Chapter 5

Concluding Remarks

5.1 Conclusions

This thesis is focused on the problem of object representation and classification using
local visual features extracted from images. One of the main inconvenients faced by
the use of visual features is the high dimensionality of data. Additionally, the data
can be contaminated by noise, and not necessarily all visual features contribute to
classification.

One of the goals of this thesis is the evaluation of linear transformations of data in
order to model low dimensional pattern structures present in high dimensional data.
That is, a whole chapter is focused on the use of unsupervised linear transformations
of data. In this chapter we evaluate object recognition performances using low di-
mensional spaces using several object databases. In this sense, we can benefit from
linear transformations if the projection improves or mantains the same information
of the high dimensional space and produces reliable classifiers. As example, linear
transformations can provide this benefit by reducing dimensionality preserving rele-
vant information present in high dimensional spaces. Principal Component Analysis
(PCA), Non-negative Matrix Factorization (NMF) and Weighted Non-negative Ma-
trix Factorization (WNMF) are presented as 3 unsupervised linear transformations
of data which are helpful for reducing data dimensionality. Independent Component
Analysis (ICA) is another linear transformation which is introduced in order to reduce
the complexity of estimating density functions.

PCA has been used for a long time as a linear transformation of data in order to
reduce dimensionality preserving relevant information. It has been shown that visual
local features can be expressed using positive representations and we find that PCA is
not adapted for such representations. Mainly, when original positive high dimensional
spaces are described in terms of low dimensional PCA coefficients, coefficients are also
negative. As example, when color histograms are represented using a low dimensional
PCA subspace, its projected bases are non understandable for a human observer. In
this sense, we introduced a recent technique called Non-negative Matrix Factorization
(NMF) which uses positive assumptions in order to find a low dimensional subspace.

The additive property resulting from the non-negativity constraints of NMF has
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been shown to result in bases that represent local components of the original data (in
this thesis we have seen local parts of digits, local parts of faces and local color compo-
nents corresponding to local patches of color images). This parts-based representation
leads us to compare NMF and PCA in typical object recognition scenarios as both
approaches are based on different assumptions. However, we have experimented some
unwanted behaviour of NMF when applied to data which is not uniformly distributed.
This problem commonly appears when we deal with local data representations. We
faced this problem introducing a modified approach of NMF. We introduced a weight
matrix that minimizes the appearance of repeated bases in matrix W as it is based
on the frequency of each vector used for training. Then, we decrease the influence of
the most frequent training vectors as we want to reduce the appearance of redundant
information. In this context, we compared NMF with respect to WNMF and the
following contributions have been made,

e We have formalized a weighted version of NMF using a matrix which weighs
vectors used for obtaining a NMF model (matrices W and H).

e In problems where not uniformly distributed data is present, WNMF outper-
forms NMF depending on the dimensionality of the subspace. It is found by
experiments that there is a threshold dimension which determines the outper-
formance of WNMF. However, this threshold dimension directly depends on the
problem since it is related to the complexity of data.

e The threshold dimension of the subspace which determines the outperformance
of WNMF with respect to NMF is obtained through the analysis of W bases
or through the analysis of the reconstruction error of both NMF and WNMF
techniques. However, no a priori information about original data can be used
to know which is this threshold dimension.

e WNMF is a constrained version of NMF as introduces a weight matrix. Then,
if we firstly perform a set of iterations using WNMF and we use this solution to
iterate NMF, the final solution is better than the one obtained using WNMF.
So that, we provide a good scheme where we are able to use only few iterations
of WNMF to achieve a better starting point for NMF.

Once we introduced these three unsupervised linear transformations of data which
have been mainly used for reducing high dimensional spaces to low dimensional ones,
we performed several experiments in the context of object classification. We divided
these experiments in three schemes:

1. Reconstruction distances: NMF and PCA search for a solution which mini-
mizes the mean squared error (MSE) in terms of the reconstruction error. NMF
is restricted to positive constraints. Then, a first attempt to perform classifi-
cation using the reconstruction distances is shown. Using a wide variety of 10
data classes, we analyzed which technique (NMF or PCA) is adapted to each
data class. Then, we created a unified framework which merges NMF and PCA
models and is able to classify new data vectors. This is the first attempt to use
a combined classifier using PCA and NMF. Experimental results demonstrate
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that this unified framework outperforms results based on PCA and/or NMF
alone.

