Chapter 4

Linear stability of homographic
solutions

4.1 Introduction

In this chapter we study the stability parameters of the homographic solutions of
the Planar Three Body Problem with homogeneous potential of order —a, 0 <
a < 2.

In chapter 1 we have seen that the system that gives us the non—trivial char-
acteristic multipliers for the homographic solutions (see (1.56)) is

).( = A(f? e)X7
d
where x € R, " = E and

0 0 1
0 0 0 1

A 4.1

(f.e) S (1)

0 32X 2 0

The parameters A1, A are defined in table 1.1 for the triangular and collinear case,
respectively, g is the periodic solution of the potential equation

au Qi
o

Z = —E(z) with U(z):? , (4.2)

2 -«

- ) K (see (1.34))

1 o
on the energy level ¥ = —§w22*—& being 0 < w < we, we = <
and f is defined in (1.11).
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118 4. Linear stability of homographic solutions

Notice that A; and Ay depend on a unique mass parameter, [§. or [ (see
table 1.1). Moreover, (4.1) depends on w. So the system (4.1) depends on two
parameters, w and [ being 3 = . in the collinear case and 3 = ; in the triangular
case. In the following we shall denote by § the parameters 3. or 3;. When talking
about collinear configurations, we will take 3 = (.. In the triangular case, we shall
take B = ;. If we are talking about the both cases, we shall write 3.

We also recall that once the configuration, triangular or collinear, is fixed
we can characterize an homographic solution using w € (0,w,| or the generalized
eccentricity e € [0,1) defined in (1.57), that is, e = , /1 — ﬁuﬂg—_aa. Our purpose
is to study the linear stability for e € [0,1) and the range of 3 defined in the table
1.1.

If e = 0 or equivalently w = w,, the homographic solution is a relative equi-
librium. In that case, (4.1) is a constant linear system and some resonant points
on the A1, Ao plane are obtained. Therefore, it is expected that some resonant
‘tongues’ will appear for ¢ 2 0 in the plane of parameters 3, e, giving rise to
regions with a different stability character. These kind of bifurcations as well as
the width of the respective tongues can be studied using the results of chapter 2.

When e < 1, that is w 2 0, (4.1) is near the singular case. Notice that (see

1 ZQ—a

(4.2)) U(z) = =z~ <_E +— > satisfies the hypothesis (A1) and (A2) in chapter
3 with

T=- s=2-—aq, Vl(z):i. (4.3)

Moreover we recall that in chapter 3, g is taken as a periodic solution of the
conservative system (3.2) on the energy level —¢. In the homographic case g is

2
a periodic solution of (4.2) on the energy level £ = —§wﬁ. Therefore, the
]. s
hypothesis (B) holds by taking § = §w 22—&, or, using the generalized eccentricity,

5 = 2;a“(1—62). (4.4)

For intermediate values of the eccentricity e € (0,1) the bifurcation diagram is
computed numerically. In section 4.2 we consider small eccentricity and, section
4.3 is devoted to the near singular case, e < 1.

4.2 Stability parameters near the constant case

First (section 4.2.1) we determine resonances when the generalized eccentricity, e,
equals zero. Then we study the stability parameters for small positive e. In section
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4.2.2 we consider the Newtonian case. We shall apply the Normal Form technique
developed in chapter 2 in order to obtain the boundaries of the resonant regions.
Section 4.2.3 is devoted to the general case.

4.2.1 Eccentricity equal to zero

For the triangular configuration A1 and Ay are the zeroes of the polynomial

PN = X (a2t L
(see table 1.1). Then, for 3; € (0, (a + 2)?], (A1, A2) describes a segment on the
plane with endpoints

(a+2,0), (a—21—27a—2i—2>. (4.5)

This segment goes from region Ro to R3 (see figure 4.1) using the notation intro-
duced in chapter 2. The change from Ro to R3 takes place when (A1 + Ao — 4)2 —
4X o = 0, that is,

(OJ—Q)Q—ﬁt = 0.

For 0 < B < (a0 — 2)2 the characteristic exponents are 4iwi, Fiws and for
(a —2)% < B < (a +2)? they are complex, +a =+ ib.

Assume 0 < 3; < (o — 2)2. In this case, wy # wy. To look for resonant points
we compute wi, wy as

2_2—a+\/(2—a)2—ﬁt
1 — 9 9

w w

%:2—()[—\/(2—&)2—@'

2

Resonances are obtained when wy or we satisfy w1 = nm for some n € N where

2
= n?. Moreover, if 0 < 3; < (a —2)?

T 27 valently when
= or, equlvalen whnen
V—a o Y 2 a

then

2 2
4wy 4wy

2 < < 4, 0< < 2.
2 2

3
Therefore, we get a unique resonance when w7 = 7 for §; = 1(2 —a)
Let us assume (a — 2)?2 < 3, < (a + 2)?, that is, (A1, A2) belongs to the
1
region R3. The characteristic exponents are +a + ib with b = 1(2 —a+ /).
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-10 i 1 1 1

Figure 4.1: Segments corresponding to the collinear and triangular Newtonian case in
the plane (A1, A2)

2
A resonance is attained if Th = nm for some n € N or equivalently 5 = n2
However for the allowed range of 3; we get
4b* 4
2 < < ,
2—a” 2—«
that is, in order to have a resonance with Th = nm we need
2
2<n < ——. (4.6)
2 -«

In that case, a simple computation shows that 3; = (2 — a)?(n? — 1)2. We note
that (4.6) has no solution if a < 1. Then, there is no resonance for (a — 2)? <

2
< (@ +2)% if @ < 1. Moreover, we have that ——— — 400 when o — 27.
ﬁt ( ) \/m
Then, as a > 1 increases we get more resonant points.
Table 4.1 summarizes the critical values of (3;, such that bifurcations are ex-

pected for e > 0 small enough.

Let us consider now the collinear case. From table 1.1 we get easily that as G,
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characteristic exponents | transition
iiwj, 1=12
3
1(2 —a)? wiT # nm, n €N, EE—~EH
wol =
Fiw;, j=1,2
2 _
(2 — a)? W) =Wy = 5 a EE~CS
(2—a)*(n*—1)2forneN +a +£ib
2
2<n< —— bl = nm CS+—HH
T T V2«

Table 4.1: Resonances for e = 0 in the triangular case and expected transitions for small

€

ranges from 0 to 2%72 — 1, the point (A1, A2) moves on a segment with endpoints
(a+2,0) ((a+1)20%2 +1,1 — 20%2), (4.7)

For 8. # 0 this segment is contained in the region R; (see figure 4.1). So, the
characteristic exponents are +\, +iw. Only single resonances can be attained
when w1 = nr for some n € N.

To get the resonant points we write w? as

2 2= a(Bet 1) + VB2t 2)’ +26:(a® +4) + (o - 2)°
: .

It is easy to check that w? is an increasing function of B.. Then, w € (v/2 — a,wyy)
being

o = \/1-2+a 428 /3572 1 2)2 - 8. (4.8)

In terms of n, we have that
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ZwM
We note that w?, — —15 + 8/15 > 0 and then — 400 when aa — 27.
M V2 —«o

Then, as « approaches 2, the number of resonances increase.

4.2.2 The Newtonian case

We shall assume « = 1, that is Newtonian potential. System (4.1) can be written
as (2.1) by taking G; = G5 = g~!. The periodic solution of (4.2) is g = 1+ecos f,
where e is the eccentricity of the orbit and f the true anomaly. Then, ¢~! =
1 — F(f,e) being F(f,e) an even 2m—periodic function on f which satisfies the
d’Alembert property. That is, the hypothesis assumed in chapter 2 holds for (4.1).

We begin with the triangular homographic solutions. From table 4.1 we get

the following resonant points for e = 0.

B characteristic exponents

3 3 1

Z :i:iwl, :I:iwg, w1 = g’ WQ;_§
2

1 :i:iwl, :tiu)g, W1 = Wy = 7

9 +a+i

Table 4.2: Resonances for e = 0 in the triangular case for Newtonian potential

3
We can apply the theory of chapter 2 to the case 8 = T that is, near the point

3 1 3 1
(a1,a2) = <§ + ZV33’ 3 Z\/33> in the plane A1, A\s. From (2.6), the resonant

curve for w; = 3 is given by

o= () (e 1) -1 0o

Figure 4.2 shows the intersection of the resonant curve (4.9) with the segment with
endpoints (4.5).

We take \y = a1 + 61 and Ay = ag + 62 with [d1],]d2| small enough. As
(a1,a2) € Ra, using Proposition 2.3.4, we know that the Normal Form up to a
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Figure 4.2: Left: Some resonant curves and the segments corresponding to the triangular
and collinear case in the plane (A1, A2). Right: Magnification of the triangular case (color

codes are the same as in figure 2.2)

given order in d1,d2 and e is

. 1, . .
NF = K +iwjz9zs + 512224 +i012123 + 10922024 +
toyzae” — gy2del

3
where 0; € R, j = 1,2,4, depend on d1, 02 and e. Here, w; = g Then, one of the

traces satisfies |tra| < 2 if 01, d2, e are small enough, giving an elliptic component.
A region EH is created, and their boundaries are defined by the equation

o3 — 40 = 0. (4.10)

As we are in a single resonance case and the function F' satisfies d’Alembert prop-
erty, we can use the theory in section 2.5.1. In particular, we can compute the
dominant terms in the contribution of §; and ds to o1. Using lemma 2.5.1, a simple
computation shows that

7 1 7T 1

Now we introduce the parameter ¢ as in (2.60), that is,

1)
<51> = 5v7t(a1’a2)a
2
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where v is given in (4.9) and (a1, az2) is the resonant point for e = 0. Then,
5
o= (7~ V33), &y = 27+ V/33).

We can write o in terms of § as
41
o1 = 7(5 + 02,

We have implemented an algebraic manipulator that computes the Normal Form
up to a given order in d1,d2 and e. In this case, we obtain that

o4 = —0.035903516541...¢e+ Os.

Let us consider 04 (e) and d_(e) the solutions of the two equations given by (4.10),
that is, oo — 204 = 0 and 03 +204 = 0, respectively. We write d1(e) = dee+O(e?).
By proposition 2.5.3, the width of d4(e) — d_(e) is of order 1 in e. Moreover, we
can compute explicitly the values of §+. We have that

5+ = F0.0350278210155 . . . e + O(e?).
In the plane (A1, A2) the boundaries of the region EH are given by

AN =a; —die+0(e?), Xy =ag— doe+ O(e?),
A =ai +die+O0(e?), Xy =as+doe+ O(e?),

where d; = 0.0109938087283... and do = 0.1116035648259.... Taking into ac-
count that By = 41y the equations above defines the following curves in the

plane (G, e)
By = % —de+0(e?), B = Z + de + O(e?),
where d = 0.4903894921666 . . ..
We conclude that a resonant tongue 7 is born at the point (5, e) = <z,0>
and the width of 7 is of order O(e).

Remark 4.2.1. The existence of this tongue was proved by G.Roberts in [R.] using
a different method.

Figure 4.3 shows the bifurcation diagram on the plane (3, e) computed nu-

3
merically. On the range 8; € (0,9) we distinguish the tongue 7 born at 5} = 1

The behaviour for e < 1 will be described in section 4.3.

Now we study the collinear case. For e = 0, the characteristic exponents are
+, fiw, where w € (1,wpr), wy = 2.88335022... (see (4.8)) as B. € (0,7).



4.2. Stability parameters near the constant case 125

0.5

0
0 3 6 9

Figure 4.3: Bifurcation diagram of the triangular Newtonian homographic solutions in
the plane (3¢, e). Color codes: Red for EE, Green for EH, Magenta for CS and Blue for
HH

Resonances w = §, 2, > are found on that range of .. The corresponding critical
values of 3. are given in table 4.3. We expect resonant tongues 7: 3 7> and ,Tg
associated to that resonances. Our purpose now is to compute the width of 73
and 75 using the Normal Form method. ’

Uszing the data in tables 4.3 and 1.1, we compute the following resonant points
on the plane A1, Ao,

(ahag) = (%(\/ﬁ"ﬁ"?) i(1—\/H)>,

16
(a1,a9) — (é(37+\/4369) (13—1—\/4369)),

1

T16
3 5 . .

for w = 3 and w = —, respectively. The corresponding resonant curves are

9 9
,71()\1’>\2) = ()\1 + Z) ()\2 + Z) —9= 0,

25 25
")’2()\17)\2) = ()\1 + Z) ()\2 + Z) —25=0,
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o characteristic | width of 7, transition
exponents Fiw
3 3 3
E(\/zﬁ —-1) w= 2 O(e?) HE+—HH
1 . .
1(1 +/97) w=2 no bifurcation
1 5 5
E(l?) +v/4369) W= O(e) HE+—HH

Table 4.3: Resonances for e = 0 in the collinear case for Newtonian potential

respectively. Figure 4.2 shows the intersection of the resonant curves with the
segment defined by the collinear homographic solutions.

We take \y = a1 + §; and Ay = ag + d2 with [d1],]d2| small enough. As
(a1,a2) € Ry the Normal Form up to a given order of 1, d2, € is

NF = K4 Az123 +iwzozy + 012123 + 1092924 +

o325e" — g3z2el,

1
where 01,09,03 € R depend on 41,92 and e, and (\,w) = (Z 3VA41 + 17, g)

1
or <4\/97+ V4369, g) We have that [tr;| > 2. A region HH is created. Its

boundaries are defined by the equation
o3 —403 = 0.

We take 8. = 35 + 6. Then, §; = 26 and d2 = —9J. We are in a single resonance
case. Moreover, function F satisfies d’Alembert property. Then, using lemma
2.5.1 we obtain that

53v41 — 123 . 3

o9 T6+02 if w-§,
1974369 — 4

o = VBB 0, i w=2

43050 2
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Using the algebraic manipulator we obtain that

o5 = —5.9623466927... 103> + Oy

o
S
|

o
€
|

o3 = —3.3038513137...-107 %" + Oq

N TN | W

Let us consider d4(e), d_(e) the solutions of o9 — 203 = 0 and o2 + 203 = 0,
respectively. If we write 04 (e) = die + die? + die® + die* + d=e® 4+ O(ef) and

taking into account the expression up to order 3 and 5 in the case w = — and
5
w = o given by the algebraic manipulator, we obtain that the boundaries of the

resonant tongues in the plane (3., e) are given by

Be— B = —0.4208699384...e? £ 0.03361931602...e> + O(e?) if w=

C

| w

Be— B = —1.9578203867...¢% —0.5109418802...¢"
+0.00032876661 ...¢° + O(e®) if w= =

where we recall that 8. — 3} = 4.
Therefore two resonant tongues Tg and 7: 5 are born at e = 0 being their width

of order €3, e®, respectively (see table 4 3).

In the case w = 2 the computations up to a given order using the algebraic
manipulator shows that the two boundaries coincide up to that order. We prove
now that, in fact, if w = 2 there is no bifurcation. To this end, we consider the
system (4.1) in the Newtonian case for arbitrary (A1, A2) € R1 U Ra.

Lemma 4.2.2. Let us consider the system (4.1) in the Newtonian case and assume
that for e =0, (A1, \2) = (a1,a2) € R1 URz2, we get a single resonance frequency
w =n with n € N. Then, the two boundaries of the resonant region coincide.
There is no bifurcation in this case.

Proof

For w = n, n € N, one stability parameter, tro, is equal to 2 for e = 0. Then the
boundaries of the resonant region are defined by tro = 2. Furthermore, if (A1, A2, €)
belongs to the boundary, the linear system (4.1) has a 2r—periodic solution. To
finish the proof we need the following lemma.

Lemma 4.2.3. Assume that (4.1) has a 2w —periodic solution, ¢, for a fized value
of e € (0,1) and \j # 0, j = 1,2. Then, there exists a second periodic solution
with the same period which is independent of .
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Now we prove Lemma 4.2.2.
Let us define ®(27) the monodromy matrix of (4.1). After lemma 4.2.3, if
(A1, A2, €) belongs to the boundary of the resonant region then ®(27) can be written

o(27) = (%2 102>’

for some 2 x 2 matrix (). Using the Normal Form we can compute ®(27) up

(in a suitable basis) as

to a given order in §1,09,e. As we are in a single resonance case we know that
the reduced system becomes uncoupled. Assume that (ai,a2) € Ri. Then the
subsystem that defines tro is (2.39), that is,

U = iJg’U, — 203’1),

v = —203u — i09v.

(In the case (a1,a2) € Ro a similar subsystem is obtained). We define for this
system the symplectic change of coordinates

(m) =202

Then the new system is
2 2
0

2
where 57 = 727203 ) The corresponding monodromy matrix
—(0’ 9 + 20 3) 0

is exp(27S7).
Let us assume that (A1, A2, €) belongs to the boundary such that o9 — 203 = 0.
0 0 1 0
Then, S = ( (02 +203) 0 ) and exp(27wS)) = ( or(os+203) 1 )

If for these values of the parameters, oo + 203 # 0, then system (4.1) would
have a unique 2m—periodic solution. This gives a contradiction with lemma (4.2.3).
In this way we have proved that the two boundaries coincide up to arbitrary order
in e, once §; = d1(e) and dy = da(e). Using the analycity they coincide for any

value of the eccentricity. O
Proof of Lemma 4.2.3
System (4.1) can be written as the following system of second order equations

(I+ecosf)iy = Mz —222(1+ ecosf),
(14+ecos f)ia = Xowa+241(1+ecosf). (4.11)
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A 27—periodic solution of the system above can be written as

x1(f) = ao+ Z ap cos(nf) + Z by, sin(nf),

n>1 n>1
xa(f) = co—i-chcos(nf)—i—Zdnsin(nf). (4.12)
n>1 n>1

Then, the coefficients must satisfy the following uncoupled sets of recurrences

/\1&0:6<d1 — %),

6A2112 = Blul, (413)

T
eAnt1upy1 = Bpuy, —eAyqup g, n 22, u= (an7 dn) )

A2co = —e (b1 + %) )

eAQSVQ = BlSvl, (4.14)

eAni1SVnp1 = BpSvy —eAn_18vp_1, n>2, v=(b,cn)l,

n n —2 A +n?2 —2n )
where A,, = 5| 5 ), B, = ( 1—2n Ny 4 2 and S = diag(1, —1).

We note that if u,, n > 1 is a non trivial solution of the last two equations in
(4.13) then v,, = Su, = (a,, —d,)T, n > 1, is a non trivial solution of the second
and third equations in (4.14). Moreover, A,, is a non singular matrix for n > 2.
However, det(As) = 0. But if det(By) = (A + 1)(A2 + 1) — 4 # 0, given uy we
can compute u; from the second equality in (4.13), and from the last equation we
obtain u,, for n > 3.

We assume that (4.12) is a non trivial 2r—periodic solution of (4.11). Then,
both (4.13) and (4.14) have a solution. We assume that (4.13) admits a non trivial
solution. Then, ) -, aycos(nf) and ) -, d,sin(nf) are convergent. Therefore
v, = Su,, that is, b; =ay, and ¢, = —dn,_for n > 1, is a solution of (4.14). Then,
we can built two independent periodic solutions of (4.11) as

1

2V(f) = a0 + X or ancos (nf), @5 (f) = 3o dnsin (nf),
2P(f) = $yoy ansin (nf), 2 (f) = co = Symy dn cos (nf),

d
where aO:%<d1—%> andcoz)\% (51—@1) O

(4.15)

Figure 4.4 shows the bifurcation diagram on the plane (f.,e) computed nu-

3
merically for 5. € (0,7), e € [0,1). The first tongue borns at 3} = E(\/Zﬂ -1)=

1.013.... We recall that the width of ’Z'% is of order e3. So, to distinguish the two
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boundaries we have to look at big values of the eccentricity. In figure 4.4 the line
inside the resonant tongue corresponds to a minimum of the stability parameter.
The second ’tongue’, 73, is only a curve defined by points (f.,e) for which the
second stability parameter is equal to 2, as predicted by lemma 4.2.2. For the
third tongue 75 the width is of order e>. We can distinguish the two boundaries
in figure 4.5 which is a magnification of 4.4 for big values of e. Other curves in
figures 4.4 and 4.5 are resonant tongues 7, for w = E, m € N, m > 5. They are
born at values 3 > 7. The behaviour of 7, as e goes to 1 will be described in
section 4.3.

7

Figure 4.4: Bifurcation diagram of the collinear Newtonian homographic solutions in
the plane (8., ¢)

4.2.3 The general case

For the general case we do not know explicitly the expression of ¢g®~2. In this
section we shall see that system (4.1) satisfies the properties of system (2.1). Then,
the theory in this chapter can be applied for the homographic solutions in the
general case. Moreover, we will see that ¢®~2 satisfies d’Alembert property, and
then we can compute as in 2.5 the boundaries of the resonant regions.

Let g(f) be the solution of (4.2) such that g(0) = 0 and ¢(0) is the minimum of
g(f). We introduce a new variable v = g®2? — 1. Then, the second order equation



4.2. Stability parameters near the constant case

131
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0.996 7“‘ |

0.994 | H‘
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0.99

Figure 4.5: Magnification of the bifurcation diagram of the collinear Newtonian homo-
graphic solutions in the plane (3., e)

of v is
v=2(a—-2)(a—3)E(v+ 1)421%2 + (a=2)*(v+1) <%(v +1)— 1> , (4.16)
where E denotes the energy of (4.2), that is, £ = Z 4 U(z).

Let e > 0 be small enough. We look for a solution of (4.16) which satisfies
initial conditions v(0) = e and v(0) = 0. We shall write

o(f) = vi(fle+va(fle? +us(fed +. .., (4.17)

where v1(0) = 1, v;(0) = 0 for j > 2 and 9;(0) = 0 for j > 1. We remark that
writing the energy of (4.2) in terms of v we have that
1

2 1 o 2*0[
E = (et+1)a? - ~(e+ D)oz =F +A, E=— 4.1
S(e+1) ~(e+1) L+ A, | 5 (418)
and A = age? + agzed + age? + O(ed) with
1 4 — 4 — 3—

3@ a) 3@ M7 d@-ap

To get v(f) we use a Lindstedt—Poincaré method. So, we introduce a new inde-
pendent variable 7 = v f with

v = V0+1/16+V262+....
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The coefficients v;, j > 0 will be determined in order to eliminate resonant terms.
Using (4.18) the equation (4.16) can be written as

2
od“v

72 f() +g(v)A, (4.19)

where

f0) = Eig(v) +(a—22+1) (§<v T 1) ,

«

gv) = 22-a)B3-a)(v+1)7-.
By substituting (4.17) in (4.19) we get

9 d2U1
V —
0 dr2

dUl

=—(2—-a)v;, v1(0)=1, E(

0) =0.

We choose 13 = (2 — a) and then trivially v1(7) = cos 7. In a similar way we get

1 a—4 200 — 5

va(T) = 2(2_a)+3(2_a)c057—mcos(27),
. a—4 (a—4)(7T—a) 9a%—47a + 62
va(r) = 3(a—2)2+< 902-a)?  96(2—a)? )COST
200 — 5)(a — 4 902 — 47a + 62
! 9(2—)(a)2 )cos(27')—|— 96(2—032 cos (37),
v, = 0 and
vy = —2(732_;)‘2 <é(2a—5)(11—2a)—%(a—3)(4—a)>.

In this way we can obtain g>~% = 1 + v(7) up to a given order. Then, g?>~% =

2
1 +v(vf) is a periodic function of f with period T' = il
v

Now we shall see that g~ is an even function of f and satisfies the d’Alembert
property.

