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Figure 5.22: Uncompleted contours.

corrupted with gaussian noise (fig.5.20(a)) and a character ’S’ with uniform noise
added (fig.5.20(c)). Meanwhile the set of real images is displayed in fig.5.21.

The different image features used to select points (contours in fig.5.22) lying on
the objects of interest are edges, ridges and gray level. We have chosen the following
standard algorithms to compute them: Canny for edges, curvature for ridges and
gray-level thresholding. To reduce the impact of noise and textured backgrounds,
all images have been previously smoothed with a gaussian filter of σ = 2. For noisy
images, contours correspond to edges of the smoothed images of fig.5.20(b), (d); for the
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(a) (b) (c)

(d) (e) (f)

Figure 5.23: Extensions of brain (a), horse (b), hand (c), ’S’ (d), head (e) and
fingerprint (f).

real images of fig.5.21(a)-(e), we used edges in combination with pixel gray level in the
brain image and for the fingerprint in fig.5.21(f), image ridges. The contours obtained,
shown in fig.5.22, include cases deserving special care, such as corner restoration (horse
ears in fig.5.22(d), (g) and finger joints in fig.5.22(f)) and dense lines prone to merge
(fingerprint in fig.5.22(h)).

The numeric scheme used to compute solutions to (4.3) is an explicit Euler scheme
for non-linear heat equations stabilize by means of the stop criterion critB given in
Section 5.1.1. The parameters used in the computation of the coherence vector fields
are an integration scale ρ = 2 and a regularization scale σ = 0.5. In the case of large
gaps (fig.5.22 (e), (g)) vector fields are dynamically updated every 300 iterations.
We have used the ridgeness measure described in [45] to compute the ridges of the
extension that yield the curve closure and serve to update vector fields. According
to the theoretic analysis given in Section 4.2.1, distance based vector fields properly
recover a model of corners and linear fields avoid merging in the contours to complete.
Therefore, for the sake of a maximum accuracy and reliability in the closed models,
we have chosen the distance based DVF for restoration of contours in fig.5.22(a)-(h)
and a linear LVF closing in the case of the fingerprint (fig.5.22(i)).

The final states achieved are the characteristic functions representing the recon-
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Figure 5.24: Reconstructed contours using DVF (a)-(g) and LVF (h).

structed shapes shown in fig.5.23 and their ridges yielding contour closures are dis-
played in fig.5.24. In the case of smooth contours, such as the noisy images (fig.5.20)
and the hand (fig.5.21 (c)), ridges of the extensions are continuous lines that con-
stitute accurate curve models (fig.5.24(c), (d), (f)). However, T-junctions produce
discontinuous ridges so that reconstructions of the brain and horse (fig.5.24(a), (e))
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were extracted via a morphological thinning of a thresholded version of the extensions.
Because it is based on the distance map to the open contours, closings achieved

using DVF recover shape curvatures, such as the concave part of the non-convex
contour in fig.5.24(c) and the character ’S’ in fig.5.24(e). Besides it properly closes the
acute angles of the horses ears (fig.5.24(d), (g)) and the hand finger joints (fig.5.24(f)).
We may draw the reader attention towards the closures of the brain ridges, better
appreciated in the detail of fig.5.24(b), for an example of DVF accuracy. Merging
in the case of the horse ear and tail is a result of the way (thinning) contours are
extracted. On the other hand, thanks to its linearity, LVF fingerprint closure does
not merge line ends at the boundary and yields an accurate closure because of a small
gap size without acute angulation.

5.3 Modelling Shapes with the Curvature Vector
Flow

In this section we apply CVF to smooth shape representation with its application
to object segmentation in combination with ACC. In order to assess the proposed
segmenting strategy, two different experimental issues should be addressed. First,
we will check accuracy of shape models attained with CVF, that is, its capability of
adapting a snake to non-convex shapes. Second, quality in the segmentation of real
images will be compared to results using geodesic snakes.

5.3.1 Shape Representation

Given a closed curve in the plane, a compact way of representing it is through an
approach by means of a parametric B-spline snake. We recall the reader that a para-
metric snake [38] is a curve γ(u) = (x(u), y(u)) that minimizes the energy functional:

E(γ) =
∫

γ

(Eint + Eext)du =
∫

γ

(α||γ̇||2 + β||γ̈||2 + Eext)du ,

where the external energy depends on the image object to model and can be either
a distance map or a function of the original image gradient. The parameters α and β
determine the stiffness of the deformable model and are in the range [0, 1]. In any case
the optimal curve is obtained by means of the Euler-Lagrange equations associated
to E, which are equivalent to solving a linear system:

Ax = −∇Eext .

