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Introduction

Differential equations appear in many areas of applied mathematics and physics.
For a 2—dimensional system the existence of a first integral determines completely
its phase portrait. Of course, the more easiest planar integrable systems are the
Hamiltonian ones. The planar integrable systems which are not Hamiltonian can
be in general very difficult to detect. Many different methods have been used
for studying the existence of first integrals for non-Hamiltonian systems based
on: Noether symmetries [7], the Darboux theory of integrability [22], the Lie
symmetries [43, 9], the Painlevé analysis [2], the use of Lax pairs [34], the direct
method [28, 29], the linear compatibility analysis method [49], the Carlemann
embedding procedure [8, 1], the quasimonomial formalism [3], etc. In this work we
are interested in the integrability of the planar polynomial differential systems. For
such systems there are several notions of integrability, as the previous mentioned,

which are not equivalent.

The algebraic theory of integrability is a classical one, which is related with
the first part of the Hilbert’s 16th problem. This kind of integrability is usually
called Darboux integrability, and it provides a link between the integrability of
polynomial systems and the number of invariant algebraic curves they have (see
Darboux [22] and Poincaré [44]).

Jouanolou [31] extended the planar Darboux theory of integrability to polyno-
mial systems in R™ or C", for extension to other fields see [51]. In [4], [15], [17], [21]
and [35], the authors developed the Darboux theory of integrability essentially in
R? or C? considering not only the invariant algebraic curves but also the exponen-
tial factors, the independent singular points and the multiplicity of the invariant

algebraic curves.
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We define a planar polynomial differential system of degree m of the form
t = P(x,y), y = Q(z,y) with z,y € C and t € C or R. Here we want to
study the so called Darbouz integrability for these planar polynomial systems. A
polynomial system is Darboux integrable if it has a first integral or a an integrating
factor given by a Darboux function. In 1878 Darboux [22] showed that planar
polynomial differential systems having an adequate number of invariant algebraic

curves have a first integral which can be constructed using such curves.

The Darboux theory of integrability has been improved since its beginning.
In Chapter 1 we present a survey on the Darboux theory of integrability for the
planar polynomial differential systems. In particular, Darboux showed that for a
planar polynomial differential system & = P(x,y), y = Q(z,y) of degree m with
divergence div(P, Q) which has at least p invariant algebraic curves f; = 0 with

cofactors K; for i« = 1,...,p , satisfying the relation

> AK + p div(P,Q) =0, (1)

i=1
for some \; € C not all zero and p € {0, 1}, there exists a first integral (if p = 0)
or an integrating factor (if p = 1), which can be constructed using the invariant
algebraic curves. Moreover, he showed that relation (1) always occurs with p =0
if p>[m(m+1)/2]+1, and with p=0,1if p > m(m+1)/2.

Now we know that if the number of the invariant algebraic curves is at least
p = [m(m+ 1)/2] + 2, then there is a rational first integral, which means that all
orbits of the system are contained on algebraic curves, for more details see Section
1.3.

We also present the recent extensions of the Darboux theory of integrability
which additionally to the concept of the invariant algebraic curve, incorporate the
notions of the exponential factors, independent singular points, the multiplicity of
the invariant algebraic curves and the invariants, see Theorem 1.7 or [31, 48, 51,
15, 17, 18, 19, 21, 6, 47] . In particular, if the polynomial differential system has
additionally to the p invariant algebraic curves with cofactors K;, g exponential

factors with cofactors L;, and it satisfies

p q
D NKi+ > piL +p div(P,Q) +5 =0, (2)
i=1 j=1
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with A;, ¢; € C not all zero, p € {0,1} and s € C then for s = 0 we obtain a
first integral (if p = 0) or an integrating factor (if p = 1), otherwise we have an
invariant (i.e. a first integral depending on the time). Moreover, the relation (2)
always holds with p = s =0if p+¢g > m(m +1)/2+ 1, and with p = 0,1 and
s=0if p+q>m(m+1)/2. For s # 0 the relation (2) is satisfied with p = 0 if
p+q>m(m+1)/2, and with p = 0,1 if p+ ¢ > m(m + 1)/2 — 1. We remark
that the first integral describes completely the phase portrait, and an invariant

provides information about the asymptotic behavior of the orbits.

In this work we introduce the concept of generalized invariant when p = 1 and
s # 0 and we present the integrability condition (2), in Section 1.3.

Since the existence of invariant algebraic curves is the key point for the ap-
plication of the Darboux theory of integrability we also consider the following

reciprocal question to the Darboux theory of integrability:

QUESTION 1: Given a set of algebraic curves which are the planar polynomial

differential systems having these curves invariant by the flow?

We deal with this question in Chapter 2. Firstly, in Theorems 2.1, 2.2, 2.3 and
finally in Theorem 2.4 we present a complete answer in a generic case. We note that
Theorem 2.4 was announced by Christopher. However, the proof of this theorem
was never published. Independently, Zo}@dek also stated this theorem. However,
he never published his complete proof which is based in analytical arguments. Here
we present a complete algebraic proof of Theorem 2.4. Additionally, we prove that
the generic conditions of the theorem are necessary (see Theorem 2.6). We note
that in Theorem 2.4 it appears a strong relation between the degrees of the curve
and the degrees of the system. This relation is due to the generic nature of the
curves. In particular, when the total degree of the generic curves is the degree of
the system increased by one, then the vector field has a very simple form and it has
always a Darboux first integral. Hence, this relation between the degrees and the
nature of the curves guarantee the Darboux integrability. This result is not true
if the curves are not generic and this is proved in Section 2.3. We note that these
results have been obtained in collaboration with Christopher, Llibre and Zhang,
see [20].

Secondly, in the case where the curves are not generic and their cofactors are



6 CONTENTS

known we present Propositions 2.28 and 2.29 inspired in previous results due to
Erugguin [24] and Sadovskaia [46].

Finally, a more general answer to this question is given by Theorem 2.34 due to
Walcher [50]. Walcher provides the complete expression of the vector fields which
have an arbitrary invariant algebraic curve. Of course, in this theorem there is
no statement about the bounds of the degrees of the polynomials in contrast with
Theorem 2.4. This is due to the fact that the generic conditions are not imposed
in Theorem 2.34.

QUESTION 2: Given a Darboux first integral which are the planar polynomial

differential systems having such a first integral?

In Chapter 3 we present a complete answer to this question through Theorem
3.1.

Additionally, in Corollary 3.2 we show the relation between the total degree of
the curves and the degree of the polynomials which appears in the exponential with
the degree of the system. In Theorem 3.5 we state that a polynomial system has
a Darboux first integral formed by generic curves if and only if the total degree of
the curves is the degree of the system increased by one. We note that this theorem
improves the conditions for the existence of a first integral in the Darboux theory
of integrability using information about the degree and the nature of the invariant
algebraic curves. As far as we know, this is the first time that information about
the degree of the invariant algebraic curves, instead of the number of these curves,

is used for studying the integrability of a polynomial vector field.

In Corollary 3.4 we improve a previous result due to Prelle and Singer [45].
This result will be published in [36].

Prelle and Singer [45], using methods of differential algebra, showed that if a
polynomial vector field has an elementary first integral, then it can be computed
using Darboux theory of integrability. Singer [48] proved that if a polynomial
vector field has a Liouvillian first integral, then it has integrating factors given by

Darboux functions. Some related results can be found in [10].

QUESTION 3: Given a Darboux integrating factor which are the planar polynomial

differential systems having such a Darboux integrating factor?
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We study this question in Chapters 4 and 5.

First, in Theorem 4.1 we provide a connection between the degrees of the
invariant algebraic curves and the number of them in order to decide about the
type of Darboux integrability of the polynomial differential system. This result

improves statement (e) of the Darboux Theorem 1.7.

Second, in Theorem 4.2 we present a general family of polynomial differential
systems having a Darboux function as an integrating factor. Although, it is a large
family of systems, it is not the most general one. We believe that further conditions

should be imposed in order to obtain the complete family of such systems.

Third, we characterize polynomial differential systems having a generic Dar-

boux integrating factor, i.e. an integrating factor formed by generic curves.

In Theorem 4.3 we characterize all polynomial systems with an integrating
factor formed by one irreducible generic curve f = 0, i.e. we characterize all
polynomial systems having an integrating factor of the form f* with A € C. We
know that such systems in general have a Liouvillian first integral. From Theorem
4.3 and its proof we have that depending on the values of \ it appears an additional
invariant algebraic curve or an exponential factor. Moreover, for such systems we
can always obtain a Darboux first integral. We note that the additional invariant
algebraic curve may not be generic with f = 0. An interesting point of this theorem
is the relation between the degrees of the curves and the degrees of the polynomials
which appear in the exponential factors with the degree of the system. Hence, we
have that the sum of all these degrees is the degree of the system increased by one,
the curves in general are not generic. Moreover, such systems have a Darboux first

integral. This is due to the existence of a generic integrating factor.

Walcher in Theorem 5.1 characterize all polynomial differential systems with
an integrating factor of the form f~! where f is a curve without singular points.
In Corollary 5.2 we present an easier expression of such vector fields. Additionally,
in Theorem 5.3 imposing the generic conditions for the reducible factors of f we
obtain an expression of the vector field similar to the one presented in Theorem
5.1. Moreover, in Theorems 5.1 and 5.3 we point out the different use of the generic

conditions.
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In Theorem 5.3 we characterize polynomial differential systems having a generic
integrating factor. Similar to Theorem 4.3 it appears an additional invariant al-
gebraic curve which may not be generic with the other curves. Additionally, the
total degree of the curves is the degree of the system increasing by one. In general,
a polynomial system having a Darboux integrating factor it has always a Liouvil-
lian first integral and does not always have a Darboux first integral, (see Example
4.11). However, under the assumptions of Theorem 5.3 not only we can guarantee
the existence of a Darboux first integral but also we provide an algorithm in order
to construct it. We note that there are some values of the parameters which are

not covered by Theorem 5.3.

Rudolf Winkel in [52] conjectured: For a given algebraic curve f =0 of degree
m = 4 there is in general no polynomial vector field of degree less than 2m — 1

leaving invariant f = 0 and having exactly the ovals of f = 0 as limit cycles.

In the appendix we show that this conjecture is not true.
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Chapter 1

The Darboux theory of
integrability

1.1 Introduction

In 1878 Darboux [22] showed how can be constructed the first integrals of planar
polynomial differential systems possessing sufficient invariant algebraic curves. In
particular, he proved that if a planar polynomial differential system of degree m
has at least [m(m+1)/2] +1 invariant algebraic curves, then it has a first integral,
which has an easy expression in function of the invariant algebraic curves. The
version of the Darboux theory of integrability that we summarize in Theorem
1.7, improves Darboux’s original exposition because we also take into account the
exponential factors, the independent singular points, the rational first integrals,

and the invariants.

Good extensions of the Darboux theory of integrability to polynomial systems
in C" are due to Jouanolou [31] and Weil [51]. In [15], [17], [18], [19], [21] and
[47] the authors developed the Darboux theory of integrability essentially in C?
considering not only the invariant algebraic curves but also the exponential fac-
tors, the independent singular points and the multiplicity of the invariant algebraic
curves. Recently, in [40] the Darboux theory of integrability is extended to reg-
ular algebraic hypersurfaces (see also [38]). Moreover, Singer in [48] proved that

11
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Darboux theory of integrability allows to compute the Liouvillian first integrals
of polynomial differential systems. In [6] were introduced the Darboux invariants,

here we introduce the generalized Darboux invariants, see Section 1.3.

The Darboux theory of integrability works for complex polynomial ordinary
differential equations (and of course in particular for the real ones). We consider
the polynomial (differential) system in C? defined by

dx @_

where P and () are polynomials in the variables x and y. The independent variable
t can be real or complex, this is not relevant in the Darboux theory of integrability.
If A is a polynomial, we denote by §A the the degree of the polynomial A. The
degree m of the polynomial system is defined by m = max{JP,dQ} and we write
0X =m.

Associated to the polynomial differential system (1.1) in C? there is the poly-

nomaial vector field

0 0

in C2. Sometimes, the polynomial vector field X will be denoted simply by (P, Q).

In Section 1.2 we present the basic notions that we will use in this work. The
Darboux Theory of integrability is summarized in Theorem 1.7 and is presented
in Section 1.3. We note that the version of Theorem 1.7 that we provide here is
original on the statements about the Darboux invariants and on the generalized

Darboux invariants.

1.2 Basic notions

Algebraic curves is the starting point of the Darboux theory of integrability.

An algebraic curve f(x,y) = 0 in C? with f € Clx,y] is an invariant algebraic

curve of a polynomial system (1.1) if

of

f'—Xf—%PJra—y

Q- K, (1.3)
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for some polynomial K € Cl[z,y| called the cofactor of the invariant algebraic
curve f = 0. We note that since the polynomial vector field has degree m, then

any cofactor has at most degree m — 1.

We observe that for the points of the curve f = 0 the right hand side of (1.3)
is zero. This means that the gradient (0f/0x, 0f/0x) is orthogonal to the vector
field (P, Q) at these points. Therefore the vector field (P, Q) is tangent to the
curve f = 0. Hence, the curve f = 0 is formed by trajectories of the vector field

(P, Q). This explains why the algebraic curve f = 0 is invariant under the flow of
the vector field (P, Q).

The following result show that we can reduce the study of the invariant alge-
braic curves, to study the irreducible invariant algebraic curves in Clx,y], (for a

proof see [13]).

Proposition 1.1. Suppose that f € Clz,y] and let f = fi" --- f* be the fac-
torization of f in irreducible factors over Clx,y|. Then for a polynomial system
(1.1), f =0 is an invariant algebraic curve with cofactor Ky if and only if f; =0
is an invariant algebraic curve for each t = 1,...,r with cofactor Ky,. Moreover,
Ki=n Ky +---+n, Ky,

For a given system (1.1) of degree m the calculation of the invariant algebraic
curves is a very hard problem (maybe we could also say that in some cases is
an unrealistic problem) because in general we don’t have any evidence about the
degree of a curve. Hence, for a system of a fixed degree m does not always exist
a bound for the degree of the invariant curves. However, imposing additionally
conditions either for the structure of the system or for the nature of the curves we

can have an evidence of a such a bound.

The following Proposition suggest a bound of the degree of the invariant curve.
Proposition 1.2. Let f € Clx,y] irreducible satisfying the generic condition (i).
If the curve f = 0 is invariant of the vector field (1.1) of degree m then d f < m+1.
Proof: see Corollary 4 of [13] or Proposition 10 of [14]. ]

A first integral of system (1.1) on an open subset U of C? is a nonconstant

analytic function H : U — C which is constant on every solution curve (z(t), y(t))
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of (1.1) on U. This means that H (z(t),y(t)) = ¢ with ¢ € C for every time ¢ for
which the solution (z(t),y(t)) is defined on U. If we denote by

0 0

x=prL 102

ox * Qay
the vector field associated to system (1.1), then H is a first integral in U if and
only if XH =0 on U. We say that polynomial system (1.1) is integrable on U if

there is a first integral on U.

An analytic function R : U — C which is not identically zero on U is called

an integrating factor of system (1.1) on U if satisfies
XR = —div(X)R,

in the domain of definition of R. As usual the divergence of the vector field X is

defined by
oP 0
div(X) = div(P.Q) = 5+ 8—3.
Suppose that U is simply connected, then the first integral associated to the inte-
grating factor R is given by

1) = [ Reg)Pg)dy+ 1(2), (1.9
satisfying the condition
OH

From the definition of integrating factor R, we have that X (R) = —div(P, Q)R.
This implies that R = 0 is an invariant curve (in general non—algebraic) of X with
cofactor the polynomial —div(P,@). In addition, the existence of two different
integrating factors yields directly to a first integral as we note in the following

proposition.

Proposition 1.3. If polynomial system (1.1) has two integrating factors Ry and
Ry on the open subset U of C?, then on the open set U \ {Ry = 0} the function
R1/ Ry is a first integral.

Another notion strictly connected with the one of the integrating factor is the

notion of the inverse integrating factor.
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Let R : U — C an integrating factor of system (1.1) and W = U \ {R = 0}.
We define V- =1/R : W — C as an inverse integrating factor of system (1.1). The

inverse integrating factor V satisfies the linear partial differential equation
X(V) =div(P,Q)V. (1.6)

From the definition of the inverse integrating factor V', we have that V' = 0 is
an invariant curve (in general non-algebraic) of X with cofactor the polynomial
div(P, Q).

The inverse integrating factor of a polynomial system (1.1) contains a lot of
useful information. On one hand using relation (1.4) yields into the expression
of a first integral in a simple connected open set and on the other hand, the set
{V = 0} contains all the limit cycles which are in W, see [27]. Moreover, in [10],
it has been proved the local existence and the uniqueness of an analytic inverse
integrating factor under adequate assumptions. From [10] and [11], it follows, in
general, that it is more easy to look for an expression of the inverse integrating

factor than one of the integrating factor or of the first integral.

Another useful notion in the Darboux theory of integrability is the notion of

an exponential factor and is due to Christoper, [17].

Let h, g € C|x, y] be relatively prime in the ring C[z, y|. The function exp (g/h)
is called an ezponential factor of the polynomial system (1.1) if for some polynomial

K € Clz,y] of degree at most m — 1 it satisfies the equation

X (eXp (%)) — K exp (%) . (1.7)

We say that K is the cofactor of the exponential factor exp (g/h).

Proposition 1.4. If exp(g/h) is an exponential factor with cofactor K for a
polynomial system (1.1) and if h is not a constant, then h = 0 is an invariant

algebraic curve with cofactor Ky, and g satisfies the equation Xg = gKp, + hK.

We should note that exponential factors of the form exp(g/h) (respectively
exp(g)) appear when the invariant algebraic curve h = 0 (respectively the invariant
straight line at infinity when we projectivize the vector field X) has geometric

multiplicity larger than 1, for more details see [21].
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Real polynomial systems are very special because whenever they have a com-
plex invariant algebraic curve or a complex exponential factor they also have as
invariant the conjugate ones as we note in the following propositions (for a proof
see [19]).

Proposition 1.5. For a real polynomial system (1.1), f = 0 is a complex invariant
algebraic curve with cofactor K if and only if f = 0 is a complex invariant algebraic
curve with cofactor K. Here conjugation of polynomials denotes conjugation of the

coefficients of the polynomials.

Proposition 1.6. For a real polynomial system (1.1) the complex function exp (g/h)
1s an exponential factor with cofactor K if and only if the complex function exp (g/B)

is an exponential factor with cofactor K.

Hence, for real polynomial systems the Darboux integrability maybe forced by

the existence of complex invariant algebraic curves or complex exponential factors.

An invariant of a real polynomial system (1.1) in the open subset U of C? is a
non—constant analytic function I in the variables z, y and ¢ such that I(z(t), y(t),t)

is constant on all solution curves (x(t),y(t)) of system (1.1) contained in U.

For a polynomial differential system the existence of a first integral H(z,y)
implies that drawing the curves H(x,y) =constant we can describe completely the
phase portrait of such a system. While the existence of an invariant will provide
information about the a— or the w-limit of the orbits of the system, where the

time ¢ is real.

The existence of singular points improve the original version of Darboux The-
orem 1.7, see [15]. We denote by C,,_1[x,y] the space of all complex polynomi-
als of degree m — 1 and and we note that dim¢ C,,,_1[z,y] = m(m + 1)/2. Let

m—1
K(x,y) = Z aijr'y’ € Cp1[z,y]. We consider the isomorphism
i+j=0

K — (GOO, a10, Aol ---5 Am—1,0, Am—21,---, a&m—l):
i.e. we identify the linear vector space C,,_;[r,y] with C™(m+1)/2,

We say that r singular points (zy,yx) € C?, for k =1,...,r, of a real polyno-

mial system (1.1), are independent with respect to C,,_1[z, y| if the intersection of
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the r hyperplanes

m—1

i, 7 _
g a;;xy;. = 0, k=1,...,r,
i+§=0

in C™(m+1/2 is a linear subspace of dimension [m(m +1)/2] — 7.

We note that Bezout Theorem [25] guarantee that the maximum number of
complex isolated singular points of a polynomial system (1.1) is m?, and the max-
imum number of complex independent isolated singular points of the system is
m(m +1)/2 < m? for m > 2.

A singular point (xg, o) of a polynomial system (1.1) is weak if div(P, Q)(xo, yo) =
0.

1.3 The method of Darboux

The presentation of the Darboux theory of integrability can be summarized in
Theorem 1.7 and as far as we know is the most new version. This version is
partially original on his statements about the Darboux invariants and original on
the generalized Darboux invariants. The other statements are well known and we
will not prove them, for a proof see, for instance, [19]. In Theorem 4.1 we obtain
further improvements of Theorem 1.7 but for a better presentation of this result

we prefer to present it in chapter 4.

The following theorem it will be mentioned as Darboux theorem.

Theorem 1.7. Suppose that a polynomial system (1.1) of degree m admits p ir-
reducible invariant algebraic curves f; = 0 with cofactors K; fori =1,...,p; q
exponential factors F; = exp(g;/h;) with cofactors L; for j =1,...,q; and r in-
dependent singular points (zy,yx) € C? such that fi(xy,yx) # 0 fori = 1,...,p
and k =1,...r. Of course, every h; factorizes in product of the factors fi,--- fq,
except if it is equal to 1. Let V be a C' solution of equation (1.6) defined in an
open subset W of C* (i.e. V is an inverse integrating factor). Then the following
statements hold.



18

(a)

(b)

(c)

(d)

(f)

The Darboux theory of integrability

There exist A\;, pu; € C not all zero such that

p q
Z)\iKi + Zﬂij =0, (Dy:)
i=1 i=1

if and only if the (multi—valued) function
H(z,y) = fi*... [P e, (1.8)

is a first integral of system (1.1). Moreover, for real systems the function
(1.8) is real.

Ifp+q+r = [m(m+1)/2] + 1, then there exist \;,pu; € C not all zero
satisfying condition (Dy;).

If p+q+r > [m(m+1)/2]+2, then system (1.1) has a rational first integral,
and consequently all orbits of the system are contained in invariant algebraic

curves.

There exist A\;, 1; € C not all zero such that

P q

S MK+ Y Ly + din(P,Q) =0, (D),

i=1 j=1
if and only if the function (1.8) is an integrating factor of system (1.1).
Moreover, for real systems the function (1.8) is real.

If p4+q+1r=m(m+1)/2 and the r independent singular points are weak,

then there exist \;, i; € C not all zero satisfying at least one of the conditions
(Dyi) or (Diy).

There exist \;, u; € C not all zero such that
P q
Z)\’LKZ + Z,U,ij + s = 0, (Dm)
i=1 j=1
with s € C\ {0}, if and only if the (multi—valued) function

I(z,y,t) = f{* - forF{" - Flaexp(st) (1.9)

is an invariant of system (1.1). Moreover, for real systems this function is

real.
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(g9) There exist \;, j1; € C not all zero such that
p q
> NK;+ Y Ly + div(P,Q) + 5 =0, (Dyin)
i=1 j=1

with s € C\ {0}, if and only if the (multi—valued) function
Gla,y,t) =V [i* - fyr F{" - Ffrexp(st), (1.10)

is an invariant of system (1.1). Moreover, for real systems this function is

real.

(h) If p+q = [m(m+1)/2] — 1, then there exist \;, ui; € C not all zero satisfying
at least one of the conditions (Dy;), (Dif), (Din) or (Dygin)-

Proof: For a proof of statements (a)—(e) see [19]. Here we will prove statements

(f) and (h). Statement (g) can be proved in a similar way.

Clearly the function I(x,y,t) is an invariant of system (1.1) if and only if
X (I) =0. Then, from the equalities

X(A1~~f;”F’”~~~F“qexp(st)> =
X . XF
( PR Fé‘qexpst><2)\ fZJrZ > =
( f\l...f;‘pF{“. - Fy exp( st) (Z)\K —|—ZNJL —|—s>,

the first part of statement (f) follows.

Supose now that X is a real vector field. If among the invariant algebraic
curves of X a complex conjugate pair f = 0 and f = 0 occurs, then the invariant

(1.9) has a real factor of the form f*f*, which is the multi-valued real function

[(Re f)* + (Im f)z}ReA exp (—QIm/\arctan <EZ;)) : (1.11)

if ImAIm f # 0. We note that if in (Dy;) the coefficient of a cofactor K or L is A,
then the coefficient of the cofactor K or L is \, because conjugating such equality
K goes over to K and L to L.
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If among the exponential factors of X a complex conjugate pair F' = exp(h/g)

and F = exp(h/g) occurs, the invariant (1.9) has a real factor of the form

(o 2)) (o () - ()

In short, the function (1.9) is real, and the proof of statement (f) is completed.

Let K be the divergence of system (1.1). All polynomials K;, L;, K belong
to the vector space C,,_1[z,y] of dimension m(m + 1)/2. The number s # 0 is
identified with the corresponding polynomial of degree 0 of C,,_1[z,y]. Therefore,
we have p + ¢ + 2 polynomials K;, L;, K and s in C,,_;[z,y]. Since from the
assumptions p+ q + 2 = m(m + 1)/2 — 1, either K is a linear combination of the
polynomials K;,L; and s, or a linear combination of those polynomials is zero. In
the first case if s does not appear in the linear combination, then we obtain the
equality (D;r), and if s appears, then we obtain the equality (Dy;,) perhaps with a
constant times s instead of s. In the second case if s does not appear in the linear
combination, then we obtain the equality (Dy;), and if s appears, then we obtain
the equality (D;,) perhaps with a constant times s instead of s. Hence, statement
(h) is proved. |

The functions (1.9) and (1.10) are called Darbouz invariants and generalized

Darboux invariants, respectively.

A function of the form

\ \ a1 M1 g Hq
11...prexp (h—l) - exXp (h—Z) , (113)

is called a Darboux function. If system (1.1) has a first integral or an integrating
factor of the form (1.13) where f; = 0 and exp (g;/h;) are invariant algebraic curve
and exponential factors of system (1.1) respectively and A;, u; € C, then system

(1.1) is called Darbouz integrable.

From Proposition 1.4 we have that the irreducible factors of the polynomials

h; are some f;’s and we can write

H1 Hq
(@) 8 (20 8) e
e q 1 P

)
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where 1, ,py € C, nq,--- ,n, € N|J{0} and the polynomial g of Clz,y] is
coprime with f; if n; # 0. We denote by [ = max Z n;d fi, 59}.
i=1

Hence, a Darboux function can be written into the form

R(z,y) = 1Al : "prp exp (%) ) (1.14)
L
where fi,-- -, f, are irreducible polynomials in Clz, y], A1, -+ , A\, € C,nq, -+ ,n, €

N{J{0} (i.e. the n; are non—negative integers) and the polynomial g of Clz,y] is
coprime with f; if n; # 0.

The associated first integral to a Darboux integrating factor is called a Liou-

villian first integral.
We observe that the relation
P q
> NK+ Y L+ p div(P,Q) + s =0, (D)
i=1 j=1
with \;,1; € C and p,s € C, contains all the information about the Darboux
theory of integrability for polynomial differential systems in C?. Thus,
(1) If s = p = 0 we obtain condition (Dy;), and we have a Darboux first integral.

(2) If s =0 and p # 0 then condition (D;s) holds, and there exists a Darboux

integrating factor and a Liouvillian first integral.
(3) If s # 0 and p = 0 we obtain relation (D;,), and we have a Darboux invariant.

