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A la meva familia



Nunca consideres el estudio como una obligacion, sino como una oportu-
nidad para penetrar en el bello y maravilloso mundo del saber.

Albert Einstein

No puede usted resolver un problema? Pues bien, pongase a investigar su
situacion actual y sus antecedentes! Cuando haya investigado cabalmente
el problema, sabrd como resolverlo. Toda conclusion se saca después de
una investigacion, y no antes. Unicamente un tonto se devana los 5€808,
solo o unido a un grupo, para encontrar una solucion o elaborar una idea
sin efectuar ninguna investigacion. Debe subrayarse que esto no conducird
en absoluto a ninguna solucion eficaz ni a ninguna idea provechosa.

Contra el culto a los libros (mayo de 1930).
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Resum

Durant els ultims anys, hi ha hagut un interes creixent en les tecniques de reconeix-
ement d’objectes basades en imatges, on cadascuna de les quals es correspon a una
aparenca particular de I'objecte. Aquestes técniques que dUnicament utilitzen infor-
macié de les imatges s6n anomenades técniques basades en I’aparencga i l'interes sorgit
per aquestes tecniques és degut al seu éxit alhora de reconeixer objectes. Els primers
metodes basats en ’aparenca es recolzaven tnicament en models globals. Tot i que
els metodes globals han estat utilitzats satisfactoriament en un conjunt molt am-
pli d’aplicacions basades en la visié per computador (per exemple, reconeixement de
cares, posicionament de robots, etc), encara hi ha alguns problemes que no es poden
tractar facilment. Les oclusions parcials, canvis excessius en la il-luminacid, fons com-
plexes, canvis en ’escala i diferents punts de vista i orientacions dels objectes encara
son un gran problema si s’han de tractar des d’un punt de vista global. En aquest
punt és quan els metodes basats en l’aparenca local van sorgir amb 1’objectiu primor-
dial de reduir ’efecte d’alguns d’aquests problemes i proporcionar una representacié
molt més rica per ser utilitzada en entorns encara més complexes.

Usualment, els metodes basats en ’aparenca local utilitzen descriptors d’alta di-
mensionalitat alhora de descriure regions locals dels objectes. Llavors, el problema de
la malediccié de la dimensionalitat ( curse of dimensionality ) pot sorgir i la classifi-
caci6 dels objectes pot empitjorar. En aquest sentit, un exemple tipic per alleujar la
malediccié de la dimensionalitat és la utilitzacié de tecniques basades en la reduccid
de la dimensionalitat. D’entre les possibles tecniques per reduir la dimensionalitat, es
poden utilitzar les transformacions lineals de dades. Basicament, ens podem benefi-
ciar de les transformacions lineals de dades si la projeccié millora o manté la mateixa
informacié de ’espai d’alta dimensié original i produeix classificadors fiables. Lla-
vors, el principal objectiu és la modelitzacié de patrons d’estructures presents als
espais d’altes dimensions en espais de baixes dimensions.

La primera part d’aquesta tesi utilitza primordialment histogrames color, un de-
scriptor local que ens proveeix d’una bona font d’informacié relacionada amb les
variacions fotometriques de les regions locals dels objectes. Llavors, aquests descrip-
tors d’alta dimensionalitat es projecten en espais de baixes dimensions tot utilitzant
diverses tecniques. L’analisi de components principals (PCA), la factoritzacié de
matrius amb valors no-negatius (NMF) i la versi6 ponderada del NMF sén 3 trans-
formacions lineals que s’han introduit en aquesta tesi per reduir la dimensionalitat de

