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una molt bona relació. I amb els seus ”acolits” i cracks en Ramon i el Botey. Podria
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One of the most important topics in computer vision is pattern recognition and clas-
sification in images. Any classification process requires from a feature extraction
process and a learning technique that categorizes each data sample. However, some-
times, it is not enough to have just a classification since we could need to introduce
high-level knowledge constraints to obtain a meaningful classification. Deformable
models are one of the possible tools to achieve this goal.

This PhD thesis describes several new techniques to be used in this scenario regard-
ing deformable models and classification theory. The definition of deformable models
guided using a external potential derived from a generative model is proposed. This
approach is called generative snakes. To illustrate this process parametric snakes in
a texture based context are used. The extension of the former work to geodesic de-
formable models is done by reformulating the geometric deformation process, leading
to the Stop and Go formulation. A new tool for mixing labelled and unlabelled data
for semi-supervised and particularization problems is developed and validated. This
new technique allows supervised and unsupervised processes to compete for each data
sample, defining the supervised clustering hybrid competition scheme.

These techniques are motivated by and applied to medical image analysis, in par-
ticular to Intravascular Ultrasound (IVUS) tissue segmentation and characterization.
This work also studies the tissue characterization problem in IVUS images and defines
a new framework for automatic plaque recognition.
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Chapter 1

Introduction

One of the most important topics in computer vision is pattern recognition and clas-
sification in images. Any classification process, in real life, is usually divided into two
sub-processes: A first step, in which descriptors or measures are taken for each of the
classes. And a second step, which is the learning/classification process itself. The
first step is also known as feature extraction, and its goal is to reduce the complexity
associated to real scenes by means of extracting measures to characterize the original
data, in our case image regions of interest or objects. The second step consists of a
learning/decission technique. If the classification is supervised, a priori knowledge of
what the different classes are, is used to train a learning process. If no information
of the classes desired is known, we talk about unsupervised classification/learning.
Regardless of the degree of supervision, the decision step is the responsible to assign
labels to each of the samples in the space created by the the data provided by the
feature extraction process. However, sometimes, it is not enough to have a mere
classification since we could need a compact representation of a shape or, simply, to
include high-level knowledge to obtain a meaningful classification. In this matter is
where deformable models stands as one of the possible tools to achieve this goal.

1.1 The Goal of this work

In the former scenario we emplace this PhD work. Our aim is to create a set of
powerful tools to help in those steps. In particular we have designed techniques for
the second and third step of the described process, namely: deformable models and
classification theory. Figure 1.1 shows a little scheme of the theories and techniques
derived in this work.

We have also attacked a real problem with all these tools, intravascular ultrasound
image analysis and tissue characterization.

The techniques and theories developed in this work lies in two great groups:

1. Deformable models: The work in deformable models is divided in two groups.
The first, is the definition of deformable models guided using a external poten-
tial derived from a generative model. We call this approach generative snakes.

1



2 INTRODUCTION

Figure 1.1: General overview of the main theories of the PhD work

To illustrate this process we use parametric snakes in a texture based context.
The second, is the extension of the former work to geodesic deformable models.
However, this extension is not trivial since we have to reformulate the whole
deformation process. This new formulation for geodesic snakes is called Stop
and Go snakes. With this new formulation we can use the former generative
approach as well as allow certain control over the deformation process by de-
coupling the forces influencing the snake deformation a la parametric snakes.

2. Classification Theory: Classification theory is a vast region for researchers,
since there are a lot of virgin niches and topics; one of this en vogue topic is
semi-supervision techniques. Semi-supervision is a general denomination for the
process of mixing labelled with unlabelled data. This mixture can be done in two
particular fields: semi-supervised classification and semi-supervised clustering.
The first one looks for help in classification in the unlabelled data. This is, how
unlabelled data can improve the classification. The second one aims for a more
meaningful clustering by aids of labelled data. Although there are approaches
that clearly are designed to address each of the problems, the line separating
both approaches can be sometimes really fuzzy. Our work in classification theory
is twofold: first, define a semi-supervision technique and second, define what we
call particularization problems, as well as a technique to solve them.

However, our work has been highly motivated by the application of those tech-
niques in medical image analysis, since it has been one of our most important and
active lines of work. In particular we have been toying with Intravascular Ultrasound
(IVUS) images analysis, segmentation and characterization. Our concern with this
kind of images regards the image interpretation of meaningful structures in the IVUS
image, such as intima and adventitia layers and characterization of vulnerable plaque
by identifying the kind of tissue present in the plaque region.
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1.2 Outline / State-of-the-Art / Proposal

In this section we provide a general information background for the reader to set a
general overview of each of the fields involved and how this work address each of the
problems.

1.2.1 Deformable models

Active contours ([61], [51], [53], to mention just a few) are well known tools in com-
puter vision for image segmentation [68], [71], [87], [85] and shape recovery. These
techniques interpret low-level information (i.e. edge points) under general high-level
assumptions/constraints to assure well-possedness of the segmentation problem. In
particular, snakes are defined by internal and external constraints to deform a curve
until it adapts to the object of interest. The internal constraints control continuity and
smoothness of the snake, meanwhile the external ones are responsible for adjusting
to the image features.

In general, there are two different approaches in current snakes formulations: the
parametric (physics-based) and the geometric (geodesic) definition.

Parametric deformable models [61] use Newton mechanics laws to define the in-
ternal constraints of the model. In these physical terms, such constraints are given
in terms of elasticity and stretching of the snake. By working with an explicit
parametrization of the curve, the model restricts the search space of the segmen-
tation solutions to single objects.

An alternative to physics-based snakes are the geodesic active contours [51].
Geodesic snakes are based on the theory of curve evolution and level sets methods
[86]. In this geometric setting, the snake deforms in a Riemannian surface until its
length, dependant on image features, is minimum. Its implicit level sets formulation
[86] can naturally deal with topological changes during the snake evolution. This is a
main advantage in those cases where the topology of the target object is not known
a priori.

However, topologically invariant snakes are also important when object topology
is known a priori, since the model introduces a hard constraint to restrict the search
space. In our case, given that we are looking for an object represented as a connected
region, without loss of generality we have applied parametric snakes to our first ap-
proach to define generative snakes. However, as can be seen later, this fact is not a
restriction and geodesic snakes can be applied in the same framework.

Parametric as well as geometric active contour models depend in high degree on
the image interpretation. Using heuristic external energy like image location with
high/extreme image gradient or high response of edge detectors leads to different
convergence problems: a need for close initialization, problems with stopping crite-
rion, impossibility to converge to concave boundaries, etc. These problems have been
addressed and partially solved in various papers with the use of multi-resolution meth-
ods, solenoidal external fields,etc.[69] [73] [55] but the most widespread method is the
Gradient Vector Flow.[80] [81] This method regularizes the gradient of the boundaries
leading to a smooth vector field when far from boundaries and keeping the gradient
orientation near the boundaries. On the other hand, all these methods proposed until



4 INTRODUCTION

now are sensitive to the edge noise caused by a heuristic edge detection which can
attract the active contour towards false contours. In this work, we claim that the
Generalized Gradient Vector Flow (GGVF) is a general regularization method that
can be applied to our approach in order to improve the classification of homogeneous
regions.

The importance of snakes using external potential fields dependent on the fea-
ture space for segmentation has been noted by different authors reporting promising
results.[82] [71] [72] Paragios et al.[71] proposed a framework using geodesic snakes
and fusing the information from region and boundary; Zhu et al.[82] proposed a frame-
work fusing split-merge techniques with active contours. Both approaches coincide
in the way the feature information is inserted in the framework; they both minimize
the conditional probability for a pixel being a boundary, and the active contour is led
by this term seeking a trade-off among the different regions. Note the fact that the
approaches mentioned [71] [82] use the probabilistic information about the features as
a quotient of probabilities, the probability of the region of interest and the probability
of the rest (αlog pB(I(u))

pA(I(u)) ). One can observe that this force shrinks or expands the
snake to zones with balanced probabilities. As the term just depends on the quo-
tient of both probabilities and not on the magnitude of the same, the attraction to
regions with low probabilities in both models could be a problem of relevance. The
term probabilistic snake appears in the literature in different contexts, [68] however
the Terzopoulos[79] and Szeliski[78] approaches apply to a different problem. They
incorporate a prior model in terms of probability distributions, and seek the proba-
bility of an image given a model using a Bayesian framework and cast the internal
energy in this frame by converting it to a prior distribution over expected shapes.
Another work using statistical information and fusing it with deformable models is
the approach proposed by Cootes[54], in which a statistical model of appearance is
matched to an image.

Our contribution: Generative Snakes

The objective of our work is to provide a statistical approach for region segmenta-
tion framework using generative based external potential fields in deformable models.
These models are applied to regions of interest defined by certain values of the fea-
tures. The main contributions of our work are twofold: a) we propose an improved
active contour model that deforms on a likelihood map instead of heuristically con-
structed edge map in order to obtain regions with homogeneous feature description,
that is, maximizing the likelihood of the set of pixels to represent the same object; b)
on the other hand, we propose a new approach for supervised segmentation introduc-
ing general assumptions about the smoothness of object boundaries and solving the
problem of hole appearance in the classified regions of pixels. Moreover, the concept
of finding an exact threshold to classify pixels to different objects is relaxed.

