality dPye, ePyd,
Py leviay= P, lev{ay and Py |\ fe}= b, lo\{ey and Py = P ;) If {d,e} # {a,b}, either d or e (or
both) do not receive positive probability neither at profile P nor at profile P*. We can assume
without lost of generality that d ¢ Pareto (C, Ps) and p (d,C, P) = p (d,C, P) = 0. By the joint
application of Remark 3.2 and #4) in the definition of probabilistic voting procedure p (C, P) =
p(C\{d},P) = p(C\{d}, P*) = p(C, P*), and the change of k’s preferences has no effect on
the choice. So assume now that {d,e} = {a,b}. By the arguments in the previous paragraph
and #i) in the definition of probabilistic voting procedure, we know that p (a, C\{b}, P) = a.
Notice that also P’ |¢y (5= (P§, P*g) lc\(s}; and since b ¢ Pareto(C, Pg), applying again i)
of the definition of probabilistic voting procedure, we get p (b,C, (P&, P*g)) = 0. And finally,
from Remark 1 we obtain that p (C, P*) = p (C\{b}, (P§, P*g)) , that is p (a, C, (P4, P*5)) = e,
p(c,C, (PS,P*s)) = (1 — a). Repeating the arguments with one such a switch in the preferences
of one voter we obtain the result for arbitrary preference profiles of the voters without veto power.

It is easy to see that the three steps lead to the desired result.

Claim 3.2. For all T,T' C S with TNT' = {@}, ar + ar = apur)-

Proof. Pick two arbitrary disjoints subsets of the set of vetoers, .7 C S, TNT' = {&}.
Consider P € PY, a,b,¢,d € C such that aP;bP;cP;dP;e for all i € T, bPjcPjaPjdPje for all
j € T, cPraPbPydPye for all k € (S\T), and for all e € (C\{a,b,c,d}). Construct now
P! € PV such that P |c\(gy= P* |c\(qy and d = top (C\{a}, P}) for all i € T, d = top (C, P;)
for all i € (S\T). By the arguments of the previous claim, p (a, C,Pl) = ag. Analogously
construct the profile P? € PV such that P |c\(gy= P? |c\(ay and d = top (C\{b},PjQ) for
all j € T', d = top (C’, Pj2,> for all j' € (S\T"), and we get, p (b,C,P?) = ar. In the same
fashion take the profile P? € PV such that P |c\ay= P? |c\{g} and d = top (C\{c}, P?) for all
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keS\(TUT'),d=top(C,P}) for all k' € (T'UT") and, p (c,C, P?) = ag\(rur)-
Now, notice that P |c\(qy= p! loviay= p? levgay= p3 lc\{ay, therefore by candidate stabil-

ity, i4) in the definition of probabilistic voting procedure and efficiency

p(aaCaP) = p(a,C\{d},Pl) > ar,
p(b, C, P) p (ba C\{d}aPQ) > agr,

p(C, C, P) = P (C, C\{d}apg) > Q8\(TUT");

while, also by efficiency, p (e,C, P) = 0 for all e ¢ {a,b,c}. At this point, we will show that the
inequalities must be binding.

Assume to the contrary and without lost of generality that p (a, C, P) > ap. Construct now
the profile P* € PY such that P levgy= P* |c\{p} and such that for all e € {a,b}, | € S,
eP;b, and therefore Pareto (C,P*) = {a,c}. By the previous claim we have that p (a,C, P*) =
ar, and by Remark 3.2, p (a, C\{b}, P*) = ar. But this is a contradiction since by candidate
stability p(a, C\{b}, P) > ar whereas by ii) in the definition of probabilistic voting procedure
p(C\(B}, P) = p (C\{8}, P").

We can repeat the argument with candidates b and ¢ to prove that p(a,C,P) = ar,

p(b,C, P) = ap and p (c, C, P) = ag\(rur)- Moreover, by efficiency:
ar + arr + as\(rury = L. (*)

Finally, note that as ag\(rury = (1 — oqrurn) , (*) implies o + o = airury).
]

In order to close the proof of the theorem, we only have to prove that for any a,b € C,
P € PY, p(a,C\{b},P) > 0 only if there is i € S with a = top (C\{b}, P;), and moreover
p(a,C\{b},P) = ar where T = {i € S, a = top (C\{b}, ;) }.

Consider P € PY, such that there are a,b € C, T C S, T = {i € S, a = top (C\{b}, P;)}.
Construct now the profile P’ € PV such that P leviy= P’ vy with b = top (C\{a}, P)) for
all i € T for all j € (S\T), while b = top (C,P;) . Then we have that p (a,C,P') = ar, and
therefore, by ii) in the definition of probabilistic voting procedure and by candidate stability

p (a, C\{b}, P) = p(a,C\{b}, P') > ap. Repeating the argument with the remaining candidates
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¢ € Ujestop (C\{b}, P;) , from the additivity of the weights {ar}rcs, we obtain that for any
PePV. beC:

p(C\{B}, P) = 3 auds (C\{b}, P).

1€S
Finally, candidate stability implies that p(C, P) € Ny Lp(b, C, P).

Proof of Theorem 3.3.
In order to prove sufficiency we will check that the conditions of Theorem 3.2 imply p is well
defined. Assume C = {a,b,c} and take any P € P¥. Let S, be the set of vetoers who prefer a

to b and ¢, and define analogously S, and S.. Notice first that:

as, < g})n}{p(a ,C\{z}, P)}, (3.1)
as, < H{nfl {p(b,C\{y}, P)},
as, < g{nn}{p(c ,C\{z}, P)},

On the other hand, as S,, Sb and S, form a partition of S, items 4)and #i:) imply that
as, +ag, +as, > 1. (3.2)

From (3.2) we know there is A € £ such that A(a) < ag,, A(b) < ag, and A(c) < ag,.
Moreover, by (3.1), A € ,ec Lp(b, C, P), and hence (yc Lyp(b, C, P) is always non-empty and
p is well defined.

To see that a probabilistic voting procedure satisfying the conditions of the theorem is
candidate stable is immediate since p(C, P) always belongs to [),ce Lp(b, P). Unanimity is also
easy to check from 7).

The proof of necessity is parallel to the proof of Theorem 3.2. If p is a candidate stable
at the agenda C = {a,b,c} and unanimous probabilistic voting procedure we can construct an
auxiliary voting correspondence that is unanimous and candidate stable according to the leximin
extension. Then there are a group of voters S holding veto power over p. Thus, only Pareto
efficient candidates according to the preferences of the vetoers may receive positive probability
and a candidate receives probability 1 if and only if she is the top candidate for all the vetoers.

(This implies item 37).)
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We can apply directly the results in Claim 3.1 of the proof of Theorem 3.2 since we have
only used three candidates in its proof. Therefore, when there are only two candidates at stake,
say a and b, and a subset of the vetoers T' prefer a to b, while the remaining vetoers prefer b
to a then p (a,{a,b}, P) = ar while p (b, {a,b}, P) = as\1) = (1 — ar), and these weights are
independent of the names of the candidates and of the preferences of the remaining voters.

Let us check monotonicity. It is trivially fulfilled when #S = 2. So take #S > 3, and assume
there are T' C S and i € (S\T) such that ap > ary(y- Without lost of generality, take the
profile P € PY, such that aP;bPjc for all j € J, bP;aP;c and bPycPya for all k € S\ (T'U {i}).
Then as candidate c is Pareto dominated according to the preferences of the vetoers, p (C, P) =
p(C\{c}, P) and p (a,C, P) = ar and p (b,C, P) = (1—ar). However p (a,C\{b}, P) = e(rur}) <
ar which violates candidate stability. Repeating the argument as many times as necessary, we
obtain that ar < oy whenever T C T' C S.