The numeric iterative scheme is given by:

xt+1 = (A + λI)−1 (λxt −∇Eext)

where I denotes the identity matrix, A the stiffness matrix [38] and λ is a viscosity
parameter. An important remark is that stability of the finite difference scheme
depends upon the viscosity parameter, which must be increased if α, β decrease.
This viscosity parameter determines the speed of convergence, the higher it is, the
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(a) (b) (c)

(d) (e)

Figure 5.25: Set of test shapes: clover (a), highly non-convex curve (b), character
’S’ (c), hand (d) and horse (e).

slower the snake converges. We consider the snake has reached its final state when
its total energy stabilizes.

Experiments focus on the efficiency and accuracy of CVF when non-convex con-
tours are modelled. Accuracy has been computed in terms of snake convergence, given
by the snake maximum Euclidean distance to the original closed contours. Efficiency
is given by the CPU-time the initial snake takes to reach its final state. Since the
stop criterion is in terms of the stabilization of the external energy, the asymptotic
behavior of the functional E is also a measure of the method efficiency. An oscillating
graph for E hinders stopping the deformable model with the former stop criterion
and the final snake must be obtained after a fixed number of iterations.

We have tested the external potentials for different values of the snake parameters,
α and β, in order to check if the energies could support large values and still guarantee
convergence of the snake to the curve of interest. As noticed before, supporting large
values for α, β is also a signal of efficiency, since the larger these parameters are,
the faster the snake converges. The snake has been initialized inside and outside the
object of interest. We have compared CVF to the results obtained using a GVF-
regularized gradient of the Euclidean distance map (DM) and GVF applied to the
edge map.
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(a) (b) (c)

(d) (e)

Figure 5.26: CVF on clover (a), highly non-convex curve (b), character ’S’ (c),
hand (d) and horse (e).

The shapes chosen are depicted in figure 5.25. The external force given by CVF is
shown in figure 5.26. Convergence of snakes for the different external forces is shown
in figure 5.29 and the final model obtained is depicted in figure 5.30.

In terms of an accurate model of the shape, CVF is the only external energy
that adapts the deformable model to all curves, whatever position (inside or outside
the object of interest) of the initial snake. The other two external energies fail to
obtain an accurate model when the initial snake lies inside the object of interest.
Convergence to the character ’S’ and horse in fig. 5.29 and the final shapes of fig.
5.30 illustrate this bad-pose of the snake inner convergence with GVF and DM. In the
case of the character ’S’, saddle points of both GVF and DM, make the snake oscillate
at closed shapes which fail to reach the extremal boundary of the ’S’. Irregularities in
the gradient of the horse external energy, produces open final snakes (fig. 5.30(b),(c))
approaching only a part of the animal’s contour. Notice the accuracy and smoothness
of the final model of the horse achieved with CVF (last row of fig. 5.30(a)). In the
case of an outer initial snake, GVF succeeds in adapting to non convex shapes such
that the angle θ does not turn more that π between two consecutive inflexion points
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(like the clover of fig. 5.30(b)). However the snake gets trapped at the saddle points
that highly non convex shapes (second row of fig. 5.30(b)) produce in the vector field.
The external force field obtained by a regularization of the gradient of DM using
GVF is the worst performer. Even for small values of α and β, the external force
is not strong enough to attract the snake to non-convex shapes, even in the case of
shapes (like the clover of fig. 5.30(c)) with the angle θ turning less than π between
two consecutive inflexion points. Figure 5.27 summarizes these results in the form of
maximum Euclidean distance to the contour of interest versus number of iterations.
Notice significant differences of the maximum distance between CVF and DM/GVF
in the case of convergence to highly non-convex shapes (fig. 5.27 (a),(c)).
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Figure 5.27: Snake accuracy, interior convergence for highly non convex shape (a)
and the clover (b) and the corresponding exterior convergence (c) and (d)

Concerning efficiency, CVF is, again the best performer, since attains accurate
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Figure 5.28: Evolution of snake energy, CVF exterior convergence for highly non-
convex shape (a), the clover (b) and the corresponding GVF/DM convergence (c)
and (d)

models in optimal time, meanwhile GVF is the worst of the methods. Times for DM
have not been taken into account since the method does not produce good enough
segmentations as to be taken into account. The main reason for this difference in
times lies on the fact that, due to the smoothness of the map, deformable models
guided by CVF do not need, in general to be re sampled during evolution. On the
other side, since GVF does not take into account the geometry of shapes, the snake
sampling must be refined at points where two opposite directions compete (that is
when entering into concave regions) in order to guarantee convergence to a closed
contour. This increases the computational time of GVF up to four times CVF time
in the case of the hand or the horse. Also in terms of the stiffness parameters, α
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(a) (b) (c)

Figure 5.29: Snake convergence, CVF (a), GVF (b) and regularized DM (c).
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(a) (b) (c)

Figure 5.30: Shapes obtained with CVF (a), GVF (b) and regularized DM (c).