In contrast to the explicit computation of probability of regions belonging to the
same distribution during the region competition[82], in our case we construct a likeli-
hood map assigning to each pixel of the image the likelihood of representing a target
object. This fact allows us to analyze explicitly the potential field of the snake to
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modify it to assure snake convergence. In our preliminary work[75], we discuss the
advantages of using explicit likelihood compared to implicit probability estimates in
the snake formulation.

To concretize this approach we apply texture modelling to natural scenes and
medical images segmentation, since they can be seen as to be mainly composed of tex-
tured objects. Regarding this matter we consider that the problem of texture analysis
has played a prominent role in computer vision to solve problems of object segmenta-
tion and retrieval in numerous applications: medical image analysis, robotics, digital
libraries, etc. Most approaches for texture analysis follow two stages: first during the
modelling stage a feature space is defined to describe texture appearance. Different
approaches have been presented in the bibliography: Markov Random Field-models
[66], co-occurrence matrices [57], banks of filters [59], wavelets [65], fractal dimen-
sion [52], etc. The second stage represents an optimization procedure of classifying
image pixels into different textures using both supervised and unsupervised classi-
fication processes. [63] [58] [74] [66] [59] [67] [62] Supervised texture segmentation
is still a non-solved problem of great interest in medical imaging and retrieval from
image databases. This statistical modelling supposes that the texture prototypes are
the result of a generative model of the probability distributions of the random fields.
Hence, a likelihood map can be constructed assigning to each pixel a likelihood value
to represent a given texture. This approach has two drawbacks: the usual way of clas-
sification in this framework is done by applying a fixed threshold on the likelihood in
order to make a decision about the membership in a textured class; and moreover,
the algorithm does not assure that the regions classified, representing target object,
are connected regions or regions without holes.

Furthermore, texture analysis suffers from an important problem: precise texture
segmentation. This is due to the fact that texture descriptors need a substantial
spatial support to extract local texture. As a result, texture boundaries differ signif-
icantly from both textures and it is difficult to recognize them, because of the low
likelihood of belonging to learned texture regions. On the other hand, human be-
ings are very good at recognizing boundaries between textured regions, when regions
have significant size and smooth shape. This observation justifies our approach: to
introduce as a third stage of the texture analysis, the organization of the high like-
lihood valued regions into the final solution. In order to achieve it we propose to
incorporate high-level knowledge into the classification process of textured regions in
the form of snakes. The unification of the classification task and the snake high-level
interpretation led us to define generative snakes.

In practice this approach has been implemented in the following way: A set of
texture features (i.e. co-occurrence matrix measures) is extracted from the desired
texture pattern and is reduced by applying Linear Discriminant Analysis. In the
reduced feature space a Gaussian Mixture Model is created for the desired texture
patterns, and a likelihood map is constructed in terms of the likelihood of a mixture
model. In this map, the location of rough changes (high gradients) of likelihood values
represents candidates for textured boundaries as long as the shape of the region fulfills
the smoothness constraint. To improve the convergence properties of our statistic
snake, a regularization of the likelihood map is applied by means of the generalized
gradient vector flow [80]. The snake deforms on the regularized likelihood map until
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it stops on the boundaries of regions with high likelihood of representing the object
with the target texture.

On the other hand, in most snake applications of the segmentation problem, the
metric is defined based on the image gradient in order to detect edges. The geodesic
snake deformation is determined by two distinct terms in its evolution equation.

In this formulation, the first term is the normal component of the gradient of
the metric and rules convergence to contours. The second one, dependant on the
snake curvature, gives regularity to the snake and defines its motion at null gradient
regions. That is, it also influences on the convergence scheme. The double role of
the curvature term has some disadvantages: on one hand, because it is a second
order term, it hinders the numeric scheme; on the other hand, it difficulties snake
convergence to concave areas. The usual way to overcome poor convergence to non-
convex shapes is to add a constant motion term, the balloon force [53], that pushes
the snake into concave regions. In order to guarantee convergence into such regions,
its magnitude there should be greater than the absolute value of the curvature. A
major inconvenience is that the former requirement difficulties stopping the snake at
the desired contour. Because balloon forces correspond to a minimization of the area
enclosed by the snake, they can be embedded in a region based scheme.

Region-based methods are born to introduce region information in the geodesic
formulation. They aim at finding a partition of the image such that the descriptors
of each of the regions conform to a given ”homogeneity” criterion. It follows that the
force guiding the snake must be derived from the competition of the descriptors. In
Ronfard et al. [88] the velocity function is proportional to the difference of simple
statistical features. In Zhu et al. [82] and Paragios et al. [71], the autors define the
region evolution as a quotient of probabilities corresponding to different regions. In
Yezzi et al. [92] a dynamical approach is defined in which the evolution of the curve
is described by the difference of mean gray levels inside and outside the evolving
front at each iteration. In the same way, Besson et al. [85] propose a difference of
simple statistics, variance and covariance matrix, inside and outside the curve, also
recomputing that measures at each iteration. Chakraborty et al. [95] consider an
evolution using a Fourier parametrization over the original image and a previously
classified image regions. Most of the methods are based on simple non-supervised
descriptors of image regions. This limits it applicability to segmentation of simple
images. However, complex scenes such as natural and real images need more accurate
descriptors for their segmentation. In this way, supervised feature extraction schemes
are more suitable for the task [71], [89].

Our contribution: Stop and Go formulation

Considering the general problem of region-based segmentation, we propose a new
geodesic snake formulation that assures a more efficient behavior. Given that conver-
gence and regularity are the key issues of the snake formulation, we propose a new
definition where the terms ruling these properties are decoupled. As a result, the
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curvature term does not interfere in the convergence process but restricts its role to
the shape regularity in the last stages of the snake deformation. By removing the
influence of the snake curvature from the convergence step, any global vector field
properly defining the target contour curve as its set of equilibrium points ensures
convergence. However, current external forces either restrict to a band [51] (non-
global) around object contours or have saddle points [93] (target curve not properly
defined) that prevent the snake from entering into concave regions. We propose using
the decoupling strategy for the definition of a global vector field having the target
curve as the set of equilibrium points. It can be seen that any vector field fulfilling
the above requirement splits into an exterior attractor vector field (GO term) and an
inner repulsive one (STOP term) which sum cancels on the curve of interest. This is
the milestone in the definition of our Stop and Go snakes: defining separately the GO
and the STOP term and glue them together by means of a characteristic function.
Because we want to ensure snake convergence whatever curve concavity is, a balloon
force will be our GO term. Since the curvature term has been removed from the con-
vergence step, there is no restriction on the magnitude of this force, which prevents
the snake from collapsing to a point. For the STOP vector field any standard external
force restricted to the object interior suffices. Its choice hinges upon the particular
segmenting problem.

A mask defining the object of interest would be the ideal tool to bound the scope
of the curvature term and to perform any decoupling. To address segmentation of
real images, we propose to use likelihood maps as an approximation of the object
characteristic function. A likelihood map represents the likelihood value of each pixel
of the image. Since it also characterizes the object of interest we introduce its use
as a STOP term. In this manner the Stop and Go scheme presented in this paper
is particulary suited for feature space based segmentation, such as textures [87] [71]
[58], color [90] [82], motion [72], etc.

Our new formulation has several advantages over current snake schemes. On one
hand, except for the very last refinement steps, the technique admits arbitrary large
time increments in the iterative Euler scheme used in its implementation. On the
other, by removing curvature influence from the convergence process, we can build
a robust vector field to be used as an external force/attraction term that ensures
convergence but, at the same time, snake stabilization. The use of likelihood maps
also introduces a great advantage by allowing most generative schemes to operate in
our snake framework.

1.2.2 Semi-supervised classification and Particularization

Semi-supervised classification and clustering line of work has been very active recently
since several authors point out the beneficial effects that unlabelled data can have.
For instance, McCallum and Nigam [118] declared that ”by augmenting a small set
[of labelled samples] with a large set of unlabelled data and combining the two pools
with EM, we can improve our parameter estimates”. This was not the first insight-
ful citation of unlabelled data as a meaningful way to aid processes, since O’Neill
[119] previously commented that ”unclassified observations should certainly not be
discarded”. Those statements lead a new flow of work regarding the assessment of
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the validity of unlabelled data as possible improvers of a classifier performance. Up
to this day, no clear arguments have been made if unlabelled data is beneficial or, on
the other hand, detrimental for the classification process. In particular [120] devises
the obvious conditions for the semi-supervised process to succeed.

Semi-supervised learning is born due to the necessity to find methodologies work-
ing with very few data points. This kind of work is emphasized by the amount of
applications in which there are large pools of unlabelled data but it is very expensive
to create a full labelled training set. The main idea in semi-supervised classification
is to try to improve the training set by adding unlabelled data. In particular we have
three main lines of work: the first one is to try to increase the pool of training data
by means of supervised classification, using co-training approaches [121]. The second
line particularizes the problem to transductive support vector machines [122]. And
the last one describe a technique for incorporating unlabelled data into training using
Expectation Maximization [123].