Now, we have to check sub-additivity. Take two arbitrary sets of vetoers T,T' C S, such
that TN T’ and consider a profile P € PV such that a = top(C, P;), b = top(C\{a}, P;) for all
i €T, b=top(C,P;) c =top(C\{b}, P;) for all j € T', ¢ = top(C, P;) and a = top(C\{c}, Px)
for all £ € S\ (T'UT'). By candidate stability p(a,C, P) < p(a,C\{b},P) = ar, p(b,C,P) <
p(b,C\{c}, P) = ar and p(c,C, P) < p(c,C\{a}, P) = ag\(rur)- As p(C, P) € L, adding up

the three inequalities we obtain:
ar + ar + as\(rurry > 1. (**)

Finally, as ag\(rur) = (1- a(TuT/)) , (**) implies ar + agr > a(rury. As the choice of T' and
T' was arbitrary this suffices to prove the result.

Just to conclude with necessity, notice that candidate stability implies that for any P € PV,
p(C, P) € Myec Lp (b, C, P).

3.5 Conclusions

A few comments on possible extensions to this work are in order.
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3.5.1 Overlap between Voters and Candidates

This work only covers the case in which the sets of voters and candidates are disjoint. It is evident
that in many real life public decision processes the candidates are also voters. Nevertheless,
many problems arise when one tries to model the participation of the candidates also as voters,
both in probabilistic as in deterministic environments. Firstly, unanimity loses its bite when
candidates can vote, since they are always supposed to support their own election. Hence, it
becomes necessary to introduce stronger versions of unanimity. But the main problem that we
face is to attain clear implications of candidate stability. For instance it is possible to construct
degenerate candidate stable voting procedures by selecting the worst candidate of the candidate
who decides to withdraw. This rule would be candidate stable but it would not satisfy strong
unanimity conditions. A possibility is to impose stability conditions (namely Lemma 3.1) in the
same fashion of [18] and [19], but then the strategic interpretation of the framework would not
be clear. We want to remark that by imposing Lemma, 3.1, and allowing the candidates to vote,
we would obtain the following result, a probabilistic voting procedure satisfies Lemma 3.1 and
strong unanimity then it is a random dictatorship in which no candidate have veto power.

We want to remark that in the case in which candidates can vote, we cannot use the results
in [34] to get the characterization. When candidates are allowed to vote, voters’ preferences
are restricted by the self-preference of the candidates, while in [34] only unrestricted linear
preferences are considered. Nevertheless, we can follow the reasonings in the proof of Theorem
3.2 and to extend them to variable agendas applying Theorem 4 in [35], which does cover the

case of voting candidates. (Theorem 2.4 of the previous chapter.)

3.5.2 Relaxing Unanimity

We conclude the discussion with a remark on the role of unanimity. Unanimity plays a crucial
role in the proofs in [35], and thus we cannot dispense with it in order to obtain the results in this
chapter. However it would be interesting to know what kind of candidate stable probabilistic
voting procedures are ruled out by its requirements. Notice that candidate stability has no bite

when only two candidates can be elected. (If a candidate leaves the election, the remaining
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one wins, and it cannot be better than the winner when both candidates are at stake by the
self preference of the candidates.) Probabilistic combinations of single-valued candidate stable
voting procedures are candidate stable probabilistic voting procedures. Thus we can construct
non-unanimous candidate stable probabilistic voting procedures by mixturing voting procedures
with only two alternatives in the range. Many of these probabilistic voting procedures are by no
means interesting. However, other attractive candidate stable but non-unanimous probabilistic

voting procedures can be constructed in this fashion, as the next concluding example shows.!!

Example 3.4. Let C € 2°\{@} and define for all a,b € C, for all i € V, and for all P € PV the

function s¢ : (C\a) x 2°\@ x P — {0, 1}, in the following way,

1 ifaPband a € A,
si (b, A, P) =

0 otherwise.

Now let the probabilistic voting procedure p be such that for all A € {C,{C\{b}}sec}, foraeC
and for P € PV, p(a, A, P) = W Diey ZbEC\{a} si (b, A, P).

The voting procedure p is clearly candidate stable at C' since it is a combination of voting
procedures with only two alternatives in their range. It is easy to see that p is no more than a
probabilistic version of the Borda count in which the drop of a candidate is equivalent to being

the last candidate for all the voters.

'1See Barber [4] for more on the construction of "nice” probabilistic decision schemes.



Chapter 4

Strategy-Proofness and Residual
Resoluteness: A Note on

Duggan-Schwartz (2000)

4.1 Introduction

Electoral processes can be modeled as social choice correspondences. A social choice correspon-
dence is a voting rule that selects a set of alternatives for each profile of voters’ preferences.
Although it seems natural to think of a unique alternative as the outcome of an election, in
many situations it is rather restrictive to rule out the possibility of ties among several alterna-
tives. We can interpret a social choice correspondence as a first screening device which narrows
the social agenda to a smaller set of alternatives. The voters know this set of alternatives, but
they are not aware of how the final resolution of the social choice is to be solved.

The study of manipulability of social choice correspondences has experienced a recent revival
of interest. In the last years, several papers have addressed this topic, proposing different
definitions of strategy-proofness. These definitions arise from different assumptions to how the
agents’ preferences on alternatives are extended to sets of alternatives. In spite of the differences

all of these papers obtain negative results. This is the case for Ching and Zhou [12], Duggan
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and Schwartz [16],! Barberd, Dutta and Sen [6] or Benoit [8].

Among these works, DS introduce a very weak notion of strategy-proofness. Yet, they attain
the most negative result. Only dictatorial social choice correspondences are non manipulable
and respect two mild conditions on their range, citizens sovereignty and residual resoluteness.
Citizens Sovereignty requires that all alternatives should be included among those chosen at
some profile of preferences. Residual Resoluteness compels the election to be single-valued when
all voters but one report identical preferences, and the remaining individual’s preferences only
differ from those of the others in the order of the first pair of alternatives. Although both
conditions seem certainly weak, residual resoluteness may be quite stringent for small societies.
In fact, it is responsible for this apparent paradox.

This note tries to emphasize the role played by residual resoluteness in DS’s theorem by
presenting an alternative proof. We state, firstly, DS’s problem for a society with only two
voters, in which Residual Resoluteness becomes rather stringent. In this context, we can use the
intuitive arguments proposed by Schmeidler and Sonnenschein [38] for the proof of the Gibbard-
Satterthwaite theorem. An induction argument applies to extend the result to arbitrary finite
the societies.

Additionally, we use the same techniques to provide necessary conditions for non manip-
ulability when residual resoluteness condition is substituted by ontoness (Theorem 4.3.)? We
see that strategy-proof and onto social choice election must endow some individuals with veto
power. There is a group of voters who always include their best preferred alternatives in the
chosen set. Moreover, when they agree on their best alternative no other alternative is selected.?

Although a complete characterization is not attained, the result has interesting insights.
Firstly, we can interpret Theorem 4.3 as a test of robustness of DS’s theorem. Indeed, only rules
that centralize the power of decision in an arbitrary group of individuals are strategy-proof and
onto. This fact provides further evidence on the strength of the Gibbard-Satterthwaite Theorem.
Moreover, the notion of strategy-proofness employed by DS is quite weak since voters only care

about the best and the worst alternative in a set. This implies that we can obtain other results

'Henceforth, we refer to Duggan and Schwartz [16] as DS.
2 A social choice correspondence is onto if all single alternatives are elected at some configuration of preferences.
3The first condition is stated as an impossibility result in DS, and proved in Duggan and Schwartz [15].
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on non-manipulability of social choice correspondences as corollaries to our Theorem 4.3.

In order to illustrate this later point, we introduce a new family of preferences over sets of
alternatives. These preferences are naturally related to the domain proposed by DS and they
include the logic of the ”discerning individuals” criterion proposed by Barbera [3]. This domain
of preferences generates a definition of non-manipulability stronger than DS’s one but weaker
than others based on Expected Utility rationality. In this new environment we can provide a
complete characterization of the family of strategy-proof and onto social choice correspondences.
We will see that only dictatorial or bidictatorial rules are onto strategy-proof in this scenario.
(Theorem 4.4.)