iii



iv RESUM

les dades i proporcionar espais de baixa dimensionalitat que siguin fiables i mantin-
guin les estructures de ’espai original. Una vegada s’han explicat, les 3 tecniques
lineals sén ampliament comparades segons els nivells de classificacié tot utilitzant
una gran diversitat de bases de dades. També es presenta un primer intent per unir
aquestes tecniques en un Unic marc de treball i els resultats sén molt interessants i
prometedors. Un altre objectiu d’aquesta tesi és determinar quan i quina transfor-
macié lineal s’ha d’utilitzar tot tenint en compte les dades amb que estem treballant.
Finalment, s’introdueix ’analisi de components independents (ICA) per modelitzar
funcions de densitat de probabilitats tant a espais originals d’alta dimensionalitat com
la seva extensié en subespais creats amb el PCA. L’analisi de components indepen-
dents és una tecnica lineal d’extraccié de caracteristiques que busca minimitzar les
dependencies d’alt ordre. Quan les seves assumpcions es compleixen, es poden obtenir
caracteristiques estadisticament independents a partir de les mesures originals. En
aquest sentit, el ICA s’adapta al problema de reconeixement estadistic de patrons
de dades d’alta dimensionalitat. Aix0 s’aconsegueix utilitzant representacions condi-
cionals a la classe i un esquema de decisié de Bayes adaptat especificament. Degut a
I’assumpcié d’independeéncia aquest esquema resulta en una modificacié del classifi-
cador ingenu de Bayes.

El principal inconvenient de les transformacions lineals de dades esmentades an-
teriorment és que no consideren cap tipus de relacié entre les caracteristiques locals.
Conseqlientment, es presenta un metode per reconeixer objectes tridimensionals a
partir d’imatges d’escenes desordenades, tot utilitzant un unic model apres d’una
imatge de 'objecte. Aquest metode es basa directament en les caracteristiques vi-
suals locals extretes de punts rellevants dels objectes i té en compte les relacions
espaials entre elles. Aquest nou esquema redueix "ambigiiitat de les representacions
anteriors. De fet, es presenta una nova metodologia general per obtenir estimacions
fiables de distribucions conjuntes de vectors de caracteristiques locals de multiples
punts rellevants dels objectes. Per fer-ho, definim el concepte de k-tuples per poder
representar ’aparenca local de 'objecte a k punts diferents i al mateix moment les
dependencies estadistiques entre ells. En aquest sentit, el nostre metode s’adapta a
entorns desordenats, complexes i reals demostrant una gran habilitat per detectar
objectes en aquests escenaris amb resultats molt prometedors.



Abstract

During the last few years, there has been a growing interest in object recognition
techniques directly based on images, each corresponding to a particular appearance
of the object. These techniques which use only information of images are called
appearance based models and the interest in such techniques is due to its success in
recognizing objects. Earlier appearance-based approaches were focused on the use
of holistic approaches. In spite of the fact that global representations have been
successfully used in a broad set of computer vision applications (i.e. face recognition,
robot positioning, etc), there are still some problems that can not be easily solved.
Partial object occlusions, severe lighting changes, complex backgrounds, object scale
changes and different viewpoints or orientations of objects are still a problem if they
should be faced under a holistic perspective. Then, local appearance approaches
emerged as they reduce the effect of some of these problems and provide a richer
representation to be used in more complex environments.

Usually, local appearance methods use high dimensional descriptors to describe
local regions of objects. Then, the curse of dimensionality problem appears and object
classification degrades. A typical example to alleviate the curse of dimensionality
problem is to use techniques based on dimensionality reduction. Among possible
reduction techniques, one could use linear data transformations. We can benefit
from linear data transformations if the projection improves or mantains the same
information of the high dimensional space and produces reliable classifiers. Then, the
main goal is to model low dimensional pattern structures present in high dimensional
data.