and β, CVF is the most efficient. Our tests done for different values of the stiffness
parameters show that CVF supports, in general, values in the whole range of [0, 1].
Only in extreme cases like inner convergence to the horse and outer convergence to
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the hand, α and β must be smaller than 0.3 if we want a reliable final model.
Another issue worth to be considered is the asymptotic behavior of the snake con-

vergence. Figure 5.28 shows the evolution of the snake energy in time for convergence
to the clover and the highly non-convex shape of fig. 5.29, in the case of a CVF
guided snake (fig. 5.28(a),(b)) and a DM/GVF one (fig. 5.28(c),(d)). Notice that
deformations under CVF present a smoother asymptotic behavior, compared to the
highly oscillating graphics of DM and GVF. This oscillating behavior strengths when
the snake gets trapped at saddle points. A smooth energy implies a strong advantage
since a stop criterion in terms of the snake total energy is a robust way of determining
the final state for CVF guided snakes.

5.3.2 Application to Object Segmentation

Smooth shape representation plays an important role in image segmentation. Con-
necting a set of points that lie on the object of interest, whatever its geometry, is still
an open question. Parametric snakes [38] and geodesic snakes [11], [12] are the two
techniques most commonly used by the image processing community. On one hand,
in spite of yielding smooth models, poor convergence to concave shapes limits clas-
sic snakes applicability. On the other hand, geodesic snakes convergence to multiple
objects, does not compensate for their slow convergence to piece wise linear curves
that may have penetrated into large gaps of contours. We argue that the framework
of classic snakes provides with an efficient way of shape modelling, both in terms of
computational time and compact representation of a reliable model of the shape. The
segmenting strategy we propose is the following.

We base image object segmentation on the approximation of a set of (possibly
unconnected) points that conform to given characteristics exclusive to the contour of
the object we want to model. We consider that the object is successfully segmented
once we have a closed contour approaching this set of points. We propose the following
strategy to model uncompleted contours. First, we will apply functional extension
using ACC to the selected set of points in order to produce a closed contour. Ridges of
the final extension are the curve of level zero of the Curvature Distance Map (CDM)
that serves to compute the Curvature Vector Flow that will guide a parametric B-
spline snake to a model of this contour.

We devote the last experiment to efficiency and accuracy of the former segmenting
strategy compared to geodesic snakes. The set of images are the noisy images of
fig.5.20 and the real images of fig.5.21 (a)-(c) in Section 5.2. Completions of the
extracted contours (see fig.5.22) given by ACC (see fig.5.31) are the input zero level
set for the computation of CVF. For geodesic snakes, we have used their original
formulation [12] for image edge-based segmentation:

γt = (g(|∇I|)(c + κ) − 〈∇g(|∇I|),−→n 〉)−→n

where g(|∇I|) = 1/(1 + |∇Iσ|2) and c is the area constrain constant. The function g
has been computed over original images (fig.5.21 (a), (c)) in the case of the brain and
the hand, and the filtered image of fig.5.20(b) for the noisy non convex shape. For
a better comparison to our strategy and to reduce noise impact, the edge measure g
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(a) (b) (c)

(d) (e) (f)

Figure 5.31: Reconstructed contours using DCV.

is computed over the image contours of 5.22 in the case of the character ’s’ and the
horse.

Both in the case of geodesic and parametric snakes, we consider the snake has
reached its final state when its total energy stabilizes. Snake convergence is illus-
trated in fig.5.32 and fig.5.33 (with yellow curves representing final geodesic snake
segmentation). Segmentation using geodesic snakes strongly depends on the quality
of image edges which makes their convergence to concave regions significantly decrease
in the presence of noise (fig.5.32(b)) or highly non convex uncompleted contours. In
noisy images, the regularization scale used to compute |∇uσ| must be increased to
ensure a stable snake evolution. In the case of large gaps, the regularization scale
must ensure that the gradient of g will close them, otherwise the snake could con-
verge to an unconnected curve. However, the bigger the gaussian kernel is, the more
prone to develop saddle points and ridges the image gradient is. Just to mention it,
this phenomena still produces even if a regularization with GVF [?] is used. Since
the constant c must keep within the range of |∇g| if we want the snake to stop at
image contours, we have that the area constraint term does not compensate ∇g bad
behavior. Only in the case of noise free, non textured backgrounds (fig.5.33(d), (f))
geodesic snakes successfully adapt to contours.

On the other hand, segmentation using CVF only relies on the accuracy of the
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(a) (b) (c) (d)

Figure 5.32: Convergence to non convex shape using CVF snakes (a) and geodesic
snakes (b). Convergence to character ’S’ using CVF snakes (c) and geodesic snakes
(d).