2. Parametric Model: Using the coefficients of PCA and NMF, we estimated
the probability density function of the projected original high dimensional space.
This is done assuming that PCA is modeled using a Gaussian distribution and
NMF using a Poisson distribution. Then, using this new probabilistic approach
we faced the same classification problem of 10 data classes in order to find which
technique can be used for each data class. Experimental results are acceptable
and slighty better than using reconstruction distances.

3. Nonparametric Model: The k-nearest neighbor has been used as a nonpara-
metric model for classifying the projected coefficients obtained using NMF and
PCA. This is the most common approach to be used with PCA. However, NMF
has not been used in such a context. We contributed with an extended analysis
of several metric distances to be used in the projected space of NMF. Then, a
comparison with PCA has been made in terms of performances with different
object databases evaluating their robustness in front of occlusions.

In order to take advantage of the positive aspects of both techniques (PCA and
NMF), we performed several experimental tests and the following contributions have
been made,

e Combined framework of PCA and NMF: PCA and NMF/WNMF can be
combined in an unified framework based on reconstruction distances and/or a
parametric model. In a context of using several data classes, we create a model
for each data class. We have experimentally observed that some data classes are
better represented using NMF and some other ones with PCA. It seems that we
can stablish a priori which data classes can be better represented using NMF:
the most complex ones. A complex class is the one which contains several local
behaviours and is very dispersed in the space.

e Selection of a metric distance for NMF: We have experimentally tested
the use of traditional distance measures with the projected coefficients of NMF.
We state that,

1. Earth Mover’s Distance (EMD): Is the best metric distance to be used
with NMF when occlusions are not present. However, the computational
costs associated with this distance are extremely demanding.

2. L1 metric distance: Is the best metric distance to be used with NMF
when occlusions are not present and EMD can not be used as it requires a
huge amount of computational resources.

3. Cosine metric: Is the best distance to be used with NMF when occlusions
are present but not vice-versa. That is, if occlusions are not present is
the worst metric distance. We tested two kinds of occlusions: handmade
occlusions (digits) and real world occlusions (faces with sunglasses and a
scarf).
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4. Good performance of NMF with cosine metric in front of occlu-
sions: The cosine metric in conjunction with NMF performs better than a
commercial face recognition system, the Facelt. This confirms the adapt-
ability of NMF + Cos for scenarios such as recognition of faces with the
presence of natural occlusions.

¢ Robustness of NMF in front of occlusions in a classification context:
NMF is a parts-based representation that has not been used for classification
purposes. In this thesis, we performed several experimental tests with NMF
and our main statement is that NMF is inherently robust under the presence
of occlusions. This was a well-known fact in the context of data representation
but we show that is also true in the context of object classification.

Apart of using PCA and NMF/WNMF which are based on linear data transfor-
mations and produce compact representations with usually less dimensions than the
original high dimensional spaces, we introduce the Independent Component Analysis
(ICA). ICA is used to transform a space in order to obtain reliable probability density
functions. So that, ICA adapts a space in order to obtain independent components
and estimate probability density functions for each independent component. In this
context, we then propose to take advantage of independent component analysis in the
context of statistical pattern classification. Since Bayesian classification makes use of
the conditional densities, the choice of any representation oriented to simplifying den-
sity estimation necessarily implies the use of class-conditional representations. In this
case, and under certain assumptions, independent component analysis can provide
a framework where conditional independence can be assumed. Naive Bayes appears
as the naturally associated classifier for this situation. In this sense, the following
contribution has been made,

e A class-conditional representation is exposed to deal with different data classes.
When independent component analysis is introduced as a representation, we ob-
tain the context we named as class-conditional independent component analysis
(CC-ICA). Adapting such a framework to classification results in a modified
naive Bayes classifier. An experimental test showing the outperformance of
CC-ICA is presented.

