Chapter 5

Experimental results

In this chapter we present the experimental results that we obtained when testing
the methods proposed in this thesis.

In section 5.1, we present experimental results related to the geometrical (un)
distortion model proposed in section 3.1. We show that the geometrical distortion
introduced by the Image Intensifier can be accurately modeled by a polynomial of
the view parameters. Also, we show that the estimated polynomial is independent
of the focal length, but not for changes of anatomical angles. For each polynomial
of the (un)distortion model, we estimate its optimal degree. Moreover, we prove
that by decomposing the polynomial in two components, namely the steady and
the orientation-dependent one, the optimal degree of the polynomial, describing the
orientation-dependent components, reduces and, therefore, the estimation of this poly-
nomial from the anatomical angles a and f is simplified. We also give experimental
data relating the accuracy obtained using this model.

Section 5.2 is devoted to the assessment of the performance of each of the models
proposed in section 3.2 to estimate the acquisition geometry, described by the ex-
trinsic parameters R and t. First, we present results of the accuracy obtained when
calibrating the acquisition geometry using Zhang’s method. Afterwards, and using a
subset of the obtained extrinsic parameters and the corresponding anatomical angles,
we estimate the parametres of each of the proposed models in section 3.2. Finally,
we test the accuracy of each model by projecting the grid on the images using the
extrinsic parameters estimated by each model and comparing the position of the grid
nodes with the real ones.

After calibrating the system, we can focus on the three-dimensional reconstruction.
Hence, in section 5.3, first we compare the obtained three-dimensional reconstruction
accuracy using biplane snakes to the obtained with manual reconstruction. Second, we
study the biplane snakes performance when approaching the reconstruction of wavy
vessels, and we evaluate the influence of image distortion on the 3D reconstruction
accuracy. Afterwards, we use real images to test 3D reconstruction accuracy when
using biplane snakes and some practical issues relating the biplane snakes. Finally,
we present some examples of the application of the proposed techniques to the three-
dimensional reconstruction of vessels from real cardiac images.
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All the experiments presented in this chapter using real images were performed
with a SIEMENS Cathcor 3.3 C-arm angiography acquisition system in the University
Hospital "Germans Trias i Pujol" (Badalona, Spain).

5.1 Geometrical (Un)Distortion Model

Following the distortion model proposed in section 3.1, we can obtain the distorted
coordinates (4,?) of a point (u,v) in a view acquired with rotation angle « and
angulation angle 8 by the following expression:

@ = u+p(u,0) +6"(w,v,q,pB)
o= v+ ) + 8,0, 8)
where
N n
0*(u,v, 0, 8) = Z Z , Blu o™ =64 5(u,v)
N
0% (u,v,a, ) = Z Z B u""Mo™ =6 5(u,v)
with j = "(nH) +m and N is the polynomial degree of “ B(u v) and &7, 5(u,v)

We can, therefore distinguish three groups of polynomials in this model:

e First, the polynomials of (u,v) describing the steady component of distortion,
p" (u,v), p (u, v).

e Second, the polynomials of (u, v, «, 3) describing the orientation-dependent com-
ponent, §*(u, v, a, ), " (u,v,a, ). These polynomials are defined as bi-variate
polynomials of (u,v), namely &y 5(u,v),d, 5(u,v), whose coefficients are bi-
variate polynomials of (a, ). We denote the polynomial that estimates the jth
coefficient of polynomial &} ;(u,v) as w wi(a, B).

e The third group of polynomials is therefore formed by the sets of polynomi-
als {w"(a, )} and {w?¥(a,B)}, for j = 1...M, where M is the number of
coefficients of the bi-variate polynomials &y ;(u,v) and &7, 5(u,v).

The undistortion model is analogously constructed.

Our aim is first determining if such a polynomial model is accurate to model
the geometrical distortion. Also, we aim proving that geometrical distortion is only
affected by the orientation of the detector, and not by the focal length. Finally, we
empirically determine the optimal degree for each of these polynomials, and determine
the accuracy obtained by the optimal configuration for the proposed model.
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5.1.1 Polynomial Suitability to Model Geometrical Distortion

With this experiment, we aim to assess two issues: First, whether a bivariate
polynomial is suitable to accurately describe the geometrical distortion for a given
view. Second, if it is suitaible, which would be the optimal degree for this polynomial.

To this aim, we acquired images of the calibration grid at 25 different orientations
of the Image Intensifier, namely for a = [-30, 0, 30,60, 90] and 8 = [20, 10, 0, —10, 20].
We chosed these values since they cover the range used in clinical practice at the
University Hospital "Germans Trias i Pujol". For each image, about 150 crossing
points (4,?) were detected, and corresponding ideal pixel coordinates (u,v) were
estimated. Then, we randomly divided the crossing points into two sets for each
image: 50% of crossing points for estimation and 50% for test. Let [ag, V5], [ug, vE],
be the distorted and undistorted coordinates of the crossing points in the calibration
set for each view k. Analogously, for the test set we have [a},, V}] and [uf, vi].

For each view k, we used the estimation set of points to fit the bi-variate poly-
nomials pj(u,v) and p}(u,v) to the distortion, namely to @f, — u§ and ¥ — v. We
followed this procedure for different polynomial degrees, ranging from 1 to 9. Then, we
evaluated the performance of each polynomial for both sets of points, the calibration
and the test.

Figure 5.1(a) shows the obtained results. A polynomial of degree greater than 5
does not improve the precision on test points. Indeed, a polynomial of degree greater
than 5 deteriorates the precision on test points, since the polynomial model is learning
the error of feature estimate. This fact was already reported in [91] in the frame of
camera calibration. Thus, for the distortion model we have chosen a polynomial of
degree 5, expecting a mean error of less than 0.1 pixels, achieving subpixel accuracy.

We proceeded in the same way for the undistortion polynomials pi(a,d) and
p¥(a,9), which were fitted to uf — @i and v§ — ¥§. Figure 5.1(b) shows the results
obtained. Here, accuracy is also improved until a polynomial of degree 5. Precision
reduces from a polynomial of degree 6. Therefore, we take 5 as the optimal polynomial
degree, since it assures a mean error of less than 0.1 pixels.

Note that in both cases the mean error on the calibration and the test set is very
similar for polynomial 5. We explain it by the high number of calibration points used
to estimate the polynomial. Note also that the error on the test set grows a lot for
high polynomial degrees, whereas the calibration error remains small.

Although the two plots are very similar, they are not exact. This is due to the
fact that, although being inverse transformations, the polynomial approximation can
be of different complexities. In this case, though, the optimal polynomial degree is
the same.

The obtained experimental results led us to conclude that the geometrical dis-
tortion introduced by the Image Intensifier can be accurately described by using a
polynomial of degree 5. Thus, we can expect a mean error of less than 0.04 mm for
a Field-Of-View of 17 cm when modelling the geometrical distortion using a polyno-
mial of degree 5 for each view. Note that this choice also means that the optimal
polynomial degree for the polynomials describing the steady component of distortion
is 5.



84

3.6--"-"
ey B2 T
2811
244

Length of residual [pixels

36 [
— 3.2
28|
24}

Length of residual [pixels

EXPERIMENTAL RESULTS

— Estimation| |

Polynomial degree

(a)

167
1.2}
08T
04}

=3 Estimation | |
mm Test

ARnay

2 3 4 5 6 7 8
Polynomial degree

(b)

Figure 5.1: Boxplot of the residual length for estimation and test points computed
for different polynomial degrees. (a) for distortion polynomials pj (u,v) and p},(u,v),
(b) for undistortion polynomials pj (@, 9) and p}, (i, D).
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5.1.2 Focal Variation Influence

With this experiment, we aim to prove that varying the distance between the
X-ray source and the Image Intensifier (i.e., the focal length f) does not affect the
geometrical distortion. This is an important point, since the proposed model in section
3.1 uses only the orientation of the C-arm to estimate the distortion.

To assess the focal variation influence, we fixed a grid to the Image Intensifier
screen. Then, we acquired a sequence of 124 frames while decreasing the focal distance
f from 117cm to 87cm. For each frame k in the sequence, the crossing points [tik, Vk]
were detected. As shown in figure 5.2, a change in the position of the crossing points
can be noticed.
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Figure 5.2: Evolution of the detected crossing points of a grid fixed to the Image
Intensifier screen while variating the focal distance.

This change is mainly due to the fact that it is physically impossible to place the
calibration grid on the image plane, but only slightly in front of the glass. Thus, a
change in f results in a displacement of the crossing points. The question is whether
a change in f invalidates the undistortion (and distortion) model.

