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Introduction

In this dissertation we will study several questions concerning the natural capacity γα
related to the signed vector valued Riesz kernels x/|x|1+α in Rn, where 0 < α < n. It
is defined as follows. For a compact set E ⊂ Rn and 0 < α < n, set

γα(E) = sup |< T, 1 >| , (1)

where the supremum is taken over all real distributions T supported on E such that
for 1 ≤ i ≤ n, the i-th Riesz potential of T , T ∗ xi

|x|1+α is a function in L∞(Rn) and

sup
1≤i≤n

∥∥∥T ∗ xi

|x|1+α

∥∥∥
∞
≤ 1.

These capacities can be understood as being certain real variable versions of analytic
capacity. The notion of analytic capacity was introduced in 1947 by L. Ahlfors [A] to
study removable singularities of bounded analytic functions. Recall that the analytic
capacity of a compact subset E of the plane is defined by

γ(E) = sup |f ′(∞)|,

where the supremum is taken over those analytic functions on C\E such that |f(z)| ≤ 1,
for z /∈ E. Ahlfors proved that a set is removable for bounded analytic functions if and
only if it has zero analytic capacity.

When working with analytic capacity one uses often properties of the Cauchy ker-
nel 1/z such as oddness and homogeneity, but it is unclear how important analiticity
actually is. In fact, one can define analytic capacity without making any reference to
analyticity in the form

γ(E) = sup | < T, 1 > |,

where the supremum is taken over all complex distributions T supported on E such
that the Cauchy potential of T , f = 1

z
∗ T , is a function in L∞(C) satisfying ‖f‖∞ ≤ 1.

Thus clearly γα can be considered as a real variable version of analytic capacity
associated to the vector valued Riesz kernel x

|x|1+α in Rn. For n ≥ 2 and α = n−1, γn−1

is Lipschitz harmonic capacity (see [V1], [Par], [MP] and [Vo]).

We introduce now the analytic capacity γ+ of a compact set E as

γ+(E) = supµ(E),
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where the supremum is taken over all positive measures supported on E such that the
Cauchy transform f = 1

z
∗µ is a function in L∞(C) with ‖f‖∞ ≤ 1. Then, by definition,

for n = 2, writing 1
z

= x
|z|2 − i y

|z|2 , where z = x+ iy, we have

γ+(E) ≤ γ1(E) ≤ γ(E).

Hence due to the celebrated Theorem of X. Tolsa [T2], saying that

γ(E) ≤ Cγ+(E), (2)

we get that on compact subsets of the plane, these three capacities are comparable.
Inequality (2), was first proved for generalized four-corners Cantor sets by J. Mateu, X.
Tolsa and J. Verdera ([MTV]). To prove (2) for any compact set one needs to overcome
formidable technical complications and introduce new ideas.

According to the classical case, if we want to study how the set function γα behaves,
we first have to take into account the role played by the “size” of the set. More precisely
in terms of Hausdorff dimension (denoted by dim) we have:

1. If dim(E) > α then γα(E) > 0.

2. If dim(E) < α then γα(E) = 0.

This says that the critical situation occurs in dimension α, in accordance with the
classical case.

An interesting fact of the capacities γα, 0 < α < n, is that they behave differently
when dealing with integer or non-integer indexes α. For example let α be an integer and
E a compact subset of an α-dimensional smooth surface with positive α-dimensional
Hausdorff measure. Then one can show that γα(E) > 0, which means that, in partic-
ular, there exist sets with finite α- dimensional Hausdorff measure and positive γα. In
[MP] the authors study γn−1(E) on sufficiently regular hypersurfaces, for example on
Lipschitz graphs or bilipschitz images of Rn−1. More precisely, it is shown that on such
surfaces, γn−1 is comparable to Hn−1. (see [Par] or [MP]).

In constrast to this, in the first part of this dissertation we show that for 0 < α < 1,
the capacity γα vanishes on compact sets E ⊂ Rn with finite α-Hausdorff measure,
namely we show that

Theorem A. Let 0 < α < 1 and let E ⊂ Rn be a compact set with Hα(E) < ∞ .
Then γα(E) = 0.

The techniques that we use are based on the so called symmetrization method and
they do not extend to indexes α > 1. We will explain these techniques below. However,
we can extend the previous result to indexes 1 < α < n, α /∈ Z, assuming Ahlfors-David
regularity of the sets we are dealing with. Recall that a set E in Rn is Ahlfors-David
regular of dimension α if there exists a constant C > 0 such that

C−1rα ≤ Hα(E ∩B(x, r)) ≤ Crα,
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whenever x ∈ E and r ∈ (0, d(E)). By d(E) we denote the diameter of the set E.
Notice that a compact Ahlfors-David regular set of dimension α satisfies Hα(E) <∞.

The statement of the precise result is

Theorem B. Let E ⊂ Rn be a compact Ahlfors-David regular set of non-integer
dimension α, 0 < α < n. Then γα(E) = 0.

The proofs of the above two Theorems are based on the relation between the capacity
γα of a set E and the L2-boundedness of the α−Riesz operators on E. Before explaining
this relationship, we will first deal with the corresponding one between analytic capacity
and L2-boundedness of the Cauchy integral operator.

We have already said that having zero analytic capacity is equivalent to the fact
of being removable for bounded analytic functions. But this is far from giving any
geometric characterization of such sets. This has been called traditionally the Painlevé
problem. In 1967, Vitushkin conjectured that for sets E with finiteH1 measure, γ(E) =
0 is equivalent to the fact that H1(E∩Γ) = 0, for every rectifiable curve Γ. Notice that
if the above statement is true, then Painlevé’s problem is solved for sets of finite length.
The proof of the first half of Vitushkin’s conjecture was done in 1977 by A. Calderón
[C], who proved the L2-boundedness of the Cauchy integral on Lipschitz graphs with
small enough Lipschitz constant . From this result it follows that if E ⊂ C is a compact
set with 0 < H1(E) < ∞ and γ(E) = 0, then H1(E ∩ Γ) = 0 for any rectifiable curve
Γ ⊂ C. Thus it was clear that the removability of a set E was closely related to the
L2−boundedness of the Cauchy operator on E. The proof of the other implication came
years later after the discovery of the very important identity, see (3) below, relating the
L2-norm of the Cauchy integral operator and Menger curvature. We shall explain now
this relationship, that is, the symmetrization method, which has been a really useful
tool for the study of analytic capacity and L2- boundedness of the Cauchy integral
operator (see [V3], [MV] and [MMV] for example ; the survey papers [D3], [V5] and
[T5] contain many other references as well as the book [Pa2]).

In 1995, M. Melnikov [Me] rediscovered the Menger curvature when he was studying
a discrete version of analytic capacity. Let z1, z2 and z3 be three non collinear points
in C (in particular z1, z2 and z3 are distinct). Then the Menger curvature c(z1, z2, z3)
of z1, z2 and z3 is the inverse of the radius of the circle passing through z1, z2 and z3.
When the three points are collinear, we set c(z1, z2, z3) = 0. Then one finds out, by an
elementary computation that

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(3)

where the sum is taken over the six permutations of the set {1, 2, 3}. In particular this
formula shows that the sum over σ on the right hand side is real and non-negative.

On the other hand, when one tries to extend the previous identity to higher dimen-
sions, nothing similar occurs for the Riesz kernel kα(x) = x/|x|1+α with α > 1 (see
[F] where he shows it for integers α with α > 1 ). In this dissertation we show that
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for 0 < α < 1, when symmetrizing the vector valued Riesz kernel kα, we still obtain a
positive quantity.

For 0 < α < n consider the analogue of the right hand side in (3) for the Riesz
kernel kα, ∑

σ

xσ(2) − xσ(1)

|xσ(2) − xσ(1)|1+α

xσ(3) − xσ(1)

|xσ(3) − xσ(1)|1+α
, (4)

where the sum is taken over the six permutations of the set {1, 2, 3}. Observe, however,
that if σ is a transposition of two numbers in {1, 2, 3} then the term one obtains is one
of the three terms associated to the permutations (1, 2, 3), (2, 3, 1), (3, 1, 2). Thus (4)
is exactly

2 pα(x1, x2, x3),

where pα(x1, x2, x3) is defined as the sum in (4) taken only on the three permutations
(1, 2, 3), (2, 3, 1), (3, 1, 2).

In the first chapter it is shown that when x1, x2, and x3 are three distinct points in
Rn, then

2− 2α

L(x1, x2, x3)2α
≤ pα(x1, x2, x3) ≤

21+α

L(x1, x2, x3)2α
, (5)

where L(x1, x2, x3) is the largest side of the triangle determined by the three points x1,
x2 and x3. Notice that in particular this means that, for 0 < α < 1, pα(x1, x2, x3) is a
positive quantity. Also, when α = 1 the left hand side in (5) is identically zero and the
inequality becomes trivial.

We will make here a small computation to illustrate the phenomenon of change of
signs when 1 < α < n.

Notice first that if x1, x2, x3 ∈ Rn, (4) can be written as

pα(x1, x2, x3) =
cos(θ23)|x2 − x3|α + cos(θ13)|x1 − x3|α + cos(θ12)|x1 − x2|α

|x1 − x2|α|x1 − x3|α|x2 − x3|α
,

where θij is the angle opposite to the side xixj in the triangle determined by x1, x2, x3.

Denote by lij = |xi − xj|, for i 6= j, i, j ∈ {1, 2, 3}.
Let n = 2 and take x1, x2 and x3 on the x-axis such that l12 > l13 > l23, then

pα(x1, x2, x3) =
lα23 + lα13 − lα12

lα12l
α
13l

α
23

< 0,

because α > 1 and l12 = l23 + l13. On the other hand, if the three angles are in [0, π/2]
and l12 ≥ l13 ≥ l23. Then we have
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pα(x1, x2, x3) =
1

lα12l
α
13

(
cos(θ23) + cos(θ13)

lα13

lα23
+ cos(θ12)

lα12
lα23

)

≥ 1

lα12l
α
13

(cos(θ23) + cos(θ13) + cos(θ12)) ≥
1

lα12l
α
13

> 0.

We return now to the classical setting. For a positive Borel measure µ in C, the
curvature of µ is defined as

c2(µ) =

∫∫∫
c(x, y, z)2dµ(x)dµ(y)dµ(z).

This notion was introduced by M. Melnikov in [Me], where he showed that

γ(E) ≥ C sup
‖µ‖3/2

(‖µ‖+ c2(µ))1/2
, (6)

for some absolute constant C and the supremum taken over all positive finite Radon
measures µ supported on E with linear growth, that is, µ(B(x, r)) ≤ r for all discs
B(x, r) ⊂ C. In particular the equivalence (6) shows that γ(E) > 0 provided that E
supports some positive finite Radon measure with µ(B(x, r)) ≤ r for all x ∈ C, r > 0,
and c2(µ) <∞.

On the other hand, due to a result of M. Melnikov and J. Verdera [MV], it turns
out that the curvature of a measure is closely related to the Cauchy integral of this
measure. They showed that for a measure µ with linear growth, the L2(µ)-norm of the
Cauchy integral of the positive finite measure µ, is comparable to c2(µ) + ‖µ‖, that is

‖C(µ)‖2
L2(µ) ≈ c2(µ) + ‖µ‖, (7)

where the notation A ≈ B means, as it is usual, that for some constant C one has
C−1B ≤ A ≤ CB.

Using Menger curvature and previous work of M. Christ [Ch2], P. Mattila, M. Mel-
nikov and J. Verdera [MMV] proved the Vitushkin conjecture for Ahlfors-David regular
sets, namely that compact sets E ⊂ C with 0 < H1(E) < ∞ and H1(E ∩ Γ) = 0 for
any rectifiable curve Γ ⊂ C, have γ(E) = 0. The solution of the conjecture for any
compact set was obtained by G. David in [D2]. To prove Vitushkin’s conjecture with-
out any regularity condition, it has been necessary to study the L2-boundedness of the
Cauchy integral operator with respect to measures which are non-doubling. Recall that
a measure µ is doubling if µ(2B) ≤ Cµ(B) for all balls, where 2B is the ball concentric
with B but with double radius. A non-homogeneous Calderón-Zygmund theory has
been developed (see [T1], [NTV3]). In fact, the solution of the Vitushkin’s conjecture
follows from a T (b)-type Theorem for non-doubling measures.

X. Tolsa [T1] showed a T (1)-Theorem for the Cauchy integral operator with respect
to an underlying measure µ which is not assumed to satisfy the standard doubling
condition. Namely he proved that if µ is a continuous positive Radon measure with
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linear growth and such that c2(µ|B) ≤ Cµ(B) for all discs B ⊂ C, then the Cauchy
integral operator is bounded on L2(µ). Notice that, by the result of [MV], see (7), the
conditions required to the measure µ in Tolsa’s T (1)-Theorem are equivalent to∫

B

|Cε (χBµ))|2 dµ ≤ Cµ(B), for all discs B ⊂ C, (8)

where

Cε(µ)(y) =

∫
|y−z|>ε

dµ(z)

z − y
, y ∈ C

is the truncated Cauchy integral operator.
We remark that if the measure µ is doubling, then condition (8) is easily seen to

be equivalent to requiring that Cε(µ) belongs to BMO(µ), uniformly in ε. Hence the
result can be understood as a T (1)-Theorem for a continuous positive measure non
necessarily doubling (see [D1] for the standard formulation of the T (1)-theorem). The
same result has been proved, independently, by Nazarov Treil and Volberg, where fairly
more general Calderón-Zygmund operators are considered. The arguments in [T1] are
of complex analytic nature and exploit Menger curvature, which is a tool very specific
for the Cauchy kernel. In [V4] there is an alternative proof of the same result, which
also uses Menger curvature but does not use any complex analysis.

After David’s solution of Vitushkin’s conjecture, F. Nazarov, S. Treil and A. Volberg
[NTV3] proved a T (b)-Theorem useful for dealing with analytic capacity. Their theorem
gives also an alternative solution to the Vitushkin’s conjecture.

These T (b)-Theorems on non-homogeneous spaces have been an important ingredi-
ent, together with the curvature of a measure for the impressive progress made recently
to solve old important problems concerning analytic capacity (see [D2], [MTV], [NTV3],
[T2] and [T4]).

As we said before, the proofs of Theorems A and B are based on the relation between
the capacity γα and the L2-boundedness of the α−Riesz operators. David and Semmes
have studied singular integrals on integral dimensions and rectifiable sets. If α ∈ Z
and µ is a surface measure on a sufficiently nice α-dimensional surface, for example a
Lipschitz graph, then the α-Riesz operator is bounded on L2(µ). It turns out that if
E is an Ahlfors-David regular set and the operators corresponding to the Riesz kernels
xi/|x|1+α, 0 < α < n, i = 1, ..., n are bounded on L2(Hα

|E), then α must be an integer

(see [Vi]). The result in [Vi] is proved by using an approach based on tangent measures,
in which the Ahlfors-David regularity condition is strongly used. If we knew how to
generalize Vihtilä’s result, namely, if we could show that for α /∈ Z, compact sets
E ⊂ Rn with finite Hα-measure have unbounded α−Riesz transform in L2(Hα

E), then
we would be able to extend Theorem A to all indexes 0 < α < n such that α /∈ Z.
However, we do not know how to prove this result for general sets with finite non-integer
α-Hausdorff measure. On the other hand, we do have a result when 0 < α < 1. The
proof of Theorem A is based on the following. Given a positive finite Radon measure
µ, set
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pα(µ) =

∫∫∫
pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3).

If we assume that µ(B(x, r) ≤ Crα, then, arguing as in [MV], but with pα(µ) instead
of with c2(µ), we obtain that the L2(µ)-norm of the α−Riesz operator is comparable
to pα(µ) + ‖µ‖, that is,

‖Rα(µ)‖2
L2(µ) ≈ pα(µ) + ‖µ‖ (9)

In the first Chapter of this dissertation, we can show that for 0 < α < 1,

pα(µ) = +∞, (10)

for every positive Borel measure µ with

0 < lim sup
r→0

µ(B(x, r))

rα
<∞

for µ almost all x ∈ Rn. (10) holds because for 0 < α < 1, in contrast with the case
α = 1, the positivity of the permutations comes with lower bounds (see (5) above).

Thus, due to (9), for such a measure µ, the α−Riesz operator is not bounded in
L2(µ). Namely, there are no sets of finite α-dimensional measure where the α-Riesz
kernel is bounded. Hence one gets zero capacity for all such sets. All this happens
without the Ahlfors-David regularity assumption. The fact that pα(x1, x2, x3) ≥ 0 only
for 0 < α ≤ 1, explains our restriction on α in Theorem A. In proving Theorem A we
also have to adapt a deep recent result of Nazarov, Treil and Volberg [NTV3] on the L2

boundedness of singular integrals with respect to very general measures. One cannot
apply directly the Nazarov Treil and Volberg T (b)-Theorem in [NTV3] to our α−Riesz
operators. It is necessary to find an apropriate substitute for what they call suppressed
operators. In Section 2 of the first Chapter, it is shown that at least there are two
suitable versions of such suppressed operators that work for the α−Riesz transforms,
0 < α < n.

The proof of Theorem B follows the ideas of a well known result of Christ [Ch2]
stating that if an Ahlfors-David regular set E of dimension 1 in the plane has positive
analytic capacity then the Cauchy integral operator is bounded in L2(F,H1), where F
is another Ahlfors-David regular set such that H1(E∩F ) > 0. Then the main difficulty
for us to adapt Christ’s result lies in the fact that if α is non-integer then, according to
Vihtilä’s result there are no Ahlfors-David regular sets E on which the α-dimensional
Riesz operator is bounded in the space L2(E,Hα). This prevents us from adapting
directly Christ’s arguments and then we are forced to find a way around, which turns
out to be rather lengthy and involved. To prove Theorem B, we suppose that we have
positive γα capacity and then by means of a stopping time argument, in which we use
the set itself to construct pieces of the new one, we manage to construct an Ahlfors-
David regular set F whose intersection with the initial set E has positive α−Hausdorff
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measure and where the α−Riesz operator is bounded in L2(F,Hα). Thus Vihtilä’s
result gives the desired contradiction.

The capacity γα,+ is defined as γα, but the supremum in (1) taken only over positive
measures. In Chapter 3, we will prove that for 0 < α < n, γα,+ is countably semiaddi-
tive. This can be used, coupled with an idea of Pajot, to extend Theorem B to a more
general setting. Pajot proved in [Pa1] that for 0 < α < n and α ∈ Z, a compact set
with finite α-Hausdorff measure and satisfying some density condition can be covered
by a countable union of Ahlfors-David regular sets of dimension α. This result extends
directly to any 0 < α < n and so we can prove the following

Theorem C. Let 0 < α < n, α /∈ Z and let E ⊂ Rn be a compact set with
Hα(E) <∞, such that for all x ∈ E,

0 < θα∗ (x,E) ≤ θ∗α(x,E) <∞.

Then γα(E) = 0.

Recall that the quantities θα∗ (x,E) and θ∗α(x,E) are the lower and upper densities
of E in x. They are defined by

θα∗ (x,E) = lim inf
r→0

Hα(E ∩B(x, r))

rα

and

θ∗α(x,E) = lim sup
r→0

Hα(E ∩B(x, r))

rα
.

It seems that one can extend the results concerning analytic capacity and Menger
curvature to results involving the capacity γα and the quantity pα, for 0 < α < 1. In
this fashion, we obtain in Chapter 2 a characterization of the capacity γα,+, 0 < α < 1,
in terms of the quantity pα. We need to introduce first some notation. For a positive
Radon measure µ in Rn, 0 < α < 1 and x ∈ Rn, set

p2
α(µ)(x) =

∫
Rn

∫
Rn

pα(x, y, z)dµ(y)dµ(z),

Mαµ(x) = sup
r>0

µ(B(x, r))

rα

and

Uµ
α (x) = Mαµ(x) + pα(µ)(x).

Notice that pα(µ) =
∫

Rn p
2
α(µ)(x)dµ(x). The potential Uµ

α is analogue to the one
introduced in [V4]. The energy associated to this potential is



9

Eα(µ) =

∫
Rn

Uµ
α (x)dµ(x).

Then we obtain

Lemma D. For each compact set K ⊂ Rn and 0 < α < 1 we have

γα,+(K) ≈ sup
ν

1

Eα(ν)
,

where the supremum is taken over the probability measures ν supported on K.

The proof of γ ≈ γ+ in [T2] (or the same result for the continuous analytic capac-
ity proved in [T3]), involves Calderón-Zygmund theory on a non-homogeneous setting,
localization of the Cauchy kernel and the fact that the symmetrization of the Cauchy
kernel gives a non-negative quantity. These three ingredients remain valid when in-
stead of γ, we consider the capacity γα for 0 < α < 1. The localization of the α−Riesz
potential for 0 < α < n is proved in Chapter 2. We show that for a given infinitely
differentiable function ϕQ supported on 2Q, Q ⊂ Rn being a cube, the fact that the
potential T ∗ x

|x|1+α , 0 < α < n, is a function in L∞(Rn) implies that ϕQT ∗ x
|x|1+α

belongs also to L∞(Rn). Hence one can adapt the proof in [T2] (taking into account
some adjustments introduced in [T3]) to get that

Theorem E. For compact sets K ⊂ Rn and 0 < α < 1, we have

γα(K) ≈ γα,+(K).

Thus using Lemma D, we have a description of γα in terms of the energy Eα.
Moreover, for a positive measure µ in Rn and 0 < α < 1, due to the lower inequality in
(5) we get the following equivalence,

Eα(µ) ≈
∫ ∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x). (11)

Notice that the expression on the right hand side of (11) is nothing but the energy
associated to the Wolff potential W µ

2
3
(n−α), 3

2

of the measure µ. Recall that given 1 <

p <∞ and 0 < sp ≤ n, the Wolff potential W µ
s,p is defined by (see [AH], p. 45)

W µ
s,p(x) =

∫ ∞

0

(
µ(B(x, r))

rn−sp

)p′−1
dr

r
, x ∈ Rn,

where p′ = p/(p− 1) is the exponent conjugate to p. Let

Es,p(µ) =

∫ ∫ ∞

0

(
µ(B(x, r))

rn−sp

)p′−1
dr

r
dµ(x)
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be the energy associated to the Wolff potential W µ
s,p. Recall now that for any compact

set K ⊂ Rn and p, s as above, the Riesz capacity Cs,p is defined by

Cs,p(K) = inf{‖ϕ‖pp : ϕ ∗ 1

|x|n−s
≥ 1 on K},

where the infimum is taken over all compactly supported infinitely differentiable func-
tions on Rn.

By Wolff’s inequality ([AH], Theorem 4.5.4, p.110) we have that

C−1 sup
µ

1

Es,p(µ)p−1
≤ Cs,p(K) ≤ C sup

µ

1

Es,p(µ)p−1
, (12)

where C is a positive constant depending only on s and p and the supremum is taken
over the probability measures µ supported on K. Hence using Theorem E, Lemma D,
(11) and (12) we obtain

Theorem F. Given a compact set K ⊂ Rn and 0 < α < 1,

C−1C 2
3
(n−α), 3

2
(K) ≤ γα(K) ≤ CC 2

3
(n−α), 3

2
(K).

It is well-known that the capacity C 2
3
(n−α), 3

2
vanishes on sets with finite α−dimensional

Hausdorff measure. Thus, we recover here Theorem A. Moreover Cs,p is a subadditive
set function (almost by definition), and consequently, γα is semiadditive for 0 < α < 1,
that is, given compact sets K1 and K2,

γα(K1 ∪K2) ≤ C {γα(K1) + γα(K2)} , (13)

for some constant C depending only on α and n. In fact γα is countably semiadditive.
For α = 1 and n = 2 inequality (13) is still true and is a remarkable result obtained
in [T2]. For α = n − 1 and any n ≥ 2, (13) has been shown very recently in [Vo] by
adapting the techniques used in [T2] (for α = n − 1 the symmetrization method does
not give a positive quantity, thus in [Vo] one has to circumvent this difficulty in order
to adapt Tolsa’s result).

Another interesting consequence is the bilipschitz invariance of the capacity γα for
0 < α < 1. This means that if φ : Rn → Rn is a bilipschitz homeomorphism of Rn,
namely,

L−1|x− y| ≤ |φ(x)− φ(y)| ≤ L|x− y|,
for x, y ∈ Rn and for some constant L > 0, then for compact sets K one has

C−1γα(K) ≤ γα(φ(K)) ≤ Cγα(K),

where C depends only on L, α and n.
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Very recently, X. Tolsa [T4] has proved that the analytic capacity is also bilipschitz
invariant, which solves the Painlevé problem of characterizing geometrically sets that
are removable for bounded analytic functions. The problem of the bilipschitz invariance
of analytic capacity, first appeared in [V2]. J. Garnett and J. Verdera [GV] proved it
before for generalized Cantor type sets.