The Co-Training approach uses diversification in features or classifiers to add to
the training set those data points in which the different classifiers agree. For instance,
given a set of unlabelled data points, and two sets of different features over those data
points we can add to the labelled set those unlabelled data that once classified, the
classification label obtained is the same for both feature/classifier sets. However, this
approach has a difficult time with disagreed samples. The Expectation Maximiza-
tion technique shows how entangled are the supervised processes and unsupervised
processes when dealing with semi-supervision of data.

Semi-supervised clustering uses class labels or pairwise constraints on some ex-
amples to aid the unsupervised process [124] [125]. To use pairwise constraints, a set
of data pairs is labelled as must-link if both must be clusterized in the same clus-
ter, or cannot link if the data points belong to different clusters. In particular if
the labelled data represents all the classes, both semi-supervised clustering and semi-
supervised classification can be used for categorization. However, in many domains,
the knowledge of the classes is incomplete. This is the frame in which we must place
semi-supervised clustering. This can lead to modification of the existing set of cate-
gories or to reflect irregularities of the data itself. In this category there are two main
lines of work: search-based methods and similarity-based methods.

Search-based techniques rely on user labels or constraints to bias the search of the
clusters to a meaningful partition. Several works show how to accomplish this goal.
In [126] Demiriz et al. change the objective function to satisfy specific constraints.
Wagstaff et al. [127] force some constraints to be met while the clustering process
is being performed. And Sinkkonen et al. [128] use an auxiliary space created using
side-information from conditional distributions to guide the clustering process. On
the other hand, similarity-based methods use labelled data for training a similarity
metric, that is used later for the clustering procedure. Several works focus on this line:
Bilenko et al. [129] use string-edit distance trained using Expectation Maximization,
Cohn et al. [130] use Jehnsen-Shannon divergence with gradient descent, Klein et al.
[131] use Euclidian distance with shortest path algorithm, Hillel et al. [132] and Xing
et al. [125] use Mahalanobis distance trained using convex optimization.

Our contribution: Our method lies in the ”gray” area between semi-supervised
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clustering and classification since it can perform both at a time. In particular if
we remove the decision step of the unsupervised learning machine we can perform
semi-supervised clustering, or semi-supervised classification otherwise.

The method is based in expressing the supervised and the unsupervised pro-
cesses using the same framework. In particular, we express both processes as a
self-organizing problem derived from the minimization of certain functionals which
describes the behavior of both classification processes.

Therefore, it is simple to understand how our method performs semi-supervision,
since the labelled data allows the definition of a supervised classifier while the un-
labelled data compete in our framework to be part of one of the classes or one of
the clusters. Hence, if we want to perform semi-supervised classification we just
seed the supervised part of our method with the labelled data and let the unlabelled
data adapt. This leads to a fully supervised training set, that can be used later for
classification.

However, the fusion of labelled and unlabelled data can be extrapolated to other
problem domains. In particular, this structure can be argued to be used in a very
overlooked problem, the particularization problem (this is the way we will refer to a
generalization of several specific processes, namely adaptation or situated learning in
natural language processing or specification in the work of Kumar et al. [139] based
on region classification in images.)

What is a particularization problem?

Let us imagine a problem of handwritten character recognition, in which we know that
all the characters in the document are written by the same author for instance, if we
provide an OCR with a document from one writer; an architect drawing a technical
plane with its own symbols; a medical application in which we know that the data we
need to classify proceeds from a single patient; the problem of face recognition, with
a significative data set representing what a face is, and a huge set of data representing
what a face is not. In this problem we can consider that not all the non-face data is
going to be present in the test set. In all these different application examples, there is
a common fact, the knowledge of the fact that our test data set is a particular subset
of the general training data set.

In human learning theory, a new underdeveloped proposal, situated learning con-
siders that ”every idea and human action is a generalization, adapted to the ongoing
environment” [133]. They also state that ”Training by abstraction is of little use;
learning occurs by doing. Because current performance will be facilitated to the de-
gree that the context more closely matches prior experience, the most effective training
is to act in an apprenticeship relation to others in the performance situation”[134]
[135]. Of course, those theories do not really apply to machine learning but to human-
human learning transfer. However, this emphasizes the importance of learning in the
exact context where the application is going to run. This motivates the research in
the line of finding the context of the application given a wide training set. In partic-
ular, this approach is very common in natural language processing, in which a general
language training corpus has to be changed for domain-specific tasks. This task is
called adaptation. This is usually done by adding specific language corpus to the
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training set. In [136] a general English language corpus is adapted to medical-domain
by mixing three specific medical corpus. Another general approach proposes to make
a pre-partition of the space in clusters or trees and weigh each cluster at recognition
time to achieve adaptation [137]. Other approaches are based on Bayesian learning
and MAP approaches to infer adaptation [138]. On the image domain, the work of
Kumar et al. [139] use an EM based refinement of a generative model to infer the
particularities of the new data.

Therefore, what is a particularization problem? The particularization problem
refers to all those problems in which we can assume the test set to be intrinsically
highly correlated and that does not represent the overall training set. In all the
aforementioned problems, the test set is highly correlated; all the characters written
by the same person are a written in a very similar way with less variation than the all
possibilities of writing the same characters. The intra-person variation is smaller than
the variation of the overall training set representing the same class. In the medical
application, tissues from a single patient are much less variable than the all possible
examples of the same tissue. This correlation is the a priori knowledge that we want
to exploit in this paper.

In order to exploit this knowledge, let us explain how we can take advantage of
the particularization and its implications. The assumptions we are making is that the
particularized subcluster is a non-representative subset of the training data with small
dispersion that can be modelled by a simpler distribution than the overall training
set. These assumptions can be summarized saying that our test set is quite compact.
We can address this problem in two ways: first, identify the underlying distribution
of the test set. To achieve this goal we can fuse a learning process with a prediction
oracle, to try to reinforce the prediction by incorporating all possible reliable data
from the test data set into the training set. And the other one, to try to exploit the
structure underlying in the test set while keeping a general decision rule to guide the
process. This last option is the proposed methodology, and subject of this work, the
supervised clustering hybrid competition scheme.

1.2.3 Intravascular ultrasound image analysis

Myocardial infarction, sudden cardiac death and unstable angina are a consequence
of coronary thrombosis developed as a result of a ruptured vulnerable or an eroded
atherosclerotic plaque. Plaque rupture or endothelial erosion with subsequent throm-
bosis formation are the most frequent cause of acute coronary syndromes. As studies
have reported a high correlation among multiple plaque ruptures in acute coronary
syndrome (ACS) patients. Other studies show that plaque ruptures occur not only
in this case but in patients with stable angina or asymptotic ischemia too. Moreover,
there are studies showing plaque rupture in patients with non-cardiac death. Hence,
it is not clear why some plaque ruptures in coronary arteries of patients lead to severe
consequences meanwhile other remain asymptomatic and heal. To understand the
mechanisms of plaque destabilization and guide a pharmacological treatment, it is of
high interest to image the fragile part of the atheromatous plaque and to differentiate
between low-risk and high-risk plaques.

The composition and structure of the vessel change with age, hypertension, dia-
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Figure 1.2: Typical IVUS images presenting different kind of tissues.

betes mellitus and many other factors. Until this moment, it is feasible to discriminate
different morphological structures of the vessel as calcium deposits, fatty, fatty fibrous
and fibrous materials. Although from several decades investigators recognized that
noninvasive imaging of coronary calcium might be useful to identify patients with
unsuspected coronary artery disease, until the advance of high-resolution techniques
little success has been achieved. Today, it is well-known that coronary calcium is a
result of a complex, regulated and active process similar to bone formation that is
related and at the same time different from atherosclerosis. On the other hand, it is
not completely clear what the vulnerable plaque is. The common researcher opinion
is that a vulnerable plaque consists of: lipid core, fibrous cap, presence of inflamma-
tory cells and is affected by the vessel remodelling and its 3D morphology. Still a
complete morphological, mechanical and chemical information is necessary in order
to characterize the vulnerable plaque in a robust way.

Coronary angiography has been so far the gold standard to assess the severity of
obstructive luminal narrowing. Furthermore it serves as a decision tool to direct ther-
apeutical procedures (as PTCA). By coronary angiography the lumen boundaries can
be assessed, but no information is provided about plaque burden, plaque delineation
and plaque components. The predictive power of occurrence of myocardial infarction
is rather low since 70% of acute coronary occlusions are in areas that were previously
angiographically normal, and only a minority occurs where there was severe stenosis.
Other studies have affirmed, that the culprit lesion prior to a myocardial infarction
has, in 48%−78% of all cases, a stenosis smaller than 50%. The majority of ulcerated
plaques are not big enough to be detected by angiography, but can be well assessed
pathologically.