(4) If s # 0 and p # 0 we have the relation (Dg;,), and there exists a generalized

Darboux invariant.
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Chapter 2

On polynomial systems having

invariant algebraic curves

2.1 Introduction

The concept of the invariant algebraic curves is the key point in the Darboux
theory of integrability. For a given system Darboux note that the existence of the
invariant algebraic curves provides an important information about the behavior
of the system. In that chapter we deal with the following question: Find the

polynomial systems having a given set of invariant algebraic curves?

We say that the algebraic curves f1 = 0,---, f, = 0 are generic if satisfy the

following generic conditions:

(i) There are no points at which f; and its first derivatives are all vanish.
(ii) The highest order terms of f; have no repeated factors.

(iii) If two curves intersect at a point in the finite plane, they are transversal at

this point.

(iv) There are no more than two curves f; = 0 meeting at any point in the finite

plane.

23
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(v) There are no two curves having a common factor in the highest order terms.

First we characterize all the polynomial vector fields having one invariant

generic curve.

Theorem 2.1. Assume that the vector field X = (P, Q) of degree m has an invari-

ant algebraic curve C = 0 of degree ¢, and that C' satisfies the generic condition
(1)
(a) If (C,,Cy) =1, then X has the following normal form:
©=AC — DCy, y= BC+ DC,, (2.1)
where A, B and D are suitable polynomials.

(b) If C satisfies the generic condition (ii), then X has the normal form (2.1)
with a,b < m —c and d < m — c+ 1. Moreover, if the highest order term
C¢ of C' does not have the factors x and y, thena < p—c, b < qg—c and
d < min{p,q} —c+ 1.

We note that the first statement of Theorem 2.1 is referring to polynomial
systems having one curve C' = 0 invariant such that (C,, C,) = 1. If the curve C' =
0 satisfies the generic condition (i), then such systems are given by the expression
(2.1). If additionally the algebraic curve satisfies the generic condition (ii), then we
can provide bounds about the degrees of the polynomials that appears in systems
(2.1). We also note that statement (a) of Theorem 2.1 is very similar to the one of
Theorem 2.34(b) due to Walcher presented in Section 2.5. What actually happens
is that in Theorem 2.34(b) do not appear explicitly the condition (C,,C,) = 1.
However, in that expression of the vector field is used the Hamiltonian removing
the common factors and is denoted as (C,,C,)*. Hence, both Theorems 2.1(a)
and 2.34(b) use exactly the same conditions and they state the same expression
for the vector field.

Now we consider polynomial differential systems having two invariant algebraic
curves satisfying the generic conditions (i) and (iii). In Theorem 2.2(a) we present
the expression (2.2) for such systems. If in addition the curves satisfy the generic
conditions (ii) and (v) then we can obtain bounds for the degree of the polynomials

that appear in system (2.2).
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Theorem 2.2. Assume that C' =0 and D = 0 are different irreducible invariant
algebraic curves of the vector field X = (P,Q) of degree m, and that they satisfy
the generic conditions (i) and (iii).

(a) If (Cy,Cy) =1 and (D, Dy) = 1, then X has the normal form

i =ACD — EC,D — FCD,, 1 =BCD+ EC,D+ FCD,,  (2.2)

(b) If C and D satisfy conditions (ii) and (v), then X has the normal form (2.2)
witha,b<m—c—dande,f <m—-—c—d+1.

The next theorem founds the expressions of the polynomial vector fields having
some invariant algebraic curves. Similar to Theorems 2.1 and 2.2 we need the
generic conditions (i) and (iii). A possible third line needs the condition (iv) in
order to obtain an expression of the vector field. We note that the bounds for the
degrees of the polynomials appearing in expression (2.3) are due to the generic
conditions (ii) and (v).

Theorem 2.3. Let C; =0 fori=1,---,p be different irreducible invariant alge-
braic curves of the vector field X = (P, Q) with 0C; = ¢;. Assume that C; satisfy
the generic conditions (i), (111) and (iv). Then

(a) If (Ciy,Cyy) =1 fori =1,--- ,p, then the vector field X = (P, Q) has the

normal form

p p
fz(B—ZAgzy)HCZ, y=<D+ZA£”>HOZ-, (2.3)
=1 i=1

=1 ¢

where B, D and A; are suitable polynomials.

(b) If C; satisfy the genemc conditions (ii) and (v) then X has the normal form
(2.3) with b,d < m — ch and a; < m — Zcz—kl

i=1 =1

Theorem 2.4 was stated by Christopher and use strongly the generic nature of
the curves. He does not only affirms that the only vector fields having degree less

than the total degree of the invariant algebraic curves minus one is the zero vector
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field, but also provides the simplest form of such systems. Christopher stated this
theorem in several papers without proof like [17] and [33], and it was used in other
papers as [4] and [37]. The proof of Theorem 2.4 that we present here circulated
as the preprint [16] but was never published. Zotadek in [53] (see also Theorem 3
of [54]) stated a similar result to Theorem 2.4, but as far as we know the paper
[53] has not been published. In any case Zol@dek’s approach to Theorem 2.4 is
analytic, while the approach that we present here is completely algebraic [20].

Theorem 2.4. Let f; =0 fori=1,--- ,p, be irreducible invariant algebraic curves
P

in C%, and set v = > 0f;. We assume that all f; satisfy the generic conditions
i=1

(i)—(v). Then any polynomial vector field X = (P, Q) of degree m tangent to all

fi = 0 satisfies one of the following statements.

(a) If r <m+1 then

X=Y (H fz) + Zh I 5| x. (2.4)

j=1
J#

where Xy, = (— fiy, fiz) is a Hamiltonian vector field, the h; are polynomials
of degree no more than m —r + 1, and the Y is a polynomial vector field of

degree no more than m — r.

(b) If r =m +1 then

p p

X:Zai H fi | X (2.5)
=1 -
i

with o; € C.

(c) If r >m+1 then X = 0.

Theorems 2.1, 2.2 and 2.3 and 2.4 will be proved in Section 2.2.

Statement (b) of Theorem 2.4 yields to a corollary due to Christopher and
Kooij [33]. They showed that system (2.5) has the integrating factor (f; - -- fp)fl,

and consequently the system is Darboux integrable.
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Proposition 2.5. Under the assumptions of Theorem 2.4(b) a polynomial system
(2.5) has an integrating factor of the form (fi--- f,)~" and a first integral of the

A A
form fi* - fp.

The following result shows that the generic conditions are necessary in order
that the statements of Theorem 2.4 hold [20].

Theorem 2.6. If one of the conditions (i)-(v) of Theorem 2.4 is not satisfied,
then the statements of Theorem 2.4 do not hold.

We prove Theorem 2.6 in Section 2.2.

From Theorem 2.4(b) and from Proposition 2.5 we have that the vector field

X satisfying the generic conditions (i)—(v) and » = m + 1 is Darboux integrable.

In Section 2.3 we provide two examples of polynomial systems satisfying all
assumptions of Theorem 2.4 with r» = m + 1 except either (ii) or (iii) and which
are not Darboux integrable. Until now there are very few proofs of polynomial
systems which are not Darboux integrable, see for instance Jouanolou [31] and
Moulin Ollagnier et al [42].

Theorem 2.7. There are values of the parameters a and b for which system

T =y(lax — by +b) + 2> +y* — 1,

§ = by — 1)+ aly? — 1), (26)

15 not Darboux integrable.

In Section 2.4 we deal with systems having some arbitrary invariant algebraic
curves when their cofactors are known, see Propositions 2.28 and 2.29. These

results are inspired in previous results due to Erugguin [24] and Sadovskaia [46].

In general, if the curves are arbitrary, we cannot guarantee any relation be-
tween the degree of the system and the degree of the curves. Additionally, due to
Proposition 2.6 the form of the polynomial systems is not controlled by Theorem
2.4.

We dedicate the last section of this chapter to the presentation of a result

due to Walcher [50]. Thus, Theorem 2.34 provides the complete expression of the
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vector fields which have an arbitrary invariant algebraic curve. Of course, in this
theorem there is no statement about the bounds of the degrees of the polynomials

since the generic conditions are not imposed.

2.2 Proofs of Theorems

In what follows if we have a polynomial A we will denote its degree by a. If we
do not say anything we denote by C° the homogeneous part of degree ¢ for the
polynomial C'.

Also we should use intensively the Hilbert’s Nullstellensatz property (see for in-
stance, [25]):

Set A, B; € Clx,y| fori=1,--- ,r. If A vanishes in C* whenever the poly-

nomials B; vanish simultaneously, then there exist polynomials M; € Clx,y] and

a nonnegative integer n such that A" = > M;B;. In particular, if all B; have no

i=1

common zero, then there exist polynomial M; such that > M;B; = 1.
i=1

In order to proof Theorem 2.1(b) we should use the following Lemma.

Lemma 2.8. If C° has no repeated factors, then (C,,Cy) = 1.

Proof: Suppose that (Cy,Cy,) # 1. Then there exists a polynomial A nonconstant
such that A|C, and A|C,. Here A|C, means that the polynomial A divides the
polynomial C,. Therefore, A*|(C°), and A*|(C°),. By the Euler theorem for ho-
mogeneous polynomials we have that (C°), +y(C°), = cC¢. So A*|C°. Since A®,
(C94, (C°), and C° are homogeneous polynomials of Clz,y] and A® divides (C°),,
(C°), and C°, the linear factors of A* having multiplicity m, must be linear factors
of C'° having multiplicity m + 1. This last statement follows easily identifying the
linear factors of the homogeneous polynomial C°(x,y) in two variables with the
roots of the polynomial C¢(1, z) in the variable z. Hence, A® is a repeated factor

of C*. It is in contradiction with the assumption. [

Proof of Theorem 2.1: (a) Since there are no points at which C, C, and C,

vanish simultaneously, from Hilbert’s Nullstellensatz we obtain that there exist
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polynomials E, F' and G such that

EC,+ FCy,+GC =1. (2.7)
As C satisfies equation (1.2), we get from (1.2) and (2.7) that

K =(KE+GP)C, + (KF+ GQ)C,.
Substituting K into (1.2), we get
[P — (KE+ GP)C]C, = —[Q — (KF 4+ GQ)C]C,.
Since (Cy, Cy) = 1, there exists a polynomial D such that
P—(KE+GP)C =-DC,, Q — (KF+GQ)C = DC,.

This proves that X takes the form (2.1) with A= KE+ GP and B = KF + GQ.

(b) From (a) and Lemma 2.8 we get that the vector field X has the normal form
(2.1). Without loss of generality we can assume that p < g.

We first consider the case that C¢ has neither factor x nor y. So we have
(C°,(C%),) =1and (C° (C°),) = 1, where (C°), denotes the derivative of C° with
respect to x. In (2.1) we assume that a > p — ¢, otherwise the statement follows.
Then d = a + 1. Moreover, from the highest order terms of (2.1) we get

Aacc _ Da—}-lc;—l’

where C¢™" denotes the homogeneous part with degree c—1 of C,,. Since (C¢, C5™') =

1, there exists a polynomial F' such that
At = FC;‘l, Dt = Fee.

In (2.1) we replace A by A—FC, and D by D — FC| so the degrees of polynomials
under consideration reduce by one. We continue this process and do the same for

y until we reach a system of the form
&= AC — DCy, y= BC+ EC,, (2.8)

witha <p—c,d<p—c+1,0<g—cande < qg—c+ 1. Since C = 0 is an

invariant algebraic curve of (2.8), from (1.2) we get

C(AC, + BC,) + C,C,(E — D) = KC.
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This implies that there exists a polynomial R such that £ — D = RC', because C

with C, and C} are coprime.

If e > d, then r = ¢ — ¢. We write BC + EC, = (B + RC,)C + DC, and
denote B + RC, again by B, then system (2.8) has the form (2.1) where A, B and
D have the required degrees.

If e < d, then r = d —c. We write AC — DC, = (A+ RC,)C — EC, and
denote A + RC, again by A, then system (2.8) has the form (2.1) where A, B and
E instead of D have the required degrees. This proves the second part of (b).

Now we prove the first part of (b). We note that even though C¢ has no
repeated factor, C¢ with C~! or C¢~' may have a common factor in z or y (for
example C? = (2% + y?), C* = y(2? +y?) or C* = zy(2® +y?)). In order to avoid
this difficulty we rotate the initial system slightly such that C'¢ has no factors in x
and y. Then, applying the above method to the new system we get that the new
system has a normal form (2.1) with the degrees of A, B and D as those of the
second part of (b).

We claim that under affine changes system (2.1) preserves its form and the
upper bound of the polynomials, i.e. a,b < m —cand d < m —c+ 1. Indeed,
using the affine change of variables u = a1z + by + ¢; and v = asx + boy + ¢ with

a1by — asby # 0, system (2.1) becomes
U= (alA + blB)C - (CleQ - &le)DCv, V= (CLQA + bgB)C + (a1b2 - agbl)DCu.

Hence, the claim follows. This completes the proof of (b), and consequently we

have the proof of the theorem. |

Proof of Theorem 2.2: Since (C, D) = 1, the curves C' and D have finitely many
intersection points. By assumption (i) at each of such points there is at least one
non—zero first derivative of both C' and D. In a similar way to the proof of the
claim inside the proof of Theorem 2.1, we can prove that under an affine change of
the variables, system (2.2) preserves its form and the bound for the degrees of A,
B, E and F. So, we rotate the initial system slightly such that all first derivatives

of C'and D are not equal to zero at the intersection points.

From the Hilbert’s Nullstellensatz, there exist polynomials M;, N; and R;,
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1 = 1,2 such that
M,C+ N\D+ RyD, =1, MC+ NoD+ RyCy = 1. (2.9)
By Theorem 2.1 we get that
pP=AC-FEC,=GD—-FD,, (2.10)

for some polynomials A;, F;, G; and F;. Moreover, using the first equation of
(2.9) we have Fy = SC+TD+UC, for some polynomials S, T"and U. Substituting
F) into (2.10) we obtain that

(A, +SD,)C+ (-G, +TD,)D+ (-E,+UD,)C, =0. (2.11)
Using the second equation of (2.9) and (2.11) to eliminate C, we get
—-FE,+UD,=VC+WD, (2.12)
for some polynomials V' and W. Substituting (2.12) into (2.11), we have
(Ay+SD,+VC,)C=(G,—-TD,—WC,)D.
Since (C, D) = 1, there exists a polynomial K such that
Ay +SD,+VC, =KD, Gy—TD,—WC,=KC. (2.13)
Substituting F; of (2.12) and A; of (2.13) into (2.10), then we have
P=KCD-SCD,+WwWC,D—-UC,D,,. (2.14)

Similarly, we can prove that there exist some polynomials K’, S’, W' and U’ such
that
Q=KCD+SCD,-W<C,D+UC,D,. (2.15)

Since C' is an invariant algebraic curve of X = (P,Q), we have that PC, +
QC, = KcC for some polynomial K¢. Using (2.14) and (2.15) we get

Kc.C = C[D(KC,+ K'C,) — SC,D, + S'C,D,]
+C,C,y [D(W — W) = UD, + U'D,] .
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As C, C, and O, are coprime, there exists a polynomial Z such that
DW-w'-UD,+U'D, =ZC. (2.16)
Substituting the expression DW — UD,, into (2.14), we get

P=KCD - SCD,+W'C,D —U'C,D, + ZCC,, (2.17)

Since D = 0 is an invariant algebraic curve of X, we have PD,+QD, = KpD
for some polynomial Kp. Using (2.15) and (2.17) we get

KpD = D[C(KD,+ K'D,)+W'(C,D, — C,D,)]
+D,[CD,(-S+ S+ U (C.D, —C,D,)+ ZCC,].

As D and D, are coprime, there exists a polynomial M such that
cD,(-S+S")+U' (C.D,—-C,D,)+ ZCC, = MD. (2.18)

The curves C and D are transversal implies that C', D and C, D, — C, D, have no
common zeros. From Hilbert’s Nullstellensatz, there exist some polynomials Mj,
N3 and Rj3 such that

M3C + N3D + R3 (C,D, — C,D,) = 1. (2.19)

Eliminating the term C,D, — C,D, from (2.18) and (2.19), we obtain that U’ =
IC + JD for some polynomials I and J. Hence, equation (2.18) becomes

ClI(C.D,—CyD,)+ Dy(=S+5")+ ZC,)
+D[J(C,D, — C,D,) — M] = 0.

Since (C, D) = 1, there exists a polynomial G such that

M = J(C.D, — C,D,) + GC,
1(¢.D,—C,D,)+ D,(-S+S)+ ZC, = GD.

Substituting ZCy — SD, and U’ into (2.17) we obtain that

P=(K+G)CD—(IC, + 5)CD, + (W' — JD,) DC,.
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This means that P can be expressed in the form (2.14) with U = 0.

Working in a similar way, we can express () in the form (2.15) with U’ = 0.
Thus, (2.16) is reduced to D(W — W') = ZC'. Hence, we have W = W'+ HC for
some polynomial H. Consequently, Z = HD. Therefore, from (2.18) we obtain
that CD,(—S+S5") = D(M —HCC,). Since (C,D) =1 and (D, D,) = 1, we have
S = S5"+4 LD for some polynomial L. Substituting W and S into (2.14) we obtain
that P and @ have the form (2.2). This proves statement (a).

As in the proof of Theorem 2.1 we can prove that under suitable affine change
of variables the form of system (2.2) and the bound of the degrees of the polyno-
mials A, B, F and F are invariant. So, without loss of generality we can assume

that the highest order terms of C' and D are neither divisible by x nor y.

By the assumptions, the conditions of statement (a) hold, so we get that X
has the form (2.2). If the bounds of the degrees of A, B, E and F' are not satisfied,
we have by (2.2) that

A°CeD? — EeCe DY — FICeDI =0,

2.20
B*CeD? + E°Ce' D 4 FfCeDI-! =0, (2.20)

We remark that if one of the numbers a4+c+d, e+c—1+d and f+c+d—1is less
than the other two, then its corresponding term in the first equation of (2.20) is
equal to zero. The same remark is applied to the second equation of (2.20). From
the hypotheses it follows that C'* and C;fl are coprime, and also D? and szl,
and C¢ and D?, respectively. Hence, from these last two equations we obtain that
there exist polynomials K and L such that £¢ = KC¢, Ff = LD?, and

A" = KCy '+ LDy, B =—-KCg ' — LDy

We rewrite equation (2.2) as

i=(A—-KC,—LD,)CD — (E — KC)C,D — (F — LD)CD,,
j=(B+KC,+ LD,)CD + (E — KC)C,D + (F — LD)CD,.

Thus, we reduce the degrees of A, B, E and F in (2.2) by one. We can continue

this process until the bounds are reached. This completes the proof of statement

(b). i
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Proof of Theorem 2.3: We use induction to prove this Theorem. By Theorems 2.1
and 2.2 we assume that for any [ with 2 <[ < p we have

l ACi\ T : AC\ 1
P:Z:(Bi_ C,-y>goi’ Q:;(Di+ C )gci;

i=1

where Z B; = B and Z D; = D. Since Cj41 = 0 is an invariant algebraic curve,
=1
from Theorem 2.1 we get that there exist some polynomials £, G and H such that

I
A;C;
P = Z(Bi_ Oy)HC EC11 — GClyry,

i=1

!
AOZ;B
Q = Z(DH‘ . >HC HCi41 + GOl .

i=1 v

(2.21)

Now we consider the curves

l
I[] ¢.=0, =1L

i=1
LF g
From the assumptions we obtain that there is no points at which all the curves
K; =0 and Cj;; = 0 intersect. Otherwise, at least three of the curves C; = 0 for
1 =1,---,1l+ 1 intersect at some point. Hence, there exist polynomials U and V}
fori=1,--- [ such that

l
UCi+ Y ViK;=1. (2.22)
i=1

Using this equality, we can rearrange (2.21) as

l
(E=GUCl1y) Cr = Y _(BiCi — AiCyy + GViCiiny) K,
e (2.23)
(H+GUC1,)Cryr = Z (D;C; + AiCiyy — GViCii1 1) K.

=1

Using (2.22) and (2.23) to eliminate C4; we obtain that

I l
E—-GUCi1y = Z LK;, H+GUCi, = Z JiK,
i—1 i1
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for some polynomials I; and J;. Substituting these last equalities into (2.23), we

have
l

Y (BiCi = AiCiy + GViCyay — 1,Cii) K = 0,
e (2.24)
Z (DiCi + AiCip — GViClyrx — JiCria) Ki = 0.
i=1
It is easy to check that the expression multiplying K; in the two summations of
2.24) are divisible by C;. Hence, there exist polynomials L; and F; fori=1,--- 1
( y : poly L
such that
B,C; — A,Cyy + GV,Cay — I,Cyw = LGy, (2.25)
D;C; + AiCip — GViCii1p — JiCin = FCi. .

! !

So, from (2.24) we get that > L; = 0 and > F; = 0. This implies that (2.21) can
i=1 i=1

be rewritten as

l l
P=) ((Bi—L)Ci— ACy) Ki, Q=) ((C;i— F)Ci+ AiCi,) K;. (2.26)
i=1 =1

7

Moreover, we write (2.25) in the form

(B; — L;))C; — AiCyy = [,Cr1 —GViCiiy = P, (2.27)
(D, — F,))C; + AiCipy = JiClii +GViCip, = Q. '
It is easy to see that C; and Cj,; are invariant algebraic curves of the system

T = P,y = Q;. So, from statement (a) of theorem 2.2 we can obtain that

P, = (B — L;)C; — AiCyy = X,CiCryy — YiCiyCryy — NiCiCly y,
Qi = (Di—F)Ci+ACi, = Z;CiCiiq +YiCiCiir + NiCiCry o

Substituting these last two equations into (2.26), we obtain that X takes the form
(2.3) with the [ + 1 invariant algebraic curves Cy,--- ,Cj1;. From induction we

have finished the proof of statement (a).

The proof of statement (b) is almost identical with those of Theorem 2.2(b),

so we shall omit it here. Hence, this ends the proof of the Theorem. i

Proof of Theorem 2.4: From Theorem 2.3 it follows statement (a) of Theorem 2.4.
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By checking the degrees of polynomials A;, B and D in statement (b) of
Theorem 2.3 we obtain statement (b) of Theorem 2.4.

From statement (a) of Theorem 2.3, we can rearrange the initial system such
that it has the form (2.3). But from statement (b) of Theorem 2.3 we must have
B =0, D=0and A; = 0. This proves statement (c) of Theorem 2.4. |

Proof of Theorem 2.6: The proof is formed by the following examples. First, we
consider the case r < m + 1. That is, the sum of degrees of the given invariant

algebraic curves is less than the degree of the system plus one.

Example 2.9.

The algebraic curve f = y® + 2% — 22 = 0 satisfies all conditions of Theorem

2.4 excepting (i). The cubic system

4
b =2r—22% - 3w +45, g= Y+ 2 — 32%y — 33, (2.28)

has f = 0 as an invariant algebraic curve. We claim that system (2.28) does dot
have the form (2.4). Otherwise, it can be written in the form

= A(y® +2° — 2*) + D(-3y?),

y = B(y* + 2® — 2*) + D(32% — 2z),
where A, B and D are polynomials. It is in contradiction with (2.28), because in

the first equation of (2.28) there is a linear term.

Example 2.10.

The algebraic curve f = y — 22 = 0 satisfies all conditions of Theorem 2.4

excepting (ii). The polynomial system of degree m with m > 2:

&= D(y) +2E(y) + A(z,y)(y — 2°), §=22D(y) +2yE(y) + B(z,y)(y — 2*),
(2.29)
has f = 0 as an invariant algebraic curve, where dD,0F = m — 1, and JA,0B <
m — 2. We can write system (2.29) in the form (2.4), i.e.
&= Az, y)(y — %) + D(y) +2E(y),
= (B(x,y) +2E(y))(y — %) + 22(D(y) + zE(y)).

But then §(B(z,y) + 2E(y)) =m —1>m — §C.
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Example 2.11.

The algebraic curves f; = 22 +y?> —1 = 0 and fo = y — 1 = 0 satisfy all
conditions of Theorem 2.4 excepting (iii). The cubic system

i=—l—y+2’+ay+y’+2%y+y =P, =+ +y)(y—1)=Q, (2.30)

has f; = 0 and f; = 0 as invariant algebraic curves. We claim that system (2.30)

cannot be written in the form (2.4). Otherwise, ) can be written as
Q=B +y* —1)(y— 1)+ D2z(y — 1),

where B and D are polynomials. However, there not exist polynomials B and D
such that
B@?+y* — 1)+ 22D =y + 2 +¢°. (2.31)

Because if the equality holds, then B must contain the monomial —y. Let ay’ be
the monomial of B with the highest degree t > 1 and without the variable x. Then
the left hand side of (2.31) contains the monomial ay'™2. Tt is in contradiction with
the right hand side of (2.31).

Example 2.12.

The algebraic curves f; = x =0, fo =y =0 and f3 = z + y = 0 satisfy all

conditions of Theorem 2.4 excepting (iv). The cubic system
t=+z+y+a®+ay)r="P g=01+2"+2ry+yP)y=0Q,  (2.32)

has these three curves as invariant algebraic curves. We claim that system (2.32)
cannot be written in the form (2.4). Otherwise, the polynomial () can be written
as

Q = Bxy(z +y) + Dy(z +y) + Exy,

where B, D and E are polynomials. But it is in contradiction with (2.32).
Example 2.13.

The algebraic curves f; = xy + 1 =0 and f; = y = 0 satisfy all conditions of
Theorem 2.4 excepting (v). The cubic system

i=14+a+ty—a*+2°+229° =P, g=@@+ty—2>+ay—yly=@Q, (2.33)
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has f; =0 and f = 0 as invariant algebraic curves. If we write this system in the

form (2.4), then we have
Q= B(ay + L)y + Dy,

where B and D are polynomials. Comparing it with (2.33), we get that B cannot
be a constant. So, 0B > 0 = m — r, which is in contradiction with statement (a)
of Theorem 2.4.

Next, we consider the case r = m + 1. That is, the sum of the degrees of the

given invariant algebraic curves is equal to the degree of the system plus one.

Example 2.14.

The curve f = 22+x3+y® = 0 satisfies all conditions of Theorem 2.4 excepting
(i). The quadratic systems with f = 0 as an invariant algebraic curve can be

written as

3 3 2 3
T = Plad + éaxZ — by?, Y= gbx + ay + bx® + 597y,

where a and b are arbitrary complex numbers. Obviously, if a # 0 this system

cannot have the form (2.5).

Example 2.15.

The curve f = y — 23 = 0 satisfies all conditions of Theorem 2.4 excepting

(ii). It is an invariant algebraic curve of the system
t=1+2—2>+a2y, §=3y+32>—3zy+3y°
This system cannot be written in the form (2.5).

Example 2.16.

The curves f; = 22 +y?> —1 =0 and f, = y — 1 = 0 satisfy all conditions of
Theorem 2.4 excepting (iii). Moreover, f; = 0 and f, = 0 are invariant algebraic

curves of system (2.6). However, system (2.6) does not have the form (2.5) if a # 0.
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Example 2.17.

The curves f; =z +iy =0, fo =z —1iy = 0 and f3 = x = 0 satisfy all

conditions of Theorem 2.4 excepting (iv). The quadratic system
&= =b(a® + ) +x+ylar +by), §=k(@®+y°) +y—x(ax+by),

has fi =0, fo = 0 and f3 = 0 as invariant algebraic curves, but this system cannot
take the form (2.5).

Example 2.18.