Lemma 4.2.4. Let v(1) = > < vm(7T)e™ be the solution of (4.19) such that

v1(0) =1, v;(0) =0 for j > 2 and v;(0) =0 for j > 1. Then, vy, (7), m € N, is an
even function on T which satisfies the d’Alembert condition, that is, for m € N,

U (T) = Zamlcos(lr). (4.20)
=0
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Proof

We know that ¢g(f) is an even periodic function of f. So, v(7) is also an even
function. Moreover vi(7) = cos7. Assume that v, (7) for m = 1,2,...,k — 1 are
known and satisfy the (4.20). If we define w = €™ then v,,(7) contains terms w'
with [ < m.

The equation for vg(7) is obtained by equating in (4.19) terms of order k in e.
It is clear that vy (7),...,ve_1(7) give terms with w!, with [ <k — 1, in 9.

Concerning the right part of (4.19) to get the terms of order k in e from f(v)
it is sufficient to consider

k+G)(0 )
o) = Foue -+ D gmy
==
where v®) (1) = vi(T)e 4 ... 4 vp(7)e".
The terms of order k in e which come from (v(*))7 can be written as

(fl}(k))j — Z vilrvlf o e Ullckek‘ (421)
lh+...+1lp =17,
lh+2ls+ ...+ Kkl =k

In (4.21) we consider j > 2. This implies I, = 0 in the summatory (4.21). Using the
hypothesis on v1(7),...,vp_1(7) we get that the highest term in w which appears
in vitolz ... vfc’“ is wht2let+(kE=Dlk-1 — )k n a similar way it can be proved that
g(v)A contributes to the equation of vj, with terms w', I < k — 2. Therefore we

can write the equation for vg(7) as a linear non homogeneous differential equation
veip = f (0 + F(71),

where F(7) depends on v1(7),...,v,_1(7). The terms of F(7) contain w! with
[ < k. This proves the lemma. O

4.3 Stability parameters near the singular case

Our purpose in this section is to apply the theorem 3.3.1 to the system (4.1).

< 2 —a)?

First we note that using (4.3) we obtain A = —u. Moreover we recall that
ol

the parameter ¢ in theorem 3.3.1 is related to the generalized eccentricity through

(4.4). So, we are interested now in small 6 > 0. We shall assume that the non

degeneracy conditions of theorem 3.3.1 are satisfied.

We begin with the collinear case. Using table 1.1 we see that in the collinear
case A\1 > 0 and Ay < 0. Therefore, theorem 3.3.1 can be applied if Ay # 5\, that
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is, 8, # M

table 4.4).

. The parameters 31, (32 in the theorem are easily computed (see

a€(0,2) a=1

B %a\/soz(a +1)3. + (3a +2)2 | /25 F 160,

Ba 1_80‘—6‘3 /1—850

Table 4.4: The parameters 81, B2 in theorem 3.3.1 for the collinear case

We remark that in the case o = 1 the values of 3;, j = 1,2, are related to the
eigenvalues of the equilibrium points on the triple collision manifold (see [Mo.2]).
We note that 5y > 0. Then tr; > 2 if § > 0 is small enough. Furthermore if
(2-a)

/66 < - s

o
this case, the system is hyperbolic-hyperbolic for § > 0 small enough. On the
2 _ 2
other hand, if G, > ﬂ

«
tro oscillates as ¢ tends to O.

, B2 € R and the second stability parameter is greater than 2. In

then (3, is pure imaginary. From (3.14) we know that
: . 2-a)? 1
In the Newtonian case the behaviour of tro changes at §, = —— = - =
o
0.125. We have computed numerically tro as a function of the eccentricity for

several values of 3.. Their plots are represented in figure 4.6 by taking — log;,(1—e)

1
on the x axis. The computations shows that if 5. < 3’ try goes to —oo. However, if

1
Be > 3’ try oscillates between 2 and a negative value k < —2. Moreover numerically

+
we see that k decreases as 3. — (g) . As try goes beyond —2, several intervals
on e of hyperbolic-hyperbolic (HH) type are created. Therefore, for a fixed 8. =

b with b > — we must have on the bifurcation diagram a sequence of infinite
intervals of type HH which accumulate at e = 1. These HH intervals are in fact
the intersections of the infinitely many resonant tongues 7, with the line 8. = b
(see figure 4.5). This implies that 7, with w = %, m > 4 tends to G, = % as e
tends to 1.

Figure 4.7 shows the typical behaviour of the stability parameter tro as a
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Figure 4.6: Stability parameter try in the collinear Newtonian case for several values of

Be. —logo(1 — e) is taken on the z axis

function of 3, when e is near 1. The plot corresponds to e = 1 — 1074, We
distinguish clearly the first interval with tro < —2 when S, is small. This interval
corresponds to the first tongue 73. In the following oscillations the parameter
goes under —2 by a small quantityzdeﬁning the successive tongues. The numerical
computations show that the first minimum goes to infinity as e goes to 1.

It is also interesting to point out that figures 4.6 and 4.7 show that tra does not
cross the horizontal line tro = 2, which corresponds to resonances w = n, n € N.
This means that there is no bifurcation when w = n (the two boundaries of 7,
coincide) as it was predicted by lemma 4.2.2.

Now we consider the triangular case. From table 1.1 we get A\ > Ay > 0 and
theorem 3.3.1 holds. The parameters (31, (G2 in the theorem are given in the table
4.5.

Now, 01 € R, B € R. Then, if § > 0 is sufficiently small the system is HH
provided that the coefficient d; in theorem 3.3.1 is different from 0. From lemma
3.3.5 we know that d; = d,d, where d,, # 0 and d, depends on the potential and
on )\1, )\2.
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TTAVAYAN
of |

Figure 4.7: Behaviour of try for e = 0.9999 in the plane (0., tr2)

Figure 4.3 shows the bifurcation diagram for the triangular Newtonian homo-
graphic solutions in the parameter space f;,e. We see that for e < 1, the system
is HH for any f3; except in a neighbourdhood of some critical value B¢ near 6.
Numerical computations of d, seems to indicate that it is equal to zero. However
we do not have a proof of this fact.

Figure 4.8 shows the bifurcation diagram for the triangular homographic so-
lutions for different values of a. Concerning the behaviour for e near 1 we see
numerically that as « increases more critical values @t appear.
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o
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Figure 4.8: Bifurcation diagram for the triangular homographic solutions. The values
of a are: top file & = 0.01, @ = 0.1; center file a = 0.5, @ = 0.9; bottom file « = 1.1,

a = 1.5. The color codes are the same as in figure 4.3
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B ¢1+%<1w> VBT TS

5, \/ku—w VIBTIE

Table 4.5: The parameters 31, 32 in theorem 3.3.1 for the triangular case where ¥ =

v1—-3k€R



Chapter 5

Some heteroclinic connections
in the Spatial RTBP

In this chapter we study analytically the existence of homoclinic orbits to the
centre manifold of the Spatial Restricted Three Body Problem (SRTBP).

The SRTBP has five relative equilibrium points, two triangular and three
collinear. The collinear relative equilibrium points are of centre—centre—saddle
type and then have 1-dimensional stable and unstable invariant manifolds and a
4—dimensional centre manifold.

In a neighbourhood of the collinear equilibrium points there are two families
of Lyapunov periodic orbits, the planar and the vertical families. A Lyapunov
periodic orbit has 2—-dimensional stable and unstable invariant manifolds. There
also exist 2-dimensional invariant tori with 3-dimensional stable and unstable
invariant manifolds.

We shall study the existence of homoclinic orbits to the centre manifold of
one of the relative equilibrium points. To this end, we consider the SRTBP as a
perturbation of the three dimensional Hill’s problem and also as a perturbation of
the spatial synodic two body problem.

For the existence of homoclinic orbits on small perturbations of integrable
system under generic assumptions see [L.], [K.L.1], [K.L.2].

5.1 The Spatial Restricted Three Body Prob-

lem

Let us consider two bodies, called primaries, describing circular orbits in the plane
(z,y) around their center of masses that we assume located at the origin. If we

139
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consider a system of coordinates that rotates with the primaries and suitable units,
the bodies can assumed to have masses m; = 1 — p and mg = p, with p € ((), %],
and to be fixed located at coordinates (u,0,0) and (u — 1,0,0), respectively. It
can also be assumed that they complete one inertial revolution in 27 time units.

It is well known that the equations of motion of a massless particle under the
gravitational action of the primaries are

-2y = (U,
ij+2i = Q (5.1)
zZ = Qza
where
1 1— 1
Ae,yoz) = @+ + —o+ L -, (5.2)
2 T 9 2
rf=@-p?+y’+2% ri=@-p+1)?+y*+ 22 (5.3)

Equations (5.1) are called the equations of the spatial restricted three body prob-
lem.
Equations (5.1) have a first integral , called the Jacobi integral, given by

F(o,y, 2,892 = =@+ + %) +20(x,y, 2). (5.4)
They also have the following symmetry
S(:ana Z7i'ay'a'éat) = (x,—y,z, _i'7y.7 _Z.:a _t)a (55)

It is well known that system (5.1) has five equilibrium points, three collinear
points Lq, Lo, L3, located on the x axis, and two triangular points, L4, L5 forming
an equilateral triangle with the masses and located at the z,y plane. Figure 5.1
shows the equilibrium points of the SRTBP in the plane (z,y). If we denote by
C; the value of (5.4) on the L; points, i = 1,...,5, we have that 3 = Cy = C5 <
C3 < Cy < Cy < 4.25for all p e (0,3).

Let us denote by M (u, C') the hypersurface given by

M(u,C) = {(z,y, 2 &,79,2) €RY| F(x,y,z &,9,2) =C}. (5.6)

Due to the existence of the Jacobi integral, we can restrict to study the behaviour
of the orbits in M (u,C'). The projection of M (u,C) in the position space (z,y, 2)
is called Hill’s region. We shall denote it by

R(u,C) = {(z,y,2) € R3 2Q(z,y,z)>C}. (5.7)
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Ly

Ls

Figure 5.1: Equilibrium points of the SRTBP in the plane (z,%)

The boundary of R(u,C) is the surface of zero velocity. For C' > Cy Hill’s region
consists in two ovoids enclosing the two primaris and a cilindrical surface outside
the ovoids. We denote by Ry(i, C') the bounded components of the Hill’s region.
In this case, Ry(u,C) is formed by the two ovoids. As the value of C' decreases
the ovoids in Rp(u, C') meet at Lo (see figure 5.2). The three dimensional picture

Figure 5.2: Intersections of Ry(p,C) for C' = C5 in the planes (z,y) and (z, z), respec-
tively, for p = 0.2

corresponding to this fact is formed by two ovoids that have a contact in Lo. For
values of C7 < C' < (5 the two ovoids converts in a surface homeomorphic to
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a sphere. In this case Ry(u,C) has a unique connected component and so, it is
possible that the massless particle travels from a neighbourhood of a primary to a
neighbourhood of the other primary (see figure 5.3). We denote by M(u, C) the

Ly )

Figure 5.3: Intersections of Ry(u,C) for C < Cy in the planes (z,y) and (z, z), respec-
tively, for p = 0.2

component of M (u,C) that projects in Ry(u,C). We shall study the behaviour of
the orbits in M;(p, C) for C' < Cs.

5.1.1 Qualitative description of a neighbourhood of L,

As we are interested in the orbits near Lo, we shall give a qualitative description
of a neighbourhood of this point. For details see [Sz.]. In fact, the same arguments
hold for the other collinear equilibrium points.
By introducing momenta as p, = ¢ —y, py = ¥y +x and p, = z, the SRTBP
can be written in Hamiltonian form, and the Hamiltonian function is
1 L—p  p

H(2,y, 2,pa,pyp2) = 5+ Py +P2) = 2py + yps — o 68

where 71 and rp are defined in (5.3). The relation between the energy h and the
Jacobi constant of an orbit is given by

C=—-2h—pu(l—p).

Lo is located between the two primaries (see figure 5.1). We introduce p by
ro = p. Then, r1 =1 —p and x = u — 1 + p for this equilibrium point. Figure 5.4
shows the situation.

p is the solution of Euler’s quintic equation

p° = (38— p)p* + (3 —2u)p* — pup? + 2up — = 0, (5.9)
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P 1—p

: |
ma [ my

Figure 5.4: Coordinates of Lo

The linearized equations around the collinear equilibrium point are given by the
second order terms of the Hamiltonian. These terms can be written as

1

Hy = i(pi —|—p§) — Py + YPz — cox? +

2 9 1o
—y° + —p2 4+ = 5.10
23/ 2Pz 227 ( )

1—p
(1—p)?

where ¢y = + % Figure 5.5 shows the values of ¢s depending on the
P

parameter u.

C2

Figure 5.5: Values of ¢, depending on p

From the expression of Hs it is clear that, linearly, the direction z is uncoupled
from the planar directions. The linearized system for z, Z is an harmonic oscillator
with frequency w, = /c2. It is well-known that w, € (2,3) (see figure 5.6). For
the planar directions, x,y, the characteristic polynomial of the linearized system



144 5. Some heteroclinic connections in the Spatial RTBP

is
P(A) = A 4 (2 — ) A% + (1 + c2 — 263).

Then, if we denote by 7 = A%, the zeroes of p()\) are given by

cy— 2+ \/903 — 8¢y
2 M

N2 =

where, according to the values of ca, 171 > 0 and ny < 0. Then, Lo is a centre—
centre-saddle point. The frequency w, = /=12 is known as planar frequency. It
is easy to see that w, € (2,3). Figure 5.6 shows the graphic of wy, in terms of p.

3

2.8

2.6

2.4

2.2

. 1
Figure 5.6: Frequencies w, and w, in terms of p € (0, 5)

As Lo is of centre—centre—saddle type, it has 1-dimensional stable and unstable
manifolds and a 4-dimensional centre manifold. Fixed an energy level C' of the
Jacobi constant, Wy N M (1, C) is homeomorphic to S?, where W}, denotes the
centre manifold of Ly (see appendix D).

It is well-known that there exists two families of periodic orbits in a neigh-
bourhood of Ls, the planar and the vertical Lyapunov periodic orbits. The first
family is associated to the frequency w, and the second one to the frequency w,.
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These families are hyperbolic, and they have 2-dimensional stable and unstable
invariant manifolds. We remark that the planar family of periodic orbits also exists
in the Planar Restricted Three-Body Problem. Therefore, the stable and unstable
invariant manifolds of the planar periodic orbits lie on z =0, 2 = 0.

For the linearized SRTBP and fixed C, the centre manifold, W{ N M (u,C)
is foliated by a one parameter family of 2-dimensional invariant tori. Generically,
using KAM theory most of these tori subsist for the general SRTBP. Moreover,
the tori have 3—dimensional stable and unstable invariant manifolds.

5.2 Homoclinic connections in the planar case

The Planar Restricted Three Body Problem is obtained from the equations of the
SRTBP by taking (z, %) = (0,0). In this case, on a neighbourhood of Ly and for
values of C' < (5 there also exist the planar family of Lyapunov periodic orbits.
In this case, they have two—dimensional stable and unstable invariant manifolds,
that we shall denote by W, and W

p.o.?
homoclinic orbits in the planar problem for p 2 0 and C' < C9 has been studied

respectively. The existence of transversal

in [L.M.S.]. In this section we shall summarize some of the results obtained in
[L.M.S.].
In this case, we consider the hypersurface defined by

M(p, C) = M(pt; ) (2,2.9,9,0,0)-
The Hill’s region R(u, C) is the projection of M (u, C) in the position space. Let us
consider Ry(y, C') the bounded components of R(u,C'). We have that for C' = Cs,
R(u, () is formed by two connected components that have a contact point in Lo
(see the left figure in 5.2). We shall denote by S the connected component that
contains the larger primary. For C' < Cy we can take two segments in Ry(u, C)
joining points in the zero velocity curve (see figure 5.7) that divides the region in
three components. One of the components contains the projection of the periodic
orbit near Lo, and the other components contain one of the primaries each one.
Naming Mp(u, C) the component of M (p,C) that projects on Ry(u, C'), we shall
denote again the component that contains the large primary as S.
The main result in [L.M.S.] is the following.

1
Theorem 5.2.1. 1. For values of v 2 0 of the form puj = N3—k3(1 + o(1)),
o

where N, is a suitable constant and o(1) denotes terms that go to zero when

u does, there exists an homoclinic orbit to L.

2. If w and AC = Cy — C > 0 are small enough, the branch Wﬁ’o‘? of Wy,

contained initially in the region S intersects y = 0 and x > 0 in a curve
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le

Figure 5.7: Hill’s region in the Planar Restricted Three Body Problem for C' < Cy and

region S

diffeomorphic to a circle. In particular, for the points in the u, C plane such
4

that there exists py, satisfying AC > L} (u—px)?, being L a constant, there
exist transversal symmetric homoclinic orbits to the periodic orbit.

5.3 Statement of the results in the Spatial
case

Fixed a value C' of the Jacobi constant, from (5.4) we have that
C = F(x,y,2,,7,2). (5.11)

This is equivalent to fix a level hypersurface of the form (5.6). We shall denote as
C), the constant that one obtains from (5.11) by taking z = 0,2 = 0, that is,

Cp = F(z,y,0,2,9,0). (5.12)

Then, C), is the Jacobi constant of the Planar problem. We shall refer to it as
planar component of the Jacobi constant. We define C, by

C, = C-=0Cy, (5.13)
and when talking about this constant we shall say vertical component of the
Jacobi constant. Then, we have written the Jacobi constant as the sum of a
planar component and a vertical one.

Let be AC = Uy — C), and define
ACp = CQ - Cp7 AC"U = _C’U7
We introduce constants a, 8 by
4
poo= ket opg,
4
AC = Buf, (5.14)
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where py is defined in Theorem 5.2.1 and «, 5 = O(1) depend on pug. Once p is
fixed we can take uyj as the value of the sequence given by Theorem 5.2.1 which is

at minimum distance to p. We define ¢ € [0, g] by

AC), = Bcos? (1) - ué, AC, = Bsin? (¢) - ,ué. (5.15)

We note that once AC' > 0 is fixed, if ¥ = 0 then AC' = AC), which corresponds
to the planar problem. For ¢ = g then AC = AC,.

Given « and (3, a torus in the centre manifold of Ls is characterized by 2.

The following theorem gives the existence of heteroclinic orbits between two
tori provided some inequalities are satisfied. Some non degeneracy conditions
will be required in the sense that A # 1 and C7 # 0 for some coefficients to be
introduced in section 5.4. The geometrical meaning is that some ellipse in the
(z,%) plane taken in the initial conditions of W, does not degenerate into a
cercle and its axes do not coincide with the z, Z axes. Here, W, denotes the
unstable manifold of an invariant torus T in the centre manifold of Lo once the
Jacobi constant C' < Cy is fixed.

Theorem 5.3.1. Let us consider «, 3 fixed and uy sufficiently small. Assume non
degeneracy conditions. Let be ¢,v’ € (0, 5 \ &, being € a set of small measure,
such that

K
cos i, cosp’ > —|& — k|, (5.16)
VB
. , . o 1
for some integer k, where K > 0 is a constant and |&| = TN < 3 Let be m
o0
the number of integers k such that (5.16) is satisfied and assume
SV, (5.17)

sin )/

where k > 1 is a constant. Then there exist 16m transversal heteroclinic orbits
between the tori characterized by v and v'.
In particular, there exist at least 16m homoclinic orbits to the centre manifold.

In order to prove the theorem, we shall consider the intersection of invariant
manifolds of the tori characterized by 1 and 1)’ with y = 0. The hypothesis (5.16)
is needed in order to get points in the invariant manifolds for which the components
x, % coincide. The condition (5.17) is required in order that z and 2 also coincide.
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Remark 5.3.2. The constants IC and k are effectively computed in section 5.4. They
depend on the parameters of some ellipses in the planes x, = and z, Z, respectively.

Kla

K
< 1. Let be ¥mqr = arccos (— & ) If ¥, 4" € (0,%maz) then
5 \/B‘ | ( )
(5.16) holds at least for & = 0. This situation is represented in figure 5.8.

Assume

"
I
¢maft

AR

Figure 5.8: Admissible values of

Furthermore, if ¢ and v’ satisfy (5.17), then there exists an heteroclinic orbit
from the torus characterized by 1 to the one characterized by 1)’

Notice that if & = 0 then u = pg. In this case (5.16) is satisfied trivially for
k = 0. Moreover as 3 increases, (5.16) holds for other values of k. This is in
agreement with the previous results in the Planar RTBP ([L.M.S.]).

Notation 5.3.3. For ¢, € (O, g) we shall denote by
P — )
the existence of an heteroclinic orbit between the tori characterized by v and '

Klal

VB
¢TL E (Oa¢max) 9

Corollary 5.3.4. We fix o, B such that <1 Ifp1,...,0pn,... € (O, g) s a

sequence of values such that

and
sin wn -1
— € (kK ",k
Sin wn_l ( ) )7
then

Y1 — e — Py — ...

Corollary 5.3.5. If %|d] 1s sufficiently small then there exist some orbits that go
from a small neighbourhood of a planar periodic orbit to a small neighbourhood of
a vertical periodic orbit. The orbit is close to a heteroclinic chain, whose length
goes to infinity when k approaches 1.
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5.4 Proof of Theorem 5.3.1

In order to obtain homoclinic connections to the centre manifold of L, we follow
the same ideas given in [L.M.S.].

Let us denote by W}L’“ the unstable manifold of an invariant torus 7" on a level
manifold M (u, C') with C'' < Co(p) of the SRTBP. In order to prove theorem 5.3.1
we shall obtain an analytic expression for this invariant manifold when p 2 0 to
obtain later heteroclinic and homoclinic orbits to the torus. Our purpose is to
obtain the first intersection of W* with ¥ = {y = 0, = > 0}. We shall assume
that ¥ is a Poincaré section for any orbit of W;7*. Due to the transversality of
W with ¥, this assumption holds if AC is sufficiently small. In order to obtain
this intersection, we shall approximate the SRTBP by the spatial Hill’s problem in
a neighbourhood of the equilibrium point. Then, as outside of a neighbourhood of
Lo the SRTBP can be seen as a perturbation of the Spatial Two Body Problem,
we shall use it in order to obtain the expression of W;’” M. Once this intersection
is obtained, we shall use the symmetries of the equations in order to obtain the
stable manifold. Then, studying the intersections of the unstable manifold of one
torus and the stable manifold of another torus, we shall obtain heteroclinic orbits.
By taking the unstable and stable manifolds of the same torus we will obtain
homoclinic orbits to that torus.

This section is structurated as follows. In section 5.4.1 we study the geometry
of W}"“?{y = —k,u%} in a neighbourhood of Lo, that is, we shall take k and u such
that kus is sufficiently small but & is large. To this end we shall approximate the
SRTBP by the Spatial Hill’s Problem. Using the geometry of W*n{y = —lm%},
in section 5.4.2 we obtain an analytic expression of the first cut of this manifold
with y = 0,2 > 0. To do that we shall approximate the SRTBP by the Spatial
Synodic Two Body Problem (SSTBP) outside of a neighbourhood of Lo. In section
5.4.3 we shall compute the stable manifold of a torus from its unstable manifold
using the symmetries given in (5.5). Then, once we have obtained both stable and
unstable manifold of a torus, in section 5.4.4 we will compute the intersections of
these manifolds in order to obtain homoclinic orbits to the torus. Taking the stable
manifold of one torus and the unstable manifold of another torus, the intersections
of these manifolds will give heteroclinic orbits from one torus to the other. All these
homoclinic and heteroclinic orbits are homoclinic orbits to the centre manifold of
Ly. The proofs of some lemmas are given in the section 5.5.
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5.4.1 Geometry in a neighbourhood of the equilibrium
point

In order to study the geometry of the unstable manifold in a small neighbourhood
of the equilibrium point, we shall consider the intersection of this manifold with
the section y = —ku%, where k is large enough amb p sufficiently small, in such a
way that k‘/ﬁ is small enough. To this end we shall approximate the equations of
the SRTBP by the Spatial Hill’s problem in a neighbourhood of the equilibrium
point. If (X,Y, Z) denotes the coordinates of the Spatial Hill’s problem, then we
need to study the geometry of the invariant manifold in the section Y = —k, with
k large enough The analysm of the Poincaré map between two sections Y = —k
and Y = —k, 0 < k < k, with k large enough, will give us the geometry of the
manifold intersected with different hyperplanes.