All these contributions are based on schemes which work with local features. The
spatial arrangement of these local features is not taken into account. So that, all
these approaches inherently contain a high degree of ambiguity. The second part of
this thesis focuses on a possible new framework to deal with local features and take
into account the neighborhood of each local feature since we want to decrease the level
of ambiguity. We introduced the concept of k-tuple in order to represent the local ap-
pearance of an object at k different keypoints. The real contribution of this framework
is the use of Independent Component Analysis to obtain factored joint distributions
of tuples and work with a computationally tractable scheme. Several experimental
tests have been performed and the method is specially adapted to cluttered environ-
ments with the presence of occlusions. Furthermore, the number of possible k-tuples
is extremely huge and we propose to select a relevant subset of them. However, we
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should be careful in order to select which tuples are used to learn the joint factored
distributions. In this sense, we propose that,

e Objects which can suffer from occlusions should be represented using k-tuples
with neighbor points in order to mantain the internal object structure. Then,
recognition and detection will be robust under the presence of occlusions.

e Object which will not suffer from occlusions can be represented using k-tuples
with distant points. Then, we will be modeling local features considering the
whole structure of the object and it will not be robust under the presence of
occlusions.

5.2 Future Work

The work covered in this thesis provides a number of areas of interest that may be
worth further investigation. Among others, it may be interesting to consider the fol-
lowing lines for further research:

Non-negative Matrix Factorization issues

Non-negative Matrix Factorization (NMF) has been extended to its weighted version
(WNMEF) in order to decrease the level of redundancy obtained with NMF when ap-
plied to data which is not uniformly distributed. Even the outperformance of WNMF
with respect to NMF, there are several issues that remain to be dealed. For example,

e Theoretical improvement of WNMF with respect to NMF. In this thesis, we
have exposed WNMF as an alternative scheme to NMF which provides a better
solution if the subspace dimension is correctly chosen. A good number of experi-
mental tests have been done demonstrating this fact but it remains a theoretical
approach to the reasons of this improvement.

e The convergence speed of NMF/WNMF should be improved. PCA is a direct
scheme which is based on the eigenvectors and eigenvalues of the covariance
matrix but NMF/WNMF is an iterative process and it requires a huge number
of computational resources. We believe that the convergence speed could be im-
proved by using non-random matrices as a starting point for NMF/WNMF. For
example, we can use the input data vectors to extract some relevant information
and use this information to initialize the input data matrices for NMF.

e It is stated in this thesis that NMF is well suited for complex data classes and
PCA for simple data classes. However, it remains an exhaustive study reflecting
this statement and explaining specifically what means complex data classes.

Independent Component Analysis issues
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In general, relaxing the assumptions of class-conditional independent component anal-
ysis involves using a representation other than ICA for each class. A natural extension,
would be to make use of mixtures of independent component analysers. And another
possible extension would be to contemplate nonlinear independent component analy-
sis.

The close link between sparsity and independence could allow to hold the inde-
pendence assumption in the presence of sparse data not necessarily obtained through
independent component analysis. As noted, NMF is a sparse model and prior assump-
tions on this model can force sparsity in the encodings. In this case, if an adequate
density model is considered for the sparse and non-negative data, statistical classifi-
cation could be simply extended to the non-negative context. This would combine
the advantages of NMF as a representation with the advantages of statistical classi-
fieres. It would be intetersting the use of a Class-Conditional Non-negative Matrix
Factorization (CC-NMF).

Factored Joint Distributions of k-tuples issues

We proposed a joint distribution of k-tuples in order to model the spatial arrangement
as well as the local information of the local features of objects for object detection
and recognition purposes. The model factorization is achieved using Independent
Component Analysis (ICA). However, it would be interesting to use NMF in such a
context. And this would be possible if we are able to find an adequate density model
for NMF.

Extracted local features correspond to local jets and local color information. How-
ever, we should test this framework using more relevant local information and really
high dimensional features. But, in doing so, the computational costs of the joint
distributions would also be increased. As example, instead of using the mean color
descriptor of each RGB channel, we can use local color histograms.

A good topic to be dealed in such a framework is related to the tuple selection. As
tuples of keypoints is the input source of information, they should be carefully selected.
We show a first approach where tuples with neighbor keypoints, tuples with distant
keypoints and tuples chosen at random are considered. However, it would be more
interesting to chose those tuples that are discriminant for object detection/recognition
purposes.