To assess that, we performed the following experiment:

e First, we estimated for each frame of the sequence the ideal undistorted coor-
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dinates [uy, vk] of the detected crossing points [{ik, Vi].

e Second, for the first image, we fitted the undistortion polynomials pg(i,d),
P4 (4, 0) to ug — g and v — ¥, respectively.

e Finally, and for each frame k on the sequence and detected intersection point
(G k, Vi) with & = 1... Ny, we computed the distance between ideal pixel
coordinates (u;,v; k) and the coordinates estimated using the distortion poly-
nomials pi (i, 0), pd(i, ) as follows:

Bk = || [wik — @ik — P4 (@i ke, Dik), ik — Disk — P (Thik, Dik)] |-

We followed a similar procedure for the distortion polynomials, and therefore
computed the following error expression:

Eik = [tk — wik — po Wik, Vik), Dike — Viske — Po (Wi ks vik)]I] 5

where pf (u,v) and p§(u,v) were estimated using the first frame in the sequence.

The results obtained for all views are illustrated in figure 5.3: changing the focal
distance does not affect the performance of neither the distortion nor the undistortion
polynomials, since the error obtained is similar to the obtained in section 5.1.1. Thus,
we conclude that a focal variation has a negligible effect on the geometrical distortion,
and therefore it is not necessary to take it into account.

5.1.3 Optimal Polynomial Degree for 6 ;(u,v), 0%, 5(u,v), 0% 5(ii, )
and 67 , (i, 0)

As stated in section 3.1, we decompose the distortion into two components, namely
the steady and the orientation dependent one. We have already determined that
the optimal polynomial degree for the steady component is 5. Therefore, in this
experiment we aim determining the optimal polynomial degree of the polynomials
modelling the orientation-dependent component. We expect obtaining a lower optimal
polynomial degree for these polynomials, since this would justify the decomposition
of the distortion polynomial into components p, d.

To this aim, we acquired images of the grid fixed to the Image Intensifier screen
considering 25 different orientations, namely for o = [-30,0,30,60,90] and 8 =
[20,10,0,—10,20]. For each view, we obtained about 150 crossing points and sepa-
rated them in two sets: 50% of points to estimate the polynomials and the others to
test the estimate obtained. Let [Gf,¥g], [ug, vE], be the distorted and undistorted
coordinates of the crossing points in the calibration set for each view k. Analogously,
for the test set we have [, V] and [uf, vi].

Using these data, we performed the following procedure:

e First, we estimated the coefficients of the polynomials modelling the steady
component of distortion p%(u,v), p¥(u,v) by fitting them to ¢ —u® and v —v°,
respectively, where @1 = [u§, ..., u$,] and ¥° = [v§, ..., v5,].

Hence, the distortion polynomials p*(u,v), p¥(u,v) were fitted to all views and
therefore the fitting error should correspond to the distortion variation due to
the change in the orientation of the C-arm.
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Figure 5.3: Boxplot of the error obtained, grouped for different values of focal
length. (a) Focal variation influence on undistortion, (b) Focal variation influence on
distortion.
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e Then, for each view k, we computed the distortion variation surfaces Apjy, Ap}
as follows:

U _ AC c —U c c
Ap = g —ug — p*(ug, vi)

v _ acC c —v c c
App = Vg —vg—p'(ug, vi),

In figure 5.4, we show the surfaces Ap}! and Apj of the fitting error as colormaps.
The smoothness of obtained surfaces suggests that Apj! and Apj} can be approximated
by low degree polynomials. Hence, the optimal polynomial degree for the distortion
polynomials 0}y 5(u,v) and &7, 5(u,v) is very likely to be low.

To confirm this hypothesis, for each view k we interpolated the surfaces Ap} and
App, using the polynomials

0 (u,v, ag, Br) = op(u,v) and §°(u,v, ag, Br) = o (u,v),

respectively, where oy and [y are the rotation and angulation angles for view k.

The obtained results are presented in figure 5.5(a): from a polynomial of degree
greater than 3, the fitting residual starts to grow. Similar results are obtained for the
polynomials

which interpolate

a4 c ~C —Q/AC AC
Apy = wy — by — pU (g, V)
b} _ c AC —U/AaC &C
App = vi — Vg —p' (g, ¥%)

where p%(i,0) and p?(@,9) were fitted to u® — @° and v¢ — v<, respectively.

The obtained results are shown in figure 5.5(b).

From this experiment, we can conclude that the choice of a polynomial of degree
3 for the polynomials 6}, 5(u,v) and d;, 5(u,v) leads to a mean error of less than 0.1
pixels for both distortion models, that corresponds to less than 0.04mm for a FOV
of 17cm. The same conclusion can be derived for the polynomials 536(&,17) and
5273 (G, 0).

Note that this result is very similar to the accuracy obtained in the experiment
from section 5.1.1, where a different 5th degree polynomial was fitted for each view.
Here we fit unique 5th degree polynomial g for all views, and a polynomial d; of
only 3th degree for each view k. Therefore, using less polynomial coefficients we
obtain similar accuracy results, and hence the decomposition of the distortion into
two components is justified.

5.1.4 Determination of the Optimal Polynomial Degree for
{w™ (e, B} {w" (@, B)}, {w™ (e, §)}, and {w"" (e, B)}

We illustrated that the geometrical distortion is only affected by the orientation
of the C-arm and by the spatial distribution of pixels in the image plane. Hence,
the coefficients of the polynomials that model the orientation-dependent component
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Figure 5.4: Color-map displaying the distortion variation as the anatomical angles
a and B vary. Apj and Ap} are both in pixels.
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Figure 5.5: Boxplot of the residual length for estimation and test points. (a) For
different polynomial degrees of 0y (u,v) and 6} (u,v), (b) for different polynomial
degrees of §; (@, 9) and df, (a4, D).
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of the distortion (namely, 0y 5(u,v), o, 5(u,v), 636(&,@) and 6a6(u 0)) should be
estimable by means of a function of the parameters a and /3, which are clearly related
to the orientation of the detector. The aim of this experiment is to prove that this
function can be a bi-variate polynomial of a and (3, as proposed in section 3.1, and
to determine the optimal polynomial degree to obtain the better estimation results.

To this aim, we used the previous acquisitions at @ = [—30,0,30,60,90] and
B =120,10,0,—10, —20] as the estimation set for this experiment. For the test set we
acquired views at a = [—15,15,70] and g = [15,5, —5, —15]. For each view k on the
estimation set, we estimated the polynomials 6% (u,v), 8% (u,v), §&(d,d) and 87 (a, )
(see the previous experiment for details).

From this data, we performed the following;:

e First, for each coefficient in the polynomials §;, we fitted the corresponding
polynomial w. For instance, the jth coefficient of §}(u,v) was interpolated
using the polynomial w®7(c, B) for different polynomial degrees, which has the
following expression:

w7 (o, Br) = Z Zdw n—m gm

n=0m=0

where i = @ + m and N is the polynomial degree. Hence, its coefficients
{d;”’} were chosen to minimize the following:

K

Z(C?’k — W™ (e, Br))?

k=0
where c}"k is the jth coefficient of 6}'(u,v) and ag,Sr the rotation and the
angulation angles for view k. To simplify the experiment, we constrained all
the coeflicients to be estimated with a same polynomial degree N. For details
on bi-variate polynomial fitting, see Appendix C.

e Second, the obtained polynomials {w®’(a,B)}, {w?I(a, B)}, {w®I(a, B)} and
{w®I(a, B)} were used to compute the polynomials §%(u, v, a, 8), §°(u,v, @, 3),
§%(t,9,a, B) and 0%(1,d,a, ), respectively. For instance, we computed the
polynomial §%(u,v,a, 8) as:

6“(u,v,a, B) = 6y g(u,v) = ZZw’J yu ™

n=0 m=0

where 7 = @ + m. Note that we have used 3 as polynomial degree for
0¥ .(u,v), as estimated in the previous experiment.
a,B

Then, we evaluated the performance of the obtained polynomials to model the
distortion, for each view set and polynomial degree N. The results obtained are
shown in figure 5.6.
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Figure 5.6: Boxplot of the residual length for estimation and test views. (a) Dis-
tortion model for different polynomial degrees of {w®*(a, )} and {w”(a,B)}. (b)
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For a polynomial of degree greater than 4, the error rapidly increases. This is
caused by the low number of calibration views. For a polynomial of degree N=5,
we need at least w = 21 views for exact data. Since we have used only 25
views, that is, only 3 views more, it is hard to overcome the noise. We expect that
by increasing the number of views, the error should decrease. Anyway, with only 25
calibration acquisitions and a polynomial of degree 4, we can expect a mean error
below 0.3 pixels for both distortion and undistortion models, which equals to 0.1mm
for a FOV of 17¢m.