Near the small mass p, in suitable coordinates the SRTBP can be seen as a
,u% order perturbation of the Spatial Hill’s problem. The three-dimensional Hill’s
problem studies the behaviour of the small mass for the SRTBP in the limit case
when p — 0. To obtain the limit equations we translate the small mass to the
origin and we perform a scaling of the variables by the change of coordinates
(z,y,2) — (X,Y, Z) defined by

X=pS(@+l-p), Y=pisy Z=usz (5.18)

Then, equations (5.1) can be written as the second order system

L 3 3
X—2y = 3X—X(X24Y%2+2%) 2+ §<3X2 SYi-37 >+0( 5),
V42X = —Y(X2+Y2+22)72 —3u3XY +O(ud),

7 = —Z-Z(X*+Y 42371 —3u3XZ+ O(u3).

If we take u = 0 we obtain the equations for the 3—dimensional Hill’s problem

X -2V = 3X - X(X24+Y%+ 2%,
V42X = V(X +Y2+22) 2, (5.19)
7 = —Z-Z(X +Y%+ 2%k,

We note that equations (5.19) can be written as

X-2v = off
V42X = Qi (5.20)
zZ = Qf,
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with
1
Q(X.Y,2) = 5 [3)(2 222X Y24 22
Equations (5.19) have a first integral
FAX,)Y,2,X,Y,Z) = 200(X,Y,Z) - (X?+Y2 4+ 2% =CH. (5.21)

As we have done with the Jacobi constant for the SRTBP, we can consider the
value of the integral, C¥, as a sum of a planar and a vertical component. We shall
write

H H H
c = ol vl (5.22)

being Cf = FH(X, Y, 0, X, Y, 0) the planar component and Cf the vertical one.
The only two equilibrium points of the 3—dimensional Hill’s problem are collinear.
If we denote by L1 and Lo these equilibrium points, we have that L = (—37% ,0,0)
and Lo = (3_§,0,0). The use of this notation is due to the fact that L; for the
Spatial Hill’s problem corresponds to L; for the SRTBP. Using (5.21) we obtain
Cflj = 35 for the collinear equilibrium points. We shall consider Ly. The eigen-

values for the linerized system at Lo are 4\, +iw, +2i where A = /1 +2/7,
w = V27 — 1. Then it is a centre—centre-saddle point.

We denote by WqLJ;H the one-dimensional unstable manifold of Ls. It is known
(see [L.M.S.], [McG.1]) that one of the branches of W};H crosses the line Y = —k,
for any value £ > 0 going down forwards, near the surface of velocity zero. More-
over, as in the SRTBP, there exist two families of periodic orbits in a neighbour-
hood of L&, the planar and the vertical families. Furthermore using the KAM the-
orem, generically there exist invariant tori in the centre manifold of the collinear
points.

For a fixed CH < C’f; = 3% we take ACH = C}i — CH. Let us consider a
solution of the linearized Spatial Hill’'s Problem on the centre manifold of L. It
can be written as

X(t) = 2wacos(wt)+ 373,
Y(t) = —(w?+9asin(wt), (5.23)
Z(t) = bcos(2t) + csin(2t),

where ACH := CfL — CI' = 8a?(5w? + 54), ACH := —CH = 4(b* + ¢?). In an

equivalent way, instead of using b, ¢ we can write Z(t) = a, cos (2t + ¢) for some
1

phase ¢. We note that a = O((ACf)z) and b,c,a, = O((ACf)%) Once a is
fixed we get a two dimensional torus, T, on the centre manifold for the linearized
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Spatial Hill’'s Problem. Of course, a must be taken on a Cantor set of almost full
measure. That torus is hyperbolic and has a three dimensional unstable invariant
manifold to be denoted by W}LH The linear part is

X(t) = X(t)+2xeeM,
Y(t) = Y(t)+ (N —9)eeM, (5.24)
Z(t) = Z(),

for some ¢ > 0 where X(t), Y (¢) and Z(t) are given in (5.23).

Let us consider a section Y = —kg. If kg > 0 is small, orbits in W}L’H has many
intersections with Y = —kg unless AC' is small enough. In fact, using the linear
approximation (5.24) we get

Y = —(w? 4 9)aw cos (wt) + (A2 — 9)AéeM <
< (W4 9aw 4+ (N2 —9)aéeM <0,

if a is small enough and é* not too small. Therefore, if a is small enough all
the orbits in W}LH cut transversally the section Y = —ky. For the moment being
we shall take the origin of time at Y = —ky. Moreover, the intersection of W;H
with Y = —kg is a torus close to the product of two curves close to ellipses which
live on the planes (X, X ) and (Z, Z ), approximately centered at (3_% +2)G, 20%¢6)
and (0,0), respectively. The semiaxes are proportional to (ACH )% and (ACH )%
respectively. The following lemma says that this structure is preserved for W}LH N
{Y = —k} with k& > 0 large if we take ACH > 0 small enough. The proof is
postposed to section 5.5.

Lemma 5.4.1. Let be k € RT. If ACH > 0 is small enough, then W}LH N{Y =
—l;} is roughly a torus obtained as the product of two closed curves close to ellipses
in the planes (X, X), (Z,Z) centered at (Xp,(k), X1,(k)) and (0,0) and semiazes

1

proportional to (ACE)% and (ACH)2, respectively. Here, Xp,(k) and Xp,(k)
denote the coordinates X, X for WE;H N{Y = —k}.

The same is true for the SRTBP due to the fact that it is an arbitrarily small
perturbation of the Spatial Hill’s problem if p is small enough. We study the
geometry of W' N {y = —l;:,ué}. The relations between the Jacobi constant for
the SRTBP and the spatial Hill’s problem is the following

C = 3+usCH 4+ 0(p).
Moreover,

Cp=3+usCl +0(p),  Cy=p3CH +0().
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From lemma 5.4.1, if k& € RT, then Wt n{y = —l;:,u%} can be written approxi-
mately as Fy X Eo, where E7, Es are ellipses living in the planes (z, %), (z, ), with
semiaxes proportional to M%ACIfI and M%AQ{{ and centered at (xr,(k),Zr,(k))
and (0,0), respectively. Here, x1,(k), 21, (k) denote the coordinates x, 4 for W "

Now we study the geometry of W;H from section {Y = —k} to {Y = —k}
being k>k>0.

If —Y is large enough, equations (5.19) are well approximated by the linear
equations

X -2y = 3X,

Y4+2X = 0, (5.25)
Z = —Z
The solution of this system is
2
X(t) = §N + M cos (t — to),

Y(t) = B— Nt—2Msin(t—ty),
Z(t) = Acos(t—tp)+ Dsin(t— to).

We note that the constants M, N, B,ty, A and D can be computed through

M?=X%24+X? N=302X+Y),

: : Yy
B=Y +302X+Y)t—2X, ty=t—arctan <_ﬁ>7

A4 D2=724 22

Now we want to estimate the effect of the neglected terms. We take the above

constants as functions of ¢. Then, we have that

(M2?) = 2X[-2Yr 3 — Xr? 43X (XX +YY + Z2)r ™7,

N = —3Yr~3,

B=(2X —3Yt)r 3,

fo = [-2r3(2Y? +2X? + 3XY + 3XY) + 6r °(2YY + 3XY 42X X)(X X +
YY 4+ Z22Z)+r %(2XY — 3Y? — 2XY)|[AM? 4 4r3XY + 0V 2L,

(A2) + (D2) = =22 Zr~3,

where 2 = X2 + Y2 + Z2.
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_3
2

Therefore, the contribution of the terms containing the factor (X 22LY2 +22)
to the coefficients M, N, ty, B and AQ:i—D2 when Y goes from —k to —l;:, 0<k< k,

n

k large, is O(k=2), O(k™1), O (ln <%>) and O(k~3), respectively.

If we choose a value of k such that WE;H has a maximum of X when this

manifold intersects Y = —k, we have that WEQH is expressed by
2
X(t) = §N°° + M cost,
Y(t) = —k— Nuoot —2M sint, (5.26)
Z(t) = 0,

where N, My, stands for the values of N, M for this solution. These constants
have been computed numerically, No, = 5.1604325... and M., = 2.1320587...
(see [L.M.S.]).

It is easy to identify (5.26) with a Kepler orbit in synodical coordinates. Let
w = 1 be the angular velocity of the rotating axes and consider a Kepler orbit

x B —a(cos E — e)

y B —av1—e2sinE |’
M =nt=FE—esinE, n =1+, n?a® = 1 with ~, e small. Skipping all terms
O2z(e,~) we obtain

2
a=1-— gfy, E =M +esinM, cosE =cos M — esin® M,
sin ' = sin M + esin M cos M.
We shall assume ¢ large but bounded. Then, in rotating coordinates

_ cost sint —cosM +esin? M +e B
- —sint cost —sin M — esin M cos M a

2
-y + §7+ecost

=N

<

—t — 2esint

-1
With respect to the point < 0 ) we have

~ 2
z—1 - gy—l—ecost
y —~t — 2esint



5.4. Proof of Theorem 5.3.1 155

2
Hence Moo,u,% can be identified as e and Noo,u,% asy (ora=1-— gNooM% —i—o(u%)).

Let us consider rectangular coordinates 1, 51, &9, ég in the hyperplane Y = —k,
with k < k < k and k sufficiently large, where &;,&;, i = 1,2 defined by

s =X-— XLz(k)’ Sl =X - XLz(k)a §2= 2, 5.2 = Za (5'27)

and X1, (k), X1,(k), denotes the X, X coordinates respectively, of WELQH N{Yy =
—k}. We want to study the variation of this invariant object close to a torus
defined by W%H N{Y = —k} when we change the value of k > 0 large enough.

Lemma 5.4.2. The Poincaré map for the approximated Hill’s problem (5.25)
which sends (fl,él,fg,ég) on the plane Y = —k to (f’f,f’f,fg,fﬁ) on the plane

Y = —k is given by
T *
o= [ 0,
0 Tv,t*

where
4MooNoo + (AM2Z + N2 ) cost* +3M2t*sint*  (2My + Noo) sin t*
T .= (Noo + 2M oo cos t*) (Noo + 2M ) (Noo + 2M cos t*)
Pt = —NZ sint* + 3M2 t* cos t* (2Ms + Noo) cost*
(Noo + 2M oo cos t*) (Noo + 2M ) (Noo + 2M cos t*)

cost* sint*
Tv,t* = o g% * )
—sint™ cost
being t* the time required for W&H by going from'Y = —ktoY = —F.

The proof of this Lemma is given in section 5.5

Using the lemma above, if we write T = El X Eg, where E’l, EQ are closed
curves close to ellipses that live in the planes (X, X) and (Z, Z), respectively,
when k increases El rotates and one of the axes increases and Ez only rotates.
The standard symplectic form is preserved by Ty and the area enclosed by F; and
F, is approximately preserved under T.

Now we study the behavior of W%"H for the SRTBP. To this end, we take k > 0
large and p small such that —/f,u% is small enough. Then, on y = —k;,u%, Wit
is roughly a torus in (z, &, z, 2) variables, obtained as the product of two closed
curves near ellipses. One of these curves lives in the plane (z,#), it is centered
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approximately at (xr,(k),Zr,(k)), where xr,(k), Zr,(k) denote the values of z, &
of Wit n{y = —k:u%}, and with semiaxes proportional to u%(AC]{{)% ~ (AC’p)%.
The other curve lies in the plane (z, %), it is centered approximately at (0,0) and
its semiaxes are proportional to u%(ACf)% A (ACU)%. The major axes of the
ellipse in (x, 2) rotates and increases when k does, while the ellipse close to (z, Z)
only rotates.

5.4.2 Analytic expression of the unstable manifold

In this section we shall obtain an analytic expression of the first cut of W*" with
y = 0,z > 0 when p is small enough. To this end, taking into account the geometry
of W;* on the sections y = —k,u% for different values of k, we will take suitable
initial conditions with y ~ 0 and, then we shall compute the first cut v of W;"
with y = 0,z > 0. To this end we shall approximate the SRTBP by the SS2BP.
Next lemma give us the initial conditions on W,* N {y = 0}. Its proof is given in
section 5.5.

Lemma 5.4.3. It is not restrictive to assume that the axes of the ellipse living in
the plane (x, %) are parallel to these axes. Then, we can take as initial condition

2 1
x = —14+p+ <§Noo + My cos7'> ,u% + k1ACy cos oy,
1
T = —MysinT- ,u% + ko ACY sinoy,
y = 0,
Yy = —(Nso + 2My cos T),U,% — (Noo + 2Myo cos 7)1 [(2Noo +

N

3Moo cosT)ky cos 01 + Mook sin 7 sin 01]AC,
1
( ‘ > = Q()K ( con a2 )Acg,
z sin o9

where y 1is obtained by the Jacobi relation, Q(1) = ( COST ST ), K =

iS]

)

—sinT cosT

) C_OS’Y —Asiny , ki = 1,2 and ~,p and A (assumed to be A # 1) are

siny  Acosy
finite quantities related to the axis of the ellipses in (x,%) and (z,2) in the torus,
01,09 are the parameters for a point in the ellipse in (x,%), (z,2), respectively,
and 7 is related to the time for which WEQH reaches again y = 0,z < 0 when we

start at y = —k:,u%.
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The assumption A # 1 means that the ellipse in z, £ is not a perfect circle.
Numerically it has been checked that this is the case.

Let us consider the constants «, (3, 1 introduced in (5.14) and (5.15).
If we expand in power series in pj the initial condition given in Lemma 5.4.3
2

up to order ,u,f we obtain

2 1 2
rg = -1+ <§Noo + My COST) pyy + [% <§Noo + My cos7'> +
~ 2
ki cos | i + O,
1 - 2
g = —MysinTu} + [—%MOO sinT + ko1 Sinal] py + O(ug),
v = O, (5.28)
1
9o = —(Noo+2MycosT)pp — {%(Noo + 2My, cosT)+

+ (Noo + 2M cos 7)_1[(2NOO + 3M o, cos T)ky cos o1+
2
MockosinTsinoy]} p 61 +

( =0 ) = QK ( o8 ) i+ O(u),
20 Sin oy

where 81 = Bcos, B2 = Bsine, 8= /3.

We note that if = 8 = 0 then we have an initial condition for a homoclinic
orbit to Lo. We also note that if Bg = 0 then we are on the unstable manifold of
a planar periodic orbit and if Bl = 0 then we obtain an initial condition for the
unstable manifold of a vertical periodic orbit.

Now, our purpose is to compute the first cut with y = 0,2 > 0 of the solution
with initial condition (5.28). To this end, we compute the image under the Spatial
Synodic two body problem (SSTBP) with initial condition (5.28). The solution of
this problem is an ellipse in syderal system. We shall take into account the relations
between the parameters of an orbit for the SSTBP. We shall use the mean anomaly
M of an elliptic orbit in order to obtain these expression. It is known (see [L.M.S.])
that the first cut of WL“;”“ with y = 0,z > 0 is given for M,, = 0 or M,, = m where
M,, denotes the mean anomaly for this intersection. The following lemma give
us the first cut of this solution with y = 0,z > 0 assuming that M,, = 0. An
analogous result is obtained assuming that M,, = w. The proof is given in 5.5.

Lemma 5.4.4. The first cut of a solution with the initial conditions given in
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(5.28) with y =0,z > 0 is

b

—(2M oo 4 Noo cos My)(c3sinoy—
c2

1
o(Myf) —xy = Moo(l—cost)uf;’—F{

2
C4COSO‘1) — % <§Noo —I—MOOCOSMf> +Mo20$in2Mf+

2
ci(cos My — 1)} it + O(p),

1 M. N,
©(My) = Moosianulg’—|—sian{Toooa—ﬁlc—;o(c;f,sinal—04cosal)+

2
QMOQO CcOs Mf —C1 + NOOMOO} ,u,i -+ O(/Lk),
- 2
( “(My) ) = BQM)K ( oo ) uit -+ O(w),

sin o9

cos My sin My

where Q(My) = ( ), Ty 18 the value of x for the first cut

—sin My cos My

of WELQ“ with y = 0,2 > 0, ¢1 = NooMyo + cosT[Noo(ag — 1) + M2, cos? 7],
2

c3 = kosinT, ¢4 = kicosT, a1 = =Ny + My cosT, ag = Ny + 2My, cosT.

Moreover, My satisfies the following equation

1 1 3
pp S — | 5N + 3éMOO(C4 cosoy — c3sinoy) T + Noo M+
3 (%) Noo
2
2Moosin My} + O(p)) = 0. (5.29)

The proof of this lemma is given in section 5.5.

5.4.3 The stable manifold via the symmetries of the
problem

We consider an invariant torus 7" in the centre manifold of L. We want to study
the conditions in order to obtain homoclinic or heteroclinic orbits to invariant tori.
The following lemma give us a relation between the invariant manifolds of two tori.

Lemma 5.4.5. Let us denote by W;’” the unstable manifold of an invariant torus
T on the centre manifold of Ly. Then, S(W* 1) is the stable manifold of T

Proof
We have that W* = {¢ solution of 5.1 such that ¢(¢t) — T when ¢ — —oo},

where @ (t) = (¢1(t), pa(t), pa(t), @1(t), P2(t), @3(t))". Then,

S(p,t) = S(T,t) when t — —o0 < @(t) — S(T, —t) when t — +o0,
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where Qb(t) = (()51(_t)7 _¢2(_t)7 @3(—25), _le(_t)a Sb2(_t)v ‘;b3(_t))' Therefore pE
Wit Here, W denotes the stable manifold of the torus on the same energy
level that W,

Analogously one proves that if ¢ € W then S(p,t) € Wp*. O

Lemma 5.4.6. Let us consider @ € Wy such that N{y =0,z = 0,2 = 0} # 0.
Then there exists an homoclinic orbit to T'.

Proof
This lemma is easily proved by computing the fixed points of the symmetry S
and using lemma 5.4.5. O

In order to obtain an analytic expression of the stable manifold we only need
to take into account the symmetry S. Then, the first cut of the stable manifold of
2

a torus T', W7*, up to terms of order ug is given by the following expression

= .%'(Mf)—xw,
i*(My) = —i(My),

COS 09

( z%ﬁ ) = BQJQ(Mf)K< b )uk O, (5.30)

vvherer(1 0 )
0 -1

5.4.4 Some homoclinic and heteroclinic orbits

In this section we study the intersections of the unstable manifold of one torus and
the stable manifold of another torus in order to obtain heteroclinic orbits. The
tori should live in the same level of energy. The parameter ¢ describes one of the
tori and 1)’ the other one. These parameters belong to a Cantor set of relative
large measure if 3 is small enough.

We fix p and AC. This is equivalent to fix o and 3. We take 1,9’ € (0, g)
Let us denote by T} and Ty the tori characterized by v and 1)/, respectively.

Let us denote by

f(a’ﬂ; 0-150-27Mf7¢) = (flanaf37f4)T7

and by

g(aaﬂ; OJla Uéu M}u W) - (91792793794)T7
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the expression of the first cut of the invariant manifolds qufl“ and W;zu , respec-
tively, with y = 0,z > 0, being

fi = fila,By01, My, 9), i=1,2,
fi = fi(aaﬁ;UZaMfa¢)a i:3,47
g'l = gl(a7/8; 0’17M}/c7¢/)7 7:: 1727
9 = g@(a,ﬁ, 0-/27M}7w/)a = 374

Then, fl = .le(Mf), f2 = $(Mf), f3 = Z(Mf)7 f4 = Z(Mf) where Z'(Mf), .Q?(Mf),
z(My), 2(My) are defined in Lemma 5.4.4. Moreover, as we have seen in the last
section, g1 = x(M}), g2 = —&(M}), g3 = 2(M}) and g4 = —2(M}).

We recall that My is the solution of the equation (5.29). Rearranging terms in
this expression it can be written as

p(My) = %(c;;sinal—qcosal), (5.31)
2
where
(M) = e {55 = [NoMy + 2Mogsin My } + O 5 (5.32)

In order to obtain heteroclinic orbits we need to solve the system of equations

filon, ¥, My) = gi(oy, ', M),
falon, 9, My) = ga(oy, ¢, My),
fa(oa, 0, My) = g3(o9, ¢, M}),
fa(os, b, My) = ga(og,4', M}), (5.33)

under the restriction given by (5.31).

Using the relation (5.31) we have that fi, f2, g1, g2 can be written independent
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of 01,07 and 1,7, In fact, we can write

1
filMy) = Muo(1—cos Mg)u; 4+ {(2Moo + Noo cos My)p(My)—

9 2
O (),

1 M
fo(My) = Maop sian—i-sian{Tooa—Noop(Mf)+2M§ocost+

2
Noo Moo — Cl}ﬂiz + O (),
1
gl(MJ/c> = My (1 —cos M}),u,g’ + {(2Mx + N cos M})p(M})—

o (2 . 2
3 <3NOO + Moo cosM}) + M2 sin? M} + ci(cos My — 1)} py +
O (),
1 M
92(M}) = —Meopj} sin Mj — sin M {Tooa — Noop(M7}) + 2M?Z cos M+

2
Nooc Moo — Cl}ﬂiz + O(ur),

where f;(My), gj(M]’c) denotes fj, gj, j = 1,2, respectively.
We look for the relation between My and M } in order to satisfy the first two
2

equations in (5.33) up to order ,u,f. A computation shows that

filMy) = g1(Mf) = Moo(cos My — cos M) + {2Muo (p(M;) — p(Mf))+
Noo(p(My) cos My — p(M4) cos M ;) + Noo(p(My) cos My—

M
p(M}) cos M) + a 3OO(COS My — cos M§)+

Tl

MZ (sin®*(My) — sinZ(M})) + c1(cos My — cos M3) } i +
O(iuk)a
) . L . ) Moo
fo(My) = ga(M}) = Meo(sin My +sin M) + | (sin My + sin M) ( 3 +

NooMoo — ¢1) = Noo(p(My) sin My + p(M7}) sin M)+
2M2, (sin My cos My + sin M} cos M7)] ,ué + O(ug).
We take
My = a0+ al,u]% + O(Mé),
My = by+ b +0(),

where ag, by, a1, b; are real constants that we need to determine. In order that the

2
two first equations in (5.33) are satisfied up to terms of order y} it is necessary
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that the following conditions hold

1 2
My = ao + a1y, + O(,u;;),

1 2
M} = 2km —ag + bip; +O(kp),
2NZ | ,
Moo (ay + b1) cosag + sin ap[Neo(ag — km) + 2M s sinag] = 0, (5.34)

3Myom
4N M,
Myo(ag + by)sinag — ———[Nyo(ag — k) + 2M, sin ag)]—
SMoom
2N [Now (a0 — k) + 2Ma sinag] = 0 (5.35)
cosa ag — km inag| = 0. .
Moo Sa0[{Voo |0 oo S 0

Next lemma give us the solutions of the equations (5.34) and (5.35). Its proof is
given in section 5.5.