IVUS displays the morphology and histological properties of a cross-section of a
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vessel [1]. Figure 1.2 shows a good example of IVUS images. It is generally accepted
that the different kind of plaque tissues distinguishable in IVUS images is threefold:
Calcium formation is characterized by a very high echo-reflectivity and absorbtion of
the emitted pulse from the transducer. This behavior produces a deep shadowing ef-
fect behind calcium plaques. Fibrous plaque has medium echo-reflectivity resembling
that of the adventitia. This tissue has a good transmission coefficient allowing the
pulse to travel through the tissue, and therefore, providing a wider range of visualiza-
tion. Soft plaque or Fibro-Fatty plaque is the less echo-reflective of the three kind of
tissues. It also has good transmission coefficient allowing to see what is behind this
kind of plaque. Figure 1.2 shows different examples of the different described plaques.

Due to all the diagnostic possibilities provided by this technique, it is of vital im-
portance for the physicians to address the difficult problem of tissue characterization
and IVUS analysis.

Therefore, IVUS analysis is of clinical importance. To illustrate this fact, several
researchers have focuses their efforts trying to solve the problem. There are three lines
of research to describe the vessel morphology and detect plaques in IVUS images: by
textural image analysis, radio-frequency analysis of IVUS data and elastograms.

Textural analysis is the most close to the physician ”exercises” during IVUS analy-
sis as a decision is taken on morphological analysis of image sequence. Visual textural
analysis is a difficult, subjective and time-consuming process highly depending on the
specialist. Therefore, there is an increasing interest of the medical community in
developing automatic tissue characterization procedures of IVUS images. This is ac-
centuated because the procedure for tissue classification by physicians implies the
manual analysis of IVUS images frequently necessary to be done online during the
therapeutical procedure.

The problem of automatic tissue characterization has been widely studied in dif-
ferent medical fields. The unreliability of gray level only methods to achieve good
discrimination among the different kind of tissues forced us to use more complex
measures, usually based on texture analysis. Texture analysis has played a prominent
role in computer vision to solve tissue characterization problems in medical imaging
[2] [3] [4] [5] [6] [7] [8] [9].

Several researching groups have reported different approximations to characterize
the tissue of intravascular ultrasound image.

Vandenberg et. al., in [10], base their contribution on reducing the noise of the
image, to have a clear representation of the tissues. The noise reduction is achieved
by averaging sets of images when the least variance in diameter of the IVUS occurs.
At the end, a fuzzy logic based expert is set to discriminate among the tissues.

Nailon et. al. devote several efforts to IVUS tissue characterization. In [11]
they use classic Haralick texture statistics to discriminate among tissues. In [12] the
author proposes the use of co-occurrence matrices texture analysis and fractal texture
analysis to characterize intravascular tissue. Thirteen features plus fractal dimension
derived from Brownian motion are used for this task. The conclusion shows that
fractal dimension is unable to discriminate between calcium and fibrous plaque but
helps in fibrous versus lipidic plaque. On the other hand, co-occurrence matrices are
well suited for the overall classification. In [13], it is stated that the discriminative
power of fractal dimension is poor when trying to separate fibrotic tissue, lipidic tissue
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and foam cells. The method used is based on fractal dimension estimation techniques
(box-counting, brownian motion and frequency domain).

Spencer et. al. in [14], center their work on spectral analysis. Different features are
compared: mean power, maximum power, Spectral Slope and 0Hz interception. The
work concludes with the 0Hz spectral slope as the most discriminative feature. Dixon
et. al. in [15], use co-occurrence matrices and discriminant analysis to evaluate the
different kind of tissues in IVUS images. Ahmed et. al. [16] uses a radial transform
and correlation for pattern matching. The features used are higher order statistics
such as kurtosis, skewness, and up to four order cumulants. The results provided
appear to have fairly good visual recognition rate.

The work of de Korte et. al. [17] opens a new proposal based on assessing the local
strain of the atherosclerotic vessel wall to identify different plaque components. This
line of work is based on estimating the radial strain by performing cross-correlation
analysis on pairs of IVUS at a certain intra-coronary pressure. This very promising
technique, is called elastography.

Probably, one of the most interesting work in this field is the one provided by Zhang
et. al. [18]. This work is much more complex trying to evaluate the full morphology
of the vessel. Detecting the plaque and adventitia borders and characterizing the
different kind of tissues, the tissue discrimination is done using a combination of well-
known techniques previously reported in the literature as: co-occurrence matrices
and fractal dimension from brownian motion, and adding two more strategies to the
amalgam of features: run-length measures and radial profile. The experiments assess
the accuracy of the method quantitatively.

Most of the literature found in the tissue characterization matters use texture
features, being co-occurrence matrices the most popular of all feature extractors.
Further work has been done trying to use other kind of texture feature extractors
and IVUS images, and although not specifically centered on tissue characterization,
the usage of different texture features in plaque border assessment is reported, that
can be easily extrapolated to tissue characterization. In [19], derivative of gaussian,
wavelets, co-occurrence matrices, Gabor filters and cumulative moments are evaluated
and used to classify blood from plaque. The work highlights the discriminative power
of co-occurrence matrices, derivatives of gaussian and cumulative moments. Other
works such as [20] provide some hints on how to achieve a fast framework based on
local binary patterns and fast high-performance classifiers. This last line of investi-
gation overcomes one of the most significant drawbacks of the texture based tissue
characterization systems, the speed, as texture descriptors are inherently slow to be
computed.

Whatever method we use in the tissue characterization task, we follow an under-
lying main methodology. First, we need to extract some features describing the tissue
variations. This first step is critical since the features chosen have to be able to de-
scribe each kind of tissue in a unique way so that it can not be confused with another
one. In this category of feature extraction we should consider the co-occurrence ma-
trix measures, statistical descriptors, local binary patterns, etc. The second step is the
classification of the extracted features. Depending on the complexity of the feature
data some methods fit better than others. In most cases, high dimensional spaces are
generated, so we should consider the use of dimensionality reduction methods such
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Figure 1.3: PhD working scheme in Medical Image analysis

as Principal component analysis or Fisher linear discriminant analysis. Either a di-
mensionality reduction process is needed or not, this step requires a classification pro-
cedure. For supervised classification we are using methods like maximum likelihood,
nearest neighbors, support vector machines, and the center of our current analysis
adaptative boosting [41] [42] [50]. In particular, adaptative boosting techniques allow
to deal with high dimensional spaces by using an intelligent feature selection process
while training the classifier.

Our contribution: In this work we analyze the problem of tissue characteriza-

tion from a point of view of classical classification using an advanced classification
technique: adaboost. However, we do not stop the work at this point, and we go fur-
ther developing a full automatic intravascular ultrasound analysis framework capable
of near-real time processing. The framework is able to segment the different layers
(intima and adventitia borderlines)and tissues (calcium, fibrous and lipidic) of the
IVUS image with high accuracy. Figure 1.3 shows a scheme of the work developed in
intravascular ultrasound image analysis.

All the work sketched in the proposals is fully described in the core of this PhD
work. The final layout of this work is divided in 6 chapters:

• Chapter 1 contains this introduction.

• Chapter 2 gives a general background of the feature spaces and classification
techniques that have been used in this work.

• Chapter 3 covers the basis of parametric generative deformable models and the
foundations of the Stop and Go formulation are unravelled. At the end of the
chapter generative snakes and the stop and go formulation are unified.

• Chapter 4 is related to pattern recognition theory and describes particulariza-
tion and semi-supervised clustering, introducing SCHCS: Supervised Clustering
Hybrid Competition Scheme.
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• Chapter 5 provides the experiments and results validating the formerly de-
scribed techniques.

• Chapter 6 is devoted to illustrate the work in the medical imaging field. The
first half of this chapter is concerned with adaboost and classical classification,
and the second half is devoted to build a complete framework for IVUS analysis
and tissue characterization.



16 INTRODUCTION



Chapter 2

General Background: Feature
Spaces and Classification
Techniques

This chapter describes the set of feature spaces and classification techniques that
will be used later in the chapters containing the experiments and IVUS framework
definition (chapter 5 and 6 respectively). Since most of the techniques described are
only used in chapter 6 for IVUS analysis, we exemplify each technique having in mind
mostly ultrasound analysis. In this sense, some assertions are explicitly related with
the ultrasound techniques.

2.1 Feature Spaces

The first issue when dealing with complex real problems, such as tissue characteriza-
tion, is to create a representation of the data we are analyzing. The representation of
the data is usually a more compact version of the original samples, for the problem
to be analytically feasible. While centering in some aspects of the original samples,
we restrict ourselves to that kind of features, and expect them to fully describe the
problem; though this not always happens.

Plaque recognition is usually approached as a texture discrimination problem.
This line of work is a classical extension of previous works on biological character-
ization, which also relies on texture features as has been mentioned in the former
section. The co-occurrence matrix is the most favored and well known of the texture
feature extraction methods due to its discriminative power in this particular problem
but it is not the only one nor the fastest method available. In this section, we make a
review of different texture methods that can be applied to the problem in particular,
from the co-occurrence matrix measures method to the most recent texture feature
extractor, local binary patterns.