Note that the obtained error is bigger compared to the obtained in the previous
experiments. The reason is that now we have a global model of distortion. However,
the obtained accuracy is still quite acceptable, and hence we conclude that using
this model, we can accurately correct the distortion without the need of calibrating
distortion at each acquisition. This fact greatly simplifies the clinical application of
three-dimensional reconstruction techniques.

5.2 Model for the Acquisition Geometry

The main objective of the following experiments is to evaluate the performance of
the different proposals regarding the determination of the acquisition geometry, which
were presented in section 3.2. Hence, our first experiment aims to determine whether
the calibration method proposed by Zhang in [103] is applicable to the angiographic
frame. After validating this issue, the calibration obtained serves as input data to
the next experiment, in which we evaluate each of the models proposed in section 3.2
using a cross-validation scheme.

As stated before, we are performing our experiments with a SIEMENS Cath-
cor 3.3 C-arm angiography acquisition system in the University Hospital "Germans
Trias i Pujol" (Badalona, Spain). This system is laterally mounted instead of ceiling-
mounted. Figure 5.7 illustrates how anatomical angles are defined in our system.

This situation is different from the considered in the paper of Dumay et al. [22],
and therefore different from that of section 3.2. To solve this problem, we must replace
a by —a and 8 by —f before performing the experiments.

5.2.1 Zhang’s Calibration on a SIEMENS C-Arm

To evaluate whether the calibration method proposed by Zhang in [103] is applica-
ble in the angiographic frame, we acquired the grid for different positions of the C-arm,
namely for a € {-30,-15,-5,0,5,15,30} and 5 € {-20,-15,-10,0,10,15,20}.
Then, we carried out the following:

e First, for each view 7 we detected the M grid nodes, obtaining @1; = [t;1, . . - U]
and V; = [0;1, ... 0;n]. The real positions of the grid nodes in world coordinates
were also obtained, which are denoted as x = [z1,...2um], ¥y = [y1, ... yum]-

e Second, we applied the undistortion model calibrated in section 5.1 to obtain
the undistorted coordinates w; = [u;1, ... uipm], Vi = [vi1, ... Vin]-
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(a) Rotation a.

Cranial Caudal
B > 0/,-N< 0
o4
—mme -
(b) Angulation 3.
Figure 5.7: Anatomic angles for a laterally mounted SIEMENS Cathcor 3.3 C-arm,

which define the orientation of the detector.

e Third, we obtained an estimation of A, {R;} and {t;}. To do that, we followed
Zhang’s calibration method[103] using the undistorted crossing points u;, v; on
each view i and the corresponding real world coordinates x,y.

e Finally, we used the following expression to evaluate the calibration error:

Tij
Ejj = { Zl]f ] — A[R; — ] yéj
1

for each view 7 and grid node j.

The standard deviation of the obtained {E;;} was of 0.13 pixels, and the maximum
value 0.8 pixels. Therefore, if we project the grid nodes using the estimated A, {RZ}
and {t;}, the positions obtained will be pretty near to the real ones. Hence, we
conclude that Zhang’s calibration model is also aplicable in the angiographic frame.

5.2.2 Accuracy Evaluation for M0, M1, M2, M3 and M4

The aim of this experiment is to determine which model fits best to the real
movement of the C-arm. To this aim, we did the following:

e First, we randomly divided the estimated R; and §; of the previous experiment
in two sets: the calibration and the test set.

o Using the rotation and translation matrices of the calibration set, we estimated
the parameters of each of the models M0, M1, M2, M3 and M4, following
the method described in section 3.2.3.
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e Finally, we evaluated the accuracy obtained for each model. To this aim, we
have evaluated the following expression for each view i and position j:

’Uij

ilfij

ko Ui kg k Yij
B = [ Y } — AR |7
1

where matrices R;* and t;* are the predicted extrinsic parameters for view i
and model Mk, using the estimated parameters.

Table 5.2.2 shows the results obtained. From these results, we can state that the

Calibration Test
S(IEN)_max [E]_std([E]) _max [E]
MO 6.81 33.38 5.63 23.00
M1 1.80 10.15 1.85 9.77
M2 1.98 13.14 1.96 11.07
M3 1.08 8.49 1.00 4.77
M4 0.91 5.39 0.86 5.44

Table 5.1: Displacement E (in pixels) between the detected intersection points on
the grid and predicted positions for each model, computed both for calibration and
test sets.

models which better fit are M3 and M4. Note the large maximal errors introduced by
model MO. Since the distance between wires on the grid is of 1em and the projected
gap on the image measures a mean of 40 pixels, an error of 30 pixels is very important.

Hence, we can conclude that the assumptions made by the model of Dumay et
al. in [22] to define model MO are not fulfilled in the angiographic system where
we have performed our tests. In particular, the assumptions of image alignement,
isocenter existence and perfect orthogonality between the angulation and rotation
axis should not be done for this case. Hence, in order to model the movement of the
C-arm, we conclude that the proposed models M3 and M4 are in this case much
more approppiate than the classical isocentric model MO.

5.3 Biplane Snakes

To discuss the practical issues of the proposed biplane snakes for the three-
dimensional reconstruction, we carried out experiments with synthetic images, real
images of a phantom, and real cardiac images.

Second, we use real X-ray images of wire phantoms to evaluate the three-dimensional
reconstruction accuracy using the model M4, and to discuss some practical cases with
long complex shapes and vessel overlaps.

Finally, we show some examples of the three-dimensional reconstruction of coro-
nary vessels on real cardiac images.



96 EXPERIMENTAL RESULTS

5.3.1 Experiments with Synthetic Images

The following experiments were all performed on synthetically generated images.
First, we compare the obtained three-dimensional reconstruction accuracy using bi-
plane snakes to the obtained with manual reconstruction. Second, we study the
biplane snakes performance when approaching the reconstruction of wavy vessels. Fi-
nally, we evaluate the influence of image distortion on the 3D reconstruction accuracy.

Manual Reconstruction vs. Biplane Snakes

This experiment compares the performance of biplane snakes to the manual re-
construction. To this aim, we defined 5 different curves and generated two simulated
views for each one. Then, four experts (obsl,0bs2,0bs3,0bs4) were asked to mark
corresponding points of the curve as exactly as possible in order to achieve a manual
reconstruction. The epipolar line helped the users to determine point correspondences,
and the users were allowed to modify the control points to improve the accuracy. We
also obtained a three-dimensional reconstruction using biplane snakes for each image
pair. The curve generated by each user was then used as initial shape for the snake,
which was allowed to deform up to 500 iterations. Figure 5.8(a) shows the results
obtained. The mean relative improvement of error was of 9% when using biplane
snakes.

We repeated the experiment, but now introducing random error in the intrinsic
and extrinsic parameters used to obtain the three-dimensional reconstruction. The
obtained results are shown in figure 5.8(b). This time, the main relative improvement
error using biplane snakes was of 12%.

Perfect CAlibration With callibration errors

Mean reconstruction error
Mean reconstruction error

Obs3

Obs2 Obs3 Obs4

Manual Snake
(a) (b)

Figure 5.8: Mean reconstruction error for computational phantom.

From these results, we can derive two conclusions: First, when the acquisition
conditions are known with high precision, biplane snakes obtain a three-dimensional
reconstruction as good as the obtained using manual reconstruction. Second, with
noise on the estimation of the acquisition conditions, biplane snakes obtain a more
accurate three-dimensional reconstruction.
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Biplane Snakes Behaviour against Wavy Vessels

This experiment compares the performance of biplane snakes using distance map
gradient as external force to the performance of their extension using the Generalized
Gradient Vector Flow (GGVF).

To this aim, we constructed a synthetic phantom of a wavy vessel by sampling the
3D curve:

p(s) = (5s,3 cos(9s) sin(6s), 3sin(9s) cos(6s))

at s € [—0.5,0.5] with step 1073. Then, for 10 different views, we proceeded as follows:
First, we applied the corresponding projection matrix to the sampled curve to obtain
the projection of the curve in undistorted pixel coordinates. From these coordinates,
we constructed a 512 x 512 image matrix !, which was directly used to compute the
distance map and the GGVF.