Lemma 5.4.7. The system formed for the equations (5.84) and (5.35) only has
ag =mm, m € Z, by = —ay as solution.
Then,

1
My = km+aip +O(ug),

1
M} = km—aipi +O0(ug),

Fwho Fwio

where k € 7

Once we know the expression of My up to terms of order ,ué, we want to know
for which values of a and [ equation (5.31) has solution o7y.

We denote by w = cosoy. Then, sino; = §v/1 — w? where 5 = 1. Therefore,
(5.31) can be written as

Bressy1l— w2 = asp(My) + Breqw.

If we consider the equation obtained from the above by raising up to square in
both sides of the equality, the equation transforms in

biw? +byw +b3 = 0, (5.36)

where b = ﬁ%(c% +c3), by = 261a2p(Mf)C4, by = 04%1)(Mjc)2 — B%c% We assume
that by # 0. Due to the fact that c% + 0421 = 0 if and only if k&1 = ko = 0, and that
in this case we are on an initial condition for the invariant manifold of a vertical
periodic orbit, it is only necessary to suppose that B # 0. We are interested in
the solutions of (5.36) such that w € [—1,1]. This is accomplished if and only if

b3 < 4b? and b3 — 4bybs.
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It is easy to see that b% — 4b1b3 > 0 if and only if
a3p(My)? < B33+ c3). (5.37)

Under this condition, the inequality by < 4b% holds.
Using lemma 5.4.7, if uy, is sufficiently small we have that the condition (5.37)
transforms in

IC2
cos?1p > ?(d — k)%, (5.38)
agN2 «
where = ———2 _and ¢ = ——.
3M cg + ci 3Nso

4
From Theorem 5.2.1 we get fip41 — p = 3Nooptit (140(1)). We recall that for a
fixed p we consider the value p which is at minimum distance from p. Therefore
we can assume |&| < 3 Then if 9 satisfies the condition (5.38), the equation

(5.31) has two solutions.
The same analysis can be done by changing My, o1 and 31 by M}, o} and ().
Now, for the values of M; and M } given in Lemma (5.4.7) we look for the
relations between o9, 0%, 1,1’ in order to obtain intersections of the vertical com-

2
ponents of the invariant manifolds up to terms of order ;.
A simple check shows that last two equations in (5.33) can be written as

~ [ cos ~ ar —Aay cos o}
ﬁg(.”) :ﬁ§< a >< ?), (5.39)
Sin og A —ai Sin o

where a; = cos (27), ag = sin (2). We note that if 3, = 0 then 35 = 0. In fact,
we are on the invariant manifolds of some planar periodic orbits. We assume that

B4 # 0 and we define 7 := %
2

_ [ cosoa a; —Aa cos o
| . = ap N
sin o9 -5 Ta sin o)

A solution of the equation above must satisfy

. Therefore, (5.39) is written as

~2 / s 112 a2 / Ik
74 = Jajcosoy — Aagsinoy]” + [_Z COS 0y — aj smag} =
2 2
o Gy (1 2 ag (1 2 /
a1+3<ﬁ+A>+?<ﬁ—A>COS(20'2)+

a1as (% - A) sin (20%). (5.40)
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We want to write the last equation as
i+ cw = ¢35vV1— w2,

2
1
where w = cos (20%), sin (204) = §V1 —w?, § = +1, ¢ = &2—a1—% (— + Az),

2 \ A2
6——a—% i—A2 C3 = 5a1a l—A Then, we need to solve
2= 5 | 22 » €3 = sa1a2 { ~ . )
Ciw?+Cow+C3 = 0, (5.41)

where Cq = &3 + E%, Cy = 2¢169, C3 = 6% — E%. We assume that Cy # 0. Note that
C1 = 0 if and only if a1 = 0 or as = 0. We are interested in the solutions of the
above equation that satisfies w € [—1,1]. A simple computation shows that this
fact occurs if and only if

B4E-a>0.
We have that
B4+ -2 = —F14+23%d-1,
a3

where d = l—i—m(l — A%)2. We note that d > 1. Therefore, 3% € [d—+/d? — 1,d+

Vd? —1]. We define Kk =d — Vd? — 1.

If 2 € (d—vd? — 1,d++/d? — 1) then we obtain two solutions of the equation
(5.41). If 4% is in the boundary of this interval then we only have one solution.

Using the transversality of the solution obtained considering only the dominant
terms in the equations, the Implicit Function Theorem assures the preservation of
that solution if uy is sufficiently small.

This ends the proof of Theorem 5.3.1.

5.5 Proof of Lemmas

Proof of Lemma 5.4.1

We introduce coordinates Py = X, Py =Y, P; = Z in the equations of the
Spatial Hill’'s Problem. Then, (5.19) can be written as the following system of
differential equations of order one

X = Py,
Y = Py,
Z = Py,
Px = 2Py + Qi
Py = —2Px+ Qi

P, = Q4 (5.42)
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where Qg , Q{,I, Qg denotes the partial derivatives respect to X,Y and Z, respec-
tively, of the function Q¥ (XY, Z) = %[3){2 — 224 2AX2+ Y2+ 2% 1),

Let us denote by ¢(t, Wy) the solution of (5.42) such that ¢(tg, Wo) = W.
Let us consider W{j an initial condition for WELQH Then, WEQH is given by
p(t, W§). We denote (t, W) by (X*,Y* Z* P%, Py, Py)T. We take Wy =
W§ + AW an initial condition for a solution on W}‘H We assume that Wq, W
are on Y = —kg with ky > 0 small, and we take t5 = 0. Then,

Xo=X5+AXo, Yo=Y5 =—ko, Zo=Z2;+ A,
Pxo=Pyo+APxo, Pyo=Pyo+APyo, Pzo=P;,+ APz,

with
AXo, APy = O(ACH)?),  AZy, APz = O((ACH)?),

where W§ = (X3, Yy, 25, Px o, P, P5)" and Wo = (Xo, Yo, Zo, Px 0, Pz0, Pz0)"-

We fix k& € RT. Let us define t*(k) the time for which ¢(t, W) cuts ¥ = —k.

Let us denote by t(k) the time used for ¢(t, Wy) to attain Y = —k. Then,
t(k) = t*(k) + At with At small.
Therefore, we have that

p(t(k), Wo) = @(t"(k), W) + Atgp(t* (k), W5) +
Op ~
t*"(k), W) AW 4
8W0( (k), W5) AW + O2, (5.43)
where Oy denotes terms of order two in At and AWj.
As ¢(t, W{) stands for WEQH, we know that Z* = P} = 0. Then, ¢(t*(k), W§))
is uncoupled in variables (X, XY, Y) and (Z, 2).

L (t*(k), Wg). We know that it is the solution of
oW,

Now we compute
W = AW,
Wi(to) = I, (5.44)

where A = DyG(t,p(t*(k), W})) being G = (Px, Py, Pz,2Py + Qi —2Px +
QI OIT the vector field defined by (5.42). Then,

2y Qyy Qyy 2
%z Wy Uy O

0 0 0 1 00
0 0 0 0 10
0 0 0 0 01

DyG =
2 f . o o o0 2 0
00
00
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A simple computation shows that
Qxz(X*Y*, Z%) = Qyz(X* Y™, Z%) = Quz(X*,Y*, Z%) = 0.
P L .
%(t*(k),wg) uncouples the variables (X, X,Y,Y) and (Z, Z).
0
If we approximate the coordinates X,Y, Px, Py of o(t*(k), W{) by its linear

Then,

part we have that

X*(#* (k) = 373 + 2 ®)
Y*(t5(k) = (A2 —9)c e ®)
PR(t(R) = 2\ %M@,
Pr(t*(k)) = AA2=9)creM®)
. 690 * (7. *
for some ¢; > 0. Then the linear part of W (t*(k), Wy) has the form
0
* % 0 % x 0
* x 0 x x 0
00 = 0 0 =
* x 0 *x x 0 ’
* x 0 * *x 0
0 0 « 0 0 =

where * denotes some expressions that depend on t*(k). We recall that t*(k) is
the time for which WELQH cuts Y = —k.

As from (5.43) we have that

. ~ . A .

P(t(k), Wo) — o(t*(k), Wp) — Atp(t"(k), W) = W, (t"(k), W) AW + Os,

this finishes the proof of the Lemma. O

Proof of Lemma 5.4.2

In order to compute the Poincaré map we will find the images T3+P; where
P,eT,i=1,...,4, being T = W;H N{Y = —k} and Py is such that & > 0,
51 =0, & =0, ég = 0, Ps is such that & =0, 51 >0, & =0, ég = 0, P3 is such
that & =0, & =0, & > 0, & = 0 and Py is such that & = 0, & =0, & = 0,
€5 > 0. We remark that from the geometry of T’ we have that &, & = O((ACI{{)%)
and &, = O((ACH)?).

As k > 0 is large enough, the solutions can be approximated by the linear
system (5.25). By taking ¢ = 0 the time for which a solution is on Y = —k, the
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general solution of this system can be written as

X(t) = %N—i—Mcos(t—to),
Y(t) = B—Nt—2Msin(t—t), (5.45)
Z(t) = Acos(t—tg)+ Dsin(t —to),

and their derivatives with respect to t.
We begin with P;. We denote by ¢, = (X1, Y7, Z, X1, Y1, Z1) its coordinates
in the space (X,Y, Z, XY, Z) Then, we have that

X1:XL2(O)+AX, YY) = -k, Z1 =0,
X;=0, Y=Y (00+AY, Z =0. (5.46)

First we compute the expression of AY in terms of AX. To this end we shall
use the Jacobi integral (5.21). We note that this integral can be approximate for
Y = —k, with k large enough, by

cl ~ —(X?2+Y?+2%)+3Xx2- 2%

From (5.22) we can uncouple this integral in two as

cll ~ 3X?-X?-Y? (5.47)
cl ~ 722272 (5.48)

Using (5.47) we obtain that
Y2 ~ ACH -35 - X% 13X2, (5.49)
where AC;I = Cﬁ — C’f. Then, using (5.46), on P; we have that

V1,(0)% + 27, (0)AY + (AY)? &~ ACH — 35 4 3[X1,(0)% + 2X1,(0)AX +
(AX)?).

On WE2H the value of the Jacobi constant is the same as on the equilibrium point.
Moreover, AX,AX = O((ACI’;{)%). Then, we obtain that

3X1,(0)AX

AY .
YL2 (0)

+0(ACH. (5.50)

Therefore, (5.46) can be written as

X1 = XLQ(O) + AX’ Y1 =k, Z1 =0,

. . . 3X7.(0 .
X,=0, Y1=VY(0)+ 3X0) Ny 4 oct), zy=o.

YL2 (0)
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Now we determine the constants tg, B, M, N, A, D in (5.45) for this point. It is
clear that A =D = 0. We take M = My + AM and N = Noo + AN. As X1 =0
we can take g = 0. Then, from the equation for Y, we have that B = —k. We
compute AM and AN. The equations for X and Y give us the following system
of linear algebraic equations for AM and AN.

%AN +AM = AX,
AN +2AM = —AY.

Solving the system above and using (5.50) we obtain

N,
AM = ——=2—AX
Noo +2Mo
3My
AN = ——>_—AX. 5.51
Neo +2M (5:51)

We denote by P7 the end point, that is, P] is the intersection of WEQH with

the hyperplane Y = —k in coordinates 51,5'1,52,5.2. We shall denote by ¢7 the
coordinates of P7 in the variables (X, Y Z, XY, Z) We can write p] = ¢r,+Ap1,
where ¢ is the final point for WEQH From (5.26) we have that the coordinates
of ¢, are given by

2 =
X7, = gNoo + My cost*, Y[, =—k, Zj, =0,
XZQ = —Mxosint”, YL*2 = —No — 2M cost?, Zz2 =0.

From the definition of ¢* and using (5.26) we have that

—k — Noot* — 2M o sint* = —k. (5.52)
As
E=Y(t* + At) = —k — Nt* + NAt — 2M (sin(t* + At cost*)) + O((AD)?),
from (5.52) we have that

_ t*AN +2AM sint* -
At = o s T 0BG, (5.53)

A simple computation shows that

X =X1(t"+ At) = X1, + AX™,
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2
where AX* = SAN + AM cost” — Moo Atsint” + O((At)?). Using (5.51) and
(5.53) we obtain that

AX[4NsMoo + (4M2 + N2)) cost* + 3M2 t* sin t*]

AX* =
(Noo + 2M o) (Noo + 2M cos t*)

Similar computations can be done in order to obtain X 1. We obtain that
Xr = X, +AX,

where

. AX
AX = —N2 sint* 4+ 3M2 t* cost*).
(Voo & 2Mo) (N £ 9 con ) ¢ oo ST 4 3Moc 7 cos )

The computation of Z7 and Zf is easiest due to the fact that A = D = 0. We
obtain that Zf = Z; = 0. With all this, we have obtained the first column in T}x.

Analogously, by computing the images of Py, P3 and P4 on W;’H N{Y = —k}
one can obtain the complete first order terms of the Poincaré map Ty~. O

Proof of Lemma 5.4.3

We begin by taking an initial condition on W*N{y = —ku%} with k£ > 0 large
enough. From the geometry of W, N {y = —k/ﬁ} we can take initial conditions
of the form

To=p, + Az, ,yo=—kps z20= 21, + Az
To =2, + Af, Yo =, + Ay, o = ir, + AZ, (5.54)

being (X 1y, YLys ZLys TLys YLy 2L,) the coordinates of W}j;“ and
Az, Ay, Ai = O((AC,)2), Az Az =O0((AC,)?).
In terms of the Hill’s coordinates (5.18) we have that
Xo=Xp, +AX, Y=—k Z=2Z,+AZ

where X7, = ;f%(acLQ +1—p), Z, = M_%ZLQ, AX = ,u_%Ax and AZ = ,u_%.
Moreover, AX = O((AC]{{)%) and AZ = O((AC},LI)%) As k is large enough, we
can approximate C}' and Cf by (5.47) and (5.48), respectively. Then, Yy, &
3X%2 - X2 4 ACH — Cpir where Cpp = 3X37, - X%Q — YLQQ. AsY =Yg, +AY, we
obtain that

. 1 ) )
AY =~ Y—(3XL2AX - X1,AX) +o(Aac].
Lo
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From the expression of VVLH2 given in (5.26) we have that

1
_Noo 4+ 2M, cost

AY =~ [(2Noo + 3My cost)AX + My sin tAX],

and so,

1
_NOO—|—2Moocost[

Q

Ay (2N + 3M oo cost)Ax + Mo, sintAz].

A simple computation shows that

2
T, = —1l4+p+ (gNoo"_MooCOSt) Méu
T, = —,u%Moo sint,
U, = —(Neo+ 2Mo cost),u%,
2L, = Zr,=0.

Then, the initial condition (5.54) can be written as

xrg = —1l4+p+ (%NOO—FMoocost) ,u%—i-Ax,
i = —Mysintus + A,
- —kus,
= —(Nao + 2Moo cos )3 — (Noo + 2Moo cost) " [(2Noo +
3Mo cost)Ax + My, sintAd],
z = Az,
z = Az

We assume that W, needs a time 7 in order to attain y = 0,2 < 0 when we
start at y = —k and go back, and that for this value of 7 the ellipse near (x, %) has
the axes parallel to z and &, respectively. In fact, y is not exactly zero because we
select 7 with the smallest y such that the ellipse in (z, ) is in suitable position.

As the ellipse near (x, ) is centered approximately at (xr,,Zr,) and has semi-
axes proportional to (ACp)%, we can write

Ax = kl(ACp)
Ai = ky(AC)

cos o1,

(SIS

sinoq,

where ki, ko are suitable constants and o1 is a parameter on the ellipse. For the
ellipse near the (z, 2) plane we can write

Az = p(cosycosoy — Asinysinog)(ACy)

N= =

Az = p(cosysinoy + Asinycosor)(ACy)?2,
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being ,, p, A suitable constants and o2 a parameter on the ellipse.

We shall denote by (§~1, €1, &2, &) a point with minimum ly| and the ellipse near
(x,4) in suitable position, and (1, él, &9, §2) its image on Y = —k. We recall that
the coordinates §; are defined in (5.27) and they are expressed in Hill’s coordinates.
From Lemma 5.4.2 we have that

52 _ ol S\ cosT sinT AZ
& el G )\ —sinT cosT AZ )

Then, we can take as initial condition the one given in the statement of the Lemma.
O

Proof of Lemma 5.4.4
Let us consider (x,y, z) synodic coordinates for the spatial two body problem.
In these variables, the equations of motion are given by

1
i-2 = x(l——g),
"

1
.. z
Z P R
3’

where 72 = 22 + 3% + 2.

We want to perform a change of variables in order to reduce the system above
to the planar Kepler problem. To this end, we begin performing the change of
variables (x,y,2) — (q1, ¢2,q3) given by

qn cost —sint 0 T
Q2 = sint cost 0 y |- (5.56)
qs3 0 0 1 z

Then, system (5.55) is written in sideral coordinates by

i o= -k i=1,2,3
T

with 72 = ¢ + ¢3 + qg. Then, we obtain the Spatial Kepler’s problem with p =1,

. q
a = -3 q=(q1,92,93), r=|al (5.57)

This problem has w = q A q as first integral, and if w # 0 then the movement
takes place in the ortogonal plane to w. That is, if w = (w1, we,ws3) with w # 0,
then, given an initial condition qo = (¢?,43,¢3%), a0 = (¢¥,d3,43), the movement
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takes place in the plane wyq1 + waqe + w3q3 = 0, where w = qp A qp.
To reduce (5.57) to the Planar Kepler’s problem, we introduce new variables r =
(ri,72,73) defined by

w3 _wiwz w1
w ww w
q = Ar, A= 0 2 2, (5.58)
w1 Waws W3
w ww w

where w = ||w||, © = \/w? 4+ w3. We note that A is an orthogonal matrix. Then,
equations (5.57) are reduced to the equations of the Planar Kepler’s problem

. r .
P= -3 with r = (ry,r2), r=|r]. (5.59)

We note that the motion takes place in the plane rs3 = 0 and then, we do not
consider this coordinate.

We take initial conditions (5.28). We can write these as

1 « 2
rg = —l+oap; + (§a1 + a3) i+ O(pk),
. . 1 « 2
g = —MoosinTu] + (*gMoo +a4) i+ O(pk),
v = 0, (5.60)
. 1 o 3ajas + MooaysinT 2
Yo = —Ozzulj - <§a2 + 175 > ),Uz]i +O(Mk),
a2
2

zo = Zopp +O(uk),

.2
o = Zopy +O(ug),

where a1 = %Noo + My, cosT, g = Noo + 2My,cosT, 3 = klﬁl COSO1, Qg =
kQ,Bl sin o9, Zg = Bg(k‘g cos o9+ ky Sindg), ZL() = BQ(]% cos o9+ kg Sindg), ke = Aks =
Apcosy, kg = —Aks = —Apsin-y.

We want to obtain the first cut of the solution of SSTBP with initial conditions
(5.60) with y = 0,2 > 0. Let us denote by t; the time in which this fact occurs.
Let us assume that we know the expressions of 1 and ro. Then, we also know r
and 7. Let us see how to obtain the expressions of x(ty),2(ts),Z(ts), 2(ty) from
these terms.

First, we recall that

r? = 2?42 (5.61)

2

where 72 = r? + r2 and 71, 9 is the solution of the Planar Kepler problem. Then,

T2(tf) = xQ(tf)+z2(tf). (562)
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Moreover, from the changes of coordinates (5.56) and (5.58), we can write

2. (5.63)

From these two relations we obtain x(ty) and z(ty).
Now we want to see how to obtain @(t;) and Z(ty). From (5.61) we have that

T+ yy + 22 =717
If we evaluate on t; we obtain
w(ty)a(ty) + 2(ty)2(ty) = rity)r(ty). (5.64)

x(ty), z(ty),r(ty) and 7(t¢) are known. Moreover, from (5.56) and (5.58) we have
that

Then, we can compute 2(t¢) and after &(ts) from (5.64).
Now we will explain how to compute r1, ro and so, » and 7. Let us consider
(r1,72) an elliptic solution of (5.59). It is well-known that

( " ) = Q(5) ( 1 ) , (5.65)
T9 T9

cosd —sind

where 71 = a(cos E — e), 73 = a1 —e2sin B, Q(§) = , and a

sind  cosd
is the major axis of the ellipse, e the eccentricity, E the eccentric anomaly and ¢
denotes the argument of the pericenter.

These orbital parameters satisfy the following relations (see [S.S.])

— — - rUO’
a To
ecosby = rov% -1,
. .1
esinEy = rgroa” 2, (5.66)

Vo+6 = Arg 1o,

where Ey, Vj denotes the initial eccentric and true anomalies, rg = ||ro||, vo = ||To||
and rory =< rg, g >.

Now we want to express these orbital parameters in synodic coordinates. To
this end, we only need to take into account that wy = yoZo — z0(xo + 90), wp =
20(¢0 — yo) — ToZ0, w3 = xo(To + Yo) — Yo(Zo — yo). We note that wy,ws = O(,ug),
w3, w,w = 0.
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Then,

o S — 2z
0 — wiw2 @ waws :
— Wi ot G0 — S5 %0

Using this expression for ro we can compute all the orbital parameters in terms of
the initial condition for a solution in synodic coordinates.

A straight forward computation shows that

1 e% 2
ro = 1—aip; — (§a1 + ag) w4+ O(pr),
1 N, 2
vg = 1+4+2(a2 —ar)p + |:TOO(3a2 —4aq) + ?a(ag —aq)+

2M00044 sinT — az(az — 3a1)

2
T Mzo] uh + O,
a9

1 2
roro = MsosinTup + [—a4 + MysinT (% — 041)} pp 4+ O(u),

2Ns 1 4 N, 2
a = 1—"2pd + | =N2 - 208 + —2(3az — 4aq) + —(ag — 2a1)+
3 9 3 3
2M, 2
a;O (ag8inT — azcosT) + Mfo} pi 4+ O(ur),

1 Moo N .
e = Mypg + {T(a — Noo) + — (a3 cos T — ag sinT)+
Qg
2
cos T[Noo(a1 — ag) — M2 cos® 7]} i + O(py),

4
Arg(ro) = 7+ O(u}).

Now, in order to compute Ejy it is only necessary to take into account that from
.1
roToa” 2
(5.66) we have that tan Ey = %. Then, we obtain
T(]UO —

1
Ey = 7+2km+—r {sinT [NOO(OQ —aq) — Mgo sin? 7—
M

2M ooy sin T + Nooarg
%)

1 2
] — (14 COS 7'} pp + O ).

We want to know the expression of Vj and §. In order to obtain the expression of
Vb, we need the relation between the eccentric anomaly E and the true anomaly
V. We have that

2
Vo= E+esinE+%sinEcosE+O(63). (5.67)
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Using (5.67) we obtain that

1
T+ 2km + —— {sinT [Noo(ag —aq) + Mfo cos?
My

T—

Vo =

2M. i N, 1 2
0o SINT 00013] —a4cosr}u,§ +O(p}),
g

and then, from the equality Vo + § = Arg(rg) given in (5.66) we have that
Loy 2 2
m—1—2kr — —— {sinT [Noo(az — a1) + M2, cos® 7—

5 =
- 1

2M, i N, 1 2
=]y cos b if + 00

a2

We are interested in to express the solution in terms of the mean anomaly M. To
this end, it will be useful the relation between the eccentric anomaly E and M,

that it is given by
(5.68)

E = M+ esin M + e?sin M cos M + O(e?).

Now we compute r; and r2. From the relation (5.65) first we need to compute 71

and 7. We have that
1 1
71 =cosM +O(p;) and 7o =sinM 4+ O(u}).

Then,
1 1
rp=cos(M+m—7)+O0(p;) and ro=sin(M+7—7)+O0(u}).