This dissertation consists in three articles which form the three next chapters. Thus
each one is completely self-contained. It is organized as follows. The first paper is
entitled Potential theory of signed Riesz kernels: capacity and Hausdorff measure, and
we show there that the symmetrization of the Riesz kernels gives a positive quantity.
This result together with a T (b) type Theorem of Nazarov, Treil and Volberg [NTV3],
is used to prove Theorem A. Theorem B is also proved in this Chapter by means of a
lengthy delicate stopping time argument.

In the second preprint, Signed Riesz capacities and Wolff potentials, we prove that
for 0 < α < 1, the capacity γα is equivalent to the well known capacity C 2

3
(n−α), 3

2
of

non-linear potential theory.
In the third paper, Sets with vanishing signed Riesz capacity, we deal with the proof

of Theorem C.
Finally in the last chapter, we state some open problems connected to the questions

considered in this dissertation.
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Chapter 1

Potential theory of signed Riesz
kernels:
capacity and Hausdorff measure.

1.1 Introduction.

The has been recently substantial progress on the problem of understanding the nature
of analytic capacity (see [D2], [MTV] and [T2]). Recall that the analytic capacity of a
compact subset E of the plane is defined by

γ(E) = sup |f ′(∞)|,

where the supremum is taken over those analytic functions on C\E such that |f(z)| ≤ 1,
for z /∈ E. It is easily shown that sets of zero analytic capacity are the removable sets
for bounded analytic functions.

In [D2] one proves Vitushkin’s conjecture, namely the statement that among com-
pact sets of finite length (one dimensional Hausdorff measure) the sets of zero analytic
capacity are precisely those that project into sets of zero length in almost all directions.
Equivalently, by Besicovitch theory, these are the purely unrectifiable sets, that is, the
sets that intersect each rectifiable curve in zero length. In [MTV] one characterizes the
Cantor sets of vanishing analytic capacity and in [T2] the semiadditivity of analytic
capacity is proven.

When dealing with analytic capacity, very often one finds oneself working with the
Cauchy kernel 1/z and not using at all analyticity. Indeed, analytic capacity itself can
be easily expressed without making any reference to analyticity in the form

γ(E) = sup | < T, 1 > | (1.1)

where the supremum is taken over all complex distributions T supported on E such
that the Cauchy potential of T , f = 1

z
∗ T , is a function in L∞(C) satisfying ‖f‖∞ ≤ 1.

It seems, then, interesting to try to isolate properties of analytic capacity that depend
only on the basic characteristics of the Cauchy kernel, such as oddness or homogeneity.
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With this purpose in mind we start in this paper the study of certain real variable
versions of analytic capacity related to the Riesz kernels in Rn. Their definition is as
follows. Given 0 < α < n and a compact subset E of Rn, set

γα(E) = sup | < T, 1 > |

where the supremum is taken over all real distributions T supported on E such that
for 1 ≤ i ≤ n, the i-th α-Riesz potential T ∗ xi

|x|1+α of T is a function in L∞(Rn) and

‖T ∗ xi

|x|1+α‖∞ ≤ 1. When n = 2 and α = 1, writing 1
z

= x
|z|2 − i y

|z|2 with z = x+ iy, we

obtain γ1(E) ≤ γ(E) for all compact sets E. According to Tolsa’s Theorem [T2] one
has

γ(E) ≤ Cγ+(E),

for all compact sets E, where γ+(E) is defined by the supremum in (1.1) where now one
requires T to be a positive measure supported on E (with Cauchy potential bounded
almost everywhere by 1 on C). Thus, on compact subsets of the plane γ and γ1 are
comparable, in the sense that for some positive constant C one has

C−1γ1(E) ≤ γ(E) ≤ Cγ1(E).

Therefore our set function γα can be viewed as a real variable version of analytic ca-
pacity associated to the vector valued kernel x

|x|1+α . Of course one can think of other
possibilities : for example, one can associate in a similar fashion a capacity γΩ to a
scalar kernel of the form K(x) = Ω(x)

|x|α where Ω is a real valued smooth function on Rn,
homogeneous of degree zero. We will not pursue this issue here.

In section 3 we compare the capacity γα to Hausdorff content. We obtain quanti-
tative statements that in particular imply that if E has zero α -dimensional Hausdorff
measure, then it has also zero γα capacity. In the other direction one gets that if E
has Hausdorff dimension larger than α then γα is positive. Then the critical situation
occurs in dimension α, in accordance with the classical case.

The main contribution of this paper is the discovery of an interesting special be-
haviour of γα for non integer indexes α. When α is an integer and E is a compact
subset of an α-dimensional smooth surface, then one can see that γα(E) > 0 provided
Hα(E) > 0, Hα being α-dimensional Hausdorff measure (see [MP], where it is shown
that if E lies on a Lipschitz graph, then γn−1(E) is comparable to the (n−1)−Hausdorff
measure Hn−1(E)). In particular, there are sets of finite α-dimensional Hausdorff mea-
sure Hα(E) and positive γα(E). It turns out that this cannot happen when 0 < α < 1.

Theorem 1.1. Let 0 < α < 1 and let E ⊂ Rn be a compact set with Hα(E) < ∞ .
Then γα(E) = 0.

Notice that the analogue of the above result in the limiting case α = 1 is the difficult
part of Vitushkin’s conjecture : if E is a purely unrectifiable planar compact set of finite
length, then γ(E) = 0. We do not know how to prove Theorem 1.1 for a non integer
α > 1. Even for an integer α > 1 we do not know if the natural analogue of Vitushkin’s
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conjecture is true. However we do have a result in the Ahlfors-David regular case.
Recall that a closed subset E of Rn is said to be Ahlfors-David regular of dimension d
if it has, locally, finite and positive d-dimensional Hausdorff measure in a uniform way:

C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd, for x ∈ E, r ≤ d(E),

where B(x, r) is the open ball centered at x of radius r and d(E) is the diameter
of E. Notice that if E is a compact Ahlfors-David regular set of dimension d, then
Hd(E) <∞.

Theorem 1.2. Let E ⊂ Rn be a compact Ahlfors-David regular set of non-integer
dimension α, 0 < α < n. Then γα(E) = 0.

In proving Theorem 1 we use a deep recent result of Nazarov, Treil and Volberg
[NTV3] on the L2 boundedness of singular integrals with respect to very general mea-
sures (see section 2 below for a statement). As a technical tool we also need a variant
of the well known symmetrization method relating Menger curvature (see section 2 for
a definition) and the Cauchy kernel (see [Me], [MV] and [MMV]). Symmetrization of
the kernels x

|x|1+α , leads to a non-negative quantity only for 0 < α ≤ 1. For α = 1 this is
Menger curvature and for 0 < α < 1 a description can be found in Lemma 1.15 below.
However, non-negativity and homogeneity seem to be more relevant facts than having
exact expressions for the symmetrized quantity. The lack of non-negativity for α > 1
is the reason that explains the restriction on α in Theorem 1.1.

The proof of Theorem 1.2 follows the line of reasoning of a well known result of Christ
[Ch2] stating that if an Ahlfors-David regular set E of dimension 1 in the plane has
positive analytic capacity then the Cauchy integral operator is bounded in L2(F,H1),
where F is another Ahlfors-David regular set such that H1(E ∩ F ) > 0. The main
difficulty for us lies in the fact that if α is non-integer then, according to a result of
Vithila [Vi] there are no Ahlfors-David regular sets E on which the α-dimensional Riesz
operator is bounded in the space L2(E,Hα). This prevents us from adapting directly
Christ’s arguments and then we are forced to find a way around, which turns out to be
rather laborious.

Throughout all the paper, the letter C will stand for an absolute constant that may
change at different occurrences.

If A(X) and B(X) are two quantities depending on the same variable (or variables)
X, we will say that A(X) ≈ B(X) if there exists C ≥ 1 independent of X such that
C−1A(X) ≤ B(X) ≤ CB(X) for every X.

In section 2 one can find statements of some auxiliary results and the basic notation
and terminology that will be used throughout the paper. As we already mentioned
above, in section 3 we compare γα to Hausdorff content. Theorem 1 is proven in section
4 and Theorem 2 in section 5.
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1.2 L2 boundedness of singular integral operators.

A function K(x, y) defined on Rn×Rn \ {(x, y) : x = y} is called a Calderón-Zygmund
kernel if the following holds:

1. |K(x, y)| ≤ C|x− y|−α for some 0 < α < n (α not necessarily integer) and some
positive constant C <∞.

2. There exists 0 < ε ≤ 1 such that for some constant 0 < C <∞,

|K(x, y)−K(x0, y)|+ |K(y, x)−K(y, x0)| ≤ C
|x− x0|ε

|x− y|α+ε
,

if |x− x0| ≤ |x− y|/2.

Let µ be a Radon measure on Rn. Then the Calderón-Zygmund operator T associ-
ated to the kernel K and the measure µ is formally defined as

Tf(x) = T (fµ)(x) =

∫
K(x, y)f(y)dµ(y).

This integral may not converge for many functions f , because for x = y the kernel
K may have a singularity. For this reason, we introduce the truncated operators Tε,
ε > 0:

Tεf(x) = Tε(fµ)(x) =

∫
|x−y|>ε

K(x, y)f(y)dµ(y).

We say that the singular integral operator T is bounded in L2(µ) if the operators
Tε are bounded in L2(µ) uniformly in ε.

The maximal operator T ∗ is defined as

T ∗f(x) = sup
ε>0

|Tεf(x)|.

Let 0 < α < n and consider the Calderón-Zygmund operator Rα associated to the
antisymmetric vector valued Riesz kernel x/|x|1+α.

For the proof of Theorem 1.1 a deep result of Nazarov, Treil and Volberg will be
needed. First we introduce some more notation. We say that B(x, r) is a non-Ahlfors
disk with respect to some constant M > 0 if µ(B(x, r)) > Mr. A disk B(x, r) is non-
accretive with respect to some bounded function b if for some fixed positive constant ε

we have
∣∣∣∫B(x,r)

bdµ
∣∣∣ < εµ(B(x, r)).

Let φ be some non negative Lipschitz function with Lipschitz constant 1 and consider
the antisymmetric Calderón-Zygmund operator Kφ associated to the suppressed kernel
kφ:

kφ(x, y) =
x− y

|x− y|2 + φ(x)φ(y)
.
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The kernel kφ has the very important property of being well suppressed (we are
borrowing the terminology from [NTV3]) at the points where φ > 0, that is

|kφ(x, y)| ≤
1

max{φ(x), φ(y)}
. (1.2)

We will state now a T (b) Theorem of [NTV3] for the Cauchy kernel.

Theorem 1.3. Let µ be a positive Radon measure on C with lim sup
r→0

µ(B(x,r))
r

< ∞ for

µ almost all x and b an L∞(µ) function with |
∫

C bdµ| = γ. Let M > 0, B > 0, an open
set H ⊂ C with µ(Hc) > 0 and φ : C → [0,∞) a Lipschitz function with constant 1
such that:

1. Every non-Ahlfors disk and every non-accretive disk is contained in H.

2. φ(x) ≥ dist(x,Hc).

3. K∗
θ b(x) ≤ B for µ almost all x and for every Lipschitz function θ with constant 1

such that θ ≥ φ.

Then Kφ is bounded in L2(µ). In particular, if F = {x : φ(x) = 0}, the Cauchy
transform is bounded in L2(µ|F ).

One can use this result to give an alternative proof of Vitushkin’s conjecture (see
[NTV3]).

To use their result for the α−Riesz transform Rα, 0 < α < n, we need an appropriate
version of the suppressed kernels associated to the Riesz α-operator Rα. We have found
that the following kernel does the job:

kφ,α(x, y) =
x− y

|x− y|1+α

( |x− y|2

|x− y|2 + φ(x)φ(y)

)N
(1.3)

where N = min{m ∈ N : α ≤ m}. That is, N = α if α ∈ N and N = [α] + 1 if α /∈ N,
where [α] denotes the integer part of α. Notice that kφ,1 = kφ.

For the sake of completeness we state the properties of the kernel kφ,α on a separate
lemma.

Lemma 1.4. The kernel kφ,α(x, y) is an antisymmetric Calderón-Zygmund kernel and
is also well suppressed at the points where φ > 0, that is,

|kφ,α(x, y)| ≤
1

max{φ(x)α, φ(y)α}
.

Proof. It is easy to see that this suppressed kernel satisfies kφ,α(x, y) = −kφ,α(y, x)
and |kφ,α(x, y)| ≤ |x − y|−α. We show now that |kφ,α(x, y)| ≤

1

φ(x)α
, for all x, y.

Observe first that φ(y) ≥ φ(x)− |x− y|, which implies that
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|kφ,α(x, y)| ≤
1

|x− y|α

(
|x− y|2

|x− y|2 + φ(x)(φ(x)− |x− y|)

)N

=
1

|x− y|α

(
|x− y|2

|x− y|2 + φ(x)(φ(x)− |x− y|)

)N−α( |x− y|2

|x− y|2 + φ(x)(φ(x)− |x− y|)

)α

≤ 1

|x− y|α

(
|x− y|2

|x− y|2 + φ(x)(φ(x)− |x− y|)

)α

=
1

|x− y|α

(
|x− y|2

φ(x)|x− y|+ (φ(x)− |x− y|)2

)α
≤ 1

|x− y|α

(
|x− y|2

φ(x)|x− y|

)α

=
1

φ(x)α
.

Now we only need to show that

|∇xkφ,α(x, y)| ≤
4N + α+ 3

|x− y|1+α
.

Set Pφ(x, y) =
|x− y|2

|x− y|2 + φ(x)φ(y)
and write ∇xkφ,α(x, y) = A+B, with

|A| = |Pφ(x, y)|N
∣∣∣∣ |x− y|1+α − (1 + α)|x− y|α(x− y)

|x− y|2(1+α)

∣∣∣∣ ≤ α+ 2

|x− y|1+α

and

|B| = N |Pφ(x, y)|N−1 |2(x− y) (|x− y|2 + φ(x)φ(y))− |x− y|2 (2(x− y) + φ′(x)φ(y))|
(|x− y|2 + φ(x)φ(y))2 |x− y|α

≤ N

(
|x− y|2

|x− y|2 + φ(x)φ(y)

)N
2 (|x− y|2 + φ(x)φ(y)) + |x− y| (2|x− y|+ φ′(x)φ(y))

|x− y|1+α(|x− y|2 + φ(x)φ(y))

≤ N

(
|x− y|2

(|x− y|2 + φ(x)φ(y)

)N
4|x− y|2 + 2φ(x)φ(y) + φ(y)|x− y|
|x− y|1+α(|x− y|2 + φ(x)φ(y))

≤ 4N

|x− y|1+α
+

φ(y)

|x− y|1+α
|kφ(x, y)| ≤

4N + 1

|x− y|1+α
,

where one uses (1.2) in the last inequality.
Using this operators and adapting Theorem 1.3 one obtains the following result for

the α−Riesz transform Rα:
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Theorem 1.5. Let µ be a positive measure on Rn such that lim sup
r→0

µ(B(x,r))
rα < +∞

for µ almost all x and b an L∞(µ) function such that |
∫
bdµ| = γα. Assume that

R∗α b (x) < +∞ for µ almost all x. Then there is a set F with µ(F ) ≥ γα

4
such that the

α-Riesz potential Rα is bounded in L2(µ|F ).

Remark. This set F corresponds to C \H in Theorem 1.5. Namely F is the set where
there are no problems, (every disk is Ahlfors and accretive and the maximal operator is
uniformly bounded.)

Remark. [A. Volberg, personal communication] Instead of using the Calderón-Zygmund
operator related to the suppressed kernel defined in (1.3), one can also use the operator
related to the following suppressed kernel:

kφ,α(x, y) =
kα(x, y)

1 + k2
α(x, y)φ

α(x)φα(y)
,

with kα(x, y) = (x− y)/|x− y|1+α.

For the proof Theorem 1.2, we need to define some sets Qk
β that will be the analogues

of the euclidean dyadic cubes. These “dyadic cubes” were introduced by M. Christ in
[Ch2].

Let E ⊂ Rn be an Ahlfors-David regular compact set withHα(E) <∞. Let µ = Hα
|E

and ρ the euclidean metric. Then (E, ρ, µ) is a space of homogeneous type, that is,
(E, ρ) is a metric space and µ is a doubling measure, i.e. µ(B(x, 2r) ≤ Cµ(B(x, r)),
(see [Ch2]).

Theorem 1.6. [Ch2] For a space of homogeneous type (E, ρ, µ) with µ as above, there
exists a collection of Borel sets Q(E) = {Qk

β ⊂ E : k ∈ N, β ∈ N}, and positive
numbers δ ∈ (0, 1), a1, b1 and η such that

1. µ(E \
⋃
β Q

k
β) = 0 for each k,

2. If l ≥ k then either Ql
γ ⊂ Qk

β or Ql
γ ∩Qk

β = ∅.

3. For each (k, β) and each l < k, there is a unique γ such that Qk
β ⊂ Ql

γ.

4. d(Qk
β) ≤ δk, where d(Qk

β) denotes the diameter of the cube Qk
β.

5. Each Qk
β contains some ball B(Qk

β) = E ∩B(zkβ, a1δ
k).

6. Each cube Qk
β has a ”small boundary”, i.e. µ{x ∈ Qk

β : ρ(x,E \ Qk
β) ≤ tδk} ≤

b1t
ηµ(Qk

β) for every k, β and for every t > 0.

We denote by Qk(E) = {Qk
β ∈ Q(E) : β ∈ N}, k ∈ N the cubes of generation k in

Q(E).
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For the variant of the T (b) Theorem that we need (see Theorem 20 in [Ch2]) we
require the definitions of a dyadic para-accretive function and a dyadic BMO function.

Definition 1.7. A function b ∈ L∞(E) is said to be dyadic para-accretive if for every
Qk
β ∈ Q(E), there exists Ql

γ ∈ Q(E), Ql
γ ⊂ Qk

β, with l ≤ k +N and

|
∫
Ql

γ

bdµ| ≥ cµ(Ql
γ)

for some fixed constants c > 0 and N ∈ N.

Definition 1.8. A locally µ integrable function f belongs to dyadic BMO(µ) if

sup
Q

inf
c∈C

1

µ(Q)

∫
Q

|f(z)− c|dµ(z) <∞,

where the supremum is taken over all dyadic cubes Q ∈ Q(E).

Theorem 1.9. [Ch2] Let E be a space of homogeneous type with underlying doubling
measure µ, b a dyadic para-accretive function and T a Calderón-Zygmund operator
associated to an antisymmetric standard kernel. Suppose that T (b) belongs to dyadic
BMO(µ). Then T is a bounded operator in L2(µ).

A recent new approach to a variety of T (b) Theorems can be found in [AHMTT].

For the proof of Theorem 1.2, the following result of Vihtilä will be also needed.

Theorem 1.10. [Vi] Let µ be a nonzero Radon measure in Rn for which there exist
constants 0 < c1 ≤ c2 <∞ such that

c1r
α ≤ µ(B(x, r)) ≤ c2r

α

for all x ∈ spt(µ) and 0 < r < d(sptµ). If Rα is an operator bounded in L2(µ), then α
is an integer.

This theorem was proved by using an approach based on tangent measures.

1.3 Relation between γα and Hausdorff content.

We need the following lemma.

Lemma 1.11. If a function f(x) has compact support and has continuous derivatives
up to order n, then it is representable, for 0 < α < n, in the form

f(x) =

(
n∑
i=1

ϕi ∗
xi

|x|1+α

)
(x), x ∈ Rn, (1.4)

where ϕi, i = 1, ..., n, are defined by the formulas:
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ϕi = cn,α 4k∂if ∗
1

|x|n−α
for n = 2k + 1,

ϕi = cn,α 4kf ∗ xi
|x|1+n−α

for n = 2k,

in which cn,α is a constant depending on n and α.

Proof. Assume first that n = 2k + 1. Taking Fourier transform of the right hand
side of (1.4) we get, for appropriate numbers an,α and bn,α,

n∑
i=1

ϕ̂i(ξ) an,α
ξi

|ξ|1+n−α =
n∑
i=1

cn,α|ξ|2kξi f̂(ξ)
bn,α
|ξ|α

an,α
ξi

|ξ|1+n−α
= cn,α an,α bn,α f̂(ξ).

Then (1.4) follows by choosing cn,α so that cn,α an,α bn,α = 1.
A similar argument proves (1.4) in the case n = 2k.

We are now ready to describe the basic relationship between γα and Hausdorff
content (the d-dimensional Hausdorff content will be denoted by Md (see [G] for the
definition and basic properties)).

Lemma 1.12. If 0 < α < n then there exist constants C and Cε such that

CεM
α+ε(E)

α
α+ε ≤ γα(E) ≤ CMα(E)

for any compact set E ⊂ Rn and ε > 0.

Proof. We proof first the second inequality. Let {Qj}j be a covering of E by
dyadic cubes Qj ⊂ Rn with disjoint interiors. By a well known lemma (see [HP]) there
exist functions gj ∈ C∞

0 (2Qj) satisfying
∑

j gj = 1 in a neighborhood of ∪jQj and

|∂sgj| ≤ Csl(Qj)
−|s|, |s| ≥ 0. Here s = (s1, ...sn), with 0 ≤ si ∈ Z, |s| = s1 + s2 + ...+ sn

and ∂s = (∂/∂xi)
s1 ...(∂/∂xn)

sn .
Let T be a distribution with compact support contained in E and such that the i-th

α−Riesz potentials T ∗ xi

|x|1+α of T are functions in L∞(Rn) with L∞- norm not greater

than 1, 1 ≤ i ≤ n. Applying Lemma 1.11 to each gj, we obtain functions ϕij satisfying

(1.4) with f and ϕi replaced by gj and ϕji respectively. Thus

| < T, 1 > | = | < T,
∑
j

gj > | ≤
∑
j

| < T, gj > | =
∑
j

| < T,

n∑
i=1

ϕji ∗
xi

|x|1+α
> |

≤
∑
j

n∑
i=1

| < T ∗ xi
|x|1+α

, ϕji > | ≤
∑
j

n∑
i=1

∫
|ϕji (x)|dx.
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Take n = 2k+1 (for n = 2k the argument is similar) and write kα(x) = |x|−n+α. Let
Q0 be the unit cube centered at 0. Changing variables and using |∂sgj| ≤ Csl(Qj)

−|s|

we get

| < T, 1 > | ≤
∑
j

n∑
i=1

∫
|ϕji (x)|dx =

∑
j

n∑
i=1

∫ ∣∣∣∣∣∣∣
∫
2Qj

4k∂igj(y)kα(x− y)dy

∣∣∣∣∣∣∣ dx

=
∑
j

n∑
i=1


∫
3Qj

∣∣∣∣∣∣∣
∫
2Qj

4k∂igj(y)kα(x− y)dy

∣∣∣∣∣∣∣ dx+

∫
Rn\3Qj

∣∣∣∣∣∣∣
∫
2Qj

gj(y)4k∂ikα(x− y)}dy

∣∣∣∣∣∣∣ dx


≤ n
∑
j

l(Qj)
α

Cn
∫ ∫

3Q0×2Q0

kα(x− y)dydx+ C0

∫ ∫
(Rn\3Q0)×2Q0

1

|x− y|2n−α
dydx


≤ C

∑
j

l(Qj)
α.

Thus γα(E) ≤ CMα(E).

For the reverse inequality we use a standard argument that we reproduce for the
reader’s convenience. Suppose that Mα+ε(E) > 0 for some ε > 0. By Frostman’s
Lemma (see [M1] Theorem 8.8) there exists a measure µ supported on E such that
µ(E) ≥ CMα+ε(E) > 0 and µ(B(x, r)) ≤ rα+ε, x ∈ Rn, r > 0. Then by a change of
variables we obtain∣∣∣∣(µ ∗ xi

|x|1+α

)
(y)

∣∣∣∣ ≤ ∫ dµ(x)

|x− y|α
=

∫ ∞

0

µ
(
{x : |x− y|−α ≥ t}

)
dt

=

∫ ∞

0

µ(B(y, t−1/α))dt = α

∫ ∞

0

µ(B(x, r))

r1+α
dr

≤ α

∫ µ(E)
1

α+ε

0

rε−1dr +

∫ ∞

µ(E)
1

α+ε

µ(E)

r1+α

 =
(α
ε

+ 1
)
µ(E)

ε
α+ε .

Using this estimate we get the desired inequality, namely

γα(E) ≥ µ(E)

||µ ∗ xi

|x|1+α ||∞
≥ ε

α+ ε
µ(E)1− ε

α+ε = Cε µ(E)
α

α+ε ≥ Cε M
α+ε(E)

α
α+ε .

Let dim(E) be the Hausdorff dimension of the set E. A qualitative version of the
above lemma is the following.
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Corollary 1.13. Let E ⊂ Rn be compact.

1. If dim(E) > α then γα(E) > 0.

2. If dim(E) < α then γα(E) = 0.

1.4 Proof of Theorem 1.

1.4.1 Distributions that are measures.

We start by a lemma that shows that certain distributions are actually measures.

