
5

PML model physical analysis

This chapter describes the different aspects involved in the simulation model generation. The

simulation model is the system specification where the expected behaviour is represented and

has the adequate structure able to play the prescribed system behaviour (Klir 1969). In this

chapter the third and fourth layers of PML model construction are presented (see Figure 4.1(a)).

These steps are prior to the simulation activity and basically comprise the adaptation of the

PML models to the experimentation purpose by setting the phenomena of interest defined by

the experimental framework and by selecting the law formulations which cope with the desired

adequacy level, as well as the simulation model generation.

There are many of the modeling applications where a reduced or simplified system behaviour

representation should be obtained in order to apply certain system analysis theories. One

very important application domain is, for instance, the control system domain. Most of the

control design techniques require of linear models, or low order models, external models (transfer

functions) or internal models (state-space form), etc. This sort of models are usually obtained by

making different hypothesis such as to neglect certain dynamics, linearize the selected dynamics

and/or reduce the order of the linear model (Johansson 1993). Some of the simplifications made

on the system representation lead to models which still preserve some physical meaning. For

instance, a linearized model obtained from the basic physical principles. But there are also

model reduction techniques where the resulting model can be hardly related to the physical

217

218 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

phenomena happening in the system. For example, a model which is defined to match with

a known system frequency response within a frequency interval. It is rather difficult to relate

this model structure and its parameters with the physical system structure and parameters. So

in fact, such type of models do not really represent the system behaviour, but they represent

certain system dynamics under very precise operation conditions.

The performance of the controller facing the real system is highly dependent on the goodness

of the reduced model used in the analysis and design stages. To validate the controller with a

more precise system simulation model before its operation is a good, and recommended, practice.

Usually, such a realistic model does not exists since the reduced model development has been

guided by the control design purpose and, likely, the applied modeling procedure is not the most

convenient to obtain such a realistic model. Even when the effort to develop a realistic model

is made, it will be quite difficult to establish an analogy between the realistic model and the

reduced model, which could be really useful if the reduced model must be refined in order to

iterate on the control law design. For example, consider that a parametric model mr has been

identified to design the controller and a model M is postulated from the basic physical principles

for the controller validation. Generally, there is not a direct relationship between models mr

and M . This fact makes difficult to establish any guideline to improve the reduced model mr

adequacy (made for design purpose) from the realistic model M (made for validation purpose).

This application case illustrates the benefits which can be obtained when a unique system

specification built at the topological level (a PML model class) can be adapted to different

experimentation purposes (different simulation models). The PML model adaptation into the

experimental framework and adequacy level is discussed in Section 5.1. Section 5.2 presents how

the functional model is obtained by means of the physical analysis procedure. It is also shown

how the non causal mathematical model is generated by creating the law formulation instances.

Finally, Section 5.3 will present a brief overview of the modeling tool PMT.

5.1. MODEL MANIPULATION 219

5.1. Model manipulation

The third and fourth layers in the PML model construction process are related to the reuse

of a predefined PML model class and its adaptation to some specific experimentation purpose.

The adaptation of this model involves several aspects with a main objective: the generation of

an adequate simulation model for the experimental framework. Three different types of model

adaptation will be considered:

• Behaviour pruning: A PML model declaring a set of phenomena may be simplified by

discarding the phenomena which is not of interest for the experimental framework. We

call this behaviour pruning. The model user may also parameterize a ready-made model

with different entity classes as it was discussed in the previous chapter.

• Adequacy set up: The adequacy of a model was related in Chapter 1 to its capability to be

the simplest causal explanation to the phenomena of interest with the desired accuracy (see

Definition 1.4). Different levels of accuracy may be achieved by the use of multi-faceted

phenomena. This mechanism provides with the possibility to formulate the behaviour

represented by a phenomenon with different degrees of accuracy.

• Extension of the experimental framework: the experimental framework may be modified

by the addition of new physical behaviour to the already defined model classes. This

adaptation is not so immediate since it requires the modification of the modeling library

with new modeling classes to represent the additional physical behaviour. Even so, these

modifications have minimum side effects on the already defined modeling classes.

Additionally, there are aspects related to the behaviour mathematical formulation which can

be taken into account in order to increase the simulation model adequacy. Different hypothesis

may be set to increase the simulation model efficiency in terms of computation time. For

example, the number of conditional equations to set the properties of a flowing matter may be

significantly reduced if we can assign the flow sense (see Section 5.2.2).

220 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.1. Modeling trajectories in the third and fourth layers defined by the PML environment.

Figure 5.1 illustrates these manipulation steps made through the third and fourth layers in

the PML model construction process (see the Figure 4.1). The starting point in this procedure

is the reuse of a predefined PML topological model to generate the simulation model. According

to Definition 3.1, the topological model may be represented by an atomic or a structured PML

model class (see semantic rules S14 and S15). The topological model has been drown within a

cube to symbolize the capability to extend its behaviour representation capabilities along the

adequacy and experimental framework coordinates.

5.1.1. Model behavior pruning

When a model includes a detailed and extensive representation of the system behaviour, it

is quite possible that the model results too complex for many experimentation purposes where

such a precise representation is not necessary. Hence, it may become inefficient if part of the

5.1. MODEL MANIPULATION 221

represented behaviour can be neglected. In such situation it could be very useful to have the

possibility to prune all the behaviour which is not of interest. This model reduction is error

prone, so the modeling tool should provide with mechanism to assure that the reduced model

is still valid or, at least, it does not contain incoherences from the correctness point of view, as

it has been defined in the Section 2.3.

The importance of having one single system model, preferably built at the topological spec-

ification level, which can be adapted to the experimentation purpose has been shown above

within the control design domain. This situation can be extended to other related domains such

as operator training or production planning. Different simulation models will be required at

each domain, so such a topological model must be adaptable to the experimentation purpose.

The model adaptation procedure, which probably means a model simplification and reduction,

should not imply the definition of a reduced simulation model where the formulated dynamics

can not be related to the physical behaviour, since it would not permit to easily refine the

reduced simulation model when required.

A main advantage of the PML representation framework is the possibility to obtain reduced

or simplified models by neglecting the behaviour which is not of interest for some experimentation

purpose. Considering a PML system model as an aggregation of phenomena classes, the model

behaviour pruning can be performed at a physical level by selecting only the phenomena required

for experimentation. The PML model of a heat exchanger unit (see the Figure 5.2) will be used

to illustrate the simplification procedure in order to generate different simulation model where

the phenomena of interest is mathematically formulated. A simulation model, including the

formulation of the whole behaviour represented in the PML model of the heat exchanger unit,

will be generated in a first term. Afterwards, a reduced simulation model is generated by

considering an experimental framework where the thermal phenomena occurring in the process

are considered to be irrelevant. So, a simplified model describing the fluid transport phenomenon

is more convenient for the experimentation purpose.

222 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.2. Representation of a heat exchanger

process unit.

Figure 5.3. Conceptual representation of a heat

exchanger. The unit is divided into sections in

order to avoid the use of partial differential equa-

tions to represent the thermal energy dynamics.

Example 5.1 – Model of a heat exchanger

The PML model of the heat exchanger based on the unit TS30 presented at (Mattsson 1997) is

built in this example, although some small simplifications are introduced since the main objective

of this example is to illustrate some of the PML language characteristics.

The basic idea behind the operation of a heat exchangers is to let two media, which flow on

the two sides of the wall, exchange heat through the wall without being mixed. The model of

the heat exchanger can be conceived as two ducts with a common wall through which heat can

flow (see Figure 5.2). The model will be based on this conceptual view. A common approach,

to avoid the complexity of using partial differential equations to describe the heat transfer from

the hot side to the cold side, consists in dividing the heat exchanger into a number of sections

of length ∆x along the direction of the flow (see Figure 5.3). The energy dynamics within this

section can be considered independent from the spatial coordinates when ∆x is small enough.

Such a section consists of two duct sections and one wall section. The matter transport

through the ducts and the thermal energy conduction though the wall should be modeled.

By following the steps defined by the PML methodology, the basic physical knowledge (entity,

phenomenon and law classes) is defined in first term. Many of the PML classes built at Chapter 4

can be reused by extending their declaration to the new experimental framework.

5.1. MODEL MANIPULATION 223

cp specific heat

T temperature

Tref reference temperature

rho0 density at Tref

h specific enthalpy

H Enthalpy

Table 5.1

Additional symbols used to describe the matter

thermal properties (see the Table 4.15).

phi heat flow rate

thE thermal effort

(associated to temperature)

dTh thermal gradient

Table 5.2

Symbols used to describe the thermal energy

properties.

To represent the matter thermal characteristics, new properties should be declared for the

matter entity class with respect to its declaration at Example 4.6 (see Table 5.1). Here follows

the PML code:

(entity [matter]

[properties({m,gM,w,p,rho,v,dP,x,mol,mF,

h,H,cp,T,Tref})]

);

(matter [singleComponent] []);

(singleComponent [water] []);

Additionally, an entity class is defined to describe the thermal energy. This class will be

used to model the energy transfer through the wall (see Table 5.2):

(entity [energy] []);

(energy [thermalEnergy] [properties({phi,thE,dTh})]);

Finally, an entity class is defined to describe wall material thermal properties related to the

heat conduction (see Table 5.3). This class is not derived from the matter class because it should

be avoided that the phenomena applied to matter (e.g. matter transport or heat convection)

become also applicable to the material entity. Here follows the PML code:

(entity [material]

[properties({R,Rc,Rh,Rw,Rf,lambda,d,Aw,Y})]

);

224 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

R Thermal resistance between cold and hot sides

Rc,Rh Thermal contact resistances (cold and hot surfaces)

Rw Material thermal resistance

Rf Thermal fouling resistance (deposits and dirt)

lambda Thermal conductivity

d Material thickness

Aw Contact area

Y Corrugation correction factor

Table 5.3

Symbols used to describe the wall material thermal properties.

The phenomena and law class definition follows. The transport phenomenon and law classes

defined at Example 4.1 can be reused with no modification. The remaining phenomena which

should be represented are related to the thermal energy entity: the thermal energy balance

and transport in a duct section and the heat conduction through the wall (see Listing 5.1).

The storeInternalEnergy phenomenon class is used to describe the change of the thermal

energy in the duct by means of the matter enthalpy balance (observe the link to the law class).

This phenomenon is defined for matter and thermalEnergy to guarantee its usage in a model

where these entities are aggregated since the enthalpy property in absence of matter can not be

referred. Additionally, to relate the matter enthalpy with the thermal energy is required since

the heat conduction is usually formulated in terms of the temperature of two media in contact.

The definition of a multiple entity phenomenon class is the way to assure with PML that these

relationships are fulfilled when the phenomenon class is aggregated in a model class.

The heatConduction refers also to multiple entity since the thermal energy transfer depends

on the material thermal properties. The thermal energy transport may affect to some of the

material properties depending on the modeled behaviour (e.g. certain wall thermal properties

may vary with its temperature). In spite of the material thermal properties are considered to be

constants in this example (no wall heat capacity is considered), future extensions of the experi-

mental framework make advisable to define this dependency by declaring the heatConduction

as a multiple entity phenomenon. The resolution of this dependency is let to the model classes

5.1. MODEL MANIPULATION 225

(phenomenon [storeInternalEnergy({matter,thermalEnergy})]

[enthalpyBalance({matter,thermalEnergy})->

{h(matter),cp(matter),rho(matter),thE(thermalEnergy)}]

);

(phenomenon [heatConduction({material,thermalEnergy})]

[heatFlow({material,thermalEnergy})->

{phi(thermalEnergy),dTh(thermalEnergy)}]);

Listing 5.1. Phenomenon classes to represent the thermal behaviour.

where this phenomenon can be reused, in a similar way as the assignment of the parameter

values which relate the pressure drop with the matter flow is let to the duct model (e.g. the

duct section).

The law modeling classes ruling previous phenomena should be defined to complete the basic

physical behaviour representation. When a law class is designed, certain hypothesis related

to the wanted experimental framework and the adequacy level must be stated. It does not

imply a restriction over these two factors since different law classes can be associated to a

phenomenon class. Nevertheless, the law class is used to formulate the phenomenon within

certain experimental framework and adequacy level, so its declaration is conditioned by them.

According to the heat exchanger model presented at (Mattsson 1997), the energy associated

to the matter will be described by means of its specific enthalpy (h matter property). Proceeding

this way, the specific enthalpy property can be used to represent both the thermal energy

dynamics in a duct (heat balance) and the thermal energy transport through the duct section.

The heat balance in a duct section can be represented by:

dH

dt
=

∑
i

Φi + ΦW (5.1)

where H is the matter enthalpy in the system, Φi is the enthalpy flowing through a matter port,

i is an index referring the matter ports of the system and ΦW is the rate of the heat flow across

the system contact surface.

226 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

(law [enthalpyBalance({matter,thermalEnergy})]

[{DATA({cp=4180,rho=1000}),

rho(matter)=rho,

cp(matter)=cp,

der(H(C5::matter)) = sum({portInstances({matter,

prod({w(matter),h(matter)})}),

+portInstances(phi(thermalEnergy))}),

H(matter)=prod({rho(matter),v(matter),h(matter)}),

h(matter) = prod({cp(matter),T(matter)}),

thE(thermalEnergy)=T(matter)

}]

);

Listing 5.2. PML law class to declare a feasible formulation of an enthalpy balance.

The matter enthalpy is now related to the rest of properties to be represented:

H = ρV h

h = cpT
(5.2)

where ρ is the matter density (assumed constant in this law formulation), V is the matter volume

(will depend on the process unit model) and h is the specific enthalpy, cp is the matter specific

heat capacity (assumed constant in this law formulation) and T is the matter temperature.

The thermal energy transport through the duct section (heat convection) does not require any

explicit phenomenon class since it is described by the implicit matter exchange phenomenon

through the duct matter ports. The thermal energy dynamics in a duct is formulated by the

law class shown at Listing 5.2.

The heat transfer through a material is focused on the heat flow across it in the direction

from the hot surface to the cold surface (heat flow along the material is neglected as well as its

heat capacity), which means that

∑
i

Φi = 0 (5.3)

5.1. MODEL MANIPULATION 227

(law [heatFlow({material,thermalEnergy})]

[{sum(portInstances(phi(thermalEnergy))) = 0.0,

phi(thermalEnergy) = div({dTh(thermalEnergy),R(material)})

}]

);

Listing 5.3. PML law class to declare a feasible formulation of the heat conduction through a solid

material.

where Φi is the heat flow through the material contact points (thermal energy ports) and i is

an index referring to the thermal energy ports used to represent the contact surface. The heat

flow rate across the material (i.e. the thermal energy transfer) is modeled as

ΦW =
∆Th

R
(5.4)

where R is the overall thermal resistance between the contact surfaces and ∆Th is a suitable

representation of the thermal gradient across the material (it will be calculated in the wall model

as the mean temperature difference of the matter flowing through the ducts in contact with the

wall). This behaviour formulation is represent by the law class shown at Listing 5.3.