From (5.63) we have that
. 2
z = [Zgcos (M —7)+ Zosin (M — 1) + O(ug).
We denote by My the mean anomaly at physic time t;. From (5.62) we have that
x(Myg) =r(Mys)+O(ug). Therefore, in order to obtain x(My) we need to compute
r = a(l —ecos E). We have that

2 1
1-— (—Noo + Mo cosM> 1 + {(2Mo + Noo cos M) (assin T — az cos 7)o

1
> + M2 sin® M + (cos M cos T — 2) <§N§o+

1

2

T =
2
@ <—NOO + My, cos M

3\ 3
1 2
NooMso cos T+ M2, cos® ) + §N§o + Noo Moo cos M + Mgo} pp + O(pur).
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For W** is known (see [L.M.S.]) that the mean anomaly of the first cut of this
manifold with y = 0,2 > 0 is M,, = 0 or 7. If x,, denotes the value of x for W}jz“ k
with M,, = 0 we have that

2 1 1
Ty = 1-— <§NOO + MOO> py + {gNZO coST + Noo My cos’ T + Mgo cos® 7—
1 2
gNozo — 2Ny My cos T — 2M2 cos® 7 4+ Noo Moo + Mgo} pi 4+ O ().

Then, we obtain the value of z(My) and z(Mjy) in the lemma.
Now we will obtain @(My) and 2(My). We have that

1 1

3 az . 3 a2
f1=——sinFE and 79=-—+/1—ce2coskE.
r

,
. 1 . 1
Then, 71 = —sin M + O(p;) and 7o = cos M + O(p). A simple computation
shows that
. 2
z = [~Zosin(M — 1)+ Zgcos (M — 1) + O(pg)-

Then, using that & = (a%esinE — z2)x !

, we obtain the value of &(Mjy) given in
the lemma.

Last step is to obtain the equation for M;. We take My = My + n(Vy + 0)
where n is obtained from the relation n?a® = 1. After some computations, one
obtains the equation given in the statement of the Lemma.

a

Proof of Lemma 5.4.7
We assume that cosag = 0. Then ag = g + nm with n € N and equation (5.34)

transforms in
N
Tw(l +2n—2k)+£2M, = 0,

AM o

and then 1+ 2n — 2k = :FN—, where we recall that Ny, = 5.1604325... and
oo Tl
My, = 2.1320587. .. and then | < 1. Therefore, it is no possible this value
ooT

of ag.
Now we assume that sinag = 0. So, ap = nm with n € N. Equation (5.35) can
be written as

2
Qs?fvww(n—k) <2+&) = 0.
Y
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Then, k& = n. Moreover, equation (5.34) transforms in My (a3 + b1) = 0 and
therefore by = —a;.

Now we consider the general case in which cosag,sinag # 0. If we multiply
(5.34) by sinap and (5.35) by cosap and we substract the resultant equations,
rearranging terms yields

2sN, N,
5o [ % 4 9cos ag | [Noo(ag — k) 4+ 2Mo sin ag).
3T M

N,
We note that the equation M—oo + 2 cos ag = 0 gives no solution due to the fact that

(o]
N,
M—OO > 2. From the other hand, Ny (ap — km) + 2M o, sin ag has a unique solution,

oo
located at ag = kw. But this give a contradiction because we have assumed that
sinag # 0. This ends the proof of the lemma. O
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Chapter 6

Invariant tori in the centre

manifold of collinear points in
the Planar TBP

In this chapter we study the orbits in a neighbourhood of the collinear points of
the Planar Three Body Problem with Newtonian potential for all positive values of
the masses. Given admissible masses m1, mo, ms, the collinear equilibrium points
are centre—centre—saddle points. As in chapter 1 we shall consider the collinear
equilibrium with the body of mass mo in the middle. Denote by +A, i, +iw the
eigenvalues of the linear part. So, in a neighbourhood of the equilibrium point the
quadratic part of the Hamiltonian can be written as

1
Ha(&,m) = Mam + 5(63 +13) + (&5 +713).

The equilibrium point has an one—dimensional unstable manifold, an one—dimensio-
nal stable one and a four—dimensional centre manifold. Two families of periodic
orbits which are born at the equilibrium point live on the centre manifold: the
Lyapunov family with a period approaching n when the periodic orbits tend to
the point, and the homographic family of peri(gdic orbits with a period tending to
27. However, for the quadratic part Ha(&,n), these periodic orbits are surrounded
by two—dimensional invariant tori. The preservation of these invariant tori for the
complete Hamiltonian is guaranteed by KAM theorem under some nondegeneracy
conditions.

The purpose of this chapter is to study the applicability of KAM theorem in
a neighbourhood of the collinear points for any values of the masses. To this end
we do the following steps. First, we perform some canonical transformations to
write the Hamiltonian in Normal Form. Then we reduce the Hamiltonian to the

179
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centre manifold. After that, we check, by numerical evaluation of the coefficients
of the Normal Form, the nondegeneracy conditions of KAM theorem. The results
presented in section 6.4 show that both conditions (either isoenergetic or not) are
satisfied for any values of the masses in the triangle of masses.

However, we remark that for some values of the masses the eigenvalues at
the collinear points are £\, +¢, 27 and a resonance 2 : 1 takes place. In fact,
1 <w < V82 —3 ~ 2.88335022... So, up to order 4, we only need to take into
account the resonance 2 : 1. The corresponding resonant masses describe a curve
in the triangle of masses. Therefore, for resonant masses it is expected to get
resonant monomials of order three in the Normal Form of the Hamiltonian. We
prove in section 6.3 that this is not the case. In fact, we prove that the coefficients
of these monomials are different from zero for general masses but they become zero
for resonant masses, and also in the symmetrical case m; = mg. The existence
of the homographic solutions allows us to compute analytically, in an easy way,
the coefficients of the resonant monomials of order three. These coefficients have
(w—2) as a factor.

6.1 Reduction of the order

We consider the equations of the Planar Three Body Problem with Newtonian
potential (PTBPN). We know that the equations of this problem can be written
as a Hamiltonian system with six degrees of freedom with Hamiltonian function

H(q,p) = %pTM‘lp—U(q), (6.1)

where q = (QhQ%QS)Ta P= (p17p27p3)T7 q;, Pi S I&27
M = diag(mi, m1, ma, ma, m3, ms3)

and

Ulq) = Z _maimy

We recall that we have assumed that mq + mo + m3 = 1.

We are interested in the solutions near the collinear equilibrium points.

In section 1.3 we have seen that the homographic solutions are equilibrium
points of the system once a suitable rotating and pulsating coordinate system is
introduced. Moreover, using the integrals of the centre of masses we have reduced
the Hamiltonian to one with four degrees of freedom. As we are interested in the
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equilibrium points we have that the equations of motion (1.16) can be written as

. 1 1 .

u = —vi+— (vi+ve)+ouw, =12,
m; ms
oU

vi = + Jovy, 1=1,2,
0ui

. 01 . . L
where, as we did before, Jy = 1 0 and the Hamiltonian function is

where
1 21
T - 2 o2
) = gglvivel’+ gl
U( ) m1Mmsy mims moms
u =
o —uaf| - fufl  Ju
and

2
Qu,v) = ZuiTngi,
i=1

is the angular momentum.

Now we want to perform a change of coordinates in order to reduce by two
the order of the system. To this end, we shall use the integral of the angular
momentum. We consider the canonical transformation (u,v) — (&,m) defined
by

u = glwa

uy = L §2 y
&3

m = V{Wa

Vo = L 2 s
3

m = _Qa

where L = ( cos&e sinéy ) w = < €08 &4 ) and € = (€1,62,63,&)T, n =

—singy coséy —sinéy
(1,12, m3,m4)T (see [S.M.]).
Figure 6.1 shows geometrically the changes of coordinates performed to (6.1).
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/ N
ma
U2 /

u;

—&

Figure 6.1: The change of variables of the centre of masses and the angular momentum

The new Hamiltonian can be written as

H(&mn) = T n)—U&) +m, (6.2)
where
T m) = L( +12)° + +£2 +— (&n7 + A%) +
n) = 2ms m -+ 12 13 3 2m1§% 1

1 2 2
2m2(n2+773),

U(&) _ m1m2+m1m3+m2m3, (6.3)
T12 13 T23

A= —ny+ &3m2 — Eams,
ro=[(&1— &)+ &3], ris=|4l, res=(G+ §§)%,

and the equations of motion are

. 1
§&1 = aim+ —n
ms3
. 1
& = —mtoonp+E2
ms3
. 1
§ = aap+—F—A—-857
m3é1
& = 1-Z
. mims mims A
mo= - S—&)- g+ 2
o ( ) €113 &1
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mimsa mams3

N = (61— &) — —5—&+mZ
12 723
. mima2 mamsg
n = - < 3 + 3 ) 53 - 772Z
12 T23

m = 0

1
where Z = — <a1A+ %), a1 = m, g = w We note that the

1 mims maoms

Hamiltonian (6.2) does not depend on &4. So, this is an ignorable variable and
fixing the value of 74, that is, the angular momentum, we can restrict ourselves to
consider a Hamiltonian system with three degrees of freedom

éi = Hm‘v
= —H,. (6.4)

From now on we will take & = (£1,&2,&3)7 and n = (1,12, 13)7 .
Hamiltonian (6.2) admits some symmetries.

Lemma 6.1.1. Let H(§,n) the Hamiltonian defined in (6.2). Then

(i) For any value of the masses H(S1(&,m)) = H(&,m) where

S = diag(1,1,—1,—-1,—1,1).

(ii) For values of the masses such that mi = ms, H(S2(&,n)) = H(&,m) holds,

where
511 0
S p—
2 (o 522>’

and 522 = diag(l,l,—l).

[an}

with  S11 = —1

O = =
[en}
_= o O

6.2 Expansion of the Hamiltonian in power
series in a neighbourhood of L,

In this section we shall expand the Hamiltonian of the PTBPN in a neighbourhood
of Ly. Moreover, some properties of the eigenvalues and eigenvectors of the linear
part of system (6.4) on the equilibrium point are proved. The eigenvalues can
not be obtained, in general, explicitly due to the fact that the equilibrium points
depend on the solution of an equation of degree five. However, we shall prove the
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necessary properties for our purposes. These properties will be useful in section
6.3 in order to obtain the Normal Form of the Hamiltonian up to order 4.

We consider the point Lo, that is, we take the collinear equilibrium point with
the masses ordered from left to right as ms,ma,mi. We recall that the other
collinear points are obtained from Ly by changing the values of the masses. In
section 1.4 we have seen that for Lo, u1 = a(p + 1), ug = a, being u; = (u1,0)
and ug = (ug,0) the coordinates of these point, where p is the solution of Euler’s
quintic equation

p°(ma +m3) + p*(2ma + 3ma) + p*(ma + 3m3) — p*(3m1 + ma) —
—p(3my + 2mg) — (my1 +mg) =0, (6.5)
3 M my . . B
and a® = —? + m + mg + m3. An easy computation shows that if (¢7, nP) =
(&, eb, {g, b, ng) denotes the coordinates of the point Lo in variables (&, n) then

G =alp+1), &=a  &=0,
m =0, =0, 15 =maa(ms—mip).

We also get
nh = —a® [mims(p+1)? + ma(mip® +m3)] . (6.6)

We note that if m; = ms then p = 1. In this case, the equilibrium point is

(&7, mP) = (2a,a,0,0,0,0) where a3 = %(47712 + mq) and the angular momentum
is given by 1 = —2ma®.

From now on we fix the angular momentum equal to 7}, that is, the angular
momentum at the equilibrium point, and we shall consider different values of the
energy.

In order to expand the Hamiltonian in a neighbourhood of Lo we translate the

equilibrium point to the origin introducing new variables as

1
— (g _gp
x = -
y = n—-n"
1
This change of variables defines a canonical transformation with multiplier —.
ap
Then, the new Hamiltonian is
1

The following step consists in to expand the Hamiltonian (6.7) in power series in
the variables x,y in a neighbourhood of the origin. Then, it is only necessary to
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expand the Hamiltonian (6.2) in variables x,y around the origin and to multiply

1
the result by the factor —.
a

Using (6.3) we have that

1
§Oz2(77§)+

(ys +m5) Az, y) - \" "
* msa(p + 1) ngo p+1x1 +2a2p—|—1 Z +1 o
mimso T2 — X1 mims
U = P,
0= 2 < e >+ a(p+1) & <p+1 )

n>0
moms " —pTa
E ey P,
- a 2 n( €2 )

n>0

1
~aoys + agnbys +

1 2 L
84
22y2 9

1 1
T(xy)= 50412/% + m—3y1y2 +

where ¢? = (z1 — 22)? + 23, & = p*(23 + 23), Ax,y) = —nf — an — a(ys +

pnixe) + ap(xsys — x2y3) and P, is the nth Legendre polynomial. We recall that
the Legendre polynomials P, (z) are defined by

1 dr
2nn! dgn

Py(z) =1, P,(x)= [(w2 1", n>1

These polynomials satisfy P,(—x) = (—1)"P,(x) and the recurrence

Py(z) = 1, Pi(z) ==,
2n+1 n
Poii(z) = I xP,(x) — ] —1(z), n>1.
1
Moreover, the generating function of the Legendre polynomials is ———,
V1 —2tx + t2

that is,

\/1—2tx+t2 ZP

Therefore, we can write the Hamiltonian (6.7) as

H(X7Y) = H0+ZH/€(Xay)7
k=2

where Hj(x,y) is an homogeneous polynomial of degree k. In appendix E we give
explicitly Ho, Ha, Hs and Hy. Once the energy h is fixed we can consider H
added to the energy. Then, we have the Hamiltonian

= Hi(x,y). (6.8)
k=2
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Now we diagonalize the linear part of the system associated to this Hamiltonian.

In order to write the quadratic part of the Hamiltonian in a canonical form we
perform the following transformation

) e

where D is a 6 X 6 matrix defined by column vectors as

M

<

D = (k‘oZl,k‘lel,k}zeg,]{QZ4,k‘1f1,k}2f2). (610)

In D, z denotes the eigenvector of DF(0,0) where F is the vector field defined by
‘H according to the following convention: z; and z4 are eigenvectors corresponding
to the real eigenvalues A and —\, respectively, and zo, = e] 4 if] and z3 = eg + ify
with e;, f; € R®, j = 1,2, are eigenvectors for i and iw, respectively. In (6.10),

1 ) 1 ) 1

2 _
1= 7= :
O 2T Jozy' el Jsf,’ el Jsfy

Due to the Hamiltonian character of the matrix DF (0,0), if z, and z;, are eigenvec-
tors corresponding to eigenvalues A, and Ay such that A, + Ay # 0, then zaTJGZb =0
(see [M.H.]). From this orthogonality property we have that the transformation
(6.9) is canonical.

If we denote by H(x,y) the Hamiltonian in the new variables, the quadratic
part is

- - L~ 1 . - . ~
Ho(%,9) = AT+ 5 (35 + §3) + 5w(75 + 73). (6.11)

In order to simplify the computations needed to get the Normal Form it is conve-
nient to introduce new complex variables Q, P by

1 ki
Q1 = kof1, &5 =-— (Qj—l—i—] lsz),
Fi1 2 6.12
! ! bicip 2,3 o1
P = —q U: = 1—— PR . | =
1 koyl Yj lkj—l <Q] 1 2 ])a J PR

where Q = (Q1,Q2,Q3), P = (P1, P2, P3). This transformation is canonical and
the Hamiltonian in Q, P is written as

H(Q.P) = AQiPi+iQ:P +1wQsPs + ) Hi(Q.P).  (6.13)
k>3

We note that one can define a canonical transformation from (x,y) to (Q,P).
Anyhow we shall use the intermediate Hamiltonian H(X,y) in order to get some
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properties of the homographic solutions that will be useful to compute the Normal
Form.

Now we study qualitatively a neighbourhood of Ls. We consider the Hamilto-
nian H(X,y) = ) p>o Hi(X,¥y) with Ha(X,y) given in (6.11). The solutions of the
linear system of equations given by Hs(X,¥y) can be written as

n(t) = e, 21(8) = E2(t) + ifa(t) = e, (6.14)
gl(t) = g]?e*At’ zQ(t) = jg(t) + igg(t) — defiwt’

where 29,79 are real constants and 2{, 29 complex ones. In (6.14) we distinguish

two families of periodic orbits F; and F», with periods 27 and 2—7T, respectively.
These orbits can be parametrized by the energy h. Moreover, the;‘()e exist a family
of 2-dimensional invariant tori.

Now we consider the full Hamiltonian H(%,y). We fix a value of the energy
h > 0. Then, the intersection of the centre manifold of the equilibrium point with
the corresponding energy level is homeomorphic to a three-dimensional sphere S
(see appendix D). The preservation of the family of periodic orbits F» associated
to the eigenvalue iw is obtained by using the Lyapunov theorem ([S.M.]). We know
that w > 1 for all masses. Therefore 1/w is not an integer and we get a family of
periodic solutions of H(Q,P) with limit period 27 /w. We shall denote again by
Fo the family of periodic orbits of the full Hamiltonian H(Q,P). However, from
section 4.2 we have 1 < w < 3, then if w # 2, the Lyapunov theorem gives the
existence of a second family, F7, of periodic solutions with limit period 27. In spite
that Lyapunov theorem does not apply in the case w = 2, these periodic solutions
exist for arbitrary masses because it is the family of homographic solutions. The
preservation of the 2—-dimensional invariant tori will be studied in section 6.4.

The rest of the section is devoted to study some properties of the eigenvalues
and eigenvectors of the transformations described above. These properties will be
used in section 6.3.

The characteristic polynomial of the linearized system of (6.4) at the point Lo
is

p(z) = (2*+ 1)(374 + (1 = Bo)x? — B+(26. + 3)), (6.15)

B is given in (1.53).

We have that the polynomial (6.15) has two real zeroes +\ and two pairs of
imaginary ones, i, t+iw. Therefore, Lo is a centre—centre—saddle point. We note
that the characteristic exponents +\, +iw have been in chapter 4 from system (4.1).
Moreover, in chapter 4 we have seen that w € (1,wys) where wyr = 8v2 -3~
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2.88335022. ... Figure 6.2 shows the level sets of w and A in the triangle of masses.
They look similar because these curves are, in particular, level curves of (..

Figure 6.2: Level sets of w and . In the first figure from left to right the values of w are:

l, j=11,...,5. In the second figure from left to right the values of A are: %, 7="7...,1

4

Now, we are interested in the eigenvectors of DF (0,0) . These vectors will be
easily obtained from DF (&P, nP), where F' denotes the vector field of the system
(6.4). After some computations we get

A Ay
DF(gP . nP) = 6.16
(&) <A3 _A{>, (6.16)
where
1 0
a1 —
0 0 0 11 ms
Al - 0 O 1 5 A2 = - o O 5
ki ko O ms3
b 0 0 ks
ki ks O
As=| ks k¢ O , (6.17)
0 0 kr
with a1 = w, oy = m2 + ms and k;, ¢ = 1,...,7, are constants that depend
mims maoms

on the masses and p. They are given in appendix F. A simple computation shows
that k3 # 0 and so, As is nonsingular for positive masses.

We denote by v = (&1, &, 83,1m1,72,73)"
ated to the eigenvalue p. It is easy to check that & = (&1, &2,&3)T is a non-trivial

an eigenvector of DF (&P, nP) associ-

solution of the system

(WI3+uN - L)§ = 0, (6.18)



6.2. Expansion of the Hamiltonian in power series in a neighbourhood of Lo 189

where N = AgA?AEl — Ay, L = Ay(As + AiFA;Al), and then n = (n1,72,73)7
is obtained by

n o= Ay (A pl)n. (6.19)
In appendix F we give the expressions of
D(p) = p?Is3+uN —L and E(u) = —A;' (A — uls). (6.20)

We can obtain some trivial properties for these eigenvectors. We have that
A DF(€P,nP)ST! = —DF(€P, P) where S is the symmetry given in lemma 6.1.1.
Therefore, if v is an eigenvector of DF (&P, nP) corresponding to an eigenvalue p,
Sjv is an eigenvector for the eigenvalue —u. It is easy to see that if p € C\ R
then we can take an eigenvector corresponding to eigenvalue p such that &1, &2, 13
are real and &3, 71,72 imaginary.

For arbitrary masses we get the following eigenvector for the eigenvalue i

. . T
vo = (1,p2,0,01i,001, —09)",

1
where o1 = mqi(mappa + m3), 02 = ma(ms —myp)p2 and py = pon] (see (1.54)).

The eigenvectors corresponding to eigenvalues A and iw do not have an easy ex-
pression. However, they satisfy a relation that will be used in section 6.3.

Lemma 6.2.1. Let v = (&1,62,&3,m1,m2,m3)7 be an eigenvector of DF (P, nP)
corresponding to one of the eigenvalues A or w. Then

&my [mg + p(l — ml)] + §2m2(m3 — mlp) = 0. (6.21)

Proof

We consider the eigenvector corresponding to the eigenvalue i. We can write
it as vy = e + if; with e; = (1,2,0,0,0, —02)7 and f; = (0,0,0,01,02,0)". We
complete ey, f; to a base of R® taking vectors r € R® skew—orthogonal to e; and

0 I3

f1, that is, elTJgr =0 and flTJ3r = 0, being J3 = ( .0 > From all these
—13

vectors we choose
r1 = (09, —01,0,0,0,0)7, r3 = (0,0,0, —09,1,0)T
ry = (0,0,1,—09,0,0)T, ry = (0,0,0,0,0,1)7

We define the matrix

1 0 o9 0 0 0

P2 0 —0o 1 0 0

M, — 0 0 0 1 0 0
0 o1 0 —og —pg O

0 o9 0 0 1 0

—og 0 0 0 0 1
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It is easy to check that

01 g9 0 0 0 0
0 0 ()] 1 P2 0
e 1 p2 -1 0 0 0 0
v 01 + p209 0 0 o1+ p2o2 0 0 0 ’
0 0 —03 —02 01 0
01092 0% 0 0 0 o014 poog
and then
0 0
01 0 %1 %2
M'DFE )M, = | -1 0 0 |, with L=| “ |
0 0 f/ as 0 0 Qg
0 a7 as 0
where a1, ...,ag are some constants depending on the masses and p. It is clear

that L has eigenvalues £\ and +iw. Moreover, if (I1,l2,13,14)7 is an eigenvector or
L then 1 = (0,0,11,12,13,14)T is an eigenvector of the matrix M, ' DF (&P, nP)M,.
Then, M, is an eigenvector of DF(&P,nP). A simple check shows that these
eigenvectors have the following expression

Ml = (o2li, —0o1ly,le, —03la — pals, I3, l4)T_

Therefore, £, = o9l and £ = —o1l;. After an easy computation (6.21) follows. O
In the symmetric case in which m; = mg the eigenvectors have a simplest

expression due to the fact that the solution of the quintic equation (6.5) is p = 1.
We have that

0 0 0 -1 0 0
N = 0 0 -2 and L= l21 l22 0 5
-1 2 0 0 0 lIs3
where
1 1 mq
lo1 = —@(Smg + 9m1), log = @(127712 -+ 17m1), l33 = —m.