The first part of this thesis is mainly focused on the use of color histograms, a local
descriptor which provides a good source of information directly related to the pho-
tometric variations of local image regions. Then, these high dimensional descriptors
are projected to low dimensional spaces using several techniques. Principal Com-
ponent Analysis (PCA), Non-negative Matrix Factorization (NMF) and a weighted
version of NMF, the Weighted Non-negative Matrix Factorization (WNMF) are 3
linear transformations of data which have been introduced in this thesis to reduce
dimensionality and provide reliable low dimensional spaces. Once introduced, these
three linear techniques are widely compared in terms of performances using several
databases. Also, a first attempt to merge these techniques in an unified framework is
shown and results seem to be very promising. Another goal of this thesis is to deter-
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mine when and which linear transformation might be used depending on the data we
are dealing with. To this end, we introduce Independent Component Analysis (ICA)
to model probability density functions in the original high dimensional spaces as well
as its extension to model subspaces obtained using PCA. ICA is a linear feature ex-
traction technique that aims to minimize higher-order dependencies in the extracted
features. When its assumptions are met, statistically independent features can be
obtained from the original measurements. We adapt ICA to the particular problem
of statistical pattern recognition of high dimensional data. This is done by means of
class-conditional representations and a specifically adapted Bayesian decision scheme.
Due to the independence assumption this scheme results in a modification of the naive
Bayes classifier.

The main disadvantage of the previous linear data transformations is that they
do not take into account the relationship among local features. Consequently, we
present a method of recognizing three-dimensional objects in intensity images of clut-
tered scenes, using a model learned from one single image of the object. This method
is directly based on local visual features extracted from relevant keypoints of objects
and takes into account the relationship between them. Then, this new scheme reduces
the ambiguity of previous representations. In fact, we describe a general methodology
for obtaining a reliable estimation of the joint distribution of local feature vectors at
multiple salient points (keypoints). We define the concept of k-tuple in order to rep-
resent the local appearance of the object at &k different points as well as the statistical
dependencies among them. Our method is adapted to real, complex and cluttered
environments and we present some results of object detection in these scenarios with
promising results.
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Chapter 1

Introduction

There are a number of computer vision applications which involve, one way or another,
the recognition of objects in images. In common robot applications, a robot searches
for known objects in images continuously acquired by a camera. In common image
retrieval applications, a collection of images is searched for views of a specific object or
images showing objects from an object category, for instance a specific actor, members
of a sports team or images of flowers. In object-based video annotation, video frames
are automatically labeled with symbolic descriptions which may be connected to the
presence of certain objects in the sequence. Using the symbolic descriptions, efficient
archival and retrieval of images or sequences of interest is possible. Recognition may
be also useful for image catalogue searching/browsing common in art, trademark and
other commercial applications. Recently, web-based systems have been developed,
searching on the internet for images showing desired objects.

As seen, object detection and recognition is a pervasive activity in our lives. We are
constantly looking for, detecting and recognizing objects: people, streets, buildings,
tables, chairs, desks, sofas, beds, automobiles, etc. Yet it remains a mystery how we
perceive objects so accurately and with so little apparent effort. Is for this reason
that during the last few years, there has been a growing interest in object recognition
directly based on images, each of them containing an object or a set of objects. So
that, object recognition can be defined as the task of determining whether (and/or
which) objects appear in a collection/sequence of images. But in order to recognize
an object one must know, at least, something about the object. Thus, one must have
an object representation that describes what are the differences of this object with
respect to the other ones. In this context, detection or recognition of objects has
resulted in a very difficult task and in over 30 years of research, progress has been
rather limited. The central problem is how to deal with a huge amount of variation in
visual appearance. That is, how we can obtain a universal representation of an object
that is able to cope with both the variation within the object and with the diversity
of visual imagery that exists in the world. It is not the scope of this dissertation to
propose a universal object representation scheme. However, this thesis shows how
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a computer system can acquire a possible and feasible (in terms of computational
costs) model of an object’s appearance directly from intensity images only using local
descriptors, and then use that model to recognize the object in other scenes.