Finally, we propose a further extension to the analysis in DS. DS study voting rules that
consider voters’ preferences over alternatives as the input of the social choice. However, Barbera,
Dutta and Sen [6] have proposed a more general approach. Given that the voters are endowed
with preferences over sets of alternatives, we could construct social choice rules that use the
information contained in these preferences. Unfortunately, we will see that in this more general
framework, the results are parallel to those in Theorem 4.3. Even when voters can report their
preferences over sets of alternatives, an arbitrary group of voters hold veto power over the social
choice.

The remainder of the paper is organized as follows. In the next section we introduce no-
tation and definitions. In Section 4.3 we present our alternative proof of DS’s Theorem and
provide necessary conditions for strategy-proof correspondences when Residual Resoluteness is
substituted by ontoness. In Section 4.4, we analyze the consequences of introducing a stronger
extension of preferences, while in Section 4.5 we present the alternative framework in which vot-
ers are allowed to express their preferences over sets of alternatives. Finally, in the concluding

section, we relate our work with the existing literature.

4.2 Definitions

Voters, Alternatives and Preferences over Alternatives.

Consider a finite society, N, of N individuals (voters), with N > 2. Let A = {z,vy, z,...}, be
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a finite set of mutually incompatible alternatives. Voters are endowed with linear preferences
over the set A. Let P denote the set of linear preferences over A. P, € P refers to a preference
relation over A for individual i.* We write P; = (x,y, z) to mean zP;yP;z. We call P € PV a
preference profile.

Let A denote the set of all non empty subsets of A. For any X € A, max (X, P;) and
min (X, P;) are, respectively, the best and worst alternatives of X according to the preferences
P;. For any P; € P, X € A, P; |x refers to the restriction of P; to X. For any X € A, we say
P; € Px if all alternatives in X are preferred to the remaining alternatives according P;. For
any I C N, P € PN, Py refers to the restriction of P to the members of I.> Finally, for any

I c N, —I denotes the set N'\I.
Preferences over Sets of Alternatives.

Let D be the set of all orderings on A. We denote by ;€ D an arbitrary preference relation
over sets of candidates. Although we assume strict preference over alternatives, we do not rule
out the possibility of indifferences among sets. Hence for each 7;€ D, >; refers to the strict
component of 7~;, while ~; refers to the indifference term that is immediately defined once >;
is specified.

Voters’ preferences over sets are naturally restricted. They must be consistent with the
original preferences over alternatives. Moreover, they should be coherent with the interpretation
of sets of alternatives as a first stage social selection.

For any set X € A, a probability assessment over X, Ax is a mapping Ax : X — (0,1),
such that ) - Ax (z) = 1. We exclude degenerate lotteries assigning null probability to some
alternative z € X in order to be coherent with our interpretation of sets as possible final choices
of the society. A utility function u; is a mapping from A to R. It fits with preferences P; if for
all z,y € A, Py iff u; (x) > u; (y) .

For any P; € P, we say the ordering >;€ D is (DS) consistent with P; , ;€ DP9(P;), if and

only if for all X,Y € A, X »; Y if and only if for any pair of probability assessment over X and

1A linear order on A is a complete, transitive, antisymmetric binary relation on A. For any P; € P, once the

strict component is defined, the weak component, R;, is defined in the usual way.
® Abusing notation, we say Pr € P, if for all i € I, P; € Px.
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Y, Ax, Ay there is a utility function fitting P; such that:
Z Ax (z) u; (z) > Z Ay () ui (y) -
zeX yey

Social Choice Correspondences and Duggan-Schwartz’s Theorem.

Following DS, we study aggregation rules that for each profile of voters’ preferences over
alternatives select a non empty set of alternatives.

Social Choice Correspondences. A social choice correspondence f is a mapping from
the set of preference profiles to sets of alternatives, f : PV — A.

For any social choice correspondence f, Ry denotes the range of the social choice correspon-
dence, that is Ry = {X € A such that there is P € PV, f(P) = X}. Finally, r; denotes the set
of alternatives belonging to some element of the range. That is, ry = { € A, such that there is
P ¢ PN with z € f (P)}.

We focus on the analysis of strategic incentives of voters. We are interested in social choice
correspondences that provide incentives to the voters to reveal their true preferences. This idea
is captured by the notion of strategy-proofness.

Strategy-Proofness. The social choice correspondence f is (DS) manipulable iff there are
a individual i € N, profiles P, P' = (P_;, P!), and ;€ DPS(P,) such that f (P') =; f (P). We
say that f is (DS) strategy-proof if and only if it is not (DS) manipulable.

Finally, we also study several mild conditions regarding the range of social choice correspon-
dences.

Citizens Sovereignty. The social choice correspondence f satisfies citizens sovereignty if
for all z € A there is P € PV such that z € f (P). In others terms A = ry.

Ontoness. The social choice correspondence f fulfills ontoness if for all z € A there is some
P € PN, such that z = f (P). (A C Ry.)

Residual Resoluteness. The social choice correspondence f satisfies residual resoluteness
if for all z,y € A, P € Piayys J € N and P € PN, such that for all i € M\j, P, = P, and
Pj € Piayy P | a\fzy)= P |A\{z,y}> f (P) is a singleton.

Dictatorship. The social choice correspondence f is dictatorial if there is an individual ¢

such that for all P € PY, f (P) = maz (r, P;) .
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Ontoness condition is stronger than Citizen Sovereignty, since it implies that all singleton
sets belong to the range. Residual Resoluteness does not implies nor is implied by ontoness, but
it also compels a single-valued choice at some preferences profile.

In order to close this section we introduce the main theorem in DS.

Theorem 4.1 (Duggan-Schwartz [16]). Consider a society with at least three candidates.
A social choice correspondence satisfies strategy-proofness, citizens’ sovereignty and residual

resoluteness if and only if it is dictatorial.

4.3 The Role of Residual Resoluteness

In this section we propose an alternative proof of the main result of DS. It follows the intu-
itive arguments introduced by Schmeidler and Sonnenschein [38] in their proof of the Gibbard-
Satterthwaite Theorem. We will see that Citizen Sovereignty is not necessary to get the result.
It is enough to assume that the range of the social choice correspondence includes three alterna-
tives to get the result. Moreover, this proof highlights the decisive role of residual resoluteness
condition. Using the same techniques we provide necessary conditions for strategy-proof and
onto social choice correspondences and then we can check the robustness of DS results. (Theorem
4.3.)

Before presenting our alternative proof of DS Theorem, we introduce three lemmata on the
implications of strategy-proofness and residual resoluteness. The first implication of Lemma, 4.1
and Lemma 4.2 are also stated in DS. Lemma 4.3 could be proved using Theorem 1 in [8]. We

include the proofs for the sake of completeness.

Lemma 4.1. A social choice correspondence f is strategy-proof if and only if for all i € N and

for all P,P' = (P!, P_;) € PN:
ma (f (P), Py) Remaz (f ('), Py) and min ( (P), ) Remin (/ (P') , P;)

Proof. We first proof that any strategy-proof social choice correspondence f satisfies that for
any i € N and all preference profiles P, P’ = (P!, P_;) € PN, maz(f(P), P;)Rimaz(f(P'), P;)

and also min(f(P), P;)Rymin(f(P'), P;). Assume to the contrary, f is strategy-proof but for
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some voter i and profiles P, P' = (P_;, P!) € PN, maz (f (P'),P;) Pbmaz (f (P),P;). Notice
that, for any arbitrary pair of probability assessments Af(py, Ay(pry we can find a utility function
u; fitting P;, such that u; (maz (f (P'), F;)) is high enough while u;(y) is low enough for any
alternative y € (f(P) U f(P"))\maz(f(P'), P;) to get:
> M (@ > ) Af (p) (@) ui (2).
2’ ef(P') zef(P
A similar argument applies to prove that it is not possible that min (f (P'), B;) P;min (f (P), F;).

Now, we prove the converse statement. Assume that for all i € N; P, P' = (P_;, P!) € PV,
maz (f (P), P;) Rimaz (f (P'), P;), and min (f (P), P;) Rymin (f (P'), P;) . Now, we check that
this suffices for f being strategy-proof. Consider an arbitrary ¢ € N and profiles of preferences
P,P' = (P_;, P!) € PN. We have to consider two cases: either f (P) or/and f (P') are singletons,
or both f(P) and f(P') contain more than one alternative.