The curves f; =2y — 1 =0 and f; = x = 0 satisfy all conditions of Theorem

2.4 excepting (v). They are invariant algebraic curves of the system
t=(1—-20+yx, y=1—y+zy—1°.
Obviously, this system does not have the form (2.5).

Last we give the counterexamples for the case r > m + 1. That is, the sum of
the degrees of the invariant algebraic curves is larger than the degree of the system

plus one.

Example 2.19.

The algebraic curve f = x* + 2% +y* = 0 satisfy all conditions of Theorem 2.4
excepting (i). The quadratic systems having f = 0 as an invariant algebraic curve
are

3
&= ar +ar?, = 1+ axy.

So, statement (c) of Theorem 2.4 is not satisfied.

Example 2.20.

The algebraic curve f = y — 2* = 0 satisfy all conditions of Theorem 2.4
excepting (ii). The quadratic systems having f = 0 as an invariant algebraic curve
are

& = ax + bx® + cry, 3= day + 4bxy + 4y

They are not zero unless a = b =c = 0.
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Example 2.21.

The algebraic curves f; = 22 +y> =1 =0, fp = y—1 = 0 and f3 =
4x + 3y + 5 = 0 satisfy all conditions of Theorem 2.4 excepting (iii). However, the
quadratic system @ = y(2x —y+ 1)+ 22 +y>— 1,y = z(y — 1) + 23> — 2 has these

three curves as invariant algebraic curves.

Example 2.22.

The algebraic curves fi =z =0, fo =y =0 and f3 = 2+ y = 0 satisfy all
conditions of Theorem 2.4 excepting (iv). The linear systems having these three
curves as invariant algebraic curves are £ = ax, y = ay. They are not zero unless

a=0.
Example 2.23.
The algebraic curves f; = xy—1, fo = y and f3 = y+1 satisfy all conditions of

Theorem 2.4 excepting (v). The quadratic system with f, fo and f3 as invariant

algebraic curves are
t=a—br—(a+bzy, y=>byly+1).

They are not zero unless a = b = 0.

From these fifteen examples it follows the proof of Theorem 2.6. |

2.3 On the non-existence of Darboux first inte-

grals

We note that all quadratic systems having an ellipse and a straight line tangent
into the ellipse can be written into the form (2.6). System (2.6) has the invariant
circle f; = 2? +y? — 1 = 0 with cofactor K| = 2(x + ay) and the invariant straight
line fo = y — 1 = 0 with cofactor Ky = bx 4+ ay + a. We also note that f; and fo
are tangent at the point (0, 1).
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Proof of Theorem 2.7: The proof is separated into three parts. The first part shows
that there exists a set €2y of values of the parameters a and b such that system
(2.6) has only the given two invariant algebraic curves. The second part give a
proof that there exists a set 2y of values of a and b such that systems (2.6) have
no exponential factors. Moreover, 0y N Qs # (). The last step contributes to prove
that system (2.6) is not Darboux integrable for a,b € €3 N Q.

We should use the following result (for a proof, see [17]).

Lemma 2.24. Assume that system © = P, 1y = Q) with degree m has an invariant
algebraic curve C of degree n. Let C,, P,, and Q,, be the homogeneous parts of C
with degree n, P and Q) with degree m. Then the irreducible factor of C,, divides

me - me'

The first part is formed by the following proposition, which is related to the

existence of invariant algebraic curves of system (2.6).

Proposition 2.25. For each b # 1 :I:% with p € N there exists a numerable set
T such that if a € R\(Y U {0}), then system (2.6) has no irreducible invariant

algebraic curves different from fi =0 and fo = 0.

Proof: Assume that C'= > C;(x,y) = 0 be an invariant algebraic curve of system
i=0
(2.6) with cofactor K = K + Ky, where C; and K; are homogeneous polynomials

of degree i. From the definition of invariant algebraic curve, i.e. (1.2) we have

[:cz +azy + (1 — b)y* + by — 1} ZC”
i=1

+ [bay + ay® — bz —a] Y Ciy = (K1 + Ko) Y Ci.

i=1 =0

Equating the terms with the same degree we obtain

LiCyi] = KiChi + KoCroiy1 — byCriy1z +bxChiny
+Cn7i+2,x + acnfiJr?,y; L= 07 17 e, n o+ 2a (234)

where C; = 0 for ¢ < 0 and ¢ > n, and L is the partial differential operator

L= [2"+azy + (1 - b)y?] % + [bay + ay’] i
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For system (2.6) we have yP, — Qs = (1 — b)y(2? + ¢y?). So, from Lemma
2.24 we can assume that
Cp = (2% + ) y™, n =2+ m.
Substituting C,, into (2.34) with i = 0 and doing some computations we get
Ky = (2l + mb)z + a(2l +m)y.

n—1
Set C,,_1 = Y ¢y @™ ', Substituting C,,_1,C,, and K into (2.34) with
=0

1=
1 = 1 and doing some calculations, we obtain

n—1 n—1
Z(m 11— + ib— mb)cniliix2l+m7iyi o Z aCn,1,i$21+m717iyi+1
=0 i=0
n—1
+ Z(Ql +m— 1 — Z)(l . b)cniliix2l+m727iyi+2
=0

— Kg(ajz+y2)lym+mbm(x2+y2)lym_l

l l
l , , [ . ,
— K, 21—2i, m+2i b 2[+1—2i, m+2i—1 )
;_0 0 (z) x Y + E m ; T Y

i=0
This equation can be written as

n

Z[(m —1—i+ib—mb)c,_1_; — ac,_;
i=0
+(204+m 4+ 1 —i)(1 = b)epi)z? ™y

! !
_ Z K, (l) w2l—2iym+2i + Z mb (l> x2l+1—2iym+2i—17
i=0 ! !

i=0
where ¢; = 0 for i < 0 and i > n — 1. Equating the coefficients of 2%y’ in the above

equation, we get

[m —1—1 + (Z — m)b]CQH_m_l_z‘ — AC4m—i
+U+m+1—0)(1 =b)eapmprs =0, i=0,1--- m—2, (2.35)

(20 — 1)b — 2i|co—2i — acoy1-2i;
l

—(2[+2—22>(b— 1)C2[+2,2i = mb<l>, 1= 0,1,"' ,l, (236)

[Qi(b - 1) - 1]021—2i—1 — QCo1—2;

[
—(QZ +1— 22>(b - ].)CQH_l_QZ‘ = KO (Z)’ 1= O, ]_, te ,l. (237)
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From the assumptions and (2.35) we can prove easily that cy4; = 0 for j =
1,---,m — 1. Equations (2.36) and (2.37) can be written as

. l
Co—2i = m acor1—2i + (20 +2 — 2i)(b — 1)cary2—2i + mb (z } ;

1

Ca1—2i—1 m

l
acCoy_9; + (2l +1-— 22)(() — 1)6214_1_22' + Kg <Z) s
(2.38)
with ¢ =0,1,--- ,[. It is easy to check that

Cor = —m, Co1-1 = am — K.

From (2.38) with ¢ = 1 we get that

G-z = 3 ¢ 2(am — Ko) —ml = Bi(a,b,1)(am — Ky) — m(i),
< 1= 271 (= Ko) = Ba(a, b, 1) (am — K)
Col_3 = ———| (am — = By(a am — .
24 (20— 3)(b—2) 2 — 3 O ’
In what follows we use the induction to find the coefficients ¢q;_; for i =4, --- , 21.

Assume that for ¢ = h we have
{
Col—2n = B2h—1(a> b, l)(am - Ko) - m(h)’ Col—1—2n = Bzh(a, b, l)(am - Ko),

where B;_i(a,b,l) for j = 2h,2h + 1, are polynomials in a where coefficients are

function of b and [ and the highest order terms of the form

J
o/ T]IG - )b —1). (2.39)
=2
Then from (2.38) with i = h + 1 we get
1
Col—2h-2 = ST =1 b {aBan(a,b,1)(am — Ky)

+(2 — 2h)(b— 1) {Bzhl(a, b,1)(am — Ko) — m<fll)] b (h Jlr 1) }

l
= Baopyi(a,b,l)(am — Ky) — m(h N 1),

cams = g7 (e B b0 = K -m((, L)

+(20 = 2h — 1)(b — 1)Bap(a, b, 1) (am — Ky) + Ky (h —ll- 1) }
= Bapyia(a,b,l)(am — Ky).
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where
1
82h+1 2(h n 1)(b — 1) — b[(ZBQh + (2[ — 2h)<b — 1)82]1,1],
1 l
BQ}—H_Q 2(h T 1)(1) — 1) 1 |:a82h+1 — <h, 4 1) + (2l —2h — 1)(b — I)th:| s

are polynomials in a of degree 2h + 1 and 2h + 2 respectively, in which the highest
order terms are the form (2.39) for j = 2h +2 and j = 2h + 3, respectively. Hence,
from (2.38) and using induction we obtain that for A =0,1,--- 2l

= By_1(a. b, 1) Ko+ TV
Col—h = Op—-1\a, 0, L){am 0 5 m h/2 .
Moreover, from the first equation of (2.38) with i =, i.e. aco+ (b—1)c; + Ko =0
we get
a[Bgl_l(am - K()) - m] + (b - 1)621_2(6Lm - Ko) = K().

This means that
[aBy 1 + (b — 1)By_o — 1](am — Kg) = 0.

Since aBBy_1 + (b—1)Bg_2 — 1 is a polynomial of degree 2/ in the variable a, it has
at most 2[ real roots, denoted by S; the set of the roots. Then, for a € R\S; we

must have Ky = am.

Obviously, T = U, S; is a numerable set. Moreover, for each a € R\T and
[ € N we have Ky = am. So, if C' is an invariant algebraic curve of the above
form, it has the cofactor K = K; + Ky = (2l + mb)z + a(2l + m)y + am =
2(z + ay)l + (bx + ay + a)m.

Moreover, we can check that C* = (22 4+ ¢y* — 1)!(y — 1)™ = 0 is an invariant
algebraic curve with cofactor K. If D = C — C* # 0, then D = 0 is also an
invariant algebraic curve with the cofactor K. But D has degree d < 2] +m — 2.
Again using Lemma 2.24 we can assume that the highest order homogeneous term
of D is of the form Dy = (2% 4+ 4?)"y™ with d = 2I' +m/. Then, from the above
proof we should have the linear part of K is K7 = (2I' + m'b)xz + a(2l' + m/)y. It
is in contradiction with the last paragraph. Hence, we must have C' = C*. This
proves that for b # 1 + 117 with p € N and a € R\(YT U {0}) system (2.6) has only
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the irreducible invariant algebraic curves x2 + y?> = 1 and y = 1. This proves the

proposition. |

Now we should prove that for some values of parameters system (2.6) has no

exponential factors.

Proposition 2.26. For each b & Q there exists a numerable set T* D T such that
if a € R\(Y*U{0}), then system (2.6) has no exponential factors.

Proof: From Proposition 2.25 system (2.6) has only the invariant algebraic curves

fi=2*+y*—1=0and f, = y—1=0. If system (2.6) has an exponential factor,

we can assume that it has the form F' = exp with a cofactor L, where

G
i
[y and [, are non—negative integers. Since the invariant algebraic curve ffl f£2 =0
has the cofactor K = 1 Ky + oKy = 2l1(x + ay) + la(bz + ay + a), from (?7?7) we

get that G satisfies the following equation

[2° + azy + (1 = b)y* + by — 1]G,, + (bry + ay® — bx — )G,
= [2L(z + ay) + la(bx + ay + a)]G + L(z* + y* — 1)1 (y — 1. (2.40)

Set 6G = n. Since 6L < 1, we can assume that L = L; + Ly, where L; are

homogeneous polynomials of degree 1.

Case 1: n+1 < 2l; +l5. By equating the homogeneous terms of highest degree in
(2.40) we obtain first that L; = 0, and after that Ly = 0, and so L = 0. Thus G
is an invariant algebraic curve. Moreover, from the assumption of this proposition
we obtain that G = ¢ {1 52, where ¢ is a constant. Then, F' = constant, and it

cannot be an exponential factor.

Case 2: n+ 1 = 2l; + l5. Then we have L; = 0. Set G = > Gi(z,y) with G;
i=0

homogeneous polynomials of degree i and G,, = 3 a;z" 'y, where a; are constants.
i=0
Then, equating the terms of (2.40) with degree n + 1 we get that

n n

(2% + azy + (1 — b)y?] Z(n — i)a;z" "y + (bry + ay®) Z iax™ 'yt
i=0 1=0

= [2h(z+ay) + b(be +ay)] Y ax" iy + Lo (22 + )"yt
=0



46 On polynomial systems having invariant algebraic curves

Using the relation n + 1 = 2l; + [ we can write this last equation as

201 +12+1

> Al = 1) — 1) — Ha; + agiy + (1= b) (2l + lp + 1 — i)a;_o 2™ 727!
i=0
I I
— I 1 22 2z‘+12,
where a; = 0 for ¢ < 0 and 7 > n. The last equation is equivalent to
[(b — 1)(2 — lg) — 1]6% + a;—1 + (1 - b)(2l1 + lg + 1— i)ai_g = O, (241)
1=0,1,--- 15 —1
201+1
D 1 =1)j = aji, + aaj, 1 — (1= )2l + 1 = j)aj,-o}a™ Ty
§=0
I I
— I 1 =20, 2itls 9 49
(1) o

Since b # 1:|:% for k € N, from (2.41) we get that a; =0 for i =0,1,--- ;[ — 1.
From (2.42) we obtain that for i =0,1,--- [

[(b—1)(20 + 1) — 1] azip111, + aazi, — (1 = b) (2l — 2i)asiss,—1 =0,
: , l
[(b — 1)22 — ]_] A2+ -+ AA2i415—1 — (]_ — b)(2l1 +1-— 22)a2i+l2_2 = LO z’l
(2.43)
Solving (2.43) for i = 0,1,--- ,l; — 1 and its second equation with ¢ = [; we get

that
Qly+h :Eh(@)Loa k:Oa]-) 72l1)

where By (a) is a polynomial of degree h in a whose coefficients are rational func-

_ h

tions in b and [;. The highest order term of Bj(a) in a is =1/ [][(1 —b)j + 1]. So
=0

the first equation of (2.43) with i = I; is aBy, Ly = 0. Since the coefficient of Ly

is a polynomial of degree m + 1, there exists at most m + 1 values of a such that
it is equal to zero. We denote by 7%, the set of such a. Hence, if a € 7,, we must

have Ly = 0. This means that L = 0. So, system (2.6) has no exponential factors

for a & 7,,.
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Case 3 n = 2l; + ls. Let Ly = Lipx 4+ Lg1y. Using the notations for G and G,
introduced in the study of Case 2, equating the terms of (2.40) with degree n + 1

and doing some computations we get that

n+2

STb = 1) = )i + (1 = b)(n +2 — d)a;_sJa™ iy
i=0
I ! I l
= LIOZ ( Zl >x2ll2i+1y2i+l2 +L01Z ( Zl >x2l12iy2i+l2+1’
=0 =0

where a; = 0 for 7 < 0 and ¢ > n. These equations are equivalent to
(7:—12)6%—(77,4-2—2')0/1,2:0, i:0,1,~~,l2—1,

. . [
(b — 1)2]a2j+12 -+ (1 — b)(?ll —|— 2 — 2j)a2j+12_2 = L10 ( ]1 ) s (244)

. ' ]
(b N 1)(2] + 1>a2j+l2+1 + (1 - b)<2l1 +1-— 2])a2j+l2—1 =Ly < ; ) )

where j =0,1,--- (.

From the first equation of (2.44) we obtain that a; =0 for i = 0,1,--- 15 — 1.
Hence, the first equation of (2.44) with j = 0 induces to Lig = 0. Thus, we have

20+2—-2j ,
A25415 = Q—ja2j+lg—27 Jg=1--1.
. l . : :
le. aj40; = ~|ay, j =1,---1;. From the second equation of (2.44) with
7 =0,1,---,1; — 1 and using induction, we can prove that

asjiien = 7 Lo J =01 =L,

with p; > 0. Now the second equation of (2.44) with j = [; can be written as
(14 p11,)Lo1 = 0. This implies that Ly; = 0. Moreover, we have agj14, = 0 for
j=0,1,-- 0 — 1.

From the above calculations we get that L = Ly and

G, = Z a;x" "yt = ay, (2 + y?) 1y
=0
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Since a;, # 0, without loss of generality we assume that a;, = 1.
Equating the terms of (2.40) with degree n we get that

[12 + ary + (]' - b)yQ]Gn—l,x + (bﬁy + ayQ)Gn—l,y -
20 (x + ay) + lo(br + ay)|Gpo1 — byGry + b2Gry + 120G, + Lo(x2 + y2)l1y12.

n—1

Let G,y = Y bz 7y, Substituting G,_; into the above equation and doing
i=0

some computations, we can obtain that

D {lla =1 —i+b(i — )b — ab_y + (1= b)(n+ 1 — i)b_s}a" "y’
=0

I I
= 51221: < 1.1 ) G224 2i1 (1 Y Z ( l.1 ) 22y 20

i=0 \ ' i—0 \ !
where b; = 0 for ¢ < 0 and ¢ > n — 1. From this equation we obtain that
o =1 =j+b(j —l2)]bj —abj1 + (L = b)(n+1—j)bj2 =0,
jzoylv"' 712_27
(=20 + b(2i — 1)]bois1,—1 — abaiviy—2 + (1 = 0) (2 + 2 — 20)baiy1,—3

= bly ( l,l ) , (2.45)

[—27, -1+ 2bi]b2i+12 — abZi—i—lQ—l -+ (1 — b) (2[1 +1-— 2i)62i+12_2
l
= (laa + Lo) ( 1 ) )
1

From the first equation of (2.45) we can prove that b; =0 for j =0,1,--- ,lo—

with i = 0,1, ,1;.

2. From (2.45) with i =0,1,--- ;I3 — 1 and its first equation with ¢ = [;, working

in a similar way to the proof of Proposition 2.25 we can prove that
- I ~ .
by y2i-1 = Boi_1(a)Lo — Iy < 21 ) s by = Bai(a)Lo, i=0,1,--- 1,

where gk(a) is a polynomial of degree k in a whose coefficients are rational func-

tions in b and [;. Using the last equation of (2.45) with i = [; we get

[aggll,l + (b — 1)g211,2 -+ 1]L0 =0.
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For every given b and [; there exist at most 2[; values of a for which Clggll_l +(b—
1)1?251_2 + 1 is equal to zero. We denote by 7;, the set of such a. Then if a & 7,
we have Lo = 0. So for every b satisfying the assumption of the proposition, if

a ¢ Uy, system (2.6) has no exponential factors.

Case 4: n > 21y + ly. Using the notations of Case 2 for G and G,,, from (2.40) we
get that

[:1:2 +azy + (1 — b)yQ]Gm + (bzy + ay2)Gny = 2l (z + ay) + l2(bx + ay)|G,.

Working in similar way to the previous case we can prove that the coefficients a;

in G, satisfy the following equations
[’fl — 17— 2[1 + b(’L — lg)]ai + a(n — 2[1 — lg)ai71 + (1 — b)(n +2— Z')Cll;g = 0,

with ¢ =0,1,--- ,n+ 1. Since b € Q, from these equations we obtain that a; = 0.
So, G,, = 0. This implies that system (2.6) has no exponential factors.

Summing up these four cases the proof of the proposition follows. i

In this last step we prove that for each b ¢ Q, if a € R\(Y* U {0}) system
(2.6) is not Darboux integrable.

Suppose that the assumptions of Proposition 2.26 are satisfied. Then, by
Propositions 2.25 and 2.26 we get that system (2.6) has only the invariant algebraic
curves 72 + y? = 1 with cofactor K; = 2(x + ay) and y = 1 with cofactor Ky =
bx + ay + a, and has no exponential factors. We can check easily that under these
assumptions do not exist A\, Ay € C not all zero such that \{K; + MKy = 0 or
MK+ MKy = —div(P, Q) = —(2+b)z—3ay, where P = y(ax—by+b)+z*+y*—1
and Q = bx(y — 1) + a(y? — 1). Hence, from the Darboux theory of integrability
(see for instance [15] or [13]) it follows that system (2.6) is not Darboux integrable.
We have finished the proof of Theorem 2.7.

As a corollary of Theorem 2.7 is the following result which shows that there
are polynomial systems with an invariant algebraic curve whose highest order term

have repeated factors such that they are not Darboux integrable.

Corollary 2.27. There exist values of the parameters a and b for which system
= (1= )@ +2y— 1) — (az — b)(y — 1) = P(z,y),

g =—(bx +2ay —a)(y — 1) = Q(,y), (2.46)
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1s not Darboux integrable.

Proof of corollary 2.27: System (2.46) has the invariant algebraic curves f; =
7?4+ 2y — 1 = 0 with cofactor K} = 2[(1 — b)x — ay + a] and fo =y — 1 = 0 with
cofactor Ky = —(bx + 2ay — a). We note that the highest order term of f; has a

repeated factor x.

Since y — 1 = 0 is invariant by system (2.46), after the change of variables

xr —_ y t— T
y_17 y_y_17 _y_17

T =

system (2.46) becomes into the form of system (2.6), i.e.

dT _ (.= b =2, =2 _1 _ P
g% y(az by—l—b)j;x +7y°—1 f (2.47)
W ha(g—1)+ag? 1) ~ Q).

Let C(z,y) be a polynomial of degree n, and set C(z,7) = (7 — 1)"C (%, %)

We claim that if C'(x,y) = 0 is an invariant algebraic curve of system (2.46) with
cofactor K (z,y) and C # constant, then C(Z,7) = 0 is an invariant algebraic

curve of system (2.47) with cofactor

= Ty Q
K=@wm-1)K )
&-1) (y—l’y—1)+”y—1

Indeed, straightforward calculations show that

= (-1 {(g - 1)PC, + (v — 1)QC, + ny? 10}
= (F-1D""KC +n(y— 1)”%(] =KC
This proves the claim.
Now we claim that if F(x,y) = exp f]((ii Z))) is an exponential factor of

system (2.46) with cofactor L(z,y), then

F(z,7) = exp (G (yﬁly%) /H (yﬁlﬁ))
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is an exponential factor of system (2.47) with cofactor L(%, %) = (y—1)L <_

In fact, we have
PF;+QF; = exp (%) H™? Kf(?@_—l)l)_??f@ — %Gy) H
()
— - Dew (5 ) HUPG.+ QG H - (PH. + QH,) 6]
— (- 1)(PF. +QF,)
_ (;—1)LF: @—l)L( T v )F

T-1-1

This proves the claim.

From these two claims and the proof of Theorem 2.7 we obtain that there
exist values of @ and b for which systems (2.46) and (2.6) have only two irreducible
invariant algebraic curves and no exponential factors. Hence, for such values of
a # 0 and b system (2.46) is not Darboux integrable. Otherwise, system (2.6)
would have a Darboux integral, in contradiction with Theorem 2.7. Hence, the

proof of Corollary 2.27 is completed. |

2.4 Polynomial systems with arbitrary set of in-

variant algebraic curves

In this section we are interesting to construct a polynomial vector field having an
arbitrary set of invariant algebraic curves when their cofactors are known. First

we consider the case of two algebraic curves.

Proposition 2.28. Let fi, fo € Clx,y| be two irreducible polynomials such that

Ji2 = frafoy — fiyfoe # 0. Let & = P(x,y), y = Q(z,y) be a polynomial differ-
ential system having fi1 = 0 and fo = 0 as invariant with cofactors K, and K,

T _Y_
y—1ly—1

).
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respectively, then we have

P(z,y) = JLH (Klflny - K2f2f1y)>
(2.48)
Qa.v) = S (~Knfifot Kpfofin)

Proof: Suppose that © = P(z,y),y = Q(x,y) is a polynomial system having f; =0
and fo = 0 as invariant algebraic curves with cofactors K; and K5 respectively, we

have
Pfi. +Qfy, = Kifi,

Pfog +Qfy = Kifs.
Multiplying the first equation of (2.49) by f5, and the second one of (2.49) by fi,

and abstracting both relations we get

(2.49)

P(fleQy - flnyz) = Klflny - K2f2fly'

In a similar way, we get

Q(flyf2w - fle2y) = K1f1f2x - K2f2fla:~

Hence, we have

PJ12 = Klflny_KQfolya
—QJ12 = Kififor — Kafafia,
and so we get system (2.48). ]

We note that we are interested into construct all polynomial systems of degree
m having f; = 0 and f, = 0 as invariant algebraic curves then, since K; and K,

are cofactors, their degrees must be at most m — 1.

Proposition 2.29. Let fi, fo € C[z,y| such that Jio € C\ {0}. Then, all polyno-
mial systems © = P, y = Q) having invariant the curves fi =0 and fo =0 can be
written into the form
T = :ulflny_,U’Qf2f1y7
y = —prfifor + pafofia,

where py, po are arbitrary polynomaials.

(2.50)
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Proof: The proof follows directly from the arguments of the proof of Proposition
2.28 and setting 1 = Ki/Ji2 and puy = Ky /J12 we get system (2.50). i

We note that straight lines always satisfy the conditions of Proposition 2.29.

The expression of system (2.50) is not actually a new one. It appears in [46]
however, there do not appear the condition that the curves should satisfy condition
Ji2 € C\ {0}. Here, we present an example which proves that in general the form
of system (2.50) does not hold in the case where the curves do not satisfy this

condition.

Example 2.30.

We consider the system
i = —l—y+a*+ay+y*+ 22y + P
jo= (@+yr+yly-1),
which has the two invariant curves f; = 22 +y? — 1 and f5 = y — 1 with cofactors
Ky =2z + 22y + 2y* and Ky = y + 22 + y*. We note that Jio = fi.fo, — fiyfoe =
2¢ # 0. We observe that system (2.51) is of the form (2.48). However, since
Ky [ Ji2 & Clz,y] and Ky,/J12 € Clz,y] system (2.51) cannot be written into the
form (2.50). So, Proposition 3.2 of [46] is not true.

(2.51)

If in addition polynomial system & = P, y = ) has a third invariant curve

with cofactor K3 then an interesting property holds.

Proposition 2.31. System (2.48) admits an additional irreducible invariant al-

gebraic curve f3 =0 with f3 € Clx,y] with cofactor K3 if and only if

fiz fiy Kifi
f2x f2y K2f2 =0, (2-52)
Jaz foy K3f3

or equivalently,

K fidas — Ko fadis + K3 fsJia = 0. (2.53)

Proof: Working in a similar way as in proof of Proposition 2.28 we get that

Py = —Ksfafiy + Kififay,
PJiz = —Ksfsfiy + Kififsy,
Py = —Ksfsfay + Kafafsy.
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So, we have

PJysfsz + PJogfiz — PJisfou
= — Ko fofiyfaz + K1 fifoyf3e — Ksfsfoy iz + Kaofofayfiz + Ksfsfiyfor — Kififsyfou

- K2f2(f1$f3y - flyf?)z) - Klfl(meffﬂy - f2yf3$) - K3f3(f11’f2y - flnya:)
= K fois — Ky f1Jas — K3 f3.)10,

and therefore we get

J12(P fsz + Ksf3) — Jis(Pfox + Kaofs) + Jo3(Pfia + K1 f1) = 0,

or
fie fiy Pfi.+Kifi
Jow foy Pfox+ Kaofs | =0,
Jax Joy Pl + Ksfs

and equivalently we get the relation (2.52). |

Eruguin, in the paper [24], found the forms of differential systems having the
invariant curves wy(z,y) = 0 and wq(z,y) = 0 where wy,ws are C" functions. We

denote with
. awl 8&)2 (9w1 &uz

_8x8y_8y8x

the Jacobian of these two functions. Hence, according to his paper, all differential

J

systems having the invariant curves wi(x,y) = 0 and ws(x,y) = 0 and J # 0 can

be written into the form

' 1 [(Ow Ow
r = —= <—2F1(Ld1,l',y) - —1F2(W2,$,y)) !