Lemma 1.14. Let 0 < α < n, E ⊂ Rn be compact with Hα(E) < ∞ and let T be a
distribution with compact support contained in E and such that T ∗ xi

|x|1+α is bounded in
Rn, 1 ≤ i ≤ n. Then T is a measure which is absolutely continuous with respect to the
restriction of Hα to E and has a bounded density, that is,

T = hHα, for some h ∈ L∞(Hα) supported on E. (1.5)

Proof. We first show that T is a measure. For this it is enough to prove that

| < T, f > | ≤ CHα(E)‖f‖∞, f ∈ C∞0 . (1.6)

Given ε > 0 we can cover the compact set E with open balls Bj of radius rj,
j = 1, ..., k such that Bj ∩ E 6= ∅, rj < ε and

k∑
j=1

rαj ≤ 2Hα(E) + ε. (1.7)

Let ψ be a function in C∞0 with sptψ ⊂ B(0, 1) and
∫
ψ(x)dx = 1. Define

ψε(x) =
1

εn
ψ(
x

ε
).

To prove (1.6) we can assume without loss of generality that spt(f) ⊂ ∪jBj. This
is so because if β ∈ C∞0 , spt(β) ⊂ ∪jBj, 0 ≤ β ≤ 1 and β(x) = 1 in a neighborhood of
E, then < T, f >=< T, fβ > and ‖βf‖∞ ≤ ‖f‖∞.

Assume that n = 2k + 1 (the argument for even dimensions is similar). Applying
Lemma 1.11 to ψε, using the boundedness of T ∗ xi

|x|1+α for 1 ≤ i ≤ n and setting
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kα(x) = |x|−n+α we have

|< T, f ∗ ψε>| ≤ C
n∑
i=1

∣∣∣∣< T ∗ xi
|x|1+α

, f ∗ 4k∂iψε ∗ kα >
∣∣∣∣

≤ C
n∑
i=1

∫ ∣∣(f ∗ 4k∂iψε ∗ kα
)
(x)
∣∣ dx

= C
n∑
i=1

∫ ∣∣∣∣∫ f(y)
(
4k∂iψε ∗ kα

)
(x− y)dy

∣∣∣∣ dx
≤ C‖f‖∞

∑
j

rnj

n∑
i=1

∫ ∣∣4k∂iψε ∗ kα(z)
∣∣ dz.

(1.8)

We will show that ∫ ∣∣4k∂iψε ∗ kα(z)
∣∣ dz ≤ Cε−n+α (1.9)

where C is a constant depending on the L1−norm of ψ and 4k∂iψ but not on ε.
Then using (1.7) we will have

| < T, f ∗ ψε > | ≤ C‖f‖∞ε−n+α
∑
j

rnj ≤ C‖f‖∞ε−n+α
∑
j

εn−αrαj

= C‖f‖∞
∑
j

rαj ≤ C (Hα(E) + ε) ‖f‖∞, (1.10)

which proves (1.6) by letting ε→ 0.
To prove (1.9) we use Fubini’s Theorem and a change of variables:

∫ ∣∣(4k∂iψε ∗ kα
)
(z)
∣∣ dz

=

∫ ∣∣∣∣∫ ε−2n4k∂iψ(
z − x

ε
)kα(x)dx

∣∣∣∣ dz = ε−n+α

∫ ∣∣(4k∂iψ ∗ kα
)
(z)
∣∣ dz

≤ ε−n+α

∫
|z|≥2

∫
|x|≤1

|ψ(x)|
|z − x|2n−α

dx dz + εn−α
∫
|z|≤2

∫
|x|≤1

∣∣4k∂iψ(x)
∣∣

|z − x|n−α
dx dz

= ε−n+α

∫
|x|≤1

|ψ(x)|
∫
|z|≥2

dz

|z − x|2n−α
dx+ εn−α

∫
|x|≤1

∣∣∆k∂iψ(x)
∣∣ ∫

|z|≤2

dz

|z − x|n−α
dx

≤ Cε−n+α
(
‖ψ‖1 + ‖4k∂iψ‖1

)
= Cε−n+α.
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Let B0 be an open ball and let B0 denote its closure. LetHα
E stand for the restriction

of Hα to E. If we show that

|µ(B0)| ≤ CHα
E

(
B0

)
, (1.11)

then, taking a sequence of open balls Bi
0 ↓ B0 and applying (1.11) to these balls we

will have ∣∣µ (B0

)∣∣ ≤ lim
i→∞

∣∣µ (Bi
0

)∣∣ ≤ lim
i→∞

CHα
E

(
Bi

0

)
= CHα

E

(
B0

)
. (1.12)

It is shown in [M1] (p. 271) that for α = 1 (1.12) implies

|µ(A)| ≤ CHα(A) for sets A ⊂ E with Hα(A) <∞. (1.13)

The argument extends verbatim to any α and thus we can take (1.13) for granted, which
gives (1.5) by Radon-Nikodym’s Theorem.

It remains to prove (1.11). We know that for every δ > 0 there exists a compact set
K ⊂ E \B0 such that

Hα(K) > Hα
(
E \B0

)
− δ. (1.14)

Let

J1 = {j : Bj ∩B0 6= ∅} and J2 = {j : Bj ∩K 6= ∅}.

Recall that the radii of the balls Bj satisfy rj < ε. For and appropriate ε > 0 the
following holds: ∑

j∈J2

rαj ≥ 2Hα(K)− δ (1.15)

and

max
j
rj < ε < dist(K,B0 )/2.

This last condition implies that for j1 ∈ J1 and j2 ∈ J2 we have Bj1
∩ Bj2

= ∅. So,
using inequalities (1.7), (1.15) and (1.14),∑

j∈J1

rαj ≤
∑
j

rαj −
∑
j∈J2

rαj ≤ 2Hα(E) + ε− 2Hα(K) + δ

< 2Hα(E) + ε− 2Hα
(
E \B0

)
+ δ = 2Hα

E

(
B0

)
+ ε+ δ.

If χB0 denotes the characteristic function of the ball B0, then

µ(B0) =< µ, χB0 >=< µ, χB0∩E >= lim
ε→0

< µ, χB0∩E ∗ ψε > .
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Arguing as in (1.8), (1.9) and (1.10), we get

| < µ, χB0∩E ∗ ψε > | ≤ C‖χB0∩E‖∞
∑
j∈J1

rαj ≤ C
(
Hα
E

(
B0

)
+ ε+ δ

)
and letting ε and δ tend to zero we get (1.11).

1.4.2 Symmetrization of the Riesz kernel.

The symmetrization process for the Cauchy kernel introduced in [Me] has been success-
fully applied in this last years to many problems of analytic capacity and L2 bound-
edness of the Cauchy integral operator (see [V3], [MV] and [MMV] for example ; the
survey papers [D3] and [V5] contain many other references). Given 3 distinct points in
the plane, z1, z2 and z3, one finds out, by an elementary computation that

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(1.16)

where the sum is taken over the six permutations of the set {1, 2, 3} and c(z1, z2, z3)
is Menger curvature, that is, the inverse of the radius of the circle through z1, z2 and
z3. In particular (1.16) shows that the sum on the right hand side is a non-negative
quantity.

On the other hand, it has been proved in [F] that nothing similar occurs for the
Riesz kernel kα = x/|x|1+α with α integer and 1 < α ≤ n. In this section we show
that for 0 < α < 1 we recover an explicit expression for the symmetrization of the
Riesz kernel kα and that the quantity one gets is also non-negative. For α > 1 the
phenomenon of change of signs appears again.

For 0 < α < n the quantity∑
σ

xσ(2) − xσ(1)

|xσ(2) − xσ(1)|1+α

xσ(3) − xσ(1)

|xσ(3) − xσ(1)|1+α
, (1.17)

where the sum is taken over the six permutations of the set {1, 2, 3}, is the obvious
analog of the right hand side of (1.16) for the Riesz kernel kα. Observe, however, that
if σ is a transposition of two numbers in {1, 2, 3} then the term one obtains is one of
the three terms associated to the permutations (1, 2, 3), (2, 3, 1), (3, 1, 2). Thus (1.17)
is exactly

2 pα(x1, x2, x3),

where pα(x1, x2, x3) is defined as the sum in (1.17) taken only on the three permutations
(1, 2, 3), (2, 3, 1), (3, 1, 2).

Lemma 1.15. Let 0 < α < 1, and x1, x2, x3 three distinct points in Rn. Then we
have

2− 2α

L(x1, x2, x3)2α
≤ pα(x1, x2, x3) ≤

21+α

L(x1, x2, x3)2α
, (1.18)
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where L(x1, x2, x3) is the largest side of the triangle determined by x1, x2 and x3. In
particular pα(x1, x2, x3) is a non-negative quantity.

Proof. If n = 1 and x1 < x2 < x3, then

pα(x1, x2, x3) =
aα + bα − (a+ b)α

aαbα(a+ b)α

where a = x2 − x1 and b = x3 − x2. An elementary estimate shows that (1.18) holds in
this case, even with 21+α replaced by 2α in the numerator of the last term.

Note that if x1, x2, x3 ∈ Rn, one can write

pα(x1, x2, x3) =
cos(θ23)|x2 − x3|α + cos(θ13)|x1 − x3|α + cos(θ12)|x1 − x2|α

|x1 − x2|α|x1 − x3|α|x2 − x3|α

where θij is the angle opposite to the side xixj in the triangle determined by x1, x2, x3.
Without loss of generality we can assume that θ23, θ13 ∈ [0, π/2]. Denote by lij =
|xi − xj|, for i 6= j, i, j ∈ {1, 2, 3}. We consider two different cases:

Case 1: 0 ≤ θ12 ≤ π/2.

Without loss of generality suppose l12 ≥ l13 ≥ l23. Then we have

pα(x1, x2, x3) =
1

lα12l
α
13

(
cos(θ23) + cos(θ13)

lα13

lα23
+ cos(θ12)

lα12
lα23

)

≥ 1

lα12l
α
13

(cos(θ23) + cos(θ13) + cos(θ12)) ≥
1

lα12l
α
13

≥ 2− 2α

L(x1, x2, x3)2α
.

For the second inequality one argues as follows.

pα(x1, x2, x3)=
1

l1+α
12 l1+α

13

(
cos(θ23)l12l13 + cos(θ13)l12l23

l1+α
13

l1+α23

+ cos(θ12)l13l23
l1+α
12

l1+α23

)

≤ 1

l1+α
12 l1+α

13

(
cos(θ23)l12l13 + cos(θ13)l12l23

l213
l223

+ cos(θ12)l13l23
l212

l223

)

= l1−α12 l1−α13 p1(x1, x2, x3) = l1−α12 l1−α13

1

2 R2
,

by (1.16), where R is the radius of the circle through x1, x2 and x3 . Since clearly
lij ≤ 2R, we conclude that

pα(x1, x2, x3) ≤
2

lα12l
α
13

≤ 21+α

L(x1, x2, x3)2α
.
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Case 2: π/2 ≤ θ12 ≤ π.

We start by proving the first inequality in (1.18). Note that in this case the largest
side of the triangle is l12. Assume without loss of generality l13 ≥ l23 and denote
by t = l13/l23 ≥ 1. Write θ13 = θ23 + a, with 0 ≤ a ≤ π/2. Then by the triangle
inequality we have

pα(x1, x2, x3) =
1

lα12l
α
13

(
cos(θ23) + cos(θ23 + a)

lα13
lα23

+ cos(θ12)
lα12
lα23

)

≥ 1

lα12l
α
13

(cos(θ23) + cos(θ23 + a)tα − cos(2θ23 + a)(1 + t)α)

≥ 1

lα12l
α
13

f(a, θ23, t),

(1.19)

where

f(a, y, t) = cos(y) + cos(y + a)tα − cos(2y + a)(1 + t)α,

for 0 ≤ 2y + a ≤ π/2, a ≥ 0 and y ≥ 0.

We claim that

f(a, y, t) ≥ f(0, y, t) ≥ f(0, 0, t) (1.20)

for 0 ≤ 2y + a ≤ π/2, a ≥ 0 and y ≥ 0. Notice that the inequality f(a, y, t) ≥
f(0, 0, t) in (1.20) means that the smallest value of pα is attained when the three
points x1, x2, x3 lie on a line.

If we assume that the claim is proved, then going back to (1.19) and using that
t ≥ 1 we get

pα(x1, x2, x3) ≥
1

lα12l
α
13

f(a, θ23, t) ≥
1

lα12l
α
13

f(0, 0, t)

=
1

lα12l
α
13

(1 + tα − (1 + t)α) ≥ 2− 2α

lα12l
α
13

≥ 2− 2α

L(x1, x2, x3)2α
.

To prove the first inequality in (1.20), we use that for 0 ≤ 2y + a ≤ π/2 , a ≥ 0
and y ≥ 0 , we have cos(y) − cos(y + a) ≤ cos(2y) − cos(2y + a) . Thus
cos(y) − cos(y + a) ≤

(
1 + 1

t

)α
(cos(2y)− cos(2y + a)) , which is f(a, y, t) ≥

f(0, y, t).

Finally, for each t, the function

f(0, y, t) = cos(y) + cos(y)tα − cos(2y)(1 + t)α
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has a minimum at y = 0 and this proves the claim and thus the first inequality
in (1.18).

We are now only left with the second inequality in (1.18) for θ12 ∈ [π/2, π]. Recall
that we can assume without loss of generality that l23 ≤ l13 ≤ l12. We have

pα(x1, x2, x3) =
1

lα12l
α
13

(
cos(θ23) + cos(θ13)

lα13
lα23

− cos(θ23 + θ13)
lα12

lα23

)

≤ 1

lα12l
α
13

(
cos(θ23) + (cos(θ13)− cos(θ23 + θ13))

lα13

lα23

)
.

The function g(x) = cosx−cos(x+y) is increasing for x, y, and x+y in [0, π/2].
Thus, g(x) ≤ g(π/2) = sin y, for x, y and x + y in [0, π/2]. Moreover, using that
sin(θ23)/l23 = sin(θ13)/l13, we get

pα(x1, x2, x3) ≤
1

lα12l
α
13

(
cos(θ23) + sin(θ13)

l1−α23

l1−α13

)
≤ 2

lα12l
α
13

≤ 21+α

L(x1, x2, x3)2α
,

which completes the proof of the lemma.

1.4.3 The main step.

Let 0 < α < n and suppose that µ is a measure such that µ(B(x, r)) ≤ C0 r
α for some

constant C0 and for all balls B(x, r) ⊂ Rn. We will now analyze what happens in a
ball B(x, r) satisfying the lower density condition µ(B(x, r)) ≥ ε rα for a given number
ε > 0.

Lemma 1.16. There exist constants a ≥ 1 and b ≥ 1 depending only on C0 and ε
such that given any ball B0 = B(x, r) satisfying µ(B0) ≥ ε rα, there exist two balls
B1 = B(x1, r/a) and B2 = B(x2, r/a), with x1, x2 ∈ spt µ ∩B0, such that

1. |x1 − x2| ≥ 6r/a.

2. µ(B0 ∩Bi) ≥ rα/b for i = 1, 2.

Proof. Without loss of generality we may assume that B0 = B(0, 1). Let a ≥ 1 and
b ≥ 1 be two constants to be chosen at the end of the construction and suppose that
the lemma is not true. This means that given any pair of closed balls B1 and B2 of
radius a−1 centered at sptµ ∩B0 then either

|x1 − x2| <
6

a
, (1.21)

or one of the two balls, say Bi, satisfies
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µ(Bi ∩B0) ≤
1

b
.

Consider the covering of sptµ ∩ B0 by balls of radius a−1 centered at sptµ ∩ B0.
Apply Besicovitch’s covering lemma to this covering to obtain N = N(n) families Bi of
disjoint balls such that

sptµ ∩B0 ⊂
N⋃
i=1

⋃
B∈Bi

B.

Notice that a simple estimate of the volume of the union of the balls in a given
family reveals that each family contains no more than (2a)n balls. We have

ε ≤ µ(B0) ≤ µ(
N⋃
i=1

⋃
B∈Bi

B) ≤
N∑
i=1

∑
B∈Bi

µ(B ∩B0),

which means there exists at least one family Bi such that∑
B∈Bi

µ(B ∩B0) ≥
ε

N
.

Consider the set

M = {B ∈ Bi : µ(B ∩B0) >
1

b
}.

Condition (1.21) implies that all balls in M are contained in a ball of radius 8/a,
and hence

∑
B∈M

µ(B ∩B0) ≤ C0

(
8

a

)α
,

using that µ(B(x, r)) ≤ C0 r
α holds for any ball B(x, r) in Rn .

The fact that each family Bi contains no more than (2a)n balls implies

∑
B ∈ Bi
B /∈M

µ(B ∩B0) ≤
(2a)n

b

and so we get

ε ≤ N
∑
B∈Bi

µ(B ∩B0) ≤ N

(
(2a)n

b
+ C0

(
8

a

)α)
.

If a and b are appropriately chosen, this inequality gives a contradiction.
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Let 0 ≤ α <∞, and let µ be a positive Borel measure on Rn. The upper α-density
of µ at x ∈ Rn is defined by

Θ∗ α(µ, x) = lim sup
r→0

µ(B(x, r))

(2r)α
.

Theorem 1.17. Let 0 < α < 1 and let µ be a positive Borel measure with 0 <
Θ∗ α(µ, x) <∞ for µ almost all x ∈ Rn. Then

∫∫∫
pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) = +∞.

Proof. Since Θ∗ α(µ, x) < ∞ for µ almost all x ∈ Rn, there exists a compact set
K1 ⊂ R with µ(K1) > 0 and a constant c1 > 0 such that µ(K1 ∩ B(x, r)) ≤ c1r

α for
every ball B(x, r) ⊂ Rn. It is well-known that Θ∗ α(µ|K1, x) = Θ∗ α(µ, x) for µ almost
all x ∈ K1 (see [M1] Theorems 6.2 and 6.9), whence, replacing µ by µ|K1, we can
assume that µ(B(x, r)) ≤ c1r

α for x ∈ Rn.

From the fact that Θ∗ α(µ, x) > 0 for µ almost all x ∈ Rn, we deduce that there exists
a compact setK2 ⊂ Rn with µ(K2) > 0 and a constant c2 > 0, such that for each x ∈ K2

there is a sequence ri(x) > 0 with lim
i→∞

ri(x) = 0 and µ(B(x, ri(x))) ≥ c2ri(x)
α. Notice

that truncating the sequences of radii apropriately, we can assume that sup
x∈K2

ri(x) → 0,

i→∞.
By the 5-covering Theorem (see [M1] Theorem 2.1), for each i ∈ N there are disjoint
balls Bi

j = B(aj, ri(aj)), 1 ≤ j ≤ mi, such that K2 ⊂
⋃mi

j=1 5Bi
j. Then we have

µ(K2) ≤
mi∑
j=1

µ(5Bi
j) ≤ c15

α

mi∑
j=1

ri(aj)
α,

that is,

mi∑
j=1

rαi (aj) ≥
µ(K2)

5αc1
. (1.22)

Fix i = 1 and consider the disjoint balls B1
j , for 1 ≤ j ≤ m1. For every B1

j we can
use Lemma 1.16 twice to find three balls B1, B2, B3 centered at spt(µ) ∩ B1

j enjoying
the following properties: their mutual distances and their radii are comparable to r(aj);
the mass µ(B1

j ∩ Bl) is also comparable to r(aj). The comparability constants in the
above statements depend only on c1, c2 and n. Define a set of triples by

Sj,1 = (B1
j ∩B1)× (B1

j ∩B2)× (B1
j ∩B3), for 1 ≤ j ≤ m1.
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Applying Lemma 1.15 we obtain∫∫∫
(B1

j )3

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3)

≥
∫∫∫
Sj,1

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3)

≥ C

∫∫∫
Sj,1

1

|x1 − x3|2α
dµ(x1)dµ(x2)dµ(x3) ≥ Cr1(aj)

α.

(1.23)

Set

A1 =

m1⋃
j=1

Sj,1 ⊂
m1⋃
j=1

(B1
j ×B1

j ×B1
j ),

dj = min{dist(B1
j ∩Bk, B1

j ∩Bl) : k, l ∈ {1, 2, 3}, k 6= l}

and

t1 = min
1≤j≤m1

dj.

For (x1, x2, x3) ∈ A1 we then have |xi − xj| > t1 for i, j ∈ {1, 2, 3}, j 6= i. Moreover,
using (1.22) and (1.23)∫∫∫

A1

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3)

=

m1∑
j=1

∫∫∫
Sj,1

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) ≥ C

m1∑
j=1

r1(aj)
α ≥ C.

Let q be such that

sup
x∈K2

rq(x) ≤
t1
2

(1.24)

and consider the balls of the q-th generation, namely Bq
j , for 1 ≤ j ≤ mq . Repeat the

process described above replacing B1
j by Bq

j . We then find balls B1, B2 and B3 centered
at points in sptµ ∩Bq

j , whose mutual distances and radii are comparable to rq(aj) and
such that µ(Bq

j ∩Bl) is also comparable to rq(aj), l = 1, 2, 3.
Set

Sj,2 = (Bq
j ∩B1)× (Bq

j ∩B2)× (Bq
j ∩B3)

and
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A2 =

mq⋃
j=1

Sj,2 ⊂
mq⋃
j=1

(
Bq
j ×Bq

j ×Bq
j

)
.

Hence, again by (1.24),∫∫∫
A2

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) ≥ C.

Notice that the sets of triples A1 and A2 are disjoint because of the definition of q.
Define t2 as we did before for t1, so that for (x1, x2, x3) ∈ A2 one has |xi − xj| > t2 for
i, j ∈ {1, 2, 3}, i 6= j. It becomes now clear that we can inductively construct disjoint
sets of triples Ak, k = 1, 2, ... such that∫∫∫

Ak

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) ≥ C , k = 1, 2, ....

and therefore∫∫∫
pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3)

≥
∞∑
k=1

∫∫∫
Ak

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) ≥
∞∑
k=1

C = +∞.

1.4.4 End of the proof of Theorem 1.

Suppose γα(E) > 0 for 0 < α < 1. Applying Lemma 1.14 we find a measure of the
form ν = bHα, with b ∈ L∞(Hα, E) such that the α− Riesz potential Rα(ν) = ν ∗ x

|x|1+α

is in L∞(Rn) and
∫
E
b dHα = γα(E). We can apply now Theorem 1.5 to get a set

F ⊂ E of positive Hα− measure such that the operator Rα is bounded in L2(Hα, F ).
On the other hand, since Hα(F ) <∞ we have 2−α ≤ Θ∗ α(Hα

|F , x) ≤ 1 for Hα almost all

x ∈ Rn (see [M1], Theorem 6.2 ). This means that we can apply the previous Theorem
to obtain ∫∫∫

pα(x1, x2, x3)dHα
|F (x1)dHα

|F (x2)dHα
|F (x3) = +∞.

This last fact contradicts the L2− boundedness of Rα on L2(Hα, F ) by a well-known
argument that we now outline briefly (see [Me] or [MV]).

Set µ = Hα
|F . Then∫

| Rα,ε(µ)(x) |2dµ(x) =

∫∫∫
Tε

Rα(x− y)Rα(x− z)dµ(x)dµ(y)dµ(z),

where
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Tε = {(x, y, z) :| x− y |> ε, | x− z |> ε}.

Interchanging the roles of x and y and then of x and z, and estimating the error
terms in a standard way we obtain

∫
| Rα,ε(µ)(x) |2dµ(x) =

1

3

∫∫∫
Sε

pα(x, y, z)dµ(x)dµ(y)dµ(z) +O(µ(F )),

where

Sε = {(x, y, z) :| x− y |> ε, | x− z |> ε, | y − z |> ε}.

Letting ε→ 0 we get the promised contradiction.

1.5 Proof of Theorem 1.2.

The proof of Theorem 1.2 is a straightforward consequence of the following result.

Theorem 1.18. Let 0 < α < n and let E ⊂ Rn be a compact Ahlfors-David regular
set of dimension α. Assume that there exists some function h ∈ L∞(E,Hα) such
that ‖Rα(hHα)‖∞ ≤ 1 and

∫
E
hdHα 6= 0. Then, there exists a compact Ahlfors-David

regular set E ′ ⊂ Rn of dimension α and a function b ∈ L∞(E ′,Hα) with the following
properties:

1. Hα(E ′) = Hα(E) and Hα(E ′ ∩ E) > 0.

2. The function b is dyadic para-accretive with respect to a family of dyadic cubes
that we define while constructing E ′.

3. Rα(bHα) belongs to dyadic BMO(E ′,Hα).

Using Theorem 1.18, one can prove Theorem 1.2 as follows.

Proof of Theorem 1.2. Let 0 < α < n and let E ⊂ Rn be a compact Ahlfors-David
regular set of dimension α. Suppose γα(E) > 0. Then there exists a distribution S
with compact support contained in E, whose α-Riesz potential S ∗ x

|x|1+α is in L∞(Rn)
and < S, 1 >6= 0.
By Lemma 1.14, S = hHα with h ∈ L∞(E,Hα). Thus < S, 1 >=

∫
E
h(x)dHα(x) 6= 0.