In the first case, it must hold that f(P)R;f(P’), and ¢ cannot manipulate. If both f (P)
and f (P') are not singletons, then let maz(f (P),P;) = z and min(f (P'),P;) = y. Notice
that for all a € f (P) U f (P'), zR;aR;y. Assume to the contrary that voter ¢ can manipulate
f at profile P reporting P/. Consider now Aspy and Appry such that Agpy(z) = 1 — ¢, and
Aspy (y) = 1 — ¢, for some € < £. For some u} fitting P; it must be the case that:

Z Aepy(@)ui(e) < Y Ayepry(a)ui(a'). (*)

zef(P ' ef(P’)

Notice that if (*) holds, it must also hold for another utility function fitting P;, 1;, such that
for all @ € A d;(a) = uj(a) — u;(y). Notice that, 3. p) App) (2) @i (z) > (1 —€)di(z). On
the other hand, 3~ ¢ r(pry Ap(pr) (y") 4; (y') < eu; (z). But this leads to a contradictions since we
have assumed that € < % Therefore, our assumption was not true, and ¢ cannot manipulate f
at profile P. As the choice of 4, P and P’ was arbitrary, this suffices to show that f is strategy-
proof.
]

Lemma 4.1 presents the main implications of DS strategy-proofness. A social choice corre-
spondence is DS strategy-proof if it is non-manipulable when voters have maximin or maximax

preferences over sets. By using Lemma, 4.1, we can also describe the preferences orderings in the



4.3 The Role of Residual Resoluteness 82

DS domain. Voters only care about the worst the best alternatives in a set. Moreover, when two
sets share the same best alternative and the same worst alternative, a voter with DS preferences
must be indifferent between them.

For any P € PN and X C A, top (X, P) denotes the minimal set of alternatives in X such
that all voters prefer any alternative in top (X, P) to the remaining ones. In the following lemma
we will see that strategy-proofness and residual resoluteness imply both together unanimity in
the range. When the voters agree in the best alternative in the range, the social choice consist

in this single alternative.

Lemma 4.2. If f satisfies strategy-proofness and residual resoluteness, then, for any P € PN,
f(P) Ctop(rs, P).

Proof. Take P € PV such that for all 4,j € N, P, = P; and let maz (ry,P;) = z. As z € ry,
there is P’ € PV, such that z € f (P'). Moreover z € f (P, P',), since by strategy-proofness
maz (f (P1,P.,),P) Rimaz (f (P'),Pi) = z. Repeating the argument, we know that z €
f (P). Residual Resoluteness implies that f (P) contains a single alternative. Hence, we have
f(P) = {z}. A similar argument implies that for all P* € PV such that for all i,j € N,
maz (ry, PY) = max (rf,P;‘) = z, then f (P*) = {z}. Just notice that by strategy-proofness,
min(f(P—;, P}), P)Rfmin (f(P), P}) = z, and we can repeat the argument as many times as
necessary to get the result. Therefore,as the choice of z was arbitrary, we have seen that if f is
strategy-proof and residual resolute, f is unanimous in its range.

In order to close the proof, select an arbitrary profile P € PV. Take any z € top (ry, P)
and construct the profile P’ in such a way that z = maz (4, P;) for all i € N, while P |4\ (4}=
P' | 4\{z}- By unanimity in the range we have that f (P') = {z}, and by strategy-proofness, we

know that min ( f (Pl, P 1)) R;x. Repeating the argument iteratively,
min (f (P1,..., P, Piy1,...) , B) Rimin (f (P1, ..., P, P{,1,...), Pi) .

This implies that for all ¢ € N, min (f (P),P;) C X, and hence f (P) C top (ry, P) .
[ |
As an immediate aftermath of the previous lemma we can state that any alternative z € ry,

also z € Ry. (ry C Ry.)
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At this point, we have to introduce a new condition on the range of f, N — m unanimity
in the range. It is clearly stronger than unanimity in the range. Lemma 4.3 proves that it is
incompatible with strategy-proofness.

N — m Unanimity in the Range. Let m € N, m < % A social choice correspondence is
N — m unanimous in the range iff for all z € ry, P € PN such that there is J C N, with at
least N —m members and maz (ry, P;) = = for all j € J, f (P) = {z}.

Notice that in order to N — m unanimity in the range become meaningful, the restriction
on m < % has to be included. If not, there would be preference profiles for which two different

groups of N — m members would have power to impose their best alternatives, which is not

possible.
Lemma 4.3. If f is strategy-proof, f is not N — 1 unanimous in the range.

Proof. Assume to the contrary that there is a social choice correspondence f strategy-proof
and N — 1 unanimous. Now, we prove that if f is strategy-proof and N — 1 unanimous, f
is also N — 2 unanimous. Assume it is not. Then, without any lost of generality, there exist
z,z € Aand P € PV st. forall j = 1,...,N — 2; maz(A,Pj) = z; but z € f(P). Pick
Pe ng,z} and y € (A\{z, z}) such that P |4\(54,.}= P |A\{2,9,2}> maz(A\{z}, P;) = z for all
i € (WM\{N —1,N —2}), maz(A, P;) = z for j € {N —1, N} while maz(A\{z, z}, P;) = y, for all
k € N. By Lemma 2, f (15) C {z, z}, and from the iterative application of strategy-proofness we
have that = # f(]f’) Thus z € f(I:’) Consider now, P* € Pf\;,y,z} s.t. P | a\{ayy,2}= p | A\{z,y,2}»
P* (o 3= P (2,2}, and for all i # N, zP"y; while for all j # N —1, yP/z. (That is P} = (z,y.2)
for all i = 1,..,N — 2, P, = (z,z,y) and P} = (y,z,1).) Construct now P’ € PV by
dropping z to the third position in every voter preference while maintaining the remaining
position unaltered.(That is P’ € ’Pﬁc,z}, P o= P l{z,2} -) By N — 1 unanimity f(P') = {z}.
Construct analogously P" € PN from P by dropping = to the third position and again by
N — 1 unanimity f(P") = {y}. Finally, construct P” € PN from P by dropping y to the
third position. As z € f(P), also z € f(P"). Notice now that, from the iterated application
of strategy-proofness, f(P') = {z} implies that y ¢ f(P*). Analogously, f(P") = {y} implies
z ¢ f(P*). Hence, as Lemma 4.2 implies f(P* C {z,y, 2}, necessarily f(P*) = {z}. Nevertheless,
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if f (P*) = {z}, strategy-proofness implies that f(P") = {z}, which is a contradiction. Thus,
if f is N — 1 unanimous in the range and strategy-proof, f is N — 2 unanimous in the range.
Repeating the arguments of the previous paragraph, we can prove that if f is N —2 unanimous
in the range, f is also N — 3 unanimous in the range, and so on. We can continue this process
till we reach that f is N — m' unanimous in the range for some m' > &, which is not possible.

Theorem 4.2. Let #r; > 3. A social choice correspondence f satisfies strategy-proofness and

residual resoluteness if and only if f is dictatorial.

Proof. 1t is immediate to see that dictatorial rules satisfy residual resoluteness and strategy-
proofness. So, we focus on necessity.

Let N =2 and A = ry = {z,y, 2}. Following the arguments in [38], we present in Figure
4.1 the 6 x 6 grid containing the results of the social choice for the 36 admissible preference
profiles. By Lemma 4.2, we know f is unanimous. Moreover, residual resoluteness implies that
f is single-valued at several preference profiles. (We remark it by staring the boxes 1, 3, 8, 11,
13, 15, 22, 24, 26, 29, 34 and 36.)

Notice first that z ¢ f(P}, PJ?’) since wP;’z and by strategy-proofness:
min (f (P, F}) , P}) Rjmin (f (F, F;}) , Fj) = {a}.

(We remark it by writing —z at the right inferior corner of the box 3.) Analogously, z cannot
be selected in boxes 18, 23, 24, 28, 33 and 34; y in 5, 11, 12, 25, 26, and 32 and z in 4, 9, 13, 14,
and 19.