The earlier recognition systems were mainly focused on a holistic approach. In
spite of the fact that global representations have been successfully used in different
computer vision applications (i.e. face recognition, robot positioning, etc.), there are
some problems that can not be easily solved under this framework. Such problems are
partial object occlusions, severe lighting changes, complex backgrounds, object scale
changes and different viewpoints or orientations of objects. In contrast to this, local
representations have been recently proposed to solve these problems or to reduce the
effect of some of them (i.e. occlusions are difficult to deal with global representations
but occlusion effects are reduced when dealing with a local scheme). The idea behind
local approaches is that ”local” models of objects allow a richer representation and,
consequently, the object model can be used in more complex situations.

Regarding natural vision systems, it seems clear that our brain works using local
stimuli when detects ”things” in the world through visual images coming from our
eyes [87]. Then, the conjunction of all local perceived stimuli seems to create a final
label (i.e. the name of an object) that helps us to understand what we are looking
at. What it not seems clear is how the brain works and, usually, when one tries to
obtain a computational approach of this scheme, the method fails because it is not
possible to cope with all the possible world situations.

The decision whether a given object appears in the image is made by comparing
image measurements with an object representation which is called the object model.
And to represent an object, a recognition system may exploit various quantities de-
pendent on object properties such as its shape, surface reflectance, etc. Thus, the
object model consists of some descriptions of object properties and/or assumptions
about the scene parameters which influence the variation in object appearance in dif-
ferent views. So that, given an object model and measurements from a test image,
recognition of an object is achieved if some measurements from the test image can be
explained as originating from the learned object.

In our work, a model of object appearance is derived from a diversity of measure-
ments which are directly related to the local appearance of the object. We present
different local appearance descriptors but we are mainly focused on the positive ones.
In particular, we present comparative studies between traditional methods (Principal
Component Analysis, Independent Component Analysis) and more recent methods
(Non-negative Matrix Factorization) when extracting and representing local infor-
mation of objects in frameworks such as recognition of faces, handwritten digits,
pharmaceutical products and natural scenes.

The huge amount of local information which can be extracted from scenes and
objects usually generates high dimensional spaces. High dimensional spaces tend to
produce a common problem known as curse of dimensionality [11]. The expression
curse of dimensionality is due to Bellman and in statistics it relates to the fact that
the convergence of any estimator to the true value of a smooth function defined on
a space of high dimension is very slow. In terms of object recognition and detection,
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this means that, a priori, we need an enormous amount of observations of an object to
obtain a good estimate of a function that identifies this object unambiguously. And
one of the important strategies to overcome the curse of dimensionality of such high
dimensional representations, is the reduction of the input space. Then, we present a
set of methods which are based on a linear transform of the original data that also
involve a reduction of the original data dimensionality.

1.1 Motivation

The thesis proposes the use of different statistical techniques for the representation
and recognition of objects. Under the assumption that the nature of the object moti-
vates the use of a different technique and that we do not know any universal technique
to model objects, we present a set of statistical methods that are compared in labora-
tory cases and real scenes. Our main goal is to present various alternatives and allow
the reader the chance to select the best one for her/his problem. As exposed before
and as it will be treated throughout the thesis, we propose a local appearance scheme
in order to obtain a flexible model of an object which is able to deal with problems
such as occlusions, slight variations in the point of view, different lighting conditions,
etc. There are several local techniques to be used in object recognition/classification
but, at the end, what we have is a set of feature vectors that are high-dimensional.
For instance, the number of pixels can be used as a feature vector and this implies
an internal high-dimensional representation. In general, adopting a local framework
may offer the following advantages:

e Stability: Small changes in an object should produce small changes in an object
model. A little modification of the object would affect to the whole description
of the object if we consider a global representation. Thus, a local scheme reduces
this effect.

e Efficiency: A local scheme is based on a portion of the input object, so that,
its representation is more efficient than obtaining a global descriptor.

but, also, the following disadvantages:

e Uniqueness: Usually, a global approach obtains a unique representation of
an object in contrast to a local representation that could generate a set of
local descriptors with the same local information. This is due to the fact that
objects are composed of similar parts. But, this problem can be solved by using
high-level information about the object or building a model that takes only the
relevant information about objects.