Solving (6.18) for these matrices N and L and computing 1 from (6.19), we obtain
the following lemma.
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Lemma 6.2.2. For positive masses such that mi1 = mg it is satisfied that

vi o= (&m")" with € =(0,1,0y),
N’ = mima(—A+ vy, 200 — v3),2(1 + Avy)), vy = X 2_;22,
vo = (&5, "7 with €7 = (1,%,0),
vy = (€5 9")T with €8 =(0,1,v,i),
nT =amima((v, —w)i,2(w — v,)i,2(1 —wu,)), v, = %,

Now we study the eigenvectors of DF(0,0). We have that
1
~ Ay —A
DF(Oa 0) = ap )

apAs —AT
where A;, Ay and As are the matrices defined in (6.17). It is easy to check that if
v = (&7, n7) is an eigenvector of DF(£P, nP) for an eigenvalue p then (¢7,apn™)
is the corresponding eigenvector of DF(0,0). So, the matrix D in (6.10) can be

written as

vi1 enn e viy 0 0
vig el2 exn vie 0 0

D _ vigz 0 0 —viz 0 fo3
vy 0 0 —viy fia fou
vis 0 0 —vis fis fos

vie e e vie 0 0

We are interested in the monomials that appear in H(X,y). The non existence
of certain monomials will be useful in section 6.3 in order to obtain the Normal
Form of the Hamiltonian.

In H(x,y) the monomials of degree 3 are the following;:

3 .2 2 2 2 2 .3 .2 2
€Ty, T1X2, T1Y3, 1Ty, T1T2Y3, T1x3, T1L3Y2, T1Y3, L9, ToY2, T2X3, T2T3Y2,
2
T2Ys3, T3Y2Y3-

Using the particular form of D and the variables X,y defined in (6.9) the following
lemma follows easily.

Lemma 6.2.3. H3(X,y) does not contain the monomials 7333, Z373, §573 and
T2y2ys3-
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6.3 The Normal Form

In this section we compute the Normal Form of the Hamiltonian reduced to the
centre manifold of Ly. First of all we explain the method used in order to reduce
the Hamiltonian to the centre manifold of the equilibrium point. Then, in section
6.3.2 we give some properties of the Normal Form that will be useful in section 6.4
in order to apply the KAM theorem to the Hamiltonian.

6.3.1 Reduction to the centre manifold

In this section we give a brief description of the method used in order to obtain
the Hamiltonian reduced to the centre manifold of Ls.

In order to simplify we shall denote by z = (Q1, P1),w = (Q2, P, Q3, P3). We
can write the Hamiltonian system associated to (6.13) as

Z = AlZ+f1(Z,W),
w = Aow + fao(z,w), (6.22)

where A; = diag(\, —A), A = diag(i, —i,iw, —iw). From the Centre Manifold
Theorem we know that in a neighbourhood U; x Us of the origin small enough there
exists a function h(w) with 2(0) = 0, Dy h(0) = 0 such that M. = {(h(w),w) |w €
Us} is a centre manifold for the system (6.22). M, is a local invariant manifold.
Moreover, in a neighbourhood of the origin all bounded solution for all ¢ of (6.22)
is completely contained in M.. The reduced equation to the centre manifold is
given by
W = Aow + fa(h(W), w).

It is well known ([Mi.]) that, for Hamiltonian systems, if the centre manifold of an
equilibrium point is C2, then the reduced equation is also Hamiltonian.

In order to obtain the reduced equation on a neighbourhood of a collinear
equilibrium point of the PTBPN we shall use the flattening method of this man-
ifold ([Mi.],[Si.],[J.M.]) that allow us to obtain an approximation of the reduced
Hamiltonian up to a given order.

We note that for the linearized system of (6.22) the centre manifold is trivially
obtained as z = 0. The idea of the flattening method consists in to perform
successives canonical transformations to (6.22) in such a way that to the obtained
Hamiltonian, H(z, w), the centre manifold is determined by z = h(w) = O(jw|")
for a given n. Then, the reduced Hamiltonian is obtained as H(0, w) +O(|w|"*1).

We assume that performing several canonical transformations we can write the
Hamiltonian (6.13) as

H(z,w) =Hn(Q1P1,w) + Ryy1(z, W) (6.23)
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for n > 4, where H, = Y ;_, Hp(Q1P1,w) in such a way that Hy = A\Q1P; +
1Qo Py + iw@3P3 and Hj is an homogeneous polynomial of order k£ in Q1 P, w
R, +1 contains terms of order greater that n. We note that in (6.23), H,, only
depends on the product ()1 P;, but not on @1 nor P;. We remark that for the
Hamiltonian H,,(Q1P;,w) the centre manifold is trivially obtained as Q; = 0,
P =0.

We assume that the centre manifold of the origin for the Hamiltonian system
associated to (6.23) is locally defined by two functions hj(w), ha(w) in such a
way that Q1 = hi(w), PL = hao(w). As hi(w), ha(w) need to define an invariant
manifold we have that

L[ om oy
Z <6Q3 (A\jQj + O2) + ap, —L(=\;P; +02)) =hi(Ww)A+01)+O,. (6.24)
Jj=

where Ay = 7, A3 = iw.

For ho, a similar equation is obtained. We assume that the terms of h; of
minimal order are of order k for some 1 < k < n. We consider a term in hj
of order k of the form Q'P® = Q2Q%P52Ps with Iy + I3 + s2 + s3 = k. On
the left hand of the equality (6.24), this term will give rise to one of the form
(I; — 5;,)A;Q'PS. On the other hand, on the right hand of (6.24) we have AQ!P*
with A € R. Then, h1(w) can not contain terms of order 1 < k < n. The same
occurs for ha(w). Therefore, if H(z,w) can be expressed in the form (6.23) then
hi(w) and hg(w) are of order n. Now, the reduced system is obtained by taking
Ql = 0, P1 =0on (6.23).

The form (6.23) for the initial Hamiltonian is obtained by performing succes-
sives canonical transformations that eliminate the terms of the form Qlll PP' with
l1 # s1 at the different orders. This process can be done to any order due to the
fact that does not have small divisors. As we will see in section 6.3.2 for a term
of the form Q' Q7 Q% Pi' P52 P53 the divisor is A(s1 — 1) 4 i(s2 — I) + iw(s3 — I3)
that is different from zero if I; # s;.

6.3.2 The Normal Form in a neighbourhood of L,

To get the form (6.23) for the Hamiltonian we perform successive canonical trans-
formations which eliminate the terms Qlll PP* with 1} # s to different orders. This
process can be formally done up to any order because it does not have small divi-
sors even if the two central frequencies are resonant. But this does not mean that
the complete process is convergent.

As we are interested in the applicability of KAM theorem we shall write the
reduced Hamiltonian in action—angle variables. The canonical transformations will
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be chosen in order to cancel all the possible terms in the Hamiltonian. In particular
the terms Qlll PPt with [} # s1 will be eliminated. We will see that for our purpose
it is only necessary to simplify the Hamiltonian up to order 4. To this end we shall
use the Giorgilli-Galgani algorithm (see appendix C) up to order 4.

We write the generating function as G = G3+G4 with G3 € Il3, G4 € 114, where
[T stands for the space of homogeneous polynomials in the variables (Q,P) € CS.
We consider the canonical transformation T defined by the time one flow for the
Hamiltonian G (see appendix C). The new Hamiltonian is H=Ho+Hs+Hs+...
where

7:{2 - H27 7:{3 = H3 + L'H2G3>
- 1
Hs = Ha+ Ly,Ga+ Ly, Gs — §LG3LH2G3, (6.25)

where Lg stands for the Poisson bracket. We take G'3 and G4 such that

LH2G3 = N(Fg), where N(F3) = —Hg,
1
LH2G4 = N(F4), where N(F4) = —Hy— LH3G3 + ELG3LH2G3‘
In order to solve the homological equation Ly, Gy = N(F}) for k = 3,4, we write

Gk = ZH1+SH:]€ gLSQIPS and N(Fk) = ZHIJFS”:k anQlPS, where 1 = (ll,lg,lg),
s = (s1, 52,53) and Q'PS = Qlll l;Q?PflPé”P?f?’. Then

Li,Ge = Y. A-(s—1)gsQ'P*,
1-+s]|=F

where A - (s — 1) := A(s1 — l1) +i(s2 — l2) +iw(sz —I3). If X- (s — 1) # 0 we define

nis

Jgis = m

If there exist 1,s € Z3, 1,s # 0 satisfying A- (s —1) = 0, then the Normal Form will
contain a resonant monomial Q'P®. Next lemma give us these monomials.

Lemma 6.3.1. (a) For arbitrary values of the masses,

(Q1P1)° (Q2P2)%(Q3P3)%

with s1+so+s3 = 2k, k > 2, are resonant monomial of order 2k. Moreover,
if k =2, these are the unique resonant monomials of order 4.

(b) Q3 PF and Q5P2*, k € N, are resonant monomials of order 3k associated

“ . 1
to the resonant frequency vector (X, 14,2i), A = 3 13 + V97. Moreover, if

k =1, these are the unique resonant monomaials of order 3.
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Proof

First we consider the resonant monomials of order 3 or 4.

We take Qlll lfQ?PflP;QP;g, l;,si € NU{0}, i = 1,2, 3, aresonant monomial
or order 3 or 4 associated to the frequency vector (A, 4, iw) for some w € (1,wyy).
We have that |1 +s| = 3 or |l + s| = 4, respectively, and (1,s) is solution of the
equation

A(s1 — 1) +i(sg —la) +iw(ss — I3) = 0. (6.26)

Then, s1 =11 180 —la+ w(Sg - 13) = 0.
If so — o # 0, and then s3 — l3 # 0, we have that

lo —s9
w =

=weQn(L,3).
Sg*lg

In this case, if |s3 — [3| > 1 then |1 4 s| > 4. As we are not interested in this case,
if s9 — I3 # 0, we only need to take into account the case in which |s3 — 3| = 1(=
w=2).

(a) We assume that |1+ s| = 4. We distinguish two cases.

(i) If so = Iy then s3 = I3 and (s,s) is solution of the equation (6.26).
Therefore, for all w € (1,wpr), (Q1P1)™ (Q2P2)* (Q3P5)*, with s1 +
So + 83 = 2, is a resonant monomial of order 4 associated to the fre-
quency vector (\,i,iw). In fact, if s1 + s2 + s3 = k, with k € N, then
one obtains a resonant monomial of order 2k.

(ii) If s9 # I, we have seen that w = 2 and [s3—I3] = 1. Then, |so—I3]| = 2.
From this, s3 and I3 have different parity. We note that s; and [y, so
and l2, have the same parity. So, in this case |l + s| is odd, that give
us a contradiction with the fact that |1+ s| = 4.

(b) We assume that |1+ s| = 3. We distinguish two cases.

(i) If s9 = lg, then s3 = I3 and |l + s]| is even, giving a contradiction with
the fact that [l +s| = 3.

(ii) If s # Iy then w = 2 and |s3 — I3] = 1.
First we consider the case in which s3 —I3 = 1. In this case, s —s9 = 2
and, as |l +s| = 3, we have that I; = 0,ly = 2,l3 = 0,51 = 0,52 =
0,s3 = 1. Then, Q%Pg is a resonant monomial of order 3 associated to
the frequency vector (X, i, 2i).
Now, if s3 — I3 = —1 then sy — lo = 2 and, as |1 4+ s| = 3, we obtain
lh =0,lp =0,l3 =1,s1 = 0,59 = 2,s3 = 0, which corresponds to the
resonant monomial of order 3 Q3P%.
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We note that Q3¢ P¥ and Q5P#* with k € N are resonant monomials
of order 3k associated to the frequency vector (A, 1, 2i).

a

Corollary 6.3.2. The minimum Z-modulus that contains the resonant terms as-
sociated to Ha(Q,P) = AQ1P1 + Q2 Po+ wQ3 P3 up to order 4 is the one generated
by (s1, s2, 83, 51, S2,S3) € Z8 with s1+so+ 53 = 1 in the case w % 2. If w =2 there
are also (0,2,0,0,0,1) and (0,0,1,0,2,0) as generators.

The masses m1, ma, mg for which the frequency vector is (5\, i,2i) determine a
curve in the triangle of masses. The following lemma gives this curve in an implicit
form.

Lemma 6.3.3. The resonant curve is defined implicitly by

mi1 — ms m1+m3

f(vi,19) ,  where 1 5 , s 5 )

(6.27)

where f is a polynomial in vy, vy of degree 9, even in vy and such that f(v1,0) = 0.
Moreover, f can be written as f(vi,v2) = 3 ; pes(ajk + VOTb; )ik, J C 72,
where the coefficients ajy,bj are given in Table 6.1.

Figure 6.3 shows the resonant curve in the triangle of masses.

m1:1 m2:1

Figure 6.3: Grafic de la corba ressonant sobre el triangle de masses.

Proof



6.3. The Normal Form 197

’ | | ajvk bj’k 32(1]"]C 32bj7k bjk\/ﬁ |
146.00000 50.00000 4672 1600 0.638442890090E+3
1384.87500 142.87500 44316 4572 0.279203055843E+4
-463.50000 | —679.50000 —14832 | 21744 | —0.715579887632E+-4

-8871.87500 | —765.87500 | 283900 | 24508 | —0.164148689690E-+5
—2843.62500 | 3618.37500 —90996 | 115788 | 0.327932358486E+5
7124.34375 711.84375 227979 22779 | 0.141351916208E+5
4145.56250 734.56250 132658 23506 | 0.113801641090E+5
13019.59375 | —8780.90625 416627 | —280989 | —0.734623032772E+5
—32015.50000 | —3559.50000 | —1024496 | —113904 | —0.670725093455E+5
67611.00000 | 2763.00000 | 2163552 88416 | 0.948233941064E+5
—28851.50000 | 9972.50000 | -923248 | 319120 | 0.693662344284E+5
2973.50000 317.50000 95152 10160 | 0.610051235207E+4
45344.50000 | 4496.50000 | 1451024 | 143888 | 0.896298891058E+5
—143849.50000 | —8489.50000 | —4603184 | 271664 | —0.227461378308E+-6
45755.50000 | —3860.50000 | 1464176 | —123536 | 0.773398445617E+4
—6916.00000 | —532.00000 | —221312 | 17024 | —0.121555923506E+5
—21140.00000 28.00000 | -676480 896 | —0.208642319815E+5
96628.00000 | 8260.00000 | 3092096 | 264320 | 0.177979565443E+-6
—-32732.00000 | —588.00000 | —1047424 | 18816 | —0.385231283875E+5
—70.00000 —14.00000 —2240 —448 | —0.207884009225E+3
1400.00000 280.00000 44800 8960 | 0.415768018450E+4
—-6020.00000 | —1204.00000 | -192640 | -38528 | —0.178780247934E+5
—-9800.00000 | —1960.00000 | -313600 | -62720 | —-0.291037612915E+5
—3430.00000 | —686.00000 | —109760 | —21952 | —0.101863164520E+5

O N OO0 O N RO ON RO ONEREONERONONO|S.
© J Ut W = 00 Dk N JUTWkF O NDULWRF BN W NS

Table 6.1: Coefficients of the resonant curve
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Using (1.53) we can write (. in terms of v; and vy as

(1 +12)(3p° +3p + 1) + (2 — v1) (p* + 3p* + 3p%)

e 2v9p% + (1 —2uv2)(p* +2p° + 2p2 +2p + 1)

. (6.28)

where p is the solution of the Euler’s quintic equation. We impose 2i to be a zero of

14497

the characteristic polynomial. Then, 5. = 5 We fix this value of .. Then,
(6.28) can be written as P;(p,v1,v2) = 0 where P is a polynomial in p, v, vs.

On the other hand, we can write Euler’s quintic equation in terms of vy and
5. We obtain

Py(p,v1,10) = p°(1—vy — )+ p*(1 — v —3u1) 4+ p*(1 — 3v1 + 1)
—p2(1 +3v1+1) —p(2+3v1 —r) — (1 —va +11) =0.

The function f(v,1) is the resultant of these polynomials. f has been computed
using a specific algebraic manipulator built for this purpose. We note that the
coefficients a; 1, b; 1 given in the table are rational numbers. The properties of f
are obtained from the table. O

Remark 6.3.4. From the expression of the resonant curve given in (6.27) it can be
seen that this curve is symmetrical with respect to the line m; = mgs. In fact, this
is a consequence of the symmetry of the function [.(m1,ms) given in (1.53) (see
chapter 1).

If mi =0 then v = -1y = —% and from Lemma 6.3.3

fl=vavm) = Y (ajr+ VOTb ).

(j,k)eJ

Analogously, if m3 =0, v =1, = % and

Flr,m) = Y (ak + VOTb )i e,

(4,k)ed

Solving the equation f(vq,v1) =0 with v, = % we get two solutions m; = 1
and mj = 0.9995998... (zeroes of a polynomial of degree 6 with coefficients in
Q[v/97]). These points correspond to intersections of the resonant curve with the
side mg = 0 of the triangle of masses. In fact, the arc of the resonant curve between
my = 1 and m] is outside the triangle of masses and it will not be considered.

From the symmetry of the resonant curve with respect to the line m; = ms,
this curve intersects the side m; = 0 at m3 = 0.9995998 ... and for ms = 1.

We are only interested in the arc of the resonant curve located inside the
triangle of masses. We have that this arc does not cross the vertex of the triangle.
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Assume we take non resonant masses, that is, w # 2. Then all the terms of
degree 3 in H3(Q,P) can be eliminated by the transformation 7. The Normal
Form for the Hamiltonian is the following

HX,Y) = A1V 4iXoVs +iwX3Ys + > ajyjnis(XY) +
j17j27j3 € NuU {0}
JitJjet+i3=2
> He(X,Y). (6.29)
k>5
For resonant masses, that is, if w = 2, one could expect that the Hamiltonian
H(Q, P) contains resonant monomials of order 3, Q3P; and Q3PZ, which give rise
to the corresponding terms of order 3 in the transformed Hamiltonian H(X,Y).
We will prove that this is not the case.
First we denote the resonant monomials of order 3 in H(Q,P) by Hr(Q,P) =
cQ3P; + gQ3P3 for some complex constants ¢ and g. Using (6.12) we see that
Hr(Q,P) is obtained from the following terms of H3(X,¥)

1733 + aaTiG3 + azPaT3 + aaP3Ts + b172GaT3 + bafalals.

The coefficients are related through

k2 .
c = —C, C=as—a4—b1+1ilag —asz+ bs),
202 2 —ay — by +i(a 3 +b2)
k2 .
g = E@ G=—ai+a3—by+i(—az+as+ b1).
2

We recall that l::l and 12:2 are constants defined in section 6.2. Note that G = —iC.
Moreover, from lemma 6.2.3 we have aa = a3 = a4 = by = 0 and then C = i(aj+b2).

Proposition 6.3.5. If mi,ms,m3 are resonant masses, then the Hamiltonian
H(Q,P) does not contain resonant monomials of order 3.

Proof

To prove that C = 0 we will obtain some expressions for the coefficients a; and
bs. To compute these expressions directly is a hard work. But using the existence
of the homographic solutions we can get a1 and by in a rather simple way.

First we consider arbitrary values of the masses mi,mo and mg such that
mi1 + ma + mg = 1. We denote by v(t) = (Q(¢), P(¢)) an homographic solution
with eccentricity e. We recall that, identifying R? with the complex plane, the
homographic solutions can be written as q(t) = r(t)e’/*) where z(t) is a solution
of the Kepler problem

R p— (6.30)
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1 1

(see appendix A). Let Ex = §\z|2 T the energy of the Kepler problem (6.30).
z

It turns out that on the homographic solutions, we get for the total angular

momentum ||c|| = wn] where n} is given in (6.6). As we consider fix angular

momentum equal to 7} we have w = 1 and so we characterize the homographic
1
solutions by their eccentricity e. Then E = 5(@02 — 1) and the period is P =

2m(1—e?)=3/2. Tt is not difficult to write the homographic solutions in the variables
X,y defined in section 6.2. We obtain

Bi(t) = k(A B), J1(t) = Fo(A + B).
. kg (f) — ooy B ;
.’Ijg(t) - agp(pj_ 1)( (t> 1)7 y2<t) - an(pj_ 1) (t)a (631)
aalt) = T {PAOEEE 10y - 1) — frimgatins - map)r0 0 - 1)}
Ja(t) = kaar(t) {earmi(ms + p(1 — m1)) + esama(ms — map)},
where
A= b +p1) e (r(t) — 1) + vigmaa(mg — myp)(r(t) f(t) — 1),
B = [vnmla(mg + p(l — ml)) + Ulgmga(mg — m1p>]'f‘<t).

In (6.31) Z| = (’UH, V12, V13, V14, V15, ’U16)T and Z3 = €9 + ifQ with

es = (ea1,€22,0,0,0,e96)T, f5 = (0,0, fa3, fou, fo5,0)7

are the eigenvectors of DF (0,0), introduced in section 6.2, corresponding to eigen-
values A and iw respectively. We recall that a, p, l?:o, k1 and k2 have been introduced
in section 6.2. In (6.31) f means the derivative of the true anomaly, f, with respect
t.

We write

)= amter, )= by, j=1,2,3.

n>1 n>1

In order to finish the prove of the lemma we need the following result.

Lemma 6.3.6. For any masses m1, ma, ms, if (Z1(t), Z2(t), Z3(t), 91(t), g2(t), ys(t))
is a collinear homographic solution then 1 (t) = 1(t), §2(t) = Z2(t) and §3(t) = 0.
Moreover, if my = mg, then Z1(t) =0, 71(t) =0 and Z3(t) = 0.

Now we prove the proposition 6.3.5.
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From lemma 6.3.6 we know that Z;(t) = 71 (¢) and so Z1(t) = §1(t). As () is
a solution of the differential equations associated to the Hamiltonian H(x,y), we
get
oM oM
t)) = —Agi(t) — t
S (t) = ~Xa(t) ~ 5 (0)

AT (t) +
where H stands for the terms of H(x,y) of order greater than 2. Therefore

OH OH
~ 0 (v(t) = 97, (v(1))-

ON\F1 (t) =

The right hand part of the equality above contain terms of order greater than or
equal to 2 in e. Then Z1(t) = O(e?) and §1(t) = O(e?). From (6.31) we get

Fa(t) %ecosf +0(e?),
ap(p+1)
i kol
) = —— -1
72 (t) lp+ 1)esmf,
Z3(t) = ko[- fasmaa(ms — myp)e? cos® f]+ O(e?),

By derivating #3(t) and using f = (1 + ecos f)?
i3(t) = ka[2fasmaa(ms — myp)e® cos fsin f] + O(e?).

Now consider the differential equations for 3 and 3. Using that Z3(t) = 0 we get

b= SO0, (6.32)
0 = —wkslt) ~ (o (1)). (6.33)
T3

By inspection of H one can see that in the right hand part of the equations (6.32)
and (6.33) the only terms of order 2 in e come from the monomials 73,73 and
Zay2. In fact, in (6.32) there is only the contribution due to the term byZ272, and

0
in (6.33), only a173 contributes to terms of order e? in 8—~(’y(t)) So, we get
I3

B\

17y .
———— | cos fsin f,
a?p(p + 1)) foint

21?:2f23m2a(m3 - m1p) cosfsinf = —by (

7 ]51772 ? 2
—kow fogmoa(ms — myp cos? f = —-a (7 cos” f.
( ) a’p(p+1)



6. Invariant tori in the centre manifold of collinear points in the Planar

202 TBP
Then
by — _21;32f23m2a5(m3 —mip)p(p+ 1)?
ki (n})?
0 — wka fazmaa® (mg — myp)p?(p + 1)*
RUAR

Now,

k2 fazmaa®p?(p + 1)?
ki (n})?

C =i(a; + b2) =i(w — 2)(m3 — myp) (6.34)
Therefore, in the resonant case, w = 2 and ¢ = 0.

O
Proof of Lemma 6.3.6

The equality §a2(t) = Z2(t) follows directly from (6.31). Lemma 6.2.1 implies
Z1(t) = 91(t) and Z3(t) = 0. The corresponding relations in the case m; = msg are
obtained using the exact expressions of the eigenvectors given by lemma 6.2.2.