Appendix A

Principal Component Analysis

This appendix contains a detailed description of Principal Component Analysis (PCA).

A.1 PCA by Maximizing Variance

First we will derive PCA by maximizing the variance in the direction of principal
vectors. Let us suppose that we have N M-dimensional vectors x; aligned in the
data matrix X € RM*N_ Let u be a direction (a vector of length 1) in ®M. The
projection of the j-th vector x; onto the vector u can be calculated in the following
way:

aj =<xj,u>=ulx; = Zuzm” (A1)

We want to find a direction u that maximizes the variance of the projections of all
input vectors x;, j = 1,... V.
It follows that the mean of the projections is

1 1
a = N ' a; = N ZZuz:ﬂ” = Zuz,uz (A2)

j=1 j=1 \i=1 i=1
1N M 2 | NoM M
= NZ (ZU@lEz]) = NZZZUW’JUWU =
j=1 \i=1 j:l i=1 I=1
M M
= ZZ U1%<Xzaxl >= ZZuczlul—u Cu (A.3)
i=1 [=1 i=1 j=1

LSubscript x; denotes i-th column vector in the matrix X, while x;. denotes i-th row vector in
the matrix X.
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Here, p; is the mean of the i-th row in the data matrix X and Z;; is the value of x;;
with subtracted p;. If the vector u contains all row means, thus

N
1
then?
X=X—pl,y (A.5)
and C is the covariance matrix of X, thus
Cc= LxxT (A.6)
=5 .

Our goal is to maximize o under the constraint that || u ||= 1. Therefore, by using
the technique of Lagrange multipliers, we have to maximize the function

M M M
F(u;)) =ul'Cu—- Aulu-1) = Z Zuicijuj - A (Z u? — 1) (A7)
i=1 j=1 i=1

A closed form solution of this maximization problem can be obtained in the fol-
lowing way:

oF M M
Q_W:chjuj-{_zuicil_)aul = 0;1l=1...M
j=1 i=1
M
chiui = )\ul; l=1...M
i=1
Cu = J\u (A.8)

Therefore, to find u and A that maximize (A.7) we have to compute the eigenvectors
and the eigenvalues of the covariance matrix C. The largest eigenvalue equals the
maximal variance, while the corresponding eigenvector determines the direction with
the maximal variance.

By performing eigenvalue decomposition (EVD) or singular value decomposition
(SVD) of the covariance matrix C we can diagonalize C:

C =UAUT (A.9)
in such a way that the orthonormal matrix U = [uy,...,ux] € RM*N contains the
eigenvectors uy, ..., uy in its columns and the diagonal matrix A € V>V contains
the eigenvalues A1,..., Ay on its diagonal. We will assume that the eigenvalues and

the corresponding eigenvectors are arranged with respect to the descending order of

21,7« n denotes a matrix of the dimension M x N, where every element equals 1.
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the eigenvalues, thus Ay > Ay > ... > Ay. Therefore, the most of the variability of the
input random vectors is contained in the first eigenvectors. Hence, the eigenvectors
are called principal vectors (also principal azes or principal directions).

This approach to calculation of principal vectors is very clear and widely used.
However, if the size of the data vector M is very large, which is often the case in
the field of computer vision, the covariance matrix C € RM*M (see equation A.6)
becomes very large and eigenvalue decomposition of C becomes unfeasible. If the
number of input vectors is smaller than the size of these vectors (N < M), PCA can
be sped up using the following method proposed by Murakami and Kumar [92].

Instead of the covariance (outer product) matrix C € ®M*M the inner product
matrix C' € RV*N (divided by the number of the input vectors) is calculated:

li 15 T~
C = NX X (A.10)

The eigenvalues and the eigenvectors of the covariance matrix C can then be

determined from the eigenvalues A, and eigenvectors uj of the matrix C’ as:

ANi = A (A.11)
W o= ——l i=1...N (A.12)
VN
Note that C' is much smaller than C when N <« M. Thus, the eigendecomposition of

the M x M matrix C has been reduced to the much more feasible eigendecomposition
of the N x N matrix C'.