e Speed/Complexity/Storage: A global approach is, in general, very fast be-
cause it is based on the whole object and usually, we only have to compare two
feature vectors (the vector corresponding to the analyzed object with respect
to one feature vector stored during the training stage of another object). But,
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a local representation leads to have a large amount of feature vectors of one
object that should be compared with other amounts of feature vectors corre-
sponding to other objects in the database. It is clear that using a local scheme,
the complexity of the object model is increased deriving in a complex method
to match two different representations. Furthermore, the storage required for
such local representations is also increased with respect to a global scheme since
more information is needed.

A good trade-off between these criteria lead most researchers to several different
techniques. But, what we have to take in mind is that a model based on local
features should be described by a combination of local features, each pertaining to a
specific region of an object. Local features can be computed with relative efficiency
as each one is based on a limited portion of the object. Moreover, a description
composed of local features can be relatively stable as only some of the features need
be affected by any small change in appearance. And, of particular importance for
object recognition, partial occlusion of an object will only partly affect recovery of
a local feature description. This last statement is the one that motivates that this
thesis is completely based on local descriptors.

As exposed before, a local representation leads to high-dimensional and complex
representations where we need to estimate a high-level function which classifies ob-
jects. With a local representation in our hands, what we try to pursue with this thesis
is:

e Simplicity in our representation. We believe that complex representations
lead to non understandable models or highly complex estimators that should be
avoided.

e Low complexity. We present a set of local techniques which are based on re-
ducing dimensionality in order to overcome the curse of dimensionality problem.
This is a first step to keep the same information and reduce time and storage.

e Higher-order dependencies. Dependencies among local features can also be
considered in order to analyze possible higher-order dependencies. So that, we
also analyze one possible scheme for such a representation.

1.2 Background

Object recognition is neither a new problem nor one that we can consider solved.
Indeed, several studies working on this specific field of computer vision have been
presented during the last years. Even having a set of real world environments analyzed
with complex techniques which are able to deal with specific objects under a huge
variety of natural conditions, it is always possible to find a particular position of the
object in a specific background where the method fails in its attempt to detect it.
That is, object recognition is difficult and still will be in the future. The reason is
easy: we are trying to extract some meaningful concept (for example, the name of
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an object) from a collection of pixels. These set of pixels can contain an object that
we previously learned and, of course, it will be embedded in scenes, combined and
recombined in a highly variable manner. Would it be possible to find this universal
object representation scheme? We do not know this answer and it is not the scope
of this dissertation to find a universal representation, but we believe that objects can
not be described uniquely.

Object appearance has a large range of variation. It varies with changes in view-
point, in lighting, and, if the object is flexible, with changes in shape. Of course,
since we are working with images, the object viewed through a camera suffers from
an optical distortion and pixel quantization. Also, when recognizing a class of similar
objects, we have to use discriminant features to distinguish between them. Moreover,
objects are embedded in scenes, combined and recombined with other objects in a
highly variable manner. Such problems should be addressed and the possible solution
will surely have implications throughout the system.

In any case, a system based on the recognition of objects should be composed of
two different parts: (i) Representation/Learning and (ii) Classification/Recognition.
The first stage, named representation, also includes the learning of an object. At
some point, representation is synonymous of learning and they are complementary.
How we learn an object? We learn an object by extracting relevant information from
images which contain the objects we want to learn in order to build an object model.
This final object model should be able to generalize its knowledge to images which
contain unseen instances of the same learned objects. Recognition or classification
of an object is performed by finding a match between a set of measurements of the
image and an object model stored during the learning process. However, in order
to decide upon what information shall we use to represent and classify objects, we
have to take in mind: (i) what objects we want to identify and (ii) how we can do it.
Several decisions should be made at this point:

e What local information should be represented? Since we have objects in images
and images are collections of pixels, there is a large amount of information to be
considered as relevant or discriminant for object recognition. For example, we
can use color information [137, 62, 61], texture information [86, 130, 98, 109],
contour features [107], etc. And there are some methods that use a collection
of different features in order to find the most discriminant ones and to be able
to model the maximum amount of objects [87].