Then, and for each image pair, we proceeded as follows:

e First, we initialized both snakes exactly with the same shape. Figure 5.9(a)
shows the initial position of the snake for one of these image pairs. The first
image view simulates an acquisition fora =0, 8 = 0 and f = 95cm. The second
image view is defined by parameters a = —30, § = —20 and f = 95cm.

e Then, we deformed both snakes until the change of the positions of the control
points was less than 0.1 pixel. The stiffness of both snakes was controlled with
elastic parameters (membrane parameter 0.1 and thin-plate parameter 0.01).
Figure 5.9(b) shows the final position of the Distance Map (DM)-based snake
and figure 5.9(c) corresponds to the final position for the GGVF-based snake.

e Once the snake converged, we estimated the mean error by computing the dis-
tance from each point on the sampled 3D snake to the corresponding nearest
sampled point on the sampled 3D curve phantom.

As expected, the DM-based snake cannot deal with concave shapes and results in
a mean three-dimensional error of 4.26mm, and a maximum of 11.56mm, since the
snake has not converged to the concave location of the vessel®>. On the other hand,
the snake with external energy based on GGVF obtains a mean three-dimensional
error of 0.18mm and a maximum error of 0.89mm. The maximum error corresponds
to the points of maximum concavity.

From these results we conclude that the Distance Map is not a good choice when
reconstructing wavy vessels. Instead, it is better to use the GGVF as external force
of the snake.

Influence of Image Distortion

In this experiment we follow the same procedure to obtain the views of the syn-
thetic phantom, but now we apply the distortion model estimated in section 5.1.4 to

I1We generated a curve, representing the "vessel" centerline. The analysis of the performance of
vessel centerline algorithms is out of the scope of this thesis.
2The actual length of the simulated curve is of 224.5mm
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Figure 5.9: Capture performance of concave shapes for both kinds of snakes. View
1 (left) is simulated for « =0, 3 =0 and f = 95cm and view 2 (right) for a = —30,
B = —20 and f = 95cm; (a) shows the initial position for both snakes, (b) the final
position for the (DM)-based snake, and (c) the final position for the GGVF-based
snake.
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the projected coordinates of the phantom before constructing the image. Thus, in
this case we obtain a distorted simulated view. As before, we generated 10 different
views, and computed the GGVF for each view. For each image pair, we deformed a
GGVF-based snake until convergence, and a GGVF-based snake considering distor-
tion.

The projected final position of the GGVF-snake for the previous view pair (which
is now distorted) is presented in figure 5.10(a). Figure 5.10(b) shows that the snake
clearly differs on the 3D space from the phantom.

When distortion is not taken into account, the obtained mean error for a GGVF-
based snake is 1.40mm, with a maximum of 2.64mm. On the other hand, by consid-
ering distortion the obtained mean error for a GGVF-based snake is 0.17mm, with a
maximum of 0.87mm. This maximum is placed again at concavities.

From this results, we conclude that taking into account distortion really improves
the three-dimensional reconstruction accuracy. In particular, the mean error reduction
is near the 80%.

5.3.2 Tests on Real Images

In the following experiments the extreme points of the snake are not modified
during the deformation. That is the way we proceed in the actual applications of the
technique (i.e. lesion measurement and catheter path reconstruction for IVUS and
X-ray data fusion purposes). The deformation was performed in two steps: first we
deformed the snake with elastic parameters a = 0.0 and 8 = 0.1, and then we refined
the snake by decreasing its stiffness using a thin-plate parameter of 0.01 in order to
capture the details.

All the following experiments were performed using real images, acquired at the
Hospital Universitari "Germans Tries i Pujol".

3D Reconstruction of a Wire Phantom

This experiment was designed to see the accuracy obtained when reconstructing a
curvilinear phantom using biplane snakes. Also, the different proposed models MO,
M1, M2, M3 and M4 are evaluated.

Three months after the calibration date, we have acquired a phantom simulating
a vessel, and consisting on a wavy wire. The wire was imaged for different views,
namely, for a € [30°,0°,—30°] and S € [15°,0°, —15°].

We have then estimated for each model MO0, M1, M2, M3 and M4 the cor-
responding extrinsic parameters for all views by using the parameters obtained in
section 5.2.2.

For each model MO, M1, M2, M3 and M4, we have reconstructed the phan-
tom using a biplane snake (for a description of biplane snakes, see [8]) and views
[ar = 30° 81 = 0°] and [ax = —30°, 82 = 0°]. We have done two reconstructions:
ignoring the distortion introduced by the Image Intensifier, and using the distor-
tion/undistortion model estimated in section 5.1. Figure 5.11 shows the obtained
three-dimensional shape and the reconstruction views.

Finally, we have projected the reconstructed curve on the other views, to see
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Figure 5.10: Distortion influence on reconstructing a 3D concave shape. Part (a)
shows the final projected position for (GGVF)-based snake. View 1 (left) is simulated
for o = 0, 3 = 0 and f = 95cm and view 2 (right) for « = —30, 8 = —20 and
f = 95cm. Each view is distorted using the distortion model estimated in section
5.1.4. Part (b) is the final 3D position for (GGVF)-based snake without considering
distortion and (c) by considering distortion.
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Figure 5.11: 3D reconstruction of a wire phantom from two views.
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whether the projection of the curve fits the image. Figure 5.3.2 shows the obtained
curve projected for a view with @« = 0 and 8 = 15, for each model. Note that the
curve fits pretty accurately for models M3 and M4. Numerical results are presented

in table 5.2.

Ignoring distortion

Including distortion

Model D; max D; D; max D;
MO 4.0 7.9 3.4 7.5
M1 0.6 1.5 0.6 1.4
M2 0.5 1.5 0.5 1.4
M3 0.4 0.9 0.2 0.5
M4 0.3 0.6 0.1 0.3

Table 5.2: Here D is the distance from each projected point of the curve to the
nearest position on the image corresponding to wire. D; is the mean of distance D
for all views, and max D; is the maximum value of the mean distance computed for

each view. All values are in pixels.

From these results, we can conclude that he biplane snakes can accurately recon-
struct a curvilinear shape, provided that they use the models M3 or M4 for the
extrinsic parameters. The influence of image distortion is less perceptible, although

it has also some influence.

Note that these accuracy results are much better than the obtained when testing
the accuracy using a grid and corresponding points. The reason of this is that here
we compare the distance of each point of the projected curve to the nearest point

corresponding to the wire, and this distance is minimized by biplane snakes.

The calibration was performed three-months before the reconstruction date, and
the accuracy results are still quite acceptable. This fact encourages us to state that
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Figure 5.12: Projection of the reconstructed 3D curve (dark) using each model at
a = 0,8 = 15. The curve was obtained from views a = 30,8 = 0 (view 1) and
a = —30,8 =0 (view 2). Geometrical distortion introduced by the Image Intensifier
was taken into account.
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by using models M3 or M4, it shall not be necessary a calibration nor a refinement,
at each acquisition, as proposed in [23, 13, 28], but only a periodic calibration. This
fact is very important, since it highly simplifies the clinical application of diagnostic
techniques involving 3D reconstruction from angiographies.

Behaviour of Biplane Snakes

After assessing the accuracy of the three-dimensional reconstruction, we studied
the different problems that could appear in practice when using biplane snakes.

To this aim, we performed several tests on a phantom made of plastic which could
be injected with contrast. Figures 5.13(a) and 5.13(b) show the phantom acquired
from two different views and the extracted features. Figures 5.13(c) and 5.13(d)
show one of the tested initializations of the snake and the corresponding projected
GGVF snake evolution. Note that the snake overcomes the potential problems with
missing features due to occlusions and converges to the target vessel despite the poor
initialization.

Whereas this kind of phantom is a good approximation to a real vessel, it has
the drawback that its shape is very simple. Therefore, we also used 5 segments of
wire with various shapes to test biplane snakes. In most cases, the snake correctly
converged to the target shape without difficulties and with only two initialization
points.

A more complex situation occurs when the wire is overlapped by other vessels,
overlaps itself or the desired deformation path is intersected by other objects. That
is the case of figures 5.14(a) and 5.14(b), where the snake could not converge to
the correct position (the snake evolution is plotted in black and the initialization in
white).

In these cases, an easy solution is to increase the number of initialization points,
as shown in figures 5.14(c) and 5.14(d), where two extra initialitzation points were
added. Note that a great accuracy is not necessary when marking the extra points.
Figures 5.14(e) and 5.14(f) show the snake evolution (in black) from the new initial
position (in white). Alternatively, the user can also interact with the snake to guide
its deformation, but this was not necessary in any of the performed tests.