The calculation of the dTh property (thermal gradient) is let to the wall model since it can

not be formulated by the law class in a general sense. That is, it can not be formulated without

considering the way in that the model is conceptually structured to avoid the use of partial

differential equations (see Figure 5.3).

It should be noticed that the phenomenon and law modeling classes (see Listings 5.1 to 5.3)

have been defined keeping in mind the heat exchanger unit but, actually, there is no assumption

in their declaration invalidating their reuse in a different process unit model where the thermal

behaviour could be be represent by the same phenomena (e.g. the vessel and the jacket of a

heated reaction process unit).

Once the basic knowledge has been defined, we may proceed with the second layer in construc-

tion procedure of the PML modeling library. The PML port classes to represent the exchange

228 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.4. Topology of the heat exchanger

section.

Figure 5.5. Modeling object relationships at the

PML model of the heat exchanger section.

of matter and thermal energy are defined in first term:

(port [matterPort(matter)] [{w,p}]);

(port [thermalPort(thermalEnergy)] [{phi,thE}]);

The matterPort class is reused from examples in Chapter 4. It should be remarked that

the port class declaration is independent from the phenomena aggregated into a model class.

The thermalPort class represent the exchange of thermal energy at the connection point. This

exchange phenomenon is described by the cause-effect relationship among the thermal effort thE

(associated to the temperature at the connection point) and the heat flow phi.

According to the approach adopted in (Mattsson 1997), where the heat exchanger is divided

into sections (see Figure 5.3), the model of a section should be defined. A heat exchanger

section may be viewed in turn as a structure composed by two duct sections (the hot and

cold streams) and a wall section. This topological model structure is shown in Figure 5.4.

The heat exchanger section model is defined by the interconnection of two modeling objects

(hotCoil and coldCoil) which are instances of the hexDuct model class and one modeling

object (W1) which is an instance of the wall model class. The hexDuct model class will describe

the matter transport and the thermal energy balance phenomena by aggregating the matter

and thermalEnergy entity classes as well as the matterTransport and storeInternalEnergy

5.1. MODEL MANIPULATION 229

(duct [ductWithHeatCapacity]

[{entities({thermalEnergy}),

phenomena(storeInternalEnergy({matter,thermalEnergy}))

}]

);

Listing 5.4. PML model class of a duct specialized by aggregating the thermal behaviour of the matter

entity being transported.

phenomenon classes. The wall model class will describe the heat transfer by aggregating the

thermalEnergy entity class as well as the heatConduction phenomenon class. The hexDuct and

Wall modeling objects are connected by the thermalPort ports to represent the thermal energy

interactions. Inner connections between the section and the coils matter ports are defined. This

type of connection serves to propagate a submodel unconnected port to the equivalent port of

the structured model. Hence, the heat exchanger model can be defined as the connection of the

required number of sections through its matter ports. The object diagram of the hexSection

model is shown at Figure 5.5.

The model of a duct able to represent the energy associated to the matter transfer can be

defined by extending the duct model defined at Example 4.1 (see Listing 4.7). Note that, because

of equation readability reasons, shorter names to the matter properties are given in this example

(see Tables 4.15 and 5.1). By means of inheritance, the storeInternalEnergy phenomenon is

aggregated to the duct model class as Listing 5.4 shows.

This model class does not declare the thermal energy exchange because it depends on the

approximation adopted in this specific example. Two thermal energy ports are defined in the

duct section according to the approach in (Mattsson 1997). Each of them will represent the

thermal effort (related to the matter temperature) at both ends of the duct. The heat exchanger

duct model can be defined by extending the ductWithHeatCapacity model in order to aggregate

the thermal energy interface with the wall. Listing 5.5 shows the model class which will be used

to build the heat exchanger section model. Note that this model class definition is a consequence

of the approach adopted to avoid the use of partial differential equations.

230 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

(ductWithHeatCapacity [hexDuct]

[{ports({thermalPort(PE1(thermalEnergy)),

thermalPort(PE2(thermalEnergy))}),

equations({

DATA({ductVolume=0.001})

PE1(thE(thermalEnergy))= div({P1(h(matter)),P1(cp(matter))}),

PE2(thE(thermalEnergy))= div({P2(h(matter)),P2(cp(matter))})})

}]

);

Listing 5.5. PML model class of a duct representing the matter thermal behaviour and the interaction

with the wall through heat flow.

The model of the wall is also conditioned by the way in that the dimensional dependence of

the thermal behaviour has been discretized to formulate it by means of differential equations.

As Equation 5.4 describes, the heat transfer Φ through the wall depends on the thermal gradient

∆Th and the thermal resistance R between the hot and cold surfaces. The formulation of ∆Th

and R shown bellow follows the approach given in (Mattsson 1997).

The thermal resistance is decomposed into four terms:

R = Rh +Rc +Rw +Rf (5.5)

where Rh and Rc are the thermal contact resistances between the liquid in the ducts and the

wall, Rw is the thermal resistance of the wall, Rf (zero valued in this example) is the thermal

fouling resistance due to deposits and dirt on the wall. The contact resistances between a liquid

and the wall are modeled as:

Ri = (hiAw)−1, i = {h, c} (5.6)

where hi is the surface coefficient of heat transfer (considered to be a constant in our example)

and Aw is the area of the common wall between the ducts. The thermal resistance of the wall

is calculated as:

Rw =
d

λY Aw
(5.7)

5.1. MODEL MANIPULATION 231

(model [materialProperties]

[{entities(material),

equations({

DATA({pRf=0,pLambda=387.48,pd=0.1,pAw=0.025,pY=1,hC=1e6,hH=1e6}),

Rf(material) = pRf,

lambda(material) = pLambda,

d(material) = pd,

Aw(material) = pAw,

Y(material) = pY,

R(material)=sum({Rc(material),Rh(material),Rw(material),Rf(material)}),

Rc(material)=div({1,prod({hC,Aw(material)})}),

Rh(material)=div({1,prod({hH,Aw(material)})}),

Rw(material)=div({d(material),

prod({lambda(material),Y(material),Aw(material)})})

})

}]

);

Listing 5.6. PML model class declared to compute the thermal coefficient of a material.

where d is the thickness of the wall, λ is the thermal conductivity of the wall material and Y

is a correction factor for the corrugation of the wall. The formulation of the material thermal

properties is declared in the model class shown at Listing 5.6.

Note that this model aggregates no phenomena since we are only interested in the computa-

tion of the thermal properties from physical parameters which, in this example, are considered

to be independent of any phenomenon occurrence.

The heat conduction phenomenon should be considered to complete the wall model class as

well as the formulation of the thermal gradient across the wall. The adopted approach is to take

∆Th as the log-mean temperature difference, defined as

∆Th =
∆T1 − ∆T2

ln∆T1/∆T2
(5.8)

where ∆T1 and ∆T2 are the thermal effort differences at the two ends of the duct.

232 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

(materialProperties [wall]

[{phenomena(heatConduction({material,thermalEnergy})),

entities({thermalEnergy}),

ports({thermalPort(Ph1(thermalEnergy)),

thermalPort(Ph2(thermalEnergy)),

thermalPort(Pc1(thermalEnergy)),

thermalPort(Pc2(thermalEnergy))}),

equations({

deltaT1=sum({Ph1(thE(thermalEnergy)),Pc1(thE(thermalEnergy))}),

deltaT2=sum({Ph2(thE(thermalEnergy)),Pc2(thE(thermalEnergy))}),

IF(EQ({prod({deltaT1,deltaT2}),0.0})) THEN

(dTh(thermalEnergy)=div({sum({deltaT1,-deltaT2}),2}))

ELSE IF(GT({abs(sum({deltaT1,-deltaT2})),

prod({0.05,max({abs(deltaT1),abs(deltaT2)})})})) THEN

(dTh(thermalEnergy)=div({sum({deltaT1,-deltaT2}),

ln(div({deltaT1,deltaT2}))}))

ELSE

(dTh(thermalEnergy)=

prod({0.5,sum({deltaT1,deltaT2}),

sum({1,-prod({div({pot({sum({deltaT1,-deltaT2}),2}),

prod({12,deltaT1,deltaT2})}),

sum({1,-div({pot({sum({deltaT1,-deltaT2}),2}),

prod({12,deltaT1,deltaT2})

})})

})

})

})

),

Ph1(phi(thermalEnergy))=div({phi(thermalEnergy),2}),

Ph2(phi(thermalEnergy))=div({phi(thermalEnergy),2}),

sum({Ph1(phi(thermalEnergy)),Pc1(phi(thermalEnergy))})=0,

sum({Ph2(phi(thermalEnergy)),Pc2(phi(thermalEnergy))})=0

})

}]

);

Listing 5.7. PML model class of a wall where a heat transfer phenomenon occurs.

5.1. MODEL MANIPULATION 233

(model [hexSection]

[{entities({hotMedium(matter),

coldMedium(matter)}),

ports({

matterPort(hotIn(hotMedium)),

matterPort(hotOut(hotMedium)),

matterPort(coldIn(coldMedium)),

matterPort(coldOut(coldMedium))

}),

submodels({

hexDuctWater(hotCoil(hotMedium)),

hexDuctWater(coldCoil(coldMedium)),

wall(W1)

}),

connections({

hotIn-hotCoil.P1,hotOut-hotCoil.P2,

coldIn-coldCoil.P1,coldOut-coldCoil.P2,

hotCoil.PE1-W1.Ph1,hotCoil.PE2-W1.Ph2,

W1.Pc1-coldCoil.PE1,

W1.Pc2-coldCoil.PE2

})

}]

);

Listing 5.8. Section of a heat exchanger model.

(model [heatExchanger]

[{entities({hM(matter),cM(matter)}),

ports({

matterPort(hotIn(hM)),

matterPort(hotOut(hM)),

matterPort(coldIn(cM)),

matterPort(coldOut(cM))

}),

submodels({

hexSection({

S1({hotMedium=hM,coldMedium=cM}),

S2({hotMedium=hM,coldMedium=cM}),

S3({hotMedium=hM,coldMedium=cM})

})

}),

connections({

hotIn-S1.hotIn,S1.hotOut-S2.hotIn,

S2.hotOut-S3.hotIn,S3.hotOut-hotOut,

coldIn-S1.coldIn,S1.coldOut-S2.coldIn,

S2.coldOut-S3.coldIn,S3.coldOut-coldOut

})

}]

);

Listing 5.9. Topological model of a heat exchanger

composed by three sections.

Formula 5.8 is badly conditioned if ∆T1 ≈ ∆T2 so when |∆T1 − ∆T2| < 0.05max(|∆T1| , |∆T2|)
it is better to use:

∆Th = 0.5(∆T1 + ∆T2) ×
(

1 − 1
12

(∆T1 − ∆T2)2

∆T1∆T2

[
1 − 1

2
(∆T1 − ∆T2)2

∆T1∆T2

])
(5.9)

This approach is represented by the model class shown at Listing 5.7. The formulation of Equa-

tion 5.9 has not been included at the heatTransfer law class because of its dependence between

∆Th thermal gradient and the number of thermal energy ports used in the approach adopted to

model the wall section (it should be recalled that the law class formulation can not make explicit

references to port classes). Note that ∆Th is not computed directly from the effort properties

234 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.6. Heat exchanger PML model topology.

declared by the thermal port class and a particular combination of thE(thermalEnergy) at each

of the four ports in the model is used instead. This type of problems will be treated in future

releases of the language since a more generic solution will increase the law class reusability as

well as it will reduce the number of equations formulated inside the model class to resolve certain

cause-effect physical relationships.

Once the basic knowledge and the atomic model classes are defined, the remaining work is

the topological specification of the heat exchanger section model and the heat exchanger model

itself.

According to the structure illustrated at Figure 5.4, the matter and thermal energy paths

between the duct and the wall in a section is defined by the model class at Listing 5.8. Finally,

Listing 5.9 shows the model of the heat exchanger composed by the interconnection of three

sections (according to the topology shown at Figure 5.6). The heat exchanger mathematical

model can be now generated by executing the following PMT command:

>analyze C5::heatExchanger(TS30(entities({hM=water,cM=water})))

The mathematical model is coded with the EcomsimPro language. The generated code is

listed at Appendix C.3. ❑

The mechanism provided by PML to generate simplified simulation models from a predefined

PML model class is based on the phenomena pruning. When a model class has been defined to

represent accurately the system behaviour, it is quite possible that the model results too complex

for many experimentation purposes where such a precise representation is not necessary. Since

5.1. MODEL MANIPULATION 235

the physical behaviour declaration in a PML model consists in the aggregation of phenomenon

classes, the behaviour which is not of interest for the experimentation framework can be neglected

by removing from the model the references to the unwanted phenomenon classes. The example

bellow illustrates the behaviour pruning procedure.

Example 5.2 – Behaviour pruning of the heat exchanger model

Once a PML model class is defined to represent a system physical behavior it can be reused

to generate different simulation models. This example illustrates how to prune the unwanted

behaviour declared in a predefined model class. The heat exchanger model developed at Ex-

ample 5.1 will be used for this purpose by assuming that the thermal behaviour of the hot and

cold streams may be neglected for certain experimental framework (e.g. the design of a flow

rate controller). The thermal behaviour of the matter entities has been defined in terms of the

storeInternalEnergy phenomenon class (see Listing 5.1).

The purpose of pruning a phenomenon is to achieve a simplification of the behaviour for-

mulation. However, there is information about the physical behaviour which should not be lost

in the simplification process. This is the role of the list of affected properties included in the

phenomenon class declaration (h,cp, rho for matter and thE for thermal energy). The properties

affected by the neglected phenomenon should be known to properly set the functional model

since they may be referenced by the model equations and by other coupled models even when the

phenomenon is neglected. This list is the mechanism to inform to the physical analysis procedure

which of the matter and thermalEnergy properties are affected by the storeInternalEnergy

phenomenon in a model where it is aggregated (this will explained in Section 5.2). They will

be considered as boundary conditions in the experimentation since no behavior related to the

neglected phenomena will be formulated. The PMT provides the user with a check box dialog

to select the phenomena which are of interest for his experimental framework (see Figure 5.7)

and remove the storeInternalEnergy phenomenon.