e From where we have to extract the local information and where are the objects?
Once we know we have an object in an image, one question appears in our
mind: all the parts of the object are relevant or maybe we only have to take
into account some ”discriminant” ones for our learning/representation scheme?
Different approaches have been presented, some of them based on a fixed grid
of points [120] from where we extract local information and other ones based
on some ”relevant” points of the object (named keypoints [55]) obtained using
some pixel statistics (i.e. from zones of maximum curvature).

e What technique should be used in order to learn the information extracted
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from images? There is not enough to extract a lot of local information from
arbitrary regions of objects, we also need a technique which is capable to learn all
this information in a reasonable computer time with the possibility to recognize
the learned objects in an efficient way. This technique should be able to provide
the object entity present in an image and its spatial location.

At the end, when we already know what local information should be extracted
from specific locations in an image it remains to know how we should computation-
ally represent this information. Usually, information is stored as a collection of feature
vectors, that is, a set of n-dimensional feature vectors which encode the information
of specific points of an object. Thus, an object is composed of several feature vectors
extracted from relevant regions of the object (we would have to think about what is
relevant for us). There are several methods and local descriptors to be used at this
point. However, we usually obtain a high-dimensional representation. This represen-
tation is high-dimensional because we deal with a great amount of information. As
explained before, this possible high dimensional space can produce the well-known
problem of curse of dimensionality when we try to work with all this information.
There are several methods that group some feature vectors under the assumption
that they belong to the same object part. Thus, the complexity of our initial rep-
resentation is considerably reduced. Here, we define the word part as a particular
region of an object which contains several local feature vectors with similar appear-
ances. Then, recognition of an object derives, for example, to estimate a probability
density function. In order to estimate reliable probability density functions from a
set of feature vectors, researchers conducted their experiments to find efficient tech-
niques to do this task. Possible techniques are histogram representations [120, 87],
ICA based schemes [20, 91, 64, 19], etc. All these techniques are valid but they have
produced object recognition systems that are still severely limited in the variety of
objects and/or viewing situations with which they can cope. Usually, these limita-
tions are, in considerable part, due to a reliance on models that contain too little
information. Thus, it is clear that introducing more information one may obtain an
improved representation but this means a higher-dimensional space to deal with.

Furthermore, once we have a set of feature vectors corresponding to some relevant
regions/points of objects, one may consider the relationships among these local and
relevant points. It is clear that a purely based local approach without information
about the spatial layout of the neighbor local points is severely limited because pro-
duces ambiguity in the representation. So that, given a local point in an object, its
neighborhood can be very important to reduce the level of ambiguity. This is the main
objective of the higher-order representations because they try to take into account
the spatial configuration of the local points of an object.

1.3 Thesis Statement and Contributions

The research described in this dissertation has been divided into two parts: (i) repre-
sentation of local feature vectors using different statistical methods to allow reliable



1.4. Outline of the Thesis 7

recognition strategies and (ii) derivation of a framework based on higher-order depen-
dencies of feature vectors to improve the former approach:

e In part I of the thesis, we propose different statistical techniques which are
mainly based on reducing the dimensionality of a set of feature vectors to per-
form object recognition and classification. Then, the curse of dimensionality is
alleviated. Typical problems of computer vision such as face recognition, hand-
written digit recognition, recognition of pharmaceutical products, recognition
of patches of natural objects are solved using these techniques. We use Prin-
cipal Component Analysis (PCA), Non-negative Matrix Factorization (NMF)
and Weighted Non-negative Matrix Factorization (WNMF). Performances of
these techniques are compared under different kinds of classification frameworks.
Classification is performed using different approaches as using (i) reconstruction
distances, (ii) parametric models and (iii) non-parametric models. PCA, NMF
and WNMF are based on reducing the dimensionality of a problem. They ob-
tain a new subspace which is able to reproduce the original feature space but
using less dimensions. So that, we want to determine when and what technique
should be used depending on the data we are dealing with. Finally, we introduce
Independent Component Analysis (ICA) in order to model probability density
functions in the original feature spaces as well as its extension to subspaces ob-
tained using PCA. Object recognition and classification consists of determining
the entity of an object given a set of possible objects. Since ICA is not adapted
to compare different classes of data, the approach has been extended to work
with different classes. We called this extension Class-Conditional Independent
Component Analysis (CC-ICA).

e In part II of the thesis, we propose a novel object recognition model that in-
tegrates, in addition to basic visual feature frequencies, several higher order
characteristics of the objects, including conditional probabilities of visual fea-
ture co-occurrences and feature neighborhood arrangements. The combinatorial
explosion problem that can arise from this model is solved by using statistical
factorization techniques that greatly simplify feature joint probability density
estimation. In this framework, we take advantage of the Independent Com-
ponent Analysis (ICA) to obtain factored joint distributions of image features
and reduce the complexity of the problem. Several evaluations using real-world
scenes and objects have been performed. Results are satisfactory and provide a
robust framework for object detection and recognition mainly adapted to clut-
tered scemnes.

1.4 Outline of the Thesis

In the following, the content of each chapter is summarized.

In chapter 2, we summarize several references which have been source of inspiration
for different aspects of the thesis. In particular, we enumerate a set of local descriptors
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which can be extracted directly from an image. These local descriptors provide a good
source of information directly related to the photometric variations of local image
regions. We may point out the popularity of these local descriptors in the context of
object representation. Once we know what local information should be extracted from
objects, we introduce the problem of deciding from where they should be extracted
to obtain reliable descriptions. Then, we survey different object recognition methods
in order to know how can we merge local descriptors and their spatial arrangement
in an optimal manner.

Chapter 3 is devoted to the evaluation of several statistical techniques. We pro-
vide a simple derivation of the statistical technique of Principal Component Anal-
ysis (PCA), a technique that has dominated the appearance-based approach to vi-
sion. Then, we introduce another scheme, the Non-negative Matrix Factorization
(NMF) which is similar to the PCA but assuming non-negative data. Finally, we pro-
pose a new statistical technique called Weighted Non-negative Matrix Factorization
(WNMF) to overcome some of the encountered difficulties of the traditional NMF.
These three techniques are widely compared in terms of performances using several
databases. Since they are also based on reducing the data dimensionality, the problem
of curse of dimensionality is inherently solved. At the end, the Independent Com-
ponent Analysis (ICA) is introduced in order to obtain factored probability density
functions. We adapted ICA to perform with problems where we have a set of ob-
ject classes, is what we called Class-Conditional Independent Component Analysis
(CC-ICA). A final example showing its perfomance is provided.

The previous chapter 3 focuses on methods which make use of local descriptors
without considering any spatial arrangement of them. In chapter 4, we propose a
novel object recognition model that integrates, in addition to basic visual feature
frequencies, several higher order characteristics of the objects. The combinatorial
explosion problem that can arise from this model is solved by using statistical factor-
ization techniques that greatly simplify feature joint probability density estimation.
In this framework, we take advantage of the Class-Conditional Independent Compo-
nent Analysis (CC-ICA) to obtain factored joint distributions of image features and
reduce the complexity of the problem. Several evaluations using real-world scenes and
objects have been performed. Results are satisfactory and provide a robust framework
for object detection and recognition mainly adapted to cluttered scenes.

Chapter 5 summarizes the main contributions of this thesis and discusses possible
avenues of future research.