To illustrate the texture feature extraction process we have selected a set of tech-
niques basing our criterion of selection on the most widespread methods for tissue

17
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characterization and the most discriminative feature extractors reported in the liter-
ature [21].

Basically, the different methods of feature extraction emphasize on different fun-
damental properties of the texture such as scale, statistics or structure. In this way,
under the non-elemental statistics property we can find two well-known techniques,
co-occurrence methods [22] and higher order statistics represented by moments [23].
Under the label of scale property we should mention methods such as derivatives
of gaussian [24], Gabor filters [25] or wavelet techniques [26]. Regarding structure
related measures there are methods such as fractal dimension [27] and local binary
patterns [28].

To introduce the texture feature extraction methods we divide them into two
groups: The first group, that forms the statistic related methods, is comprised by co-
occurrence matrix measures, accumulation local moments, fractal dimension and local
binary patterns. All these methods are somehow related to statistics. Co-occurrence
matrix measures are second order measures associated to the probability density func-
tion estimation provided by the co-occurrence matrix. Accumulation local moments
are directly related to statistics. Fractal dimension is an approximation of the rough-
ness of a texture. Local binary patterns provides a measure of the local inhomogeneity
based on an ”averaging” process. The second group, that forms the analytic kernel-
based extraction techniques, comprises Gabor bank of filters, derivatives of gaussian
filters and wavelet decomposition. The last three methods are derived from analytic
functions and sampled to form a set of filters, each focused on the extraction of a
certain feature.

2.1.1 Statistic related methods

Co-occurrence matrix approach

In 1963 Julesz [29] showed the importance of texture segregation using second order
statistics. Since then, different tools have been used to exploit this issue. The Gray
Level Co-occurrence Matrix is a well-known statistical tool for extracting second-
order texture information from images [22]. In the co-occurrence method, the relative
frequencies of gray level pairs of pixels at certain relative displacement are computed
and sorted in a matrix, the co-occurrence matrix P. The co-occurrence matrix can be
thought of as an estimate of the joint probability density function of gray-level pairs
in an image. For G gray levels in the image, P will be of size G×G. If G is large, the
number of pixel pairs contributing to each element, pi,j in P is low, and the statistical
significance poor. On the other hand, if the number of gray levels is low, much of the
texture information may be lost in the image quantization. The element values in the
matrix, when normalized, are bounded by [0, 1], and the sum of all element values is
equal to 1.

P (i, j,D, θ) = P (I(l, m) = i and I(l + D cos(θ),m + D sin(θ)) = j)

where I(l, m) is the image at pixel (l,m), D is the distance between pixels and θ is the
angle. It has been proved by other researchers [30] [21] that the nearest neighbor pairs
at distance D at orientations θ = {00, 450, 900, 1350} are the minimum set needed to
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Figure 2.1: Co-occurrence matrix explanation diagram (see text)

describe the texture second-order statistic measures. Figure 2.1 illustrates the method
providing a graphical explanation. The main idea is to create a ”histogram” of the
occurrences of having two pixels of certain gray levels at a determined distance with
a fixed angle. Practically, we add one to the cell of the matrix pointed by the gray
levels of two pixels (one pixel gray level gives the file and the other the column of
the matrix) that fulfil the requirement of being at a certain predefined distance and
angle.

Once the matrix is computed several characterizing measures are extracted. Many
of these features are derived by weighting each of the matrix element values and then
summing these weighted values to form the feature value. The weight applied to each
element is based on a feature weighing function, so by varying this function, different
texture information can be extracted from the matrix. We present here some of
the most important measures that characterize the co-occurrence matrices: Energy,
Entropy, Inverse Difference Moment (IDM), Shade, Inertia and Promenance [30]. Let
us introduce some notation for the definition of the features:
P (i, j) is the (i, j)th element of a normalized co-occurrence matrix.

Px(i) =
∑

j

P (i, j)

Py(j) =
∑

i

P (i, j)

µx =
∑

i

i
∑

j

P (i, j) =
∑

i

iPx(i) = E{i}

µy =
∑

j

j
∑

i

P (i, j) =
∑

j

jPy(j) = E{j}
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(a) (b)

(c) (d)

Figure 2.2: Response of an IVUS image to different measures of the co-occurrence
matrix. (a) Original image, (b) Measure shade response, (c) Inverse Different Mo-
ment, (d) Inertia.

With the above notation, the features can be written as follows:

Energy =
∑

i,j

P (i, j)2

Entropy = −
∑

i,j

P (i, j)logP (i, j)

IDM =
∑

i,j

1
1 + (i− j)2

P (i, j)

Shade =
∑

i,j

(i + j − µx − µy)3P (i, j)

Inertia =
∑

i,j

(i− j)2P (i, j)

Promenance =
∑

i,j

(i + j − µx − µy)4P (i, j)

Hence, we create a feature vector for each of the pixels by assigning each feature
measure to a component of the feature vector. Given that we have four different
orientations and the six measures for each orientation, the feature vector is a 24-
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dimensional vector for each pixel and for each distance. Since we have used two
distances D = 2 and D = 3, the final vector is a 48-dimensional vector.

Figure 2.2 shows responses for different measures on the co-occurrence matrices.
Although a straightforward interpretation of the feature extraction response is not
easy, some deduction can be made by observing the figures. Figure 2.2(b) shows shade
measure, as its name indicates it is related to the shadowed areas in the image, and
thus, localizing the shadowing behind the calcium plaque. Figure 2.2(c) shows inverse
different moment response, this measure seems to be related to the first derivative
of the image, enhancing contours. Figure 2.2(d) depicts the output for the inertia
measure, seems to have some relationship with local homogeneity of the image.

Accumulation Local Moments

Geometric moments have been used effectively for texture segmentation in many
different application domains [23]. In addition, other kind of moments have been
proposed, Zernique moments, Legendre moments, etc. By definition, any set of pa-
rameters obtained by projecting an image onto a 2D polynomial basis is called mo-
ments. Then, since different sets of polynomials up to the same order define the
same subspace, any complete set of moments up to given order can be obtained from
any other set of moments up to the same order. The computation of some of these
sets of moments leads to very long processing times, so in this section a particular
fast computed moment set has been chosen. This set of moments is known as the
accumulation local moments. Two kind of accumulation local moments can be
computed, direct accumulation and reverse accumulation. Since direct accumulation
is more sensitive to round off errors and small perturbations in the input data [31],
the reverse accumulation moments are recommendable.

The reverse accumulation moment of order (k−1, l−1) of matrix Iab is the value of
Iab[1, 1] after bottom-up accumulating its column k times (i.e., after applying k times
the assignment Iab[a− i, j] ← Iab[a− i, j] + Iab[a− i + 1, j], for i = 0 to a− 1, and for
j = 1 to b), and accumulating the resulting first row from right to left l times (i.e.,
after applying l times the assignment Iab[1, b− j] ← Iab[1, b− j] + Iab[1, b− j + 1], for
j = 1 to b− 1). The reverse accumulation moment matrix is defined so that Rmn[k.l]
is the reverse accumulation moment of order (k − 1, l − 1).

Consider the matrix in the following example:



0 1 2
1 1 1
4 2 3




According to the definition, its reverse accumulation moment of order (1,2) requires
two column accumulations,




5 4 6
5 3 4
4 2 3


 →




14 9 13
9 5 7
4 2 3




and three right to left accumulations of the first row:
(

36 22 13
) → (

71 35 13
) → (

119 48 13
)
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(a) (b)

Figure 2.3: Accumulation local moments response. (a) Original image. (b) Accu-
mulation local moment of order (3,1).

Then it is said that the reverse accumulation moment of order (1,2) of the former
matrix is 119.

The set of moments alone is not sufficient to obtain good texture features in certain
images. Some iso-second order texture pairs which are pre-attentively discriminable
by humans, would have the same average energy over finite regions. However, their
distribution would be different for the different textures. One solution suggested by
Caelli is to introduce a nonlinear transducer that maps moments to texture features
[32]. Several functions have been proposed in the literature: logistic, sigmoidal, power
function or absolute deviation of feature vectors from the mean [23]. The function
we have chosen is the hyperbolic tangent function, which is logistic in shape. Using
the accumulation moments image Im, and a non linear operator |tanh(σ(Im − Īm)|
an ’average’ is performed throughout the region of interest. The parameter σ controls
the shape of the logistic function. Therefore each textural feature will be the result
of the application of the non-linear operator to the computed moments. If n = k · l
moments are computed over the image, then the dimension of the feature vector will
be n. Hence, a n-dimensional point is associated with each pixel of the image.

Figure 2.3 shows the response of moment (3,1) on an IVUS image. In this figure,
the response seems to have a smoothing and enhancing effect, clearly resembling
diffusion techniques.

Fractal Analysis

Another classic tool for texture description is the fractal analysis [13] [33], charac-
terized by the fractal dimension. We talk roughly about fractal structures when a
geometric shape can be subdivided in parts, each of which are approximately a reduced
copy of the whole (this property is also referred as self-similarity). The introduction
of fractals by Mandelbrot [27] allowed a characterization of complex structures that
could not be described by a single measure using Euclidean geometry. This measure
is the fractal dimension, which is related to the degree of irregularity of the surface
texture.