Notice now that residual resoluteness implies that f(Pz-l, P;‘) must be a singleton. We have
two symmetrical possibilities, either f(Pz-l,Pf’) = {z} or f(Pz-l,Pf’) = {y}. Assume f(P}, Pf’) =
{y}. By strategy-proofness mz’n(f(Pil,Pf),PJ4)R§min(f(IDil,13j3),13]4) = y. This implies that
f(Pil,P]‘-l) = {y}. Notice now that z ¢ f(PiQ,PJ?’), since zPly and by strategy-proofness {y} =
maw(f(Pil,PJ‘?’),P})R%maz(f(Pf,P]?’),Pil). Moreover, as z ¢ f(PZ-?,PJ?’), f(Pz-Q,PJ?’) = {y} and
also f(P?, Pf) = {y}. In the same fashion, we can see that, z ¢ f(P?, Pf). Therefore, it follows

that for all P’ € P? such that maz(4, P}) =y, f(P') = {y}.
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i\j (z,y, 2) (z,2,y) (y,z, 2) (y,2,x) (z,2,y) (z,9,x)
1 x| 2 3 x| 4 5 6
P' = (z,y,z)
-z -z -y
7 8 * |9 10 11 x| 12
P? = (z,2,y)
—z -y -y
13 x| 14 15 x| 16 17 18
P? = (y,x,2)
—Z —Z —T
19 20 21 22 % | 23 24 *
P* = (y, z,z)
—Z —T —T
25 *x | 26 27 28 % | 29 30
P® = (z,z,y)
-y -y -
31 32 33 x| 35 35 36 *
P° = (z,y,z)
-y -z -z

Figure 4.1: Theorem 4.2: The 2 voters and 3 alternatives case.
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The same arguments apply to prove that, = ¢ f(P?, Pf), since y = min(f(P?, Pf), PJG)P;S:I:
and f(P?, Pj6) = {z}. Following step by step the arguments in the previous paragraph, we see
that for all P € P? such that maz(A4, P}) = z, f(P") = {z}. Similarly, we can prove that for
all P" € P? such that maz(A, P}") = z, f(P") = {z}. This shows that if f(P}, P}) = {y}, j
is a dictator. If we had assumed f (P}, P}) = {x}, we would have obtained that voter i is the
dictator.

Hence, we have proved that if there are only two voters and three alternatives, any social
choice correspondence satisfying strategy-proofness and residual resoluteness is a dictatorship.
We have to extend the result to arbitrary societies. The induction argument on the number of
alternatives in the range is standard and then it is omitted.> We present now, the induction to
arbitrary finite sets of voters.

Induction Basis. There is m > 2, such that for all N’ < m, if f satisfies strategy-proofness
and residual resoluteness then f is dictatorial. Now, we prove our theorem for N = m + 1.

Let f be a m + 1 voters social choice correspondence satisfying strategy-proofness and on-
toness. Construct an auxiliary social choice correspondence hi : P? — A, in such a way that
hi (P, P) = (P, Py,...,P). It is clear that h; satisfies residual resoluteness, since f also
does, and its range contains more than 2 alternatives by unanimity in the range. Moreover, 1
cannot manipulate hy since f is strategy-proof. Moreover, 2 cannot manipulate, given that, for

all Pl,PQ,PQI € P, it holds:

maz (f (Py, Ps, ..., P2) , P2) Romaz (f (Py, Py, Py, ...) , P2) Ro..maz (f (P1, P}, ..., Py) , P»)

min (f (P1, Py, ..., P2) , P) Roymin (f (P1, Py, P, ...) , Py) Ro...min (f (P1, Py, ..., Py) , P) .

Thus, we get that for all P, P’ € P?, on the one hand maz (hy (P), P,) Remaz (hy (P'), P,),
and also min (hy (P), P2) Romin (hy (P'), P2), and h; is strategy-proof. This is enough to see
that h; satisfies the induction hypotheses, and therefore either 1 or 2 are dictators for hg.
Let us check that if 1 is a dictator for hq, she is also for f. Just pick P, and P} such that

maz (ry, Py) = min (rg, Py). For all (P, P_;) € PN, we get f (Py,P_1) = maz (rs, P), since
f frt2 !

5See, for instance, [38].
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hi(P1, P;) = max (ry, P1) and by strategy-proofness:

maz (f (P1, P, ..., P3) , P) Rymaz (f (P1, P», Py, ...) , P3) Ry..maz (f (P1, P, ..., Pn) , P3)

min (f (P1, Py, ..., Py) , P) Rhmin (f (P, P2, Py, ...) , Py) Ry..min (f (P1, P, ..., Py) , P3) .

Analogously, we can construct N ancillary social choice correspondences h; (P;, Pit1) =
f(Piz1y-s By Pig1y .y Piy1), for all ¢ = 1,...;, N. Notice that it must be the case that either
there is * € N such that i* is a dictator for h;; or whenever N — 1 individuals agree in their
preferences, f chooses their most preferred alternative. This later possibility implies that f
is N — 1 unanimous in the range which is not possible, since it would contradict Lemma 4.3.
Therefore, the first case must hold and the arguments in the previous paragraph suffice to show
that f is a dictatorship.

]

Our proof of DS’s main Theorem highlights the role played by residual resoluteness in the
result. In fact, we can see that in small societies, it is enough to assume that a singleton
is selected at a non unanimous profile to obtain the dictatorial result. Residual resoluteness
condition goes even further since it compels single-valued choice at many preference profiles.
(In fact, to the half of the possible preference profiles if there are only two voters and three
candidates.) From the result for small societies, it is not difficult to find the induction argument
leading to the general impossibility theorem. So, we can say that residual resoluteness is ”too
much” resoluteness. If we want to test the robustness of the Gibbard-Satterthwaite theorem
in multivalued environments, we should not include residual resoluteness assumption in the
analysis.

In the following theorem, we provide two necessary conditions for strategy-proof and onto
correspondences. The first one is already stated in DS while the second condition is new.”
Basically, item i) says there is a group of voters (oligarchs or vetoers) that always obtain their
most preferred alternatives among the selected ones. Moreover, item ii) asserts that these
oligarchs have indeed veto power. We will see that whenever they unanimously agree in a best

alternative, this is uniquely elected. Thus, even when there exist non dictatorial strategy-proof

"Item ) is proved in [15].
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and onto social choice correspondences, it is only at the cost of concentrating the power of
decision in an arbitrary set of individuals. The weak notion of strategy-proofness presented
by DS is not mild enough to avoid the negative consequences of the Gibbard-Satterthwaite

Theorem.

Theorem 4.3. Let f be a social choice correspondence satisfying strategy-proofness and on-

toness, then there is a set of voters S C N, such that for all P € PV :
i) For all z € A, if max (A, P;) =z for somei € S, x € f(P).
ii) 1 (P) C top (4, Ps).

Proof. Notice first that the lemmata previous to the proof of Theorem 4.2 remain valid. More-
over, with the arguments included in the proof of Lemma 4.2, we can see that a strategy-proof
and onto social choice correspondence is unanimous.

We follow the same strategy we have followed in the proof of Theorem 4.2. We can focus on
small societies with only two voters and three alternatives. In this environment, it is not difficult
to see that any strategy-proof and onto social choice correspondence is either dictatorial or both
individuals can include their best alternatives in the chosen set. Notice that any single valued
choice at a non unanimous profile implies directly that f is dictatorial. If singleton choice is only
attained at unanimous profiles, it follows immediately that both voters must have veto power,
and include always their best preferred alternatives in the chosen set. Furthermore, unanimity
implies that when ever both voters agree in their top alternative, no other alternative is selected.

The standard induction argument on the number of alternatives applies. Hence, we only
have to extend the result to groups of voters.

Induction Basis. There is m > 2, such that for all N’ < m, if f satisfies strategy-proofness

and ontoness, there is a set S C A such that:

i) For all P € PV and for all z € A, if there is i € S, with maz (A, P;) = z, then z € f (P).

ii) For all P € PV, if there is € A such that maz (A, P;) =z for alli € S, f (P) = z.