Since all the hypothesis of Theorem 1.18 are satisfied, there exists a compact Ahlfors-
David regular set E ′ ⊂ Rn of dimension α and a dyadic para-accretive function b ∈
L∞(E ′,Hα) such that Rα(bHα) belongs to dyadic BMO(E ′,Hα). Then, by the T (b)-
theorem (Theorem 1.9), the α-Riesz operator Rα is bounded in L2(E ′,Hα). Applying
now Theorem 1.10 we conclude that α must be an integer.
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1.5.1 Proof of Theorem 1.18.

In the following lemma we construct an Ahlfors-David regular set Ẽ which should be
viewed as a variation of E with larger Hα-measure.

Lemma 1.19. Let 0 < α < n, E ⊂ Rn an Ahlfors-David regular set of dimension α
and a0 some (small) fixed positive constant. If there exists some function h ∈ L∞(E)

with Rα(hHα) ∈ L∞(Rn) and
∫
E
hdHα 6= 0, then there exists a set Ẽ ⊂ Rn and a

function g ∈ L∞(Ẽ) such that:

1. Ẽ is an Ahlfors-David regular set of dimension α, whose Ahlfors-David regularity
constant depends only on the Ahlfors-David regularity constant of E, Hα(E), a0, α
and n.

2. d(E)/2 ≤ d(Ẽ) ≤ d(E).

3. Hα(Ẽ) = a−1
0 Hα(E).

4.

∫
Ẽ

gdHα =

∫
E

hdHα.

5. ‖g‖∞ = a0‖h‖∞ and ‖Rα(gHα)‖∞ = (2na−1
0 )

α
n−α‖Rα(hHα)‖∞.

Proof. Let δ = 1
2M

, where M is a big positive integer to be fixed later.
Consider a partition of the unit interval [0, 1] ⊂ R into smaller intervals Ij = [(j − 1)δ, jδ]
of length l(Ij) = δ for 1 ≤ j ≤ δ−1. Let H = ∪jI2j−1 be the union of the intervals lj
with odd index j. Consider now the product set H0 = Hn ⊂ Rn. If we let N stand for
Mn, then H0 is a disjoint union of cubes Qk of side length l(Qk) = δ for k = 1, · · · , N .

Without loss of generality assume E ⊂ Q withQ ⊂ Rn a cube of side length l(Q) = 1
and d(E) = 1/2.

We construct the set Ẽ as follows : inside each cube Qk, we will put a translated
δ−dilation of our initial set E. The new set Ẽ will be the union of these translated
dilations.

To be more precise, fix points {bk}Nk=1 ∈ Rn such that the sets

Ek = δE + bk = {δx+ bk : x ∈ E},

are contained in the cubes Qk for 1 ≤ k ≤ N . Then define the set Ẽ by

Ẽ =
N⋃
k=1

Ek.

Since

Hα(Ẽ) =
N∑
k=1

Hα(Ek) = NδαHα(E),
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if we choose M so that

a0 =
2α

Mn−α , (1.25)

then we get Hα(Ẽ) = a−1
0 Hα(E).

Now we want to show that Ẽ is an Ahlfors-David regular set. Take r > 0 and x ∈ Ẽ;
then x belongs to some Ek.

If r ≤ δ, then

Hα(Ẽ ∩B(x, r)) = Hα(Ek ∩B(x, r)) = δαHα(E ∩B(x− bk, r/δ))

≈ δαrαδ−α = rα.

If r > δ, let i be the positive integer such that iδ < r ≤ (i+ 1)δ. Then

]{j : Ej ⊂ Ẽ and Ej ∩B(x, r) 6= ∅} ≈ in.

Therefore

Hα(Ẽ ∩B(x, r)) ≈ inδαHα(E) = (iδ)αin−αHα(E). (1.26)

Since i ≥ 1, (1.26) gives

Hα(Ẽ ∩B(x, r)) ≥ Crα.

Using (1.25) and iδ ≤ 1, we obtain from (1.26) the inequality

Hα(Ẽ ∩B(x, r)) ≤ Crαδα−n = C
2n

a0

rα.

Define

g(x) =
δ−α

N

N∑
k=1

h

(
x− bk
δ

)
χEk

(x) = a0

N∑
k=1

h

(
x− bk
δ

)
χEk

(x).

Clearly,
∫
Ẽ
gdHα =

∫
E
hdHα and ‖g‖∞ = a0‖h‖∞. Finally, changing variables and

using (1.25), we have

Rα(gHα)(x) = a0

N∑
k=1

∫
Ek

y − x

|y − x|1+α
h

(
y − bk
δ

)
dHα(y)

= a0

N∑
k=1

∫
E

z − δ−1(x− bk)

|z − δ−1(x− bk)|1+α
h(z)dHα(z) = a0

N∑
k=1

Rα(hHα)

(
x− bk
δ

)
,

which implies

‖Rα(gHα)‖∞ = a0N‖Rα(hHα)‖∞ = (2na−1
0 )

α
n−α‖Rα(hHα)‖∞.
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Remark. For a system of dyadic cubes on Ẽ, Q(Ẽ), satisfying the conclusions of

Theorem 1.6, take first the whole set Ẽ =
⋃N
k=1Ek, together with each set Ek, and

together with the dyadic systems Q(Ek) = Q(δE + bk) = {δQj
β + bk : Qj

β ∈ Q(E), β ∈
N, j ∈ N} for 1 ≤ k ≤ N .

Before proving Theorem 1.18, we first sketch briefly the main ideas to construct the
set E ′ and the function b with the required properties. Some of them are already in
Christ’s paper [Ch2]. We will use strongly the accretivity of the given function h at the
first scale, that is, ∫

E

hdHα 6= 0. (1.27)

To construct the set E ′, we begin by excising from E the dyadic cubes where the
function h is not dyadic para-accretive and replacing these parts essentially by trans-
lated dilations of our initial set E. Then we will also change our function h on these
modified parts. If Q ⊂ E is one of the dyadic cubes where h is not dyadic para-accretive,
then we excise Q from E and we replace it with λ1E + a1, for appropriate λ1 and a1.

Instead of h, we take now h
(
x−a1

λ1

)
on λ1E + a1. Note that in this way, using the

accretivity property (1.27) at the first scale we have replaced a non-accretive cube Q
by an accretive cube λ1E + a1. Of course when looking inside λ1E + a1 non-accretivity
will reappear with the cube λ1Q+ a1, but doing the replacement we just described has
the advantage of ”improving” the accretivity of h. Repeating this process for all the
non-accretive cubes, we obtain new accretive cubes and the new function turns out to
be dyadic-paraacretive on these new cubes. Now repeat this process on each of the sets
λ1E + a1. In each of these dilations, we will change again the cubes where we do not
have the dyadic paraacretivity condition and replace them with other dilations λ2E+a2

(note that we always replace the same cubes, modulo translations and dilations, be-
cause we are always dealing with translations and dilations of the same set E). This
process is repeated indefinitely, passing to higher and higher generations. The limit set
and the limit function one obtains by repeating the previous algorithm will be our set
E ′ and function b.

Proof of Theorem 1.18: We start by describing the basic algorithm that will be
iterated infinitely many times.
Let Q(E) be a system of dyadic cubes on E satisfying the properties 1 through 6 in
Theorem 1.6. The first dyadic cube of E to examine is E itself. By hypothesis there
exists a function h ∈ L∞(E) such that

∫
E
hdHα 6= 0. Let ε0 > 0 be a sufficiently small

constant to be fixed later and such that
∣∣∫
E
hdHα

∣∣ > ε0Hα(E). Then for every positive
integer k, there exists at least one cube Qk

γ satisfying |
∫
Qk

γ
hdHα| > ε0Hα(Qk

γ), since

otherwise for some k

|
∫
E

hdHα| = |
∫
∪γQk

γ

hdHα| ≤ ε0

∑
γ

Hα(Qk
γ) = ε0Hα(E),

which is a contradiction.
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We now run a stopping-time procedure. Let ε > 0 be another constant, much
smaller than ε0, to be chosen later. Take a dyadic cube Q ∈ Q1(E) and check whether
or not the condition

|
∫
Q

hdHα| ≤ εHα(Q), (1.28)

is satisfied. If (1.28) holds for that cube Q and Q has more than one child, we call it a
stopping time cube. If (1.28) holds but Q has only one child, then we look for the first
descendent of Q with more than one child and we call it a stopping time cube. Notice
that (1.28) remains true for this descendent.

If (1.28) does not hold for Q, then we examine each child of Q and repeat the
above procedure. After possibly infinitely many steps and possibly passing through all
generations we obtain a collection of pairwise disjoint stopping time cubes {Pγ} in E.
Each Pγ has at least two children and satisfies the non-accretivity condition (1.28) with
Q replaced by Pγ.

Set ‖h‖∞ = M . Then

Hα(E \
⋃
γ

Pγ) =

∫
E\

⋃
γ Pγ

dHα ≥ 1

M

∫
E\

⋃
γ Pγ

|h|dHα ≥ 1

M

∣∣∣∣∣
∫
E\

⋃
γ Pγ

hdHα

∣∣∣∣∣
≥ 1

M
|
∫
E

hdHα| − 1

M

∑
γ

|
∫
Pγ

hdHα| > 1

M
(ε0Hα(E)− ε

∑
γ

Hα(Pγ)).

Therefore ∑
γ

Hα(Pγ) ≤ (1− η)Hα(E), (1.29)

for η =
ε0 − ε

M − ε
.

We want to construct a set E1, by excising from E the union of the stopping time
cubes Pγ, and replacing each child Rβ of Pγ by a certain translated dilation of the set
E. This is not exactly what we will do, because we want the sets replacing Rβ to be
separated and the measure Hα to remain unchanged. Because of this, we will work
with translated dilations of the set Ẽ given by Lemma 1.19.

Property 5 of Theorem 1.6 gives us a constant 0 < c < 1, such that for each Q,
there exists zQ with B(Q) = B(zQ, cd(Q)) ∩ E ⊂ Q, dist(B(Q), E − Q) ≈ d(Q) and
Hα(B(Q)) ≈ Hα(Q). Moreover, given a small positive number a0, Lemma 1.19 gives us

an Ahlfors-David regular set Ẽ with d(E)/2 ≤ d(Ẽ) ≤ d(E) and Hα(Ẽ) = a−1
0 Hα(E) .

With these two facts in mind, associate to each cub Q the set EQ, which is a translation

of a certain dilation of the set Ẽ, namely

EQ = λQẼ + aQ,
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where aQ ∈ Rn is the translation needed to locate the EQ appropriately and λQ > 0 is
a dilation factor. We choose them to satisfy the two constraints below:

1. EQ ⊂ B(zQ, c d(Q)/2).

2. Hα(EQ) = Hα(Q), i.e., λαQ =
Hα(Q)

Hα(Ẽ)
.

The fact that properties 1 and 2 hold at the same time, is possible by choosing a
suitable constant a0 > 0 in Lemma 1.19, as we explain below.

Assume without loss of generality that d(E) = 1, and so d(Ẽ) ≤ 1. Property 1
implies λQ ≤ 2d(EQ) < 2c d(Q). Using the second property, this is the same as to say

Hα(Q)

Hα(Ẽ)
< Cd(Q)α. (1.30)

Due to the Ahlfors-David regularity of E, we have Hα(Q) ≈ d(Q)α. Then (1.30)

tells us that to find the dilation factors λQ we only need to have Hα(Ẽ) > C−1 for
some small constant C. This can be achieved by just choosing a0 > 0 small enough in
Lemma 1.19.

We will construct the set E1 by excising from E the union of all these stopping
time cubes Pγ, and replacing each child Rβ of Pγ with the set ERβ

defined above. For
each stopping time cube Pγ = ∪βRβ, set Fγ = ∪βERβ

. That is, for each γ, the sets Fγ
replace the stopping time cubes Pγ in the new set E1. In other words,

E1 =

(
E \

⋃
γ

Pγ

)
∪
⋃
γ

Fγ.

Notice that for each γ we have

Hα(Fγ) =
∑
β

Hα(ERβ
) =

∑
β

Hα(Rβ) = Hα(Pγ), (1.31)

so that Hα(E) = Hα(E1).

For a system of dyadic cubes Q(E1) on E1, take all dyadic cubes Q ∈ Q(E) which
are not contained in any stopping time cube Pγ, together with each Fγ = ∪βERβ

and
together with the dyadic cubes of Q(ERβ

) in each Fγ (see the remark after Lemma 1.19
for the definition of Q(ERβ

)). Namely,

Q(E1) = Q1(E1) ∪Q2(E1),

where Q1(E1) = {(S \
⋃
Pγ⊂S Pγ)∪ (

⋃
Pγ⊂S Fγ) : S ∈ Q(E) \ {Pγ}} ∪ {Fγ} and Q2(E1)

consists of the dyadic systems Q(ERβ
) associated to the sets ERβ

coming from all the
Fγ. Hence each Fγ is a dyadic cube in Q(E1).
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For future reference, note that for every cube Q ∈ Q(E1), such that Q 6= Fγ for
all γ, there is a non-stopping time cube Q∗ ∈ Q(E) uniquely associated to Q by the
identity:

Q = (Q∗ \
⋃

Pβ⊂Q∗
Pβ) ∪ (

⋃
Pβ⊂Q∗

Fβ). (1.32)

One has

Hα(Q) = Hα(Q∗)−
∑
Pβ⊂Q∗

Hα(Pβ) +
∑
Pβ⊂Q∗

Hα(Fβ) = Hα(Q∗)

and

d(Q) ≈ d(Q∗).

After defining the set E1 and the system of dyadic cubes Q(E1), we modify the
function h on the union ∪γFγ to obtain a new function h1 defined on E1. We want h1

to be bounded and to satisfy∫
Fγ

h1dHα =

∫
Pγ

hdHα, for each γ. (1.33)

Condition (1.33) does not seem to contribute to the accretivity of the new function
h1, because the cubes Pγ were chosen precisely because the mean of h on them became
too small. But although our h1 has a small mean on Fγ, as h does on Pγ, we will have
a satisfactory lower bound on the integral of h1 over each child ERβ

of Fγ. Is in this
way that h1 becomes “more” accretive than h.

The function h1 is defined on E1 by

h1(x) =



∑
β

cβg(
x− aβ
λβ

)χERβ
on
⋃
γ

Fγ =
⋃
β

ERβ

h(x) on E \
⋃
γ

Pγ,

where the function g is the one defined on Ẽ given by Lemma 1.19 (recall that Ẽ is a
union of translated dilations of our initial set E and the function g is the composition
of h with the corresponding translation and dilation), and the coefficients cβ are defined
below to get the boundedness of h1 and (1.33).

Notice first that due to property 5 and 6 of Theorem 1.6 , ERβ
∩ ERη = ∅, for β 6= η

and ERβ
∩ (E \ ∪γPγ) = ∅, so that the function h1 is well defined on E1.

To define the coefficients cβ, fix Pγ and let Nγ = ]{β : Rβ is a child of Pγ}. The
number of children of the dyadic cubes is in between 2 and a fixed upper bound, that
is, 2 ≤ Nγ ≤ c1, where c1 is some constant independent of γ.

Order the children {Rβ} of Pγ starting with the cube Rβ with the smallest Hα-

measure and ending with the cube Rβ with the biggest one. Write {Rβ} = {Rj
β}

Nγ

j=1,
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where Rj
β stands for the j-th child Rβ in this ordering. We want to divide the children

of Pγ into two nonempty collections I and II, each with the same number of elements
(plus or minus one) in the following way:

I = {β : Rβ = Rj
β for 1 ≤ j ≤ [Nγ/2]},

II = {β : Rβ = Rj
β for [Nγ/2] + 1 ≤ j ≤ Nγ}.

Clearly ∑
β∈ II

Hα(Rβ)−
∑
β∈ I

Hα(Rβ) ≥ 0.

Let θ be
∫
Pγ
hdHα(|

∫
Pγ
hdHα|)−1 if

∫
Pγ
hdHα 6= 0 and let θ be 1 if

∫
Pγ
hdHα = 0.

Set a =
∣∣∫
E
hdHα

∣∣ and define the coefficients cβ as

cβ =


θHα(Ẽ)a−1 if β ∈ I

−θHα(Ẽ)c̃βa
−1 if β ∈ II,

where the c̃β satisfy ε0 ≤ c̃β ≤ 1 and moreover a certain constraint specified below.

Due to properties 5 and 3 of Lemma 1.19 and to the above definition of the coeficients
cβ, we get the boundedness of the function h1:

‖h1‖∞ = max{‖h‖∞, |cβ|‖g‖∞} ≤ max{‖h‖∞, a−1Hα(Ẽ)a0‖h‖∞}

= ‖h‖∞ max{1, a−1Hα(E)} = ‖h‖∞ max{1,
(

1

Hα(E)
|
∫
E

hdHα|
)−1

}.

Using property 4 of Lemma 1.19 we also obtain∫
ERβ

g(
x− aβ
λβ

)dHα(x) = λαβa = a
Hα(Rβ)

Hα(Ẽ)
,

so that integrating h1 on Fγ we get∫
Fγ

h1dHα =

∫
∪βERβ

h1dHα =
∑
β∈ I

θHα(Rβ)−
∑
β∈ II

θc̃βHα(Rβ).

We claim that we can choose ε0 > 0 sufficiently small, so that there exist numbers
c̃β, ε0 ≤ c̃β ≤ 1, such that∑

β∈ I

Hα(Rβ)−
∑
β∈ II

c̃βHα(Rβ) = |
∫
Pγ

hdHα|. (1.34)
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Once (1.34) is proved, we get the desired expression for the integral of h1 over Fγ,
namely ∫

Fγ

h1dHα =

∫
⋃

β ERβ

h1dHα = θ(
∑
β∈ I

Hα(Rβ)−
∑
β∈ II

c̃βHα(Rβ))

= θ|
∫
Pγ

hdHα| =
∫
Pγ

hdHα.

To show (1.34), let N2 = ]{β : β ∈ II} and define

c̃η =
1

N2Hα(Rη)

(∑
β∈I

Hα(Rβ)− |
∫
Pγ

hdHα|

)
.

With this choice of the coefficients c̃η, equality (1.34) clearly holds. Thus, we only
have to show that there exists ε0 > 0 such that ε0 ≤ c̃η ≤ 1, for all η.
The inequality c̃η ≤ 1 is equivalent to

1

N2Hα(Rη)

∑
β∈I

Hα(Rβ) ≤ 1 +
1

N2Hα(Rη)
|
∫
Pγ

hdHα|.

Notice that by the way the indexes were ordered, for all η ∈ II,∑
β∈I

Hα(Rβ) ≤ N2Hα(Rη),

which implies c̃η ≤ 1 .
For the lower inequality, we have to choose ε0 such that c̃η ≥ ε0. Recall that for Pγ

the stopping time condition (1.28) holds with Q replaced by Pγ, and that the children
of Pγ have comparable measure. Moreover, we know that there exists some (small)

positive constant 0 < c < 1/2, such that
∑
β∈I

Hα(Rβ) ≥ cHα(Pγ). Then we have,

c̃η ≥
(c− ε)Hα(Pγ)

N2Hα(Rη)
≥ (c− ε)Hα(Pγ)

NγHα(Pγ)
≥ c− ε

c1
,

where c1 > 0 is the upper bound for the number of children of a dyadic cube.
We have to choose ε0 and ε, such that c − ε ≥ ε0c1 holds. This can be achieved

by requiring ε0c1 ≤ c/2 and ε < min(ε0, c/2). The identity (1.34) is now proved and
therefore (1.33) holds.

To construct the function h1, we have to carry out this procedure for each stopping-
time cube Pγ.

The Pγ are the cubes where the accretivity condition for h fails. The function h1

has the advantage that although
∫
Pγ
hdHα =

∫
Fγ
h1dHα, we have a satisfactory lower

bound on the integral over each child ERβ
of Fγ. This is due to the definition of the

coeficients cβ :
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1. If β ∈ I, then |
∫
ERβ

h1dHα| = |cβ|aλαβ = Hα(ERβ
) ≥ ε0Hα(ERβ

).

2. If β ∈ II, then |
∫
ERβ

h1dHα| ≥ |c̃β|Hα(ERβ
) ≥ ε0Hα(ERβ

), because ε0 ≤ c̃β.

This completes the description of the basic algorithm.
We begin with the pair (E, h) with E a dyadic cube and h in L∞(E,Hα) satisfying

|
∫
E
hdHα| ≥ ε0Hα(E). The result of the algorithm is another function h1, a collection

of sets {Fγ} replacing the collection {Pγ} of stopping time subcubes of E and a set

E1 =
(
E \

⋃
γ Pγ

)
∪
⋃
γ Fγ (recall that, by construction, if Pγ = ∪βRβ, then Fγ =

∪βERβ
= ∪β(λβẼ + aβ), for some aβ ∈ Rn; for the definition of the set Ẽ see Lemma

1.19). We list now seven properties concerning h, h1, E and E1. The first three are
straightforward consequences of the algorithm:

‖h1‖∞ ≤ A0‖h‖∞, (1.35)

where A0 = max{
(

1
Hα(E)

|
∫
E
hdHα|

)−1

, 1}.

h ≡ h1 on E \
⋃
γ

Pγ (1.36)

and ∫
Pγ

hdHα =

∫
Fγ

h1dHα. (1.37)

The fourth is

Hα(E) = Hα(E1) (1.38)

and is due to (1.31). The fifth is∑
γ

Hα(Fγ) =
∑
β

Hα(Pγ) ≤ (1− η)Hα(E) (1.39)

and follows from (1.31) and (1.29). The next to the last is

|
∫
ERβ

h1dHα| ≥ ε0Hα(ERβ
), (1.40)

which has been discussed before. The last one is

|
∫
S

h1dHα| ≥ εHα(S), (1.41)

for every dyadic cube S ∈ Q(E1) of the form
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S =
(
S∗ \

⋃
Pγ⊂S∗ Pγ

)
∪
⋃
Pγ⊂S∗ Fγ for some non-stopping time cube S∗ ∈ Q(E)

(see (1.32) for the definition of the cube S∗).
To show (1.41) we remark that using (1.36) and (1.37) we have∫

S

h1dHα =

∫
S∗\

⋃
γ Pγ

hdHα +
∑
γ

∫
Fγ

h1dHα

=

∫
S∗\

⋃
γ Pγ

hdHα +
∑
γ

∫
Pγ

hdHα =

∫
S∗
hdHα,

which implies

|
∫
S

h1dHα| = |
∫
S∗
hdHα| > εHα(S),

due to the identityHα(S) = Hα(S∗) and to the fact that S∗ is a non-stopping time cube.

We need to repeat this algorithm infinitely many times. Begin with the dyadic
cube E itself and the function h with ‖h‖∞ ≤ A0. Apply the algorithm to obtain
cubes {P 1

γ1
}γ1 , sets {F 1

γ1
}γ1 , a set E1 =

(
E \ ∪γ1P 1

γ1

)
∪
⋃
γ1
F 1
γ1

with a system of dyadic
cubes Q(E1) and a function h1 defined on E1, satisfying properties (1.35) through
(1.41). For each β1 the pair (ER1

β1
, h1χE

R1
β1

) is an admissible input for the algorithm

( recall that for each γ1, F
1
γ1

= ∪β1ER1
β1

= ∪β1(λ
1
β1
Ẽ + aβ1) ). So we may apply the

algorithm to each one of these pairs to obtain further cubes {P 2
γ2
}γ2 , sets {F 2

γ2
}γ2 , a set

E2 = (E1 \
⋃
γ2
P 2
γ2

)∪
⋃
γ2
F 2
γ2

(with a system of dyadic cubes Q(E2)) and a function h2

defined on E2 with properties (1.35) through (1.41) (with h and h1 replaced by h1 and
h2 respectively). An infinite number of repetitions produces functions hj, collections

{P j
γj
}γj

, {F j
γj
}γj

and sets Ej =
(
Ej−1 \

⋃
γj
P j
γj

)
∪
⋃
γj
F j
γj

endowed with systems of

dyadic cubes Q(Ej), for every integer j ≥ 1.
By (1.39), the sets F j

γj
that replace the stopping time cubes P j

γj
at the j−th step

satisfy ∑
γj

Hα(F j
γj

) ≤ (1− η)jHα(E). (1.42)

We want to define the limit set E ′ of the sequence {Ej}j≥1 and for this we will use
the fact that the family of all non-empty compact subsets of Rn is a complete metric
space with the Hausdorff metric ρ (see [Fe] 2.10.21),

ρ(A,B) = max{d(x,A), d(y,B) : x ∈ B, y ∈ A}.

It is then enough to show that {Ej}j≥1 forms a Cauchy sequence in the metric ρ.
We claim that there exists some small constant 0 < τ < 1, such that

ρ(Ej+1, Ej) ≤ τρ(Ej, Ej−1), for all j ≥ 2. (1.43)
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To see (1.43), recall that Ej =
(
Ej−1 \

⋃
βj
Rj
βj

)
∪
(⋃

βj
ERj

βj

)
, where the Rj

βj

are the children of the stopping time cubes found at the j-th step of the previous
construction. Thus there exists some index β∗j such that

ρ(Ej, Ej−1) = ρ(ERj
β∗

j

, Rj
β∗j

).