The fractal structures can be divided into two subclasses: the deterministic fractals
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and the random fractals. Deterministic fractals are strictly self-similar, that is, they
appear identical over a range of magnification scales. On the other hand, random
fractals are statistical self-similar. The similarity between two scales of the fractal is
ruled by a statistical relationship.

The fractal dimension represents the disorder of an object. The higher the dimen-
sion the more complex the object is. Contrary to the Euclidian dimension, the fractal
dimension is not constrained to integer dimensions.

The concept of fractals can be easily extrapolated to image analysis if we consider
the image as a 3D surface in which the height at each point is given by the gray value
of the pixel.

Different approaches have been proposed to compute the fractal dimension of an
object. Here we only consider three classical approaches: based on box-counting,
Brownian motion and Fourier analysis.

Box-counting. The box-counting method is an approximation to the fractal
dimension as it is conceptually related to self-similarity.

In the method the object to be evaluated is placed on a square mesh of various
sizes, r. The number of mesh boxes, N , that contain any part of the fractal structure
are counted.

It has been proved that in a self-similar structures there is a relationship between
the reduction factor r and the number of divisions N into which the structure can be
divided:

NrD = 1

where D is the self-similarity dimension. Therefore, the fractal dimension can be
easily written as:

D =
log N

log 1/r

This process is done at various scales by altering the square size r. Therefore, the
box-counting dimension is the slope of the regression line that better approximates
the data on the plot produced by log N × log 1/r.

Fractal dimension from brownian motion. The fractal dimension is found by
considering the absolute intensity difference of pixel pairs, I(p1)− I(p2), at different
scales. It can be shown that for a fractal Brownian surface the following relationship
must be satisfied:

E(|I(p1)− I(p2)|)α(
√

(x2 − x1) + (y2 − y1))H

where E is the mean and H the Hurst coefficient. The fractal dimension is related
to H in the following way D = 3 −H. In the same way than the former method for
calculating the fractal dimension the mean difference of intensities is calculated for
different scales (each scale given by the euclidian distance between two pixels), and the
slope of the regression line between log E(|I(p1)−I(p2)|) and

√
(x2− x1) + (y2− y1)

gives the Hurst parameter.
Triangular prism surface area method. The triangular prism surface area

(TPSA) algorithm considers an approximation of the ’area’ of the fractal structure
using triangular prisms. If a rectangular neighborhood is defined by its vertices A, B,
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(a) (b)

Figure 2.4: Fractal dimension from box-counting response. (a) Original image. (b)
Fractal dimension response with neighborhoods of 10× 10.

Figure 2.5: Typical neighbors (Top-Left) P = 4, R = 1.0 (Top-Right) P = 8,
R = 1.0 (Bottom-Left) P = 12, R = 1.5 (Bottom-Right) P = 16, R = 2.0.

C and D, the area of this neighborhood is calculated by tessellating the surface with
four triangles defined for each consecutive vertex and the center of the neighborhood.

The area of all triangles for every central pixel is summed up to the entire area
for different scales. The double logarithmic Richardson-Mandelbrot plot should again
yield a linear line whose slope is used to determine the TPSA dimension. Figure 2.4
shows the fractal dimension value of each pixel of an IVUS image considering the
fractal dimension of a neighborhood around the pixel. The size of the neighborhood
is 10 × 10. The response of this technique seems to take into account the border
information of the structures in the image.
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(a) (b)

Figure 2.6: Local Binary Pattern response. (a) Original image. (b) Local Binary
Pattern output with parameters R = 3,P = 24.

Local Binary Patterns

Local Binary Patterns [28] are a feature extraction operator used for detecting ”uni-
form” local binary patterns at circular neighborhoods of any quantization of the
angular space and at any spatial resolution. The operator is derived based on a cir-
cularly symmetric neighbor set of P members on a circle of radius R. It is denoted
by LBP riu2

P,R . Parameter P controls the quantization of the angular space, and R
determines the spatial resolution of the operator. Figure 2.5 shows typical neigh-
borhood sets. To achieve gray-scale invariance, the gray value of the center pixel
(gc) is subtracted from the gray values of the circularly symmetric neighborhood gp

(p = 0, 1, ..., P − 1) and assigned an 1 value if the difference is positive and 0 if
negative.

s(x) =
{

1 if x ≥ 0
0 otherwise

By assigning a binomial factor 2p for each value obtained, we transform the neigh-
borhood into a single value. This value is the LBPR,P :

LBPR,P =
P∑

p=0

s(gp − gc) · 2p

To achieve rotation invariance the pattern set is rotated as many times as necessary
to achieve a maximal number of the most significant bits, starting always from the
same pixel. The last stage of the operator consists on keeping the information of
”uniform” patterns while filtering the rest. This is achieved using a transition count
function U . U is a function which counts the number of transitions 0/1, 1/0 while we
move over the neighborhood:

U(LBPP,R) = |s(gP−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|
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(a) (b)

(a) (b)

Figure 2.7: Derivative of Gaussian responses for σ = 2. (a) Original image. (b)
First derivative of Gaussian response (c) Second derivative of Gaussian response (d)
Third derivative of Gaussian response.

Therefore,

LBP riu2
P,R =

{
LBP ri

P,R if U(LBPP,R) ≤ 2
P + 1 otherwise.

Figure 2.6 shows an example of an IVUS image filtered using a Uniform Rotation
Invariant Local Binary Pattern with values P = 24, R = 3. The feature extraction
image displayed in the figure looks like a discrete response focussed on the structure
shape and homogeneity.

2.1.2 Analytic kernel-based methods

Derivatives of Gaussian

In order to handle image structures at different scales in a consistent manner, a linear
scale-space representation is proposed in [24], [34]. The basic idea is to embed the
original signal into an one-parameter family of gradually smoothed signals, in which
fine scale details are successively suppressed. It can be shown that the Gaussian kernel
and its derivatives are one of the possible smoothing kernels for such scale-space. The
Gaussian kernel is well-suited for defining a space-scale because of its linearity and
spatial shift invariance, and the notion that structures at coarse scales should be
related to structures at finer scales in a well-behaved manner (new structures are not
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created by the smoothing method). Scale-space representation is a special type of
multi-scale representation that comprises a continuous scale parameter and preserves
the same spatial sampling at all scales. Formally, the linear-space representation of
a continuous signal is constructed as follows. Let f : <N → < represent any given
signal. Then, the scale-space representation L : <N×R+ → < is defined by L(·; 0) = f
so that:

L(·; t) = g(·; t) ∗ f

where t ∈ <+ is the scale parameter, and g : <NxR+{0} → < is the Gaussian kernel.
In arbitrary dimensions, it is written as:

g(x; t) =
1

(2πt)N/2
e−xT x/(2t) =

1
(2πt)N/2

e−
∑N

i=1 x2
i /(2t) x ∈ ReN , xi ∈ <

The square root of the scale parameter, σ =
√

(t), is the standard deviation of the
kernel g, and is a natural measure of spatial scale in the smoothed signal at scale
t. From this scale-space representation, multi-scale spatial derivatives can be defined
by:

Lxn(·; t) = ∂xnL(·; t) = gxn(·; t) ∗ f,

where gxn denotes a derivative of some order n.
The main idea behind the construction of this scale-space representation is that the
fine scale information should be suppressed with increasing values of the scale pa-
rameter. Intuitively, when convolving a signal by a Gaussian kernel with standard
deviation σ =

√
t, the effect of this operation is to suppress most of the structures

in the signal with a characteristic length less than σ. Different directional derivatives
can be used to extract different kind of structural features at different scales. It is
shown in the literature [35] that a possible complete set of directional derivatives up to
the third order are ∂n = [∂0, ∂90, ∂

2
0 , ∂2

60, ∂
2
120, ∂

3
0 , ∂3

45, ∂
3
90, ∂

3
135]. So our feature vector

will consist on the directional derivatives, including the zero-derivative, for each of
the n scales desired:

F = {{∂n, Gn}, , n ∈ <}
Figure 2.7 shows some of the responses for the DOG bank of filters for σ = 2. Fig-
ure 2.7(b), (c) and (d) display the first, second and third derivatives of gaussian,
respectively.

Wavelets

Wavelets come to light as a tool to study non-stationary problems [36]. Wavelets
perform a decomposition of a function as a sum of local bases with finite support and
localized at different scales. Wavelets are characterized for being bounded functions
with zero average. This implies that the shapes of these functions are waves restricted
in time. Their time-frequency limitation yields a good location. So a wavelet ψ is a
function of zero average: ∫ +∞

−∞
ψ(t)dt = 0
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which is dilated with a scale parameter s and translated by u:

ϕu,s(t) =
1√
s
ψ

( t− u

s

)

The wavelet transform of f at scale s and position u is computed by correlating f
with a wavelet atom:

Wf (u, s) =
∫ +∞

−∞
f(t)

1√
(s)

ψ∗
( t− u

s

)
dt (2.1)

The continuous wavelet transform Wf (u, s) is a two-dimensional representation of a
one-dimensional signal f. This indicates the existence of some redundancy that can
be reduced and even removed by sub-sampling the parameters of these transforms.
Completely eliminating the redundancy is equivalent to building a basis of the signal
space.