Hence, we can conclude that biplane snakes overcome the problems introduced by
missing features on the image, as other deformable models do. Moreover, when facing
up long complex shapes, overlapped vessels or others ambiguities, the user can easily
overcome these situations by introducing some extra initialization points. However,
in most cases the shape to be reconstructed will be very simple and therefore only
two initialization points will be necessary.

Examples on Real Cardiac Images

Here we show some examples of the three dimensional reconstruction of vessels
from real cardiac images. Since the angiographic system present at Hospital Uni-
versitari "Germans Tries i Pujol" is a monoplane system, the patients were asked
to exhale all the air before contrast injection and to suspend the breathing during
the acquisition. Also, special care was taken to avoid changes on the position of the
patient between acquisitions. The frames to be reconstructed were selected to be at
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(c) (d)

Figure 5.13: 3D reconstruction of a phantom with contrast from two views. (a)
and (b) show the detected features and (c) and (d) the projected initial position of
the snake (in white) and the snake evolution (in black).
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Figure 5.14: 3D reconstruction of two wires. (a) and (b) show the deformation of
the snake (in black) from the initial shape (in white). The final shape is incorrect,
since the snake has been confused by the other wire. As a solution, the user can
introduce two extra initialization points, as shown in (c) and (d). Using this points,
the snake can reach the correct position, as show in (e) and (f).
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the end of diastole using the ECG.

Figure 5.15 show the result of the feature extraction method proposed in [51] on
two cardiac images from two patients. Any other vessel-centerline extraction method
is applicable here, as the ones described in [37].

Figure 5.15: Vessel centerline features, which are used to compute the GGVF that
guides the deformation of the snake.

We performed tests on 5 patients. For each patient, we acquired three projec-
tions of the heart. The first two were used to reconstruct and the third to test the
reconstruction obtained by projecting the final snake onto it.

Figures 5.16(a) and 5.16(b) are two projection pairs used to reconstruct a vessel
segment. Figure 5.16(c) shows the projection on a third view of the obtained 3D curve
from the first pair, and figure 5.16(d) the projection of the curve from the second pair.
Note that both projected curves coincide with the vessel appearance in the image. We
used between 1 and 3 extra initialization points to reconstruct the vessel segments.
However, for many applications, as lesion measurement, we will be interested in much
smaller vessel segments, and therefore in most cases only two initilization points will
be required.

5.4 Vessel Enhancement Diffusion

The experiments presented in this section were designed to evaluate the perfor-
mance of the Vesselness Enhancement Diffusion filter. To this aim, we compare three
different approaches to detect the vessels using Frangi’s vesselness measure: with no
extra pre-processing, by applying Solé’s filter [85] before computing the vesselness,
and using our Vesselness Enhancement Diffusion filter, which is proposed in section
4.2.1.

We quantitatively evaluated the performance of each of these approaches using
synthetic images. Afterwards, we tested the three approaches on real cardiac images
for a qualitative evaluation of the methods.
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(d)

Figure 5.16: 3D reconstruction examples on real cardiac images.
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5.4.1 Quantitative Evaluation on Synthetic Images

To quantitatively evaluate the de-noising performance of both diffusion filters, we
used the Contrast-To-Noise Ratio (CNR). This measure was applied to the original
image, to the result obtained using the Crease Enhancement Diffusion filter defined by
Solé et al. in [85] and to the obtained one after applying the Vesselness Enhancement
Diffusion filter, which is proposed in section 4.2.1 of this thesis.

The Contrast-To-Noise Ratio of the image was used in [58] to evaluate the per-
formance of several filtering techniques to reduce background noise while retaining
vessel contrast. The proposed expression for the CNR was the following [58]:

CNR = (M>2 (5.1)

where (I), is the mean gray-value withing the vessel, and (I)s and o are the mean
and standard deviation of the gray-value on the background, respectively. Since
the images are synthetic, we have available the ground-truth regions of the vessel
and the background for each image and therefore this measure is easy to compute.
However, expresion (5.1) does not take into account the noise on the vessel. Hence,
this expression is not a fair measure to evaluate the performance of our denoising
filter, since we are only smoothing the vessels, and therefore the background standard
deviation is not modified.
Instead, we estimated the Contrast-to-Noise Ratio as follows:

CNR = (W)Q (5.2)

where o, is the standard deviation of the noise on the whole image. This is actually
the Contrast-to-Noise measure described in [83]. Let INV,,, N3 be the number of pixels
of the region corresponding to a vessel and to the background, respectively, and o, be
the standard deviation of the gray-value in the vessel. We can estimate the standard
deviation of the noise o,, as follows:

N,o2 + Ngag
" =\"N,¥N,

Synthetic Images Generation

To generate images of synthetic vessels, we proceed as follows. First, we randomly
generated the vessel centerline of the desired vessel on the image. Then, we computed
the distance map d(u,v) to the vessel centerline on the image. After, we computed
the following expression for each pixel (u,v) on the image I(u,v):

0 if d(u,v) > R

I(u,v) = { B_ % R? —d(u,v)? otherwise

where parameter R is the radius of the vessel on the image, parameter V is the
maximum intensity of the vessel at the vessel centerline and parameter B is the mean
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background level. This model is inspired in the model proposed by Kitamura et al.
in [45]. Figure 5.17 illustrates the meaning of each parameter. Finally, we added
gaussian noise with standard deviation n to the image.

grey-value

0
d(u,v)

Figure 5.17: Vessel model used to create the synthetic images.

Using this method, we synthesized three types of images. The first type of images
contained only one vessel. The second type of images contained a bifurcated vessel,
with the main vessel of a higher scale than the other one. The third type was as the
second type but adding low-contrasted vessels to simulate background structures. We
also added gaussian noise to all the obtained images, for different values of standard
deviation 7. Figure 5.18 shows an example for each of the three types of synthetic
images.

| |
(a) Type I, n = 25. (b) Type II, n = 10. (c) Type III, n = 5.

Figure 5.18: Three types of synthetic images used to evaluate our filter.

Experiments on Isolated Vessels

We generated 100 synthetic images containing an isolated vessel with radius R = 2,
B = 128 and V = 50 for different values of noise n = {5,10,15,20}. Hence, we
obtained 400 images. For each of these images, we iterated 100 times the CED filter
with a =0, 8 =1, p = 0.5, ¢ = 0.01 and o = 3. For each synthetic image we also
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iterated the VED filter proposed by us 100 times using p = 0.5, 0 = {2,3,4}, e = 0.01
and 6 = 0.5.

To evaluate the performance of the filtering methods, we computed the Contrast-
to-Noise Ratio from equation (5.2) for each synthetic image (without pre-processing)
and also for the filtered ones. Figure 5.19 illustrates the results obtained. Note that
the CED filtering in general enhances the image, since the mean computed CNR
is higher. However, for high values of noise strength n, the CNR is in some cases
deteriorated. On the other hand, the VED filter attains much better results, and
hence seems to perform the best.
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10 8
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x 2 x
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Figure 5.19: Contrast-to-Noise Ratio computed on the gray-scale image for different
values 7 of noise strength (isolated vessels).

To test whether the vesselness measure was also improved, we computed the
Contrast-to-Noise Ratio on the vesselness computed for each synthetic image (without
pre-processing) and also for the filtered ones. Figure 5.19 shows the results obtained.
Note that by pre-processing the image using the CED filter, we can obtain worse
results than when no pre-processing is applied. On the other hand, pre-processing
the image using the VED filter improves the Contrast-to-Noise Ratio of the vesselness
on the images.

Experiments on Bifurcated Vessels

We generated 100 synthetic images containing a bifurcated vessel, with the main
vessel of a higher scale than the other, for different values of noise n = {5, 10, 15, 20}.
The scale of the radius of the main vessel was randomly selected to be in the range
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Figure 5.20: Contrast-to-Noise Ratio computed on the vesselness image for different
values 1 of noise strength (isolated vessels).

R € [3,5], and the other vessel had radius R € [1,2]. Both vessels were generated
using B = 128 and V' = 50. Hence, we obtained 400 images. For each of these images,
we iterated 100 times the CED filter with a =0, 3 =1, p = 0.5, ¢ = 0.01 and ¢ = 3.
For each synthetic image we also iterated the VED filter proposed by us 100 times
using p = 0.5, 0 = {2,3,4}, ¢ = 0.01 and 6 = 0.5.