A.2 Properties of PCA

The orthonormal matrix U containing the principal vectors can serve as a linear
transformation matrix for projection from the high-dimensional input space to the
low-dimensional feature space and vice versa. The columns of U are the basis vectors
of the new low-dimensional coordinate frame expressed with the high-dimensional
coordinates. Thus an input vector can be projected into the principal subspace using
the transformation matrix U7 : RM — RN,

a=UTx (A.13)

Thus, the coefficients a; are computed as the projections of the input image onto each

principal vector:
M

a; =<%,u; >= Y wuydi, j=1...N (A.14)
i=1
All the input vectors contained in the input matrix X can thus be projected as
A = UTX. Since A is an orthonormal transformation of the mean centered X, the
principal components are also centered around zero:

N

1 N 1 1 N
_ L Ts T >
[ia = —;:1: aj = ]§:1jU =U —j§:1x =0 (A.15)
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Now, let us calculate the correlation matrix of A:

1 1 ) ) 1~
Ca=—-AAT = _UTX(UTX)T = UT —XX"TU =
A= N ( ) N

=UTcu=vTuAu'U=A (A.16)

Here, we replaced C with its diagonalized form (A.9) and considered the orthonor-
mality of U (thus UTU = I). Therefore, the covariance matrix of the transformed
data is the diagonal matrix A, which contains the eigenvalues on its diagonal. This
fact has two important implications. First, it proves that the transformed vectors are
uncorrelated. Thus the redundancy caused by correlation between the input vectors
has been removed. Secondly, it shows that the variance in the direction of the i-th
principal axis (the variance of the i-th principal components) is equal to the i-th
cigenvalue \;, thus + Z;\le aj; = \i.

An important property of the diagonalization (A.9) is that it preserves the trace
of the matrix which is being diagonalized [89]. Since the sum of the diagonal elements
of the covariance matrix is the sum of variances of the input vectors, this implies that
the total variance of the input data has been preserved and equals the sum of all
eigenvalues:

M 1 M
i=1 i=1
N N 1
= Xi=> Na,-:a{: = VAR(A) (A.17)
i=1 i=1

Now we will explain how can U serve as a transformation matrix for projection of the
coefficient vector back into the input space. This operation is called reconstruction.
The coefficient vector a is reconstructed using the transformation matrix U : RY —

RM.
N
y = Ua = E a;ju; (A18)

Jj=1

Since N eigenvectors composing U € RM*N gspan the same subspace in RM as all
N input images composing X € RM*N each input image from X can be perfectly
reconstructed without any reconstruction error. What is more interesting to us, is
how well an input image is reconstructed from a subset of principal components only.

To realize this, we first consider how the variance is distributed across the principal
axes. This distribution is called the eigenspectrum and it is practically a plot of
eigenvalues sorted in decreasing order. A typical eigenspectrum is depicted in figure
(A.1). As one can observe, most of the variance is contained across the first few
eigenvectors. This can also be measured with energy, which is defined as a fraction
of the total variance. The energy contained in the first k eigenvectors can thus be
calculated as

POLEPY (A.19)

eng — N

Zi:l Ai
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The energy plot obtained from the eigenvalues depicted in figure (A.1.a) is shown in
figure (A.1.b). Again, it is evident that most of the energy is contained in a first few
eigenvectors already.

Eigenspectrum Energy distribution
T T T

Eigenvalue
Energy

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Index Index

(a) (b)

Figure A.1: Typical (a) eigenspectrum, (b) energy distribution.

From this we can conclude that we can obtain a good approximation of the input
images by considering only a subset of eigenvectors associated with the largest eigen-
values. Therefore, from now on, we will consider only k, k < N, principal axes, thus
U= [uy,...,u;] € RM*k,

Now, an input vector is projected into the k-dimensional principal subspace using
the transformation matrix U7 : RM — R*:

a=UTx=UT(x—p)

M M
a; =< X,Uj >= Zui]ﬁ:i = Zuw(mz —[Li), Jj= 1...k (A20)
i=1 i=1
and reconstructed using the transformation matrix U : % — M.
k
¥ =Ua= Z a;u;
Jj=1
y=y+nu (A.21)

Thus, an input image is approximated with a linear combination of the first k principal
vectors.