We now prove that this is also true for N = m + 1.
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Take any pair of voters 4, j € N. Define the N —1 social choice correspondence g;; : pN-1
A in such a way that for all P € PN~ g, (P) = f(P1,..., P, B, ..., P,) . That is, g;; is the
restriction of f to the profiles in which individuals 7 and j report the same preferences. It is
evident that g;; satisfies ontoness from f’s unanimity. Moreover, following the arguments in the
induction step of Theorem 4.2, it is easy to check that g;; is also strategy-proof. Hence, g;;
satisfies the conditions of the induction hypothesis and we know there is a group of individuals
S C M\{j} holding veto power over g;;. They always include their best preferred alternatives in
the social outcome. Moreover, whenever they agree on the best alternative, no other alternative

selected. In order to obtain the conclusion for f we have to consider three cases:
Case a): i is not a vetoer for g;; (1 ¢ S).

Case b): i is a dictator for g;; (i = 5).

Case c): i is a vetoer for g;; (i C S).

Case a). If i ¢ S for g;; we can prove, that S is also an oligarchy for f. It is easy to see
that all members of S always include their best alternatives in the chosen set. Take P_; €
PN=1 such that there is ¢ € A, and k € S, with z = maz (A, P,) = min (A, P,). Then,

z € f(P1,.... P, By, ..., Py) = gij (P-;), and as f is strategy-proof, for any P/, P} € P:
z=min(f (P, ...,B, P, ..., Px),P) Rimin (f (P, ..., P}, P, ..., Px) , B) .

Repeating the reasoning as many times as necessary, we reach the desired conclusion. Finally,
item ii) follows directly form the same arguments.

Case b). Assume now i is a dictator for g;;. We will show that either 4 (or j) is a dictator
for f, or i and j are the only vetoers for f. Fix an arbitrary restricted profile P_g; ; € PN-2
and define the social choice correspondence h : P2 — A in such a way that for all Py € P2,
h(P;, P;) = f (R-, P, P_{i,j}) . As we know that i is a dictator for g;;, h is unanimous and also
onto. As f is strategy-proof, h also is. Hence, we have that h satisfies the induction conditions
and then either ¢ (or j) is a dictator, or ¢ and j form an oligarchy for h. Therefore, when all
individuals but 4 and j, report the preference profile P_g; 51, 7 and (or) j are an oligarchy for f.

As the choice of P_; ;1 was arbitrary, we know that it also holds for any P y € PN-2,

{24
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It only remains to prove that if ¢ is a dictator for P_g; ;1, she is also for any P* {i.j}" Assume ”ad
contrarium”, then there are an individual k ¢ {i,j} and profiles P_j; ;, Pj{i,j} = (P,:, P_{i’j’k})
such that 7 is a vetoer for f (PZ-,P]-,P_{M}) , but 7 is not for Pf{i,j}. Take P; and P; such that
maz (A, P;) = min (A, Py) # maz (A, Pj) . As i is a vetoer for h at P_y; j3, maz (A, P;) € f (P),
but it does not belong to f (P_i, P}), this implies that min (f (P*), Py) Pymin (f (P), Py),
contradicting f’s strategy-proofness. We can repeat the argument iteratively to obtain the
desired result.

Case c). Let S be the oligarchy for g;; and S’ = S\{i}. We will prove that either S (or
S"U{j}) f are vetoers for f, or SU{j} is an oligarchy for f.

An already well known argument applies to prove that for all P € PV, for all z € A, if
max (A, P;) = z for some k€ S', x € f(P).

We provide the proof for societies with three voters. The induction argument for larger
societies follows the same steps and then it is omitted. So assume N = {1,2,3}, and define gi2,
g13, and go3; by the induction hypotheses we know that either one of them is dictatorial or 1
and 3 are vetoers for gi2, 1 and 2 are vetoers for gi3, and 1 and 3 are vetoers for go3. In the
former case, the arguments in cases a) and b) apply to show that f is oligarchical. In the last
case, since all voters are vetoers for some auxiliary correspondence g;;, we know that all voters
can include their most preferred alternatives in the chosen set, which proves item i). Item ii)
follows directly from unanimity.

Finally, item ii) of the Theorem follows from minimal modifications from the proof of Lemma
4.2.

]

Many voting rules satisfy the requirements of Theorem 4.3. Among other relevant instances
we can mention the Pareto Correspondence, which includes the set of all Pareto undominated
alternatives. It can be defined in the following way, for any P € PN and any X € A,
Pareto(X,P) = {z € X,s.t. there is no y € X, yP;x for all 4 € N}. In the case of the
Pareto correspondence, all voters would have veto power over the social choice.

Theorem 4.3 proves that any strategy-proof and onto social choice correspondence must

endow some individuals with veto power. However, as it is shown by the following example,
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Theorem 4.3 does not imply that the voters out of the oligarchy cannot affect the social choice

outcome.
Example 4.1. Let A= {z,y,z}, N ={1,2,3},and

£(P) Uienmaz (A, F;) if maz (A, P3) € Pareto (4, P{LQ}) ,
maz (A, P) Umaz (A, Py) otherwise.
It is easy to check that f is onto and strategy-proof. Notice that voter 3 is not a vetoer but

her preferences are relevant for the social choice.

4.4 A Characterization Result

Theorem 4.3 does not provide a characterization of the family of (DS) strategy-proof and onto so-
cial choice correspondences. Nevertheless, this result is quite useful, since definition of strategy-
proofness proposed by DS is not very stringent. This fact implies that we can obtain other
negative results derived from stronger extensions of preferences as corollaries to Theorem 4.3.

We introduce a new domain of preferences over sets, naturally related to DS’s one, that we call
Extended Duggan-Schwartz preferences (DS+). It adds the concept of ”discerning individuals”
proposed in [3] to the notion of maximin and maximax preferences. Basically, a discerning
individual ¢ with preferences over alternatives z,y and z, P; = (z,y,z), either prefers the set
{z,y, z} to the set {z, z}, or is indifferent between them , or prefers {z, z} to {z,y, z}. We state
this formally.

Extended Duggan-Schwartz Preferences. For any P; € P, DT (P;) denotes the set of pref-
erences over sets consistent with the preference order over alternatives P; in the Extended DS
domain. For any P; € P, we say that the preference order over sets 7;€ D is DS+ consistent
with P;, ;€ Dt (F;), if and only if for all X,Y € A such that X =; Y one of the following

cases holds:
i) maz (X, P;) Prmaz (Y, F;) .
ii) min (X, P;) Pbmin (Y, F;) .

iii) X =maz (Y, P;) Umin (Y, P;) or Y = maz (X, P;) Umin (Y, P;) .
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The social choice correspondence f is DS+ manipulable if there arei € N, P, P' = (P_;, P}) €
PN =;€ DY (P;), such that f (P') =; f(P). Conversely, f is DS+ strategy-proof if f is not
DS+ manipulable.

It is clear that for any X,Y € A, P; € P, if there exist ;€ DP9(P;) such that X »=; Y, there
also is i€ D (F;), with X >! Y, while the contrary is not true. Hence, DS+ strategy-proofness
is more compelling than (DS) strategy-proofness.

In the following lemma we characterize the family of DS+ strategy-proof and onto social
choice correspondences.

Bidictatorship. The social choice correspondence f is bidictatorial if there are 7,7 € N

such that for all P € PN, f (P) = maz (ry, P;) Umaz (rs, P)) .

Theorem 4.4. A social choice function f satisfies DS+ strategy-proofness and ontoness if and

only if f is either dictatorial or bidictatorial.

Proof. 1t is immediate to see that dictatorial and bidictatorial rules are onto and DS+ strategy-
proof. Now, we focus in the proof of necessity side.

Firstly, we have to remark that the results of Theorem 4.3 are valid for DS+ strategy-
proofness since it is a stronger condition than (DS) strategy-proofness.