The mathematical model resulting from the duct model class simplification is shown at

Listing 5.10. Note that it just describes the matter transport phenomenon, which has been con-

236 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.7. Pruning of the neglected behaviour and selection of the law.

sidered the behavior of interest for the experimentation purposes. By comparing the simplified

duct section mathematical model with the mathematical model in Appendix C.3, it may be

observed that it contains one less derivative variable. Hence, the reduced version of the three

section heat exchanger model avoid the evaluation of six derivative variables. Under the same

numerical conditions, the whole heat exchanger simulation time takes twice the reduced model

simulation time. The reduction of the simulation time may be a very important issue in certain

applications such as real time simulators. ❑

5.1. MODEL MANIPULATION 237

COMPONENT C5HexDuctWater --IS_A C5::hexDuct

PORTS

IN C5WaterPort P1 -- On Entity: C5::water

IN C5WaterPort P2 -- On Entity: C5::water

IN C5ThermalPort PE1 -- On Entity: C5::thermalEnergy

IN C5ThermalPort PE2 -- On Entity: C5::thermalEnergy

IN waterProperties PAP_boundaryProp -- added by physical analysis procedure

DATA

-- Data declared by laws

REAL cp=4180

REAL rho=1000

-- Data declared by local equations

REAL Rfluid=0.025

REAL ductVolume=0.001

DECLS

-- Entity properties referenced by local equations

REAL C5Water_w

REAL C5Water_cp

REAL C5Water_dP

REAL C5Water_h

REAL C5Water_rho

REAL C5Water_v

CONTINUOUS

-- PHENOMENON: C5::storeInternalEnergy({matter,thermalEnergy})

-- LAW: C5::enthalpyBalance({matter,thermalEnergy})

-- NEGLECTED

-- PHENOMENON: C5::transport(matter)

-- LAW: C5::matterTransport(matter)

C5Water_w=Rfluid*C5Water_dP

P1.C5Water_w+P2.C5Water_w=0.0

-- Local model equations

PE1.C5ThermalEnergy_thE=P1.C5Water_h/P1.C5Water_cp

PE2.C5ThermalEnergy_thE=P2.C5Water_h/P2.C5Water_cp

C5Water_dP=P1.C5Water_p-P2.C5Water_p

C5Water_v=ductVolume

C5Water_w=P1.C5Water_w

-- added by physical analysis procedure

PAP_boundaryProp.C5Water_h = C5Water_h

PAP_boundaryProp.C5Water_cp = C5Water_cp

PAP_boundaryProp.C5Water_rho = C5Water_rho

END COMPONENT

Listing 5.10. Mathematical model of a the duct section neglecting the water enthalpy dynamics.

238 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

As the Example 5.2 has shown, one of capabilities of PML to produce reduced simulation

models is the pruning of the irrelevant behaviour represented by the model. However, this is not

only manipulation capability required to adapt a ready-made PML model class into different

experimentation frameworks with the desired adequacy level. Next section describes how to deal

with the simulation model adequacy.

5.1.2. Setting the adequacy level

The concept of model adequacy has been defined as a combination of accuracy and effi-

ciency. According to Definition 1.4, an adequate model should give the simplest formulation

able to represent the phenomena of interest with enough accuracy. Different simulation models

can be generated from a PML model class by setting adequacy level suitable to the simula-

tion purpose (see Figure 5.1). This second possible model adaptation is a consequence of the

multi-faceted nature of the phenomenon class. Multi-faceted phenomenon classes (see Semantic

Rule S6) permit the selection of the behaviour formulation which better suits with the desired

model adequacy. Therefore, the adequacy of the simulation model can be achieved by properly

combining the behaviour pruning mechanism together with the selection of the law formulation

which better suits with the desired accuracy. For example, a linear formulation of the matter

transport has been selected for the duct section mathematical model shown at Listing 5.10. The

selection is made through the check box shown at Figure 5.7.

The PML model classes representing the system at the topological level can be manipulated

to obtain, in an easy way, different simulation models which are adequate for the simulation

purpose, i.e., they are accurate and efficient enough for the model application. The decision

about how the model should be simplified is taken by the user according to his simulation

interest. He is helped in this task by the language expressiveness since he makes the model

manipulation operating with representation structures which explicitly describe the physical

behavior he wants to neglect or formulate in certain way.

5.1. MODEL MANIPULATION 239

5.1.3. Extending the model reusability

As it has been stressed in Section 1.2, different scopes to model reusability were considered in

the PML modeling framework design. In order to be realistic, certain experimental framework

and adequacy level should be defined when a modeling library is built from scratch. Therefore,

the possibility to extend the reusing capabilities of a predefined model along the experimentation

framework and adequacy coordinates becomes a modeling features of major relevance. The

extension of the reusability of a ready-made PML model class can be achieved by the addition

of new modeling classes able to afford system simulation applications which were not considered

at the moment of designing a modeling library. Obviously, the addition of new modeling classes

should no have side effects on the already defined classes or, at least, these effects should be

minimized. Different ways to extend the model application reusability are provided by the PML

language:

• Extension of the experimental framework:

– Addition of phenomenon and law classes to operate with new entities. No side ef-

fects on predefined model classes are expected since the reusability extension can be

achieved by means of the model parameterization (see Semantic Rule S25. For exam-

ple, the heat exchange model developed at Example 5.1 can be extended to operate

with steam as the hot stream (instead of water) by adding the law classes which

properly formulate the storeInternalEnergy and transport phenomena.

– Aggregating new phenomenon classes to a predefined model class. May have side

effects on the modified model class. Should not have side effects on the structured

(composite) models where the modified model class is a component if the new and

old model versions are polymorphic. For example, the wall model defined at Exam-

ple 5.1 could be extended by aggregating the heat capacity phenomenon which was

not considered in first term. This change would also imply the aggregation of a new

law class to formulate the heat conduction phenomenon (see Listing 5.1). However,

no side effects on the rest of model classes in the heat exchanger are expected.

240 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

• Extending the adequacy coordinate: adding new law classes to predefined phenomenon

classes (no effects on predefined model classes because of the PML phenomenon class is

multi-faceted).

5.2. Simulation model generation

The fourth layer (model experimentation) in the PML modeling approach (see Figure 4.1) in-

volves the simulation model generation. In first term, the physical analysis procedure determines

the proper physical phenomenological structure of a PML topological model (see Definition 3.1).

The resulting structure is represented by the PML functional model (see Definition 3.2), which

was introduced in the Section 3.5 and which is described with more detail here. The functional

model generation is a step previous to the mathematical formulation (the mathematical model

according to Definition 1.11) and the later simulation model generation (the simulation model

according to Definition 1.12). Previously, the PML topological model has been semantically

analyzed (see Figure 5.8). This analysis validates the model declaration by certifying that the

language semantic rules are fulfilled in the model class declaration.

5.2.1. The Physical Analysis Procedure

The Physical Analysis Procedure (PAP) is used to state the functional model describing the

phenomenological structure of the topological model, i.e., it translates the system specification

at the topological level into the phenomenological level (see Definitions 1.9 and 1.10). The

functional model can be generated once the experimental framework and adequacy level have

been set (as it is discussed in previous section) by executing the menu option shown in Figure 5.9.

The main task performed by PAP is the setting of the system aggregated physical behaviour

as it is specified at the topological level (PML topological model) by resolving the physical

causality among its components. This task is performed in two main steps:

• Local behaviour setting: determination of the behaviour locally declared by the PML

model classes (only the phenomenon and laws classes selected by the user will be mathe-

matically formulated).

5.2. SIMULATION MODEL GENERATION 241

Figure 5.8. PMT analyze menu: performs the

semantic analysis of a PML topological model.
Figure 5.9. PMT functional model menu: gener-

ates the functional model of a PML topological

model.

• Physical interaction setting: resolution of the physical interactions among the coupled

model objects from the analysis of the entity exchanges declared by their port connection

topology.

The main differences of PAP with respect the computational analysis procedure (CAP) at

the equation-based object oriented modeling languages are the mechanisms used to obtain the

aggregated behaviour of a structured model. The equation-based mechanisms are the coupling

equations (equality and sum up to zero equations) derived from the connection of the variables

declared at the model interface. The PML mechanisms are based on the two communication

rules defined by PML: communication between phenomenon, entity and law classes (Semantic

Rule S19) and communication between model classes (Semantic Rule S18).

Local behaviour setting

This step of the PAP is performed during the semantic analysis of the model. The physical

behaviour represented by the model is collected and sorted. During the behaviour collection, all

the sections in a model class declaration (phenomena, entities, ports, submodels, connections and

242 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

equations) are retrieved by tracking the model class inheritance path. The collected behaviour is

then sorted according to the inheritance hierarchy and each modeling class is analyzed to validate

its applicability within the model class. PMT organizes the representation of the physical

behaviour according to the dynamic structures shown at Figure 5.10. These structures serve

to handle the declared and, likely, inherited local behaviour . They represent the phenomena

and the entities, by considering the behaviour redefinition mechanisms provided by inheritance

(see S22, S20), redefinition (see S24) and parameterization (see S25, S26). According to this

mechanisms, phenomena can be propagated to entities added by inheritance (entity overloading)

and/or to entities redefined (entity overriding).

A list L1 is created from the phenomena declared (aggregated) in the model class. A new

entry is inserted at the list L1 of applicable phenomena for each phenomenon aggregated in the

model (e.g. transport(matter)).

A second list L2 is created for each L1 entry from the communication between phenomenon,

entity and law classes (Semantic Rule S19) by tracking the inheritance hierarchy of the entities

aggregated in the model class. Each node at this list has in turn two more lists: a list containing

the pointers to the phenomenon classes which are applicable to the declared entities and a

list containing the propagated entities (according to Semantic Rules S22, S25 and S26). The

involved entity (or entities in the case of multi-entity phenomenon) causes a new entry at the

list L2 (e.g. matter). The PML phenomenon classes which can be applicable are searched at

the phenomena tree (constructed when a modeling library is opened) and are added to the new

entry in L2. Up to this point, the physical behaviour declared by the model has been identified

and all the involved entity and phenomenon classes have been validated (semantically analyzed).

The entities aggregated in the model are propagated once every phenomenon object at the

phenomena section has been processed. Entity overloading and/or overriding history is deter-

mined by following the model inheritance hierarchy. The resulting structure is then processed

by starting at the entities declared by the most ancient model and continues to the end of the

model definition hierarchy. Each time an entity class is processed, it is determined at the phe-

nomena tree if there exists an specific phenomenon predefined for the entity. If that holds, a

5.2. SIMULATION MODEL GENERATION 243

Figure 5.10. Dynamic structures used by PMT to represent and manipulate the physical behaviour

declared by a PML model class.

new entry is created at the L2 list with the involved entity establishing the pointers with the

found phenomena. This is the mechanism defined PML in order to specialize the behaviour of

a model by means of inheritance. If no specific phenomenon classes are found, the applicable

phenomena determined at the previous stage are extended to the new entity class. Consider

that, for example, the transport(matter) phenomenon and the entity matter are aggregated

in a model. This model is then specialized by means of inheritance and the entity water rede-

fines matter. If no specific phenomena are predefined to represent the transport of water, the

transport(matter) phenomenon and their related law classes will be reused by replacing the

references to the matter entity class with references to the water entity class.

244 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.11. Dynamic structures used by PMT to represent the physical behaviour declared by the

hexDuct PML model class.

Consider the hexDuct model shown at Listing 5.5 to illustrate the whole local behaviour

setting procedure. This model inherits from the ductWithHeatCapacity (see Listing 5.5) which,

in turn, inherits from the duct model (see Listing 4.7). The resulting behaviour described by

the inherited phenomena is:

transport(matter)

storeInternalEnergy({matter,thermalEnergy})

being matter and thermalEnergy the involved entities. Two entries at list L1 are created to

register the aggregated phenomena transport and storeInternalEnergy. Two list L2 are

created at both entries. The first one contains one node for the transport PML phenomenon

class defined for the matter entity class found in the modeling library. The second list L2

contains one node for the storeInternalEnergy PML multi-entity phenomenon class defined

for matter and thermalEnergy (see Listing 5.1). Figure 5.11 shows the representation structure

5.2. SIMULATION MODEL GENERATION 245

Figure 5.12. Dynamic structures representing the physical behaviour of the hexDuct PML model class

parameterized with water.

in PMT of the hexDuct model class. Note that the communication rule S19 is applied to set

the link with the predefined PML law classes which can be reused to formulate the physical

behaviour represented by the hexDuct model class.

When the hexDuct model is reused to define the heat exchanger model, the matter entity

is redefined by means of model parameterization (see Semantic Rules S25 and S26). Hence,

in this reusing context the declared phenomena should be applied to the water entity. Model

parameterization is used when a model class instance is created either to generate a simulation

model or to define a component in an aggregated model (e.g. see Listings 5.8 and 5.9). Model

parameterization has similar effects to the redefinition mechanism in model inheritance (with

the exceptions discussed at Section 4.6). Figure 5.12 shows the representation structure in PMT

of the hexDuct model class when an instance is created by redefining matter with water.

246 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

-- PHENOMENON: C5::storeInternalEnergy({matter,thermalEnergy})

-- LAW: C5::enthalpyBalance({matter,thermalEnergy})

C5Water_rho=rho

C5Water_cp=cp

C5Water_H’=P1.C5Water_w*P1.C5Water_h+P2.C5Water_w*P2.C5Water_h+\

PE1.C5ThermalEnergy_phi+PE2.C5ThermalEnergy_phi

C5Water_H=C5Water_rho*C5Water_v*C5Water_h

C5Water_h=C5Water_cp*C5Water_T

C5ThermalEnergy_thE=C5Water_T

-- PHENOMENON: C5::transport(matter)

-- LAW: C5::matterTransport(matter)

C5Water_w=Rfluid*C5Water_dP

P1.C5Water_w+P2.C5Water_w=0.0

Listing 5.11. EcosimPro code of the hexDuct local behaviour formulated from the PML modeling classes.

Listing 5.11 shows part of the mathematical model generated from the structure at Fig-

ure 5.12 (the complete mathematical model is listed at Section C.3). The matterTransport

law has been selected in this case to formulate the transport phenomenon (note that this phe-

nomenon is declared as multi-faceted). The declared behaviour is expanded to formulate the

water transport and internal energy dynamics.

The model user can easily identify each equation at the simulation model with the formulation

of a physical phenomenon. The simulation model readability becomes a very important issue

in order to get acquainted with the relationship between the PML model class and its usage

for experimentation purposes when the simulation model is generated in a particular reusing

context. For example, when the generated simulation model needs to be simplified as it was

discussed in Section 5.1. The procedure of behaviour pruning and law class selection is performed

over the local behaviour representation structure shown at Figure 5.10. The proper simulation

model can be achieved in a small number of iterations till the desired adequacy level formulating

the phenomena of interest is reached.

5.2. SIMULATION MODEL GENERATION 247

Once the local behaviour of each model component in a structured model has been set, PAP

will proceed with the determination of the aggregated behaviour by setting the proper physical

interactions derived from the entity transfers among model components.

Physical interaction setting

The functional model structure is determined by the physical interactions which derived

from the coupled models because of the exchange of the entity class instances through port

connections together with the occurring phenomena of interest. Hence, the functional model

structure depends on the topological model structure as well as on the experimental framework

defined for its usage. PAP uses the following physical knowledge in order to set the functional

model structure:

• The entity exchange phenomenon represented by the model port connections (see Semantic

Rule S18).

• The set of entity properties affected by the phenomena of interest aggregated in the model.

This is derived from the local behaviour stated a the first step of PAP .

• The entity scope rule (see Semantic Rule S4). This rules determines which is the scope of

a reference made to an entity property.

The functional model is represented by means of a graph where the nodes are related with the

phenomena occurring at each component of the topological model and the edges represent the

physical interactions among nodes. The functional model edges consist in a set of the variables

required to represent the physical interactions which are detected among two functional model

nodes. The node interface is constituted by the variables contained at all the connected edges.