J \ Oy dy
(2.54)
_— 1 ng awl
y = —7 (%FI(U}l,x, y) + a_xFQ(MQ,I" y>> ’

where F}, F5 are functions such that

Fl(wlaxa y)}wlzo
Fl(w%xay)} =

w2=0
We note that for polynomial differential systems with irreducible invariant alge-

braic curves, Eruguin’s result coincides with Proposition 2.28. This is due to the

fact that the polynomial F} vanishes whenever vanishes polynomial w;. Then, from
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Hilbert’s Nullstellansatz relation we have that there is M; € C[z,y] and a positive
integer n such that F[* = Mjw;. Since w; is an irreducible algebraic curve it must
divides the polynomial Fj. Hence, there is a polynomial K; € Clz,y] such that
F) = Kjw;. By similar arguments we get that Fy = Kyw, for some Ky € Clx, yl.
However, we should note that according Eruguin’s result, for polynomial differ-
ential systems, the polynomials F; and F;, are of arbitrary degree, and therefore
the polynomials K; and K, should be polynomials of arbitrary degree. So, for

polynomial systems, Proposition 2.28 can be obtained from Eruguin’s results.

Lemma 2.32. Let F, P,Q € Clz,y|, P and Q) are coprime, and D = gcd(F,, F,).
Suppose X = (P,Q) has F as a first integral. Then there exits a polynomial

G € Clx,y| such that
F, F
X=G|-- =) 2.55
(-25%) (2.55)
Proof: Since X (F') = 0 we have that PF, + QF, = 0 which yields to

F, _F
P4+ Q=L =0, 2.56
DD (2:36)

Since P and () are coprime and F, /D and F,/D are also coprime, from (2.56) we
get that (F,/D)/Q and (F,/D)/P. Therefore there exists a polynomial G € C|z, y]
such that P = —GF,/D, and from (2.56) we have that () = HF,/D. This
completes the proof. i

The next proposition is essentially due to A. Gasull.

q
Proposition 2.33. Let f; € Clz,y| for j =1,...,q, and let F = [] f;. Suppose
=1

that F' = 0 1s an wnvariant algebraic curve for the polynomial vector fields X; with
cofactor K; fori=1,2, and that Ky # 0. If D = gcd(F,, F,), then

1 F, F,
Xi= <K1X2 —G (—5, 5)) , (2.57)

where G 1s any polynomial which allows that X, be a polynomial vector field.

Proof: Let X; = (P;,Q;) for i = 1,2. Since F' = 0 is an invariant algebraic curve
of the vector field X; we have that X, (F) = P, F, + Q1F, = K4 F. Then

KQXl(F> - K1X2<F) = KQKlF - KlKQF = 0



56 On polynomial systems having invariant algebraic curves

Let E = ng(KQPl - KIPQ, KQQl - KlQQ) and X = (K2X1 - KIXQ)/D Since X

satisfy the assumptions of Lemma 2.32 we get that

~ F, F,
X:Gl (_51175)7

for some polynomial GG;. Therefore

1 _ F, F
X, = — (K, X, + DG, [ -2 ==
! K2< A2+ Gl( D’D))’

and taking G = DG, the proposition follows. i

We remark that Proposition 2.33 can be used to find all polynomials vector
fields X; having the invariant algebraic curves f; = 0 for « = 1,...,q, because
Xy can be obtained from Lemma 2.32. We also note that the construction of the
vector field X is for an arbitrary given set of algebraic invariant curves. Hence,
it can be applied whenever the conditions of Theorem 2.4 are not satisfied. In
any case, Proposition 2.33 is difficult to apply because in general it is not easy to

determine the polynomial G in such a way that X becomes a polynomial.

2.5 On a Theorem of Walcher

Until now we show that in order to define completely the polynomial vector fields
having some invariant algebraic curves we need to impose some conditions. In par-
ticular, the condition that we definitely need in order to construct the polynomial
vector field, even if we consider just one invariant algebraic curve, is the generic
condition (i). Hence, in order to determine a polynomial vector field having an

invariant algebraic curve invariant we asked that this curve has no multiple points.

In this section we present Theorem 2.34 due to Walcher [50] and not only
covers the case where one curve satisfies the generic condition (i) but also revels the
complete structure of the vector fields when this condition does not hold. He based
his proof in some results of the classical commutative algebra. In this theorem we
denote by < f;, f, > the ideal generating by f, and f, and by < f,, f, >:< f >
the quotient ideal.
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Theorem 2.34. (a) The dimension d of

(< fao, fy><f>)] < fo, [y >
is finite.

(b) The curve f satisfies the generic condition (i) if and only if d = 0. In that
case the polynomial vector field X has f = 0 invariant if and only if

X = hf + pX/*, (2.58)

with an arbitrary vector field h and an arbitrary polynomial p. The vector
field X¢* corresponds to the irreducible of the Hamiltonian Xy = (—fy, f),

i.e. X" is Xy having its components divided by their common divisors.

(c) In case that d > 1, let uy, - - ug € Clz,y] such that

U1+<foc7.fy >y 7Md+<f:c>fy >

form a basis of the above vector space, and let X; be the vector fields having
f = 0 invariant with cofactors p; (1 <1i < d). Then the vector field X has
f =0 invariant if and only if

d
X =hf+pX;"+> a;X;, (2.59)

=1

with aq,- -+ ,0q € C, and p, h, X" as above.

We note that Theorem 2.34(b) is the same as Theorem 2.1(a) because in the
expression (2.58) is used the irreducible vector X;*. Walcher in statement (c) of
Theorem 2.34 proved that there is a finite number of terms which contribute to the
expression of the vector field having the invariant algebraic curve f = 0 when this
does not satisfy the generic condition (i). More precisely, if the invariant algebraic
curve has multiple points, then the complete expression of the vector field having

such curve as invariant algebraic curve is given by system (2.59).

We note that in Theorem 2.34 does not appear bounds of the degrees of the
polynomials in the expressions (2.58) and (2.59). As we proved in Theorem 2.6

extra conditions are necessary in order to obtain these bounds.
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We also note that the expressions of the vector fields (2.58) and (2.59) corre-
spond to the existence of just one invariant algebraic curve, but this curve can be
reducible. The presence of a second curve, especially when there are some tangen-
cies complicates the expression of the vector fields. Theorem (2.2)(a) avoids this

complication because it uses the generic conditions (i) and (iii).



Chapter 3

Polynomial systems and Darboux

first integrals

3.1 Introduction

The Darboux theory of integrability allows to determine when a polynomial dif-
ferential system in C2 has a first integral of the kind f;" - - - f; ?exp(g/h) where f;,
g and h are polynomials in C[z,y|, and \; € C for i = 1,...,p. In this chapter we
solve the inverse problem, i.e. we characterize the polynomial vector fields in C?

having the following function

H(x,y) = f" - fyrexp(g/ (1" f;7)) (3.1)

as a Darbouz first integral.

In the degree P/Q is defined as §(P/Q) = max{dP,Q}.

Theorem 3.1. Let H(z,y) = fi - fy exp(g/(f™ -~ f3?)) be a Darbouz func-
tion with fy,-- -, f, irreducible polynomials in Clz,y|, A1,--- , A\, € C, ny,--- ,n, €
NJ{0} and the polynomial g of Clx,y]| is coprime with f; if n; # 0. We denote by
| the degree of the rational function g/(f{"* -+ fp"). Then, H is a first integral for
the polynomial vector field X = (P, Q) of degree m with P and @) coprimes if and

only if

29
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P
(a) l+Z§f7;:m+1 and
i=1

H fj Xfi_gzni H fj Xfi+<Hfj> Xy,
i=1

i=1 = i=1
i i

()5
=1 =1

where Xy, is the Hamiltonian vector field (— fiy, fiz)-

Moreover, the vector field given by (3.2) has the integrating factor

Rlz(fl...fp {ll...f;p)—l'

P

(b) L+ > 0fi >m+1 and X is as in (3.2) dividing its components by their
i=1

greatest common divisor A. Moreover, ARy is a rational integrating factor

of X.

In Section 3.2, we will prove Theorem 3.1.

We note that the second part of statement (a) of Theorem 3.1 is in some sense

the equivalent to Proposition 2.5 for our inverse problem.

In Remark 3.6 we shall show that the second part of statement (a) cannot be
extended to the integrating factors of the form (3.1) with g # 0. In Section 3.3 we

provide examples of all statements of Theorem 3.1.

Corollary 3.2. Under the assumptions of Theorem 3.1 if (3.1) is a first integral
for the polynomial vector field X = (P, Q) of degree m with P and Q coprimes,
p

then 14+ > 0f; > m+ 1.
i=1

Corollary 3.2 follows directly from Theorem 3.1. Note that Corollary 3.2 says
that the degree of a polynomial vector field having the first integral (3.1) is not
independent of the degrees of the polynomials appearing in (3.1).

As far as we know, Theorem 3.1 and consequently Corollary 3.2 uses by first

time information about the degree of the invariant algebraic curves for studying the
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integrability of a polynomial vector field, because until now the Darboux theory of
integrability only used the number of the invariant algebraic curves of a polynomial
vector field for studying its integrability through, either a first integral, or an

integrating factor, see Theorem 1.7 (Darboux Theorem).

Prelle and Singer in [45] proved the following result.
Theorem 3.3. If a polynomial vector field X has a first integral of the form
H(z,y) = [N firexplg/(fI* -+ fi7)) where fy,- - , [ are irreducible polyno-

mials in Clz,y], A\, -\, € C, ny,--- ,n, € NU{0} and the polynomial g of
Clz,y] is coprime with f; if n; # 0, then the vector field has an integrating factor

of the form
Az y)\*
(5:31)
with A, B € Clz,y] and N an integer.

The following corollary not only reproduce the result of Prelle and Singer,

Theorem 3.3, but also improve it as follows.

Corollary 3.4. We assume that the polynomial vector field X has a first integral of
the form H(z,y) = f - f2 exp(g/(f™ -+ f37)) where f1,-- - , f[p are irreducible
polynomials in Clz,y], A\, , A\, € C, ny,--- ,n, € NU{0} and the polynomial g
of Clz,y] is coprime with f; if n; # 0. We denote by 1 = 6(g/(f1* -+ f")).

P
(a) If L+ > 6f; = m+ 1, then the inverse of the polynomial fy--- f,fi'* -+ fp?
i=1

is an integrating factor.

(b) Otherwise, a function of the form A(z,y)/(fi-- - fofi" - fp") with A €

Clz, y] is an integrating factor.

The results of Corollary 3.4 are strongly related with Proposition 3.2 and
Corollary 3.3 of Walcher [50].

Theorem 3.5. Let X = (P, Q) be a polynomial vector field with P and Q) coprime

having fi = 0,---, f, = 0 as irreducible invariant algebraic curves satisfying the
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generic conditions (i)-(v). Then, X has the first integral f{* --- f3* with \; € C
p

if and only if Z 0fi =m+ 1. Moreover,

=1

p p
x=> x| II #|Xs (3.3)
i=1 .
oy

This theorem improves the conditions for the existence of a first integral in
the Darboux theory of integrability using information about the degree and the
nature of the invariant algebraic curves, specifically it improves statement (e) of
Theorem 1.7. As far as we know, this is the first time that information about the
degree of the invariant algebraic curves, instead of the number of these curves, is

used for studying the integrability of a polynomial vector field.

Reader could find examples of the previous theorems in Section 3.3.

3.2 Darboux first integrals

We note that if the polynomials P and @) are not coprime, let A(z,y) € Clx,y]
be the greatest common divisor of P and (). Then, the change in the independent
variable ¢ given by ds = A(z,y)dt transforms the polynomial vector field (1.2)
into the polynomial vector field (P/A, Q/A) with P/A and (/A coprime. Since
if (P/A,Q/A) has a first integral, we also have a first integral for (P, @), in what
follows we shall work with polynomial vector fields (P, Q) with P and @ coprime.

Proof of Theorem 3.1: By a direct calculation we prove that system (3.2) in state-
ments (a) and (b) of Theorem 3.1 has (3.1) as a first integral. So, the “only if”

154

part of Theorem 3.1 is proved. Now, we shall prove the “if” part.

We assume that H = f -~-f,;\pF with F' = exp (g/( Ha --f:”)) is a first
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integral of the polynomial vector field X = (P, Q) of degree m. So, we have

0 = PH,+ QH,

P P P P
= PFIN N I £ +e | TL £ | TT 7
=1 j =

j=1 r=1 j=1
i#i

—g | Y onfl e I Y (Hfr%r>( ﬁ f;\])
i=1 J

j:1 r=1 =1
J#
p LN p LN
+QF I Nty T1 £ v | TL £ | T £
=1 j=1 r=1 j=1
J#Fi

AP A | (Hfﬁ”T) IT 5
i=1 r=1

j=1 i=1
j#i
p p p
= P> Nfie I £+ | I £ IT 5
=1 j=1 r=1 j=1
j#i
p p p
—o> nifu | I] £ TI #
=1
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P P p p
+Q D> Nfy 1T Hi+o| I £ | 11
i=1 j=1 r=1 j=1
Jj#i
P p p p
oy ity | IL £\ IT 611 F I £
=1 r=1 j=1 j=1
J#

Since the last expression is equal to zero, we can cancel the non—zero product

p _ P
F1I f;\ 7! and we can replace it with the non—zero product [[ f. So we get
j=1 r=1

0= PGy + QGo, (3.4)

with

Gio= > M [T 6 TL+9 11 Hi—9d_ nitfe 1] 15
=1 - =1

r=1

j=1 j=1 ‘ j=1
j#i J#i
P P P P P P
Gy = (D N I1 £ 11 4o I1 fi—od_nmtw 11 4
i=1 =1 r=1 j=1 =1 i=1
j#i J#i

We remark that, since P and () are coprime, from PH, + QH, = 0 it follows

that H, and H, cannot be zero. Consequently, G; and G2 are not zero.

Since P and @ are coprime, from (3.4) we have that P must divide the
polynomial G5, and ) must divide the polynomial G4, which is impossible if

p
0G; < m = max{JP,0Q} for i = 1,2. Due to the fact that 6G; =1 — 14 >_4df;,

=1

P
we get that [ + > df; > m+ 1.
i=1
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Since P and () are coprime, if Z 0fi +1 = m + 1 we have that there is a

constant A € C\ {0} such that P = —>\G2 and Q = AG;. Doing the change of
time ¢ — (1/A)t the first part of statement (a) is proved. Now we shall show the

second part of statement (a).

The algebraic curve f; = 0 is invariant for the vector field (3.2) with cofactor

P P p
K. = | T] £ D2 Mlfafey = fufa) | 1L £ | + (gafiy — 90fra)
=1 i=1 j]#:i’lk
+g > nilfifea— fuf) | I 5
i=1 j=1
J# ik

The vector field (3.2) has divergence

p p p p
div X = — H N Z Ai H fi| fiy + H Z i
=1 i=1 j=1 =1 i=1
i i#i Y
p
H Z >\Z H fj fm: H fj fzy +
=1 i=1 j=1 j=1
JF y JF .
p
9z Z U2 H f] fzy 9y Z n; H f] fz:c
=1 j=1 =1 j=1

J# J#

p
H fi
j=1
itk

H fi | fot

j=1
J#
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p p p
g n; H f] fiy H f] fza: +
i=1 j=1 j=1
j#i . j#i
)

or equivalently,

p p p

div X = Y mNlfefo— fud) | T 6 I e
k=1 i=1 l=1
A Ik

Gk=1

(H fz"l) D ANlfiwfu— k) | 1] fe |+
=1 F=1
k i,

Z nz(ngzy _gyfiIE) H fj +

J#Fi

g 2: n; (fizfiy — Fiyfia) II Je | +
i=1 j=1 k=1
J#Fi k#1i,3
Z (gxfzy - gyfwﬁ) H fj )
i=1 j=1

J#
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and it is easy to check that

i K, + i n, K, = div X.

r=1 r=1

Therefore, by Theorem 1.7(b), Ry = (f1 e fofit j}?”’)f1 is an integrating factor
of the vector field (3.2).

Suppose that [ + Zp: dfi > m+ 1. Since P and @ are coprime, from (3.4)
we have that there is z;i)olynomial A such that G; = AQ and Gy = —AP. So,
dividing G; and G5 by A we obtain the polynomial vector field (P, Q) of degree
m. This completes the proof of statement (b), and consequently of Theorem 3.1.

[ |
Remark 3.6.

We shall show that the second part of statement (a) of Theorem 3.1 cannot be
extended to integrating factors of the form (3.1) with g # 0. The system

T = z(z+y+1),

7 = ylz+y), (35)

has the two invariant algebraic curves f; = x = 0 and f, = y = 0, and the
exponential factor F' = exp (—(1 + x)/y) with cofactors K1 = x+y+1, Ky = x4y
and L = 1, respectively. Since —K; + Ky + L = 0, by Theorem 1.7(a) system (3.5)
has the first integral H = f;'f,F. Doing simple computations we observe that
system (3.5) can be written into the form (3.2) with \; = —1, Ay =1, n; = 0 and

no = 1. We also note that the polynomials P and () are coprime.

Since the divergence of system (3.5) is div = 1 + 3z + 3y and we have that
Ky + Ky # div and K 4+ K3 + L # div, by Theorem 1.7(d) there is no integrating
factors of the form (fif2)™! or (f1f2exp F)fl. So, although system (3.5) can be
written into the form (3.2), the second part of statements (a) of Theorem 3.1
cannot be extended to integrating factors of the form (3.1) with g # 0. However,
since K| + 2K, = div, this system has the integrating factor R; = f; ' f, 2. |

Proof of Theorem 3.5: Assume that the assumptions of Theorem 3.5 hold. Sup-
P

pose that Y & f; = m+ 1. Then, by Theorem 2.4(b) it follows that the polynomial
i=1
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vector field satisfying the assumptions of Theorem 3.5 is of the form (3.3), and by

Proposition 2.5 it has the first integral f )‘p .

Now we shall prove the converse statement. Suppose that the polynomial vec-
tor field satisfying the assumptions of Theorem 3.5 has the first integral fl)‘1 e ;‘ P
So, for this first integral [ = 0, using the notation of Theorem 3.1. Then, by Corol-

p
lary 3.2 we have that Y §f; > m+1. Since all the invariant algebraic curves f; =0
=1

are generic, by Theorem 2.4, it follows that Z df; < m+1. Hence, Z O0fi =m+1,
and the proof of the theorem is Completed [

3.3 The examples

First, we provide three examples of a first integral satisfying statement (a) of
Theorem 1.14.

Example 3.7.

The Darboux function H = y~3 exp(3x3/y) is of the form (3.1) with f; = v,

A = —3,n; =1 and g = 323. Then, the [ defined in Theorem 3.1 satisfies [ = 3.
p
Therefore, since [ + Y df; = 4, and the polynomial vector field given by (3.2) is

i=1
X = 3(y + 23, 32z%y) with m = 3, it follows that H and X satisfy statement (a) of

Theorem 3.1. [

Example 3.8.

The Darboux function H = (22 + y?) exp(2y) is of the form (3.1) with f; =
x4y, fo = x — 1y, )\1—)\2—1 ny = ny = 0 and g = 2y. Then, the [ = 1.
Therefore, since [ + Z dfi; = 3, and the polynomial vector field given by (3.2) is

X =2(—y —2*— y x) with m = 2, we have that H and X satisfy statement
(a) of Theorem 1.14, because X has the first integral H and the integrating factor

1/(2* + y?). N
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The next first integral and its corresponding polynomial vector field provide

examples satisfying Theorem 3.1(a) and Theorem 3.5.

Example 3.9.

The Darboux function H = xy(x — 1 + y/3) is of the form (3.1) with f; = z,
fo=vy, fs=x—1+1y/3, )\1:>\2:)\3:1, ny =ng =ng =0 and g = 0. Then,
the [ = 0. Therefore, since [ + Z 0 f; = 3, and the polynomial vector field given by
(32)is X = (z(1l —z — 2y/3) ( 1+ 2z +y/3)) with m = 2, we get that H and
X satisfy statement (a) of Theorem 3.1, because X has the first integral H and

the integrating factor 1/H. Additionally, this is an example satisfying Theorem
3.9. [

Now we shall provide two examples satisfying statement (b) of Theorem 3.1.

Example 3.10.

The Darboux function H = y~*(23 + 2* + y*) is of the form (3.1) with f; =y,
fo ::c3+:(:4+y4 M =4 =1 n =ny =0and g =0. Then, the [ = 0.
Therefore, [+ Z dfi = 5, and the polynomial vector field given by (3.2) is (P, Q) =
(4a*(1+4x), x (3+4:U) ) with P and @ non—coprime. So, X = (4z(1+x),y(3+4x))
with m = 2 is the polynomial vector field satisfying statement (b) of Theorem 3.1.
|

Example 3.11.

The Darboux function H = (x + 1) 2(y — 2%) exp(—1/(z + 1)) is of the form
Bl with fi=z+1, o=y—2*, \i1=-2, =1,n=1n=0and g = —1.

p

Then, | = 1. Therefore, [ + > df; = 4, and the polynomial vector field given by
=1

(3.2) is X = (—(z + 1)?, =2z — y — 32% — 2xy) with m = 2 satisfying statement

(b) of Theorem 3.1. B
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Chapter 4

Polynomial systems and Darboux

integrating factors

4.1 Introduction

In this chapter we study the following inverse problem of the Darboux theory
of integrability, what are the polynomial vector fields in C? having the Darboux

function
R(z,y) = fi" - frrexplg/(fi" -+ 7)) (4.1)
as a Darbouzx integrating factor?

The main results of this chapter are given in Theorems 4.1, 4.2 and 4.3. We

organize them as follows.

The first theorem provides a connection between the degree of the invariant
algebraic curves and the number of them in order to decide about the kind of the

Darboux integrability and so improves statement (e) of Darboux Theorem 1.7.

Theorem 4.1. Suppose that a polynomial vector field X = (P, Q) of degree m,
with P and Q) coprime, admits p irreducible invariant algebraic curves f; = 0 with
cofactors K; fori=1,...,p; q exponential factors exp(g;/h;) with cofactors L; for
j=1,...,q; and r independent singular points (zx,yx) such that f;(xy,yx) # 0 for
1=1,...,p and for k =1,...,r. Then, the irreducible factors of the polynomials

71
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hj are some f;’s and we can write

H1 Mg
o (B)" o (2 o5+ o (et
? q 1 P

where piy,--- ,pig € C, ny,---,n, € NJ{0} and the polynomial g of Clz,y] is
p

coprime with f; if n; # 0. We denote by | = max Zn,ﬁfi, 6g}

i=1

P
Ifp+q+r=m(m+1)/2, I+ Z Of;i <m+1, and the r independent singular
i=1
points are weak, then the (multi—valued) function

@) @)

for convenient \;, i; € C not all zero is an integrating factor of X.

The proof of Theorem 4.1 is given in Section 4.2.

We are interested in studying the polynomial differential systems which have

a given Darboux function (4.1) as an integrating factor.

Theorem 4.2. We consider the Darbouz function R(x,y) = fi" -+ fp" exp(g/(f1

with fi,---, fp wrreducible polynomials in Clz,y|, w1, - ,p1p € C, ny,---,n, €
NU{0} and the polynomial g of Clz,y| is coprime with the f!s for n; # 0. Let
X = (P, Q) be the vector field (3.2) with N\; = p; +n;+ 1. Consider the polynomial

vector field
Y = (Yy — Ye) (H ) <H fj> - CX, (4.3)

where Yy = (A, B), A, B,C are arbitrary polynomials satisfying (AH),+ (BH),
0 where H = f - farexp(g/(f™ -+ fi?)) is a first integral of X and Yo =
(=Cy, Cy). Then, the polynomial vector field Y has R as an integrating factor.

In Section 4.3 we prove Theorem 4.3 which is actually the main theorem of
this chapter. With Theorem 4.3 we provide all polynomial systems having an
integrating factor forming by one generic curve. In the proof of Theorem 4.3 we

also provide an algorithm where we construct step by step such systems.

)
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In general, a polynomial system having a Darboux integrating factor does not
always have a Darboux first integral as we observe in Exemple 4.11, but always it
has a Liouvillian first integral (see [48]). With Theorem 4.3 and in its proof we can
guarantee the existence of additional curves or exponential factors which show the
existence of a Darboux first integral. In the next theorem, we characterize all the
polynomial vector fields having an integrating factor of the form f* with f =0 a

generic curve and A € C. We denote [-] the integer part function.

Theorem 4.3. Let f = 0 be an irreducible algebraic curve of degree k in C? and
let m be an integer such that m > k — 1. We denote by n = [(m + 1)/k]. We

assume that f satisfies the following generic conditions.

(i) There are no points at which f and its first derivatives are all vanish.

(i) The highest order terms of f have no repeated factors.

Then, any differential polynomial system © = P,y = Q of degree m having the
integrating factor f* with X € C can be written as follows.

(a) If  m+1)/(n+1) <k < (m+1)/n and X & {—1,-2,---,—n}, then we
have
1 1
b= IRl = fRA PR (@)
where
n+1 )\+1

Difi_17

F:D1+§(A+2)(A+3)---(/\+z’)

and the D;, fori=1,--- ,n, is a convenient polynomial given in Lemma 4.9,
Dy =a, € Cifk = (m+1)/n, otherwise D, 1 = 0. Moreover, 0F +0f =
m + 1 and system (4.4) has the Darboux first integral H(x,y) = F%Hf

(b) If  m+1)/(n+1) <k < (m+1)/nand A € {—1,-2,--- ,—n}, then we
have
= _ﬁf_A_lfy_()\‘i_l)gfy_fgya

= B ot (At Dafe + o (45)
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where

a1 Py i D_y_; AZGoa+H o f
o/ {77 =2 (=7 z’(z‘+1)---(—)\—1)fi+(_1) ' (—A—1)

=1

D_»_;,G_y and F_,,1 are convenient polynomials given in Lemma 4.10 and
B € C. Moreover, 5(g/f 1)+ f = m+1 and system (4.5) has the Darboux

first integral H = [P exp <f;‘{,1

By Proposition 1.2 a polynomial differential system of degree m having an
invariant algebraic curve f = 0 of degree k satisfying the assumptions (i) and (ii)
of Theorem 4.3 satisfies that m + 1 > k. So, the condition m > k — 1 of the

statement of Theorem 4.3 is not restrictive.

Note that Theorem 4.3 says that any polynomial system having a Darboux

integrating factor formed by one generic curve always has a Darboux first integral.
In Section 4.4 we present the examples 4.14 and 4.15 of Theorem 4.3.

We note that system (4.4) is a particular case of system (3.2) when g = 0
and n; =0 for all i = 1,--- | p. System (4.5) appears when some of the invariant
algebraic curves (perhaps also the line at infinity) have multiplicity larger than 1,

see for more details [21].

We observe in Theorem 4.2 that the family of the vectors fields Y having a
Darboux integrating factor is a very general family depending on the arbitrary
polynomials A, B, C, but in Theorem 4.2 we cannot determine all the polynomial
vector fields having as integrating factor the given Darboux function as we did in

Theorem 4.3 for the particular integrating factors of the form f* with A\ € C.