The reconstruction error (residual error) is equal to the difference between the
input and the reconstructed vector:

N k N
e:f(—y:Zajuj —Zajuj = Z a;u; (A.22)
Jj=1 Jj=1

Jj=k+1

The most commonly used error measure is the squared reconstruction error, which
is defined as a square of the length of the residuum. Considering the orthonormality
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of the eigenvectors u; we obtain:

N N
2 - -
e=lel®=I > au;lP= > of (A.23)
j=k+1 j=k+1

Thus, the squared reconstruction error is equal to the sum of squared discarded prin-
cipal components. Since they are usually not known, the expected error can be ap-
proximated with expected values of the variance accross the discarded eigenvectors,
which are equal to the corresponding eigenvalues:

Ele)= )\ (A.24)

The expected error is thus equal to the sum of the discarded eigenvalues. This consid-
eration confirms the fact that by maximizing the variance in the first (non-discarded)
eigenvectors, the squared reconstruction error is being simultaneously minimized.
These two assertions are indeed two main properties of PCA.

Therefore, for a given dimension of a subspace k, PCA finds such principal vectors
w,! = 1...k and coeflicient vectors a; € R*,j = 1...N that minimize the total
squared reconstruction error

M N k 2
e= Z (i“ij - Zuualj> (A.25)

Thus, as an alternative to the maximization of the variance, the principal vectors
and the principal components can be estimated by minimizing the squared recon-
struction error of equation (A.25). This is a nonlinear minimization problem and can
be solved using several proposed algorithms for such a task, e.g., gradient descend
algorithm [36] or neural networks [39]. Alternatively, the minimization can be per-
formed by iterating the two-step procedure where first the coefficients are estimated
and then the principal vectors are computed. Such an algorithm, which was derived
from the probabilistic point of view, can be found in [114].

A.3 Gaussian Interpretation of PCA

In the computer vision literature one can find an interesting work [90] where a direct
connection between Principal Component Analysis (PCA) and the Distance From
Feature Space (DFFS) assuming that the principal subspace can be represented with
a Gaussian distribution. As said before, the principal components obtained using
PCA preserve the major linear correlations in the data and discard the minor ones.
As noted in [90], there are two mutually exclusive and complementary subspaces:
the principal subspace (or feature space) that contains the principal components and
its orthogonal complementary subspace (the one that is spanned with the discarded
components).
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As shown in expression (A.23) and (A.25), the residual reconstruction error is
defined as

N k
ex) =Y a=lx?P-> a (A.26)
j=k+1 i=1

and can be easily computed from the first £ principal components and the L, norm
of the mean-normalized data vector X. The component of x which lies in the feature
space F' is referred to as the ”distance-in-features-space” (DIFS) but is generally not
a distance-based norm, but can be interpreted in terms of the probability distribution
of the eigenvectors in the feature space. The orthogonal subspace (F) is also called
” distance-from-feature-space” (DFFS) which is a simple euclidean distance and is
equivalent to the residual error e(z) in equation (A.26)

An optimal approach for estimating high-dimensional Gaussian densities is to
firstly assume that we have robustly estimated the mean X and covariance X of the
distribution from a given training set. Under this assumption, the likelihood of an
input pattern x is given by

exp [—%(X -x)I'y1(x - %)]
2m)N2|5[1/2

Assuming this Gaussian distribution, the only sufficient statistic for characterizing
this likelihood is the Mahalanobis distance

dx) =%T2" 1% (A.28)

P(x|Q) = (A.27)

where X = x — X. Taking in mind that X is the covariance matrix of our distribution,
we can use the eigenvalues and eigenvectors of ¥ and rewrite ¥ 7! in a diagonalized
form

dix) = %% 'x (A.29)
= xT[@eA"'eT)x (A.30)
= alAla (A.31)

where a = ®T% are the new variables. In other words, a are the eigenvectors of the
covariance matrix ¥. So that, the Mahalanobis distance can also be expressed in
terms of the following sum
N
dx) =32 (A.32)
purll
Usually, when dealing with high-dimensional data vectors, expression (A.32) is
computationally infeasible. We therefore seek to estimate d(x) using only k pro-
jections. Intuitively, an obvious choice for a lower-dimensional representation is the
principal subspace indicated by PCA which captures the major degrees of statistical
variability in the data. Therefore, one can divide the summation into two indepen-
dent parts corresponding to the principal subspace (the first & projections) and its
orthogonal complement subspace (the remaining projections):