Figure 5.13 shows the relationship between the topological model decomposition structure and

the functional model structure. The structured topological model being processed to generate

the simulation model is represented at the tree top level (level 0). This model is composed by

the connection of submodels (PML model classes) which are represented at the next level. Each

submodel is recursively decomposed into submodels until atomic models are reached, giving rise

248 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Figure 5.13. Decomposition structure of the topological model and its corresponding functional model

representation structure.

to the decomposition tree shown at Figure 5.13. The physical interactions among submodels

must be resolved at each tree level since the port connection structure is always defined at a

unique level. That is, the submodel ports of a model are not accessible for the model connection

with other models. For example, the link hotIn-S1.hotCoil.P1 is not allowed in a PML

connection sentence. That was the reason for defining the inner connections which can be

observed at the hexSection and heatExchanger PML model classes at Example 5.1. An inner

connection is not interpreted as a coupling in the sense of the model communication rule S18. It

is used to propagate an unconnected submodel port to one of the ports of the aggregated model

(e.g., inner connections can be observed at the hexSection model topological view shown at

Figure 5.4).

Consequently, the functional model is also structured, i.e., a functional model node repre-

senting a non atomic (sub-)model at a given level of the tree may contain a functional model

representing the aggregated behaviour of its submodels. The functional model structure cor-

responding to the topological model decomposition tree may be observed at Figure 5.13. The

number of nodes at the functional model equals the number of model components at the topolog-

ical model. There is a pragmatic reason for this and is to preserve to a great extent the analogy

between the structure of the mathematical model and the structure of the topological model.

5.2. SIMULATION MODEL GENERATION 249

Hence, the user may have a better understanding of the mathematical model when required (see

Definition 1.11). What may likely differ from the topological model structure are the functional

model node connections representing the physical interactions among the model components in

the topological model. The physical interactions among coupled model are the consequence of

the entity exchange through ports. The entity exchange may cause a one-to-one coupled model

interaction, but also may cause interactions among model components which are not directly

connected (this matter was discussed at Section 3.2). Two types of information structures can be

associated to a functional model edge: the set of variables used to represent the entity exchange

phenomenon and/or the set of variables used to represent the physical interactions appearing

due to the entity exchange.

PAP begins the functional model generation at the top level of the topological model decom-

position tree and proceeds to the lowers levels (the inner model components of the topological

model). The functional model structure is created through this top-down path. Then, PAP

starts resolving the physical causality at the atomic model classes and process back the model

structure in a bottom-up way. The procedure executed by PAP to set the physical interactions

is summarized by the algorithm shown at Listing 5.12. The heat exchanger model developed

in Example 5.1 will be used to illustrate this procedure. The topological model decomposition

structure is shown at the PMT Model Structure window (see Figure 5.7).

The functional model nodes are defined at the first procedure step by following the heatEx-

changer decomposition tree (top-down path). The interface definition of each functional model

node (fmN from now on) starts at this step by establishing the variables which will be used to

represent the entity exchange phenomena at each model port. These variables are obtained from

the properties declared at the corresponding port class. According to the port classes defined in

the modeling library developed in Example 5.1, the w and p properties will describe the water

exchange and phi and thE the thermalEnergy exchange. The w and phi properties define the

corresponding entity exchange (see Semantic Rule S11). According to this rule, the scope of

cause-effect properties is bound to the point where the exchange phenomenon occurs, i.e., these

properties can not be propagated with the entity stream.

250 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

1. A functional model node is created for each model component of the topological model at

the decomposition tree. The physical analysis is moved to the level n, being n the deepest

tree level.

2. Physical interactions are resolved for each model component at the assigned level:

(a) if the visited component is atomic then the functional model interface is created from

the physical behavior declared by model component (phenomena classes and model

component ports).

(b) else the connection topology of each model component at this level is analyzed in order

to derive their submodel physical interactions. The corresponding functional model

node interface is created according to the model component ports.

3. The analysis is moved up on level in the decomposition tree.

4. if level > 0 then go to 2

5. Physical interactions are resolved for the root of the decomposition tree.

Listing 5.12. Functional model generation procedure.

Once the functional model structure has been created, the physical analysis starts at the

bottom level of the decomposition tree in order to determine the node connection which properly

describes the aggregated behaviour. Instances of the wall and hexDuct atomic models model

are found at this level. The local physical behaviour collected at the first main step of PAP is

now used to determine which variables are required to represent the exchanged entity properties.

Consider for example the hexDuct model (see Listing 5.5). This model has four ports declaring

the exchange of water and thermalEnergy. The water and thermalEnergy set of properties

affected by the aggregated phenomena and their corresponding selected laws is deduced from

the phenomenon class declaration (see Listing 5.1). On the one hand, the fmN associated to

this model component can be inquired by other model components about the values of this

set of of properties as far as the entities are exchanged through the model port. On the other

hand, the formulated local behaviour asks for different properties of the exchanged entities at

the different ports: the enthalpyBalance law selected to formulate the storeInternalEnergy

5.2. SIMULATION MODEL GENERATION 251

Figure 5.14. Example of a functional model node

representing the hexDuct section model.

Figure 5.15. Functional model node representing

the hexSection section model.

phenomenon refers to the water specific enthalpy h; the local equation to the specific heat cp, etc.

The question is that, except for the cause-effects properties, the values of the entity properties

referred at ports depend on the exchange sense. Hence, it should be distinguished if the entity

flows inwards or outwards the port. This question can not be locally solved since it depends

on the aggregated behaviour. Nevertheless, the fmN interface can be defined in order to solve

the undetermined coupled behaviour once the aggregated behavior is analyzed in a further step

of the procedure. It is concluded from this analysis that the {w,p,h,cp,rho} set of properties

are required at P1 and P2 ports (w and p are cause-effect properties), the {h,cp,rho} is the set

of water properties affected by local phenomena and {phi,thE} is the set of thermalEnergy

properties required at PE1 and PE2 ports (they are cause-effect properties at these ports so

they will not be carried with the entity stream). Figure 5.14 shows the fmN and its interface

representing the hexDuct model. The same procedure leads to the wall fmN.

252 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Once the analysis of all the model components at the bottom level is finished, the procedure

moves up one level. Instances of the hexSection are found at this level. This is an aggregated

model, so the objective here is to determine the couplings (edge connections) between the func-

tional model nodes associated to its submodels. The functional model edges connections are

defined according to the requirements imposed by the derived physical interactions with other

nodes. The edges which are defined in first term represent the exchange phenomenon through

connected ports. The cause-effect properties declared at the port classes are associated to these

edges. The edges representing the properties carried with the entity stream are defined in sec-

ond term by following the exchange paths. The hexSection model class connection structure

describes the set of entity exchange paths between its submodels. These paths are used by

PAP to resolve where an entity property referred in a port is affected by a phenomenon. This

information has been registered in the previous procedure step at the functional model nodes as-

sociated to the submodels (hotCoil, coldCoil and W1). The physical interactions derived from

the water exchange can not be resolved at the hexSection level and the unattached sub-node

interfaces are propagated to the fmN according to the inner connections declared at the model

class. Only the edges representing the thermalEnergy exchange can bet set. Figure 5.15 shows

the fmN and its interface representing the hexSection model. The rest of functional model

nodes at this level 1 are identical.

The procedure iterates once again arriving at the level 0 of the heatExchanger. At this level

water is exchanged between the connected hexSection components. The water properties

carried with the stream can be resolved now by following its exchange paths. It is known from

the previous iterations of the functional model generation procedure that the water properties

are affected by the physical behaviour associated to the sub-nodes (e.g. the water specific

enthalpy) when the water flows outwards the hexSection. One section is connected to the

next one by means of a matterPort, so when water flow outwards from the first section then

flown inwards the second section. Therefore, the remaining unattached interfaces of the fmN

associated to the hexSection model can be now linked by means of an edge representing the

carried properties depending on the flow sense (note that the sense is determined by the sign of

5.2. SIMULATION MODEL GENERATION 253

Figure 5.16. Functional model of the three sections heat exchanger developed at Example 5.1.

the flow property w declared at the port). Figure 5.16 shows the functional model derived from

the heatExchanger model class. The heat exchanger functional model is represented in PMT by

the dynamic structures (the graphs shown at Figures 5.14 to 5.16) found after the completion of

this procedure. PMT offers the possibility to generate a debug file where significant information

about the functional model generation procedure is registered.

There is a very important condition for this procedure success: the paths followed by an entity

stream must be unambiguous, i.e., if PAP is tracing the properties of an entity through different

model components, no more that one alternative places where the properties are affected by a

phenomenon can be found. In other case, PAP can not resolve properly the physical interaction

between the model components causing variations on the involved entity properties. That is

the reason why no port multiple connections are allowed. Hence, physical devices such as a

bifurcation pipe must represent by means of phenomenon classes how the entity properties are

propagated through the flow split. This condition can not be formulated as a semantic rule,

which would prevent from errors, since its validation can not be assured in every context.

254 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

5.2.2. The physical level to mathematical level translation

Next step in the simulation model generation is the mathematical formulation of the model

aggregated physical behaviour (see Figure 5.1). The functional model generated by PAP is used

to set the mathematical model structure.

Note that the functional model represents the modeled behavior in a modular way. The phe-

nomenological structure represented by the functional model is dynamically obtained by PAP.

This PML feature was defined as Dynamic Modularity (see Definition 3.3) and was discussed

at Section 3.5. PAP detects the behaviour which is modular to each topological component

(that is what each fmN represents) and then it resolves the physical interactions among the

components (represented by the functional model edges). The edges define the minimum set of

physical interactions since they are obtained from the requirements introduced by the physical

behaviour contained at the nodes. Hence, the functional model fulfills the modularity criteria

discussed thoroughly in Chapter 3.

The mathematical model can be easily formulated by means of an equation-based object

oriented modeling language as a consequence of the functional model modularity. Current

version of PMT generates EL code (EcosimPro Language), even future implementations will

also generate Modelica. Using these well established commercial tools as the modeling language

target at the non causal specification level is advisable because of their capability to perform the

resolution of the computational causality required to translate the mathematical model into the

simulation model. The basic principles of this modeling approach were introduced in Chapter 2.

Two basic main representation structures are provided by EL (analogous structures are found

in Modelica): the EL PORT is used to define the mathematical coupling mechanism (mathematical

interface) by defining the external or manifest variables; the EL COMPONENT is used to encapsulate

the inner or latent variables, the behavior equations which formulate the dynamics of interest and

the possible submodels and their connection topology. Hence, structured mathematical models

can be built from these modeling components according to the functional model structure and

connection topology.

5.2. SIMULATION MODEL GENERATION 255

The mathematical formulation procedure begins at the inner nodes of the functional model

(associated to the bottom level of the topological model decomposition tree) and ends at the

outer node (associated to the tree top level). This procedure is quite simple since it is almost a flat

translation of the aggregated behaviour determined by PAP into its mathematical formulation

according to the target language syntax. On the one hand, the dynamics of interest, represented

by the functional model nodes, are formulated by considering that a node may be atomic (related

to atomic model PML classes) or may point to a functional (sub)model (related to aggregated

PML model classes). On the other hand, the mathematical interfaces are defined according to

the information contained at the functional model edges.

Atomic mathematical model components

The inner nodes of the functional model are atomic, so they register the selected phenomena

of interest. The mathematical representation of the atomic functional model nodes is based

on the EL COMPONENT. Its declaration consist in the definition of the component mathematical

interface and the formulation of the selected behaviour, i.e, the formulation of the dynamics of

interest.

The declaration of the mathematical interface binds the property scope of the entity classes

which are exchanged through PML port classes. They are derived from the functional model

edges. The properties declared as flow in the PML port class will be defined as SUM at the EL

mathematical port. The rest of properties used to describe the physical interactions among PML

model class components will be defined as EQUAL at the EL mathematical port. Note that the

SUM and EQUAL qualifiers correspond to the Through and Across external variable types defined

in Section 2.2.2.

Consider for example the fmN shown at Figure 5.14. PAP has defined three type of node

interfaces to connect the edges required to describe the physical interactions with other nodes.

The mathematical PORT structures are declared directly from this node interfaces according to

EL syntax. For instance, the hexDuct node interface to the wall node is declared in EL by the

PORT structure shown at Listing 5.13.

256 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

PORT C5ThermalPort

EQUAL REAL C5ThermalEnergy_thE

SUM REAL C5ThermalEnergy_phi

END PORT

Listing 5.13. EcosimPro mathematical port describing the thermal energy coupling.

COMPONENT C5HexDuctWater --IS_A C5::hexDuct

PORTS

IN C5WaterPort P1 -- On Entity: C5::water

IN C5WaterPort P2 -- On Entity: C5::water

IN C5ThermalPort PE1 -- On Entity: C5::thermalEnergy

IN C5ThermalPort PE2 -- On Entity: C5::thermalEnergy

IN waterProperties PAP_innerProp -- added by physical analysis procedure

DATA

...

END COMPONENT

Listing 5.14. EcosimPro code describing the hexDuct mathematical interface.

The rest of PORT structure declarations for the heat exchanger can be consulted at Sec-

tion C.3. The mathematical model interface is defined by creating the proper mathematical

PORT instances according to the node interface defined by PAP. For instance, the hexDuct node

interface leads to the EL COMPONENT mathematical interface declaration shown at Listing 5.14.

As it can be observed, the mathematical model connectivity responds to the phenomenolog-

ical structure and, in this case, differs from the topological structure (compare to the hexDuct

PML model class shown at Listing 5.5).

The formulation of the dynamics of interest is made by translating the PML law class be-

haviour formulation according to EL syntax. PML model equations are also translated. Every

generated expression is parsed in order to extract the inner or latent variables. An example

of this translation procedure may be observed at the CONTINUOUS and DECLS sections of the

mathematical model shown in Listing 5.10. The C5HexDuctWater and C5Wall mathematical

models (EL atomic components) can be found in Section C.3.

5.2. SIMULATION MODEL GENERATION 257

COMPONENT C5HexSection --IS_A C5::hexSection

...

TOPOLOGY

C5HexDuctWater hotCoil

C5HexDuctWater coldCoil

C5Wall W1

CONNECT hotCoil.PE1 TO W1.Ph1

CONNECT hotCoil.PE2 TO W1.Ph2

CONNECT W1.Pc1 TO coldCoil.PE1

CONNECT W1.Pc2 TO coldCoil.PE2

...

END COMPONENT

Listing 5.15. EcosimPro code describing the hexSection mathematical components and their connection

topology.

Structured mathematical model components

The non atomic nodes formulation is based on the EL structured COMPONENT. A structured

component declares the set of aggregated COMPONENT’s and their connection topology. The

aggregated components are instances of the mathematical models generated from the atomic

nodes. Listing 5.15 shows part of the EL code corresponding to the fmN associated to the

hexSection model class.