We start proving that #S < 2. Assume the contrary, then there exist at least three vetoers
j,k,l € S. Take P € PV, such that P; = (z,y,2), and P, = (y,z,z) for all i € N\j. By
the arguments in Theorem 4.3, we know that f (P) = {z,y}. Pick, P, = (y,z,z), again by
Theorem 4.3, we have that {z,y} C f (P, P)) C{z,y,2}. If f (P_k, P)) = {z,y, 2}, then there
is Zp€ D* (P]), such that f(P) = {z,y} >« {z,y,2}, contradicting DS+ strategy-proofness.
Hence, f (P, P}) = {z,y}. Take now, P}/ = (2,y,x), then f (P, P]) = {z,y,z}, since by
item i) of Theorem 3, all vetoers include their best preferred alternatives in the chosen set. This
leads to a contradiction with DS+ strategy-proofness, since we can find =z} € D (P}), such that
[ (P, B) =}, f (P_g, P,). Hence, our assumption was incorrect and #S < 2.

By item ii) of Theorem 4.3, it is immediate that whenever #S = 1, f is dictatorial. Item
ii) of Theorem 3 implies that for all P € PV such that maz (4, P;) = maz (4, P;) for all

i,j € S, then f(P) = Ujegmaz (4, P;). Now, we will prove that the result holds for any
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preference profile. Without lost of generality let S = {1,2} and consider a profile P € PV,
such that maz (A, P1) = z, max (A, P,) = y. Take now P|,P) € P such that y is raised in
1’s preferences to the second position, while z is raised to the second position in voter 2’s
preferences. That is, maz (A\{z}, P|) =y and Pi |q\(3= P| |a\(y} while maz (A\{y}, P;}) ==z
and Py |4\(s}= P3 |a\{z}- Item ii) of Theorem 4.3 implies that f (Pg, P-s) = {x,y}. Notice
that as y € f (P, (P, P_g), we also have that min (f (P, P, P_g),P1) = y, since by (DS+)

strategy-proofness,
min (f (P, Py, P-s) , P1) Rymin (f (Pg, P-s) ,P1) = y.

Moreover, f (P, Py, P_g) = {z,y}, since if there exists a non-empty set B = f (P, Py, P_g) \{z,y},
there is 7€ D (P), such that f(P,,P.g) »1 f(P,P, P g), contradicting again DS+
strategy-proofness.

Repeating the argument for individual 2, we obtain that f(P) = {z,y} = maz (4,P) U
mazx (A, P»). This concludes the proof, as the choice of z,y and P was arbitrary.

]

Some final remarks are in order. We have to note that the application of the preferences
of the ”discerning individuals” to triples of alternatives is enough to show that there cannot
be more than two vetoers. Nevertheless, we need to use this rationale for larger sets to ob-
tain the bidictatorship characterization. On the other hand, Theorem 4.4 shows that a slight

reinforcement of DS’s definition of strategy-proofness leads immediately to very negative results.

4.5 An Alternative Approach: Reporting Preferences over Sets

All through the previous analysis, although we have endowed the voters with preferences over sets
of alternatives, it has been assumed that the social choice only depends on their preferences over
singleton sets. In this section, we will follow a more general approach introduced in [6]. We con-
sider now the possibility of devising voting rules that select sets of alternatives according to the
voters’ preferences over sets. With this new scope, the social choice rule would be more flexible

in order to adapt voters’ preferences, since the society could use the full information contained in
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the preferences over sets. This setting coincides with the original Gibbard-Satterthwaite frame-
work because the voters express their preferences over the very outcome of the social choice.
Nevertheless, the negative result does not apply since the preferences over sets of the voters are
restricted to be DS consistent.

First, we define the domain of all admissible preferences over sets. We denote the set of DS
consistent orderings over sets by D”5. An ordering over A, ;€ D, is DS consistent, >-;€ DP¥ if
and only if there is P; € P such that ;€ DP (P;). The discussion after Lemma 4.1 in Section
4.2 presents the most relevant features of the preferences in the domain DP%. Namely, the voters
only care about the best and the worst alternative in each set. It is easy to see that for any
P, € P and any ;€ DPS (P), max (A, P;) = maz (A, ;) and min(A, P;) = min(A, 7). In

fact, we only need the following features of the DS preference domain:

-i)(Weak Dominance Property:) For any »7;€ DP9 z,y € A, {z} =; {y} implies {z} =,

{‘Ta y} i {y}

-ii): For any X € A, there is ;€ DPS such that any subset X’ C X is preferred to any set

Y C (A\X).

From now on, we denote by - an arbitrary profile of voters’ preferences over sets of alterna-
tives, 2-€ [DPS]N refers to a profile of voters’ preferences over sets of alternatives.
Social Choice Functions (over Sets). A social choice function (over sets) ¢ is a mapping

from admissible preference profiles to non empty subsets of alternatives. Formally:
@ : [DPSIN = A.

A social choice function is more general than a social choice correspondence as defined in the
previous sections. A social choice correspondence is a social choice function subject to a strong
invariance requirement. A social choice correspondence must yield the same result for any two
profiles of preferences for which the preferences over singleton sets coincide.

The general approach we present here offers an additional advantage. As voters report pref-

erences over sets, strategy-proofness is trivially defined, since we are dealing with social choice
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functions. The reported preferences contain the necessary information to check the profitability
of any possible misrepresentation of the preferences.
A social choice function is manipulable in the domain DPS if there are i € N, >, >'=

" R
(z—i, ) € [DPS)N such that ¢ (') =; ¢ (Z). We say ¢ is strategy-proof iff ¢ is not manipu-
lable.

Finally, a social choice function is unanimous if for all X € A and all € [D”%]¥such that
X =maz (A, 7;), foralli e N, p () = X.

Before introducing the results, we present a piece of notation that will become crucial in the
proof of our Theorem 4.5. Given > _;e [DPS]N\#} we define the option set for individual 4,

0; (Z—i) , as the set of outcomes available to 7 when the remaining voters report the preferences

i, that is:

0; (=_;) = {X € A such that there is ;€ DP% ¢ (=_;, =) = X}.

N*Z’7 N'L

Abusing notation, for any X € A, we denote by o; (2Z_;, X) the set of outcomes in X available

A~

for voter i, that is o; (Z—i, X) = 0; (75—i) N X.

~—1)

Remark 4.1. If ¢ is strategy-proof o(Z) € (N;enr maz(0i(Z—i), Zi)

~?

The analysis of the structure of the option sets of the voters will be key of our analysis.
We follow the line proposed in [6]. So we focus on two individual societies and investigate the
structure of the option sets of the voters. Finally, we can apply standard induction arguments
to extend the results to arbitrary societies.

We begin our analysis by taking an arbitrary unanimous and strategy-proof social choice

correspondence ¢ defined on the domain DP%.

Theorem 4.5. Let ¢ be a strategy-proof social choice function defined on the domain DPS, then

there is a set of voters S C N, such that for any =€ [DPS]V .

i) If x = mazx (ZZ;, A) for somei € S,z € ¢ ().

il) If c = mazx (7, A) for allie S, z = ¢(Z).
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Proof. As we have already noted, we focus on the case with only two voters. The proof proceeds
through a series of claims. We will start analyzing the singleton sets that are available to each
voter, that is we study the structure of the sets o; (27;, A) . Notice first that by unanimity, it is

clear that for any =1 € DP5, maz (A, 1) € 02(1).