For any j and βj, ERj
βj

is a union of translations of λjβj
δE (see Lemma 1.19). This

means that the children Rj+1
βj+1

of the stopping time cubes contained in a particular

translation of λjβj
δE are simply translations of λjβj

δR1
γ1

, where the R1
γ1

are the children
of the stopping time cubes of E. Thus the Hausdorff distance is at each step the same,
modulo the translation and dilation factors that appear when running the algorithm.
Hence we have

ρ(Ej+1, Ej) = max
βj+1

λj+1
βj+1

ρ(ERj
β∗

j

, Rj
β∗j

).

Because of the election of a0,

(
λj+1
βj+1

)α
= a0

Hα(Rj+1
βj+1

)

Hα(E)
< a0 < 1 for all βj+1,

which proves claim (1.43) with τ = a
1/α
0 .

Let E ′ = lim
j→∞

Ej be the limit set of the sequence {Ej}j and set

b(x) = lim
j→∞

hj(x),

which exists for almost all x ∈ E ′.
Because properties (1.35), (1.37) and (1.38) hold at each step of the construction,

we have

‖b‖∞ ≤ C,

∫
E′
b(x)dHα =

∫
E

h(x)dHα,

and

Hα(E) = Hα(E ′).

Moreover, since ∫
E

hdHα =

∫
E\∪γPγ

hdHα +

∫
∪γPγ

hdHα 6= 0,
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∫
∪γPγ

hdHα < ε
∑
γ

Hα(Pγ) < εHα(E)

and

|
∫
E

hdHα| ≥ ε0Hα(E),

we get

|
∫
E\∪γPγ

hdHα| ≥ (ε0 − ε)Hα(E) > 0,

from the choice of ε0 and ε. This tells us that Hα(E \ ∪γPγ) > 0, and therefore that
Hα(E ∩ E ′) > 0 because of the inclusion E \ ∪γPγ ⊂ E ′ ∩ E.

At this point we define a class of sets Q(E ′) that eventually will be shown to be a
system of dyadic cubes for E ′. We distinguish two types of “cubes” Q in Q(E ′).

Type 1. For some j ≥ 1, Q ∈ Q(Ej) \ Q(Ej−1) (for j = 0 set E0 = E) and Q does
not contain any stopping time cube P j+1

γj+1
(in the (j + 1)-th application of the

algorithm). Notice that in fact Q ∈ Q(Em) for all m ≥ j.

Type 2. For some j ≥ 0 we take a cube Q∗ ∈ Q(Ej)\Q(Ej−1) (set E−1 = ∅) that contains
some stopping time cubes P j+1

γj+1
but it is not one of them. This Q∗ will produce a

“cube” Q in Q(E ′) after infinitely many modifications corresponding to successive
applications of the algorithm (exactly in the same way one gets E ′ from E). The
first modification consists in replacing the stopping time cubes P j+1

γj+1
⊂ Q∗ by the

sets F j+1
γj+1

in the way illustrated in (1.32).

Notice that for each “cube” Q in Q(E ′) there exist some index j ≥ 0 and an
associated non-stopping dyadic cube Q∗ ∈ Q(Ej)\Q(Ej−1) in such a way that Q∗ = Q,
if Q is a cube of the first type and Q∗ is the cube involved in the definition of Q, if
Q is of type2. The cubes Q and Q∗ coincide only if there are no stopping time cubes
contained in Q∗, because in this case, the iteration of the algorithm does not modify
the cube Q∗ at all.

If Q ∈ Q(E ′) is a cube of the second type and Q∗ ∈ Q(Ej) \ Q(Ej−1) is the
corresponding associated non-stopping time cube, then there exists a sequence of cubes
{Q∗

k}k≥j such that Q∗
j = Q∗ ∈ Q(Ej)\Q(Ej−1) and for all k > j, Q∗

k ∈ Q(Ek)\Q(Ek−1)
is the modification corresponding to the application of the algorithm to the cube Q∗

k−1 ∈
Q(Ek−1). Namely, Q∗

k → Q, as k →∞, in the same way as Ek → E ′, when k →∞.
Set F 0

γ0
= E. Notice that if Q∗ ∈ Q(Ej) \ Q(Ej−1) for some j ≥ 0, then there

exists some index γj such that either Q∗ ( F j
γj

or Q∗ = F j
γj

(otherwise we would have
Q∗ ∈ Q(Ej−1)).

Observe that the definition of the “cubes” Q(E ′) immediately yields the properties
of a true family of dyadic cubes listed in Theorem 1.6.
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By construction we have

d(Q) ≈ d(Q∗). (1.44)

We claim that
Hα(Q) = Hα(Q∗) (1.45)

and ∫
Q

bdHα =

∫
Q∗
hjdHα. (1.46)

To show this we distinguish two cases:

1. If Q is of type 1, then Q = Q∗ and b = hj (set h0 = h). Hence (1.45) and (1.46)
hold obviously.

2. If Q is of type 2, then, although the identity Q = Q∗ does not hold because
the cube Q∗ has been modified when running the algorithm, the claim is still
true because properties (1.31) and (1.37) at each step imply (1.45) and (1.46)
respectively.

Notice that the sequence of cubes {Q∗
k}k≥j approaching Q when k → ∞ also fulfil

d(Q∗
k) ≈ d(Q) and Hα(Q∗

k) = Hα(Q) for all k ≥ j.

We still have to prove the Ahlfors-David regularity of the set E ′, that is, that there
exists some constant C > 0, with

C−1rα ≤ Hα(E ′ ∩B(x, r)) ≤ Crα, (1.47)

for every x ∈ E ′ and for 0 < r ≤ d(E ′).

We show first the Ahlfors-David regularity of the sets {En}n≥0 converging to E ′.
We prove it by induction on n. The case n = 0 (E0 = E) is true by hypothesis.

Let x ∈ E1 and 0 < r ≤ d(E1). Recall that E1 = (E0 \
⋃
γ1
P 1
γ1

) ∪
⋃
γ1
F 1
γ1

. Notice

that for any y ∈ E1, there exists a decreasing sequence of cubes {Qj(y)}j in Q(E1)
such that for every index j, y ∈ Qj(y) and Qj(y) ∈ Qj(E1), that is, Qj(y) is a cube of
generation j in Q(E1). For each y ∈ E1∩B(x, r), let Qk(y) be the smallest dyadic cube
in this sequence not contained in E1 ∩B(x, r). Then for some positive constant C,

r ≤ d(Qk(y)) ≤ Cd(Qk+1(y)) ≤ Cr,

because Qk(y) * B(x, r) and Qk+1(y) ⊂ B(x, r). Hence,

Hα(E ′ ∩B(x, r)) ≥ Hα(Qk+1(y)) = Hα(Qk+1(y)∗) ≈ d(Qk+1(y)∗)α ≈ rα.

because Hα(Qk+1(y)∗) = Hα(Qk+1(y)), Qk+1(y)∗ ∈ Q(E) and E is an Ahlfors-David
regular set.
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For the reverse inequality, observe that if x ∈ F 1
γ1

for some index γ1 and r < d(P 1
γ1

),
then due to the Ahlfors-David regularity of F 1

γ1
we have

Hα(E1 ∩B(x, r)) = Hα(Fγ1 ∩B(x, r)) ≈ rα.

Otherwise, for each y ∈ E1∩B(x, r) let Q
ky
y ∈ Qky(E1) stand for the smallest dyadic

cube in Q(E1) containing y and not contained in B(x, 2r). Then r ≈ d(Q
ky
y ) as before.

The maximal cubes {Ql}l in this family form a disjoint covering of E1 ∩ B(x, r) with
d(Ql) ≈ r. Consider the associated dyadic cubes Q∗

l ∈ Q(E) defined in (1.32). Then
Hα(Q∗

l ) = Hα(Ql) and d(Q∗
l ) ≈ d(Ql) ≈ r.

Notice that due to Lemma 19 in [Ch2], there exists some constant N0 <∞ such that
for every bounded subset F of an Ahlfors-David regular set E, the number of disjoint
dyadic cubes intersecting F , with diameter greater or comparable to the diameter of
F , is at most N0 (N0 depends only on the Ahlfors-David regularity constant of E).

The cubes Q∗
l are disjoint and cover the bounded subset E ∩B(x, r) of E (the fact

that r ≥ d(Pγ1) implies that E ∩B(x, r) 6= ∅), thus we have at most N0 of such cubes.
Then

Hα(E1 ∩B(x, r)) ≤
∑
l

Hα(Ql) =
∑
l

Hα(Q∗
l ) ≤ CN0r

α,

because the cubes Q∗ are contained in the Ahlfors-David regular set E and hence
Hα(Q∗

l ) ≈ d(Q∗
l )
α ≈ rα for all l.

The induction hypothesis will be to assume the Ahlfors-David regularity of En−1,
with Ahlfors-David regularity constant depending only on that of E.

Let x ∈ En and 0 < r ≤ d(En). Recall that En = (En−1 \
⋃
γn
P n
γn

) ∪
⋃
γn
F n
γn

.
To Prove the Ahlfors-David regularity of En, argue like in the case n = 1, but re-
placing E1 by En, E by En−1 (which is Ahlfors-David regular due to the induction
hypothesis), F 1

γ1
∈ Q(E1) by F n

γn
∈ Q(En) and the cubes Q∗

l and (Qk+1(y))∗ in Q(E)
(y ∈ E1 ∩B(x, r)) by (Ql)

∗
n−1 and (Qk+1(y))∗n−1 in Q(En−1) (y ∈ En ∩B(x, r)) respec-

tively.

We turn now to the proof of (1.47). The argument is very similar to what we have
just done with the sets En. The main difference lies on the fact that in working with
the cubes Q∗

l , we will be forced to jump over several En, instead of remaining in the
previous one.

Let x ∈ E ′ and 0 < r ≤ d(E ′). For y ∈ E ′ ∩ B(x, r), let Qky(y) ∈ Qky(E ′) be
the smallest dyadic cube in Q(E ′) containing y and not contained in B(x, r), then
d(Qky(y)) ≈ r. Then using (1.45), (1.44) and the fact that for some m, (Qky+1(y))∗ ∈
Q(Em), with Em an Ahlfors-David regular set, we get

Hα(E ′ ∩B(x, r)) ≥ Hα(Qky+1(y)) = Hα((Qky+1(y))∗) ≈ d((Qky+1(y))∗)α ≈ rα.

Thus the lower inequality in (1.47) holds.
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We are left now with the upper inequality in (1.47). For each y ∈ E ′ ∩ B(x, r) we

let Q
ky
y stand for the smallest dyadic cube in Q(E ′) containing y and not contained in

B(x, 2r). Then r ≈ d(Q
ky
y ) as before. The maximal cubes {Ql}l in this family form a

disjoint covering of E ′ ∩B(x, r), with d(Ql) ≈ r.
We claim now that there are finitely many Ql. To show this, we assume that there

are at least N of such cubes and we show that N is bounded above by a constant
N0 depending only on the Ahlfors-David regularity constant of E. Let {Q∗

l }Nl=1 be the
associated non-stopping time cubes defined before. Then for each l, 1 ≤ l ≤ N , there
exists some index j(l) such that Q∗

l ∈ Q(Ej(l)). We know that each cube Ql is the
limit set of the sequence {(Ql)

∗
k}k≥j(l), with (Ql)

∗
k ∈ Q(Ek) \ Q(Ek−1) for all k ≥ j(l)

(recall that, by definition, (Ql)
∗
j(l) = Q∗

l ∈ Q(Ej(l))). Since we are dealing with only N

cubes Ql, for some sufficiently big index m , there exists some index k(l) ≥ j(l) such
that (Ql)

∗
k(l) ∈ Q(Em) and d((Ql)

∗
k(l)) ≈ r, for all 1 ≤ l ≤ N . Recalling that Em is

an Ahlfors-David regular set with Ahlfors-David regularity constant depending only on
those of E and using Lemma 19 in [Ch2], as before, we conclude that there at most
N0 of these dyadic cubes (Ql)

∗
k(l). Thus using that the cubes (Ql)

∗
k(l) ∈ Q(Em) satisfy

Hα(Ql) = Hα((Ql)
∗
k(l)) and d((Qk)

∗
k(l)) ≈ r, the Ahlfors-regularity of the set Em gives

us

Hα(E ′ ∩B(x, r)) ≤
∑
l

Hα(Ql)) =
∑
l

Hα((Ql)
∗
k(l)) ≤ CN0r

α.

Our function b is dyadic para-accretive by construction. Take some dyadic cube
Q ∈ Q(E ′) and consider the uniquely associated non-stopping time cube Q∗ ∈ Q(Ej) \
Q(Ej−1), j ≥ 0. We distinguish the following two cases :

1. (a) If Q∗ = F j
γj

for some j 6= 0, then although we do not have∫
Q

bdHα ≥ εHα(Q),

the function is still dyadic para-accretive, namely, the above inequality holds
replacing the cube Q ∈ Q(E ′) by any child Rη ⊂ Q. Notice first that if

Q∗ = F j
γj

=
⋃
β

ERβ
=
⋃
β

(λβẼ + aβ) ∈ Q(Ej)

and R is a child of Q, then clearly for some β

R∗ = ERβ
= λβẼ + aβ ⊂ Q∗.

Then, using (1.46), (1.40) and (1.45) we get∫
Rβ

bdHα =

∫
R∗β

hjdHα =

∫
ERβ

hjdHα ≥ ε0Hα(ERβ
) = ε0Hα(Rβ).
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(b) If Q∗ = E, then Q = E ′. Thus using (1.46), the accretivity of h at the
highest scale and (1.45), we obtain∫

Q

bdHα =

∫
E′
bdHα =

∫
E

hdHα ≥ ε0Hα(E) = ε0Hα(E ′).

2. If Q∗ is strictly contained in some F j
γj

, then by (1.46), (1.41) and (1.45),∫
Q

bdHα =

∫
Q∗
hjdHα ≥ εHα(Q∗) = εHα(Q).

To complete the proof we only need to show that Rα(bHα) is a dyadic BMO(E ′)
function. In what follows, to simplify the notation we will set T (f) = Rα(fHα) for
f ∈ L1(E ′,Hα).

We claim that, since the function b ∈ L∞(E ′), it is enough to show the following
L1−inequality:

‖T (bχQ)‖L1(Q) ≤ CHα(Q). (1.48)

for every Q ∈ Q(E ′).
Suppose (1.48) holds for every Q ∈ Q(E ′) and let 2Q = {x ∈ E ′ : dist(x,Q) ≤

Ad(Q)}, for some positive constant A. As a consequence of the “small boundary con-
dition” for the dyadic cubes (see property 6 in Theorem 1.6) we have

‖T (bχ2Q\Q)‖L1(Q) ≤ CHα(Q)

(see the bound for the second integral in (1.58) below). The standard estimates for the
Calderón-Zygmund operators show that

‖T (bχ(2Q)c)(x)− T (bχ(2Q)c)(x0)‖L1(Q) ≤ CHα(Q), (1.49)

where x0 is a fixed point in Q. This implies that

∫
Q

|T (b)(x)− T (bχ(2Q)c)(x0)|dHα(x) ≤
∫
Q

|T (bχQ)(x)|dHα(x)

+

∫
Q

|T (bχ2Q\Q)(x)|dHα(x) +

∫
Q

|T (bχ(2Q)c)(x)− T (bχ(2Q)c)(x0)|dHα(x)

≤ CHα(Q),

which proves the claim.
To see (1.48), let Q ∈ Q(E ′) be some dyadic cube of E ′ and let Q∗ be the uniquely

associated dyadic cube in Q(Ej) \ Q(Ej−1) defined before (recall that the index j is
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determined by Q). Then the cube Q is the limit set of the sequence {Q∗
k}k≥j, with

Q∗
k ∈ Q(Ek) \ Q(Ek−1).

Notice that the definition of b implies that we can write

bχQ = hjχQ∗ +
∞∑

k=j+1

∑
Pk

γk
∈Q∗k−1

(
hkχFk

γk
− hk−1χPk

γk

)
.

Then applying T we obtain,

T (bχQ) = T (hjχQ∗) +
∞∑

k=j+1

∑
Pk

γk
∈Q∗k−1

T
(
hkχFk

γk
− hk−1χPk

γk

)
.

To show (1.48), we only need to prove the next three inequalities:

‖T (hjχQ∗)‖L1(Q) ≤ CHα(Q) (1.50)

and

‖T (hkχFk
γk

)− T (hk−1χPk
γk

)‖L1(Fk
γk

) ≤ CHα(F k
γk

) (1.51)

‖T (hkχFk
γk

)− T (hk−1χPk
γk

)‖L1(Q\Fk
γk

) ≤ CHα(F k
γk

) (1.52)

for all k > j such that P k
γk
∈ Q∗

k−1.

Notice that if Q = Q∗, then b = hj and (1.50) implies∫
Q

|T (bχQ)|dHα =

∫
Q

|T (hjχQ∗)|dHα ≤ CHα(Q),

which is (1.48).
Otherwise Q 6= Q∗ and if properties (1.50), (1.51) and (1.52) hold, using (1.42) and

(1.45) at each step of the algorithm we get

‖T (bχQ)‖L1(Q) ≤ CHα(Q) + C

∞∑
k=j+1

∑
Pk

γk
∈Q∗k−1

Hα(F k
γk

)

≤ CHα(Q) + C

∞∑
k=1

(1− η)kHα(Q) ≤ CHα(Q),

which is (1.48).

Thus we are only left with the task of proving (1.50), (1.51) and (1.52). We first
show (1.50). Recall that given any cube Q ∈ Q(E ′), we have an associated cube
Q∗ ∈ Q(Ej) \ Q(Ej−1) (for some j ≥ 0 depending on Q) and either Q∗ = F j

γj
or

Q∗ ⊂ F j
γj

for some index γj.
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1. (a) If Q∗ = F j
γj

for some j 6= 0, then recall that F j
γj

=
⋃
βj
ERj

βj

and for x ∈

ERj
βj

= λjβj
Ẽ + aβj

,

hj(x) =
∑
βj

cβj
g(
x− aβj

λβj

)χE
R

j
βj

.

Thus

T (hjχF j
γj

)(x) =
∑
βj

cβj

∫
E

R
j
βj

y − x

|y − x|1+α
g

(
y − aβj

λjβj

)
dHα(y)

=
∑
βj

cβj

∫
Ẽ

z − (x− aβj
)/λjβj

|z − (x− aβj
)/λjβj

|1+α
g(z)dHα(z) =

∑
βj

cβj
T (g)

(
x− aβj

λjβj

)
.

Now, using that the number of children ERj
βj

of F j
γj

is between 2 and a fixed

upper bound , that the constants cβj
are uniformly bounded from above and

that ‖T (g)‖∞ ≤ C (see Lemma 1.19), we obtain

‖T (hjχF j
γj

)‖∞ ≤ C. (1.53)

This L∞−inequality implies that

‖T (hjχQ∗)‖L1(Q) = ‖T (hjχF j
γj

)‖L1(Q) ≤ CHα(Q),

which is (1.50) in this case.

(b) If Q∗ = E, then Q = E ′ and by hypothesis

‖T (h0χQ∗)‖∞ = ‖T (h)‖∞ ≤ C.

Thus

‖T (h0χQ∗)‖L1(Q) = ‖T (h)‖L1(E′) ≤ CHα(E ′).

2. If Q∗ ⊂ F j
γj

, set fj = hjχF j
γj

and gj = hjχF j
γj
\2Q∗ (where 2Q∗ = {x ∈ F j

γj
:

dist(x,Q∗) ≤ Ad(Q∗)}). Then one has a BMO estimate for T (gj) restricted to
Q∗, namely, there exists some constant c, depending on gj and Q∗, such that

‖T (gj)− c‖L1(Q∗) ≤ CHα(Q∗), (1.54)
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(something similar was done before (1.49) to show that (1.48) suffices for the BMO
bound ). And using the small boundary condition (see property 6 in Theorem
1.6) and (1.45) we have

‖T (hjχ2Q∗\Q∗)‖L1(Q∗) ≤ CHα(Q∗) = CHα(Q) (1.55)

(see the bound for the second integral in (1.58) below).

Thus writing

∫
Q∗
T (hjχQ∗)dHα

=

∫
Q∗
T (fj)dHα −

∫
Q∗
T (hjχ2Q∗\Q∗)dHα −

∫
Q∗

(T (gj)− c) dHα − cHα(Q∗),

to show (1.50) it suffices to find an upper bound for |c| independent of Q∗. To
get such a bound consider the integral over Q∗ of the product of hjχQ∗ with
T (hjχQ∗). On the one hand, it is zero by antisymmetry. On the other hand,
writing T (hjχQ∗) = T (fj)− T (gj)− T (hjχ2Q∗\Q∗), it equals to

∫
Q∗
hjT (fj)dHα−∫

Q∗
hj (T (gj)− c) dHα − c

∫
Q∗
hjdHα −

∫
Q∗
T (hjχ2Q∗\Q∗). Hence due to (1.53),

(1.54), (1.55) and ‖hj‖∞ ≤ C (see (1.35) replacing h1 by hj), we get

|c|
∣∣∣∣∫
Q∗
hjdHα

∣∣∣∣ ≤ ∣∣∣∣∫
Q∗
hjT (fj) dHα

∣∣∣∣+ ∣∣∣∣∫
Q∗
hj (T (gj)− c) dHα

∣∣∣∣ ≤ CHα(Q∗).

The upper bound on |c| is obtained by using that Q∗ ∈ Q(Ej) is not a stopping

time cube, namely,
∣∣∣∫Q∗ hjdHα

∣∣∣ > εHα(Q∗). Thus (1.50) is proved.

Inequality (1.51) is proved by estimating each of the terms ‖T (hkχFk
γk

)‖L1(Fk
γk

) and

‖T (hk−1χPk
γk
‖L1(Fk

γk
). Replacing hj and F j

γj
by hk and F k

γk
in (1.53), we get

‖T (hkχFk
γk

)‖L1(Fk
γk

) ≤ CHα(F k
γk

). To estimate the second term, recall first that P k
γk
⊂

Q∗
k−1 ∈ Q(Ek−1)\Q(Ek−2), thus for some index γk−1, we have P k

γk
⊂ F k−1

γk−1
. Since F k−1

γk−1

is a finite union of ERk−1
βk−1

and P k
γk

is a stopping time cube, P k
γk
⊂ ERk−1

βk−1

for some βk−1

. Thus the definition of hk−1 implies that

hk−1(x)χPk
γk

(x) = cβk−1
g(
x− aβk−1

λk−1
βk−1

)χPk
γk

(x),

for some index βk−1.
Let hk−1χPk

γk
= fk−1 + gk−1, where fk−1 = hk−1χFk−1

γk−1
and gk−1 = hk−1χFk−1

γk−1
\Pk

γk

.

Using (1.53) (with hj and F j
γj

replaced by hk−1 and F k−1
γk−1

respectively) we obtain

‖T (hk−1χPk
γk

)‖L1(Fk
γk

) ≤ CHα(F k
γk

) + ‖T (gk−1)‖L1(Fk
γk

). (1.56)
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Hence we only have to estimate this second integral. To do this, let zk = zkγk
∈ P k

γk

be the point in P k
γk

given by property 5 in Theorem 1.6, Bk = B(zk, cd(P k
γk

)) and Ln
the Lebesgue measure in Rn. We know that P k

γk
⊂ F k−1

γk−1
for some index γk−1 and each

set F k−1
γk−1

is Ahlfors-David regular, then by the upper inequality in the Ahlfors-David
condition, the fact that ‖hk−1‖∞ ≤ C for all k and for some positive constant c0 we
have

1

Ln(Bk)

∫
Bk

∣∣∣T (hk−1χPk
γk

)(y)
∣∣∣ dLn(y) ≤ C

d(P k
γk

)n

∫
Pk

γk

∫
B(x,c0d(Pk

γk
))

dLn(y)
|x− y|αdHα(x)

=
C

d(P k
γk

)n

∫
Pk

γk

∫
B(0,c0d(Pk

γk
))

dLn(z)
|z|α

dHα(x) = C
Hα(P k

γk
)

d(P k
γk

)n

∫
B(0,c0d(Pk

γk
))

dLn(z)
|z|α

≤ C,

with C depending only on c0, n, α, the uniform upper bound for ‖hk−1‖∞ and the
upper constant in the Ahlfors-David condition. The fact that this mean value integral
is finite, implies that there exists some point yk ∈ Bk such that∣∣∣T (hk−1χPk

γk
)(yk)

∣∣∣ ≤ C.

Then using (1.53) (with hj and F j
γj

replaced by hk−1 and F k−1
γk−1

respectively),

|T (gk−1)(yk)| ≤ ‖T (fk−1)‖∞ +
∣∣∣T (hk−1χPk

γk
)(yk)

∣∣∣ ≤ C.

Thus

‖T (gk−1)‖L1(Fk
γk

) ≤ ‖T (gk−1)− T (gk−1)(yk)‖L1(Fk
γk

) + CHα(F k
γk

) ≤ CHα(F k
γk

),

which is the right estimate for the second integral in (1.56) and shows inequality (1.51).
In this last step we use the same idea as in the proof of (1.57) below.