(a) (b) (c)

(d) (e) (f)

Figure 5.33: Snake Convergence to brain, horse and hand of CVF snakes (first row)
and geodesic snakes (second row).

closed models yield by DVF, as CVF guarantees snake convergence to the zero level
curve. Since the impact of noise was suppressed from the uncompleted contours of
fig.5.22(d), (f), performance of our CVF parametric snake in noisy images (fig.5.32(a),
(c)) clearly surpasses that of geodesic snakes. Also in the case of the horse, we obtain
a more accurate representation, since the curve that geodesic snakes yield (fig.5.33(e))
has several connected components. Concerning unpolluted backgrounds (fig.5.33(a),
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(a) (b) (c)

(d) (e) (f)

Figure 5.34: Segmentation using DVF/CVF.

(c)), the model of the brain (fig.5.34(a)) yielded by CVF is more precise than seg-
mentation using geodesic snakes (fig.5.33(d)). Thanks to the accuracy of the brain
closure (fig.5.24(a), (b)), the CVF contour captures more creases (fig.5.34(b)) than
the geodesic model. Only in the case of sharp concave corners (hand of fig.5.33(d))
geodesic snakes perform better than CVF snakes. However, convergence to the hand
(fig.5.33(c)) still compares to results obtain by geodesic snakes. Besides, final segmen-
tations using CVF (fig.5.34), are, in all cases, smooth close models that conform to
the original objects and keep their essential geometry. In order to increase accuracy,
the final state achieved with CVF can be used as initial snake for a classic parametric
snake.



112 EXPERIMENTS



Conclusions and Future
Research

This work has shown that a geometric approach to PDE’s enables designing image
operators satisfying automatic stabilization at meaningful states smoothly approx-
imating original objects. In particular, we have focused on shape modelling with
segmenting purposes and a novel filtering technique(RCF), a contour closing algo-
rithm (ACC) and an external snake potential (CVF) have been introduced.

The regularized curvature flow adds a measure of shape regularity to the mean
curvature flow that prevents its degeneracy to a round point. Because the measure
of regularity decreases over RCF orbits, the flow converges to a smooth model of the
original shape. The image filtering defined by RCF level sets implicit formulation
performs better than current filtering techniques as it achieves the best compromise
between image quality and stabilization of the iterative numeric scheme.

Based on the grounds that a distance map represents the evolution of an initial
curve in time under a geometric flow, CVF tracks evolution by mean curvature flow
to avoid shocks. The gradient of this map is a smooth external force that guides in a
natural manner the snake to the shape of interest. The fact that the force field takes
into account the geometry of the final curve, makes convergence robust whatever the
concavity of this curve is. Smoothness of snake evolution under CVF guarantees a
robust convergence to smooth compact models of closed objects by means of a B-spline
parametric snake.

Because the only requirement for computation of CVF is having closed contours, a
novel approach to contour closing has been introduced. We have developed an implicit
level sets formulation of a heat-like equation on manifolds in terms of a restricted dif-
fusion operator. Such operators are an ideal tool for completion of contours regarded
as a particular case of functional extension. Because ACC restricts diffusion to some
curves of the image domain, the algorithm converges to closed models of shapes, as far
as it a vector field representing the tangent of the contours to be closed. We propose
a fat way of computing vector extensions (Coherence Vector Fields) conforming with
tangents of unconnected contours at gap boundaries by applying Structure Tensor
over either the contours masks or distance maps.

Finally, we have shown that a combination of ACC and CVF yields a segment-
ing strategy that compares and even surpasses performance of balloon-like geodesic
snakes.
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The theoretical setting developed suggests the following further research issues:

Future Lines of Research

1. Applying restricted diffusion to a corner-preserving image filtering

By its own definition, a coherent vector field computed on the image yields
smooth completions of the image significant curves, such as edges or ridges, that
preserve curvature maxima. It follows that the associated restricted diffusion
would uniformize their gray level while preserving their corners and smoothing
noisy areas.

2. Spline approximation of shapes with a given error

An efficient multiresolution approximation of curves with splines is still an open
question. The first step is determine the minimum number of control points
needed to obtain an approximate model of a curve with a given error. The
CVF external force is the ideal starting point as it ensures snake convergence
to closed shapes.

3. Topological equivalence of analytic convexity conditions

The natural further research of the geometric equivalent of functional convexity
is to give topological criteria in terms of the number of connected components
(Morse theory [51]) of the functional level sets. Such simple criterion is the
natural way of detecting inflexion points in GVF-like flows and provides a way of
redefining the vector fields to ensure snake convergence for image segmentation.

4. First order approximation of non-linear operators

Poor efficiency of numeric iterative processes mars performance of non-linear
diffusion and hinders their design. Successive convolution with the kernel as-
sociated to their linear approximation would yield a first order fast accurate
approach in the case of convergent operators.

5. Apply all techniques (the developed and the forthcoming) to every
single image available to find out their true applicability to the real
world

An exhaustive validation of the techniques developed is a compulsory step for
their reliable application to real problems.
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