By Theorem 4.3 we note that when a polynomial system has a Darboux inte-
grating factor given by a generic curve, then it appears either an additionally in-
variant algebraic curve, or an exponential factor in such a way that 0 F'+0 f = m+1,
or 6(g/f~*1) +6f = m + 1, respectively. Here, we have used the notations of
Theorem 4.3.

In Section 4.4 the reader could find various examples of the previous theorems.
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4.2 An integrating factor formed by arbitrary

curves

Proof of Theorem 4.1: Assume that the assumptions of Theorem 4.1 hold. By
Theorem 1.7(e) the function (4.2) is either a first integral, or an integrating factor
of X. But, from Corollary 3.2 the function (4.2) cannot be a first integral of X

p
because [ + > df; < m + 1. Hence, the proof is completed. i
i=1

We note that for Yy = (0,0) the vector field (4.3) coincides with the vector

field (3.2) having additionally C' = 0 as an invariant algebraic curve.

Now we present a way to choose the polynomials A, B and C' which appears

in the statement of Theorem 4.2.

The polynomials A and B of Theorem 4.2 are arbitrary polynomials satisfying
the condition (AH), + (BH), = 0, or equivalently the vector field (A, B) has

Hi,y) = {8 oot eplg/ (77 - £37)

as an integrating factor. Hence, in order to construct the vector field Y defined in
(4.3) which has R(x,y) = f{" -+ fa7exp(g/(f{"* - -+ f»7)) as an integrating factor,

first we need to guarantee the existence of such a vector field (A, B). Consider

Hy(,y) = f{rHm 2 frt 22 oxp (g /(1 -+ £37)

and take (A, B) the vector field defined in (3.2) having the first integral H,. Ad-
ditionally, the arbitrary polynomial C' can be chosen trying that the vector field
Y has an appropriate degree. In Section 5 we present Example 4.13 of how to

construct such a vector field (4.3).

Proof of Theorem 4.2: In order to prove that R = fi" - .- f;? F with F' = exp (g/ ( HERE

is a Darboux integrating factor of the polynomial vector field Y defined in (4.3)
we must prove that YR 4+ Rdiv(Y) = 0. We have that

p p
YR = (AR, + BR,+ C,R, — C.R,) | ] f IT #*]-cxr

i=1 =1

. np
s

)
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Let Ry be the integrating factor of X given in Theorem 3.1. We note that R = HR;
is another integrating factor of the vector field X given by (3.2). Therefore, the

last relation can be written into the form

p p
YR = (AR,+BR,+C,R,~C,R) | [] f I #* [ +CRdiv(X). (4.6)

i=1 =1

Since (AH), + (BH), =0 and since H = R/R; we have that

R
AR, + BR, + (A, + B))R — &

1

(ARy, + BRy,) = 0. (4.7)

Now we calculate

div(Y) = (A, + By) H fi H A

i=1 =1

+ (Al IT #| +B| II * I

i=1 i=1 =1

=1 =1 =1

+ |Gy H fil| —Cu H fi H I

i=1 i=1 =1
x

+ (G| IT | —of 1T o IT #

=1 =1 =1
T Y

— (C,P+C,Q) — C div(X).

Consequently, we have
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diV(Y) = A —|—B ( H fz> ( H flnz)
_ Ril(ARlx%—BRly) ( I1 flnl) ( 11 fi)

_ Z (ni + 1)(Cofiy — Cy fiz) H fi ( flm)

1=1 j=1

+ Z (i +ni + 1)(Cy fiy — Cy fiz) H f; ( H fzm)

- g Z nz(cxfzy_oyfw) H fj

J#i

=1

We have

div(Y) = (Am+By)(H fi) ( 11 flm)
1

1=1 j=1
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- g Z nz(czfzy_oyfw) H fj

i=1 j=1
jFi

p
+ (C:cgy - Cyg:v) H fz - O le(X)
i=1

Finally, multiply the above expression by R we get that

Rdiv(Y) = (A,+B,) H f[ il R

=1 1=1

Now, using the previous expression for R div(Y'), the expressions (4.6) and (4.7),
we obtain that YR + R div(Y') = 0. Hence, the proof is completed. i

4.3 Darboux integrating factors formed by one

generic curve

In order to prove Theorem 4.3 we shall need the following results.

Lemma 4.4. Let A, B be polynomials in (C[x y| with maz{J A, (5B} =n and such
that A+ B, = 0. Then, there exist a umque Fe (C[x y| with §F = n+1 such that
F has no constant term, and A = —F and B = F,. Of course, for an arbitrary
constant a € C, F = F + a are all the solutions of Ay + B, = 0.
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Proof: Let A € Clz,y] with A < n. Then, we write A as follows
A= Ag(z) + Ai(@)y + As(2)y® + -+ Apa(2)y" 1+ Ay,

where A;(z) € Clz] fori=1,--- ,n—1 and A,, € C. We define the polynomial F

as

y2 yn yn+1
F=— [ Ady=-A —A — = —A,_ ——A, ,
[ Ady =~ g(w)y - A1) ()L — 42—+ glo)
for some polynomial g. Then,
Y y"
Fx = —ony - Alz_ - An—l,x_ + 9z,
2 n
Since B, = —A1, = —Aoe — A1y — Agpy® — -+ — A1 ,y" ! we have that
Y Y’ y"
B = _/Alxdy = _AOxy - Alx? - AQx? — An—l,xg + h(ﬂf),

for some h € C[z] with 6k < n. Now choosing g = [ h(x)dz we have that g € C[z]
with 0g < n 4 1, and so omitting the constant term of F' we obtain the unique

polynomial F. Therefore, the proof of the lemma has been completed. [

Lemma 4.5. Let A, B,C, f € Clx,y] such that 6A,0B < m—k, 6C <m—2k+1,
0f =k, and max{§(A + fC,),8(B — fC,)} = m — k. Suppose that A, + B, =
[yCo — f2Cy. Then there exists F' € Clx,y| with 6F = m — k + 1 such that
A=-Cyf —F, and B=C,f + F,.

Proof: We have
0=A,+ f.Cy + By — f,Co = (A+ fCy)s + (B — fCy),.
From Lemma 4.4 there is F' € Clz,y| with 0F = m — k + 1 such that
A+ fC, = —F, B—fC, = F,

and this completes the proof. B
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Lemma 4.6. Let Ay, By and Dy be polynomials. Consider the polynomial differ-

ential system of degree m

t=A1f—Dify, v=DBif+ Dife, (la)
with §Ay, 0B <m —k, §D1 <m+1—k and §f = k. If system (1a) has f* for
some A € C as an integrating factor, then the system
.j,’ = (/\ —|— 1)A1 —|— Dly; ’y — ()\ + 1)Bl - Dlx; (1b)
of degree at most m — k has f = 0 as an invariant algebraic curve and let Ly =
Alm + Bly. Then,
(a) system (1b) has the Darbouz integrating factor fA*1 if Ly # 0 and X\ # —1,

(b) system (1b) is Hamiltonian if Ly =0 or A = —1.

Proof: System (1la) has divergence equal to divy = (A; + Dyy) fo + (B1 — D) fy +
(A1z + Biy)f. We note that the algebraic curve f = 0 is invariant for system (la)
with cofactor K = A; f, + B f,. Since f* is an integrating factor for system (1la),
we have that (see Theorem ?7(d)) AK + divy = 0, or equivalently

(A+ 1A+ D) fo + (A+ 1)B1 = Dia) fy + (A1z + Byy) f = 0. (4.8)

System (1b) has divergence dive = (A + 1)(Ay, + Bi1,). We note that due to
relation (4.8) the algebraic curve f = 0 is also invariant for system (1b) with
cofactor Ly = — (A, + Byy).

(a) We assume that L; # 0 and A # —1. Then we have that (A 4+ 1)L, = —divs.

Hence, system (1b) has f2*! as an integrating factor.

(b) We now assume that L; = 0. System (1b) has f as a first integral. Since
Ay + By, = 0 from Lemma 4.4 there is G € C[z,y] such that A; = G, and
By = —G,. So, system (1b) becomes

t = (A+1)G,+ Dy =((A+1)G + Dy),,

) (4.9)
gy = —(A+1)Gy — Dy =—((A+1)G+ Dy),,

therefore, it is a Hamiltonian system.
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If A = —1 we have that system (1b) is a Hamiltonian system with Hamiltonian
H = D;,. |

Proof of Theorem 4.3: Since f = 0 is an algebraic curve which satisfies all condi-
tions of Theorem 2.4, all the non—zero polynomial vector fields of degree m having
f =0 as invariant algebraic curve can be written into the form (2.4) if £ < m+1,
or (2.5)if k=m+ 1.

The proof of Theorem 4.3 is organized as follows: Firstly, for simplicity we
present with all the details the proof of the theorem in the first five cases. Secondly,
in Lemma 4.9 we present the proof of statement (a) of Theorem 4.3. Lastly, in

Lemma 4.10 we present the proof of statement (b) of Theorem 4.3.

Case 1: kK = m + 1. Then, since all polynomial vector fields having f = 0 as
invariant algebraic curve can be written into the form (2.5), the corresponding
system can be written into the form (4.4) where F' =constant. Hence, Theorem

4.3 is proved in this case.

From now on we suppose that £ < m + 1 and that the vector field is of the
form (2.4), or equivalently of the form (1a).

By Lemma 4.6, f = 0 is an invariant algebraic curve of system (1b) of degree
at most m — k. Therefore from Proposition 1.2 we have that Kk < m — k+ 1 or

equivalently 2k < m + 1. We distinguish the following cases. [

Case 2: (m+1)/2 < k < m+ 1. Then, from Theorem 2.4(c), we have that the
vector field (1) is identically zero. So, since we are in the assumptions of Lemma
4.6, from (4.8), we get that

()\ + 1)141 + Dly - O, ()\ + 1)31 - Dlx - O7 Alx + Bly = O

If A # —1, we can write

(4.10)

1

———D = —— D,
A1 A+1 0
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and 0D; = m + 1 — k. Substituting A;, By in system (la) we get system (4.4)
for F = Dy. We note that FF = D; = 0 is also an invariant algebraic curve
and §f + 0F = m + 1 and therefore system (la) has the Darboux first integral
H=F~af.

Subcase A = —1 then, from (4.10), Dy, = 0 and Dy, = 0 so Dy = 6; with 6; € C.
Since Ay, + By, = 0 from Lemma 4.4, there is G € Clz,y| with 0G =m — k + 1
such that Ay = -G, and B; = G,. Hence, system (la) can be written as

T = _Gyf - 51fy7 y = fo + 51f1‘ (411)

We note that the algebraic curve f = 0 is invariant for system (4.11) with cofactor
K = —(f.Gy — f,G,). Additionally, system (4.11) has the invariant exponential
factor exp(G) with cofactor L = 6;(f,Gy — f,Gz) = —01 K. Hence, system (4.11)
has the first integral H = f exp (G). Taking g/f° = G and 3 = §; system (4.11)
it is of the normal form (4.5). So, Theorem 4.3 is proved in this case. i

Case 3: k = (m + 1)/2. Note that this case only occurs if m is odd. Then, from
Theorem 2.4(b) we have that for system (1b) of degree m —k holds (m—k)+1 =k
and so system (1b) should be of the form

(>‘+1)A1+Dly: _afya <>‘+1)Bl_D1x:afx7 (412)

for some « € C.

If A # —1 we obtain that

—afy — Dy afr + Dig
A =—22 By =————.
' A1 ' A+1
Substituting A; and Bj into system (la) we get
. 1 . 1
T = _/\—_H(Oéfyf + Dlyf) - leya Y= \ + 1(afmf + Dl:):f) + lem

(4.13)
We note that system (4.13) for A € {—1, -2} has a second invariant algebraic
F=D + /\%Qf = 0 with cofactor Ky = f, Dy, — f,D1,. We also note for system
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(4.13) that the invariant curve f = 0 has cofactor K; = —%H(fxDm — fyD1z) =
—(/\ITI)KQ. Hence, system (4.13) has a Darboux first integral of the form H =

Fet f. Obviously, system (4.13) can be written into the normal form (4.4).

Subcase A = —1. Then we have that

Dly = —Oéfy, Dlx = —Oéfr,

and so D; = —af — §; with §; € C. Then, from (4.8) we get that A;, + By, =0
and therefore, from Lemma 4.4, there is G € Clz,y| with 6G = m — k + 1 such
that A, = G, and B = —G,,.

Substituting Dy, A; and Bj into system (la) we have that

t=01fy+(GHaf)yf. §=—0fc—(G+af)f. (4.14)

The invariant curve f = 0 in system (4.14) has cofactor K = f,G, — f,G..
Additionally, system (4.14) has the invariant exponential factor exp(G + af) with
cofactor L = 01(f,G, — f.G,) = —61 K, and therefore it has the first integral of
the form H = fo exp(G + af). For g/f° = —(G + «) and 3 = —d; system (4.14)

is of the normal form (4.5).

Subcase A\ = —2. Then system (la) becomes

i=af,f+Diyf—Dif  §=—afef = Dif+Dife (4.15)
System (4.15) has the exponential factor exp(D/ f) with cofactor Ly = a(f, D1, —
fzD1y) = —aK where K is the cofactor of the invariant algebraic curve f = 0. So,
system (4.15) has the first integral H = f~*exp(D;/f). System (4.15) is of the
normal form (4.5) taking g/f = —D;/f and § = —a. ]

Case 4: (m+1)/3 < k < (m+1)/2. We have that system (1a) has the integrating
factor f*. Then, from Lemma 4.6(a) we have that the polynomial system (1) has
the integrating factor f2*1. Additionally, from Theorem 2.4(a) the system (1b) of
degree m — k having f = 0 as invariant algebraic curve can be written into the

form

&= Ayf — Dofy, y = Bof + Dsf, (2a)
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where A,, By are polynomials with 0 Ay, 0By < m — 2k and D, is a polynomial
such that Dy < m — 2k + 1. We note that system (2a) has fA! as an integrating

factor. So, applying Lemma 4.6 to system (2a) we obtain system
&= (A+2)Ay + Dy, y = (A +2)By — Dy, (20)

of degree at most m — 2k which has f = 0 as invariant algebraic curve and an
integrating factor of the form f*2. From Proposition 1.2 we have that k < m —
2k + 1 and so k < (m + 1)/3 which is in contradiction with Case 4. So, system
(2b) is identically zero, and therefore Ay = —Ds, /(A4 2) and By = Da, /(A + 2).

Since (m +1)/3 < k < (m + 1)/2 is equivalent to ((m — k) +1)/2 < k <
(m — k) + 1, then for system (2a), working in a similar way as in Case 2, we have
that for A #% —2 there is a polynomial Iy, = Dy of degree m — 2k + 1 such that
system (2a) and consequently system (1b) can be written as

x )\+2f 2y — 2fy7 y )\+2f 21‘ Qfxa

1
and has the Darboux first integral Hy = F,""* f. Since system (1b) is equal to
system (2a) we get

A+1D)A+ Dy = ———fFy — Ff,

! §+2 Vo (4.16)
A+ 1)B— Dy, = ——fFy + Fof,.
(A+1)B, 1 )\+2f oe + Fof

So for A € {—1,—2} we have

1

1
M=y (P s e ) B

1

1
—— | D+ ——=fFo + Fofs |,
A+1(1+A+2f2+ 2f>

Substituting A; and Bj into system (la) which is of degree m we obtain that

. 1 1
T = 11 <D1y )\+2fF2y+F2fy> f—D1ify,

(4.17)
;= L (Dot Rt RS DS
Yy = /\+1 1x /\+2 2z 2)x 1Jx-

We note that system (4.17) has the invariant algebraic curve of degree at most
m-+ 1-k F = D1 -+ )\L_’_QFQf with cofactor KQ = fxDly - fyDlx+ %H(fxpgy _fyFQx)-
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The invariant algebraic curve f = 0 has cofactor K; = —/\LHKQ. Hence, system

(4.17) has the normal form (4.4) because it can be written as

. 1 1 1

v _A—H(D1+A+2F2f>yf_<D1+>\+2F2f)fy’
) = 1 D, + 1 Ef) f+ | D+ Ef)f
y = N+l 1 Nt 2 2 ) 1 Nt 2 2 x-

If Ay, + Biy, = 0 then from Lemma 4.6(b) system (1b) is a Hamiltonian system
of the form (4.9) and has f as a first integral. Therefore, from Theorem 3.1(b)

system (1b) can be written as

i = (M 1)G+Dy), = —Dof,
) —((AN+1)G+D1). = Dofs,

for some Dy € Clz,y] with 6Dy = m — 2k + 1. Additionally, we have that Ds, f, —
Dy, f = 0 which means that system @ = —Dy,, y = Dy, has f as a first integral.
From Proposition 1.2 we have that £ < m — 2k + 1 or equivalently k£ < (m +1)/3
which is in contradiction with Case 4. So, it must be Dy = 65 € C and therefore
Gy = —(02f +D1),/(A+1) and G, = (d2f + D1)./(A+1). Hence, system (la) can
be rewritten into the form

S Gyf - ley = —52ffy - %Dwf - ley;

y = _fo+D1fy:52ffm+)\—HDlmf+D1fx7

and setting F' = Dy + /\+r2(52f system (la) is of the normal form form (4.4) and
has the Darboux first integral H = fF ez

Remark 4.7. We note that if Ly = 0 then system (1b) is a Hamiltonian system

and in this case system (2a) is of the form

f:Agf—Dny, y:BQf+D2fx7

with As = By = 0 and Dy = 09 € C and we can take Fy = 9o and so for X\ # —2 the
1

system has the Darboux first integral Hy = F;'** f. System (1a) has the additionally

invariant algebraic curve F = Dy + %HFgf with 0F +60f = m + 1, and it is of
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the normal form (4.4). Hence, using the information about the degrees the case
Ly = 0 is included in the study whenever we apply Lemma 4.6(a). From now on,

we will omit to study this case.

Subcase A = —1. We assume also that L; # 0. Then Ay = —Dy, and By = Day,,
and so relation As, + By, = 0 holds and system (2b) is Hamiltonian. System (2a)

can be written

i=-Dy,f—Dafy,  §=Daf+Dfs,

and has the invariant algebraic curve F, = Dy = 0 and the Darboux first integral

Hy = Dy f. Since system (1b) is identically equal to system (2a) we get that

Dy, =Asf —Dyof, = —Fpf — Fpfy,
—Dyy = DBof +Dofy, = Fouf + Fofs.

So, Dy = —D, f — 6, for some §; € C. From relation (4.8), we get that A, + By, =
fulFsy — fyFoe, and from Lemma 4.5, we have that there is G € C[z,y| with
0G < m—k+1such that A; = I, f+ G, and By = —Fy, f — G,. So, system (la)

can be written into the form

x251fy+(F2f+G>yf7 y:_élfx_(F2f+G)$fa

and we note that it has the Darboux first integral H = f° exp (Fyof + G). Ob-
viously, system (la) takes the normal form (4.5) for g/f° = —(Fyf + G) and

/6 == —51.

Remark 4.8. We note that if Ly = 0 the proof is the same taking F» € C. From

now on we will omit to study the case L1 = 0.

Subcase A = —2. Then, since system (2b) is identically zero, we get Dy, = 0, Dy, =
0, and therefore Dy(z,y) = 05 with o € C. Also we have that Ay, + B, = 0, and
so, by Lemma 4.4, there is Gy € Clz,y| such that Ay = —G5, and By = Ga;.

Hence, system (2a) becomes

T = _G2yf - §2fy7 y = G2:1:f + 52fx7 (418>
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and has the exponential factor exp(Gy) and the first integral Hy = 92 exp (Gs).
Since system (1b) is identically equal to system (2a) and consequently to system
(4.18), we obtain

Ay = Goyf + 62fy + D1y, By = —Gap f — 02 fe — Dig,

and hence system (1la) takes the form

T = (62fy + G2yf)f+D1yf - ley7 y = _(52f:r +G2xf) - Dlzf_'_lex;

and has the two invariant exponential factors exp(Gsy) and exp(D;/f), and the
Darboux first integral H = f% exp(D;/f) exp(Gs). Obviously, the last system is
in the normal form (4.5) for § = —d3 and g/ f™ = —(D1 + Gaf)/f. |

Case 5: k= (m+1)/3. Then k = (m — 2k) + 1. Note that this case occurs when
m + 1 is a multiple of 3. System (1b) of degree m — k has f = 0 as invariant
algebraic curve. From Theorem 2.4(a) it can be written into the form (2a). Since
system (1b) and consequently system (2a) has fA*! as an integrating factor, from

Lemma 4.6, we obtain that system
jf == ()\+2)A2+D2y, y: ()\+2)B2 —Dgx, (2b)

of degree m —2k = k—1 has f = 0 as invariant algebraic curve and the integrating
factor f2*2. From Theorem 2.4(b), all systems of degree m — 2k have f = 0 as

invariant algebraic curve are of the form

T = —Oégfy, y - OQfIa

for some ay € C. Hence, we have that

(A+2)As + Dy = —ia fy, (A+2)By — Dy = a2 f,
and so . .
Ay = —)\—_'_Z(DQy-i”an), By = )\—_I_Z(DQ;B-I—Oéfz)-
Substituting Ay and B, into system (2a) we get
) 1 i 1
T = —m(D2y +aafy)f — Dafy, Y= m(D2x +asfe)f — Dafe.

(4.19)
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Applying the same arguments as in Case 3 to system (4.19) of degree m—2k = k—1,
and consequently to system (2b) we have that for A & {—2, —3} there is an invariant
algebraic curve Fy = Dy + S f, of degree at most m — 2k + 1 such that system

A+3
(4.19) is of the normal form (4 4) because it can be written as
. 1 , 1
xr = — )\+2F2yf F2fy7 y:)\+2F2:rf+F2fx7

_1
and so it has the first integral Hy = F;’" f and 0F, = m — 2k + 1.

Similar to Case 3 we have that system (la) of degree m for A ¢ {—1, -2, —3}

1 1
Ff=D D _
A+ 2 2f = 1+A+2< 2+A+3)f 0

as invariant algebraic curve and 0 f +0F = m+1 and takes the normal form (4.4).

has
F=D+

Subcase N = —1. Then Ay = —asf, — Doy and By = aafy + Day, so relation
Ay, + By, = 0 holds. System (2a) becomes

T o= — (%f‘i‘DQ)yf — (%1 +Ds) fy,
y = (%f"’ D2)$f+ (%f‘FDﬂ Jz
and has the invariant algebraic curve Fy = % f 4+ D, and the Darboux first integral
H, = F,f. Since system (1b) is equal to system (2a) we have
Dly:_Fny_Fny7 _Dlm:F2$f+F2fx7

and so Dy = —Fyf — 0y for some §; € C. From relation (4.8), we have that
A1y+Bry = foFoy— fyFo,. Then, from Lemma 4.5, we have that there is G € C|z, y]
with 0G < m —k+1 such that A, = 5, f+ G, and By = —Fy, f —G,. So, system

(la) can be written as

T = 51fy+(F2f+G)yfy
) = _51fx_(F2f+G)xf>

and has the Darboux first integral H = f exp (Fyf + G), and therefore it is of
the normal form (4.5) taking g/f° = —(Fof + G) and = =4,

Subcase A\ = —2. Then from system (2b) we obtain

D2y = _a2fy7 D2x = a?fxa
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and so there is 6o € C a such that Dy = —au f—d2. Since we have that Ay, +Bs, = 0
applying Lemma 4.4 there is Gy € C[z,y] such that Ay = Gy, and By = —Gl,.

Hence, system (2a) becomes

T = 52fy + (G2y + OZny)f = 52fy + Rny7
= _52fx — (GQI + 042fx>f = _52fx - R2xf>

and has the invariant exponential factor exp (Ry) = exp(Gy + aof), and the Dar-
boux first integral Hy = f%2 exp (Ry).

Since system (1b) is equal to with system (2a) we have that
Ay = =02 fy — Royf + Dy, By = dsfy + Ropf — Dia,
and so system (la) becomes

5L’ = —(62fy+R2yf)f+D1yf_ley7
) = (52fa:+R2xf)f_D1If+D1fx’

and has the two invariant exponential factors exp(R2) and exp(D;/f), and the
Darboux first integral H = f% exp(Ry)exp(—D;/f). Consequently, system (1a)
can be written into the normal form (4.5) taking g/f™ = (Rof — D;)/f and

ﬁ:(52.

Subcase A = —3. Then
Ay = aafy + Dy, By = —as fy — Doy,
and so system (2a) becomes

T =ayffy+ Doyf — Dafy, y=—aoffe— Daf+ Dofs,

and has the invariant exponential factor exp(Ds/ f), and the Darboux first integral

Hy = f*2exp(Ds/f). Since system (2a) is equal to system (1b), we have that
_2A1 + Dly = <a2fy + D2y)f - D2fy7 _2Bl - Dlx = (_a2fx - DZx)f + D2fza
and therefore

24, = —(oafy + Doy) f + Do f, + D1y, 2By = (aafy + Doy) f — Dafy — Dry.
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So, system (la) can be written into the form

T = %(_C‘foy — Doy f + Dsffy + Diy) f — D1 fy,
§ = §(0affut Douf = Dafe = Di)f + Difi,

and has the two invariant exponential factors exp(D;/f?) and exp(Dy/2f). Addi-
tionally, system (la) has the Darboux first integral

s (2)en(3)

For g/ f* = (—2D; + Do f?)/(2f?) and 3 = ay/2 system (1a) has the normal form
(4.5). ]

Now, we present some notation.

We denote by (na) a system of degree m — (n — 1)k of the form

&= Anf—=Dnfy,  §=DBnf+Dnfe,

with 0A,,0B, <m—nk,df =k and 0D,, < m —nk+ 1 having f = 0 as invariant
curve and an integrating factor of the form f "' This system according to

Lemma 4.6 generates a system (nb) of degree m — nk of the form

&= (A+n)A, + Dy, y=(A+n)B, — Dy,

and has f = 0 as invariant algebraic curve and the integrating factor fA*".

We consider the two sequences of systems (la) and (Ib) having f = 0 as



4.3 Darboux integrating factors formed by one generic curve 91

invariant algebraic curve and an integrating factor forming by f,

T = Alf_ley7 (>‘+1>A1+D1yv

(la) . (10)

= Blf+D1fx7 Yy = (A+1)B1_D1$7

= Asf—D = (AN +2)A D

- BZf 2fy> (2@) ‘ B ( + ) 2+ 2y (2b)

— 2f+-D2fwv y - ()\+2>BZ_D2ZE7

= Ay 1f— D, ) o= (A - 1A, Dy 1y,
e I A I (RN
Yy = nflf + anlfgm y = ()\ +n— 1>Bn71 - anl,am
3‘7 nf nfya (na) l’ ( + n) n + lya (nb)
y = an+anxa Yy = ()‘+n)Bn_D1x>

where 0A;,0B; < m — ik and 6D; < m — ik + 1.

Lemma 4.9. We assume that the conditions of Theorem 4.3 hold and that (m + 1)/(n + 1) <
E<(m+1)/nand X & {—1,—-2,---,—n}. Then, system (la) takes the normal

form (4.4).

Proof: For simplicity in the proof we distinguish the following cases.