The decomposition of a signal gives a series of coefficients representing the signal
in terms of the base from a mother wavelet, that is the projection of the signal on the
space formed by the base functions.

The continuous wavelet transform has two major drawbacks: the first, stated
formerly, is redundancy and the second, impossibility to calculate it unless a discrete
version is used. A way to discretize the dilation parameter is a = am

0 ,m ∈ Z, a0 6= 1
constant. Thus, we get a series of wavelets ψm of width, am

0 . Usually, we take a0 > 1,
although it is not important because m can be positive or negative. Often, a value
of a0 = 2 is taken. For m = 0 we make s to be the only integer multiples of a new
constant s0. This constant is chosen in such a way that the translations of the mother
wavelet, ψ(t−ns0), are as close as possible in order to cover the whole real line. Then,
the election of s level is as follows:

ψm, n(t) = a
−m/2
0 ψ(

t− ns0a
m

am
0

) = a
−m/2
0 ψ(a−m

0 t− ns0)

that covers the entire real axis as well as the translations ψ(t−ns0) does. Summariz-
ing, the discrete wavelet transform consists of two discretizations in the transformation
equation (2.1),

a = am
0 , b = nb0a

m
0 , m, n ∈ Z, a0 > 1, b0 > 0

The multi-resolution analysis tries to build orthonormal bases for a dyadic grid, where
a0 = 2, b0 = 1, which besides have a compact support region. Finally, we can imagine
the coefficients dm,n of the discrete wavelet transform as the sampling of the convo-
lution of signal f(t) with different filters ψm(−t), where ψm(t) = a

−m/2
0 ψ(a−mt)

ym(t) =
∫

f(s)ψm(s− t)ds dm,n = ym(nam
0 )

Figure 2.8 shows the dual effect of shrinking of the mother wavelet as the frequency
increases, and the translation value decreasing as the frequency increases. The mother
wavelet keeps its shape but if high frequency analysis is desired the spatial support
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Figure 2.8: Scale-frequency domain of wavelets.

of the wavelet has to decrease. On the other hand, if the whole real line has to be
covered by translations of the mother wavelet, as the spatial support of the wavelet
decreases, the number of translations needed to cover the real line increases. Unlike
Fourier transform, where translations of analysis are at the same distance for all the
frequencies.

The choice of a representation of the wavelet transform leads us to define the
concept of a frame. A frame is a complete set of functions, that, though able to
span L2(<), it is not a base because it lacks the property of linear independence.
Multi-resolution analysis (MRA) proposed in [26] is another representation in which
the signal is decomposed in an approximation at a certain level L with L detail terms
of higher resolutions. The representation is an orthonormal decomposition instead of
a redundant frame and therefore the number of samples that defines a signal is the
same that the number of coefficients of their transform. A multi-resolution analysis
consists of a sequence of function subspaces of successive approximation. Let Pj be an
operator defined as the orthonormal projection of functions of L2 over the space Vj .
The projection of a function f over Vj is a new function that can be expressed as a
linear combination of the functions that form the orthonormal base of Vj . Coefficients
of the combination of each base function is the scalar product of f with the base
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Figure 2.9: Wavelets multi-resolution decomposition.

functions:
Pjf =

∑

n∈Z

〈f, φj,n〉φj,n

where

〈f, g〉 =
∫ +∞

−∞
f(t)g(t)dt

Before, we have pointed out the nesting condition of the Vj spaces, Vj ⊂ Vj−1. Now,
if f ∈ Vj−1 then f ∈ Vj or f is orthonormal to all the Vj functions, that is, we divide
Vj−1 in two disjoint parts: Vj and other space Wj , such that if f ∈ Vj , g ∈ Wj , f⊥g;
Wj is the orthonormal complement of Vj in Vj−1:

Vj−1 = Vj ⊕Wj

where symbol ⊕ measures the addition of orthonormal spaces. Applying the former
equation and the completeness condition, then

. . .⊕Wj−2 ⊕Wj−1 ⊕Wj ⊕Wj+1 ⊕ . . . =
⊕

j∈Z

Wj = L2

So, we can write:
Pj−1f = Pjf +

∑

n∈Z

〈f, ψj,n〉ψj,n

From these equations some conclusions can be extracted. First, the projection of a
signal f in a space Vj gives a new signal Pjf , an approximation of the initial signal.
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Figure 2.10: The filter set in the spatial-frequency domain.

Secondly, we have a hierarchy of spaces, then Pj−1f will be a better approximation
(more reliable) than Pjf . Since Vj−1 can be divided in two subspaces Vj and Wj ,
if Vj is an approximation space then Wj , which is the complementary orthonormal
space, it is the detail space. The less the j, the finer the details.

Vj = Vj+1 ⊕Wj+1 = Vj+2 ⊕Wj+2 = . . .

= VL ⊕WL ⊕WL−1 ⊕ . . .⊕Wj+1

This can be viewed as a decomposition tree (see figure 2.9). At the top left side of
the image the approximation can be seen, and surrounding it the successive details.
The further the detail is located the finer the information provided. So, the details at
the bottom and at the right side of the image have information about the finer details
and the smallest structures of the image decomposed. Therefore, we have a feature
vector composed by the different detail approaches and the approximation for each
of the pixels.

Gabor’s filter bank

Gabor filters represent another multi-resolution technique that relies on scale and
direction of the contours [25] [37]. The Gabor filter consists of a two dimensional
sinusoidal plane wave of a certain orientation and frequency that is modulated in
amplitude by a two-dimensional Gaussian envelope. The spatial representation of the
Gabor filter is as follows:

h(x, y) = exp
{− 1

2
[
x2

σ2
x

+
y2

σ2
y

]
}

cos(2πu0x + φ)
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(a) (b)

(c) (d)

Figure 2.11: Gabor filter bank example responses. (a) Gabor vertical energy of a
coarse filter response. (b) Gabor horizontal energy of a coarse filter response. (c)
Gabor vertical energy of a detail filter response. (d) Gabor horizontal energy of a
detail filter response.

where u0 and φ are the frequency and phase of the sinusoidal plane wave along the
x-axis and σx and σy are the space constants of the Gaussian envelope along the
x- and y-axis respectively. Filters at different orientations can be created by rigid
rotation of x-y coordinate system.
An interesting property of this kind of filters is its frequency and orientation-selection.
This fact is better displayed in the frequency domain. Figure 2.10 shows the filter
area in the frequency domain. We can observe that each of the filters has a certain
domain defined by each of the leaves of the Gabor ’rose’. Thus, each filter responds
to a certain orientation and at a certain detail level. Wider the range of orientations,
smaller the space filter dimensions and smaller the details captured by the filter, as
bandwidth in the frequency domain is inversely related to filter scope in the space
domain. Therefore, Gabor filters provide a trade-off between localization or resolution
in both the spatial and the spatial -frequential domains. As it has been mentioned,
different filters emerge from rotating the x-y coordinate system. For practical ap-
proaches one can use four angles θ0 = 0o, 45o, 90o, 135o. For an image array of N
pixels (with N power of 2), the following values of u0 are suggested [25] [37]:

1
√

2, 2
√

2, 3
√

2, . . . , and (Nc/4)
√

2



2.2. Classification process 33

cycles per image-width. Therefore, the orientations and bandwidth of such filters
vary with 45o and 1 octave. These parameters are chosen due to the fact that there is
physiologic evidences of frequency bandwidth of simple cells in visual cortex being of
about 1 octave, and Gabor filters try to mimic part of the human perceptual system.

The Gabor function is an approximation to a wavelet. However, though admissi-
ble, it does not result in an orthogonal decomposition and, therefore, a transformation
based on Gabor’s filters is redundant. On the other hand, Gabor filtering is designed
to be nearly orthogonal, reducing the amount of overlap between filters.

Figure 2.11 shows different responses for different filters of the spectrum. Figures
2.11(a) and 2.11(b) correspond to the inner filters with reduced frequency bandwidth
displayed in figure 2.10. It can be seen that they only deliver coarse information of
the structure and the borders are far from the original location. In the same way,
figures 2.11(c) and 2.11(d) are filters located on a further ring, and therefore respond
to details in the image.

It can be observed that the feature extraction process is a transformation of the
original two-dimensional image domain to a feature space that probably will have
different dimensions. In some cases, the feature space remains low, as in fractal di-
mension and local binary patterns, that with very few features try to describe the
texture present in the image. However, several feature spaces require higher dimen-
sions, as: accumulation local moments, co-occurrence matrix measures or derivatives
of gaussian. Table 2.1 shows the dimensionality of the different spaces generated by
the feature extraction process in our texture-based IVUS analysis.