The connection topology defines the couplings between mathematical EL ports of the de-

clared component instances. This topology responds to the edge connection structure of the non

atomic node. As it has been illustrated by the heat exchanger functional model, there are two

types of node connections defined by edges: physical interactions which do not depend on the

exchange sense and connections which depend on the sense. It might be recalled that the sense

of the entity exchange is represented by means of the flow property declared at the port classes.

The physical interaction among two functional model nodes is formulated as the connection

of the associated mathematical ports when it does not depend on the exchange sense. This is

the case of the thermal interaction between the ducts and the wall (see functional model at

Figure 5.15) as the use of the CONNECT EL sentence in Listing 5.15 illustrates.

258 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

A more complex mathematical structure is required when the physical interaction represented

by the edge depends on the exchange sense. In these cases, the external variables used to

represent the properties carried with the flow must be duplicated in order to consider when

the exchanged entity flows inwards or outwards the connected nodes. This problem is taken

into account when the functional model node interfaces are created (it has been discussed in

Section 5.2.1). The solution adopted when using EL is the definition of a component where the

effects of the flow sense change over the carried properties are formulated. Listing 5.16 shows the

component code used to represent the physical interactions among the hexSection fmN in the

heatExchanger functional model (see Figure 5.16). This component acts like a switch between

the connected water streams. When the water flow sense is positive, the mathematical port

(instances of C5WaterPort) representing the stream properties takes the values of the water

leaving the section to the left (instances of waterProperties mathematical port). The opposite

assignment is made when the water flow sense changes.

Note that neither the PML law class formulation nor the equations declared at the PML

model classes should assign the values at a PML port of the properties of the exchanged entity

which are carried with the stream. As it was discussed in Chapter 3, a free context reusable

model can not make reference to physical behaviour happening outside the system it represent

(see Example 3.1). This is not necessary anyway, since this information is deduced by PAP

from the properties affected by the aggregated phenomena together with the implicit exchange

phenomenon defined by the PML port class connection at the topological model. This type

of physical interactions is then properly formulated by the mathematical model as the heat

exchanger example has illustrated.

The mathematical model could be significantly simplified if a fixed flow sense can be assumed.

Actually, the benefits of this simplification have influence on the simulation model efficiency

since the computing time can be reduced if no state events have to be detected to propagate

the effects of the flow sense change. Current version of PMT does not support this type of

simplification, although the future research related to the generation of efficient simulation

models will contemplate it (see Section 6.2).

5.2. SIMULATION MODEL GENERATION 259

COMPONENT waterFlowEdge

PORTS

IN C5WaterPort PA

IN C5WaterPort PB

IN waterProperties PAprop,PBprop

DECLS

REAL C5Water_h

REAL C5Water_cp

REAL C5Water_rho

REAL alpha

CONTINUOUS

alpha = ZONE (PA.C5Water_w>=0.0 TOL 1e-4) 1 OTHERS 0

C5Water_h = alpha*PAprop.C5Water_h+(1-alpha)*PBprop.C5Water_h

C5Water_cp = alpha*PAprop.C5Water_cp+(1-alpha)*PBprop.C5Water_cp

C5Water_rho = alpha*PAprop.C5Water_rho+(1-alpha)*PBprop.C5Water_rho

PA.C5Water_h = C5Water_h

PA.C5Water_cp = C5Water_cp

PA.C5Water_rho = C5Water_rho

PB.C5Water_h = C5Water_h

PB.C5Water_cp = C5Water_cp

PB.C5Water_rho = C5Water_rho

PA.C5Water_p = PB.C5Water_p

PA.C5Water_w+PB.C5Water_w=0

END COMPONENT

Listing 5.16. EcosimPro code of the component used to describe the water properties carried by the flow

among the heat exchanger sections.

5.2.3. Resolution of the computational causality

The causal explanation is obtained once the non causal mathematical model has been gen-

erated. The system specification at this level should have the computational structure which

properly describes the cause-effect physical relationships in the formulated formulated behaviour.

This causal explanation is obtained by means of an external tool able to perform the formula

manipulation required to solve the computational causality. EcosimPro is used in current ver-

sion of PMT. This tool translates the system specification at the non causal level generated by

PMT into the specification at the causal level where the simulator relation is fulfilled.

260 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

Some very well known problems may arise during this translation procedure. This problems

are related to the model mathematical structure and may lead to a high index DAE or simul-

taneous systems of non linear equations. Even present tools are able to solve these problems

(numerically and/or symbolically), the model user may be disconcerted by their presence. Some

of this problems may be avoided by using the physical knowledge represented by the PML mod-

eling classes. This feature is discussed in other author works such as (Ramos 1995, Ramos et

al. 1995, Ramos et al. 1998a).

5.3. The PMT modeling tool

PMT is the modeling tool developed to process the modeling libraries developed with PML.

PMT has been developed with C++ and the GUI is based on the Windows platform in current

version (Visual C++ and MFC).

Some of the PMT functional issues have been introduced at previous sections of this chapter.

This section describes the main options to operate with a PML modeling library. A deeper

explanation is left to the PMT user’s guide (in elaboration process at the moment of writing

this document).

Figure 5.17 shows the PMT GUI. The file menu is used to open, parse and process the PML

modeling libraries. A PML library is a plain text file containing the modeling class declarations.

Only syntax analysis is performed when the library is opened, reporting to the user the possible

errors present in the modeling class declarations. The modeling class hierarchies are constructed

during the library processing. They are represented by means of five graphical trees, one for

each base PML class. The trees are shown at the left frame once a library is opened and parsed

(see Figure 5.17).

The semantics analysis of a modeling class is performed by means of the PMT analyze

command. This command may be executed either by selecting a node in the hierarchy trees with

the mouse right button (see Figure 5.8) or by using the command line placed bellow the menu

toolbar (see Figure 5.17). Every PML class can be analyzed at user demand. Possible semantic

errors (violations of the related semantic rules) can be separately detected and corrected for each

5.3. THE PMT MODELING TOOL 261

Figure 5.17. Heat exchanger PML model and entity class hierarchies.

modeling class. It should be noticed that if a modeling class semantic analysis has dependencies

with other modeling classes, the last will be also analyzed automatically. For example, every

involved entity classes and related law classes will be analyzed if the user executes the analyze

command with a phenomenon class.

The generation of the simulation model starts when the analyze command is executed with a

PML model class. A child window is created on the right frame each time a model class instance

is created. Any operation on the processed model class is performed through this window and

through the sensitive menus which are activated at this moment (see Figure 5.17). The main

operations have been described at previous sections (e.g. model behaviour pruning, law selection

262 CHAPTER 5. PML MODEL PHYSICAL ANALYSIS

or functional model generation). Additionally, the user may obtain relevant information about

the processed model class in this window. Examples are the result of the semantics analysis,

visualizing the graphical representation of the model class decomposition tree or to list the

applicable phenomenon and law classes for the aggregated or parameterized entities.

6

Conclusions and Future Research

During the last decade, very much research effort has been put in design of modeling method-

ologies able to minimize the cost of the model development task. Automating the modeling

process has been a common objective in many of the present modeling tools. The object ori-

ented methodology is a widely accepted approach to achieve the modeling automation by means

of reusability. Several current modeling environments have adopted this approach by defining

representation structures, which in some approaches can be assimilated to the concept of class,

able to encapsulate by means of mathematical interfaces the non causal equations representing

the system dynamics. However, encapsulation is not by itself the means to assure the model

reusability.

“Encapsulation for objects, a valid technique to hide complexity, does not sufficiently support

model reuse, since complying interfaces are only a necessary condition for reuse. More often,

the implementation of a model decides on possible reusability in a new context.” 1

The modeling environment reported in this thesis emerges from the need to improve the

object oriented modeling mechanisms which can be used to support a guided and automated

modeling procedure. The reasons to justify a new modeling language have been thoroughly

treated in this document. PML was originally conceived as a layer of physical knowledge built

on top of an equation-based object oriented modeling language, such as Modelica or EcosimPro,

1(Marquardt 1996)

263

264 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

in order to overcome the limitations to reusability shown by these tools. However, the limitations

shown by the mathematical formalism to represent the physical knowledge required for a free

context model reusability led us to the definition of the current PML language. The burden to

come up with a satisfactory solution is thus removed from the modeller and left to the designer

of the modeling tool.

6.1. Conclusions

This work has reported the design and implementation of PML-PMT. PML is a modeling

language conceived to embody the physical knowledge required to represent the behaviour of a

physical system. Some important conclusions and contributions can be drawn from the way to

the final result:

• The language PML defines a new dynamic modeling formalism designed to extend reusabil-

ity both in the model construction concerns and in the model usage concerns. The defined

formalism supports the explicit representation of the physical knowledge required to an-

alyze models from a physical point of view. The physical knowledge makes a difference

between system behaviour representation (description of the system physical behaviour)

and system dynamics representation (mathematical formulation of the phenomena of in-

terest). PML has been designed to fit with the Object Oriented paradigm. Recursive

structured model development is supported by means of reusability.

• PML defines a modeling framework where the system can be specified at the topological

level by connecting the models of the system components in the same way as they are

physically connected. The system topological model can be built without taking into ac-

count its application purpose, focusing its construction on the representation of all the

relevant information about the physical behaviour of the system. This specification, which

responds to the modeller demands of easy while robust model construction methods, is

automatically manipulated in order to generate the simulation model, which is the most

simplified representation of the system dynamics that preserves the experimental frame-

6.1. CONCLUSIONS 265

work and responds to the simulator relation. This translation is performed by the Physical

Analysis Procedure.

• There are two intermediate steps in this translation procedure. These steps responds to

the phenomenological structure and to the non causal explanation system specification lev-

els. The phenomenological structure is derived from the topological model and represents

the aggregated physical behaviour. It is automatically obtained by the physical analysis

of the interactions derived from the exchange of matter and energy defined by the topo-

logical model connection structure together with the modular local behaviour represented

at the coupled submodels. This feature has been defined as dynamic modularity, since

the physical behaviour represented by the reused model classes is dynamically formulated

according to their reusing physical context. The derived phenomenological structure is

represented by the PML functional model and it is mathematically formulated at the next

step (non causal specification level). This formulation is made according to the adequacy

level demanded by the user. This feature has been named as behaviour formulation dy-

namic binding. The dynamic modularity and dynamic binding capabilities are important

contributions of PML since it is the mechanism that supports the separation between the

system behaviour representation (defined by the phenomenon and law classes) and its

mathematical formulation, i.e., the system dynamics representation (obtained from the

law class attributes).

• An important contribution are the PML features supporting the definition of different ex-

perimental frameworks and adequacy levels during this translation. The very important

consequence is that the same topological model can be reused for different experimenta-

tion purposes. Hence, reusability is extended to the model usage in addition to the model

construction purpose. The model user can select the phenomena of interest for his ex-

perimental framework before generating the functional model. Then, he may easily select

the proper laws applicable to the selected phenomena in order to set the desired adequacy

level.

266 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

• The model reusability feature is extended also to the other PML modeling classes. This

is a consequence of the modular characteristic of every PML modeling class. Strict mod-

ularity requirements have been defined in this thesis in order to permit the definition of

the modeling classes without considering their reusing context. Consequently, the PML

modeling libraries may grow with minimum side-effects over the already defined modeling

classes.

• An important consequence of the stated modularity rules is that the experimental frame-

work and adequacy level can be extended with minimum, even null, side effects on the

already defined modeling classes. Model usage capabilities are therefore extended.

• With respect to the PML language pragmatic, the semantics is very closed to the user’s

physical understanding of the system, which leads to the improvement of the assistance

capabilities provided to both the model developer and the model user. The satisfactory

transparency of all details of the process model as well as of the modeling process is an

essential requirement for model reuse. The PML language set of linguistic symbols allows

an unambiguous identification of the physical concepts involved in the modeling process.

6.1.1. PML-PMT state of the art

The language and the modeling tool current version supports the modeling features re-

ported through the thesis (with the exception of the phenomenon inheritance discussed at Sec-

tion 4.6). Different academic examples have been developed, in addition to the ones formulated

in this work, in order to test the modeling environment correct operation. PML-PMT has

been presented in different conference contributions, such as (Ramos and Piera 1999, Ramos et

al. 2001, Ramos et al. 2003b). An application example can be found in (Ramos et al. 2003a).

It should be noticed that the current software implementation main objective has been the val-

idation of the modeling approach proposed in the thesis. Wide use of the PML-PMT modeling

environment for realistic problems will require of certain modifications in order to contemplate

modeling features whose implementation was not relevant for this thesis purposes. Here follows

a list of the foreseen main modifications:

6.2. FUTURE RESEARCH 267

• Implementation of semantic rules S27 and S28 in order to support phenomenon inheritance

to extent model reusability by means of parameterization.

• The PML language syntax is being redefined in order to make more readable the modeling

code.

• New attributes should be added to the entity modeling class in order to characterize the

properties by means of physical units. The inclusion of equations to describe the change

of units is being considered.

• New programming structures should be included in order to allow the definition of user

functions. New data structures such as n-dimension vectors will be also included.

6.2. Future Research

The physical knowledge represented with the PML language define a very promising research

field which should be explored. Also, certain modeling questions have not been dealt with depth

because they were out of the thesis scope. Feasible directions for future research include the

following:

• Generation of efficient models. The PML model classes representing the system at the

topological level can be manipulated to obtain, in an easy way, different simulation models

which are adequate for the simulation purpose, i.e., they are accurate and efficient enough

for the model application. Despite of this manipulation process is automated by the PMT

tool, the decision about how the model should be simplified is taken by the user. A major

issue for future research will be the automation of the model adaptation procedure in order

to avoid the user intervention in the generation of efficient simulation models. Future work

will be developed to identify which mechanisms and manipulation rules can be designed to

use the physical knowledge represented in the PML modeling classes in order to generate

efficient simulation models according to the model application demands. According to

the PML modeling environment architecture, this automated model manipulation can be

implemented by specific software tools designed to interact with PMT.

268 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

• Modeling of hybrid systems. Except for the possibility to represent state event detection

in the behaviour formulation at law classes and model equation section, PML does not cur-

rently contemplate the modeling of hybrid systems in a feasible manner. Future language

specification should contemplate how the definition of models for hybrid systems with event

propagation among model components may affect to the physical analysis procedure.

• Modeling library development. Every PML example developed in the thesis fits within the

chemical process domain. Other application domains should be explored in the future.

References

Acebes, L.F. (1996). SIMPD: Sistema Inteligente de Modelado de Procesos Dinmicos. Ph.d-

thesis. Dpt. de Ingeniera de Sistemas y Automtica. Universidad de Valladolid. Spain.

Andersson, M. (1990). Omola—An Object-Oriented Language for Model Representation. Lic.

technical thesis. Department of Automatic Control. Lund Institute of Technology.. Lund,

Sweden.

Andersson, M. (1994). Object-Oriented Modeling and Simulation of Hybrid Systems. Ph.d-

thesis. Department of Automatic Control. Lund Institute of Technology.. Lund, Sweden.