Claim 4.1. For any € DPS such that maz (1) = maz (Z)) = {a1} 02(Z1,A) =

02 (Z1, A)-

17N

Proof. Assume to the contrary there is an alternative {a} € 09 (221, 4) \o2 (2}, 4). Consider
>o€ DP3 such that {a} =2 {a,a1} =2 {a1} =2 X for all X € A\ ({a},{a,a1},{a1}). Then
¢ (R) = {a} while as {a} ¢ o02(1), but also by unanimity {a1} € 02(Z1), we have that
(), 72) is either {a1} or {a,a;}. Notice that by the Weak Dominance Property, for any
=rc DPS with maz (%, A) = {a1}, we have that {a;} =% {a} and {a,a;} =7 {a}. This
implies a contradiction with strategy-proofness, since voter 1 with preferences 2~; can manipulate
reporting -}
|

From now on, for any -1€ DP9 {a;} denotes the best preferred set according preferences

713 {a1} = maz (A, 71).
Claim 4.2. For any ;€ DP¥ either 0y (771,.A1) = {a1} or 09 (1, A1) = A

Proof. Assume there are alternatives a,a’ € A and ;€ DP¥ such that a € oy (%1, 4), {a'} ¢
02 (1, A). By the previous lemma, without loss of generality we can assume 27 is such that
{a1} =1 {a1,d'} =1 {a'} =1 X, for all X € A\({a1},{a1,a'},{a’}). Take now o€ DP?
such that {a'} >3 {a,a'} =2 {a} = Y for all Y € A\ ({a},{a,d'},{a’}). By Remark 4.2, we
know ¢ (721,72) is either {a} or {a,a’'}. But this implies a contradiction. Since by unanimity
{a'} € 01 (7Z2) and by the Weak Dominance Property {a'} =1 {a,d’'} and also {a'} > {a}.
]

Now, we show that if the option set of an agent contains all single alternatives for some

preference of the other agent, the same must hold for any other possible preference ordering.

The whole set of alternatives is always included in her option set.
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Claim 4.3. If 05 (771, A) = A for some 1€ DPS | then o0y (22},

A) = A for all '} € DPS.

Proof. Assume that there are 1,25 € DPS such that oy (251, A) = {a1} while 0 (22}, 4) = A.

Nl’ ~1

Take now o€ DP¥ in such a way that maz (22) = min (351). This implies that ¢(>],22) =
min(A, =), while (721, 222) # min(A, Z). Therefore, ¢ (721, 72) > ¢ (], 7Z2), contradicting
again strategy-proofness.

[

Notice that if it holds that for any =1 € DPS . oy (71, A) = A, then voter 2 is indeed a dictator

~1s
since her maximal element in A is her maximal element in A. The same arguments apply to
voter 1. Hence, either one of the voters is a dictator or the only singleton in the option set of

one agent is the best alternative of the other agent. That is :
For all =€ [DP%)?, 0y (=1, A) = {a1} and o1 (=2, 4) = {az}. (*)

In the following claims we investigate the possibility that ¢ is not dictatorial. So, we assume
(*) holds. We will prove that any available set for voter 2 includes the best preferred alternative

of voter 1.

Claim 4.4. If * holds, for any 1€ DP%if X € 0y (1), then maz(z;) € X.

Proof. Assume the contrary. Then, there are 1€ DP9 X € A such that X € o9 () but
{a1} ¢ X. Let X* € A, be the set in 0y (7Z1) with smaller cardinality. Notice that by (*)
#X* > 2. Find now Z2€ DP¥ such that any set containing alternatives in (A\X*) is strictly
preferred by any subset of X* , and with maz(Z2) = maz(Z1,X) = {a}. Notice that, X =
maz(Z2,09 (1)), and therefore ¢ (%-1,72) = X. Notice that, as 5;€ D an ordering and

from Lemma 1 we know that,

{a} = maz (Z1, X) =1 {maz (Z1, X) ,min (21, X)} ~1 X,

~1s

and by (*) {a} € 01 (ZZ2) which contradicts ¢ (21, 222) = X.
]
Again the same arguments can be applied to voter 1. Hence, if (*) holds, any element of

01(72) contains the maximal element in A according to 2, and analogously, any element of
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02(%1) includes the best alternative according to ;. This implies that for any =¢ [DPS]?
{maz (A, 1), ,maz(A,72)} C ¢(z). Moreover, as we have focused in two voters societies, item
ii) follows directly from unanimity. Hence, we have proved the Theorem for societies with only
two voters.

The proof for larger societies uses an induction argument. It runs parallel to the induction

step presented in Theorem 4.3 and it is omitted. m

4.6 Related Literature

We want to conclude this work by relating our results with others existing in the literature apart
of DS.

The interest on manipulable correspondences was initiated by the seminal contribution of
Pattanaik [32] and followed by Géirdenfors [20], Kelly [26], Barbera [3] and [2] and Feldman
[23] and [24]. All these papers present weak definitions of strategy-proofness but their results
are obscured by a number of regularity conditions that lead to negative conclusions. (This
conditions range from rationalizability in [32], [3], [24] and [26], to Condorcet consistency in [20]
or strong version of positive responsiveness in [2].) We can highlight among them the work in
[23] which shows that the Pareto correspondence is strategy-proof when voters are consistent
with maximin or maximax preferences over sets.

Our article is also closely related to Feldman [25]. He considers that a social choice correspon-
dences is strongly strategy-proof if and only if for all utility functions consistent with the true
preferences of the voter, the expected utility of the voter is not higher reporting false preferences
over alternatives when all alternatives in the chosen set are equally likely. He proves that only
dictatorial or bidictatorial choice correspondences are unanimous and strongly strategy-proof.
It is clear that (DS) strategy-proofness is weaker than strong strategy-proofness, since Feldman
only requires the existence of a consistent utility function that makes profitable the misrepresen-
tation of the preferences for even chance lotteries and not for any possible lottery. Moreover, the
reader can check that strong strategy-proofness is equivalent to DS+ strategy-proofness when

there are only three alternatives, but it is stronger when there are more. Therefore, his result
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is a direct corollary to our Theorem 4.3.

We have to mention the recent paper by Ching and Zhou [12]. They present a notion of
strategy-proofness even stronger than Feldman’s one, since they do not restrict the lotteries over
the chosen sets to be even chance. In their context, that any strategy-proof rule is constant or
dictatorial. As we rule out the possibility of constant social choice correspondences, we can say
their Theorem 1 can ”almost” be obtained from our Theorem 4.4.

In a different vein are the works of Campbell and Kelly [11], Benoit [8], and the already
noted [6] . They propose a more general analysis as the one proposed in Section 5 and study
rules that take the preferences over sets of the voters as inputs. The study in [6] generalizes
the frameworks in [25] and [12] to social choice functions over sets. We have to note that the
preference orderings we have employed in the proof of Theorem 4.5 are also admissible in their
domains of preferences. Thus, their strategy-proofness condition is stronger than ours, and
allows them to obtain a full characterization.

Finally we have to review the works in [11] and [8]. Both papers consider explicitly pref-
erences over sets, but they focus their attention to domains of preferences over sets such that
for each possible preference over singleton sets there is only one admissible preference on the
power set of the alternatives. Therefore, in their domains, any social choice function is indeed a
social choice correspondence. In [11] the domain of leximin preferences is studied. It is shown
that only the union of the best alternatives of an arbitrary group of voters is strategy-proof and
unanimous.® In [8] a more general environment is introduced since the preferences of the agents
are not specified but for a reduced group of sets. Basically, the only restriction is that there
exist admissible preferences such that the best set is a singleton, the second best set is a duple
containing the best set, the third best set is the singleton contained in the second best set, and
finally, the worst set is also a singleton. This vague description of the admissible preferences
implies that Benoit’s definition of strategy-proofness is weaker than DS’s one, since any DS

preference ordering satisfies Benoit’s requirements. The main result in [8] is a reinforcement of

8An individual with leximin preferences compares sets of alternatives paying attention first to the worst
alternative on each set and prefers the set with the best worst alternative. If they are the same, then she

compares the second worst alternative and so on.



4.6 Related Literature 100

our Lemma 4.3, strategy-proofness and N — 1 unanimity are incompatible even under severe
restriction over the domain of admissible preferences over sets.

Although their results and ours are logically independent, we want to remark that the ar-
guments following the Schmeidler and Sonnenschein’s techniques that we have employed in the
proofs of Theorem 4.2 and Theorem 4.3 apply without any modification to the settings in [11]
and [8]. Moreover, when voters compare sets according to the leximin extension, it is easy to
see that a unanimous and strategy-proof social choice correspondence is either dictatorial or
bidictatorial, and standard extension arguments apply to extend the result to arbitrary societies
and sets of alternatives. Nevertheless, in the framework of [8], we cannot extend the results to
arbitrary numbers of alternatives since the restriction on the domain of preferences does not

take into account the comparisons between many feasible sets.
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