As in the previous experiment, we measured the Contrast-to-Noise Ratio for each
synthetic image (without pre-processing) and also for the filtered ones. Results are
shown in figure 5.21. Note that the best CNR results were obtained using the VED
filter. Also, we tested the influence of the filtering on the CNR computed on the
vesselness. Results in figure 5.22 show that pre-processing using the CED filter can
deteriorate the performance of the vesselness measure. On the other hand, using the
VED filter as a pre-processing step provides an improved vesselness measure.

Experiments with Background Structures

We generated 400 synthetic images with bifurcated vessels, as done in the previous
section, but now we also added two low-contrasted vessels simulating background
structures, such as the introduced by the ribs. For each of these images, we iterated
100 times the CED filter with o =0, 8 =1, p = 0.5, ¢ = 0.01 and o = 3. For each
synthetic image we also iterated the VED filter 100 times using p = 0.5, 0 = {2, 3,4},
€ =0.01 and § = 0.5.

As in the previous experiments, we measured the Contrast-to-Noise Ratio for each
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Figure 5.21: Contrast-to-Noise Ratio computed on the gray-scale image for different
values 1 of noise strength (bifurcated vessels).
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Figure 5.22: Contrast-to-Noise Ratio computed on the vesselness image for different
values 1 of noise strength (bifurcated vessels).
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synthetic image (without pre-processing) and also for the filtered ones. Results are
shown in figure 5.21. Note that the best CNR results were obtained using the VED
filter. Also, we tested the influence of the filtering on the CNR computed on the
vesselness. Results in figure 5.22 show that pre-processing using the CED filter in
general deteriorates the performance of the vesselness measure, since it also enhances
undesired background structures. On the other hand, using the VED filter as a pre-
processing step provides an improved vesselness measure.
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Figure 5.23: Contrast-to-Noise Ratio computed on the gray-scale image for different
values 1 of noise strength (bifurcated vessels + background structures).

5.4.2 Tests on Real Images

In the previous section, we quantitatively measured the performance of the Vessel
Enhancement Diffusion filter. However, all the tests were performed on synthetic
images. Hence, in this experiment we carried out experiments on real cardiac images
containing vessels of different sizes.

For Frangi’s vesselness measure, we used a = 0.5, § = 0.5 and half the Hessian
norm for ¢, as indicated in [34]. For the CED filter, we chosed & = 0 and g =1 (in
order to only enhance the valleys) and e = 0.01. Finally, for the VED filter we always
used € = 0.01 and # = 0.5. The number of iterations was 100 for both diffusion filters.
Regarding the scales used for each method, we have chosen o = {1,1.5,2,2.5,3,5} for
Frangi’s filter and for the VED filter. For the CED filter, we have choosen a scale of
o = 2.5, corresponding to the mean of the scales used with the other methods.

Figure 5.25 shows the results obtained for a ROI on one of the images. Using the
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Figure 5.24: Contrast-to-Noise Ratio computed on the vesselness image for different
values 7 of noise strength (bifurcated vessels + background structures).

VED filter, the obtained segmentation is less noisy. Note that the CED filter also
enhanced some undesired background structures, whereas some of them had been
smoothed. Figure 5.26 shows another example. Using our filter, the vessel contrast
has been enhanced on the gray scale image and the segmentation result is more
clean. Although we have not smoothed the background, the vesselness background is
smoother when using VED filter. We explain this by the higher CNR of the vessels on
the image, which facilitates the background removal task to the vesselness measure.

The results obtained encourage us to say that Vessel Enhancement diffusion is a
good choice to improve the quality of X-ray images, and can be used to obtain better
vessel segmentation results.
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Chapter 6

Conclusion

In this thesis we have focused on the three-dimensional reconstruction of coronary
vessels considering all problems that arise on the road: The geometrical distortion
introducted by the image intensifier, the acquisition geometry determination, the
automatic vessel detection in images, and three-dimensional reconstruction, without
using explicit determination of corresponding points. We have studied each of these
problems in this thesis, and made several contributions for each of them.

6.1 Geometrical Distortion

When approaching the three-dimensional reconstruction of the coronary vessels,
we find that angiographic images suffer from geometrical distortion, which is intro-
duced by the image intensifier. The main difficulty is that, unlike the distortion
introduced by the optics in the camera frame, the distortion introduced by the image
intensifier depends, among other things, on the orientation of the image intensifier in
relation to the Earth’s magnetic field. Therefore, for each projection angle, we will
have a different distortion.

We have analysed the geometrical distortion introduced by the Image Intensifier
and the different elements that have influence on it, using a calibration grid attached
to the Image Intensifier screen. We showed that the geometrical distortion introduced
by the Image Intensifier can be accurately modeled by a polynomial for each view.
Also, we showed that the estimated polynomial is independent of focal length, but
not of changes on anatomical angles, as the Image Intensifier is influenced by the
Earth’s magnetic field. Thus, we decomposed the polynomial in two components,
namely the steady and the orientation-dependent component. We determined the
optimal polynomial degree for each component: 5 for the steady component, 3 for
the orientation-dependent one and 4 for the polynomials which estimate each of the
coefficients of the polynomials modelling the orientation-dependent component.
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Experiments showed that the mean error obtained with the estimated polynomials
using this procedure is less than 0.3 pixels, which equals to less than 0.1mm at the
Image Intensifier screen. Note that this error is a superior bound. Near the heart,
the error will be attenuated by approximately 2/3.

Hence, we have developped an accurate model for image distortion, which elimi-
nates the requirement of geometrical distortion calibration at each acquisition.

6.2 Determination of the Acquisition Geometry

We have analysed the assumptions made by Dumay’s model [22], which are that
the image is perfectly aligned with k and 1, that the rotation axis and the angulation
axis do intersect, that the rotation axis and the angulation axis are orthogonal, and
that the central beam is orthogonal to the angulation axis. As an alternative, we have
proposed new models (M1, M2, M3 and M4) to estimate the extrinsic parameters,
which take into account these facts.

Then, we have proposed a method to calibrate the parameters of the proposed
models by using a calibration object which is commonly available by the physicians,
since it is the calibration grid used to estimate geometrical distortion. Moreover, the
calibration procedure is very flexible, since the only requirements are that the distance
between the X-ray source and the image intensifier must remain constant between all
the calibration acquisitions and that the grid must be on the table at a fixed position.
Both requirements are very easy to fulfill and therefore the calibration procedure is
very easy to perform.

Experimental results led us to believe that our models perform better than the
traditional isocentric model. In particular, experiments showed that by combining the
distortion model proposed by us and model M4 for the extrinsic parameters we obtain
a mean three-dimensional reconstruction error projected on the images of less than
one pixel, with a maximum error of less than 5.5 pixels for the test set. This result
is much better than the obtained with the classical isocentric model, where the mean
error is of 5.63 pixels and the maximum up to 23 pixels for the test set. Moreover, we
have shown that when reconstructing a three-dimensional wire phantom, the accuracy
obtained using model M4 remains acceptable even three-months after the calibration
procedure.

These results encourages us to state that by using the proposed new model M4
to estimate the extrinsic parameters, it shall not be necessary a calibration nor a
refinement at each acquisition, as proposed in [23, 13, 28], but only a periodic cali-
bration. This fact is very important, since it highly simplifies the clinical application
of diagnostic techniques involving 3D reconstruction from angiographies.
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6.3 Automatic Vessel Detection

One of the most difficult problems when approaching the 3D reconstruction of the
vessels is the automatic vessel segmentation. The main difficulty relies on the fact
that X-ray cardiac angiographies are very noisy, and small vessels with low contrast
are hard to detect.

We have proposed a new anisotropic diffusion filter to enhance the vessels on the
X-ray angiographic images. The proposed filter uses a diffusion tensor inspired in
the crease enhancement diffusion filter proposed by Solé et al. in [85], but here the
diffusion strength is determined by the vesselness measure defined by Frangi et al. in
[34]. Moreover, our filter chooses for each pixel the scale of the diffusion tensor to be
applied. This approach performs better than the crease enhancement diffusion filter
to enhance the vessels, since our approach is multi-scale and therefore can deal with
multiple vessel sizes. Moreover, our approach only enhances contrasted vessels, and
therefore background structures are not enhanced, as the crease enhancement diffusion
filter does. Compared to the performance of only using the vesselness measure to
detect the vessels, our approach takes into account image coherence, i.e. if a pixel is
considered to be part of a vessel, the neighbour pixel in the direction of the vessel is
very likely to correspond also to a vessel. Hence, the resulting image is an enhanced
one, which gives a better response to the vesselness measure, allowing a more robust
vessel segmentation.