O

Remark 6.3.7. In the symmetrical case m; = ms3 we have p = 1 and then using
(6.34) C = 0 independently of the value of w. Moreover for masses mi,ma, ms
such that m; # m3 and w # 2 we have C # 0.

We have implemented an algebraic manipulator to compute the Normal Form
up to order 4 for given values of the masses. In Table 6.2 we give the coefficients of
the monomials Q3P# and Q3P; for some values of the masses. We note that these
monomials are 'numerically zero’ in the symmetrical case, mq = mg, in agreement
with Remark 6.3.7. The same agreement between numerical and analytical results
has also been checked for resonant masses.

Consider the term cQ3P; in H(Q,P). Using (6.34) and (6.6) we get

7 72
c= %C = %i(w —2)(mg —mip) [

fazmaap® (p + 1)?
mima(p + 1)2 + ma(m1p? + m3)]?

If we consider non resonant masses we can define a generating function G = G3+G4
where (G contains the monomial ng%Pg with g1 = ﬁ Therefore for
positive values of mq,mo, m3, g1 is a continuous function of the masses. In a
similar way and due to the monomial P3Q3, G5 contains the term g2Q3P? where
go is a continuous function of the masses. So, we can define a function G3 on the
triangle of masses taking the limit of g; and g2 in the case of resonant masses.
We remark that for w = 2, the terms Q3P and Q3P4 belong to the kernel of the
linear operator Ly,. This means that they do not contribute to Hz (see (6.25)) .
Therefore we get the following proposition.



6.3. The Normal Form

203

my | m3 coefficient of Q3 P2 coefficient of Q3 Psi

0.1 | 0.8 | —1.179419348112622E-002 6.875177379696579E-003
0.1 | 0.7 | -9.319371384346949E-002 | 7.758543543388584E-002
0.1 | 0.6 | —1.413142569551888E-001 1.548904537008628E-001
0.1 | 0.5 | —1.749179227510806E-001 2.286007158007460E-001
0.1 | 0.4 | —2.011008770853154E-001 2.858515079866209E-001
0.1 | 0.3 | —2.177563331662531E-001 3.070251869558777E-001
0.1 | 0.2 | —2.007104469104191E-001 2.536095880359161E-001
0.1 0.1 9.235014541892594E-015 | —1.183014251097389E-014
0.2 | 0.7 | 1.029366603579695E-002 | —1.491208746569150E-002
0.2 | 0.6 | —1.966944788903897E-002 2.895185423930213E-002
0.2 | 0.5 | —4.152197150460450E-002 6.647693015509877E-002
0.2 | 0.4 | —5.221842494622244E-002 8.869746541104991E-002
0.2 | 0.3 | -4.586674997804073E-002 | 7.933390003814744E-002
0.2 ] 0.2 | 6.940183773499024E-016 | —8.210080641681364E-016
0.2 ] 0.1 1.765861018277782E-001 | —3.073164843015664E-001
0.3 ] 0.6 6.238037823992740E-003 | —1.768228493842869E-002
0.3 | 0.5 | —4.438682094330806E-003 1.083995060532376E-002
0.3 | 0.4 | -9.191599656495861E-003 | 2.207101058566123E-002
0.3 | 0.3 | 2.022770770177911E-016 | 3.132560016105415E-016
0.3 1] 0.2 4.000070097083308E-002 | —9.741018176772076E-002
0.3 ] 0.1 1.668996116082525E-001 | —4.575591110691087E-001
04| 0.5 1.798577883741621E-003 | —8.485012379500253E-003
0.4 | 04 | -1.827228383071727E-017 | 7.311853698924998E-016
0.4 ] 0.3 | 7.935569740810064E-003 | —2.751323770250442E-002
041 0.2 3.926071923919142E-002 | —1.360534267829678E-001
041 0.1 1.325417655797161E-001 | —5.342349636043282E-001
0.5 | 04 | -1.534726145643662E-003 1.076465252598653E-002
0.5 | 0.3 | 3.263655003503015E-003 | —1.719301330985832E-002
0.5 ] 0.2 | 2.649617500229235E-002 | —1.304106710601642E-001
0.5 | 0.1 9.738989522637230E-002 | —5.502476606321277E-001
0.6 | 0.3 | —3.831843227559372E-003 | 3.672812785621461E-002
0.6 | 0.2 1.041828802723820E-002 | —7.510521579183546E-002
0.6 | 0.1 6.478871988992192E-002 | —4.989471222532697E-001
0.7 | 0.2 | —4.374349135738403E-003 | 5.382987717642781E-002
0.7 1 0.1 3.381097753148919E-002 | —3.550369383481710E-001
0.8 0.1 3.156516816489582E-003 | —4.965627280827153E-002

Table 6.2: Coefficients of the monomials Q3 P§ for several values of the masses
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Proposition 6.3.8. Consider mi,ma,m3 € (0,1) such that my + mg + mg = 1.
Then there exists a generating function G = G(mq, ma, ms) which depends analyt-
ically on the masses such that after the transformation T, the new Hamiltonian
is of the form (6.29).

6.4 Existence of invariant tori

The study of the behaviour of the orbits of a non integrable Hamiltonian system is
quite difficult. To this end, the idea it to associate to such a system an integrable
Hamiltonian system. For this kind of system we know the dynamic of the orbits.
KAM theorem give us information about the non integrable system depending
on the associated integrable system (see [A.A.]). In this section we study the
applicability of KAM theorem to the Hamiltonian reduced to the centre manifold
of the equilibrium point L.
We write the Normal Form (6.29) as

H(X,Y) = AX1 Y1 +iXaYs +iwX3Ys — ap2(X2Y2)? — agoa(X3Y3)? —
ao11 X2Y2 X3Y3 — ag00(X1Y1)? — a110iX1Y1 X2 Y —
a101iX1Y1 X33 + Y Hp(X,Y). (6.35)
k>5

To get action—angle variables we introduce a canonical transformation (X,Y) —
(X1,,Y7,1I) where

Xp = /I€"%, Yy = —i/Ipe™¥*, k=2,3.
The new Hamiltonian is

H(Xla ‘P7Y17]:) = HQ(X1Y17I) + H4(X1}/17 I) + R5(X17 P, }/17 1)7

where
Ho(XaY1,I) = AXo Y1+ I+ wlis,
Hy(X1V1,1) = —ao20ls — aoi1lols — agoali — azo(X1Y1)? — a110iX1Y1 1o —

a1011X1Y113.

To obtain the Hamiltonian reduced to the centre manifold, H., we take X; = 0
and Y7 = 0. Then we get H (I, ) = Heo(I) + Hei (I, o) where

HC()(I) =D +wls— a020I22 —agr1lols — CLOOQI§. (636)
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The Hamiltonian system associated to Hg is

I, = 0, Y2 = —(1 — 2a020l2 — ao1113),
j3 = O, ()bg = —(w - a011]2 — 2&002[3). (6.37)
Clearly (6.37) is an integrable system. So, we look at H.(I, ) as a perturbation

of Hco(I)
The nondegeneracy conditions of KAM theorem are the following

(a) Dy = det (82HC°> 40,

o172
82 H c0 OH c0

_ 12 ol
(b)  Dp=det| 00 7 ; £0.
oI

If the condition (a) is satisfied the theorem says that for almost every frequency
vector there exists a 2—dimensional invariant torus near the unperturbed one. The
condition (b) or isoenergetic condition gives the existence of invariant tori on every
energy level.

From (6.36) we have that D; = 4agapago2 — a%n is constant. D> depends on
Iy and I3. Anyhow it is sufficient to check the condition (b) at the origin, that is,
Dy = 2ap0w? — 2ap11w + 2agpz # 0.

We have evaluated D1 and Do numerically for different values of the masses in
the triangle of masses. Using a specific manipulator we compute the coefficients of
the Normal Form up to order 4 for given values of the masses mi,mo, ms. Once
the Normal Form is known, D; and D5 are obtained immediately. The values
of Dy and D5 for a set of masses are given in table 6.3. Figures 6.4 and 6.5
show, respectively, D1 and Ds as functions of ms. In figure 6.4 every continuous
line corresponds to Di(mg) for a fixed value of mj. Note that once m; is fixed,
ma € (0,1 —my) and mg = 1 — my3 — mgy. The same holds for figure 6.5. These
results show that D7 > 0 and Dy > 0 for positive masses. Then KAM theorem
ensures the existence of 2-dimensional invariant tori in a neighbourhood of Ly for
any energy level.
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mi mao D1 D2

0.1 | 0.1 | 123.192444126190900 | 17.788785832091770
0.1 | 0.2 | 57.981216051192120 | 9.276140574712066
0.1 ] 0.3 | 40.728298686281160 | 6.589952363214971
0.1 | 04 | 34.682311867438230 5.341187287868248
0.1 0.5 33.684503156474210 | 4.677695909919546
0.1 | 0.6 | 36.745287504522810 | 4.332526838718575
0.1 | 0.7 | 45.813213441577230 | 4.225259225545290
0.1 | 0.8 | 71.089285311101490 | 4.457041208199403
0.2 | 0.1 | 103.393517316096200 | 18.218294888530650
0.2 | 0.2 | 50.824193245420020 | 9.300570286444902
0.2 | 0.3 | 36.743296393792050 | 6.516670411071603
0.2 | 04 | 32.138454012679390 5.240962280420760
0.2 ] 0.5 32.257632210686840 | 4.589675857720991
0.2 | 0.6 | 37.081352918128770 | 4.316558741864279
0.2 | 0.7 | 52.071994619538740 | 4.504639989181360
0.3 | 0.1 | 102.073743778695200 | 19.298538564906000
0.3 | 0.2 | 51.744613621402370 | 9.781560417457513
0.3 | 0.3 | 38.491722199751520 | 6.832744606754595
0.3 | 0.4 | 34.883295985464800 | 5.515028693081639
0.3 |05 36.988170596588670 | 4.914702092384127
0.3 | 0.6 | 47.942107180607540 | 4.948789669577259
0.4 | 0.1 | 110.485328727285100 | 20.671363273493780
0.4 0.2 57.759778937352510 | 10.473316682437390
0.4 | 0.3 | 44.584133478133890 7.353628431238850
0.4 | 04 | 42.745509539056030 | 6.044269112305969
0.4 | 0.5 | 51.108291030540560 | 5.761858546700239
0.5 | 0.1 | 129.480083003787500 | 22.377846871814720
0.5 1] 0.2 70.374438999527100 | 11.407304656778590
0.5 | 0.3 | 57.580164145066870 | 8.157801766505628
0.5 | 04 | 62.291451633215250 7.158104149041286
0.6 | 0.1 | 166.170648618560100 | 24.623203692516640
0.6 | 0.2 | 95.954711362321600 | 12.779312315293600
0.6 | 0.3 | 88.834742771266920 | 9.732525836537608
0.7 | 0.1 | 243.304387577001600 | 27.947054572142850
0.7 | 0.2 | 159.814511483404300 | 15.400391716639330
0.8 | 0.1 | 460.303431252741100 | 34.385581785583930

Table 6.3: Determinants Dy and D5 for several values of the masses.
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Appendix A

The planar Kepler problem
with homogeneous potential

In this appendix we discuss the solutions of the planar Kepler problem with some
homogeneous potential. For details, see [A.].

We consider the equations of the planar Kepler problem with homogeneous
potential of order —a, 0 < a < 2

A

allz|*

7z = _Z_(z]’ where U(z) =

(A1)

with z = (21, 22)T € R? and A > 0. (A.1) corresponds to the motion of an unitary
mass moving under a homogeneous potential due to a mass A located in the origin.
This system has first integrals the energy and the angular momentum. Then,

once the energy h is and the angular momentum w are fixed, we have

1 A
ho= |z - —2—
51— o

w = zZAZ.
We introduce polar coordinates
z1 =rcosf, z9=rsinf.
Using the integral of the angular momentum one can see that
f'r? = w, (A.2)
where w = ||w||. Then, f'r? is constant over the solutions of (A.1).
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From (A.1) we obtain

A
T// - (f/)Q’l“ = _7“&+17

2r'0" + f'r =0

Second equation always holds due to the fact that f'r? is constant. First equation
can be written as

ov
no_ YV
r = o (r), (A.3)
where
A w?
V(T) = *% + W (A4)

From (A.2) we obtain

tw
t) = —=ds. A.
10 = [ s (4.5)
In order to study the solutions of system (A.1) we begin studying the potential
equation (A.3).
2

ow 2—a C{)2 2—a
Function V' has a zero in o and a minimum in r* = Y .

2 _ 2 2 2—a
We have that V(r*) = % (%) . Figure A.1 shows the plot of V for
e

O<a<?2.
Let us define

E :@JrV() (A.6)
K 9 ), .

the energy of (A.3). If Ex = V(r*) we get a constant solution of (A.3). If
0 > Ex > V(r*) then we obtain a periodic solution and if Ex > 0 the solutions
are not periodic and unbounded. For the case 0 > Ex > V(r*) let us define 7,
and 74, the minimum and the maximum value of r, respectively, of the periodic
solution obtained. The points such that r = r,,;, are known as pericenters and if
r = Tmae then are called apocenters.

If ropin = Tmaz, that is, Ex = V(r*), then the associated solution for (A.1) is

27
V2 —a«

orbit for (A.1) is not necessary closed. An orbit is closed if the angle of successives

circular and

—periodic. If we consider a periodic orbit of (A.3), then the

pericenter and apocenter is commensurable with 27. It is well known ([A.]) that
all the bounded solutions of (A.1) are periodic if and only if « = 1 or @ = —2.
Other values of « give, in general, quasiperiodic solutions.
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Figure A.1: Graphic of V(r) for a = w = 1.
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Appendix B

Constants on the computation
of the linearized system on a
triangular solution of the

Planar Three Body Problem
with homogeneous potential

In this appendix we give the expression of the constants aj, j = 1,..., 8, that
appears in (1.45). These constants depend on the masses and on g as

1
w = -4 [’m2(04 +1) + ymala - 2)] ;

Qa+2
\/§a(a + 2)myims
4Qa+2

ala+ 1)mims
pa+2

as =

ay = —

_oamg 1
ay = e [ng(Sa +2)— mg] ,
ami1ms9

Qa+2 ’

as =

arms

1
ag = 00 +2 [ml (a+1)+ ZmS(a - 2)] )

V3a(a + 2)mams
4Qa+2

a; = —
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ams 1
ag = P —m1+1m3(3a+2).



Appendix C

The Giorgilli-Galgani
algorithm for the Normal Form

The global idea of the Normal Form consists in to transform the Hamiltonian in a
neighbourhood of the origin in a simpler one performing changes of coordinates. In
this appendix we shall describe briefly the algorithm of A.Giorgilli and L.Galgani
(see [G.G.]) that we have used in chapters 2 and 6.

We consider a Hamiltonian system with n degrees of freedom defined by the
Hamiltonian function

k>2

where &€ = (&1,...,&), m = (m,...,n,) and Hy is an homogeneous polynomial of
order k, k > 2, in the variables &1,...,&,,m1,...,0,. We note that the origin is
an equilibrium point for the system. We assume that the second order terms are
given by Ha(€,m) = > 1" N\;&;m;, being £X;, j = 1,...,n the eigenvalues of the
linearized system on the equilibrium point.

We begin with some definitions.

Ifl=(ly,...,ly) € Z" and XA = (A1,...,\,) € C" we shall denote by 1- X =
LA+ .+ .

Definition C.1. We say that the vector of eigenvalues A = (Aq,...,\,) is non
resonant if the equation

L-AX=hLh M +b +...+1,1, =0,

with ly,1s, ..., [, integers, only has the trivial solution, that is, if [y =... =1, =0
is the unique solution.
In other case, we say that A is resonant.
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Definition C.2. We define the resonant Z-modulus associated to Hy as
Myx={veZ":v-A=0}.

We note that if A = (Aq,..., ;) is non resonant, then My = {0}.

Notation C.3. We shall denote by I the space of all the homogeneous polynomials
in the variables (£,1) € C?® and by II = @enll; the vector space of the formal
series in &1,...,&n, M, ..., M. Given f € II, we write f = ) .o, fr with fi €
Iy. If f € II;, we shall write f = Z“Jrs‘:k frs€'n®, where 1 = (I1,...,lp),s =
(81,5 80) € (NU{ON™, 18| = li+s14+la+s9+. . ALy +s, 1€ =€l gl m® =
VIR

S

Definition C.4. Given a vector of resonant eigenvalues X, &'n® is a resonant

monomial associated to A if (s —1)- A =0.
In this case, the order of the monomial is |1+ s| = [1| + |s|.
Definition C.5. Given G € II, G = G3 + G4+ ... , Gi € Il we define the map
Te : T — 11 by
Teg=go+g1+...,
where g € II and

k
m
o = 9 G=), % LG Gh—m-

m=1

Here, Lyf = {g,f} =37, (g—ggjg—?{j - g—%g—gj) és el parentesi de Poison.

In general, g is not of a given order s, and the same for g;. However, if g has
order s, then gj is of order k 4+ s. By this result, we can express the map T¢ in a
practice way for our purpose.

Remark C.6. Let us consider f € II. We write f = Zk21 fr where fi € I, and
Taf = Zk21 Fj, with Fj, € II;. Then, by an application of the above definition to

T f, we obtain Fj, = Zle fik—1 on

k
m
fio = fiu fl,k:E ?LGQ.;_mfl,kfmv
m=1

and fl,kfl eIl for all l = 1,...,k.

Lemma C.7. The map T is linear and invertible; moreover, if f, g € II, then

Te{f 9} ={Tcf Tag} -

In particular, Ty is a canonical map.
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We define a tranformation from (X,Y) € C*" to (&,n) € C?" given by &; =
TgXj,nj =1gY;, j =1,...,n. From the above lemma, this change of coordinates
is canonic. Moreover, if f € II, f = f(&,n) and we take T f as in the remark C.6,

we have that
TG’f(XvY) = F(XvY) = f(TGévTGn)'

We are interested in to compute the Normal Form of the Hamiltonian (C.1).
To this end we give a definition of Normal Form of a Hamiltonian function.

Definition C.8. Given a Z-modulus M > My, H™ is in Normal Form up to
order r, respect to the modulus M, if H(") is of the form H™ = Z(") + R(") where

Z(T) = Z al,sél'rlsa R(T) = Z al,sélns'

[I4-s|<r,l-seM [14s|>r

The idea is that Z(") contains the terms of the Hamiltonian (C.1) that can not
be eliminated by the change of variables. In particular, if 1 = s with 2|1] = r, the
corresponding monomial &'n! is in the expression of Z(").

We want to apply a transformation T, for some G, in such a way that T H
is in Normal Form up to order r. Therefore, G is the function that transforms the
Hamiltonian (C.1) to Normal Form H ().

We take G = Y e Gr with G € II;. As we want that T H = H)
holds, then Ty H = Z) + R The idea is to determine Gy, Zj recurrently. In
order to do that we shall use the Giorgilli-Galgani algorithm (see [G.G.]).

Proposition C.9. Let be H = 37, -, Hy, H2(§,m) = >_7_; A\j&m; and M D M.
Then, there exists a generating function G = Y pes G such that ToH is
in Normal Form up to order r respect to M. If we write the Normal Form as
TowH = Z" + R where Z(") = 7%, Zy, then

Z2 = Hy, and  Lpy,Gy + Z, = Fj, for k> 3, where
F; = Hj and
Z::l T _ 2LG2+mZk—m + mH2+m’k_m_2 for k > 4

N

F, =

3
I

k
m
where Hyg = Hj, Hyj, = S8 ) LG Hikome

Moreover, TG(T)H = 221:1 H,, + R(r) where Hy, = Ele H”g_l.

For a proof see [Si.].



218 C. The Giorgilli-Galgani algorithm for the Normal Form




Appendix D

Qualitative description of a
centre—centre—saddle point

In this appendix we describe the behaviour of the solutions in a neighbourhood of a
centre—centre—saddle point. We give this description following the ideas introduced
by Conley in [Co.2| for the restricted three body problem.

We consider the Hamiltonian

H(Q,P) = > Hi(Q,P), (D.1)

E>2
where Q = (Q1,Q2,Q3) € R3, P = (P, P, P3) € R3, Hj is an homogeneous
polynomial of order & in the variables Q;, P;, j = 1,...,3, and H> has the following

form
1 1
Hy(QP) = AP+ 5wi(Q+ B) + 5w (Q5+F5), (D2

being A, w1, ws positive real constants.

We note that the origin is an equilibrium point of centre—centre—saddle type.
From H(Q,P) one can describe qualitatively the solutions in the neighbourhood
of the equilibrium point.

We consider the solutions of the linear system of equations given by H2(Q, P).
They can be written as

Q) = Qe 21(t) = Qa(t) +iPy(t) = e, (D3)
Pi(t) = Ple M, 2(t) = Qs(t) + iPs(t) = 29e 2!,

where QY, P are real constants and 29, 29 complex ones. Clearly for the linearized
system, the stable and unstable manifolds of the origin are obtained as Q(l) =0, z? =
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29 =0 and P = 0,2 = 2J = 0 respectively. The centre manifold corresponds to
QY= PP =0.
In (D.3) we distinguish two families of periodic orbits F; and F» which are
obtained by taking Q) = P) = 2§ = 0 and Q! = P = 2} = 0 respectively. The
27 2m
period is — for the periodic orbits in the family /F; and — in family F2. These
w1 w2

families can be parametrised by the energy h.
We fix some value of the energy h € R and some constant ¢ > 0 and we consider
the set
L(h,c) = {(Q,P) e R° | Hy(Q,P) = h,|Q1 — P1| < c}.

From H2(Q,P) = h we get

1 1
T = §w1(Q§+P22)+§w2(Q§+P32):h_Alel (D.4)

and, hence, the motion is restricted to the region of the phase space such that
h—AQ1P, > 0.
We define in L(h, ¢) the following sets

Se = {(QP)eL(hc)|Q— P =c}
and
Sm = {(QP) € L(h,0)|Q1 — P = —c}.
If (Q,P) € L(h,c) using Q1 P, = i[(Ql + P)? — (Q1 — P1)?] we get

%(Q1+P1) + wl(Q2+P2)+ wz(Q3+P3)<h+%

A 2
Therefore, if h + TC > 0, S, is homeomorphic to a sphere S*. In a similar

way, Sy, is homeomorphic to S*. This is the case if h > 0. Note that for a
fixed value of h, these spheres separate the constant energy submanifold which is
5-dimensional. Figure D.1 shows the projection of the linear flow on the plane
@1, P; in a neighbourhood of the origin. We note that the orbits enter in L(h, )
through one of the spheres S. or S,,,. Only in the case h > 0 there are orbits which
go out of L(h,c) through the other sphere.

We note also that for h > 0 if we take Q1 = P; = 0, (D.4) defines a three—
dimensional sphere S3. In fact, this sphere is the intersection of the centre manifold
of the equilibrium point with the corresponding energy level. The linear flow
restricted to this sphere is given by the product of two harmonic oscillators with
frequencies wy and wy. So, for any h > 0, the sphere contains two periodic orbits,
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Figure D.1: Projection of the linear flow on the plane (Q1, P;) in a neighbourhood of

the origin. The dashed area corresponds to the forbidden region.

corresponding to families F; and F» respectively, each one surrounded by two—
dimensional invariant tori ([M.H.]). The invariant unstable and stable manifolds
of this centre manifold reduced to the level h, are the objects which decide which
one of the transitions Se — Se¢, Se — Sy, Sm — Se, Sy — Sy, occurs. To see the
relevant role of these codimension one manifolds see [G.J.M.S.], [Si.2].