To show (1.52) we will adapt an argument from [Ch2] ( see Lemma 18 ) that uses
standard estimates for the Calderón-Zygmund operators, the identities

∫
Pk

γk

hk−1dHα =∫
Fk

γk

hkdHα and the inequalities ‖hk‖∞ ≤ C for all k. Let zk = zkγk
∈ P k

γk
be the point

in P k
γk

given by property 5 in Theorem 1.6. Then we can write

T (hk−1χPk
γk
− hkχFk

γk
)(y) =

∫
Pk

γk

hk−1(x)

(
x− y

|x− y|1+α
− zk − y

|zk − y|1+α

)
dHα(x)

+

∫
Fk

γk

hk(x)

(
zk − y

|zk − y|1+α
− x− y

|x− y|1+α

)
dHα(x).



1.5. Proof of Theorem 1.2. 55

Now dist(zk, Q \ P k
γk

) ≥ cd(P k
γk

). When x ∈ F k
γk

and y ∈ Q \ F k
γk

, then |y − x| ≥
cd(P k

γk
). Therefore the standard estimates for the Calderón-Zygmund kernels give

∫
Q\Fk

γk

∫
Fk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(x)dHα(y)

≤ C

∫
Fk

γk

∞∑
j=1

∫
{2j−1cd(Pk

γk
)≤|y−x|≤2jcd(Pk

γk
)}

|x− zk|
|x− y|1+α

dHα(y)dHα(x)

≤ C

∫
Fk

γk

∞∑
j=1

Hα({2j−1cd(P k
γk

) ≤ |y − x| ≤ 2jcd(P k
γk

)})(
2j−1cd(P k

γk
)
)1+α d(P k

γk
)dHα(x)

≤ C

∫
Fk

γk

∞∑
j=1

2−jdHα(x) ≤ CHα(F k
γk

).

(1.57)

Since (Q \ F k
γk

) ∩ P k
γk

= ∅,

∫
Q\Fk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(x)dHα(y)

=

∫
(Q\Fk

γk
)\2Pk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(x)dHα(y)

+

∫
(Q\Fk

γk
)∩2Pk

γk
\Pk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(x)dHα(y).

(1.58)

The first integral in (1.58) may be estimated in the same way as (1.57). Thus we
get

∫
(Q\Fk

γk
)\2Pk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(x)dHα(y) ≤ CHα(P k
γk

) = Hα(F k
γk

).

For the second integral in (1.58), let j ∈ Z and define the set

Aj = {x ∈ P k
γk

: 2j−1d(P k
γk

) < dist(x, 2P k
γk
\ P k

γk
) ≤ 2jd(P k

γk
)}.
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Now, for x ∈ Aj, let Fi(x) = {y ∈ 2P k
γk
\ P k

γk
: 2i−1d(P k

γk
) < |x− y| ≤ 2id(P k

γk
)}.

Then we have∫
2Pk

γk
\Pk

γk

∣∣∣∣ x− y

|x− y|1+α

∣∣∣∣ dHα(y) =
1∑
i=j

∫
Fi(x)

∣∣∣∣ x− y

|x− y|1+α

∣∣∣∣ dHα(y)

≤
1∑
i=j

∫
Fi(x)

1

|x− y|α
dHα(y) ≤

1∑
i=j

C
(
2id(P k

γk
)
)α(

2i−1d(P k
γk

)
)α

≤ C

1∑
i=j

1 ≤ C(1 + |j|).

Summing over j and using the “small boundary” condition stated in property 6 of
Theorem 1.6 gives

∫
Pk

γk

∫
2Pk

γk
\Pk

γk

∣∣∣∣ x− y

|x− y|1+α

∣∣∣∣ dHα(y)dHα(x) ≤ C
0∑

j=−∞

(1 + |j|)
∫
Aj

dHα(x)

= C
0∑

j=−∞

(1 + |j|)Hα(Aj) ≤ C
0∑

j=−∞

(1 + |j|)b12ηjHα(P k
γk

) ≤ CHα(P k
γk

).

Moreover,

∫
Pk

γk

∫
2Pk

γk
\Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α

∣∣∣∣ dHα(y)dHα(x) ≤
Hα(P k

γk
)Hα(2P k

γk
\ P k

γk
)

(cd(P k
γk

))α
≤ CHα(P k

γk
).

Therefore we have∫
2Pk

γk
\Pk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(y) ≤ CHα(P k
γk

),

and so we are done with the estimate of the second integral in (1.58) and we get∫
Q\Fk

γk

∫
Pk

γk

∣∣∣∣ zk − y

|zk − y|1+α
− x− y

|x− y|1+α

∣∣∣∣ dHα(y) ≤ CHα(P k
γk

).

Hence using that ‖hk‖∞ ≤ C for all k, we finally get the L1−inequality in (1.51).



Chapter 2

Signed Riesz capacities and Wolff
potentials.

2.1 Introduction.

In this paper we study the capacity γα associated to the signed vector valued Riesz
kernels kα(x) = x

|x|1+α , 0 < α < n, in Rn. If K ⊂ Rn is compact one sets

γα(K) = sup | < T, 1 > |
where the supremum is taken over all distributions T supported onK such that T ∗ xi

|x|1+α

is a function in L∞(Rn) and ‖T ∗ xi

|x|1+α‖∞ ≤ 1, for 1 ≤ i ≤ n. For n = 2 and α = 1

this is basically analytic capacity (see [T2]), and for α = n− 1 and any n ≥ 2, γn−1 is
Lipschitz harmonic capacity (see [Par], [MP] and [V1]).

In [P1] one discovered the fact that if 0 < α < 1, then a compact set of finite
α-dimensional Hausdorff measure has zero γα capacity. This is in strong contrast with
the situation for integer α, in which α-dimensional smooth hypersurfaces have positive
γα capacity. The case of non-integer α > 1 is not completely understood, although it
was shown in [P1] that for Ahlfors-David regular sets the result mentioned above for
0 < α < 1 still holds.

In this paper we establish the equivalence between γα, 0 < α < 1, and one of the
well-known Riesz capacities of non-linear potential theory (see [AH], Chapter 1, p. 38).
The Riesz capacity Cs,p of a compact set K ⊂ Rn, 1 < p < ∞, 0 < sp ≤ n, is defined
by

Cs,p(K) = inf{‖ϕ‖pp : ϕ ∗ 1

|x|n−s
≥ 1 on K},

where the infimum is taken over all compactly supported infinitely differentiable func-
tions on Rn. The capacity Cs,p can be described by means of Wolff potentials. The
Wolff potential of a positive Radon measure µ is defined by

W µ(x) = W µ
s,p(x) =

∫ ∞

0

(
µ(B(x, r))

rn−sp

)p′−1
dr

r
, x ∈ Rn,
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where p′ = p/(p− 1) is the exponent conjugate to p.
The Wolff energy of µ is

E(µ) = Es,p(µ) =

∫
Rn

W µ(x)dµ(x).

By Wolff’s inequality ([AH], Theorem 4.5.4, p.110) one has

C−1 sup
µ

1

Es,p(µ)p−1
≤ Cs,p(K) ≤ C sup

µ

1

Es,p(µ)p−1
,

where C is a positive constant depending only on s, p and n, and the supremum is
taken over the probability measures µ supported on K.

The main result of this paper is the following.

Theorem. For each compact set K ⊂ Rn and for 0 < α < 1 we have

C−1C 2
3
(n−α), 3

2
(K) ≤ γα(K) ≤ C C 2

3
(n−α), 3

2
(K), (2.1)

where C is a positive constant depending only on α and n.

Since it is well-known that C 2
3
(n−α), 3

2
vanishes on sets of finite α-dimensional Haus-

dorff measure (see [AH], Theorem 5.1.9, p.134), the same applies to γα. Thus we recover
one of the main results of [P1]. On the other hand, Cs,p is a subadditive set function (al-
most by definition, see [AH], p.26), and consequently, γα is semiadditive for 0 < α < 1,
that is, given compact sets K1 and K2,

γα(K1 ∪K2) ≤ C {γα(K1) + γα(K2)} , (2.2)

for some constant C depending only on α and n. In fact γα is countably semiadditive.
For α = 1 and n = 2 inequality (2.2) is still true and is a remarkable result obtained in
[T2]. For α = n− 1 and any n (2.2) has been shown very recently in [Vo].

Another interesting consequence of the Theorem is that γα is a bilipschitz invariant.
This means that if φ : Rn → Rn is a bilipschitz homeomorphism of Rn, namely,

L−1|x− y| ≤ |φ(x)− φ(y)| ≤ L|x− y|,

for x, y ∈ Rn and for some constant L > 0, then for compact sets K one has

C−1γα(K) ≤ γα(φ(K)) ≤ Cγα(K),

where C depends only on L, α and n.
The bilipschitz invariance of the analytic capacity γ has been recently proved by X.

Tolsa (see [T4]). The result for a big class of Cantor sets was proved before by Garnett
and Verdera (see [GV]).
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Our proof of the Theorem rests on two steps. The first one is the analogue for
0 < α < 1 of the main result in [T2], namely, the equivalence between γα and γα,+. For
a compact set K ⊂ Rn, the positive γα capacity is defined by

γα,+(K) = supµ(K)

where the supremum is taken over those positive Radon measures µ supported on K

such that xi

|x|1+α ∗ µ is in L∞(Rn) and
∥∥∥ xi

|x|1+α ∗ µ
∥∥∥
∞
≤ 1, for 1 ≤ i ≤ n.

Theorem 2.1. For each compact set K ⊂ Rn and 0 < α < 1, we have

C−1γα,+(K) ≤ γα(K) ≤ Cγα,+(K),

where C is some positive constant depending only on α and n.

We claim that Theorem 2.1 can be proved by adapting the scheme of the proof of
Theorem 1.1 in [T2] and the adjustments introduced in [T3] to prove Theorem 7.1 there.
This is explained in some detail in section 2.2.2. When analyzing the argument used in
[T2] one realizes that it is based on two main technical ingredients : the non-negativity
of the quantity obtained when symmetrizing the kernel, which was proved in [P1] for
the Riesz kernel kα with 0 < α < 1, and the possibility of localizing the signed α−Riesz
potential, which is proved in section 3 for 0 < α < n. When the localization lemma is
available then there is no obstruction in adapting Lemma 7.2 (part h)) in [T3]. Once
Theorem 2.1 is at our disposal we need to relate γα,+ to C 2

3
(n−α), 3

2
and this is the second

step in the proof of the Theorem, which is discussed in section 4.

The plan of the paper is the following. Section 2 contains some preliminary defi-
nitions and results that will be used throughout the article. In section 3 we prove a
localization theorem for the signed Riesz potentials. In section 4 we prove the main
Theorem.

Constants independent of the relevant parameters are denoted by C and may be
different at each occurrence. The notation A ≈ B means, as it is usual, that for some
constant C one has C−1B ≤ A ≤ CB.

2.2 Preliminaries.

2.2.1 Simmetrization of Riesz kernels.

The symmetrization process for the Cauchy kernel introduced in [Me] has been success-
fully applied in these last years to many problems of analytic capacity and L2 bound-
edness of the Cauchy integral operator (see [MV], [MMV] for example; the survey [D3]
and the book [Pa2] contain many other interesting references). Given 3 distinct points
in the plane, z1, z2 and z3, one finds out, by an elementary computation that

c(z1, z2, z3)
2 =

∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))
(2.3)
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where the sum is taken over the six permutations of the set {1, 2, 3} and c(z1, z2, z3) is
Menger curvature, that is, the inverse of the radius of the circle through z1, z2 and z3.
In particular (2.3) shows that the sum on the right hand side is a non-negative quantity.

It can be shown that for 0 < α < 1 the symmetrization of the Riesz kernel kα(x) =
x/|x|1+α, gives also a positive quantity. On the other hand, for 1 < α < n, the
phenomenon of change of signs appears when symmetrizing the kernel kα, as one can
easily check.

For 0 < α < n the quantity∑
σ

xσ(2) − xσ(1)

|xσ(2) − xσ(1)|1+α

xσ(3) − xσ(1)

|xσ(3) − xσ(1)|1+α
, (2.4)

where the sum is taken over the six permutations of the set {1, 2, 3}, is the obvious
analogue of the right hand side of (2.3) for the Riesz kernel kα. Notice that (2.4) is
exactly

2 pα(x1, x2, x3),

where pα(x1, x2, x3) is defined as the sum in (2.4) taken only on the three permutations
(1, 2, 3), (2, 3, 1), (3, 1, 2).

In the following lemma we state the explicit description that was found in [P1] for
the symmetrization of the Riesz kernel kα, for 0 < α < 1.

Lemma 2.2. Let 0 < α < 1, and x1, x2, x3 three distinct points in Rn. Then we have

2− 2α

L(x1, x2, x3)2α
≤ pα(x1, x2, x3) ≤

21+α

L(x1, x2, x3)2α
,

where L(x1, x2, x3) is the largest side of the triangle determined by x1, x2 and x3. In
particular pα(x1, x2, x3) is a positive quantity.

The relationship between the quantity pα(x, y, z) and the L2 estimates of the oper-
ator with kernel kα is as follows. Take a positive finite Radon measure µ in Rn which
satisfies the growth condition µ(B(x, r)) ≤ rα, x ∈ Rn, r > 0. Given ε > 0, set

Rα,ε(µ)(x) =

∫
|y−x|>ε

kα(y − x)dµ(y).

Then (see in [MV] or [Pa2] the argument for α = 1)∣∣∣∣∫ |Rα,ε(µ)(x)|2 dµ(x)− 1

3
pα,ε(µ)

∣∣∣∣ ≤ C‖µ‖,

where C is a constant depending only on α and n, and

pα,ε(µ) =

∫∫∫
Sε

pα(x, y, z)dµ(x)dµ(y)dµ(z),
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with

Sε = {(x, y, z) : |x− y| > ε, |x− z| > ε and |y − z| > ε}.

Thus

pα(µ) ≤ 3 sup
ε

∫
|Rα,ε(µ)(x)|2 dµ(x) + C‖µ‖, (2.5)

where

pα(µ) =

∫
Rn

∫
Rn

∫
Rn

pα(x, y, z)dµ(x)dµ(y)dµ(z).

2.2.2 The scheme of the proof of Theorem 2.1.

In this section we give an outline of the arguments involved in the proof of Theorem
2.1. The proof uses an induction argument on scales, analogous to the one in [MTV]
and [T2]. The main idea is to show, by induction, that

γα,+(E ∩Q) ≈ γα(E ∩Q)

for squares Q of any size.

The starting point in the proof of Theorem 1.1 in [T2] is the construction of a special
family of cubes {Qj}Nj=1 that cover E and satisfy

γα,+(∪Nj=1Qj) ≤ Cγα,+(E)

and

N∑
j=1

γα,+(3Qj ∩ E) ≤ Cγα,+(E).

The construction of these cubes works without difficulty in the same way as in [T2]
for 0 < α < 1, because we have non-negativity of the quantity obtained when sym-
metrizing the Riesz kernel (see Lemma 2.2 above).

From the definition of the capacity γα, it follows that there exists a distribution T0

supported on E such that

1. γα(E) ≥ 1

2
|〈T0, 1〉|,

2. ‖T0 ∗
xi

|x|1+α
‖∞ ≤ 1, 1 ≤ i ≤ n.
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Consider now a family of infinitely differentiable functions {ϕj}Nj=1 such that each

ϕj is compactly supported on 2Qj, 0 ≤ ϕj ≤ 1, ‖∂sϕj‖∞ ≤ C

`(Qj)|s|
, 0 ≤ |s| ≤ n , and∑N

j=1 ϕj = 1 on ∪Nj=1Qj. At this point we need an inequality of the type

‖ϕjT0 ∗
xi

|x|1+α
‖∞ ≤ C

for 1 ≤ i ≤ n, 1 ≤ j ≤ N and 0 < α < n. This will be proved in section 2.3. Then, by
definition of γα , we will obtain that

|〈ϕjT0, 1〉| ≤ Cγα(2Qj ∩ E). (2.6)

for 1 ≤ j ≤ N .

Inequality (2.6) is used later on in the proof in order to construct a bounded function
b to which a suitable variant of the T (b) theorem will be applied. There is still one
more difficulty in applying the Nazarov, Treil and Volberg T (b)-type theorem one needs,
namely, finding a substitute for what they call the suppressed operators. It was already
explained in [P1] that there are at least two versions of such operators for the Riesz
kernels that work appropriately.

2.3 Localization of Riesz potentials.

One of the ingredients of the proof of Theorem 1.1 in [T2] is the localization of the
Cauchy potential. The localization method for the Cauchy potential, T ∗ 1/z, devel-
oped by A.G. Vitushkin for rational approximation was adapted in [Par] to localize the
potential T ∗ x/|x|n and used in problems of C1-harmonic approximation.
In this section we will be concerned with the localization of the vector valued α−Riesz
potentials T ∗ x/|x|1+α, 0 < α < 1.

Let x = (x1, ..., xn) ∈ Rn and |x| = (
∑n

i=1 x
2
i )

1/2
. For s = (s1, ..., sn), 0 ≤

si ∈ Z , we set xs = xs11 · · · xsn
n , s! = s1! · · · sn!, |s| = s1 + s2 + · · · + sn, ∂

s =
∂s1/∂xs11 · · · ∂sn/∂xsn

n , ∆ =
∑n

i=1 ∂
2/∂x2

i and ∂j = ∂/∂xj, 1 ≤ j ≤ n. In what follows,
given a cube Q ⊂ Rn, ϕQ will denote an infinitely differentiable function supported on
2Q and such that ‖∂sϕQ‖∞ ≤ Cs`(Q)−|s|, 0 ≤ |s| ≤ n.

We state now the following localization lemma.

Lemma 2.3. Let 0 < α < 1 and let T be a compactly supported distribution such that
T ∗ xi

|x|1+α is a bounded measurable function for 1 ≤ i ≤ n. Then there exists some

constant C = C(n, α) > 0 such that

‖ϕQT ∗
xi

|x|1+α
‖∞ ≤ C sup

1≤i≤n
‖T ∗ xi

|x|1+α
‖∞.
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Proof. Set Ki(y) =
yi

|y|1+α
and for some fixed point x, set

Ki
x(y) =

xi − yi
|x− y|1+α

.

We assume first that n is odd and of the form n = 2k+1. We distinguish two cases:

Case 1: x ∈ (3Q)c. Set g(y) = ϕQ(y)Ki
x(y). Lemma 11 in [P1] (see Lemma 1.11 in the

first Chapter of this dissertation) tells us that

g(x) = cn,α

n∑
j=1

(
∆k∂jg ∗

1

|y|n−α
∗Kj

)
(x), (2.7)

for some constant cn,α depending only on n and α. Thus

(
ϕQT ∗Ki

)
(x) =< T,ϕQK

i
x >= cn,α

n∑
j=1

< T ∗Kj,∆k∂jg ∗
1

|y|n−α
>,

and so

(
ϕQT ∗Ki

)
(x) =

n∑
j=1

cn,α

∫
(3Q)c

(T ∗Kj)(z)

(
∆k∂jg ∗

1

|y|n−α

)
(z)dz

+
n∑
j=1

cn,α

∫
3Q

(T ∗Kj)(z)

(
∆k∂jg ∗

1

|y|n−α

)
(z)dz = A+B.

(2.8)

To deal with A we use that T ∗Kj is a bounded function. Notice that for x ∈ (3Q)c

and y ∈ 2Q we have

|g(y)| ≤ C‖ϕQ‖∞
`(Q)α

.

Let Q0 stand for the unit cube centered at 0. Moving ∆k∂j from g to 1
|y|n−α and

making the obvious change of variables one gets

|A| ≤ C sup
1≤i≤n

‖T ∗Ki‖∞
‖ϕQ‖∞
l(Q)α

∫
(3Q)c

∫
2Q

dydz

|z − y|2n−α

≤ C sup
1≤i≤n

‖T ∗Ki‖∞
∫

(3Q0)c

∫
2Q0

dydz

|z − y|2n−α
≤ C sup

1≤i≤n
‖T ∗Ki‖∞.
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Let’s now turn our attention to B. Recall that we have

∆k(hg) =
n∑

i1,...,ik=1

2∑
l1,...,lk=0

(
2
l1

)
...

(
2
lk

)
∂l1...lki1...ik

h ∂2−l1...2−lk
i1...ik

g, (2.9)

where ∂l1...lki1...ik
= (∂i1)

l1 ...(∂ik)
lk .

Since

∆k(∂jg) = ∆k
(
Ki
x ∂jϕQ

)
+ ∆k

(
ϕQ ∂jK

i
x

)
,

we have

B ≤ C sup
1≤i≤n

‖T ∗Ki‖∞
∫

3Q

∣∣∣∣(∆k
(
Ki
x ∂jϕQ

)
∗ 1

|y|n−α

)
(z)

∣∣∣∣ dz
+C sup

1≤i≤n
‖T ∗Ki‖∞

∫
3Q

∣∣∣∣(∆k
(
ϕQ ∂jK

i
x

)
∗ 1

|y|n−α

)
(z)

∣∣∣∣ dz
= C sup

1≤i≤n
‖T ∗ xi

|x|1+α
‖∞ (B1 +B2) .

(2.10)

Then using (2.9), ‖∂sϕQ‖∞ ≤ Cs`(Q)−|s|, |s| ≥ 0, the fact that |x − y| ≥ `(Q),
y ∈ 2Q, and changing variables, we get

B1 ≤
n∑

i1,...,ik=1

2∑
l1,...,lk=0

C

`(Q)l1+...+lk+1

∫
3Q

∫
2Q

dzdy

|z − y|n−α|x− y|α+2−l1+...+2−lk

≤ C

`(Q)n+α

∫
3Q

∫
2Q

dzdy

|z − y|n−α
=

C`(Q)2n

`(Q)n+α+n−α

∫
3Q0

∫
2Q0

dzdy

|z − y|n−α

≤ C.

Arguing similarly we obtain B2 ≤ C and hence we conclude that

A+B ≤ C sup
1≤i≤n

‖T ∗Ki‖∞.

Case 2: x ∈ 3Q. Without loss of generality assume x = 0. Now the function g(y) =
−ϕQ(y)Ki(y) may not be smooth, but (2.7) still holds in the distributions sense.

Writing f(z) =
(
T ∗ 1

|x|1−α

)
(z) one gets
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(
ϕQT ∗Ki

)
(0) =< T, g >= cn,α

n∑
j=1

< T ∗Kj,∆k∂jg ∗
1

|y|n−α
>

= C

n∑
j=1

< ∂j (f − f(0)) ,∆k∂jg ∗
1

|y|n−α
>

We claim now that integrating by parts gives

n∑
j=1

< ∂j (f − f(0)) ,∆k∂jg ∗
1

|y|n−α
>

=< f − f(0),∆k+1g ∗ 1

|y|n−α
> +O

(
sup

1≤i≤n
‖T ∗Ki‖∞

)
.

(2.11)

We postpone the proof of (2.11) and we continue with the argument. If (2.11)
holds, then we can write

∣∣(ϕQT ∗Ki
)
(0)
∣∣ ≤ C

∣∣∣∣∫
(3Q)c

(f(z)− f(0))

(
∆k+1g ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣
+C

∣∣∣∣∫
3Q

(f(z)− f(0))

(
∆k+1g ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣+ C sup
1≤i≤n

‖T ∗Ki‖∞.

Set

A =

∫
(3Q)c

(f(z)− f(0))

(
∆k+1g ∗ 1

|y|n−α

)
(z)dz

and

B =

∫
3Q

(f(z)− f(0))

(
∆k+1g ∗ 1

|y|n−α

)
(z)dz.

Using the boundedness of the function T ∗Kj = ∂jf , Fubini and changing variables
we obtain
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|A| ≤ C sup
1≤i≤n

‖T ∗Ki‖∞
n∑
j=1

∫
(3Q)c

|z|
∫

2Q

|g(y)|
|z − y|2n+1−αdydz

≤ C sup
1≤i≤n

‖T ∗Ki‖∞‖ϕQ‖∞
n∑
j=1

∫
(3Q)c

∫
2Q

|z − y|+ |y|
|y|α|z − y|2n+1−αdydz

≤ C sup
1≤i≤n

‖T ∗Ki‖∞
n∑
j=1

∫
2Q

1

|y|α

∫
(3Q)c

dz

|z − y|2n−α
dy

+C sup
1≤i≤n

‖T ∗Ki‖∞
n∑
j=1

`(Q)

∫
2Q

1

|y|α

∫
(3Q)c

dz

|z − y|2n+1−αdy

≤ C sup
1≤i≤n

‖T ∗Ki‖∞.