6.4 Automatic Corresponding Points Determination

To obtain the three-dimensional reconstruction of coronary vessels, the usual ap-
proach consists on reconstructing corresponding points in both X-ray images, and
then obtaining a 3D curve by interpolation between the obtained 3D points. How-
ever, automatic correspondence determination may be computationally expensive and
it must deal with ambiguities. The usual approach is therefore asking the user to man-
ually mark corresponding points. This task is also non-trivial for the user, and can
become quite tedious if high accuracy is needed.

We have proposed the use of a new type of deformable models, biplane snakes,
to solve the point correspondence determination problem. We have defined biplane
snakes as a three-dimensional curve that deforms in space in order to adapt its projec-
tions to the vessels in the images. The initial shape is indicated by the user using some
initialization points near the vessel to be reconstructed. The acquisition views can be
not orthogonal, although it is always recomendable to have a minimum angulation
between the two reconstruction views in order to obtain good accuracy results. Ex-
perimental results show that by using biplane snakes, the obtained three-dimensional
reconstruction is at least as good as a human user would obtain. Moreover, when
the acquisition conditions are not known with high accuracy, biplane snakes obtain
better results.

To improve the performance of biplane snakes when reconstructing wavy vessels,
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we have proposed the use of the GGVF as external force. Also, we have included the
(un)distortion model proposed by us in the snake deformation formulation. Hence, it
is not necessary to unwarp the image in order to obtain an accurate three-dimensional
reconstruction. Experiments show that by including the distortion model on the snake
deformation formulation, the 3D reconstruction error is decreased up to an 88% versus
the obtained one when distortion is ignored.

Finally, we have validated the technique with imaged phantoms and real angio-
graphic sequences acquired with a monoplane angiographic system. Experiments
show that long complex shapes and overlapping vessels can be reconstructed by sim-
ply adding a few extra initialization points to help the snake to converge to the desired
target.

6.5 Applications

The three-dimensional reconstruction from X-ray angiography has many interest-
ing applications:

e From two views, we can reconstruct the catheter path, which is needed for the
fusion of X-ray angiography and IntraVascular UltraSound images. X-ray coro-
nary angiography presents the lack of the foreshortening effect when evaluating
the degree of a stenosis, while IVUS has the problem of an excessive locality
of the information that they provide. The fusion between the information pro-
vided by the angiography (the 3D catheter path) and the one provided by the
IVUS (the cross-sectional transmural data) is therefore a good choice, since the
result obtained allows a global assessment of the vessel lesion, by means of vol-
umetric measurements and 3D visualizations. Examples of the fusion of X-ray
angiography and IVUS can be found in [73, 93, 78§].

e Since using our proposals we can obtain an accurate three-dimensional recon-
struction of a vessel segment, we can use the three-dimensional reconstruction
to measure the size of a lesion. An example of this application can be found in

[8).

e By tracking the reconstructed three-dimensional vessel along a complete cardiac
cycle, we can obtain information about the dynamics of the vessel of interest,
which is very useful for diagnostic purposes. An example of this application can
be found in [90].

e The three-dimensional reconstruction of a vessel segment can also be used to
determine the optimal views to acquire it. These views shall be two perpendic-
ular ones that are both parallel to the main axis of the vessel. An examples of
a work on this issue is [22].
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6.6 Suggesting New Directions of Study

During our study on the three-dimensional reconstruction of coronary vessels from
X-ray angiography, different possible lines of continuation have been formulated:

e The authors in [63] claim that the high weight of the Image Intensifier can cause
some bending on the C-arm. This bending would affect the intrinsic parameters,
especially the image center (ug,vo). Hence, it would be of interest to study the
behaviour of the intrinsic parameters for different orientations of the C-arm,
and different distances from the X-ray source to the image intensifier and, if
necessary, to develop a model to estimate the intrinsic parameters for any view.

e We have shown that the Vesselness Enhancement Diffusion filter proposed in
this thesis improve the Contrast-to-Noise Ratio of the vesselness meausure, and
therefore, it facilitates vessel segmentation. However, the background is not
modified using this filter, and hence background noise and undesired structures
are not smoothed on the gray-scale image. Therefore, another line of contin-
uation would be to develop an improved filter that also includes this feature.
Another improvement would be to also enhance the edges of the vessels, which
would be very interesting for some Quantitative Coronary Angiography appli-
cations, as the stenosis measurement.

e The extraction of the vessel centerline has been done using a crease detector.
Although the chosen solution performs quite well, in the presence of wavy vessels
the technique fails in finding the correct vessel centerline. Hence, a deeper study
on vessel centerline extraction should be done.

e Experimental results presented in this thesis encourauges us to state that by
using the proposed new model M4 to estimate the extrinsic parameters, it
shall not be necessary a calibration nor a refinement at each acquisition. Thus,
another continuation guideline would be to quantitatively evaluate the accuracy
deterioration along time of this model to know for how many time the model is
accurate.

e The introduction of the GGVF as external force on the biplane snakes formu-
lation improved the performance of biplane snakes when reconstructing wavy
vessels. However, computing the GGVF has a high computational cost. Hence,
the study of alternatives to the GGVF is also a continuation guideline.
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Appendix A

Matrix Representation for
Deformable Models

In this appendix, we present the deformable models implementation details. We
have chosen a matrix representation, since it is specially well-suited for implementa-
tion on a matrix manipulator as MATLAB(tm), or with any matrix library. Moreover,
this representation is very compact and therefore should help the reader to understand
how this model works.

We present the matrix representation for one-dimensional and two-dimensional
deformable models. For higher dimensional deformable models, a tensorial represen-
tation would be necessary.

A.1 One-Dimensional Deformable Models (B-Snakes)
The one-dimensional deformable models have the following expression:

Qu) = ZszBz(U)

And, developping from (2.27), the internal energy is re-written as follows:

a/(agiu)>2du+ﬁ/<82£iu)>2du
a/ (ZWB;(U)>2du+ﬂ/ (ZWB;'(U)>2du (A.1)

For one-dimensional B-Splines, we can use Blake’s matrix notation [3]. A B-spline
curve Q(u) of degree d (for cubic splines, d = 4) and M control points, is defined
parametrically for 0 < uw < N, where M = N for closed curves and M = N + d for
open ones (with appropriate variations where multiple knots are used to vary curve
continuity):

Qu) =) ViBi(u) =B)V=B(s+o)V=(1 s ... si7" )BJG,V (A2)
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where 0 < s < 1. Vis a M x 1 matrix containing the control points, Bf isthe d x d
standard B-spline matrix corresponding to the o-span and G, is a d x M matrix that
simply selects d consecutive control points:

GiV=(V, ... Voya)' 1<n<N (A.3)

Note that, for a closed curve, control point indexes are evaluated modulo M.

A.1.1 B-Spline Inner product

Blake [3] defines an inner product and thus a norm for the splines via a metric
matrix B:

|Q(u /Q w)du = VT BV

where B is defined as:

1 L
B:ZA B(u)" B(u)ds

and developping:

B = %i/ (s +0) B(s + 0)ds)

=~
»—Ao

}: G,"BSTPBSG,

b*l*—‘

where

= 1 . sd=1 S .
7?_/0 i (1 ... ) ds, (A.4)

is the "Hilbert" matrix whose coefficients are:

o
Uiy -1

A.1.2 Stiffness Matrix

If we use the form (A.2) the first and second derivatives of the splines can be
calculated as:

Q) = B'(s+o)V=(0 1 ... (d-1s2)B5G,V
Q"(u) = B'(s+o)V=(0 0 2 ... (d-2)(d-1)s%3)BIG,V

We can easily define:
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En(@ = a[Q@rdi+s [ Q"
L L
= «a / VIB' (u)TB'(u)Vdu + / VIB" (u)TB" (u)Vdu
0 0
= aV'B'V +3VTB'V (A.5)

where B’ and B" are defined as:

L—-1 L—1
1 T 1 T
r__ - T RS 'S n_ - TS nns
B _L;GU B P'B5G, B L;GU BS P"B3G,
with
T
7?’:/ (0 1 ... (d=1)s""%)ds
o
(d—1)s92
and
0
1 0
P”:/ 2 (0 0 2 ... (d=2)(d—1)s""3 )ds
0

(d—2)(d — 103

Note that matrices P’ and P can be accurately computed as follows:

, 0 ifi=1lorj=1
Pij =9 (-1G-1)

P otherwise
0 ifi<3orj<3
Pl =1 (@ 8i+)2-3j4%) .
4 D otherwise
i+7—5

At this point, expressing the internal energy from equation (A.1) using matrix
notation is of interest:

Eimi(V) = aVTB'V +pVIB'V
= V' (aB' +8B")V
= VIHV. (A.6)

The matrix H corresponds to the B-Spline version of the so-called stiffness matrix
which appears in the energy minimization procedure presented in [42]



126 MATRIX REPRESENTATION FOR DEFORMABLE MODELS

Therefore, the stiffness matrix H can be computed as:
1 T
_ T n»RS i n S
H= I JEZO G,' By (aP'+ fP")B.G, (A.7)

This matrix provides an eficient way to calculate the internal energy. Since the
only change is the value of the control points, the only operation we are supposed to
do at each iteration is two matrix multiplications in order to compute the internal
energy.