Case A: (m+1)/(n+1) <k < (m+1)/n. Since f = 0 is an invariant algebraic
curve for system (nb) of degree m — nk, then from Proposition 1.2 we have that
k < (m —nk)+ 1 which is in contradiction with the assumptions. Hence, system

(nb) must be identically zero. So, for A # —n we have

1 1
A4n " " AN+n

n nIT,

and therefore system (na) becomes

1 1

T = _—Dnyf - anya y = m

an Dn X
A+n f+ Dnf

and has the invariant algebraic curve F,, = D,, = 0 with 0F,, = m —nk + 1, and
takes the normal form (4.4). So system (na) has the first integral H,, = F;,;™" f.
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We note that system (n — 1,b) is equal to system (na), so we have

1
(/\ +n— 1>An—1 + Dn—l,y - _M‘—n nyf - any7
(A + 1)B D L f+ F.f
n n—1 n—1,x )\+n nr nJyL,
and for A # —(n — 1), we get
A = ! D + L Fo,f + Dy 1 f
n—1 — /\—I—Tb—l n—1,y >\+n ny n—1Jy | »
B = ! D + L Fo.f+Dn 1f
n—1 — >\+n_1 n—1,x )\+n nx n—1Jzx | -
Substituting A,,_; and B,,_; into system (n-1,a) we obtain
) 1 1
T = NI ao1 Dn—l,y+anyf+Dn—1fy = Du-1fy,
(4.20)
) = 1 D + L Fo.f + Dy 1fe | f+ Duaf
y = )\+n_1 n—1,x )\+n nr n—1lJzx n—1Jx-
System (4.20) of degree m — (n — 2)k has the invariant algebraic curve
1
Fo1=D,_ — I )
! 1+A+n /

and 0F,_1 < m+ (n— 1)k + 1. Moreover, for A € {—(n — 1), —n} system (4.20)

can be written into the normal form (4.4)

1 1

_—Fn— _Fn— ) .:—Fn—.t Fn— T
Ntn_1 1) 1fy L 1af + 1f

T =

1
and has the Darboux first integral H,,_; = F,*7"' f with F,,_1 = m—(n—2)k+1.

Working in a similar way we have that system (n — 2,a) can be written into
1
the normal form (4.4) and has the first integral H, o = F,"37% f with F, o =
D,_s + ﬁFn_l f as an additional invariant algebraic curve and A\ & {—(n —
2)7 _(n - 1)7 _n}'
Additionally, every term of the sequence of the vector fields (la) has the addi-
tional algebraic curve F; = Dl+ﬁFl+1f fortl=1,--- ,nand A ¢ {—1,--- , —n}.



4.3 Darboux integrating factors formed by one generic curve 93

1
Moreover, it has the Darboux first integral H; = F*' f. So, the first term of this

sequence (la) of degree m has the invariant algebraic curve

1
A+2

F = Di+——Ff

1 1 1
= D —— (D —— (D F,
1+)\+2( 2+)\+3< 3+)\+4 4f)f)f

1

1
= D1 + —DQf +

1
Dyf?+ -+
A+2 A +2)(A+3) 3

A+2)(A+3)---(A+n)

A+1

- D1+;(>\+2)()\+3)---(>\+i)Difi_1'

Additionally, for A & {—1,--- , —n} system (1la) is into the normal form (4.4) and
has the Darboux first integral H = i f. So, Theorem 4.3 is proved in this case.

Case B: k = (m +1)/(n + 1). Equivalently we have that k = (m —nk) + 1. In

this case, system (nb) of degree m — nk is of the form 2.4(b). Hence, we have
(A+n)A,+ Dpy = —anfy, (A+n)B, — Dy = anfa,

for some «,, € C. Since, A # —n we can obtain A, and B,, and so system (na)

can be written into the form

1 1

jf: _H—n(Dny+anfy)f_any> y: m(an+anfx)f+anxa
(4.21)
and has the invariant curve F,, = D,, + ;525 f of degree at most m —nk + 1. We

note that system (4.21) can be written into the normal form (4.4)

1 1

-3, 1I'n - s .:—nz Fz;

T =

and has the first integral H, = F,*" f with §F, = m — nk + 1.

annfl
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In a similar way we have that system (n—1,a) can be written into the normal
form (4.4) and has the Darboux first integral H,, 1 = Fnkjl%f with F,,_; = D,,_1+
FlnFn f as an additional invariant algebraic curve. Furthermore, every term of the
sequence of the vector fields (X;) has the complementary algebraic curve F; =
D+ sz Fipaf for i = 1,--- ;n—1and XA ¢ {~1,---,—n}. We note that
for A & {—1,---,—n,—(n + 1)} the last term (na) of the sequence (la) has the

algebraic curve F,, = D,, + f. Moreover, every term (la) has the Darboux

pes
_1
first integral H;, = F}'"' f. So, the last term of this sequence (la) of degree m has

the invariant algebraic curve

1

F = D
e

By f

1 1 1
- Dj+—(Dy+— (D F
1+A+2< 2+A+3( 3+A+4 4f)f>f

1 1
= Di+——Dyof +
sy (A+2)(A+3)

1

Dl 4+ ST 0an)

1 n
" <)\+2)()\+3)...()\+n+1)05nf

an A+1

- D1+;(/\+2)()\+3)---()\+i)

Difi_la
with D, 11 = a,, € C. Additionally, for A & {—1,--- ,—(n+1)} it is of the normal

form (4.4) and it has the Darboux first integral H = F' 1 f. So we prove case B.

With cases A and B we complete the proof of Theorem 4.3(a). ]

Lemma 4.10. We assume that the conditions of Theorem 4.3 hold and that
(m+1)/(n+1) <k<(m+1)/nand A € {—1,-2,--- ,—n}. Then system (la)
takes the normal form (4.5).

Proof: For simplicity we distinguish the following cases.

annfl
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Case A: k= (m+1)/(n+1). Since f = 0 is an invariant algebraic curve of system
(nb) of degree m — nk, and since in this case we have that k = (m — nk) + 1 then

from Theorem 2.4(b) system (nb) can be written into the form
()\+n)An+Dny = _anfya (/\+n)Bn_Dnac :anfm7

for some «, € C.

Subcase A = —n. Then we have that D,,, = —a, f, and D,,;, = —a, f,, and therefore
D, = —ay, f — 6, for some 6,, € C. Applying relation (4.8) to system (nb) we get
that A,, + B,, = 0 and, from Lemma 4.4, we have that there is G, € C[z,y]
with G,, < m — nk + 1 such that A, = -G, and B,, = G,,,. Hence, system (na)

becomes

T = _(Gny - anjy)f + 5nfy7 y = (an - anfac)f - 5nf:va

and has the invariant exponential factor exp(G, — a,f) with 0(G), — a,f) =
m — nk + 1, and it has the Darboux first integral H, = f~%"exp (G, — a,f).
Additionally, system (na) takes the normal form (4.5) for 3 = —§, and g/f° =
G, —a,f.

We note that system (n — 1,b) is equal to system (na) and so we have

_An—l + Dn—l,y = _(Gn - anf)yf + 5n.fya _Bn—l - Dn—l,x = (Gn - anf)xf - 5nfx
Substituting A,,—; and B,_; into system (n-1,a) we obtain
T = <_5nfy + (Gn - anf)yf)f + Dn—l,yf - Dn—lfya
?J - _(_67’Lf$ + (Gn - anf)xf)f - Dn—l,;rf + Dn—lfa:'

System (4.22) of degree m—(n—2)k has the invariant exponential factors exp(—G,,+
a,f) and exp(—D,,_1/f) and the Darboux first integral H,, _; = f° exp(—D,,_1/f) exp(—Gp+
a, f). System (4.22) takes the normal form (4.5) for 8 =9,, and g/f = (=D,—1 —

Gnf +anf?)/f.

We note that system (n — 2,b) is equal to system (n-1,a), and so we have

_2An—2 + Dn—27y - (_5nfy + (Gn - O‘nf)yf)f + Dn—l,yf - Dn—lfya

(4.22)

_2Bn72 - anZ,m = _(_5nf:v + (Gn - anf)zf)f - anl,xf + anlfm-
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Substituting A, 5 and B,_» to system (n — 2, a) we get

T = 1(Dn—2,y — (=6nfy + (Gn — an)yf)f = Dnayf + D1 fy) — Dnafy,

2
Z) - %(_Dnlm + <_5nfm + (Gn - an)xf)f + anl,xf - anlfw) + Dn*QfQU'
(4.23)

System (4.23) of degree m—(n—3)k has the invariant exponential factors exp((G,,—

anf)/2), exp <D5J:1) and exp (712);;2> and has the Darboux first integral

H, 5= f% exp <_5;2_2) exp (Dznf1> exp (—G” _2a”f> .

System (4.23) for 8 = 6,/2 and g/f* = (Gnf? — anf? + Dy 1 f — Dp2)/(2f?)
takes the normal form (4.5).

Hence, for A = —n we have the sequence of systems (la) and their first integrals
Hll

(na) H, = f~"exp (Gy — anf),
(n—1,a)  H,_4 = fexp (_Dn_l> exp(—G, + anf),

-5,
(n—2,a) H, o=/f 2 exp (%) exp (D;ffl) exp <M),

On
_Dn—S Dn—2 _Dn—l _Gn + anf
(n—3,a) Hn3:f3-2exp< e >eXp<3-2f2)eXp(3~2f)GXP(T)’

n _Dn—4 Dn_3 _Dn—2
(n—4,a) H,_,= f4~3-2exp< 7 )eXp(4.3f3>eXp(4-3-2f2)

ex D1 ex —Gn —anf
P\a327) P\ 432 )
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1) On
I v I (ﬁ) exp((n_1>(52_2) JM)

_DS Dn—3

o (i) o (0

— (n—l)' ex _1\n—J Dn—j
=] (H p(( Y j-(j+1)---(n—1)ff'))

or equivalently H, = f?exp (g/f"!) where

n—1

n—1 __ _1\n—J Dn_j
oI = L T 7

Jj=1

and 3 = (—1)" 2o

(n=1)!"

Subcase A\ = —(n — 1). We have that A, = —D,, — a,,f, and B, = D, + a,, fs.
So, the vector field (na) of degree m — (n — 1)k becomes

i‘ - _(Dny ‘I’ anfy)f - anya y = (Dn:c + anf:c)f + anam

and has the invariant algebraic curve F,, = D,, + a,,f = 0 and the first integral
H,=F,f.

The vector field (n — 1,b) is equal to the vector field (n,a). So, we have that

anl,y = _Fnyf - anya anl,z = _chf - ana:a

i7)
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and therefore D, 1 = —F,f — §,,_1 for some 6, ; € C. Additionally, applying
relation (4.8) to the vector field (n — 1,a) we get that

Dn—l,yfa; - Dn—l,xfy + (An—l,x + Bn—l,y)f = 07
_Fn,yf:cf - Fn,:cfyf + (An—Lx + Bn—l,y)f - 07
Fn,yfm - Dn,a:fy + (Anfl,x + anl,y) = 07

and, from Lemma 4.5, there is G,,_1 with 6G,—1 < m — (n — 1)k + 1 such that
Ay =Fyf+Gu1yand B,y = —F,,f — G,,_1,. Hence, the vector field X,,_,

can be written into the form

i = (Foyf+Guoay)f + (Fuf +601) fy,
) = _<Fn,xf + anl,y)f - (an + 6n*1)f:’3’

and it has the exponential factor exp(—F,, , f +G,_1) and the first integral H,,_; =
f_én_l eXp(_Gn—l + Fn,yf)'

Continuing in a similar way as in the previous cases we obtain that for A =
—(n — 1) the sequence of systems (na) have the first integrals H, given in the
following table

(na) H,=F,f, F, =D, + a,f,

(TL— 1,&) Hn_l = f_én_l €xXp (_(Gn—l +an))7

D,_
(77, -2, a) H, o= f(;n—l eXp (_ f 2) exXp (anl + an)>
On1 D D Go1+ Fof
. _ - 9 —Ln-3 n—2 _ YUn-—1 n
(n—3,a) H, 3=1f exp< 2P )exp( 27 )exp( — ),
5n71

Dn—4 Dn—3 Dn—2 Gn—l +an
(n—4,a) H, 4= [3-2exp (— 3 )exp (3'2f2> exp (_3'2f> exp <3—2>,
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_qyne1_Onoa
w =g e (e ()

—D3 Dn—4

o <<n = 2)(n—3)(n - 4)f”‘4) o <(‘1)n_4<n —Dn=2)--

esp (-0 5 257 ) e (125 )

We note that in systems (na), it appears the additional invariant algebraic
curve F, = D,, + a,,f = 0.

Hence for A = —(n — 1) system (la) has the Darboux first integral

(-1t

— (n—2)! n_2€x )il Drnj
H, / <H p(( 1) ](j+1)(n—2)f]>)

7=1
1 Gno1 + Fo f
exp ((—1) Gt )

or equivalently, H, = fPexp (¢/f"2) where

n—2

n—2 _ _1\n—j-1 Dn—j—l
o = T S e

G(n—l + an

iy ey

J=1

and [ = (—1)"1 =L

(n=2)!"

Subcase A = —(n — 2). We have that 24, = —D,,, — a,,f, and 2B,, = D, + a,, f,.
So, the vector field (na) of degree m — (n — 1)k becomes

T = _%(Dny + Oénfy)f - any7 y = %(an + anffﬁ)f + D”fx’

and has the invariant algebraic curve F,, = D,, + a,,f = 0 and the first integral
1
H,=FZf.

i7)
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Working in a similar way as in the previous cases we get

1
(na) Hn:Fana Fn:Dn—i_Oénfa

1
(TL—]_,CL) Hn—l :Fn—1f7 Fn—l :Dn—1+§an7

(n—2a) H, 5= f_(S”_2 exp (—(Gn-2+ Fu-1f)),

D,
(TL - 3’ a) Hn—3 - f§n_2 exp (_ - 3) exp (Gn—2 + Fn—lf)u

/
e Dy 4 Dy Cros + Forf
i) e 1 e (2 (D) e (G,
On—2

(n—5,a) Hy5=f3-2exp (_ Z}j> exp (3DTZ2_J;12> exp <_§7n2—;)

Gn72 + anlf
@\ 75 )

(1a) Ho=f (n =3)! exp (—ﬁ)

>l 7 (i)

s e (0 G )

B AR Yo (M ED )

We observe that systems (na) and (n — 1,a) have the invariant algebraic curves
F,=D,+a,f=0and F,,_ 1 =D, 1+ %an = 0, respectively.

System (1la) for A = —(n — 2) has the Darboux first integral
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Jj=1

exp -1y el

| = (n—3)! n_gex )i Dyj-s
H / (H P(( 1) j.(j_’_l)...(n_g)fj))

or equivalently, H, = fPexp (¢/f*?) where

n—3
_ —i— an j—2 — an2 +Fn71f
gfn3: _171]2'. J ._|__1n2 ’
S B v e T FN i ZA s M e
and § = (—1)" 222y,
Subcase A = —(n — 7). We get
(TLCL) Hn:Fnjf, Fn:Dn+anf7
1 1
(TL— 1,@) H, :Fri:i ) Fny :Dn—l—i_;anv
1 1
(n — 2, CL) Hn—2 = Fé:;f, Fn,Q = ang + jTanflf,
1
(TL - (] - 1)7 a) an(]fl) an(jfl)fa an(jfl) - an(jfl) + §an(]72)f7
(TL -7 CL) Hn—] = f o= eXp (_(Gn—] + an(jfl))f)7
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Suss
) — D, _ D,
(n—(0G+2),a) Hygiy=f 2 exp (‘#) exp (%)
—(Gpei + F_ (5
eXp<( it Fag-nf)

2 )

Op—
(-0 b
a 1= (n— D! ex !
- e ! p(W—J )ﬁfl)
Dy
(=0 35r)
exp (n—j—l)(n—j—Q)( j_3)fn]3>
n—j—3 l)nfjf3
exp ( (1) (n—j—l)(n—j—Q)---Bf?’)
exp  (—1)"7772 Dnj
g (n—i— DI
exp [ (— g Dnjr exp [ (1) Gnj+ Fonf
p<( 1 (”—j—l)!f> p(( D (n—j7—1) )

Therefore, system (la) for A = —(n — j) has the Darboux first integral

e (~1)"*D,
Hy =f (n—j—1)! <H exp - )..(n_j_1)fk>

or equivalently, H; = fPexp (g/f"771), where

n—j—1

n—j—1 _ _1\n—j— D, —Jj—k n—jG""_FF”—('—l)f
ZEAD D e RS FEN iy s}y Gt My e T

k=1

and = (—1)”_]'6"—J So we proved case A.
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Case B: (m+1)/(n+1) <k < (m+1)/n. Since f = 0 is an invariant algebraic
curve of system (nb) of degree m — nk, then from Proposition 1.2 we have that
k < (m — nk) 4+ 1 which is in contradiction with this case. Therefore system (nb)
is identically equal to zero. The proof of this case follows directly of the proof
of Case A for a,, = 0. So we complete the proof of Lemma 4.10, and this also
complete the proof of Theorem (4.3)(b). [

4.4 The examples

In the following we provide an example of a system which is Darboux integrable

having a Darboux integrating factor. However, there is no Darboux first integral.

Example 4.11.

The system
T =1, y = 2zy + 92, (4.24)

is Darboux integrable system because has the integrating factor R = y~2 exp(z?).
This result is not a new one, it appears in [12]. The authors proved that the only
invariant curve of system (4.24) is the y = 0 and system (4.24) cannot have a
Darboux first integral. Here, we prove the same using Theorem 3.1. We assume
that system (4.24) has a Darboux first integral and we should get a contradiction.
If system (4.24) has a Darboux first integral then this integral must be of the form
(4.1). Since there is only one invariant curve f =y = 0 the fist integral (4.1) must

be written as

H(z,y) = f*exp (%) , (4.25)

with A € R, n € NU{0}, g € Cx,y] and ¢ is coprime with f. If system (4.24) has
the Darboux integral (4.25) then this system must be given by Theorem 3.1. We
have that system (4.24) is quadratic, so we have m = 2. Let | = max{dg,n} and
from Theorem 3.1 we have that [ > 2.

If [ = 2, then system (4.24) is of the normal form (3.2). So it must be written

as

&= =Xy" 4+ ng — ygy, U =YY (4.26)
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Since systems (4.24) and (4.26) must be the same we get that 2z +y = g.(z,y)
or equivalently g(z,y) = 2 + zy + G(y). Additionally, we have that —\y"™ + ng —
yg, = 1 or equivalently —\y" + n(z* + zy + G(y)) — (z + G'(y))y = 1 and so
—Ay" + (n — Doy — yG'(y) + nG(y) + na? = 1. Therefore, we get that n must be

0 and 1 simultaneously which is a contradiction.

If [ > 2 then from Theorem 3.1(c) system (4.24) is of the normal form (4.26)

dividing its components by their common divisor D(z,y), so

—\y" +ng —yg, = D(z,y), y9. = D(z,y)y(2z + ),

and therefore g, = (=A\y" + ng — yg,)(2z + y). Let g(z,y) = go(x) + yo1(x) +
- yFgr(x). Then

96(x) +ygi(x) + -+ yFg(x) = (X" —ylgi(z) + 2yge(x) + - - - + ky" Lgi(x))
+n(go(z) +ygi(z) + - yFge(2))) 2z + y),
(4.27)

and we get g)(z) = 2ngo(z)z. Hence it must be gy = C exp(nz?).

If n # 0 we get that C' = 0. Therefore, go(z) = 0 which means that the

polynomial ¢ is not coprime with y. But this is a contradiction.

If n = 0 then g9 = C. Now, we use the same arguments for computing
gi(z) from (4.27) then and we get recursively that g; = 0 for all ¢ = 1,--- | k.
So, g(x) = C and this is a contradiction. Hence, system (4.24) cannot have a
Darbouxian integral. It has a Liouvilian first integral. We provide an example

satisfying Theorem 4.1.

Example 4.12.

The polynomial vector field X = (z(y + 1), —y(z 4+ 1)) with m = 2 has the
invariant algebraic curve f; = x with cofactor K; = y + 1, the exponencial factor
exp(z+y+ 1) with cofactor L = x —y = —div, and the weak independent singular
point (—1,—1) which is not on f; = 0. Therefore, | = 1, p = ¢ = r = 1, and

p
consequently it satisfies p+qg+r = m(m+1)/2 = 3 and l—i—z 0fi=2<m+1=3,

i=1
and it has f{exp(z + y + 1) as integrating factor. Hence, X is an example of a

polynomial vector field satisfying Theorem 4.1. We note that, from Theorem
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1.7(a), there does not exist a first integral given by a Darboux function of the
form f; exp(z +y + 1)"1. i

Now we present an example of Theorem 4.2.

Example 4.13.

We are interested to construct a vector field Y given in Theorem 4.2 and defined by
(4.3) and and has the integrating factor R = (z2+y*—1)3(z—1) "t exp (y/(z — 1)?).
Wehave fi=2—1, fo=2>4+9y*—1,g=y,n =2, ny =0, u; = —1 and py = 3.
So, My =p1+n+1=2and Ay = o +no + 1 =4 and

Hirag) = 1157 exp g 17°) = (@ = PG+ = 1) exp 2
Let X = (z,,z,) be the vector field given by (3.2) which has H as a first integral.

Since ny = 0 we have,

T, = I (=Aifafiy — Nefifay) +n1gfafiy — fifagy,
ry = fi"(Mfofie + Xafifor) — nugfofiz + fif20s,

or equivalently,

T, = —8yr’+24yr? —24yr +8y — a3 —xyt +x + 22 +y? -1,
r, = 10x* 4+ 22%9% + 242? — 2823 — 4ay? — 4o + 2y* — 2ya? — 2y° + 2y — 2.

We now need to construct a vector field (A, B) such that (AH), + (BH), = 0.

Consider

n n 9 Y
Hafe,y) = J 2R exp e = (0= DY 4y = D e o,
1 J2

and take (A, B) to be the vector field of the form (3.2). Hence, since ny = 0 we

obtain

A = (=1 + 201 +2) fafry — (p2 + 2) f1fay) + g fofiy — 91f29y,
B = fi"(( +2n1 +2) fafre + (2 + 2) f1foe) — mgfofiz + 91f290,

or equivalently,

A = —10yz3 + 30yz? — 30yz + 10y — 2® — a9 + 2 + 2% + 9y — 1,
B = 15z + 52%y? + 302% — 402° — 102y + 5y — 5 — 2yx? — 29° + 2u.
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Therefore, for these specific A and B the vector field Y = (y,, y,) having R(z,y)

as an integrating factor and defined by relation (4.3) is

yp:(A+Cy> {“fle_Cxpa yq:<B_Cx)f1mf1f2—CQ3q,

for an arbitrary polynomial C. For exemple take C' = 23 — y + 1 and we get

Yy, = —1+y—132yx% + 116ya® + 24yz* — 10yz® — 10y32% + 60yx” + 60y3x>
—150y32* 4+ 200323 — 150322 + 593z + 10y? — T2 + 62 — 141ya3
—35yx — 3dxy? — 4a® + 372%y% + 122% — 93 + day? + 43yt — 1023y?
+8x5y? — 9xty? — 328 — a® — 62° + 427 — 62%y* — 2289 — 2yt — o
+117yx?,

Yy, = —3—2y+ 6y’ —2yx" — 4P’ + 123" — 6y — 6y°2? + 8yPx + 10y
=252 + 6y°x? — 6ySx + 29° + 192 — 20ya® + 28yz? — 10yx — 362>
+292%y? 4+ 1982 + 25zy* + 5x5y* + 50x3y* + 89x3y? + 2352°y? + 2027 y?
—237x%y? — 1032°% — 8528 — 1002° + 16727 + 152° — 5022y* — 110259?

— 25ty — Tyt — 722 — 1012® — 10123,

Now we present two examples of Theorem 4.3.

Example 4.14.

Let R = (22 4+ ¢* — 1)%. We are interesting to construct all the polynomial vector
fields of degree m = 3 having the Darboux integrating factor R. We have that the
curve f = x? + y? — 1 satisfies all the conditions of Theorem 4.3. We have that
k=2and k= (m+1)/2 so we are in Case 3 of Theorem 4.3. System (1la) is of
the form

&=A1f — Dify, y=DBif+ Difs,

with 0A4;,0B; <1 and 6D, < 2. System (1b) of degree m — k = 1 is of the form
(A+1)A1 + Dy = —afy, (A+1)By — Dy, = afs,

for some o € C and X\ = 1/3. Following the proof of Case 3 of Theorem 4.3 we get

that ) .
A = )\—_H(—Oéfy — Dyy), B, = )\—H(—@f:p + D1y),
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or equivalently,

3 3 3 3
Al —§Oéy — z_lDl‘w B1 = 50&1’ + ZDlx
Substituting A; and B into system (la) we get
3
T = (—éay - 4D1y) (z® +y* = 1) — 2y Dy,

(1a')

3 3
y = (§a$ + 1D1z> (l’z + y2 — 1) + 2ID17

and these family describes all the polynomial systems having R = (22 + y? — 1)5
as Darboux integrating factor. Additionally, due to the form of the system (1a’)

it appears the algebraic curve

« 3
F=Di+——f=Di+-a(z*+y* -1
1ty 1 sa(e” +yt - 1),

and 0f + 0F = m + 1. Hence, system (1a’) can be written into the form

3 6 3
T = ~2 (Dly + ?ay> (22 +y*—1)—2 (D1 + ?a(xQ + 9% — 1)) Y,
3 6 3
b= g (D1z + ?aa:) (2 +y*—1)+2 (D1 + ?a(xQ +y? - 1)) z,

which is the form (4.4) and has the Darboux first integral

3
4

H(z,y) = (D1 + %a(ﬁ +y° — 1)) (2* +y* —1).

Now we present a particular system of degree 3 having the integrating factor
R= (22442 —1)3.

The system
3 11 3
& = —18yx? — 14y + 14y — ~2® — —ay® + "z,
i § . 31 (4.28)
g = 212 +1Txy® — 17z + Z?MQ + Zy3 iz
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has the algebraic curve f = 22 +y? —1 = 0 invariant and has the integrating factor
R = f3. System (4.28) can be written as

. 3
T = (—12y — Zm)(xQ +y?—1) = 232> + y* + zy — 1)y,

. 3
y = (15z + Z—ly)(zz:2 +y? = 1)+ 232 + y* + 2y — 1),

where we detect that A = —12y — %x, By =152+ %y and D; = 322+ 9%+ 2y — 1.
We observe that for A = 1/3 and o = 7, we have that relations A; = (—af, —
Dy,)/(A+1) and By = (af, + D1;)/(A+ 1) hold, and the curve

1
F:D1+ma(x2+y2—1):6x2+4y2—|—xy—4

of degree 0 F' = 2 is invariant for system (4.28). We observe that 6 f +0F = m+ 1.
System (4.28) can be rewritten into the form

3
to= =74y = D(w+8y) — 262" +4y" +xy — )y,

3
g = 7@ +y =112 +y) +2(62" + 4y” + xy — D)z,

and obviously it is in the normal form (4.4) and has the Darboux first integral

H(z,y) = (622 + 4> + 2y — 4) (2% + 4> — 1).

Example 4.15.