For the term B, write

|B| ≤
∣∣∣∣∫

3Q

(f(z)− f(0))

(
∆k+1g ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣
≤ C

∣∣∣∣∣∣
∫

3Q

∑
|r|+|s|=n+1

(f(z)− f(0))

((
∂rϕQ∂

sKi
)
∗ 1

|y|n−α

)
(z)dz

∣∣∣∣∣∣ ,

where the last sum is over those multi-indexes r and s that appear in distributing
between ϕQ and Ki the n+ 1 derivatives coming from ∆k+1. We will now divide
the above sum in two parts, the first one containing the indexes |r| ≥ 2 and the
second one the rest of them. In order to be able to estimate the integral of this
second part, which is the worse, we will have to subtract a Taylor polinomial of
ϕQ of order one. Let

R(y) = ϕQ(y)−
1∑

|m|=0

∂mϕQ(0)ym.
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Then

|B| ≤ C
∑
|r|≥2

∫
3Q

|f(z)− f(0)|
∫

2Q

dydz

`(Q)|r||y|α+n+1−|r||z − y|n−α

+C

∫
3Q

|f(z)− f(0)|

∣∣∣∣∣∣∣
∑

|r| + |s| = n + 1
|r| ≤ 1

∫
∂rR(y)∂sKi(y)

|z − y|n−α
dy

∣∣∣∣∣∣∣ dz

+C

∣∣∣∣∣∣
∫

3Q

(f(z)− f(0))
1∑

|m|=0

∂mϕ(0)

(
ym∆k+1Ki ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣∣∣
+C sup

|m|=1

|∂mϕQ(0)|

∣∣∣∣∣∣
∫

3Q

(f(z)− f(0))
∑
|s|=n

(
∂sKi ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣∣∣
= B1 +B2 +B3 +B4.

(2.12)

Notice that if |r| ≥ 2, since 0 < α < 1, we have α+ n+ 1− |r| ≤ α+ n− 1 < n.
Hence using the boundedness of the function T ∗Ki, 1 ≤ i ≤ n, B1 is finite and
by homogeneity independent of `(Q). Thus,

B1 ≤ C sup
1≤i≤n

‖T ∗Ki‖∞.

We deal now with B2. Write

B2 = C

∫
3Q

|f(z)− f(0)|

∣∣∣∣∣∣∣
∑

|r| + |s| = n + 1
|r| ≤ 1

∫
4Q

∂rR(y)∂sKi(y)

|z − y|n−α
dy

∣∣∣∣∣∣∣ dz

+C

∫
3Q

|f(z)− f(0)|

∣∣∣∣∣∣∣
∑

|r| + |s| = n + 1
|r| ≤ 1

∫
(4Q)c

∂rR(y)∂sKi(y)

|z − y|n−α
dy

∣∣∣∣∣∣∣ dz = B21 +B22.

For the integral over 4Q, we have to use the Taylor expansion to get integrability.
Estimating first the term with |r| = 1 and then the term with |r| = 0 we get
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B21 ≤ C sup
1≤i≤n

‖T ∗Ki‖∞`(Q)

∫
3Q

∫
4Q

|y|
`(Q)2|y|α+n|z − y|n−α

dydz

+C sup
1≤i≤n

‖T ∗Ki‖∞`(Q)

∫
3Q

∫
4Q

|y|2

`(Q)2|y|α+n+1|z − y|n−α
dydz.

Then by homogeneity,

B21 ≤ C sup
1≤i≤n

‖T ∗Ki‖∞.

For the integral over (4Q)c, we do not apply Taylor; we just estimate term by
term. For |r| = 0 we have that

∣∣R(y)∂sKi(y)
∣∣ ≤ C|y|

`(Q)|y|n+α+1
=

C

`(Q)|y|α+n
.

For |r| = 1 the term |∂rR(y)∂sKi(y)| can be estimated by C`(Q)−1|y|−α−n, be-
cause now |s| = n. Therefore

B22 ≤ C sup
1≤i≤n

‖T ∗Ki‖∞`(Q)

∫
3Q

∫
(4Q)c

dy

`(Q)|y|α+n|z − y|n−α
dz

≤ C sup
1≤i≤n

‖T ∗Ki‖∞.

For B3, separate the terms according to whether |m| = 0 of |m| = 1 as follows:

B3 =

∣∣∣∣∫
3Q

(f(z)− f(0))ϕQ(0)

(
∆k+1Ki ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣
+

∣∣∣∣∣∣
∫

3Q

(f(z)− f(0))
∑
|m|=1

∂mϕQ(0)

(
ym∆k+1Ki ∗ 1

|y|n−α

)
(z)dz

∣∣∣∣∣∣
= B31 +B32.

Now we treat the termB31. Taking Fourier transforms on the convolution ∆k+1Ki∗
1

|y|n−α we obtain for an appropriate constant C,

̂(
∆k+1Ki ∗ 1

|y|n−α

)
(ξ) = Cξi.

Thus
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(
∆k+1Ki ∗ 1

|y|n−α

)
(z) = C∂iδ(z).

Hence,

B31 ≤ C‖ϕQ‖∞ sup
1≤i≤n

‖T ∗Ki‖∞.

For B32, we take also Fourier transforms on ym∆k+1Ki ∗ 1
|y|n−α , |m| = 1. Then

̂(
ym∆k+1Ki ∗ 1

|y|n−α

)
(ξ) = C∂m

(
|ξ|2k+2ξi
|ξ|n+1−α

)
1

|ξ|α
= Cδm,mi

+ C
ξmξi
|ξ|2

.

where mi is the multi-index with all entries equal to 0 except the i−th entry which
is 1; δm,mi

equals one when m = mi and zero otherwise. Hence

(
ym∆k+1Ki ∗ 1

|y|n−α

)
(z) = Cδm,mi

δ + C
zmzi
|z|n+2

and since |m| = 1,

B32 ≤
C

`(Q)
sup

1≤i≤n
‖T ∗Ki‖∞

∫
3Q

dz

|z|n−1
≤ C sup

≤i≤n
‖T ∗Ki‖∞.

Now we are left with term B4. Taking Fourier transforms on the convolution
∂sKi ∗ 1

|y|n−α , we obtain

̂(
∂sKi ∗ 1

|y|n−α

)
(ξ) = Cξs

ξi
|ξ|n+1−α

1

|ξ|α
= C

ξsξi
|ξ|n+1

.

Hence

(
∂sKi ∗ 1

|y|n−α

)
(z) = C

zszi
|z|2|s|+1

.

Recall that in B4 we had |s| = n. Thus by homogeneity

B4 ≤ C sup
1≤i≤n

‖T ∗Ki‖∞
1

`(Q)

∫
3Q

dz

|z|n−1
≤ C sup

1≤i≤n
‖T ∗Ki‖∞.

We still have to show claim (2.11). Let 1 ≤ j ≤ n and put

ωj = (−1)j−1dy1 ∧ · · · ∧ d̂yj ∧ · · · ∧ dyn.



70 Chapter 2. Signed Riesz capacities and Wolff potentials.

Then Stokes Theorem gives

n∑
j=1

< ∂j (f − f(0)) ,∆k∂jg ∗
1

|y|n−α
>

= − < f − f(0),∆k+1g ∗ 1

|y|n−α
>

+
n∑
j=1

lim
ε→0

∫
|y|=ε−1

(f(y)− f(0))

(
g ∗∆k∂j

1

|y|n−α

)
(y) ωj

−
n∑
j=1

lim
ε→0

∫
|y|=ε

(f(y)− f(0))

(
∆k∂jg ∗

1

|y|n−α

)
(y) ωj.

The first integral converges to 0 when ε → 0 as εn−α, thus we are only left with
the second one. For 1 ≤ j ≤ n and for a suitable constant C we can write (recall

that for some constant C depending on n and α, C
|y|n−α = ∆

(
1

|y|n−α−2

)
)

∫
|y|=ε

(f(y)− f(0))

(
∆k∂jg ∗

1

|y|n−α

)
(y) ωj

= C

n∑
l=0

∫
|y|=ε

(f(y)− f(0))

(
∆k∂j∂lg ∗

yl
|y|n−α

)
(y) ωj.

Notice that when looking at the above integral, the worst case one has is when all
the derivatives ∆k∂j∂l of the product g = −ϕQKi are on the kernel Ki. We will
only be concerned with this case. For the other cases argue like in (2.12). Recall
that R(y) = ϕQ(y)−

∑1
|m|=0 ∂

mϕQ(0)ym. To get integrability we will have to use
this Taylor expansion. Then for 1 ≤ j ≤ n we have
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∫
|y|=ε

(f(y)− f(0))

(∑
l

ϕQ∆k∂j∂lK
i ∗ yl
|y|n−α

)
(y) ωj

=

∫
|y|=ε

(f(y)− f(0))

(∑
l

R ∆k∂j∂lK
i ∗ yl
|y|n−α

)
(y) ωj

+ϕQ(0)

∫
|y|=ε

(f(y)− f(0))

(∑
l

∆k∂j∂lK
i ∗ yl
|y|n−α

)
(y) ωj

+
∑
|m|=1

∂mϕQ(0)

∫
|y|=ε

(f(y)− f(0))
∑
l

(
ym∆k∂j∂lK

i ∗ yl
|y|n−α

)
(y) ωj

= A1 + A2 + A3.

We will now show that A1 and A3 converge to zero when ε → 0 and that A2 is
bounded above by C sup1≤i≤n ‖T ∗Ki‖∞.

A1 =

∫
|y|=ε

(f(y)− f(0))

∫
3Q

R(z)
∑
l

∆k∂j∂lK
i(z)

yl − zl
|y − z|n−α

dz ωj+

+

∫
|y|=ε

(f(y)− f(0))

∫
(3Q)c

R(z)
∑
l

∆k∂j∂lK
i(z)

yl − zl
|y − z|n−α

dz ωj

= A11 + A12.

We deal first with A11. Notice that the Taylor expansion appearing in R kills
part of the singularity of ∆k∂j∂lK

i and makes the product R ∆k∂j∂K
i a locally

integrable function. Thus using the boundedness of T ∗Kj we get

|A11| ≤ Cε

∫
|y|=ε

∫
3Q

dz

|z|n−1+α|z − y|n−1−α | ωj| → 0, when ε→ 0.

Moreover,

|A12| ≤ Cε

∫
|y|=ε

∫
(3Q)c

dz

|z|n+α|z − y|n−1−α |ωj| → 0, when ε→ 0.

Thus A1 tends to zero with ε.

To estimate A2, take Fourier transforms on
∑

l ∆
k∂j∂lK

i ∗ yl

|y|n−α . Then for an
appropriate constant C one has
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̂(∑
l

∆k∂j∂lKi ∗ yl
|y|n−α

)
(ξ)= C

∑
l

|ξ|2kξjξl
ξi

|ξ|n+1−α
ξl

|ξ|2+α
= C

ξiξj
|ξ|2

.

Thus

∑
l

(
∆k∂j∂lK

i ∗ yl
|y|n−α

)
(y) = C

yiyj
|y|n+2

.

Hence

|A2| =
∣∣∣∣CϕQ(0)

∫
|y|=ε

(f(y)− f(0))
yiyj
|y|n+2

ωj

∣∣∣∣
≤ C sup

1≤i≤n
‖T ∗Ki‖∞ε1−n

∫
|y|=ε

|ωj| = C sup
1≤i≤n

‖T ∗Ki‖∞

For the last term, taking Fourier transform of
∑

l y
m∆k∂j∂lK

i ∗ yl

|y|n−α , we get for
a suitable constant C

̂(∑
l

ym∆k∂j∂lKi ∗ yl
|y|n−α

)
(ξ)

= C
∑
l

∂m
(
|ξ|2kξjξlξi
|ξ|n+1−α

)
ξl

|ξ|α+2
= C

∑
l

∂m
(
ξjξlξi
|ξ|2−α

)
ξl

|ξ|α+2

= C
∑
l

(
δm,mj

ξiξl
|ξ|2−α

+ δm,mi

ξjξl
|ξ|2−α

+ δm,ml

ξiξj
|ξ|2−α

+
ξjξiξlξ

m

|ξ|4−α

)
ξl

|ξ|α+2

= C

(
δm,mj

ξi
|ξ|2

+ δm,mi

ξj
|ξ|2

+
ξmξjξi
|ξ|4

+
∑
l

δm,ml

ξiξjξl
|ξ|4

)
.

Hence (∑
l

ym∆k∂j∂lK
i ∗ yl
|y|n−α

)
(y)

= C

(
δm,mj

yi
|y|n

+ δm,mi

yj
|y|n

+
ymyjyi
|y|n+2

+
∑
l

δm,ml

yiyjyl
|y|n+2

)

and since |m| = 1,
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|A3| ≤ C

∫
|y|=ε

|f(y)− f(0)|
|y|n−1

|ωj| ≤ Cε2−n
∫
|y|=ε

|ωj| = Cε→ 0, when ε→ 0,

which proves claim (2.11).

For even n one argues similarly using the corresponding formula in Lemma 11 in
[P1] (see Lemma 1.11 in the first Chapter of this dissertation).

Remark. This localization Lemma holds also more generally for 0 < α < n.
The first case in the above proof, namely x ∈ (3Q)c, applies to any 0 < α < n.
For the second case, x ∈ 3Q, the proof works similarly modifying appropriately the
representation formula appearing in Lemma 11 in [P1] (see Lemma 1.11 in the first
Chapter of this dissertation).

2.4 Proof of the Theorem.

Let µ be a positive Radon measure and 0 < α < 1. For x ∈ Rn, set

p2
α(µ)(x) =

∫
Rn

∫
Rn

pα(x, y, z)dµ(y)dµ(z),

Mαµ(x) = sup
r>0

µ(B(x, r))

rα

and

Uµ
α (x) = Mαµ(x) + pα(µ)(x).

Observe that pα(µ) =
∫

Rn p
2
α(µ)(x)dµ(x). Uµ

α is the analogue of the potential intro-
duced in [V4]. The energy associated to this potential is

Eα(µ) =

∫
Rn

Uµ
α (x)dµ(x).

Lemma 2.4. For each compact set K ⊂ Rn and 0 < α < 1 we have

γα,+(K) ≈ sup
ν

1

Eα(ν)
,

where the supremum is taken over the probability measures ν supported on K.

Proof . Take a positive Radon measure µ supported on K such that∣∣∣( xi

|x|1+α ∗ µ
)

(x)
∣∣∣ ≤ 1 for almost all x ∈ Rn, 1 ≤ i ≤ n. We claim that

µ(B(x, r)) ≤ Crα, x ∈ Rn, r > 0.
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To prove the claim take an infinitely differentiable function ϕ, supported on B(x, 2r)
such that ϕ = 1 on B(x, r), and ‖∂sϕ‖∞ ≤ Csr

−|s|, |s| ≥ 0. Assume first that n is
odd and of the form n = 2k + 1. Then, by Lemma 11 in [P1] (Lemma 1.11 in the first
Chapter),

µ(B(x, r)) ≤
∫
ϕdµ = cn,α

∫ ( n∑
i=1

∆k∂iϕ ∗
1

|x|n−α
∗ xi
|x|1+α

)
(y)dµ(y)

= −cn,α
n∑
i=1

∫ (
µ ∗ xi

|x|1+α

)
(y)

(
∆k∂iϕ ∗

1

|x|n−α

)
(y)dy

≤ C

n∑
i=1

∫
B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)

∣∣∣∣ dy + C

∫
Rn\B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)

∣∣∣∣ dy
Arguing as in Lemma 2.3 we get that the last two integrals can be estimated by

Crα.
If n is even we use the corresponding representation formula in Lemma 11 of [P1]

(Lemma 1.11 in the first Chapter).
On the other hand, it can be easily shown that

|Rα,ε(µ)(x)| ≤ C, x ∈ Rn, ε > 0,

and so, by (2.5), we obtain

pα(µ) ≤ C‖µ‖.

By Schwartz inequality

Eα(µ) ≤ C‖µ‖+ ‖µ‖1/2pα(µ)1/2 ≤ C‖µ‖.

Set ν = µ/‖µ‖, so that

Eα(ν) =
Eα(µ)

‖µ‖2
≤ C

‖µ‖
,

and consequently

γα,+(K) ≤ C sup
ν

1

Eα(ν)
.

The reverse inequality is proved as in [V4] and involves the T (1)-Theorem for non-
doubling measures.
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Lemma 2.5. For each positive finite Radon measure µ on Rn we have

pα(µ) ≈ E 2
3
(n−α), 3

2
(µ) =

∫
Rn

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x).

Proof. Suppose that ∫
Rn

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x) <∞

and set G = {(x1, x2, x3) : |x1 − x2| ≤ |x1 − x3| ≤ |x2 − x3|}. Using Lemma 2.2 and
Riemann-Stieltjes integration, we obtain

pα(µ) = 3

∫ ∫ ∫
G

pα(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3)

≈
∫ ∫ ∫

B(x3,|x2−x3|)

|x2 − x3|−2αdµ(x1)dµ(x2)dµ(x3)

=

∫
Rn

∫
Rn

µ(B(x3, |x2 − x3|))
|x2 − x3|2α

dµ(x2)dµ(x3)

=

∫
Rn

∫ ∞

0

µ(B(x3, r))

r2α
dµ(B(x3, r))dµ(x3).

(2.13)

Notice that

lim
r→∞

(
µ(B(x, r))

rα

)2

≤ lim
r→∞

(
µ(Rn)

rα

)2

= 0. (2.14)

Moreover,∫ 2ρ

ρ

(
µ(B(x, r))

rα

)2
dr

r
≥ µ(B(x, ρ))2

∫ 2ρ

ρ

dr

r2α+1
= C

(
µ(B(x, ρ))

ρα

)2

.

Thus

lim
r→0

(
µ(B(x, r))

rα

)2

= 0. (2.15)

Integration by parts in the last integral of (2.13), together with (2.14) and (2.15),
show that

pα(µ) ≈
∫

Rn

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x).
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Suppose now that pα(µ) <∞. We claim that we can assume that

lim inf
r→0

µ(B(x, r))

rα
= 0, for µ-almost all x ∈ Rn. (2.16)

If (2.16) holds, then integrating by parts in the last integral of (2.13) one can deduce
that

pα(µ) ≈
∫

Rn

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x),

and in this case we are done.

Otherwise there exists a µ-measurable set F such that µ(F ) > 0 and

lim inf
r→0

µ(B(x, r))

rα
> 0, x ∈ F.

Shrinking F we can assume that

lim inf
r→0

µ(B(x, r))

rα
> a > 0, x ∈ F.

By Egorov we can find r0 > 0 and a µ-measurable subset G of F such that µ(G) > 0
and

µ(B(x, r)) >
a

2
rα, x ∈ G and r ≤ r0. (2.17)

From (2.13) we get, applying (2.17) twice,

pα(µ) ≈
∫

Rn

∫
Rn

µ(B(x3, |x2 − x3|))
|x2 − x3|2α

dµ(x2)dµ(x3)

≥
∫
G

∫
B(x3,r0)

µ(B(x3, |x2 − x3|))
|x2 − x3|2α

dµ(x2)dµ(x3)

≥ a

2

∫
G

∫
B(x3,r0)

dµ(x2)dµ(x3)

|x2 − x3|α

=
a

2

∫
G

∫ ∞

0

µ({x2 ∈ B(x3, r0) : |x2 − x3|−α ≥ t})dtdµ(x3)

≥ aα

2

∫
G

∫ r0

0

µ(B(x3, r))

r1+α
drdµ(x3)

≥ a2α

2

∫
G

∫ r0

0

dr

r
= +∞,

which is a contradiction.
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Remark. In Theorem 2.2 of [M2] it is shown that for any finite Borel measure in
C, one has the following inequality,

∫
C

∫
C

∫
C
c2(x1, x2, x3)dµ(x1)dµ(x2)dµ(x3) ≤ C

∫
C

∫ ∞

0

µ(B(x, r))2

r2

dr

r
dµ(x). (2.18)

On the other hand, for α = 1, there is no general lower inequality like the one in
Lemma 2.2. Although we have

c(x1, x2, x3) ≤
2

|x2 − x3|
,

the reverse inequality may fail very badly. Thus the reverse inequality in (2.18) does
not hold for general measures µ. However, see Theorem 2.3 in [M2] where a related
result is shown when the measure µ is the Hausdorff measure related to some measure
function h, restricted to some Cantor sets.

We turn now to the proof of the main Theorem.

Proof of the Theorem. We deal first with the inequality

C 2
3
(n−α), 3

2
(K) ≤ Cγα+(K). (2.19)

Assume that for a probability measure µ supported on K we have

E 2
3
(n−α), 3

2
(µ) =

∫
Rn

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
dµ(x) ≡ E <∞.

Then by Chebyshev, for each t > 0,

µ{x ∈ K :

∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
> t} ≤ E

t
.

Taking t = 2E, we obtain a compact set F ⊂ K such that∫ ∞

0

(
µ(B(x, r))

rα

)2
dr

r
≤ 2E, x ∈ F,

and

µ(F ) ≥ 1

3
.

If we set ν = µ|F/µ(F ), then for some positive constant C depending on α,

C

(
ν(B(x, ρ))

ρα

)2

≤
∫ 2ρ

ρ

(
ν(B(x, r))

rα

)2
dr

r
≤ 18E, x ∈ F. (2.20)
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To see that ν satisfies the α-growth condition, notice that if x /∈ F and B(x, r)∩F =
∅, then ν(B(x, r)) = 0, and if there is some ξ ∈ F ∩B(x, r), then due to (2.20)

ν(B(x, r)) ≤ ν(B(ξ, 2r)) ≤ Crα
√
E.

Hence we have

Mαν(x) ≤ C
√
E, x ∈ Rn.

Then by Lemma 2.5 and Schwartz inequality we get

Eα(ν) =

∫
Rn

U ν
α(x)dν(x) ≤ C

√
E + pα(ν)

1/2 ≤ C
√
E.

Thus, by Lemma 2.4, we obtain

E−1/2 ≤ CEα(ν)
−1 ≤ Cγα,+(K),

which implies (2.19).
To see the reverse inequality, let µ be a probability measure supported on K such

that

Eα(µ) =

∫
Rn

Uµ
α (x)dµ(x) <∞.

Since

Eα(µ) ≥
∫
pα(µ)(x)dµ(x),

as before, by Chebyshev,

µ{x ∈ K : pα(µ)(x) > t} ≤ Eα(µ)

t
, t > 0.

Taking t = 2Eα(µ) we find a compact set F ⊂ K such that

pα(µ)(x) ≤ 2Eα(µ), for x ∈ F,
and

µ(F ) ≥ 1

3
.

Set ν = µ|F/µ(F ). Then

pα(ν) =

∫
F

p2
α(ν)(x)dν(x) ≤ 36Eα(µ)2,

and so, by Lemma 2.5

Eα(µ)−1 ≤ 6pα(ν)
−1/2 ≈ E 2

3
(n−α), 3

2
(ν)−1/2 ≤ C 2

3
(n−α), 3

2
(K),

which ends the proof of the Theorem.



Chapter 3

Sets with vanishing signed Riesz
capacity.

3.1 Introduction.

The aim of this paper is to understand a bit more the capacity γα associated to the
signed vector valued Riesz kernel x/|x|1+α in Rn, for non-integer indexes 1 < α < n. In
general, given 0 < α < n and a compact set E ⊂ Rn, γα is defined as follows,

γα(E) = sup | < T, 1 > |, (3.1)

where the supremum is taken over all real distributions T supported on E such that for
1 ≤ i ≤ n, the i-th signed α-Riesz potential T ∗ xi

|x|1+α of T is a function in L∞(Rn)

and ‖T ∗ xi

|x|1+α‖∞ ≤ 1.

Due to the result in [T2], the capacity γ1 in R2, is comparable to analytic capacity.
Given a dimension n ≥ 2, the capacity γn−1 is called Lipschitz harmonic capacity (see
[Par], [MP], [V1] and [Vo]). When we consider non-integer indexes α, the following
is known: in [MPV] one shows that for 0 < α < 1, the capacity γα is equivalent
to the Riesz capacity C 2

3
(n−α), 3

2
of non-linear potential theory (see [AH], chapter 1).

From this characterization, one deduces that for 0 < α < 1, γα countably semiadditive
and bilipschitz invariant ( see [T2] and [T4] for these remarkable results in the case of
analytic capacity). Also, either from the description found in [MPV] or from one of the
main results in [P1], one can deduce that for 0 < α < 1 γα vanishes on compact sets of
finite α−dimensional Hausdorff measure.

When one considers integer indexes α, then it is known that compact subsets of
α-dimensional smooth surfaces have positive γα capacity (see [MP], for the result in the
case α = n − 1). For non-integer α > 1, the capacity γα is not understood at all. In
[P1] it is shown that in this case γα vanishes on α−dimensional Ahlfors-David regular
sets.

Recall that a closed subset E of Rn is said to be Ahlfors-David regular of dimension
d if it has, locally, finite and positive d-dimensional Hausdorff measure in a uniform
way:
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C−1rd ≤ Hd(E ∩B(x, r)) ≤ Crd, for x ∈ E, r ≤ d(E),

where B(x, r) is the open ball centered at x of radius r and d(E) is the diameter of E.
Notice that if E is a compact Ahlfors-David regular set of dimension α, then

Hα(E) <∞.