Åström, K.J., H. Elmqvist and S.E. Mattsson (1998). Evolution of continous-time modeling and

simulation. In: The 12th European Simulation Multioconference, ESM98. Manchester, UK.

Bogusch, R., B. Lohmann and W. Marquardt (2001). Computer-aided process modeling with

modkid. Computers Chemical Engineering 25, 963–995.

Brenan, K.E., S.L. Campbell and L.R. Petzold (1989). Numerical Solution of Initial-Value Prob-

lems in Differential-Algebraic Equations. North-Holland. New York.

Broenink, J. F. (1990). Computer – Aided Physical System Modeling and Simulation: A Bond-

Graph Approach. Ph.d-thesis. University of Twente. Enschede, The Netherlands.

Cellier, F. and H. Elmqvist (1993). Automated Formula Manipulation Supports Object-Oriented

Continuous-System Modeling. IEEE Control Systems.

Cellier, F.E. (1991). Continuous System Modeling. Springer-Verlag. New York.

269

270 REFERENCES

Cobas, P. and Al. (1999). EcosimPro Simulation Language. Empresarios Agrupados.

http://www.ecosimpro.com.

Elmquist, H. and Al. (1999). Modelica–A Unified Object-Oriented Language for Physical System

Modeling. Tutorial and Rationale. Modelica Design Group.

Elmqvist et Al., H. (2000). Modelica TM – A Unified Object-Oriented Language for Physical

System Modelling. In: http://www.modelica.org (Modelica Association, Ed.).

Elmqvist, H., K.J. Åström, T. Schönthal and B. Wittenmark (1990). Simnon User’s Guide.

SSPA. Göteborg, Sweden.

Glaser, J.S., F.E. Cellier and A.F. Witulski (1995). Object-Oriented power system modeling

using the Dymola modeling language. In: Object Oriented Simulation Conference. OOS’95.

Las Vegas, Nevada. pp. 141–146.

Goldberg, A. (1983). Smalltalk-80: The Interactive Programming Language. Addison-Wesley.

Gustafsson, K. (1992). Control of error and Convergence in ODE solvers. Ph.d-thesis. Depart-

ment of Automatic Control. Lund Institute of Technology.. Lund, Sweden.

Hahn, M. (1995). Object-oriented modelling of mechatronic systems. Mathematical Modeling of

Systems 1(4), 286–303.

Hopcroft, J.E. and J.D. Ullman (1979). Introduction to Automata Theory, Languages and Com-

putation. Addison-Wesley.

Jensen, K. (1997). Coloured Petri Nets. Vol. 1. Springer-Verlag.

Johansson, R. (1993). System Modeling and Identification. Prentice Hall.

Kailath, T. (1980). Linear Systems. Prentice-Hall.

Karnopp, D. and R.C. Rosenberg (1968). Analysis and Simulation of Multiport Systems. The

Bond Graph approach to Physical System Dynamics. The M.I.T. Press.

REFERENCES 271

Kheir, N.A. (1986). Systems Modeling and Computer Simulation. Marcel Dekker Inc.

Klir, G.J. (1969). An approach to General System Theory. Van Nostrand Reinhold. New York.

Klir, G.J. (1985). Architecture of System Problem Solving. Plenum Press. New York.

Kreutzer, W. (1986). System Simulation - Programming Styles and languages. Addison-Wesley.

Kuipers, B. (1986). Qualitative simulation. Aritficial Intelligence 29, 289–338.

Kuipers, B. (1989). Qualitative reasoning: Modeling and simulation with incomplete knowledge.

Automatica 25(4), 571–585.

Lien, K. and T. Perris (1996). Future directions for CAPE research. perceptions of industrial

needs and opportunities. Computers Chemical Engineering 20S, S1551–S1557.

Lohmann, B. and W. Marquardt (1996). On the systematization of the process of model devel-

opment. Computers Chemical Engineering 20S, S213–S218.

Marquardt, W. (1991). Dynamic process simulation – recent progress and future challenges. In:

Chemical Process Control CPC-IV (Y. Arkun and W.H. Ray, Eds.). pp. 131–180. CACHE,

Austin. AICHE. New York.

Marquardt, W. (1996). Trends in Computer-Aided Process Modeling. Computers Chemical En-

gineering 20(6/7), 591–609.

Mathworks (2000a). Matlab Reference Manual. The Mathworks.

Mathworks (2000b). Simulink Reference Manual. The Mathworks.

Matko, D., R. Karba and B. Zupancic (1992). Simulation and Modelling of Continuous Systems.

Prentice Hall.

Mattsson, S.E. (1992). Modelling of power systems in omola for transient stability studies. In:

IEEE Symposium on Computer-Aided Control System Design,CACSD’92. Napa, California.

272 REFERENCES

Mattsson, S.E. (1993). Towards a new standard for modelling and simulation tools. In: the 35th

SIMS Simulation Conference - Applied Simulation in Industry.

Mattsson, S.E. (1997). On modeling of heat exchangers in modelica. In: 9th European Simulation

Symposium. Passau, Germany.

Mattsson, S.E. and H. Elmqvist (1998). An overview of the modeling language modelica.. In:

Eurosim’98. Helsinki, Finland.

Meyer, B. (1997). Object-Oriented Software Construction. Prentice Hall.

Minsky, M. (1965). Matter, mind and models. In: Information Processing 1965 (W.A. Kalenich,

Ed.). Vol. I of Proceedings of IFIP Congress. Spartan Books. Washington.

Mitchel and Gauthier Associates (1986). Advanced Continuous Simulation Language (ACSL),

Reference Manual. Concord. Massachusetts.

Modelica-Association (2000). Modelica–A Unified Object-Oriented Language for Physical System

Modeling. Tutorial. Modelica Design Group.

Nayak, P.Pandurang (1995). Automated Modeling of Physical Systems. Ph.d-thesis. NASA Ames

Research Center. Moffet Field, CA (USA).

Nilsson, B. (1993). Object-Oriented Modeling of Chemical Processes. Ph.d-thesis. Department

of Automatic Control. Lund Institute of Technology.. Lund, Sweden.

Pantelides, C.C. (1988a). The consistent initialization of differential-algebraic systems. SIAM

Journal of Scientific and Statistical Computing 9, 213–231.

Pantelides, C.C. (1988b). SpeedUp – recent advances in process simulation. Computers Chemical

Engineering 12, 745–755.

Pantelides, C.C. and P.I. Barton (1993). Equation-Oriented dynamic simulation, current status

and future perspectives. Computers Chemical Engineering 17S, S263–S285.

REFERENCES 273

Pérez, R., P. Cobas and A. Garćıa (1999). Ecosim: State-of-the-art continuous simulation tool

for RCS and ECLSS. In: International Conference on Environmental Systems. Denver,

Colorado.

Piera, M.A. (1993). PMT: Un Entorno de Modelado en la Industria de Procesos. Ph.d-thesis.

Unitat d’Enginyeria de Sistemes i d’Automàtica.. Universitat Autònoma de Barcelona, Bel-

laterra. España.

Piera, M.A., J.J. Ramos and D. Luque (1998). Object-oriented modelling of process industry

systems: Constrains and expectations. In: Advances in Systems, Signal, Control and Com-

puters. Vol. 1. Durban, South Africa.

Piera, M.A., J.J. Ramos, C. de Prada and I. Serra (1996). Several advantages when using PMT

as a Dymola front-end.

Ramos, J. J., M. Gutierrez, R. Buil, M.A. Piera and M. Narciso (2003a). Generation of efficient

dynamical models for simulation optimization. In: XXV Jornadas de Automática. León.

Spain.

Ramos, J.J. (1994). Object-Oriented Modelling of Flows in Process Systems. Technical Report

TFRT-7521. Department of Automatic Control. Lund Institute of Technology. Lund, Swe-

den.

Ramos, J.J. (1995). Una metodoloǵıa de modelado orientado a objetos para la representación

del conocimiento f́ısico. Master’s thesis. Unitat d’Enginyeria de Sistemes i d’Automàtica..

Universitat Autònoma de Barcelona, Bellaterra. España.

Ramos, J.J. and M.A. Piera (1999). Need of Oject-Oriented languages for Physics Knowledge

representation in the Simulation field. In: Technology of Object-Oriented Languages and

Systems TOOLS 29 (R. Mitchell, A.C. Wills, J. Bosch and B. Meyer, Eds.). pp. 162–171.

TOOLS Conferences, Nancy. IEEE Computer Society. Los Alamitos, California.

274 REFERENCES

Ramos, J.J., M.A. Piera and D. Alsina (2001). Pml: an object-oriented modelling language for

physics knowledge representation. In: Eurosim’01. Delft, The Netherlands.

Ramos, J.J., M.A. Piera and I. Serra (1995). A modelling tool to guide computational causality

assignment through physical causality analysis. In: Eurosim’95. Vienna.

Ramos, J.J., M.A. Piera and I. Serra (1998a). The use of physical knowledge to guide formula

manipulation in system modelling. Simulation Practice and Theory 6(3), 243–254.

Ramos, J.J., Piera M.A and D. Alsina (2003b). Ecosimpro code generation from the physical

analysis of object-oriented models. In: II Jornadas de usuarios de EcosimPro. UNED.

Madrid, Spain.

Ramos, J.J., Piera M.A and I. Serra (1998b). A free context physics knowledge representation

suitable for object-oriented modeling tools. In: Eurosim’98. Helsinki, Finland.

Rimvall, M. and F.E. Cellier (1986). Evolution and Perspectives of Simulation Languages fol-

lowing the CSSL Standard. In: Modelling, Identification and Control. Vol. 6. pp. 181–199.

Rumbaugh, J., M. Blaha, W. Premernali, F. Eddy and W. Lorensen (1991). Object Oriented

Modeling and Design. Prentice Hall.

Sargent, R.W.H. (1983). Advances in modelling and analysis of chemical process systems. Com-

puters Chemical Engineering 7(4), 219–237.

Stephanopoulos, G. (1984). Chemical Process Control. An Introduction to Theory and Practice.

Prentice Hall.

Stephanopoulos, G., G. Henning and H. Leone (1990a). Model.la. a modeling language for pro-

cess engineering—I. The formal framework.. Computers Chemical Engineering 14(8), 813–

846.

Stephanopoulos, G., G. Henning and H. Leone (1990b). Model.la. a modeling language for pro-

cess engineering—II. multifaceted modeling of processing systems.. Computers Chemical

Engineering 14(8), 847–869.

REFERENCES 275

Strauss, J.C. (1967). The SCi Continuous System Simulation language (CSSL). Simulation

9, 281–303.

Stroustrup, B. (1987). The C++ Programming Language. Addison-Wesley.

Thoma, J.U. (1990). Simulation by bondgraphs: introduction to a graphical method. Springer.

Urqúıa, A. (2000). Modelado Orientado a Objetos y Simulación de Sistemas Hı́bridos en

el ámbito del Control de Procesos Qúımicos. Ph.d-thesis. Facultad de Ciencias. UNED.

Madrid. Spain.

Westerberg, A.W. and D.R. Benjamin (1983). Thoughts on a future equation-oriented flowsheet-

ing system. Computers Chemical Engineering 9(5), 517–526.

Willems, J.C. (1991). Paradigms and puzzles in the theory of dynamical systems. IEEE Trans-

actions on Automatic Control 36(3), 259–294.

Willems, J.C. (1997). On Interconnections, Control and Feedback. IEEE Transactions on Au-

tomatic Control 42(3), 326–339.

Woods, E.A. (1993). The Hybrid Phenomena Theory. PhD thesis. Department of Engeneering

Cybernetics. Norwegian Institute of Technology, NTH. Trondheim, Norway.

Zeigler, B.P. (1984). Multifacetted modelling and discrete event simulation. Academic Press.

Zeigler, B.P. (1990). Object-Oriented Simulation with Hierarchical, Modular Models: Intelligent

Agents and Endomorphic Systems. Academic Press.

Zeigler, B.P., H. Praehofer and T.G. Kim (2000). Theory of Modeling and Simulation. Academic

Press.

276 REFERENCES

A

PML Grammar

A.1. Lexical conventions

Used metasymbols (extended BNF):

[] optional item

{ } repeat zero or more times

PML defines the following lexical units:

DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

LETTERS = letters ”a” to ”z” | letters ”A” to ”Z”

A-CHAR = ” ” | LETTERS

UNSIGNED INTEGER = DIGIT { DIGIT }

UNSIGNED NUMBER = UNSIGNED INTEGER [”.” [UNSIGNED INTEGER]]

[(”e” | ”E”) [”+” | ”-”] UNSIGNED INTEGER]

STRING = ””” { any printable character } ”””

CONSTANT = ([”+” | ”-”] UNSIGNED NUMBER | STRING)

CONSTANT ID = LETTERS { A-CHAR }

The PML language is case sensitive. PML keywords and built-in operators are bold-faced and

they can not be used as a constant identifier. PML uses the same comment syntax as C++.