A.1.3 Energy-Minimization Algorithm

From the work of Kass et al. [42], the equation corresponding to the one-dimensional
case of the energy-minimization algorithm is:

Vi=(A+D) (v Vi — (V1))

Where V' is the discretization of the curve at time ¢, A is the stiffness matrix,
f(V'™1) is the finite difference approximation of F(Q(u)) = VFest(Q(u)) (the ex-
ternal force is the spatial gradient of the external energy) and 7 is the time step
size.

When working with B-Snakes, the energy-minimization procedure is very similar:

Vi=H+D) (Ve —8(Qi-1))

The difference is subtle, but important. Instead of datapoints, V; represents the
control points of the B-Spline, and g assigns to each control point the corresponding
external force taking into account its influence over the curve at each point of the
curve. It is defined as:

Q)] = / B;(u) F(Q(u))du

Since in most cases we can only have a discrete form of F(Q(u)) because of the
discrete nature of the images, a discretization of this expression is done as follows:

p

[8(Q)i = = > Biur) F(Q(ur))

A.2 Two-Dimensional Deformable Models (B-Sheets)
For two-dimensional models we use the following expression:
Q(u,v) = i) jVijBi(u)B;(v) (A-8)

By using this expression, three simple topologies- planar, cylindrical and toroidal-
can be represented. When both u and v functions are open, we obtain a planar
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topology, whereas if both are closed, we obtain a toroidal surface. If only one of the
functions are closed, then we can represent a cylindrical topology.

Using Blake’s notation[3], a B-spline sheet Q(u, v) of degrees d, and d, and
M, x M, control points is parametrically defined for 0 < u < N, and 0 < v < N, as:

Qu,v) = Q(su+0u,sv+0y) = (1 ... s, 01 )BMGJ”VG%TB%T :
spdo=1
(A.9)
where 0 < s, < land 0 <s, < 1. Visa M, x M, matrix containing the control
points, B, , B,, are standard B-spline matrices and G, , G, selection matrices.

A.2.1 Energy Minimization Algorithm

It has been empirically confirmed in [75] that given 7 close to unity, the energy
minimization procedure for the B-Sheets can be reduced to an expression similar to
those of the B-Snakes and can also be expressed in matrix form as follows:

Vi=(Hy+ D)7 (7Wic1 — 8(Qe—1(u,v)))(Hy +I) "

Where H,, and H, are the stiffness matrices corresponding to the parameters ay,,
Bu and «,, B, respectively. For the two dimensional case, g(Q:—1(u,v)) is defined as
follows:

(g(Q)]i ://Bj(U)Bi(U)F(Q(U))dU,d’U

Like in the one-dimensional case, in most cases we can only have a discrete form
of F(Q(u)). Here the discrete form is:

1 Pv Pu

Z Z Bj(Uk2)Bi(Uk1)F(Q(uk17vk2))

ko=0 k,=0

[g(Q)]ij = Dule

Where p,, p, are the number of sampled points for each internal parameter. Note
that we will sample p,p, points.
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Appendix B

Crossing points detection

Once the calibration grid is fixed on the II, different images are acquired B.1(a).
A morphological operation (gray-scale closure with a square-shaped structural ele-
ment) is then applied to eliminate the grid, obtaining the background (figure B.1(b))
and the lighting variation of the image. By subtracting the background from the
original image we obtain the grid (figure B.1(c)). Then, a closure with a horizon-
tal/vertical structural element isolates horizontal /vertical wires (figures B.1(d) and
B.1(e)). Thresholding can then be applied to obtain a binary image. The thresholding
value is chosen by a standard histogram based method, like the Otsu’s method [70].
Crossing points correspond to the intersection of the detected horizontal and vertical
wires (see figure B.1(f)).

Since horizontal and vertical wires are decoupled, the physical location (x,y) of
the crossing points (11, ¥) detected on the images is now very easy to obtain. First, we
compute the center of mass of each wire and then we sort them by the z component
the vertical wires and by the y component the horizontal ones. Since crossing point
regions belong to horizontal and vertical wire regions, the mapping is directly the
resulting order.

To refine the location of the intersection points from the intersection areas in the
images, we explored different approaches:

e Method 1. Simply compute the centroids of the resulting crossing areas.

e Method 2. Using the centroids obtained by method 1 as starting values, itera-
tively compute the center of gravity in a small area of the inverted gray-scale
image after substracting the background around the previous position as it sta-
bilizes [38].

e Method 3. Compute vertical and horizontal projections of a small region of the
inverted gray-scale image after substracting the background around each of the
centroids obtained by method 1 and adapt the following function:

(z=p)?

f(.’L‘) = klef o + k2 (B].)

to each projection by applying a non-linear curve fitting method. Parameter p
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(b) @

@ ) ®

Figure B.1: Crossing points detection using mathematical morphology. Although
the grid was mounted regardless of orientation, the crossing points are correctly
detected. The detected points are then refined by one of the proposed methods to
obtain subpixel accuracy.

provides a robust subpixel estimate of the position of the maximal point for this
projection (see figure B.2). Thus, the intersection is located at (s, ty).

To test the calibration accuracy, we performed several experiments using a cali-
bration grid image. Given that our data for the calibration phase are provided by the
intersection points of the calibration grid, their accurate extraction is very important
to ensure the correctness of the calibration calculus.

B.1 Accuracy on Crossing Points Detection

We implemented the three methods to detect the subpixel position of crossing
points on the image. In order to select the most appropriate method, we acquired
the calibration grid during 100 frames, without moving the II. Then, crossing points
were detected using each of the proposed location methods. Finally, distance from
the location of each crossing point to the mean was computed for all methods. As the
results show in figure B.3, method 1 has a maximum error of 1 pixel, method 2 gives
a maximum error of 0.75 pixels and method 3 results the most accurate method, with
a 99% of samples less than 0.1 pixel distance to the mean position of the intersection
points.
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Figure B.2: Function f(x) = kie™ 5 + k> fitted to the projection of the inter-
section areas. The subpixel estimate of the position of the maximal point is marked
with a triangle.
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Figure B.3: Error length (in pixels) of the detection of the crossing points for each
method.



132 CROSSING POINTS DETECTION



Appendix C

Bivariate polynomial fitting

Let [x,y] be a m x 2 matrix corresponding to the measured data points and z
the m x 1 vector of values at each point. Fitting a bivariate polynomial to this data
means finding the coefficients ¢ of the function:

n

f(l',y, C) = Z chxiijj,

i=0 j=0

where n is the desired degree, k = @ + j and f minimizes the expression:

Z(Zi - f(Xi)Yia C))2
i
In fact, this problem can be reduced to a linear least-squares optimization problem,
since finding the ¢, coefficients (vector ¢) can be expressed as the following over-

determined linear system:
Uc=1z (C.1)

where
U= [x”,x”_ly,xn_2y2, XY, 1] )

Thus, we need at least m > (""“2)2& data points to estimate an n-degree poly-

nomial. Typically, m > n, and thus the system is overdetermined and matrix U is
not square.
Householder reflections can then be used to compute an orthogonal-triangular
factorization :
UP =QR

where P is a permutation, Q is orthogonal and R is upper triangular (see the function
DGEQRF from LAPACK [24]). Since P is a permutation, it is squared and invertible,
and thus we can have:

U =QRP!

Replacing U at equation (C.1), we obtain:
QRP ¢ =1z
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Since Q is orthogonal we can express the equation above as:
RP ¢ =QTz

The solution ¢ is as follows:
c=Pa

where a is the solution to the following linear system:
Ra=Q"z

This system can be solved very quickly since R is upper triangular.

Nevertheless, since in this application we may be working with pixels, vectors
x,y € [1,512]. This means that when fitting high-order polynomials matrix U will
be very decompensated, and thus the algorithm will have problems of numerical sta-
bility. A way of reducing this shortcoming is to scale the columns of U prior to the
factorization, and afterwords to re-scale the obtained coefficients of c.
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