Let R = 1/(z* +y* — 1)2. We are interesting to construct all the polynomial
vector fields of degree m = 8 that are having the Darboux integrating factor
R = 1/(z* + y* — 1)2. We have that the curve f = 2% + y* — 1 satisfies all the
conditions of Theorem 4.3. We have that k =4 and (m+1)/3 <k < (m+1)/4

and so we are in Case 4 of Theorem 4.3 for A = —2. System (2a) is of the form

i = Aof — Dof,, Y= Bof + Dy fs,

with 0Ay,0B, = m — 2k = 0 so we can take Ay = ay € C and By = by € C. We
also have that 0Dy < m — 2k + 1 = 1. Following the proof of Case 4 of Theorem

4.3 we get that Dy = 99 for some 65 € C' and we note that in this case relation
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Aoy + By = 0 do hold. We define Gy = byx — asy + co with ¢y € C the polynomial
satisfying Ay = —Gyy and By = Go,. System (2a) becomes

&= —ay(2? + 9% — 1) — 4dqy, Y= by(z? +y* — 1) + 4,

and has the invariant exponential factor exp (Ga) = exp (bax — agy + ¢2), the in-
tegrating factor Ry = 1/(2* + y* — 1) and the Darboux first integral Hy(x,y) =
(2 + y* — 1)2 exp (box — azy + ¢3). System (1a) is of the form

= A f — D f,, Y= Bif + Dife,
with 0A;,dB; <4 and 0D; < 5. Following the proof of Case 4 of Theorem 4.3 we
get that
Ay = Goy + 02 fy + Dy, By = —Gay — 02 fy — Dia,
or equivalently,
Ay = —as(z* + y* — 1) + 462y + Dy, By = —by(z* + y* — 1) — 4623 — Dy,
Hence, system (1la) becomes

& = (—a(z*+y* — 1)+ 4day® + Dy (a* + y* — 1) — 443Dy,
(1a')

y = (_b2($4 +y* — 1) — 4d92® — D1x($4 +yt - 1) + 423Dy,

and this family describes all the polynomial systems of degree m = 8 having the
Darboxian integrating factor R = 1/(z* + y* — 1)?. Additionally, system (1a’) has
the invariant exponential factors exp(—byz+asy —c2), exp(—D1(z,y)/(z*+y* —1))
and the Darboux first integral

H _ (4 4 1 —02 —b _ -~ 77
(z,y) = (" +y )2 exp(—box + azy — c2) exp P

We also note that 0 f +6(—byx+agy—co)+0(—D1(z,y)/(x* + y* — 1)) =9 = m+1.
Additionally, for

(—byx + agy — c3)(z* + y* — 1) — Dy(x, %)
xt+yt—1

Y

|

3 = dy and n; = 1 and doing a simple calculation we get that system (1a’) takes
the form (4.5).
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Now we present a particular system which has the Darboux integrating factor
R=1/(z* +y*—1).

The system

i o= 38+ atyt — 62t 4+ 28—yt + 3 — 4yt — dy" — dyPad,

4.29
g = —32% — 9xtyt + 92t — 20 + Ayt — 2+ 427 + 423yt — 4a3yP, (4.29)

has the integrating factor R = 1/(z* +y* — 1)2. So, we have that f = z* +y* — 1,
k=4, A = —2 and m = 8. We notice that (m+1)/3 < k < (m + 1)/2 and
therefore we are in Case 4 of the proof of Theorem 4.3.

Doing a simple calculation we get that system (4.29) can be rewritten into the
form (1a)

i o= 3z =2yt —4yP = 3)(a* + ¢t — 1) —4(z® — v° + 1)y,
(=7xt — 2y + 423 + 2) (2 +y* — 1) + 4(2° — y° + 1)a?,

from where we detect that A; = 32* — 2y* — 49® — 3, B = —72* — 2y* + 423 + 2
and Dy = 2° — y° + 1. According to the proof of Case 4 of Theorem 4.3 we have

that
A = Goyf + dof, + Dy, = 3zt — 2y* — 493 — 3,

B = —Gopf —0ofy — D1y = —72* — 2y* + 423 + 2,
and so we get Gy = 2x + 3y + 1. Since Ay = —Gyy = =3, By = G, = 2 and
Dy = §3 = —1 we have that system (2a) can be written into the form
Asf — Dof, = 4y® — 3a* — 3y* + 3, Bof + Dof, = —4x3 + 22* + 2y — 2,

and has the integrating factor Ry = 1/(2% 4+ 3* — 1) and the Darboux first integral
Hy=exp 2z +3y+1)/(a* +y* — 1).

According to the proof of Case 4 of Theorem 4.3 system (1a) can be rewritten

into the form

(Oofy + Goyf)f + D1yf — Dif, = (32" +3y* =3+ 409" + Dy,)(a* +y* — 1) —4D1y?,
—(0afy + Goyf)f — D1yf + Dif, = (—22* —2y* +2 — 4692% — Dy, (z* + y* — 1) + 4Dy 23,

and has the two invariant exponential factors exp(Gs2) = exp (—2x — 3y — 1),
exp(D1/f) = exp (%) and the Darboux first integral
—(a® -y’ +1)

(A4
H(z,y)= (2" +y* —1)exp(—2z — 3y — 1) exp PR
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We note that the previous first integral could be calculated by relation (1.4)

H(z.y) = / R y)Ple.y)dy + f(2).

with the condition H, = —R(). However, sometimes it is not easy to get the
complete expression of that integral. Our method provides a simplest way, (it is
more algebraic) to calculate the first integrals whenever the conditions of Theorem
4.3 hold.
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Chapter 5

Polynomial systems and generic

Darboux integrating factors

5.1 Introduction

In this chapter we continue the study of the inverse problem analyzed in Chapter
4; i.e. given some kinds of Darboux function we characterize the polynomial vector

fields which have such a function as an integrating factor.

Walcher provides in [50] the following theorem.

Theorem 5.1. Let f = f,--- f, with f; € Clx,y| irreducible, and assume that the
curve f = 0 has no singular points. Then X = (P,Q) has the integrating factor
R = f~1 if and only if

P
T = _Zaz%fly +h1f7
- (5.1)
y = Z i fie + haf,
— fi
with a; € C and h = (hy, hy) is a divergence free vector field.

In the next corollary we prove a simpler version of Theorem 5.1.

113
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Corollary 5.2. Let f = fi--- f, = 0 with f; € Clz,y| irreducible, and assume
that the curve f =0 has no singular points. Then X = (P, Q) has the integrating
factor R = =1 if and only if

p= o Lp, R
=t (5.2)

~ /
i=1 7"
with « € C and F € Clz, y].

We give the proof of Corollary 5.2 in Section 5.2.

The following Theorem is slightly related with Theorem 5.1.
Theorem 5.3. We assume that the irreducible curves fi =0, --- , f, = 0 satisfying
the generic conditions (i)-(v), i.e.
(i) There are no points at which f; and its first derivatives are all vanish.
(i) The highest order terms of f; have no repeated factors.

(11i) If two curves intersect at a point in the finite plane, they are transversal at

this point.

(iv) There are no more than two curves f; = 0 meeting at any point in the finite

plane.
(v) There are no two curves having a common factor in the highest order terms.
Then the polynomial vector field X = (P,Q) of degree m has the Darboux inte-

grating factor R = (fi1--- f,)~" if and only if can be written into the following

form

T o= —Z% (Hfj) fiy_Fnyjv
i=1 j=1 j=1
y = Zai (Hfj) fix+Ffoj7
=1 \j=1 =1

(5.3)
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P
with a; € C, F € Clz,y] and 6F <m — > df;.
=1

1=

The proof of Theorem 5.3 is given in Section 5.3. We point out that Theorems
5.1 and 5.3 they use different assumptions.

Theorem 5.3 demands that every curve f; =0,---, f, = 0 satisfy the generic
condition (i), i.e. it asks that any curve f; = 0 has no singular points. This is a
different assumption from the one which is used in Theorem 5.1 where is demanded
that the generic condition (i) holds for the product of the curves, i.e. asks that
the curve f = fi--- f, = 0 has no singular points. Hence, for example the curve
f=1(z+y)(y+1) could not be used in Theorem 5.1 (because the point (1,—1)
is singular for f = 0), but the curves f; = = +y and f, = y + 1 could be used
in Theorem 5.3. Hence due to this different use of the generic condition (i) in the

two theorems we remark that Theorems 5.1 and 5.3 are different.

In the following we want to characterize the polynomial vector fields in C?
having the following function

R(z,y) = fi*--- 7, (5.4)
as an integrating factor in the particular case where the curves fi,---, f, are
generic and Aq,---, A, € C. In this case, the integrating factor (5.4) is called

generic Darboux integrating factor. We provide this result in the next theorem.

Theorem 5.4. We assume that the irreducible curves fi = 0,--- , f, = 0 satisfying
the generic conditions (i)—(v) and let ky = df1 and vy = fa+---+6f,. We denote
byn =[m—-—~v+1)/k]. If ( m=—~y+1)/n <k < (m—~y+1)/(n+1) with
AN & {—1,-2,---,—n}, then the vector field X = (P,Q) of degree m has the

integrating factor of the form fl’\1 e fg\p if and only if

_ 1 P PN+ 1 : ;
. _m (Efl> Fy_i:2 mel (gfz) —F<gfz> J1y»

- 1 - "N+ 1 L P
v )\1+1(Hfi>Fx+;)\1+1Ffl (gf>+F<]1f> fias

(5.5)



116 Polynomial systems and generic Darboux integrating factors

where
n—1 1
F =D, + —D;
1 ; M) (atd) +11f1
and the D;, for i = 1,--- ,n, are convenient polynomials given in Lemma 5.6.

Moreover, 0F + 6f = m + 1 and system (5.5) has the Darboux first integral
H(z,y) = o2 fyr T

The proof of Theorem 5.4 is given in Section 5.4.

In Section 5.5 we comment Theorem 5.8 which is due to Walcher and we

compare it with our results.

5.2 Proof of Corollary 5.2

Since h = (hy, hg) is a divergence free vector field, we have that hy, + hy, = 0.
Then, from Lemma 4.4, we have that there is /7 € Clz,y| such that hy = —F},

and hy = F,. So system (5.1) can be rewritten as

T = _Z@i%fiy_Flyfa
=1 ; ' (5.6)
i=1 '

We should show that system (5.6) can be rewritten as (5.2). We note that

(— Z(O‘i — a)%) + (Z(ai — a)%) =0,

i=1 i=1

and so, from Lemma 4.4, there is F; € C[z,y] such that

Y-l — —h,
i=1 ¢

Z(oz,; — oz)& = [,
— Ji
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Therefore, we have that

p p
Y TR o T,
% —1 i

i=1

P P
o — = « — + Fy,.
Using the above relations, system (5.6) becomes
~ f

T = _az_'fiy_Fm/f _Flyf7
v

g o= (@) tfat Fuf |+ Fuf,
i=1 7"

or equivalently,

and taking F' = F| + F, we have shown that system (5.1) can be written as system
(5.2) for some a € C and F € Clz, y|.

5.3 Proof of Theorem 5.3

We assume that the irreducible algebraic curves f; = 0---, f, = 0 satisfies the
generic conditions (i)-(v). Hence, from Theorem 2.4 we have that the polynomial
vector field X = (P, Q) can be written into the form (2.4), or equivalently,

X=Yo I £+ > Di| II #| %X (5.7)

i=1 i=1 j=1
J#
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where Yy = (A, B) and A, B, D; € C[z,y]. We note that system (5.7) has divergence

P P P
div. = (A + Byy) H fi+ Z (A1fiz + Bifiy) H fi
i=1 i=1 j=1
J#i
P P P P
+ Z Di(fiaxfiy = fiyfia) H Jie + Z (fizDiy — fiyDiz) H Jis
i=1 k=1 i=1 J=1
J# k#1i,j J#

and the algebraic curve f; = 0 is invariant of system (5.7) and has cofactor

K, = (Aifi +Bify) ﬁ I+ i D;(fiafiy — fiyfiz) ﬁ fr-
=1 =1 k=1
;751' Jj#i k#i,7

Since system (5.7) has the integrating factor (f1--- f,)~" it must be

— XP:KZ = —le(P, Q),

i=1
or equivalently
P P
0 = Dy | [I filfe—Du| II £ |
i=2 i=2
(5.8)
p P P
+ (A1$+Bly> H f1+ Z (wazy_fzyDza:) H fj f17
i=2 i=2 j=2

J#i

and so for i = 2,--- ,p we get that f;|(fizDiy — fiyDiz) because f; is irreducible.

Hence, the polynomial system
'j::_Digp y:Dlxa

(if it is not the zero one) has the first integral D; and the invariant curve f; = 0.
So, there are E; € Clz,y] and ¢; € C such that E;f; = D; —¢; fori =2,--- | p.
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Moreover, the system

ii':Dly H fi7 y:_Dlx H fi7 (59)

i=2 i =2

due to relation (5.8) has the algebraic curve f; = 0 invariant and the first integral
D,. Additionally, system (5.9) has the Darboux integrating factors (fs-- - fp)f1
and (Dyfy---f,)"". Since D; is a first integral of system (5.9) and f; = 0 is
an invariant curve of system (5.9) we have that there is E; € C[z,y] such that
E\fi = Dy —c.

Hence, relation (5.8) can be rewritten as

0 = By | [[ filfe-BEu| 1] £i]fu

=1 =1

p p p
+ (Ala: + Bly) H fl + Z (fzzEzy - fzyEz:c) H fj fla
i=2 i=2 j=2
or equivalently
p p p
i=1 i=1 j=1

Simplifying the last relation we obtain

p
0 = A+ DBy + Z (fieBiy — fiyPia),

i=1
or equivalently

P P
Ay — Z Eifiy| + | B+ Z Eifiz | =0.

i=1 =1
x )

From Lemma 4.4 there is F' € C[z,y| such that

p p
A= ) Eify=-F, Bi+ Y Eifu="F,

i=1 i1=1
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and so we can calculate the polynomials A, and B;. Substituting A, and Dy, --- , D,

into the first equation of system (5.7) we get

p p p p p P
= |-F,+ > Efy| II £i= D Efy [ £= D afu| I £ |
i=1 j=1 i=1 j=1 i=1 j=1
J#
or equivalently,
p p p
&= —F, H il — Z Cifiy H i
j=1 i=1 j=1
JFi

Working in a similar way, the second equation of system (5.7) becomes

p p p

y:Fy H f] + Z Cifzy H fj
j=1 =1 j=1
JFi

Therefore, system (5.9) is of the form (5.3) and has the Darboux first integral
H=f" - flexpF.

5.4 Proof of Theorem 5.4

In the following we assume that the curves f; = 0 are generic for ¢ =1,--- ,p and
p
we denote by v = > df; and let k;y = 0f; be the degree of the curve f; = 0.
i=2
By Theorem 2.4 we have that k1 +v < m + 1. Then, if ky +v =m + 1, by
Theorem 2.4(b) it follows Theorem 5.4 for F' = 1. Hence, from now on we assume
that k1 +~v <m + 1.

Since the curves f; = 0 for ¢« = 1,--- ,p satisfy the conditions of Theorem

2.4(a) we have that any polynomial vector field Y having these curves as invariant
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algebraic curves takes the form

Y = Yy H fi+ Z D; H Ti | X (la)

i=1 i=1 j=1
J#i

where Yy, = (A1, By) and Ay, By, D; € Clz,y| with §A;,0B; < m —~ — k; and
0D, <m-—~vy—ky+1fori=1,---,p. From now on we denote by

Ly = —(Au+By) [[ fi— D M+ 0Di(fiufiy— finfe) [ 1o
o i oy
= > i+ DAfw+Bify) T fi— Y. Dy —fuDi) [ £

J# JFi
Lemma 5.5. Suppose that p > 2 and that f; are irreducible polynomials in C[z,y].
We associate to system (la) of degree m having the generic curves fy =0,--- , f, =

0 and the Darbouz integrating factor fi* - - f;\p the system

p p p
Vi = (M+0)Ya=Yo) [ =00 > N+ | I 4| Xn
i=2 i=2 j=2
j#i
(1b)
p p
+n+0) > | I 6| pixs
i=2 j=2
j#i
of degree m —ky which has fi =0,---, f, = 0 as invariant algebraic curves. Then,

only one of the following conditions holds.

(a) If Ly =0 then system (1b) must be the zero vector field.

(b) If Ly # 0 then system (1b) has the Darbous integrating factor fi ™ fo2 - fﬁp.
In particular, if \y = —1, then system (1b) has the first integral H =
Dy fy2tt. .. prpH and the integrating factor Ry = (Dyfa--- fp) L.
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Proof: The invariant algebraic curve f; = 0 of system (1a), has cofactor

p p p

Ki = (Aifia+Bifiy) 11 fi+ X Di(fiafiy— fivfix) 11 fr
j=1 ji=1 k=1
jFi JFi k#i,j7

fori=1,---,p respectively; and 0Ky, -+ ,0K, <m — 1.

Since system (la) has a Darboux integrating factor of the form ffl e fzj\” then,

from Theorem 1.7(d), it must satisfy the relation

P
> MK+ divy =0, (5.10)
i=1
where
P P P
divi = (A + Byy) H fi+ Z (A1 fiz + Bifiy) H fi
i=1 i=1 j=1
JF
P
+ Z Di(fizij_fiyf]x H fk+ Z fz:p iy fzy m H f]v
=1 k=1 i=1 j=1
J#i k#i,j J#i

is the divergence of system (la). Substituting K, --- , K, and divy in (5.10), we
get that

0 = [(M+DA+Dy) [T i+D0 Y i+ | I £ | fw
=2 =2 i;f
—(Ar+1) Z D; H fi| fiy| fre + | (A1 +1)B1 — D1y) H fi
i=2 j=2 i=2

J#
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—-D i (A +1) ﬁ fil fiw + (M +1) i D, ﬁ Ii | Jie| f1y
(o U
=2 i=2 kk#:ij
p p p p
+ Z (/\¢+1)<A1fm+31fiy) H fj‘i‘ Z (fmchy_fzme) H fj f17
i=2 j=2 i=2 j=2
J#i J#i

(5.11)
where we have taken Yy, = (Ay, By).

Hence, from relation (5.11), system (1b) of degree m—k; has f; = 0 as an invariant

algebraic curve with cofactor L.

System (1b) has divergence equal to

P P P
divy = (A1 + 1)(A1 + Byy) H fit+ (A +1) Z (A1 fiz + Bifiy) H fi
i=2 i=2 j=2
J#
P P
+ Z Ai( D1z fiy — Diy fiz) H fi
i=2 i=2
J#i

+ Di Y M= MUkl — ) [
2<i<k<p Jj=2
J# Lk
— M +D) DY (Diafiy— Digf) 1]
i=2 j=2
J#i
— ML) D Dilfukiy— fulie) [ /e
=



124 Polynomial systems and generic Darboux integrating factors

The algebraic curves f; = 0, for i = 2,--- | p, are also invariant for system (1b)

and have cofactors

Li = M+ D(AfiwtBify) [[ i+ Dula—Duty) [ 6

j=2 j=2
J# J#i
p p
—(M1+1) Z Dj(fizfiy — fiyJiz) H i
j=2 k=2
i oy
p p
+D1 Y N+ D(afiy = fufin) I e
j=2 k=2
J# k#i,j

(a) If Ly = 0 then we have that f is a first integral for system (1b). Note that we
cannot guarantee that system (1b) has its two components coprime. The algebraic
curves fo =0,--- f, = 0 are also invariant for system (1b). Hence, for i =2,--- ,p
we have that {f; = 0} C {fi — ¢ = 0} for some ¢ € C. Therefore, from the
Hilbert’s Nullstellensatz relation we get that there exist a non negative integer N
and M € Clxz,y] such that (fi — ¢)¥ = M f;. Since f; are irreducible polynomials
we get that fi|(fi —¢) foralli=2,--- p. So fi —c= A;f; for some A; € Clz,y],
and this is a contradiction with the generic condition (v). Then, system (1b) must

be the zero vector field. So, statement (a) is proved.

(b) We now assume that L; # 0. Then, it is easy to check that relation

p
M+ DL+ > AL+ divy =0,

=2

always holds. Hence, system (1b) has the Darboux integrating factor f{' ' f32 - - f;\ v

If Ay = —1 then system (1b) is of the normal form (3.2) and has also the invariant

curve Dy = 0. Hence, due to Theorem 3.1(a) statement (b) follows directly. ]

Proof of Theorem 5.4: Let f; = 0 be a generic curve of system (1b) of degree m—k;.
Since system (1b) has fo, =0,---, f, = 0 as invariant algebraic curves, then from
Proposition 1.2, we have that ky +v <m —k; + 1 and so ky < (m+1—7)/2. We

distinguish the following cases.
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Case 1: (m —~v+1)/2 < ki <m —~+ 1. Then, system (1b) must be identically

equal to zero, i.e.

p p p
0 = (M+DA+Dy) I] fi= D (u+0Di=Ni+0)D) | [ £ | fiur
i=2 i=2 j=2
J#i
(5.12)
Since f; is irreducible we get that
fill(M +1)D; = (A + 1) D4
Hence, there are Ey; € Clz, y] such that
(M +1)D; — (N +1)Dy = Evifi, (5.13)

for all i = 2,--- ,p. Since A\; # —1 then from relation (5.12) we get that

1 1 P
A:——D S Ezz 5
! JVITE Rt v > Bula

1 =2

and so the first equation of system (la) can be written into the following form

A +1 A +1

i=1 i=2 i=2 j=1

p p p ) p
= T A o0 | T £ - X 20| T 6| 4
J#

Working in a similar way with the second equation system (1la) becomes

1 b P PN+ b
~ [ T e | TLa) s 32 3o | T |

i=1 i=2 i=2 j=1

System (la) has the additional invariant algebraic curve F' = Dy = 0 with 0F =
m —~y—k;+1 and it is in the normal form (5.5). Additionally, it has the Darboux

Ag+1 Ap+1

T 1
first integral H = fif, " - fp 7 F AT,
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Case 2: ky = (m—~y+1)/2. Since f; =0, --- f, = 0 are invariant algebraic curves
for system (1b) from Proposition 1.2 we have that k; + v < m — k; + 1 and,
consequently in this case we get that k; +~y = m — k; + 1. Hence, by Theorem
2.4(b) there are a; € C such that system (1b) can be written into the form

(M + 1Y =Yo) [ fi= D) (Mm+D)Di=+10)D) | I £ | Xa
i=2 i=2 j=2
j#i

p p
= Z &% H fj sz‘?
i=1

j=1
Jj#i

(5.14)

and so because of his form (see also from Proposition 2.5) system (1b) has the

integrating factor Ry = (fy--- f,) .

If L; = 0 then applying Lemma 5.5(a) we get that system (1b) must be the

zero vector field and this can be studied by a similar way to Case 1.

If Ly # 0 then from Lemma 5.5(b) we have that system (1b) has the integrat-

ing factor Ry = fl’\1+1 2’\2 . ;\”. Hence, it has the first integral Hy = Ry/R; =
M2 phatl prPH. Therefore, without loss of generality we can take a; = A\ +2
and o; = \; + 1 for i = 2,--- | p. Then, the first equation of system (1b) can be

rewritten as

(M+DA+Dy) [T fi—= D) (a+0)Di=N+10)D0) | I £ | fw
1=2 =2 ]];3
=-+2) | I fffw— D G+ | I1 5| fe
I I Ve

(5.15)
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Since f; is irreducible for every ¢+ = 1,--- | p we get that
Silla +1)Ds = (A + 1) Dy — (A + 1) f1].
Hence, there are Ey; € Clz,y] such that
(M+1)D; — (N +1)Dy — (N + 1) f1 = Evfi, (5.16)

for all i = 2,--- ,p. Since A\; # —1 then from relation (5.15) we get that

1 1 & AL+ 2
A=~ D Evifi )
LR Vi Rt W 2 By~ PR A
=2

and so the first equation of system (la) can be written into the following form

1 P p A+ 2 P
= Nl H fi| Dy — D1 H fi fly—m H fi | fiy

i=1 i =2 i =2

p p p
Ai+1 Ai+1
- Z /\1‘|‘1D1 H f] zy )\1+1 H fj fz'y-
i=2 j=1 i=2 j=1

Jj#i J#

Working in a similar way with the second equation system (1la) becomes

1

_ HfY+D HfX+A1+2 ﬁfX
_)\1+1 i D, 1 i f1 )\+1 i f1

=2 ji=1 i=2 j=1

IR J#i
We note that system (la) has the additional invariant algebraic curve F' = Dy +
fi = 0and 6F = m —~v — k; + 1. We also note that system (la) can be

rewritten into the normal form (5.5) and it has the Darboux first integral H =
Ag+1 Apt1

flszlH e prIHFﬁ-
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Case 8: (m—~vy+1)/3 <ky < (m—~y+1)/2. If Ly =0 then, from Lemma 5.5(a)
we get that system (1b) is identically equal to zero so that case has been studied
in Case 1. Therefore we assume that L; # 0. Since system (1b) of degree m — k;
has the generic invariant curves f; = 0 for i = 1,--- | p, by Theorem 2.4(a) it can

be written as

p p p
o = Yo [[ £+ D) Da| 1] | X (2a)

i=1 i=1 j=1

J#i
with Yoo = (Ag, By) where Ay, By, Doy € Clz,y| with dA3, 0By < m — v — 2k
and 0Dy < m —~y —2ky +1fori=1,--- p. From Lemma 5.5(b) we have that
system (1b) has the Darboux integrating factor f{\1+1 2’\2 e ,S\p, and so system
(2a) which is the same as system (1b) has that integrating factor. Then, applying

again Lemma 5.5(b) to system (2a) we can associate to system (2a) the system

p p p
Yo=((M+2Ye—Yp,) [[ fit D) (M+2Da—Ni+1)Da) | [ £ | X5 (20)
i=2 i=2 j=2
J#i
which has f; = 0, for ¢ = 1,--- | p, as invariant algebraic curves. We note that

system (2b) has degree m—2k;. From Proposition 1.2, we get that ky < m—2k;+1
and so k; < (m + 1)/3 which is in contradiction with Case 3. Hence, system (2b)

is identically zero. Therefore, we have that

P P p
0 = ((M+2)As+ Dyyy) H fi— Z (M 4+2)Dg; — (A + 1) D) H Ji | fiy-
i=2 i=2 j=2
J#i
Since A\; # —2 we get

S (M +2Ds— 0D | 155 | fu
1 L o
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and since the curves f; are irreducible we get that
fil (M 4+2)Dg; — (N +1)Dy),
for i = 2,--- ,p. Hence, there are Fy; € Clz,y] for i = 2,--- ,p such that
(M +2)Dg; — (N + 1) Doy = Es; f;. (5.17)

So, substituting A, and using (5.17), system (2a) can be written as

1 z - N+ 1 -
S W II | You+Da | I] Fi] Xn+ X2 TR IT 4} X
J#Fi

and obviously has the invariant curve Fy = Dy, and the Darboux first integral
Ag+1 Aptl 1

Hy = fifs ™ o £ FU72 . Note that system (1b) is equal to the last system,

and so we get that

p p p
(M+DA+Dy) I] fi- D (M+0Di—= N+ 10D | [T £ | £+

i=2 i=2 j=2

j#i

1 P P PN+ 1 P
W) H fi| Foy — F2 H fi| fiy — Z /\1+2F2 H fi| fiys

i=1 i=2 i=2 j=1

and since the curves f; are irreducible we have that

Ai+1
AL +2

fil (()\1 +1)D; — (N +1)Dy — szl) ;

for i =2,--- ,p. Hence, there are E; € C[z,y] such that
A +1
AL+ 2
for i =2,--- ,p. So, for \; € {—1, —2} we have that

(M +1)D; — (A + 1)Dy —

1
A +1

1:

1 p
_Dly—)\1+2f1F2y_F2fly+ Z E’Lfly ’

=2
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and consequently the first equation of system (1la) becomes

1

1 p p
= —Dyy — ——5fiFyy — F E Ei fiy, i
SV 1y /\1+2f1 2y 2 f1y + iy H f
i=2 i=1

—Dy H fi| fiy — Z D; H fi | fiw-
i=2

=2 j=1
J#
Using (5.18) we get
1 1 . -
=51 | Pw gt Pfut XL Bt | ]S
i=2 i=1
D - (& N 1)Dy + g }
—D, H Ji | Jiy — N1 +1 Z ifi + (A +1) 1+>\1+2 2 f1 H fi
=2 =2 j=1

J#
We note that the last system has the additional invariant algebraic curve

F=D+

1
F
)\1 +2 2f17

and takes the normal form (5.5). So, Theorem 5.4 is proved in Case 3.