In this paper we take one little step more towards the understanding of these ca-
pacities for non-integer indexes α > 1. We shall extend the result mentioned above for
Ahlfors-David regular sets, to sets having some density condition, namely we will prove
the following

Theorem. Let 0 < α < n, α /∈ Z and let E ⊂ Rn be a compact set withHα(E) <∞,
such that for all x ∈ E,

0 < θα∗ (x,E) ≤ θ∗α(x,E) <∞.

Then γα(E) = 0.

Recall that the quantities θα∗ (x,E) and θ∗α(x,E) are the lower and upper densities of
E at x. They are defined by

θα∗ (x,E) = lim inf
r→0

Hα(E ∩B(x, r))

rα

and

θ∗α(x,E) = lim sup
r→0

Hα(E ∩B(x, r))

rα
.

The proof of the Theorem uses an adaptation of a result of Pajot (see [Pa1]) on
coverings by Ahlfors-David regular sets. In order to prove our result, we also need to
study a positive version of γα , denoted by γα,+. For 0 < α < n, the capacity γα,+ is
defined as γα, but the supremum in (3.1) is only taken over positive measures instead
of over distributions. We will show that for 0 < α < n γα,+ is countably semiadditive,
which will be used in the proof of the Theorem.

The proofs of the results from [P1] mentioned above are both based on the same
fact. When we are in the Ahlfors-David regular case, it is shown in [Vi] that for α /∈ Z
there are no Ahlfors-David regular sets where the α-Riesz operator is bounded in L2.
We do not known how to prove this result for general sets with finite non-integer α-
Hausdorff measure. However, when 0 < α < 1, it is shown in [P1] that the signed
α-Riesz operator is also unbounded in L2 on sets with finite α-dimensional Hausdorff
measure. Using this covering result from [Pa1], we will reduce the proof of our Theorem
to the Ahlfors-David regular case.
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Throughout all the paper, the letter C will stand for an absolute constant that may
change at different occurrences.

If A(X) and B(X) are two quantities depending on the same variable (or variables)
X, we will say that A(X) ≈ B(X) if there exists C ≥ 1 independent of X such that
C−1A(X) ≤ B(X) ≤ CB(X) for every X.

The plan of the paper is the following. Section 2 contains some preliminary defi-
nitions and results that will be used throughout the paper. The semiadditivity of the
capacity γα,+, for 0 < α < n, is also proved in this section. In section 3 we prove the
main Theorem.

3.2 Preliminaries.

3.2.1 L2−boundedness of Calderón-Zygmund operators.

A function K(x, y) defined on Rn×Rn \ {(x, y) : x = y} is called a Calderón-Zygmund
kernel if the following holds:

1. |K(x, y)| ≤ C|x− y|−α for some 0 < α < n (α not necessarily integer) and some
positive constant C <∞.

2. There exists 0 < ε ≤ 1 such that for some constant 0 < C <∞,

|K(x, y)−K(x0, y)|+ |K(y, x)−K(y, x0)| ≤ C
|x− x0|ε

|x− y|α+ε
,

if |x− x0| ≤ |x− y|/2.

Let µ be a Radon measure on Rn. Then the Calderón-Zygmund operator T associ-
ated to the kernel K and the measure µ is formally defined as

Tf(x) = T (fµ)(x) =

∫
K(x, y)f(y)dµ(y).

This integral may not converge for many functions f , because for x = y the kernel
K may have a singularity. For this reason, we introduce the truncated operators Tε,
ε > 0:

Tεf(x) = Tε(fµ)(x) =

∫
|x−y|>ε

K(x, y)f(y)dµ(y).

We say that the singular integral operator T is bounded in L2(µ) if the operators
Tε are bounded in L2(µ) uniformly in ε.

The maximal operator T ∗ is defined as

T ∗f(x) = sup
ε>0

|Tεf(x)|.
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Let 0 < α < n and consider the Calderón-Zygmund operator Rα associated to the
antisymmetric vector valued Riesz kernel x/|x|1+α.

For the proof of our Theorem a deep result of Nazarov, Treil and Volberg will be
needed (see [NTV3]). They prove it for the Cauchy transform. The modifications
needed to use their result for the operators Rα are explained in [P1]. In this way one
obtains the following T (b)-Theorem for the α−Riesz transform Rα:

Theorem 3.1. Let µ be a positive measure on Rn such that lim sup
r→0

µ(B(x,r))
rα < +∞

for µ almost all x and b an L∞(µ) function such that |
∫
bdµ| = γα. Assume that

R∗α b (x) < +∞ for µ almost all x. Then there is a set F with µ(F ) ≥ γα

4
such that the

α-Riesz transform Rα is bounded in L2(µ|F ).

3.2.2 The capacities γα,+ and γα,2.

Recall that the capacity γα,+ of a compact set E ⊂ Rn is a variant of γα defined by

γα,+(E) = sup {µ(E)},

where the supremum is taken over those positive Radon measures µ supported on E
and such that for all 1 ≤ i ≤ n, the i-th α-Riesz potential µ ∗ xi

|x|1+α of µ is a function

in L∞(Rn) with sup1≤i≤n ‖µ ∗ xi

|x|1+α‖∞ ≤ 1. We clearly have γα,+(E) ≤ γα(E).

We define now an L2−version of the capacity γα,+. For a compact set E ⊂ Rn, set

γα,2(E) = sup {µ(E)},

where the supremum is taken over the positive Radon measures µ supported on E with
growth µ(B(x, r)) ≤ rα for x ∈ spt(µ) and r > 0, and such that for 1 ≤ i ≤ n, the
α-Riesz transform Ri

α is bounded on L2(µ) with L2-norm smaller than 1.

We show now that these two capacities are comparable.

Lemma 3.2. For E ⊂ Rn, γα,+(E) ≈ γα,2(E).

For the proof of Lemma 3.2, we need the following result (see lemma 4.2 in [MP])
that tells us how to dualize a weak type (1, 1)−inequality for several linear operators.
The result is a modification of Theorem 23 in [Ch1] (see also [U]).

Let X be a locally compact Hausdorff space and denote M(X), the space of all
finite signed Radon measures on X equipped with the total variation norm. For any
T : M(X) → C(X) bounded and linear, denote by T t : M(X) → C(X) its transpose,
that is: ∫

(Tν1)dν2 =

∫
(T tν2)dν1 for ν1, ν2 ∈M(X).
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Lemma 3.3. [MP] Let µ be a positive Radon measure on a locally compact
Hausdorff space X and let Ti : M(X) → C(X), 1 ≤ i ≤ n, be bounded linear op-
erators. Suppose that every T ti is of weak type (1, 1) with respect to µ, that is there
exists a constant A <∞ such that

µ({x : |T ti ν(x)| > t}) ≤ At−1‖ν‖
for 1 ≤ i ≤ n, t > 0 and ν ∈ M(X). Then for τ > 0 and any borel set E ⊂ X with
0 < µ(E) <∞ there exists h : X → [0, 1] in L∞(µ), satisfying h(x) = 0 for x ∈ X \E,∫

E

hdµ ≥ µ(E)/2 and ‖Ti(hdµ)‖∞ ≤ (n+ τ)A for 1 ≤ i ≤ n.

Proof of Lemma 3.2. We have to prove that for some positive constants a and b,

aγα,+(E) ≤ γα,2(E) ≤ bγα,+(E). (3.2)

For the second inequality in (3.2), let σ be a positive measure supported on E, such
that σ(B(x, r)) ≤ rα for x ∈ spt(σ) and r > 0, Ri

α is bounded on L2(σ) with operator

norm smaller than 1, 1 ≤ i ≤ n, and σ(E) ≥ γα,2(E)

2
.

From the L2−boundedness of each Ri
α, we get that each Ri

α, 1 ≤ i ≤ n, is of
weak type (1, 1) with respect to the measure σ. This follows from standard Calderón-
Zygmund theory if the measure is doubling, and by an argument found in [NTV2] in
the general case.

We would like to dualize this weak type (1, 1) inequality applying Lemma 3.3. Un-
fortunately, Lemma 3.3 does not apply to the truncated operators (Ri

α)ε, because they
do not map M(E) to C(E). This difficulty can be overcome by using the following
regularized operators. For ε > 0 and 1 ≤ i ≤ n, define

Rψ
i,εν(x) =

∫
ψ

(
x− y

ε

)
xi − yi

|x− y|1+α
dν(y),

for Radon measures ν on Rn, and for f ∈ L1(σ),

Rψ
i,ε(fσ)(x) =

∫
ψ

(
x− y

ε

)
xi − yi

|x− y|1+α
f(y)dσ(y),

where ψ ∈ C∞(Rn) is some radial function on Rn with 0 ≤ ψ ≤ 1, ψ = 0 on B(0, 1/2)
and ψ = 1 on Rn \B(0, 1).

Set Ri,ε = (Ri
α)ε. Notice that for ε > 0 and x ∈ Rn we have

|Rψ
i,εν(x)−Ri,εν(x)| ≤ CM̃σν(x), (3.3)

where

M̃σν(x) = sup
r>0

ν(B(x, r))

σ(B(x, 3r))
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is the modified maximal operator introduced in [NTV2]. Notice that if the measure σ

is doubling, then M̃σν ≈Mσν, with constants depending only on those involved in the
doubling condition. Here

Mσν(x) = sup
r>0

ν(B(x, r))

σ(B(x, r))

is the centered Hardy Littlewood maximal operator.
Lemma 3 in [NTV2] says that the operator M̃σν satisfies a weak (1,1)-inequality

with respect to σ,

σ({x ∈ E : M̃σν(x) > t}) ≤ Ct−1‖σ‖ , for ν ∈M(E). (3.4)

It follows from (3.4) and (3.3) that if Ri,ε satisfies a weak type (1, 1)− inequality so

does Rψ
i,ε and vice versa. The advantage of the Rψ

i,ε is that they do map M(E) to C(E),

so we may apply Lemma 3.3 to them instead of to Ri,ε. Observe that (Rψ
i,ε)

t = −Rψ
i,ε.

Thus for any compact set K in E with 0 < σ(K) < ∞, we can find for each ε > 0 a
function hε supported on K and satisfying

0 ≤ hε(x) ≤ 1 for all x, (3.5)

∫
K

hεdσ ≥ σ(K)/2

and

‖Rψ
i,ε(hεσ)‖L∞(K) ≤ 2nA. (3.6)

In view of (3.3), (3.5), (3.6) and using the growth condition σ(B(x, r)) ≤ C0r
α for

x ∈ spt(σ) and r > 0, we have ‖Ri,ε(hεσ)‖L∞(K) ≤ C. But we also want Ri,ε(hεσ) to
be bounded outside of K.

We claim now that for all η > ε, we have ‖Ri,η(hεσ)‖L∞(K) ≤ C. To see the claim,
let first ε ≤ η ≤ 2ε. Then using (3.3), (3.5), (3.6) and the growth condition for σ, we
have

‖Ri,η(hεσ)‖L∞(K) ≤ ‖Ri,η(hεσ)−Ri,ε(hεσ)‖L∞(K) + ‖Ri,ε(hεσ)‖L∞(K) ≤ C.

If η > 2ε, then Ri,η = (Rψ
i,ε)η. Using (3.5) and (3.6) , Cotlar’s inequality (see [NTV2])

implies that the maximal operator (Rψ
i,ε)

∗(hεσ) is uniformly bounded on K. Hence for
all η > 2ε,

‖Ri,η(hεσ)‖L∞(K) = ‖(Rψ
i,ε)η(hεσ)‖L∞(K) ≤ ‖(Rψ

i,ε)
∗(hεσ)‖L∞(K) ≤ C.

Thus the Ri,η(hεσ) are uniformly bounded on ε and η.
Let {εj}j be an arbitrary sequence tending monotonically to 0 and let h be a weak-

star limit of some subsequence of {hεj
} in L∞(K); by passing to some subsequence
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we may assume that hεj
→ h in the weak-star topology. Then h is supported on K,

0 ≤ h ≤ 1,
∫
hdσ ≥ Cσ(K) and ‖Ri,η(hσ)‖L∞(K) ≤ C uniformly in η.

If we can prove that ‖Ri,ε(hσ)‖L∞(Kc) ≤ C, then we are done with the lower in-
equality in (3.2) because µ = hσ is an admissible measure for γα,+ and so we have

γα,+(E) ≥
∫
E

hdσ ≥ Cσ(E) ≥ Cγα,2(E).

Consider any x ∈ Rn \K, set d = dist(x,K) and choose y ∈ K so that d = |x− y|.
Fix ε > 0 and distinguish the following three cases,

1. If ε ≥ 4d, then

|Ri,ε(hσ)(x)| ≤ |Ri,ε(hσ)(x)−Ri,ε(hσ)(y)|+ ‖Ri,ε(hσ)‖L∞(K)

and

|Ri,ε(hσ)(x)−Ri,ε(hσ)(y)|

≤
∣∣∣∣∫
{w: |w−x|>ε, |w−y|>ε}

h(w)

(
xi − wi

|x− w|1+α
− yi − wi
|y − w|1+α

)
dσ(w)

∣∣∣∣
+

∣∣∣∣∫
{w: |w−y|≤ε, |w−x|>ε}

h(w)
xi − wi

|x− w|1+α
dσ(w)

∣∣∣∣
+

∣∣∣∣∫
{w: |w−x|≤ε, |w−y|>ε}

h(w)
yi − wi

|y − w|1+α
dσ(w)

∣∣∣∣ = A+B + C.

To deal with A, note that |y − w| > ε ≥ 4d = 4|x − y| ≥ 2|x − y|. Hence using
the standard estimates for the Calderón-Zygmund kernels, 0 ≤ h ≤ 1 and the α−
growth of σ we get

A ≤ C
∞∑
j=0

∫
{w: 2jε≤|y−w|≤2j+1ε}

|x− y|
|y − w|1+α

|h(w)|dσ(w)

≤ Cd

∞∑
j=0

1

(2jε)1+α

∫
{|y−w|≤2j+1ε}

|h(w)|dσ(w)

≤ C
d

ε
sup
r>0

1

rα

∫
|y−w|<r

|h(w)|dσ(w)
∞∑
j=1

2−j ≤ C.

For the term B,

B ≤ 1

εα

∫
|w−y|≤ε

|h(w)|dσ(w) ≤ C.
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Term C is treated in the same way as term B but interchanging the roles of x
and y.

2. If d/2 ≤ ε < 4d, then

|Ri,ε(hσ)(x)| ≤ |Ri,4d(hσ)(x)| + |Ri,ε(hσ)(x)−Ri,4d(hσ)(x)|

≤ C + C sup
r>0

1

rα

∫
B(y,r)

|h(w)|dσ(w) ≤ C,

by using the previous case to bound |Ri,4d(hσ)(x)| and the α−growth condition
on σ and 0 ≤ h ≤ 1 to bound the difference |Ri,ε(hσ)(x)−Ri,4d(hσ)(x)|.

3. If ε < d/2, then Ri,ε(hσ)(x) = Ri,d/2(hσ)(x), which leads us to the second case.

For the first inequality in (3.2), let σ be a positive measure supported on E such

that σ(E) ≥ γα,+(E)

2
and ‖σ ∗ xi

|x|1+α‖∞ ≤ 1, 1 ≤ i ≤ n.
To see that σ is admissible for γα,2, we check first that it satisfies the growth condition

σ(B(x, r)) ≤ Crα. Take an infinitely differentiable function ϕ, supported on B(x, 2r)
such that ϕ = 1 on B(x, r), and ‖∂sϕ‖∞ ≤ Csr

−|s|, |s| ≥ 0. Here s = (s1, ...sn), with
0 ≤ si ∈ Z, |s| = s1 + s2 + ... + sn and ∂s = (∂/∂xi)

s1 ...(∂/∂xn)
sn . Assume first that

n is odd and of the form n = 2k + 1. Then, by Lemma 11 in [P1] (see Lemma 1.11 in
the first Chapter of this dissertation),

σ(B(x, r)) ≤
∫
ϕdσ = cn,α

∫ ( n∑
i=1

∆k∂iϕ ∗
1

|x|n−α
∗ xi
|x|1+α

)
(y)dσ(y)

= −cn,α
n∑
i=1

∫ (
σ ∗ xi

|x|1+α

)
(y)

(
∆k∂iϕ ∗

1

|x|n−α

)
(y)dy

≤ C
n∑
i=1

∫
B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)

∣∣∣∣ dy + C

∫
Rn\B(x,3r)

∣∣∣∣(∆k∂iϕ ∗
1

|x|n−α

)
(y)

∣∣∣∣ dy
Arguing as in Lemma 12 in [P1] (see Lemma 1.12 in the first Chapter of this disser-

tation) we get that the last two integrals can be estimated by Crα.
When n is even we use the corresponding representation formula in Lemma 11 of

[P1] (Lemma 1.11 in the first Chapter).

We are left now with the L2-boundedness of the α-Riesz transform Ri
α for i =

1, · · · , n. By assumption ‖σ ∗ xi

|x|1+α‖∞ ≤ 1, for 1 ≤ i ≤ n. In particular this implies

that we can apply the T (1) theorem (see Theorem 3.1 with b ≡ 1) and so we get the
L2−boundedness of Ri

α for 1 ≤ i ≤ n. This means that σ is admissible for γα,2. Thus

γα,2(E) ≥ Cσ(E) ≥ Cγα,+(E).
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From this lemma, we can deduce the semiadditivity of the capacity γα,+. In fact,
γα,+ is countably semiadditive.

Corollary 3.4. Let E ⊂ Rn be compact. Let Ei, i ≥ 1, be Borel sets such that

E =
∞⋃
i=1

Ei. Then

γα,+(E) ≤ C

∞∑
i=1

γα,+(Ei),

where C is some absolute constant.

Proof. Let µ be the extremal measure for γα,2(E). Then due to Lemma 3.2 and
using that the measures µ|Ei

are admissible for the capacity γα,2(Ei),

γα,+(E) ≈ γα,2(E) = µ(E) = µ(∪
i
Ei) ≤

∑
i

µ(Ei)

≤ C
∑
i

γα,2(Ei) ≈
∑
i

γα,+(Ei).

3.3 Proof of the Theorem.

We need the following result inspired from a theorem of H. Pajot. (see Proposition 4.4
in [Pa1]) The result of H. Pajot, says that with some density condition, every compact
set of Rn with finite Hα-measure can be covered by a countable union of α−dimensional
Ahlfors-David regular sets.

He proves the result for sets in Rn of integer dimension α. With some minor changes
in his proof, the same result holds also for sets in Rn of non-integer dimension α with
0 < α < n, that is

Theorem 3.5. Let E ⊂ Rn be a compact set with Hα(E) <∞, such that for all x ∈ E

0 < θα∗ (x,E) ≤ θ∗α(x,E) <∞.

Then,

E ⊂
∞⋃
i=1

Ei

and for all i ∈ N, Ei is a compact Ahlfors-David regular set of dimension α.

Now we turn to the proof of the main Theorem.
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Proof of the Theorem. Suppose γα(E) > 0. Applying Lemma 8 in [P1] we find a
measure of the form ν = bHα, with b ∈ L∞(Hα, E) such that the signed α− Riesz
potential Rα(ν) = ν ∗ x

|x|1+α is in L∞(Rn) and
∫
E
b dHα = γα(E). We can apply now

Theorem 3.1 to get a set F ⊂ E of positive Hα−measure such that the operator Rα is
bounded on L2(Hα, F ). This implies that γα,2(E) > 0. Due to Lemma 3.2 γα,+(E) > 0.
Notice that our set E satisfies the hypothesis of Theorem 3.5, then there exist compact
Ahlfors-David regular sets Ei of dimension α such that

E ⊂
∞⋃
i=1

Ei.

The semiadditivity of the capacity γα,+, stated in Corollary 3.4 implies then that

0 < γα,+(E) ≤ C
∑
i

γα,+(Ei).

Thus at least one of the Ahlfors-David regular sets Ei, say Ek, has γα,+(Ek) > 0.
Then for this set Ek we have

0 < γα,+(Ek) ≤ γα(Ek).

Applying now Theorem 2 in [P1] to the Ahlfors-David regular set Ek, we get that α
must be an integer.



Chapter 4

Open problems

In this final chapter we will state some open problems related to the topics studied in
this dissertation. These questions are quite recent.

Problem 1. Can we extend Theorem B to general compact sets E ⊂ Rn, namely, is
it true that if E has finite α-Hausdorff measure for some non-integer index 1 < α < n,
then γα(E) = 0?

Problem 2. Is it true that the vector valued Riesz kernels x/|x|1+α in Rn, 1 < α < n,
α /∈ Z, are unbounded on L2(Hα) on sets of positive finite Hα-measure?

This result holds for α-dimensional Ahlfors-David regular sets (see [Vi]). If the answer
to Problem 2 is yes, then the same happens with Problem 1.

Problem 3. Is there an absolute constant C such that

γα(E) ≤ Cγα,+(E),

for compact sets in Rn and 1 < α < n?

The result for analytic capacity is proved in [T2] and adapting the method the result
has been obtained for Lipschitz harmonic capacity γn−1 and for γα, 0 < α < 1 (see [Vo]
and [MPV] respectively).

Problem 4. Is the capacity γα for 1 < α < n semiadditive? That is, is there a constant
C depending on α and n such that

γα(E ∪ F ) ≤ C (γα(E) + γα(F )) ,

for compact sets E and F in Rn?

A positive answer to Problem 3 would imply automatically the semiadditivity of γα for
1 < α < n because the capacity γα,+ turns out to be semiadditive.
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Problem 5. Consider Cantor sets En(λ) ⊂ Rn for non-increasing sequences {λj}∞j=1

with 0 < λj < 1/2. Without loss of generality assume that λ0 = 1. Set σk = Πk
j=0λj.

Let E0 be a closed interval of length σ0, and let E1 be the set obtained by removing
an open interval of length σ0 − 2σ1 in the middle, so that E1 consists of two closed
intervals of length σ1. Then remove an interval of lenght σ1− 2σ2 in the middle of each
of these intervals, to obtain E2 consisting of 22 intervals of length σ2. Continuing like
this we obtain after k steps a set Ek consisting of 2k intervals of lenght σk. Denote the
Cartesian product of n copies of Ek by E

(n)
k , and set

En(λ) =
∞⋂
n=0

E
(n)
k .

Then En(λ) is called the Cantor set corresponding to the sequence {λn}∞n=0.

Is it true that for 1 < α < n,

γα(En(λ)) ≈

(
∞∑
k=0

(
2−kn

σαk

)2
)−1/2

? (4.1)

The result holds for α = 1 and n = 2 (see [MTV]). For 0 < α < 1 and any n (4.1) also
holds because for the capacity C 2

3
(n−α), 3

2
it is true (see [AH], p. 143-146) and these two

capacities are equivalent (see [MPV]).



Bibliography

[AH] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,
Grundlehren der Mathematischen Wissenschaften, 314. Springer-Verlag,
Berlin, 1996.

[A] L. Ahlfors, Bounded analytic functions, Duke Mathematical Journal Volume
14 (1947), p.1-11.

[AHMTT] P. Auscher, S. Hofmann, C. Muscalu, T. Tao and T. Thiele, Carleson mea-
sures, trees, extrapolation and T (b)−theorems, Publ. Mat., 46, no.2, (2001),
257-325.

[C] A. Calderón, Cauchy integrals on Lipschitz curves and related operators,
Proc. Nat. Acad. of Sci. USA, 74 (1977), p.1324-1327.

[Ch1] M. Christ, Lectures on Singular Integral Operators, Regional Conference
Series in Mathematics 767, Amer. Math. Soc., 1990 the Cauchy integral,
Colloq. Math. 60/6 (1990), 601-628.

[Ch2] M. Christ, A T (b) theorem with remarks on analytic capacity and the Cauchy
integral, Colloq. Math. 60/61 (1990 ), 601-628.

[D1] G. david, Waveletes and Singular Integrals on curves and Surfaces, Lecture
Notes in Mat. 1465, Springer-Verlag, Berlin, 1991.

[D2] G. David, Unrectifiable sets have vanishing analytic capacity, Revista Mat.
Iberoamericana 14 (1998), 369-479.

[D3] G. David, Analytic capacity, Calderón Zygmund operators, and rectifiability,
Publ. Mat, 43 (1999), 3-25.

[DM] G. David and P. Mattila, Removable sets for Lipschitz harmonic functions
in the plane, Revista Mat. Iberoamericana 16, no. 1 (2000), 137-215.

[F] H. Farag, The Riesz Kernels do not give rise to higher dimensional analogues
of the Menger-Melnikov curvature, Publ. Mat., 43 (1999), 251-260.

[Fe] H. Federer, Geometric Measure Theory, Springer Verlag, 1969.



92 Bibliography

[G] J. Garnett, Analytic Capacity and Measure, Lecture Notes in Math. 297,
Springer Verlag, 1972.

[GV] J. Garnett and J. Verdera, Analytic capacity, bilipschitz maps and Cantor
sets. To appear in Math. Res. Lett.

[HP] R. Harvey and J. Polking, Removable singularities of solutions of partial
differential equations, Acta Math. 125 (1970), 39-56.
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