277

278 APPENDIX A. PML GRAMMAR

A.2. Grammar

A.2.1. Class definition

entity definition:

"(" (entity | class identifier)

"[" class identifier "]" "[" entity body "]" ");"

entity body:

[properties "(" constantId list ")"]

[components "(" classId list ")"]

pehomenon definition:

"(" phenomenon "[" class identifier "(" classId list ")" "]"

"[" phenomenon body "]" ");"

pehomenon body:

(class reference "->" property reference |
"{" class reference "->" property reference

{ "," class reference "->" property reference } "}")

law definition:

"(" law "[" class reference "]"

"[" law formulation "]" ");"

law formulation:

sentence |
"{" sentence "," phenomenon"(" classId list ")}"

port definition:

"(" (port | class identifier)

"[" class reference"]" "[" [constantId list] "]" ");"

model definition:

"(" (model | class identifier)

"[" class identifier "]"

A.2. GRAMMAR 279

"[" [entity clause] [phenomenon clause] [port clause]

[submodel clause] [connect clause] [equation clause]

"]"

");"

entity clause:

entities "(" entity clause argument |
"{" entity clause argument { "," entity clause argument } "}"

")"

entity clause argument :

classId list |
class identifier "=" classId list |
class identifier "=" "0"

phenomenon clause:

phenomena "(" class reference |
"{" class reference { "," class reference } "}"

")"

port clause:

ports "(" class reference |
"{" class reference { "," class reference } "}"

")"

submodel clause:

submodels "(" submodel clause argument |
"{" submodel clause argument { "," submodel clause argument } "}"

")"

submodel clause argument :

class identifier "(" constantId list ")"|
class identifier "(" submodel paramerization ")"

280 APPENDIX A. PML GRAMMAR

submodel parameterization :

CONSTANT ID "(" class identifier "=" classId list ")" |
CONSTANT ID "(" "{" class identifier "=" classId list

{ "," class identifier "=" classId list } "}" ")"

equation clause:

equations "(" equation ")"

property reference:

CONSTANT ID "(" class identifier ")"

class reference:

class identifier "(" class identifier ")"

constantId list:

(CONSTANT ID | "{" CONSTANT ID { "," CONSTANT ID } "}")

classId list:

(class identifier | "{" class identifier { "," class identifier } "}")

class identifier:

CONSTANT ID ["::" CONSTANT ID]

A.2.2. Equations

equation:

(sentence |
expand "({" CONSTANT ID "," sentence "})" |
"{" equation {"," equation } "}")

sentence:

(data sentence | equality sentence | if sentence | zone sentence |
procedural sentence)

A.2. GRAMMAR 281

data sentence:

DATA "(" (def data | "{" def data { "," def data } "}") ")"

def data:

CONSTANT ID ["=" CONSTANT]

equality sentence:

simple expression "=" term

if sentence:

IF "(" expression ")" THEN "(" sentence ")"

[ELSE "(" sentence ")"]

zone sentence:

(CONSTANT ID | property reference) "="

ZONE "(" expression ")" math operation

{ ZONE "(" expression ")" math operation }
OTHERS "(" expression ")" math operation

procedural sentence:

procedural "(" equation ")"

A.2.3. Expressions

expression:

(NOT "(" expression ")" |
LOGIC OPERATOR "(""{" term "," term "}"")")

term:

(CONSTANT | simple expression)

simple expression:

["+"|"-"] (property reference |
property in port | port instances | math operation)

property in port:

CONSTANT ID "(" CONSTANT ID "(" class identifier ")" ")"

282 APPENDIX A. PML GRAMMAR

port instances:

portInstances "(" expand port ")"

math operation:

MATH OPERATOR "(" ((["+"|"-"]UNSIGNED NUMBER | simple expression) |
"{" (["+"|"-"]UNSIGNED NUMBER | simple expression)

{ "," (["+"|"-"]UNSIGNED NUMBER | simple expression) } "}") ")"

expand port:

(property reference | "{" CONSTANT ID "," port expression "}")

port expression :

(property reference |
(sum | prod) "({" property reference { "," property reference }"})")

LOGIC OPERATOR = LT | LE | EQ | GE | GT

MATH OPERATOR = sin|cos|tan|asin| asin|acos|atan|abs| log|ln|exp|sqrt| instances|

div|pot|sum|prod|max|min|intgr|der

B

PML Semantic Rules

B.1. Entity class

Semantic rule S1 – Entity class declaration

The modeling class entity represents the processed physical object of a particular process. An

entity class is defined in terms of its properties. A property can be any physical quantity

characterizing the entity. An entity can be also defined in terms of its components, i.e., as an

aggregation of entities. ❑

Semantic rule S2 – Definition of entity properties.

The properties of an entity can only be defined as an attribute of the entity class. ❑

Semantic rule S3 – Multicomponent entities

A multi-component entity is an entity class where the components attribute defines a collection

of entities. Thus, an aggregation relationship between the component entities and the multi-

component entity is established. ❑

Semantic rule S4 – Access to an entity property (property scope and bindings).

An entity property can only be accessed making a reference to the owner object: an entity

instance. The access domain of a property may be:

• Global. If the property P of an entity E is referenced in a phenomenon or in a law the

reference will be observed in all the instances of the entity class.

283

284 APPENDIX B. PML SEMANTIC RULES

• Local. If the property P of an entity E is referenced in a model, in a port or as a part of

another entity (multi-component entities) its domain is confined to the behaviour declared

in the model, in the port and, in multi-component entities, to the aggregated entity.

❑

B.2. Phenomenon class

Semantic rule S5 – Phenomenon class declaration

The modeling class phenomenon represents a physical phenomenon which occurs in a system.

A phenomenon class is defined in terms of the involved entities, the laws used to describe the

phenomenon and the entity properties affected by the phenomenon.

A phenomenon class declaration is context free since it makes reference just to a non empty

collection of entity classes and to a non empty collection of law classes. No assumption on where

a phenomenon class will be used to define behaviour can be made in its declaration. ❑

Semantic rule S6 – Multi-faceted phenomenon declaration

A multi-faceted phenomenon can be ruled by different law formulations. Its class declaration

consist in setting a collection of law classes in its law attribute. Any of the laws can be selected

in a particular reusing context, provided the selection is compatible with the rest of declared

behaviour. ❑

B.3. Law class

Semantic rule S7 – Law class declaration

The modeling class law defines a particular mathematical formulation of the law which rules

a physical phenomenon. The law class is defined in terms of the involved entities and the law

formulation.

The law formulation is a PML sentence (see Appendix A) and may also include a reference

to a set of phenomena required to postulate the law properly.

B.4. PORT CLASS 285

The law formulation can only make reference to the properties of the involved entities. The

involved entities must match with the entities defined by the phenomenon the law is attached

to or, in the case of referring other required phenomena, with the entities defined by such

phenomena. If the referenced entity is multi-component, its components can be also referenced

by the law. ❑

Semantic rule S8 – References to an undetermined number of properties in the law

The law class formulation attribute can make reference to properties of entities declared in a class

port by using the language sentence portInstances. This reference will be properly expanded

in the model depending on the defined ports (see semantic rule S4 for entity access domain). ❑

Semantic rule S9 – Entity components referenced by the law class

The law class formulation attribute can make reference to properties of entities which are com-

ponents of the involved entity. A component property can be referenced explicitly or by means

of the expansible language sentence componentInstances in a n-termed math operator. ❑

B.4. Port class

Semantic rule S10 – Port class declaration

The modeling class port defines the exchange of an entity between interconnected models. The

port class is defined in terms of two attributes: the exchanged entity and the properties which

define the cause-effect relationships needed to describe the exchange phenomenon. ❑

Semantic rule S11 – Port cause-effect relationships

The couples of flow-effort properties declared in a port must define a cause-effect relationship

able to describe the entity exchange phenomenon represented by the port.

The physical quantities used to represent the exchange phenomena are circumscribed to the

port, i.e., to the point where the exchange phenomenon takes place. ❑

286 APPENDIX B. PML SEMANTIC RULES

B.5. Model class

Semantic rule S12 – Model class declaration

The model class is used to represent a system (physical device) or a part of a system. The model

class may contain the following three sections:

• Physical behaviour. It defines the behaviour of the physical system that the model will

represent. Its declaration is made by specifying the involved phenomena classes.

• Topology. This section allows the definition of structured models by specifying its submodels

and the topology of submodel connections. This topology is supposed to match the system

components topology of connections.

• Local behaviour. This section is used to represent aspects which are particular to the

represented system as, for instance, geometrical attributes of the system. A PML sentence

must be used and references to the properties of the entities represented in the model, if

any, can be made.

❑

Semantic rule S13 – Abstract Model class declaration

If the entity attribute is not defined, the model class is said to be an abstract model and no class

instance can be created. ❑

Semantic rule S14 – Atomic model class

A model class defines an atomic model if it has an empty topology section. ❑

Semantic rule S15 – Structured model class

A model class defines a structured model if it has a non empty topology section. The topology

section declares the submodels and their connection topology. When a predefined PML model

class is used as a submodel, it becomes an attribute of the structured model class named as

model instance (or model object). ❑

B.6. OBJECT ORIENTED FEATURES 287

B.6. Object Oriented features

Semantic rule S16 – Modularity

The PML classes are modular units since object orientation is primarily an architectural tech-

nique whose main contribution is the modular construction of systems. This basically means

that every definition must remain local to the class declaration or make a reference to the class

interface. ❑

Semantic rule S17 – Typing

The PML class is the type definition mechanism. The representation of every object in the

application domain should be based on a PML class. ❑

Semantic rule S18 – Communication between model classes

The model-to-model communication is described by means of the port class. The connection

of two models through their ports establishes the physical relationships between the coupled

models required to formulate the whole aggregated model behaviour in terms of the exchange

of an entity. Two connected ports must define the same entity class. ❑

Semantic rule S19 – Communication between phenomenon, entity and law classes

When a model declares a phenomenon and an entity, the relationship between the phenomenon

and the entity is used to make the instance of the proper law class giving the mathematical

formulation of the represented behaviour. ❑

Semantic rule S20 – Generic model class

Any non abstract model class may be considered an entity-generic class. An entity-generic model

class can be reused with an arbitrary number of entities.

An entity-generic model class may be reused with any entity if, and only if, the new entity

is an heir of the entity declared in the model class. ❑

Semantic rule S21 – Class inheritance

Every PML class is defined as an heir of another class known as a super class. Single inheritance

288 APPENDIX B. PML SEMANTIC RULES

is supported and every class has as ancestor one of the five basic modeling classes. ❑

Semantic rule S22 – Model class inheritance

A model class B can be declared as an heir of class A, establishing a “B is a A” relationship,

with the following type of valid specializations:

• Phenomena: class B inherits the phenomena defined by the class A. In addition, new

phenomena can be declared to represent new physical behaviour.

• Entities: the class B inherits the entities defined by the class A. In addition, new entities

can be declared.

• Ports: class B inherits the ports defined by class A. In addition, new ports can be declared.

• Submodels and connections: class B inherits the topological section defined by class A. If

class B defines a new topological section then, the topological section of A is overridden

with the exception of submodel redefinition (see semantic rule S24).

• Local behaviour: class B inherits the equation section defined by class A. If class B defines

a new equation section then, the equation section of A is overloaded.

❑

Semantic rule S23 – Entity class inheritance

An entity class B can be declared as an heir of the entity class A, establishing a “B is a A”

relationship, with the following type of valid specializations:

• Properties: class B inherits the properties defined by class A. In addition, new properties

can be declared.

• Components: class B inherits the components defined by class A. No new components can

be added or redefined in class B.

B.7. ADVANCED MODELING CONCEPTS 289

❑

Semantic rule S24 – Redefinition of model classes

The redefinition mechanism is supported in the following model class attributes:

• Submodel redefinition. Assume A is a structured model and B is an heir of A. A submodel

SA of A may be replaced in B by a model SB if, and only if, SA and SB are polymorphic.

The name of the SB instance in model B must be equal to the name given to the SA

instance in model A.

• Entity redefinition. An heir class may redefine the inherited entities if an only if the new

entities are heirs of the replaced ones. An entity may be replaced by more than one entity

in an atomic model. If the atomic model inherits ports referring to the redefined entity

classes, it must to redefine also these ports establishing the proper reference to the new

entities.

❑

B.7. Advanced modeling concepts

Semantic rule S25 – Model Parameterization.

Any non abstract PML model class may be considered as a parameterized class with respect to

the entities which it defines since the entities may be redefined when the model class instance

(model object) is created. A PML model object (see semantic rule S15) may redefine its entities

according to semantic rule S20. A parameterized model object must indicate which is the

redefined entity and by which entity is replaced. Redefinition by multiple entities are not allowed.

❑

Semantic rule S26 – Propagation of redefined entities.

When an entity is redefined in a parameterized model according to semantic rule S25, every

290 APPENDIX B. PML SEMANTIC RULES

reference to the redefined entity is replaced by the new entity. The change affects to the phe-

nomena making reference to the replaced entity and to the model objects if it is a structured

model.

The following conditions should be fulfilled allow the entity propagation:

1. Propagation on submodels: given a model object m where the entity E is aggregated, E

can be replaced by an entity G if, and only if, E is ancestor of G (S20) and m is properly

parameterized.

2. Propagation on a phenomenon: given a phenomenon F valid for an entity E, the phe-

nomenon is also valid, and therefore applicable, to an entity G if, and only if, E is ancestor

of G.

❑

Semantic rule S27 – Phenomenon abstract class

A phenomenon class is considered to be abstract when it does not establish any relationship

with a law class. An abstract phenomenon class must declare the set of properties affected by

the physical phenomena it represents. The aggregation of an abstract phenomenon class in a

model class makes this class abstract too. ❑

Semantic rule S28 – Phenomenon class inheritance

A phenomenon class may be declared as an heir of an abstract phenomenon class. The entity

declared by the inheritor phenomenon must be an heir of the entity referred by the abstract

phenomenon. An inheritor phenomenon class must establish, at least, one relationship with a

law class formulating the dynamics of the properties declared at the ancestor abstract class.

Any non abstract phenomenon class declaration is considered as final, i.e, non inheritors can be

declared. ❑

C

EcosimPro examples

This appendix includes the EcosimPro models of some of the examples developed in the text.

The code has been generated by PMT.

C.1. Example 4.1

This section shows the mathematical model generated by PMT of the process unit shown at

the Figure 4.5 (see section 4.3). The representation of the port exchanging matter is:

PORT C4MatterPort

SUM REAL C4Matter_massFlow

EQUAL REAL C4Matter_pressure

END PORT COMPONENT

The mathematical model of the tank is:

C4Tank --IS_A C4::tank

PORTS

IN C4MatterPort P1 -- On Entity: C4::matter

IN C4MatterPort P2 -- On Entity: C4::matter

IN C4MatterPort P3 -- On Entity: C4::matter

DATA

-- Data declared by local equations

REAL section=1.0

REAL pTop=1.0

REAL g=9.8

DECLS

-- Variables declared by local equations

REAL level

-- Entity properties referenced by local equations

REAL C4Matter_density

291

292 APPENDIX C. ECOSIMPRO EXAMPLES

REAL C4Matter_mass

REAL C4Matter_volume

CONTINUOUS

-- PHENOMENON: C4::store(matter)

-- LAW: C4::massBalance(matter)

C4Matter_mass’=P1.C4Matter_massFlow+P2.C4Matter_massFlow+P3.C4Matter_massFlow

-- Local model equations

P1.C4Matter_pressure=pTop

P2.C4Matter_pressure=pTop

P3.C4Matter_pressure=pTop+g*level*C4Matter_density

C4Matter_mass=C4Matter_volume*C4Matter_density

C4Matter_volume=section*level

END COMPONENT

The mathematical model of the duct is:

COMPONENT C4Duct --IS_A C4::duct

PORTS

IN C4MatterPort P1 -- On Entity: C4::matter

IN C4MatterPort P2 -- On Entity: C4::matter

DATA

-- Data declared by laws

REAL Rfluid=1.0

-- Data declared by local equations

REAL ductVolume=5.0

DECLS

-- Entity properties referenced by laws

REAL C4Matter_massFlow

-- Entity properties referenced by local equations

REAL C4Matter_pressureDrop

REAL C4Matter_volume

CONTINUOUS

-- PHENOMENON: C4::transport(matter)

-- LAW: C4::matterTransport(matter)

C4Matter_massFlow=Rfluid*ssqrt(C4Matter_pressureDrop)

C4Matter_massFlow=P1.C4Matter_massFlow

P1.C4Matter_massFlow+P2.C4Matter_massFlow=0.0

-- Local model equations

C4Matter_pressureDrop = P1.C4Matter_pressure-P2.C4Matter_pressure

C4Matter_volume=ductVolume

END COMPONENT

Finally, the mathematical model of the process is:

COMPONENT C4process --IS_A C4::model

TOPOLOGY

C4Tank mTA

C4Duct dE,dW,dV

C.2. EXAMPLE 4.5 293

CONNECT dE.P2 TO mTA.P1

CONNECT dW.P2 TO mTA.P2

CONNECT dV.P1 TO mTA.P3

END COMPONENT

C.2. Example 4.5

This section shows the mathematical model generated by PMT from the twoTanks PML topological model developed

at Example 4.5 (see section 4.6) when it is parameterized with the water entity. The representation of the port exchanging

matter is:

PORT C4MatterPort

SUM REAL C4Water_massFlow

EQUAL REAL C4Water_pressure

END PORT

The tank mathematical model is given by:

COMPONENT C4Tank --IS_A C4::tank

PORTS

IN C4MatterPort P1 -- On Entity: C4::water

IN C4MatterPort P2 -- On Entity: C4::water

IN C4MatterPort P3 -- On Entity: C4::water

DATA

-- Data declared by local equations

REAL section=1.0

REAL pTop=1.0

REAL g=9.8

DECLS

-- Variables declared by local equations

REAL level

-- Entity properties referenced by local equations

REAL C4Water_density

REAL C4Water_mass

REAL C4Water_volume

CONTINUOUS

-- PHENOMENON: C4::store(matter)

-- LAW: C4::massBalance(matter)

C4Water_mass’=P1.C4Water_massFlow+P2.C4Water_massFlow+P3.C4Water_massFlow

-- Local model equations

P1.C4Water_pressure=pTop

P2.C4Water_pressure=pTop

P3.C4Water_pressure=pTop+C4Water_density*g*level

C4Water_mass=C4Water_volume*C4Water_density

C4Water_volume=section*level

END COMPONENT

The valve mathematical code generated is:

294 APPENDIX C. ECOSIMPRO EXAMPLES

COMPONENT C4Valve --IS_A C4::valve

PORTS

IN C4MatterPort P1 -- On Entity: C4::water

IN C4MatterPort P2 -- On Entity: C4::water

DATA

-- Data declared by local equations

REAL Ap=1.0

REAL Cv=1.0

REAL ductVolume=5.0

DECLS

-- Variables declared by local equations

REAL Rfluid

-- Entity properties referenced by local equations

REAL C4Water_massFlow

REAL C4Water_pressureDrop

REAL C4Water_volume

CONTINUOUS

-- PHENOMENON: C4::transport(matter)

-- LAW: C4::matterTransport(matter)

C4Water_massFlow=Rfluid*ssqrt(C4Water_pressureDrop)

P1.C4Water_massFlow+P2.C4Water_massFlow=0.0

-- Local model equations

Rfluid=Ap*Cv

C4Water_massFlow=P1.C4Water_massFlow

C4Water_pressureDrop=P1.C4Water_pressure-P2.C4Water_pressure

C4Water_volume=ductVolume

END COMPONENT

Finally, the aggregated system mathematical model is

COMPONENT C4TwoTanks --IS_A C4::twoTanks

TOPOLOGY

C4Tank tk1,tk2

C4Valve v

CONNECT tk1.P3 TO v.P1

CONNECT v.P2 TO tk2.P3

END COMPONENT

C.3. Example 5.1

This section shows the mathematical model generated by PMT from the heat exchanger topological model developed

at Example 5.1 when it is parameterized with the water entity. The mathematical model of the hexDuct is:

COMPONENT C5HexDuctWater --IS_A C5::hexDuct

PORTS

IN C5WaterPort P1 -- On Entity: C5::water

IN C5WaterPort P2 -- On Entity: C5::water

IN C5ThermalPort PE1 -- On Entity: C5::thermalEnergy

C.3. EXAMPLE 5.1 295

IN C5ThermalPort PE2 -- On Entity: C5::thermalEnergy

IN waterProperties PAP_innerProp -- added by physical analisys procedure

DATA

-- Data declared by laws

REAL cp=4180

REAL rho=1000

-- Data declared by local equations

REAL Rfluid=0.025

REAL ductVolume=0.001

DECLS

-- Entity properties referenced by laws

REAL C5Water_H

REAL C5Water_T

REAL C5ThermalEnergy_thE

-- Entity properties referenced by local equations

REAL C5Water_w

REAL C5Water_cp

REAL C5Water_dP

REAL C5Water_h

REAL C5Water_rho

REAL C5Water_v

CONTINUOUS

-- PHENOMENON: C5::storeInternalEnergy({matter,thermalEnergy})

-- LAW: C5::enthalpyBalance({matter,thermalEnergy})

C5Water_rho=rho

C5Water_cp=cp

C5Water_H’=P1.C5Water_w*P1.C5Water_h+P2.C5Water_w*P2.C5Water_h+\

PE1.C5ThermalEnergy_phi+PE2.C5ThermalEnergy_phi

C5Water_H=C5Water_rho*C5Water_v*C5Water_h

C5Water_h=C5Water_cp*C5Water_T

C5ThermalEnergy_thE=C5Water_T

-- PHENOMENON: C5::transport(matter)

-- LAW: C5::matterTransport(matter)

C5Water_w=Rfluid*C5Water_dP

P1.C5Water_w+P2.C5Water_w=0.0

-- Local model equations

PE1.C5ThermalEnergy_thE=P1.C5Water_h/P1.C5Water_cp

PE2.C5ThermalEnergy_thE=P2.C5Water_h/P2.C5Water_cp

C5Water_dP=P1.C5Water_p-P2.C5Water_p

C5Water_v=ductVolume

C5Water_w=P1.C5Water_w

-- added by physical analisys procedure

PAP_innerProp.C5Water_h = C5Water_h

PAP_innerProp.C5Water_cp = C5Water_cp

PAP_innerProp.C5Water_rho = C5Water_rho

END COMPONENT

296 APPENDIX C. ECOSIMPRO EXAMPLES

The wall mathematical model is:

COMPONENT C5Wall --IS_A C5::wall

PORTS

IN C5ThermalPort Ph1 -- On Entity: C5::thermalEnergy

IN C5ThermalPort Ph2 -- On Entity: C5::thermalEnergy

IN C5ThermalPort Pc1 -- On Entity: C5::thermalEnergy

IN C5ThermalPort Pc2 -- On Entity: C5::thermalEnergy

DATA

-- Data declared by local equations

REAL hC=1e6

REAL hH=1e6

REAL pRf=0

REAL pLambda=397.48

REAL pd=0.1

REAL pAw=0.025

REAL pY=1

DECLS

-- Variables declared by local equations

REAL deltaT1

REAL deltaT2

-- Entity properties referenced by local equations

REAL C5Material_Aw

REAL C5ThermalEnergy_phi

REAL C5Material_R

REAL C5Material_Rc

REAL C5Material_Rh

REAL C5Material_Rw

REAL C5Material_Rf

REAL C5Material_d

REAL C5Material_lambda

REAL C5Material_Y

REAL C5ThermalEnergy_dTh

CONTINUOUS

-- PHENOMENON: C5::heatConduction({material,thermalEnergy})

-- LAW: C5::heatFlow({material,thermalEnergy})

Ph1.C5ThermalEnergy_phi+Ph2.C5ThermalEnergy_phi+\

Pc1.C5ThermalEnergy_phi+Pc2.C5ThermalEnergy_phi=0.0

C5ThermalEnergy_phi=C5ThermalEnergy_dTh/C5Material_R

-- Local model equations

C5Material_Aw=pAw

Ph1.C5ThermalEnergy_phi=C5ThermalEnergy_phi/2

Ph2.C5ThermalEnergy_phi=C5ThermalEnergy_phi/2

C5Material_R=C5Material_Rc+C5Material_Rh+C5Material_Rw+C5Material_Rf

C5Material_Rc=1/(hC*C5Material_Aw)

C5Material_Rf=pRf

C5Material_Rh=1/(hH*C5Material_Aw)

C5Material_Rw=C5Material_d/(C5Material_lambda*C5Material_Y*C5Material_Aw)

C5Material_Y=pY

C5Material_d=pd

C5ThermalEnergy_dTh=\

C.3. EXAMPLE 5.1 297

ZONE(abs(deltaT1*deltaT2)<1e-4 TOL 1e-4)

(deltaT1-deltaT2)/2

ZONE(abs(deltaT1-deltaT2)>0.05*max(abs(deltaT1),abs(deltaT2)) TOL 1e-3)

(deltaT1-deltaT2)/log(deltaT1/deltaT2)

OTHERS

0.5*(deltaT1+deltaT2)*(1-(deltaT1-deltaT2)**2/ \

(deltaT1*deltaT2)*(1 - (deltaT1-deltaT2)**2/ \

(deltaT1*deltaT2)/2)/12)

deltaT1=Ph1.C5ThermalEnergy_thE-Pc1.C5ThermalEnergy_thE

deltaT2=Ph2.C5ThermalEnergy_thE-Pc2.C5ThermalEnergy_thE

C5Material_lambda=pLambda

Ph1.C5ThermalEnergy_phi+Pc1.C5ThermalEnergy_phi=0

Ph2.C5ThermalEnergy_phi+Pc2.C5ThermalEnergy_phi=0

END COMPONENT

The mathematical model of a heat exchanger section is:

COMPONENT C5HexSection --IS_A C5::hexSection

PORTS

IN C5WaterPort hotIn -- On Entity: C5::water

IN C5WaterPort hotOut -- On Entity: C5::water

IN C5WaterPort coldIn -- On Entity: C5::water

IN C5WaterPort coldOut -- On Entity: C5::water

IN waterProperties PAP_hotCoilProp -- added by physical analisys procedure

IN waterProperties PAP_coldCoilProp -- added by physical analisys procedure

TOPOLOGY

C5HexDuctWater hotCoil

C5HexDuctWater coldCoil

C5Wall W1

CONNECT hotIn TO hotCoil.P1

CONNECT hotOut TO hotCoil.P2

CONNECT hotCoil.PAP_innerProp TO PAP_hotCoilProp

CONNECT coldIn TO coldCoil.P1

CONNECT coldOut TO coldCoil.P2

CONNECT coldCoil.PAP_innerProp TO PAP_coldCoilProp

CONNECT hotCoil.PE1 TO W1.Ph1

CONNECT hotCoil.PE2 TO W1.Ph2

CONNECT W1.Pc1 TO coldCoil.PE1

CONNECT W1.Pc2 TO coldCoil.PE2

END COMPONENT

Finally, the mathematical model of a three section heat exchanger:

COMPONENT C5TS30 --IS_A C5::heatExchanger

PORTS

IN C5WaterPort hotIn -- On Entity: C5::water

IN C5WaterPort hotOut -- On Entity: C5::water

IN C5WaterPort coldIn -- On Entity: C5::water

IN C5WaterPort coldOut -- On Entity: C5::water

TOPOLOGY

298 APPENDIX C. ECOSIMPRO EXAMPLES

C5HexSection S1

C5HexSection S2

C5HexSection S3

waterFlowEdge hFei,hFe1,hFe2,hFeo

waterFlowEdge cFei,cFe1,cFe2,cFeo

-- water PATHS

CONNECT hotIn TO hFei.PA

CONNECT hFei.PB TO S1.hotIn

CONNECT S1.hotOut TO hFe1.PA

CONNECT hFe1.PB TO S2.hotIn

CONNECT S2.hotOut TO hFe2.PA

CONNECT hFe2.PB TO S3.hotIn

CONNECT S3.hotOut TO hFeo.PA

CONNECT hFeo.PB TO hotOut

-- property flow propagation

CONNECT S1.PAP_hotCoilProp TO hFei.PBprop

CONNECT S1.PAP_hotCoilProp TO hFe1.PAprop

CONNECT S2.PAP_hotCoilProp TO hFe1.PBprop

CONNECT S2.PAP_hotCoilProp TO hFe2.PAprop

CONNECT S3.PAP_hotCoilProp TO hFe2.PBprop

CONNECT S3.PAP_hotCoilProp TO hFeo.PAprop

-- Water PATHS

CONNECT coldIn TO cFei.PA

CONNECT cFei.PB TO S1.coldIn

CONNECT S1.coldOut TO cFe1.PA

CONNECT cFe1.PB TO S2.coldIn

CONNECT S2.coldOut TO cFe2.PA

CONNECT cFe2.PB TO S3.coldIn

CONNECT S3.coldOut TO cFeo.PA

CONNECT cFeo.PB TO coldOut

-- property flow propagation

CONNECT S1.PAP_coldCoilProp TO cFei.PBprop

CONNECT S1.PAP_coldCoilProp TO cFe1.PAprop

CONNECT S2.PAP_coldCoilProp TO cFe1.PBprop

CONNECT S2.PAP_coldCoilProp TO cFe2.PAprop

CONNECT S3.PAP_coldCoilProp TO cFe2.PBprop

CONNECT S3.PAP_coldCoilProp TO cFeo.PAprop

END COMPONENT

The representation of the mathematical interfaces is:

PORT C5ThermalPort

EQUAL REAL C5ThermalEnergy_thE

SUM REAL C5ThermalEnergy_phi

END PORT

PORT C5WaterPort

EQUAL REAL C5Water_p

SUM REAL C5Water_w

EQUAL REAL C5Water_cp

EQUAL REAL C5Water_rho

C.3. EXAMPLE 5.1 299

EQUAL REAL C5Water_h

END PORT

PORT waterProperties

EQUAL REAL C5Water_h -- flowing Water enthalpy auxiliar

EQUAL REAL C5Water_cp -- flowing Water enthalpy auxiliar

EQUAL REAL C5Water_rho -- flowing Water density

END PORT

COMPONENT waterFlowEdge

PORTS

IN C5WaterPort PA

IN C5WaterPort PB

IN waterProperties PAprop,PBprop

DECLS

REAL C5Water_h

REAL C5Water_cp

REAL C5Water_rho

REAL alpha

CONTINUOUS

alpha = ZONE (PA.C5Water_w>=0.0 TOL 1e-4) 1

OTHERS 0

C5Water_h = alpha*PAprop.C5Water_h+(1-alpha)*PBprop.C5Water_h

C5Water_cp = alpha*PAprop.C5Water_cp+(1-alpha)*PBprop.C5Water_cp

C5Water_rho = alpha*PAprop.C5Water_rho+(1-alpha)*PBprop.C5Water_rho

PA.C5Water_h = C5Water_h

PA.C5Water_cp = C5Water_cp

PA.C5Water_rho = C5Water_rho

PB.C5Water_h = C5Water_h

PB.C5Water_cp = C5Water_cp

PB.C5Water_rho = C5Water_rho

PA.C5Water_p = PB.C5Water_p

PA.C5Water_w+PB.C5Water_w=0

END COMPONENT

Figures C.1 and C.2 show some simulation results of the heat exchanger model once the causal explanation is gener-

ated by EcosimPro. They are included to illustrate the simulation model operation, although no validation against real

experimental data has been made.

300 APPENDIX C. ECOSIMPRO EXAMPLES

0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Flow rate (l/s)

TIME

S3.coldCoil.C5Water_w
S3.hotCoil.C5Water_w

Figure C.1. Water mass flow rates through the hot and cold ducts of the heat exchanger.

310

320

330

340

350

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Water Temperature (K)

TIME

S3.coldCoil.C5Water_T
S3.hotCoil.C5Water_T

Figure C.2. Temperatures of the water at the hot and cold ducts of the heat exchanger.