k (],2 N CLZ
i=1 =
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In the first summation can be computed by projecting x onto the k-dimensional
principal subspace F' but the remaining terms in the second summation, however,
can not be computed explicitly in practice because of the high-dimensionality of data.
However, the sum of these terms is available and is in fact the DFFS quantity e?(x)
which can be computed from expression (A.26). Therefore, based on the available
terms, we can formulate an estimator for d(x) as follows

4[5

i=k+1

d(x) =

Y

||'Ma

=~
)

N

af () (A.34)

i=1

where the term in the brackets is €2(x), which as we have seen can be computed us-
ing the first k principal components. So that, one can write the form of the likelihood
based on d(x) as the product of two marginal and independent Gaussian densities,

k a? eZ(x
exp (_% Di1 A_l) exp (_ Z(p))
(2m)k/2 Hle )\11/2 |\ 2rp)(N-k)/2

Px|Q) =

= Pp(x|0)Pp(x|) (A.35)

where Pp(x|) is the true marginal density in F-space and Pp(x|Q) is the esti-
mated marginal density in the orthogonal complement F-space. Then, the optimal
value of p can be determined by minimizing a suitable cost function J(p). See [90]
for more information about this minimizing cost function. The optimal weight p* is
determined by [90]

1 N
PN .Z Ai (A.36)
1=k+1

which is simply the arithmetic average of the eigenvalues in the orthogonal subspace
F. Then, we can conclude stating that once we select the k-dimensional principal
subspace F' (as indicated, for example, by PCA), the optimal estimate of the sufficient
statistic d(x) has the form of expression (A.34) with p given by expression (A.36).

One of the typical behaviours in most of the applications it is to simply discard
the F-space component and simply work with Pr(x|Q2). However, the use of the
DFFS metric or equivalently the marginal density Pz (x|{2) is critically imporntant
in formulatin the likelihood of an observation x since there are an infinity of vectors
which are not members of {2 which can have likely F-space projections.

A.4 Applications of PCA

The most famous application of PCA is the dimensionality reduction in order to
formulate the same problem but without noise or with less noise in the data. A
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frequently chosen criterion to decide over the dimensionality consists of thresholding
the distribution of energy (see figure (A.1.b)) in order to preserve a fixed percentage
of the variation. Typical percentages are above 90%. Observing figure (A.1.a) we can
see that small variances in the data provided by small eigenvalues are often associated
to noise. So, under certain simple assumptions, we can state that PCA reduces noise
as well as dimension. Also, notice what happens when there exist eigenvalues taking
zero values. Dropping their corresponding eigenvectors from the PCA bases has no
effect on the mean square error or, what is equivalent, preserves 100% of the data
variation, meaning that dimensionality is reduced and no information is lost.

Another application of PCA is data whitening. To whiten or sphere the data
is to transform the data linearly so the components of the transformed vector are
uncorrelated and have unit variance. The term ’white’ comes from the fact that
the power spectrum of white noise is constant over all frequencies, resembling the
spectrum of white light which contains all colors. Whitening is frequently used as a
preprocessing stage, since it can provide invariance to displacement and scale changes.
Since PCA uncorrelates the data, one of its applications is to perform whitening. It
is also known that statistical independence implies uncorrelation, so PCA can also be
understood as one step towards a representation that yields statistically independent
components [17]. If the data is Gaussian, the resulting components are in effect
independent with unidimensional Gaussian distributions.

Nevertheless PCA is a powerful and simple technique we should not forget the
natural limitations derived from its definition, mainly the fact that PCA fails to
distinguish high order relationships between the data. This fact should be considered
when using PCA as a dimensionality reduction technique previous to classification.
Nevertheless, PCA performs successfully in several problems. Two reasons account
for this achievement: the first is that in practice it is not unfrequent to find noise in
the directions of small variance, the second is that classes are frequently found to be
distributed along the main directions of variance.
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