Now we consider the full Hamiltonian H(Q, P). In order to study the preserva-
tion of the families of periodic orbits we shall use the Lyapunov theorem ([S.M.]).

Theorem D.1 (Lyapunov). Let us consider the Hamiltonian system

Qk = HPka
P, = —-Hq,, k=1,...,n.
Let us assume that the origin is an equilibrium point.
Let us denote by A1,... ., —A1,..., =\, the eigenvalues of the linearized sys-
tem on (0, 0).
We assume that \; = isq, where s € R, and i—f, ceey :\\—’f are not integer. Then,

there exists a family of real periodic solutions of the Hamiltonian system that
depends analytically on a real parameter ¢, in such a way that ¢ = 0 corresponds
to the equilibrium point. Moreover, the period 7(e) is an analytic function on e,

and 7(€) tends to % as € — 0.
We consider H in (D.1). The quadratic part is given by Hs in (D.2). If ©2 ¢ N,
w1

the preservation of the family of periodic orbits F; associated to the eigenvalue
w

iwy is obtained by using the Lyapunov theorem. If “ ¢ 7 we get a family of
w2

2
periodic solutions of H(Q,P) with limit period il
w2
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Appendix E

Expansion of the Hamiltonian
of the Planar Three Body
Problem with Newtonian
potential

In order to perform the change of variables to compute the Normal Form of the
Hamiltonian (6.13) it is necessary to know the expression of the terms of order
3 and 4 for these Hamiltonian. This terms can be obtained from the expression
of the terms of order 3 and 4 of the Hamiltonian (6.7) applying the change of
variables (6.9) and (6.12).

In this appendix we give the expression of the terms of order 0,2, 3,4 of the
Hamiltonian (6.7) in the variables (x,y). Then, if H; denote the terms of order

1
i,i=0,2,3,4 of (6.7), we have that H; = —H;,i = 0,2,3,4 where
ap

iy = PO A oG mms s
7 2 maa(p+1) 242 (p+1)° ap a(p+1)
moms
sy
1| mimg  mymgp? Ay p? 3a1 (A)?p*|
Ha(x,y) = — |- - 3 3 7|71+
a p (p+1)° m3(p+1)° 2a(p+1)

2 (nP)? 21’08 A  2mum
P~ (n3) S+ 10 7733+ 1m2 S
m3 (p+1) a(p+1) ap

A P 201 A
P 2<— +n—3+41>m1y3+
(p+1)2\ mza mz a(p+1)
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a1p’ (775)2 _humg mamsp? 224
2(0+1)°  ap a )7
p (=215 a1 A amé’) my <m1 2) 2
- + Toys+ — | —+m T3 +
p+1< apr1l)  pr1) BT\, 3P ) %3

p arA 3
+ + — | x3y2 +
p+1<<p+n >3w

_|_<% 1 + ai >y2
2 ma(p+1)  2(p+1)%)7

1
5 y1 + 71/2 + _y1y2 +

1 —_A P 3 9 3 A 2 3
Hs(x,y) = - URYY - a1p ( )5 mims m1m3p4 $§)
a\mz(p+1)"  alp+1) P (p+1)
m3 (p + 1)3 a(p+ 1)4 ap 1
i A P 304114
p73<—_n—3—7>x?y3+
(p+1)° \mza  mz a(p+1)
P’ <2n§ 2014 2007}
(p+1)2\ms alp+1l) p+1

P 1 Qq ) 2
—E (= - T1y2 +
(p+1) < pr1) "

> r1T2Y3 +

2
201 A
—|— P ( s - ! >x1x3y2 +
(p+1)> \mz a(p+1)
— 3
Oélp mima xw%—l—
(p+ 1 ap
«a 3mim m m
L AP 1P773 2 —#x1x§+—2<p3m3——1>$§+
(p+1)* 2ap a p
P 1 a1
L — = =) aspeys +
o1 (m3 p—i—l) 3Y2Y3
p (a1 > o a1p’nh
— — | T2y3 — T 5T2T3Yy2 +
p+1<p+1 ms) " (p+1)?
3m2 ma 2
oa \p e’ |t
Ha(x, y) 1 Anfp? n 5a1 (A)2pt mime  mymsp? A
4(x, = - - -
a\ms(p+1°  2a(p+1°  p  (p+1)° )7
3 —A P dai A
+—L (— + 5y 71> lys+
(p+1)* \mga m3  a(p+1)
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+ :02 n 30 9 9 . p2 -1 N 201 o .
. a~ xr _ J—
(p+1)* \ms  2(p+1) 193 b+ 12 \mg  pt1 173Y2Y3

( ()" p* 4oy Aptnh 4m1m2> 3

3 P 30q A (R 2mim
P ; <77_3 1 >xfa:3y2+3 1p (773)4 1m2 ) 2,2
(p+1)° \mz  alp+1) 2(p+1) ap
20410377§ 201[’3775 2 1P2 2 2 Oflp2
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where the constants a, p, "7§ .1, A, a1, ag have been introduced in chapter 6.
In the symmetric case in which the masses satisfy m; = ms the expressions for
Hy and Hj are reduced to

Hy(x,y) = mily% + %y% + milylyz + P, Y3 + gl‘ly:a + ars3ys —
—aroys + %(ml — dmgy)a? — 2mamy 3+ 2mamy 129 +
s
a
Hs;(x,y) = %(8m2 —mq)xi + Smams r1T3 — Smama riry — 377121am2 T1T3 —
a

2
—5331?/3 — ar1r3ys + ar1T2y3.
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Appendix F

Constants of the linear part of
the system on Lo of the Planar

Three Body Problem with
Newtonian potential

In this appendix we give the expression of the constants k;,7 = 1,...,7, that define
the matrix DF (&P, nP) in (6.16) in both general and symmetric case m; = msg.
For any positive masses these constants are

P
T 2
ki =
e P A L
ko = s < a L) -1
alp+1) \p+1 mg3 ’
2 (651
ks = a9 — + ,
’ *ms(p+1) | (p+1)?
T 2mims 2mims Apny B 34,
4 a3 p? aABlp+1)73  msad(p+1)2  a?(p+1)%
e — _ 2mymg (n5)? 2
0 a3p? msga?(p+1)2 alp+1)’
b — 2mime | 2momy (n8)2ay
6 a3p3 a3 a(p+ 1)2’
o — _mama  magmgy
T = a3 p3 a3
where A, = —Tgi—ang#zg = maa(—mip+ms),n} = —a*[mims(p+1)?+ma(mip*+
m3)],a® = —p—zl + m + mo + mg3, p is the solution of the Euler quintic equa-
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tion (1.52) and oy — ™8 4 o
m;m

3
The matrices D () and E(p) defined in (6.20) can be expressed as

plaq k1+"+3k2)

2 _ G — L& 16y — L&
12 Q11 — o2 Q12 — 5-C3 ) s
——k1+ask
= 1 ~ = ~2 1 ~ - m 1 2%2
D(Iu) 77)1—361 — (¥2Co n- = ECQ — (2C3 u <3T — 1)

M(—m1m2k3 - kl) u(m1m2m3a1k3 - kz) /~L2 - kg(m1m2m3a1 + k?)

and
mimaomsaoio b —mimalt mimeo
E(u) = —mimaji mimamsaip  —mimomaay |,
_k _ k2 Vs
ks k3 k3
_ Kk _ kk k3
where & = L + ky, & = £+k5 and & = -2 + kg.
k ks ks
In the symmetric case m; = ms3 we have
1 2m1m2
kl = 57 k5 = - a3 5
4m1m2
k? = *]-a k6 = 3 ’
a
1 2m1m2 mq
ko = kr = — ks = —(4dmg —m
s 7 3 4 8a3( 2 —mi),

where a® = X(4my + my).
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Introduccio

La Mecanica Celeste s’ocupa de l’estudi del moviment dels astres. El seu punt
d’inici pot situar-se al segle XVII, quan Johannes Kepler va formular les lleis
del moviment dels planetes a Astronomia Nova (1609). L’any 1687 Newton va
donar a la seva obra Philosophiae Naturalis Principia Mathematica la formulacié
del principal objecte d’estudi de la Mecanica Celeste: el problema de n—cossos.
Aquest problema estudia el moviment d’un sistema de n particules que s’atrauen
mutuament d’acord amb la Llei de Gravitacié Universal de Newton. Tot i que
la formulacié de les equacions que descriuen el problema de n—cossos és senzilla,
no ho és la seva resolucié. De fet, I'inic cas completament resolt és el problema
de 2—cossos. Tots els esforcos per resoldre explicitament les equacions per n >
3 han estat fallits. Poincaré va demostrar que la principal dificultat prové de
Iexisténcia de petits divisors. En el seu famés treball Méthodes Nouwvelles de la
Mécanique Céleste (1899), Poincaré inicia l’estudi del problema des d’un punt
de vista qualitatiu. Fn realitat, els metodes qualitatius juguen un paper molt
important en I’estudi de les equacions diferencials.

Tot i aix0, es coneixen algunes solucions especials del problema de n—cossos: les
solucions homografiques. Per a aquestes solucions la configuracié de les particules
es preserva en el temps. Aixd només s’aconsegueix en les anomenades configura-
cions centrals. Es ben sabut que per al Problema Pla de Tres Cossos existeixen tres
configuracions centrals col-lineals, on les masses estan situades sobre una recta, i
dos de triangulars, en les que les masses es troben sobre els vertexs d’un triangle
equilater. Pel que fa a la quantitat i tipus de les configuracions centrals per n > 4
només es coneixen resultats parcials.

D’altra banda, per moltes aplicacions es poden fer diverses suposicions que sim-
plifiquen el problema matematic. El Problema Restringit de Tres Cossos (RTBP)
és un dels models més utilitzats com a una primera aproximacié a moltes aplica-
cions. En aquest problema la principal suposicié és que un dels cossos té massa
infinitesimal, de forma que no influeix en el moviment dels altres dos cossos, anom-
enats primaris. Aixi es pot suposar que els primaris es mouen sobre una solucié
del problema de Kepler. El Problema Restringit de Tres Cossos prova d’explicar
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el moviment de la massa infinitesimal influida per les forces gravitatories exer-
cides pels primaris. Els casos més interessants per les aplicacions es corresponen
amb orbites el-liptiques dels primaris. Si I’excentricitat, e, d’aquestes orbites és
zero obtenim el Problema Restringit de Tres Cossos Circular, i per e € (0,1) el
Problema Restringit de Tres Cossos El-liptic.

En un sistema de coordenades giratori el Problema Restringit de Tres Cossos
Circular queda descrit per un sistema Hamiltonia amb dos graus de llibertat ([Sz.]).
Es ben sabut que en aquest problema hi ha tres punts d’equilibri col-lineals L1 23
i dos de triangulars L4 5. Els punts d’equilibri col-lineals sén de tipus centre-sella.
Sigui C7,, el valor de la constant de Jacobi en I’equilibri L;. El teorema de Lyapunov
([S-M.],[Ms.]) assegura l'existencia d’una familia d’orbites periodiques que neixen
de I'equilibri. Aquesta familia es pot parametritzar per la constant de Jacobi de tal
manera que per a un nivell d’energia fixat de la constant de Jacobi tal que Cr,—C és
prou petit, 'orbita periodica és 'inica orbita acotada que per a tot temps es manté
en un petit entorn del punt d’equilibri. A més, aquestes orbites sén hiperboliques.
Tenen varietats invariants 2-dimensionals estables i inestables de codimensié 1
un cop fixada la constant de Jacobi. Fent servir aquestes varietats invariants és
possible donar una classificacié de les orbites que passen per un petit entorn dels
punts d’equilibri col-lineals ([Co.2],[McG.1]). L’existéncia d’orbites homocliniques
transversals a ’0rbita periodica de Lyapunov s’ha estudiat a [L..M.S.] per a diversos
valors del parametre de masses i la constant de Jacobi. Aixd permet presentar una
dinamica simbolica ([L.M.S.],[Ms.2]) que déna I'existencia d’orbites que passen per
diferents regions de l’espai de fase. L’aplicabilitat d’aquestes orbites a les missions
espacials s’ha estudiat a [K.L.M.R.].

En aquest treball distingim tres parts principals. A la primera estudiem algunes
qiiestions relacionades amb l’estabilitat de les solucions homografiques. La segona
part es dedica al RTBP Espacial. Per a aquest problema estudiem l’existencia de
connexions heterocliniques/homocliniques als tors invariants continguts en la va-
rietat central del RTBP Espacial. Finalment, estudiem ’aplicabilitat del teorema
KAM a la varietat central dels punts d’equilibri col-lineals en el Problema Pla de
Tres Cossos. A continuacié presentem els tres temes.

Solucions homografiques

Considerem el Problema Pla de Tres Cossos amb potencial homogeni de grau —a,
0 < a < 2, del seglient tipus

mima mims mams

U(aqi,q2,q93) = .
(@2 @) = o T T =l gz — @l
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Notem que si a = 1 obtenim el potencial Newtonia. Es poden generalitzar les
solucions homografiques introduides per al potencial Newtonia al cas general (0 <
a < 2). Aquestes solucions es poden escriure com punts d’equilibri d’un sistema
Hamiltonia periodic amb 6 graus de llibertat. Per a aconseguir-ho s’ha d’introduir
un canvi de variables que depén de manera quasiperiodica (peridodica amb o = 1)
del temps.

Com ens interessa 'estabilitat d’aquestes solucions sera necessari calcular els
valors propis de la matriu de monodromia. Per reduir 2 graus de llibertat primer
fem servir les integrals del centre de masses. En aquest punt el sistema linealitzat
per les solucions homografiques té ordre 8. Aleshores demostrem que es pot escriure
el sistema com dos sistemes de dimensi6 4 desacoblats. La matriu de monodromia
d’un dels sistemes té 1 com a valor propi amb multiplicitat 4. Per tant, per a
obtenir els multiplicadors caracteristics no trivials ens cal estudiar ’altre sistema
de dimensi6 4,

x = A(t)x (1)

on t és 'anomalia veritable en el cas Newtonia. A més del grau d’homogeneitat
—a, el sistema depen de dos parametres: (3, que depen de les masses, i e, una
excentricitat generalitzada. Notem que el parametre § és diferent en els casos
col-lineal i triangular.

Quan e val zero, el sistema (1) té coeficients constants i els exponents carac-
teristics, o equivalentment els parametres d’estabilitat, es calculen trivialment. A
mesura que e creix poden aparéixer algunes bifurcacions. A més, a mesura que e
s’acosta a 1, en el cas limit tenim una matriu A(¢) en (1) amb una singularitat a
t=0.

El nostre objectiu és estudiar I’estabilitat de sistemes que generalitzen en algun
sentit el comportament del cas homografic linealitzat per a e proper a 0 i e proper
a 1. Aixi, considerem sistemes lineals del segiient tipus

0 0 1 0

. 0 0 0 1

X = A(t,e)x, Alte)= MGt e) 0 PSR R )
0 XoGa(te) 2 0

on x € R* \j, \g s6n parametres reals, e € [0, 1), 1 G, Go sén funcions periodiques
en t, depenent de e. Estudiarem l’estabilitat per a e 2 0ie < 1. En tot cas,
formularem diverses hipotesis sobre G; and G2 que es satisfaran en particular en
el cas homografic.

Un sistema com (2) té diverses aplicacions. Una d’elles es 'estudi de I'estabilitat
per als equilibris d’alguns sistemes Mecanics. A més, el sistema (2) pot obtenir-se
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com a primer sistema de variacié d’una solucié periodica d’un sistema autonom.
Els capitols 2 i 3 es dediquen a l'estudi dels parametres d’estabilitat de (2) per a
e > 0 prou petit i per e < 1, respectivament.

Al capitol 2 estudiem lestabilitat del sistema (2) per e 2 0 en el cas que
(1, 9 siguin funcions periodiques parelles de t i analitiques en e. En primer
lloc, a la seccid 2.2 estudiem el cas trivial e = 0 on es troben alguns punts resso-
nants. A mesura que e creix poden apareixer bifurcacions donant lloc a regions
en els espais de parametres amb diferent caracter d’estabilitat. Per estudiar les
superficies frontera d’aquestes regions fem servir la técnica de la Forma Normal. A
[B.S.1] es va usar aquest meétode per estudiar les llengiies ressonants per a ’equacié
de Hill quasiperiodica, depenent de dos parametres, i a [B.S.2] per a 'unfolding
d’equacions de tipus Mathieu en el cas periodic.

En aquest treball, per a estudiar les superficies frontera ens concentrem prin-
cipalment en el cas de d’Alembert, és a dir, suposem que per a G1 i G el késsim
harmonic té una amplitud al menys d’ordre k en e. De fet, és una situacié molt
comu en els sistemes mecanics. Per exemple, es dona en ’estudi de ’estabilitat
de families d’orbites periodiques amb origen un punt equilibri amb valors propis
imaginaris purs. Suposant la propietat de d’Alembert distingim entre ressonancies
simples i dobles. El cas més interessant és el segon. Sota condicions de no de-
generacié en un entorn d’una ressonancia doble, canviant els parametres es poden
obtenir regions de qualsevol tipus per e 2 0.

Al capitol 3 estudiem ’estabilitat del sistema (2) per a e < 1. Suposem G =
G2 amb alguna singularitat per ae = 1 en t = 0. El principal resultat del capitol és
una féormula asimptotica per als parametres d’estabilitat. Fem servir una especie
de tecnica de blow up per veure el cas limit com una connexié heteroclinica.

Al capitol 4 fem servir els resultats dels capitols 2 1 3 per a estudiar I'estabilitat
de les solucions homografiques del Problema Pla de Tres Cossos. En aquest cas, els
parametres A1, Ao depenen d’un unic parametre de massa 3. Per tant, el diagrama
de bifurcacié es representa en el pla (3, e) per a « fixat. Calculem els parametres
ressonants en e = 0 per a qualsevol a. Ara bé, ens concentrem principalment en el
cas Newtonia. Fent servir el Metode de la Forma Normal desenvolupat al capitol
2, obtenim les llengiies ressonants que neixen a e = 0 fins a un cert ordre.

En el cas col-lineal, § € (0, 7) per al problema fisic. Tot i aix0, matematicament

es pot considerar 3 > 0. S’obtenen ressonancies en e = 0 per a les freqiiencies —,
k > 3. Si k = 2n no hi ha bifurcacié per a e > 0. Si £ = 2n + 1 les llengiies
ressonants 72,41 tenen origen en e = 0. Malgrat que 73, 75 sén les tUniques
llengiies que ezmanen de e = 0 per a 8 € (0,7), totes les2 altrQes llengiies 7: 2n41
entren en aquest rang de [ per a valors de e en (0,1). L’amplada de 7: 3 ’Z'% és
d’ordre 315 en e, respectivament. A més, la férmula asimptotica per a e proper a
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1
1 prediu que totes aquestes llengiies s’acumulen en = = a mesura que € s’acosta
a 1. Aquest comportament concorda amb els calculs numerics fets per a qualsevol
e € (0,1).
Pel que fa al cas triangular, per a 0 < 8 < 11ie = 0 el sistema és el-liptic—
f e . . 3
el-liptic i només es troba una llengua ressonant 7 que neix per § = T Aquesta

defineix una regié el-liptica—hiperbolica en el pla (3, e). L’amplada és d’ordre 1 en

e. El comportament per a § = 3 i e 2 0 fou estudiat per G. Roberts (veure [R.]).
En aquest treball, desenvolupant la matriu de monodromia en serie de potencies
en e, demostra ’existencia d’una regié el-liptica—hiperbolica per a aquest valor de
{1 per a e prou petit. El metode utilitzat a [R.] no és titil en el cas col-lineal
perque els calculs sén durs. Aixo es deu al fet que en el cas col-lineal ’amplada de
les llengiies és de major ordre en e i, per tant, fa falta calcular els termes com a
minim d’ordre 3 en e de la matriu de monodromia del sistema linealitzat sobre la
solucio6 col-lineal.

El RTBP Espacial

En el capitol 5 ens dediquem a l’estudi de les orbites homocliniques a la varietat
central de Lo en el Problema Restringit de Tres Cossos Espacial. Es ben sabut
que Lo és un punt d’equilibri de tipus centre—centre—sella. Per tant, té varietats
invariants estable i inestable unidimensionals, i una varietat central de dimensié 4.
En un entorn de Lo existeixen les ben conegudes families d’orbites periodiques de
Lyapunov plana i vertical. Aquestes families d’orbites periodiques tenen varietats
estable 1 inestable bidimensionals. A més, a la varietat central existeixen tors in-
variants, amb varietats estable i inestable tridimensionals. Sobre la dinamica en
la varietat central consulteu [J.M.], [G.M.]. La interseccié de la varietat inestable
d’un tor en la varietat central i la varietat estable d’un altre tor déna orbites het-
erocliniques del primer tor al segon. Si considerem les varietat estable i inestable
del mateix tor, obtenim orbites homocliniques al tor. Totes aquestes orbites ho-
mocliniques i heterocliniques son orbites homocliniques a la varietat central de Lo.
Per a obtenir orbites heterocliniques (o homocliniques) seguim les idees principals
desenvolupades a [L.M.S.] per al RTBP Pla. Calculem fins a un cert ordre la inter-
secci6 de la varietat invariant inestable d’un tor donat amb la seccié y = 0 a l'altre
costat del primari més gran. Per fer-ho considerem el RTBP Espacial com una
perturbacié de problema de Hill tridimensional en un entorn del punt d’equilibri
i després com una perturbacié del Problema Sinodic de Dos Cossos Espacial. La
varietat estable s’obté de la inestable fent servir les simetries del problema.

També donem algunes estimacions de la diferencia en I’espai d’accié per dos
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tors per tal de tenir una connexié heteroclinica. Aixo ens permet construir cadenes
heterocliniques. En particular, des de tors invariants propers a l’orbita periodica
plana a tors invariants propers a la vertical en entorn del punt Ls.

El Problema Pla de Tres Cossos

Finalment, al capitol 6 estudiem ’existencia de tors invariants a la varietat central
dels punts d’equilibri col-lineals en el Problema Pla de Tres Cossos amb potencial
Newtonia. Per a fer-ho seguim els segiients passos. Primer, fem algunes transfor-
macions canoniques per escriure el Hamiltonia en forma normal. Aleshores reduim
el Hamiltonia a la varietat central. Després comprovem, per avaluacié numerica
dels coeficients de la forma normal fins a ordre 4, les condicions de no degeneracié
del teorema KAM. Els resultats presentats a la seccié 6.4 mostren que les dues
condicions (tant isoenergetica com no) es satisfan per a valors qualssevol de les
masses en el triangle de masses.

El sistema linealitzat en un punt d’equilibri col-lineal te valors propis £A, =i,
+iw, \,w € RT. Per tant els punts d’equilibri col-lineals sén de tipus centre—
centre—sella. Esta demostrat que fins a ordre 4 només cal tenir en compte la
ressonancia 2 : 1. Les corresponents masses ressonants descriuen una corba en
el triangle de masses. Per tant, per a masses ressonants seria d’esperar obtenir
monomis ressonants d’ordre tres en la forma normal del Hamiltonia. Demostrem
a la secci6 6.3 que aquest no és el cas. De fet, demostrem que els coeficients
dels monomis sén diferents de zero per a masses generals, pero esdevenen zero
per a masses ressonants, i també en el cas simetric mq = mg. L’existencia de les
solucions homografiques ens permet calcular analiticament, de manera senzilla, els
coeficients dels monomis ressonants d’ordre tres. Aquests coeficients tenen (w — 2)
com a factor. Els resultats donats al capitol 6 estan publicats a [M.S.].