Case 4: ki = (m — v+ 1)/3. Since f; = 0,---, f, = 0 are invariant algebraic
curves for system (2b) from Proposition 1.2 we have that k; +~v < m — 2k + 1
and, consequently in this case we get that ky + v = m — 2k; + 1. Hence, by
Theorem 2.4(b) there are a; € C such that system (2b) can be written into the
form (2.5). Then arguing by a similar way to Case 2 we have that system (2a)

has the additional invariant algebraic curve 5 = Doy + f1 and has the Darboux
Ag+1 Ap+1

first integral Hy = fify " -+ fu''” FQMH. Continuing by a similar way to Case

3 we have that system (la) has the additional invariant algebraic curve ' =

Dy + 5 +2F2f1 and takes the normal form (5.5).

Now, we present some notation.

fiy‘
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We consider a system of degree m — (I — 1)k of the form

p p p
}/la:Ybl H fz+ Z Dli H fj Xfia (la’)

i=1 i=1 j=1
J#

with 6A;,0B; < m+~y—1k; and D; < m+~y—1k;+1 having the integrating factor

AL f;\p. According to Lemma 5.5 we associate to system (la) the system

P p p
Yip=((n+0Ya = Yp,) [] £t Do (40D =+ DD0) | [T £ | Xpo ()
i=2 i=2 j=2
J#i
of degree m — lk; having the integrating factor fl’\1+l e ;"’.

Lemma 5.6. We assume that the conditions of Theorem 5.4 hold and that (m —
y+1)/(n+1) <k < (m—~v+1)/n. Then system (la) takes the normal form

(5.5).
Proof: We consider the two sequences of systems (la) and (Ib) having f = 0 as
invariant algebraic curve. System (1b)

can be rewritten as

p p p
Yo, = Yoo H fi+ Z Dy; H fi | Xgis (2a)

i=1 i=1 j=1
J#i

and has the associated system (2b)

p p p
Yo = (A1 + 2)Yo2 — Ypar) H fi+ Z (A1 +2)Dg; — (Ni +1)Day) H fi | Xpis
i=2 i=2 j=2
J#i

respectively. In a similar way, we get the system
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Yna = Yz)n H fz + Z Dm H f] Xfla (na)
i=1 i=1 j=1
J#

and its associated system (nb)

P p p
Yoo = (M +0)Yon = Yo,) T £+ Do (it m)Du— i+ 1)D0) | T £ | X5
i=2 i=2 j=2
J#
where 0A4;,0B; < m + v —ik; and 0D; < m + v — ik; + 1. For simplicity, we
distinguish the following two cases:

Case A: (m—~y+1)/(n+1) < ky < (m—~+1)/n. The generic curve f; =0 is
invariant for system (nb) of degree at most m — nk;. Hence, from Proposition 1.2,
we have that k; < m —nk; + 1 and therefore k; < (m+1)/(n+ 1). Consequently,
system (nb) must be identically equal to zero. So, for A\; # —n we get that

(M +m)Dui— i+ D) | 1T £ | £
j=2
i

1 1
_ Dn
/\1—|—n 1y+)\1—|—n P

A, =

Since f; is irreducible we have that
fil (A1 +n)Dpi — (X +1)Dy1),
for i =2,--- ,p. Therefore, there are E,; € C[z,y] such that
(M 4+ n)Dypi — (N + 1) Dy = Enifi,
and so
A, = L Dy, + ! i E..f
n — )\1+?7/ nl,y )\1+n niJiy-

=2
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Substituting A, into the first equation of system (na) we get

1 p p

p
1
= —)\1+n H fz Dnl,y—i_)\l_'_n Z Enz H fl fiy

i=1 1 =2 i=1

p p
- Z Dm H fj fiy
i=1 ji=1
J#
1 p 1 p p
= _)\1—{—” H fz nl,y+m Z ni H fz fiy
1=1 =2 =1

b u 1 N+ 1 P
Dy H fi | fiy — Z (mEm i+mDnl) H Ji | fiy

i=2 i=2 j=1
J#

1 - LN+l L P
el 9 U RS REEVRD Wi vererri 0 O U G20 RS I U AR BT

i=1 i=2 j=1 j=2
J#i J#i

Since, system (n — 1)b is equal to system (na), we have that

p
(M +n—=1)A 1+ Dup_iyy) H Ji

i =2
p P
=Y (M +n=1)Dgory — N+ D)D) | T | fu
i=2 ji=2
A
1 p p Al—i—l D P
:_)\1+n H fi | D1y — Z mDnl H fi | fiy = D H fi | fys
1=1 1 =2 j=1 j=2

J#



134 Polynomial systems and generic Darboux integrating factors

and therefore for A\; € {—n, —(n — 1)} we have that

1
A 1 =—— (—-D, _ - D
e A1+n—1( (=Dt A1+1f1 nly ”1f1y>
p
> (4 m = DDy — A+ 1) Dpucrs — 22D, )
1 i=2 P
Min_1 P I 5|
H Ji j=2
i=2 j#i

Since f; is irreducible, we have that

AN+ 1
fil <(>\1 +n—1)Dg—1yi — (N + 1) D1y — N nDn1f1> ,

and so there are E(,_1); € C[z,y] such that

Ai+1
A — 1) D1y — N+ 1) D1yt — ——— Do f1 = E_1)i [
(A +n—1)Dgpo1y — (N + 1) D1 N 11 (n—1)if
for i = 2,--- p. Hence, A,,_; becomes
A ] D L D1y~ Dty + zp: Ewif
n—1 — )\1+n_1 (n—1)1,y >\1+7’L 1n,1y nlJ1ly (n—1)iJ iy
i=2
Substituting A,,—; into system (n — 1,a) we have
P p
T = Ap H Ji— Z Dn—1yi H Ii | Juy
i=1 i=1 j=1
i#i
- ! D Sy w) 1T #
= )\1+n_1 (n—1)1,y >\1+Tl 1n1,y nl 1y i
=1

1 p p p p
+m Z En-1)i H Ji| fi — Z D(n-1yi H Ti | Jiy

i=2 j=1 i=1 j=1
J#i
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1 1 P
)\1+n—1( (n=Dly >\1+nf1 Ly 1f1y) H f
i=1
1 Ld P p
+)\1+n—1 Z En—i H Ji | Jiy = Din-in H Ji'| Fy
=2 j=1 j=2

1 P A+ 1 L
Z <_E(n—1)ifi - mDnlfl — (N + 1)D(n—1)1) H i | fiy

)\1+n—1
=2 j=1
J#
1 1 p p
= L (D= ——— Dy — D, Do |
)\1—|—n—1( (n—1)Ly /\1_|_nf1 Ly lfly) H f (n—1)1 H f] fly
i=1 j=2

1 & A+ 1 E
_ E ———Dufi — (Ni+1)Dg, || S
+)\1+n—1 < N n 1fi = (N + 1) D 1)1> fi| fiy

i=2 j=1
j#i
_1 P P
D W— Z fi| Famry — Fua H Ji | fiy
i=1 i=2
1 p p
—an—1 Z (A +1) H Ii | Jiys
! i=2 j=1
J#i
and setting
1
Fo1=D,_ — I )
1 1+)\1—|—n fi
into the last system we get
1 p 1 P P
P= — i | F— — Ai +1 i | Ji
o )\1—|—n—1 Z f 1’y+)\1—|—n—1 ! Z( + ) H f] fy
i=1 i=2 j=1

Jj#Fi

_I'Fn—l H fz fly-

=2
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In a similar way the second equation of system (n — 1,a) can be written

1 p p
Y JP— Zf e+ 1 Hf fi
i=1 i=2
1 p p
—F, A+ 1 N iz
S vr— S DRCESE I | A N
i=2 j=1
JjFi

Hence, system (n — 1,a) of degree at most m — nk; has the additional invariant
algebraic curve F,,_; = 0 with 0F,,_; = m —~ —nk;. Additionally, system (n—1,a)
is written into the normal form (5.5) and has the Darboux first integral

Ag+1 Apt1
A1+n—1 A1+n—1
nl_flf o fp F)‘H_nl

Working in a similar way we have that system (n—2, a) has the additional invariant
algebraic curve F,,_o = D, o + ﬁFn,l f1, and can be written into the normal
form (5.5) and has the Darboux first integral

Ao+1 Ap+1 1
A1+n—2 Al+n—2 A1+n—2
nQ_fl fp Fn72 .

Similarly, the sequence of systems (la) has the following invariant curves and Dar-

boux first integrals:

Ai+1

(nya/) Fn = Dn17 H _ F>\1+n H f>\1+n fl
=2

1 A;+1

_ 1 Fn_ — DTL— Fn Hn— — >\1+n 1 /\1+n 1
(n ,a) 1 ( 1’1+)\1+n f1>, 1 H f;

=2

1 Al

— 2 Fn— = Dn— —Fn— Hn— — /\1+n 2 >\1+n 2
(n ,a) 2 ( 2’1+/\1+n—1 1f1), H f;

1=2
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, 1
(n—i,a) F, ;= (Dn—i,1+an—if1)a
2 =D F:
(2a) 2 ( 21+)\+2 3f1>7
1 F=|D F:
(la) ( 1+)\1+1 2f1>,

h
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1 p Ai+1
_ A1+n—i A1+n—i
H”—i - Fn—i H fz fl
=2
1 p A +1
o N2 312
H2 - F2 H f’L
=2
S e e
— 1
H = Fx+t H fz fl-
i =2

Hence system (1a) has the additional invariant algebraic curve F' = 0 given by the

following expression

1
F = D Ffi =D D Fyf?

1+/\1+1 21 1+)\1+1( 21f1+)\1+2 3f1>
= D+ Doy f1 + ! <D+ 1Ff>f2
DV Tt G VNI DTG VINED ) Rt R VINEE St
= D+ Doy f1 + ! Dy f2 + ! Eyf}
T T O D)0 +2) T O+ D) +2)(A +3)

n—1 1
v 2 a it 1) O ) e

i=1

with 6 F' = m—~—k; + 1. Additionally, system (1a) can be written into the normal

form (5.5).

Case B: ky = (m — v+ 1)/(n+ 1). We note that f; = 0,---, f, = 0 are generic
curves and for system (nb) holds that ky + v = m — nk; + 1 then, by Theorem
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2.4(b) there are a; € C such that system (nb) can be written into the form

p p p
(M +D)Yon = Yo,0) ] fi= Do (M +m)Du— i+ 1)D0) | T £ | X
i=2 i=2 j=2
j#i
p p
= | II £ | Xs
i=2 j=1
J#

(5.19)

and so from Proposition 2.5 system (nb) has the integrating factor Ry = (f;--- f,) .

If L; = 0 then applying Lemma 5.5(a) we get that system (nb) must be the

zero vector field and this can be studied by a similar way to Case A.

If Ly # 0 then from Lemma 5.5(b) we have that system (1b) has the inte-
grating factor Ry = f " f52- --f,f"’. Hence, it has the first integral Ry/R; =
Jntl phatl g Wt Therefore, without loss of the generality we can take oy =
AM+n+1land oy =N+ 1 fori =2, p. Then, the first equation of system (nb)

can be rewritten as

(M +n)An+Day) [ fi= D (M+n)Du— i+ 1)D) | [ £ | fuw
T =2 =2 jj;j
=—+n+ ) | T A= 0o+ | T1 5| fur
N I e
(5.20)

Note that the curves f; = 0 are irreducible so we get that
fill(A +n) D — (A + 1) Dy — (N + 1) f1].
Hence, there are E,; € C[z,y] such that
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for all i = 2,--- ,p. Since \; # —n then from relation (5.20) we get that
p

1 1 M tn+1
An = _—Dn N Enz i )
M +n 1”+Armz§: Jiy = A+ 1 a1 v
1=2

and so the first equation of system (na) can be written into the following form

p
)\1+n+1
= 5 II 7| Duiy — D H fil hw =550 IT 7| A
=1 i =2 =2

p p p p
AN+ 1 AN+ 1
- Z )\1+nDn1 H fj fiy_ )\1+n H fj fiy~

1=2 j=1 i=2 j=1
JFi J#i

Working in a similar way with the second equation system (la) becomes

1 P MAnt1 P
_ Y% D, | X+ | X,
A +n I{f Dus ¥ Emt IEf BTN+ Ilf !

p p p p
Ai +1 N+ 1
) D | I £ | Xs Du | I # | Xz
+ M+n ™M Li | Kot N +n ™ Li | X

i=9 j=1 i=2 j=1
J#i J#i

We note that system (na) has the additional invariant algebraic curve F,, = D, +
fi=0and 0F, = m—~—nk;+1. We also note that system (na) has the Darboux

Ag+1 Ap+l

1
first integral H = fyf," " - fp T 2L

By a similar way to Case A we prove that system (la) takes the normal form

(5.5). ]
Example 5.7.
We are interesting to construct all polynomial differential systems of degree

m = 7 having the Darboux integrating factor R = f}"' f;? 5\3 where f; = 23+y3—1,
fo =22+ 2y +1 and f3 = y + 1. We note that the curves f; = 0, fo = 0 and
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f3 = 0 satisfy the generic conditions (i)—(v) and so we are under the assumptions
of Theorem 3.1. We have k; = 0f; =3, v =6fa+dfs =2+ 1 =3 and n =
[(m—~+4+1)/k] =[(T—3+1)/3] = 1. So we are in Case-1 of the proof of Theorem
5.4. System (la) is of the form

Aififafs — Difafsfiy — Dafifsfoy — Dafifafay,
= Bififofs+ Difafsfiz + Dafifsfow + Dsfifofse.

2

with 6A4;,0B; <1 and 6D1,0D5,6D3 < 2. Let D; = Y d;;z'y’ be a polynomial
i,j=0

of degree 2. Since in this case system (1b) is the zero vector field we have that

relations (5.13) hold. Let Eya(x,y) = E € C and Ei13 = e1x + exy + e € Clx, y.

According to relations (5.13) we can calculate the polynomials Dy and Ds. So, we

have
Dy = (A2 +1)Dy + Erafo
A +1
(A + 1)(doa® + dizy + dooy® + diox + dory + do) + E(2* + 2y + 1)
B A+ 1 ’
p, — Qs+ VDt By
A +1
(A4 1)(daoa® + duzy + dogy® + dior + dory + do)
N M+ 1
+61£B(y +1)+ey(y+1)+eo(y+1)
A +1 ’

and therefore we can calculate the polynomials A; and B;. We obtain

1 1
A, = ——D FE FE
1 Alf’ 1P + Nl (Erafoy + Ersfay)
= — (dirx + 2dpoy + dor + E(x + e1x + eay + €o),
A +1
1 1
B, = D (Er2for + E13fs2)

ML N+

1
= )\1 T 1 <2d20$ + duy + d10 — E(Qx + y))

Substituting Ay, By, D1, Dy and D3 into system (la) and doing a simple computa-
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tion we have that system (la) can be written into the form

. Ao+ 1 A3+ 1 1

T = —fofsFfiy — )\1+1flf3Ff2y_ )\1+1f1f2Ff3y—mf1f2f3Fy,
) A+ 1 A3+ 1 1

Y fofsF fa +)\1+1f1f3 f2 +)\1+1f1f2 f3 +/\1+1f1f2f3

where F' = D, is the additional invariant algebraic curve.

5.5 On a result due to Walcher

In [50] Walcher also proves the following theorem.

Theorem 5.8. Let f = fi--- f, with f; € Clz,y] irreducible, and assume that

the curve f =0 has no singular points. Additionally, we assume that (f,, f,) = 1.
-1

Then X = (P, Q) admits the integrating factor R = ( ML If"’) with \; positive

integers if and only if

P
. i F
P o= —E:Oéi f\l_‘_fi)\zl...fg\l’fiy_ f\l...f;\p</\11” >\p_1> )
i=1 ! v (5.22)

“Jp

p
F
. Ai—
y = E afit - f; 1...f$pfm+f1/\1...f;p< i Ap_1> 7
— i

1 p

with o; € C and F € Clz,y].

Under the assumptions of Theorem 5.8 polynomial systems having the Dar-
-1
boux integrating factor R = < 1’\1 e fzﬁ\p> with \; positive integers are of the

form (5.22). So, from Theorem 3.1(a), they have the Darboux first integral
H = ff‘l .. 'fl?p exp (>\1+f)‘171> with o; € C and F c (C[x,y]
1 Ip

We note that part of the statement of Theorem 4.3(b) can be obtained from
Theorem 5.8 taking p =1 and \; = —\ € Z, and g = F. Note that, in Theorem
4.3(b) and in its proof we present an algorithm in order to construct the polynomial
F, see also Example 4.15. Additionally, in Theorem 4.3(b) we also prove the
following relation between the degrees: 6 f + ¢ (%) =m+ 1.
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Chapter 6
Appendix

A planar vector field
0

dy

is polynomial of degree n if P and () are real polynomials in the variables z and

X = Pla,y) 5+ Qla.y) (6.1)

y, and the maximum degree of P and @ is n.

A periodic orbit of a vector field X in R? is a limit cycle if it is isolated in the

set of all periodic orbits of X.

In 1900 Hilbert [30] in the second part of its 16-th problem proposed to find
an estimation of the uniform upper bound for the number of limit cycles of all
polynomial vector fields of a given degree, and also to study their distribution or
configuration in the plane. This has been one of the main problems in the qualita-
tive theory of planar differential equations in the XX century. The contributions
of Ecalle [23] and Ilyashenko [41] proving that any polynomial vector field has
finitely many limit cycles have been the best results in this area. But until now
it is not proved the existence of an uniform upper bound. This problem remains

open even for the quadratic polynomial vector fields.

A limit cycle is algebraic of degree m if it is a contained in an irreducible

algebraic curve of degree m.

Hilbert also asked about the possible distributions of the limit cycles of poly-

nomial vector fields. Recently, it has been proved that any finite configuration

143
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of limit cycles is realizable by polynomial vector fields. More precisely, we say
that a configuration of limit cycles is a finite set of disjoint simple closed curves of
the plane pairwise disjoint. Two configurations of limit cycles are (topologically)
equivalent if there is a homeomorphism of R? applying one configuration into the
other. We say that the vector field X realizes a given configuration of limit cycles
if the set of all limit cycles of X is equivalent to that configuration. Recently, in
[39] it is proved that any configuration of limit cycles is topologically realizable as

algebraic limit cycles by a polynomial vector field of a convenient degree.

In [52] Winkel did the following conjecture about the algebraic limit cycles of

polynomial vector fields.

Conjecture 6.1. For a given algebraic curve f = 0 of degree m > 4 there is
i general no polynomial vector field of degree less than 2m — 1 leaving invariant

f =0 and having exactly the ovals of f =0 as limit cycles.

We shall prove that this conjecture is not true.

Here we will work with the one—parameter family of irreducible algebraic

curves

1
f:f(x,y):Z+x—x2+px3+xy+x2y2:o, (6.2)

of degree m = 4 with 0 < p < 1/4. These curves have three connected components,
one is an oval and each of the other two is homeomorphic to a straight line, see
Figure 1. We note that the oval of f = 0 borns at the point (2, —1/4) when p = 1/4.
Then, when p decreases the oval increases its size and ends having infinite size at

the irreducible curve 1/4 + z — 2? + 2y + 2%y* = 0 when p = 0.

We must mention that the curve f = 0 has no singular points, i.e. there is no
real solutions of the system f =0, df/0x =0 and 0f/0y = 0.

First we will prove that the oval of the curve (6.2) is the unique limit cycle of a
13—parameter family of polynomial vector fields of degree 5. Since 2m—1 =7 > 5,
this provides a counterexample to Conjecture 6.1. Many other counterexamples

can be constructed changing the algebraic curve f = 0.

Our main result is the following one.
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Figure 6.1: Algebraic limit cycle of degree 4.

Theorem 6.2. Let a, b, ¢, d, e and p arbitrary real numbers. Then, the algebraic
curve f =0 given by (6.2) is invariant by the 6—parameter family of polynomial
vector fields (6.1) of degree 5 given by
P = (be—cd)+ [c+ 4(be — cd) — 2a(d* + )]z — by +
4lc+ (a + c)d — be]x® — 4[b + cd — (a + b)e]zy —
2[a + 2¢ + 2p(cd — be)]x® + 4[b + ¢ — a(d® + €*)|z°y —
2(a + 2b)xy* + 4cpx* + 4(2ad — bp)xy —
4(cd — 2ae — be)x*y* — dazty + dex®y? — 4(a + b)x?y?,
Q = 2a(d®+e*)—bd—ce+[b—4((a+b+ad)d + (c+ ae)e)]x +
[c+ 2a(d* — 2e + )]y — 4(—c + ad + bd — 2ae + ce)xy +
2[a + 2b + 2d(2a + b) + 2ce + 3ap(d* + €*)]x* + 2a(1 — 2e)y* —
4(a + b+ 3adp + bdp + cep)x® + 2(a + 2b — 2¢ — 6aep)r*y +
4(—a+ c+ ad® + ae*)zy® + 2ay® +
2(3a + 2b)p x* + 4ep 2Py — 2(4ad + 2bd + 2ce — 3ap)x*y* —
Saexy® + 4(a + b)xy® + 4cx’y® 4 daxy*.
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Moreover, if ac # 0, 0 < p < 1/4 and the point (d,e) is in the interior of the
bounded region limited by the oval of f = 0, then the unique limit cycle of this
vector field is the algebraic one formed by the oval of f = 0.

We note that if we do an affine transformation of the polynomial differential
system © = P(x,y), y = Q(x,y), where P and @ are the ones given in the
statement of Theorem 6.2, and a rescaling of the independent variable, then the
polynomial vector fields of degree 5 associated to the new differential systems form

a 13—-parameter family providing a counterexample to Conjecture 6.1.

In fact a weaker counterexample formed by an 8—parameter family of quadratic

polynomial vector fields follows from the next theorem proven in [5].
Theorem 6.3. The quadratic polynomial differential system

& = 2(1+2x—2px?+6xy) ,
= 8 —3p— ldpx — 2pxy — 8y? ,

with 0 < p < 1/4 possesses the irreducible invariant algebraic curve f = 0. More-
over, if 0 < p < 1/4, then the unique limit cycle of this system is the algebraic one
formed by the oval of f = 0.

The following result due to Giacomini, Llibre and Viano [27], will play a main
role in our proof of Theorem 6.2. Here, we provide an easier and direct proof,

which also appears in Llibre and Rodriguez [39].

Theorem 6.4. Let X be a C' vector field defined in the open subset U of R%. Let
VU — R be an inverse integrating factor of X. If v is a limit cycle of X, then
v is contained in 3 = {(z,y) € U : V(x,y) = 0}.

Proof.: Due to the existence of the inverse integrating factor V defined in U, we
have that the vector field X/V is Hamiltonian in U \ ¥. Since the flow of a
Hamiltonian vector field preserves the area and in a neighborhood of a limit cycle

a flow does not preserve the area, the theorem follows. [

A straightforward computation shows that the algebraic curve f = 0 given by

(6.2) is invariant by the polynomial vector field X whose components P and @) are
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given in the statement of Theorem 6.2. In fact, the cofactor K of f =0 is

K = A4be — cd + (¢ — bd 4 2cd — 2be — ce)x + (be — b — cd)y +
(b —2c — 3cdp + 3bep)x® + 2(b + c)wy — by* +
3cpr® — (2bd + 2ce + 3bp)x*y — 2(cd — be)zy® +
2023y + dea’y? — 2bxy?).

Now the key point in the proof of Theorem 6.2 is to show that the unique
limit cycle of X is the oval v contained in f =0 for 0 < p < 1/4 when ac # 0 and
(d,e) is a point contained in the interior of the bounded region limited by 7. In

order to prove that, first with another easy computation we check that
V=fllz=d’+y-el
and
H = 2alog f + 2blog[(z — d)* + (y — e)?] — 4carg[(x — d) +i(y — e)],

are the inverse integrating factor and its associated Hamiltonian for our polynomial
vector field X.

Since V is polynomial, V is defined in the whole R?. Therefore, by Theorem
6.4 and since V' (z,y) = 0 if and only if (x,y) € {f =0} U{(d,e)}, it follows that
if the vector field X has some limit cycle, this must be the oval v of f = 0. Now,

we shall prove that this oval is a limit cycle. Hence, Theorem 6.2 will be proved.

We observe that P and () can be written as

P = —2af2f3% —2(b+ ZC)flfgﬁ —2(b— 1C)f1f28

Q = 2af2f3i+2<b+w>f1fgﬁ+2<b—zc)f1f2£

J3
(6.3)

where i =v/—1, fi=f, fo=x—d+i(y—e)and fs =2 —d—i(y —e).

Since f = 0 is an invariant algebraic curve of the vector field X, the oval
v is formed by solutions of X. Now we shall prove that on the oval v there

are no singular points of X and, therefore, v will be a periodic orbit. Assume
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that (zo,yo) is a singular point of X contained on the oval 7; ie., P(xo,yo) =
Q(zo,%0) = f(z0,y0) = 0. From (6.3) we have that

P(xo,y0) = —Qaf2($o7yo)f:s(xo?yo)g—i(xo?yo) =0,

Q(zo,%0) = 2af2($0ayo)f:s(ﬂ?()ayo)g_i(lﬂmyo)_O-

Since a # 0 and fo(xo, vo) f3(T0, yo) = (v — d)* + (yo — €)* # 0, we obtain that

0
a—f(:po,yo) = 0 and 8—(1’0,y0) = 0. This is not possible, otherwise the point
Z )

(20, Yo) would be a singular point of the algebraic curve f = 0, and this curve has
no singular points when 0 < p < 1/4. Hence, the oval v is a periodic orbit of
the vector field X. Now, we shall prove that v will be a limit cycle, and this will
complete the proof of Theorem 6.2.

We define the first integral H of X as follows
H = BH _ f2a[($’ . d)2 + (y o 6)2]2be—4carg[(oc—d)-i—i(y—e)}'

Then we note that the oval v and the point (d,e) are in the level H(z,y) = 0,
and that they are the unique orbits of X in this level. Now suppose that v is not
a limit cycle. Then, there is a periodic orbit v = {(z(t),y(t)) : t € R} different
from v and sufficiently close to v such that the bounded component B limited by
7' contains the point (d, e).

As +/ is different from +, there exists h # 0 such that

H(w(t),y(1) = 2 ((t). y0)[(x(t) — d)* + (y(t) — e 00 = b,

where 0(t) = arg[(z(t) —d) +i(y(t) — €)]. The function f2*(z(t),y(t))[(x(t) —d)* +
(y(t) — €)??* is bounded on 7. Clearly, since the point (d,e) is in the bounded
region limited by «' the angle 6(t) tends to either +o0o0 or —oo, when t — 4o0.
Since ¢ # 0, this fact is in contradiction with equality H(z(t),y(t)) = h # 0.
Consequently, we have proved that ~ is a limit cycle. In short, Theorem 6.2 is

proved. [
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