Method Space dimension
Co-occurrence matrix measures 48
Accumulation local moments 81

Fractal Dimension 1
Local Binary Patterns 3
Derivative of Gaussian 60

Wavelets 31
Gabor’s filters 20

Table 2.1: Dimensionality of the feature space provided by the texture feature
extraction process.

The next step after the feature extraction is the classification process. As a result
of the disparity of the dimensionality of the feature spaces, we have to choose a
classification scheme able to deal with high dimensionality feature data.

2.2 Classification process

Once completed the feature extraction process, we have a set of features disposed in
feature vectors. Each feature vector is composed by all the feature measures com-
puted at each pixel. Therefore, for each pixel we have an n-dimensional point in the
feature space, where n is the number of features. This set of data is the input to
the classification process. The classification process is divided in two main categories:
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supervised and unsupervised learning. While supervised learning is based on a set of
examples of each class that trains the classification process, the unsupervised learning
is based on the geometry position of the data in the feature space and its possibility
to be grouped in clusters.

In this section, we are mainly concerned in supervised learning and classification,
since we know exactly what classes we are seeking. Supervised classification tech-
niques are usually divided in parametric and non-parametric. Parametric techniques
rely on knowledge of the probability density function of each class. On the contrary,
non-parametric classification, does not need the probability density function and is
based on the geometrical arrangement of the points in the input space. We begin
describing a non-parametric technique, k-nearest neighbors, that will serve later as
a ground truth to verify the discriminability of the different feature spaces. Since
non-parametric techniques have high computational cost, we make some assumptions
that lead to describe maximum likelihood classification techniques. However, the last
techniques are very sensitive to the input space dimension. It has been shown in the
former section that some feature spaces cast the two-dimensional image data to high
dimensional spaces. In order to deal with high dimensional data, a dimensionality
reduction is needed. The dimensionality reduction techniques are useful to create a
meaningful set of data because the feature space is usually large in comparison to
the number of samples retrieved. The most known technique for dimensionality re-
duction is principal component analysis [38]. However, PCA is susceptible to errors
depending on the arrangement of the data points in the training space, due to the
fact that it does not consider the different distributions of data clusters. In order
to solve the deficiency of PCA in discrimination matters, Fisher linear discriminant
analysis is introduced [38] [40]. In order to try to improve the classification rate of
simple classifiers, combination of classifiers is proposed. One of the most important
classification assembling process is boosting. The last part of this section is devoted
to a particular class of boosting techniques, Adaptative Boosting (AdaBoost) [41] [42].

2.2.1 k-Nearest Neighbors

Voting k-Nearest Neighbors classification procedure is a very popular classification
scheme which does not rely on any assumption concerning the structure of the un-
derlying density function.

As any non-parametric technique, the resulting classification error is the smallest
achievable error given a set of data. This is true due to the fact that this technique
implicitly estimates the density function of the data, and therefore, the classifier
becomes the Bayes classifier if the density estimates converge to the true densities
when an infinite number of samples are used [38].

In order to classify a test sample X, the k nearest neighbors to the test sample
are selected from the overall training data, and the number of neighbors from each
class ωi among the k selected samples is counted. The test sample is then classified
to the class represented by a majority of the k nearest neighbors. That is:

kj = max{k1 · · ·kL} → X ∈ ωj

k1 + · · ·+ kL = k
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Figure 2.12: 5-Nearest Neighbors example.

where kj is the number of neighbors from class ωj , (j = 1, · · · , L) among the selected
neighbors. Usually, the same metric is used to measure the distance to samples of
each class.

Figure 2.12 shows an example of a 5-nearest neighbors process. Sample X will be
classified as member of the light gray class since there are 3 nearest neighbors of the
black class while there are only 2 members of the white class.

2.2.2 Maximum Likelihood

The maximum likelihood classifier is one of the most popular methods of classification
[39]. The goal is to assign the most likely class wj , from a set of N classes w1, . . . , wN ,
to each feature vector. The most likely class wj from a given feature vector x is the
one with maximum posterior probability of belonging to the class P (wj |x). Using the
Bayes’ theorem, we have:

P (wj |x) =
P (x|wj)P (wj)

P (x)

On the left side of the equation, there is the a posteriori probability of a feature vector
x to belong to the class wj . On the right side, the a priori probability P (x|wj) that
expresses the probability of the feature vector x being generated by the probability
density function of wj . P (x) and P (wj) are the a priori probability of appearance of
feature vector x and the probability of appearance of each class wj respectively.

This model relies on the knowledge of the probability density function underlying
each of the classes, as well as the probability of occurrence of the data and the classes.
In order to reduce the complexity of such estimations, some assumptions are made.
The first assumption generally made is the equiprobability of appearance for each of
the feature vector as well as for each of the classes. This assumption reduces the
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Figure 2.13: (a) Graphic example of the ML classification assuming an underlying
density model. (b) Unknown probability density function estimation by means of
a 2 gaussian mixture model. (c) Resulting approximation of the unknown density
function.

Bayes’ theorem to estimate the probability density function for each class:

P (wj |x) = P (x|wj)

Multiple methods can be used to estimate the a priori probability. Two of the
most widespread methods are the assumption of a certain behavior and the mixture
models.

A very common hypothesis is to identify the underlying probability density func-
tion with a multivariate normal distribution. In that case the likelihood value is:

P (x|wj) =
1√

Σj(2π)
n
2

e−
1
2 (x−µj)Σ

−1
j (x−µj)

T

where Σj and µj are the covariance matrix and the mean value for class j, respectively.
In the case where the determinants of the covariance matrix for each of the classes are
equal each other, the likelihood value becomes the same as the Mahalanobis distances.
Figure 2.13(a) shows an example of the effect of this kind of classifier on a sample
”X”. Although the sample seems to be nearer the left hand distribution in terms of
Euclidean distance, it is assigned to the class on the right hand since the probability
of generating the sample is higher than its counterpart.

The other approach is to estimate the model of the probability density function. In
the mixture model approach, we assume that the probability density function can be
modelled using an ensemble of simple known distributions. If the base distribution is
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the gaussian function it is called Gaussian Mixture Model. The interest in this method
consists of the estimation of complex density function using low-level statistics.

The mixture model is composed of a sum of fundamental distributions, following
the next expression:

pi(x|Θ) =
C∑

k=1

pk(x|θk)Pk (2.2)

where C is the number of mixture components, Pk is the a priori probability of the
component k, and θk represents the unknown mixture parameters. In our case, we
have chosen gaussian mixture models θk = {Pk, µk, σk} for each set of texture
data we want to model. Figure 2.13(b) and figure 2.13(c) show an approximation
of a probability density function with a mixture of two gaussian and the resulting
approximation. Figure 2.13(b) shows the function to be estimated as a continuous
line and the gaussian functions used for the approximation as a dotted line. Figure
2.13(c) shows the resulting approximated function as a continuous line and the func-
tion to be estimated as a dotted line as a reference. One can observe that with a
determined mixture of gaussian distributions, an unknown probability density func-
tion can be well approximated. The main problem of this kind of approaches resides
in its computational cost and the unknown number of base functions needed, as well
as the value of their governing parameters. In order to estimate the parameters of
each base distribution, general maximization methods are used, such as Expectation
Maximization (EM) algorithm [39].

However, this kind of techniques is not very suitable as the number of dimensions
is large and the training data samples size is small. Therefore, a process of dimension-
ality reduction is needed to achieve a set of meaningful data. Principal component
analysis and Fisher linear discriminant analysis are the most popular dimensionality
reduction techniques used in the literature.

2.2.3 Feature data dimensionality reduction

Principal Component Analysis

This method is also known as Karhunen-Loeve method [38]. Component Analy-
sis seeks directions or axes in the feature space that provide an improved, lower-
dimensional representation of the full data space. The method chooses a dimension-
ality reducing linear projection that maximizes the scatter of all projected samples.
Let us consider a set of M samples {x1, x2, . . . , xM} in an n-dimensional space. We
also consider a linear transformation that maps the original space in a lower dimen-
sional space (of dimension m, m < n). The new feature vectors y are defined in the
following way:

yk = WT xk , k = 1, . . . , M

where W is a matrix with orthonormal columns. The total scatter matrix ST is
defined as:

ST =
M∑

k=1

(xk − µ)(xk − µ)T
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Figure 2.14: Example of the resulting direction using PCA and FLD.

where M is the number of samples, and µ is the mean vector of all samples. Ap-
plying the linear transformation WT , the scatter of the transformed feature vectors
is WT ST W . PCA is defined as to maximize the determinant of the scatter of the
transformed feature vectors:

Wopt = argmax|WT ST W | = [w1w2 . . . wm]

where {wi|i = 1, 2, . . . , m} is the set of n-dimensional eigenvectors of ST corresponding
to the m largest eigenvalues.

Therefore, PCA seeks the directions of maximum scatter of the input data, which
correspond to the eigenvectors of the covariance matrix having the largest eigenvalues.
The n-dimensional mean vector µ and the n × n covariance matrix Σ are computed
for the full data set.

In summary, the eigenvectors and eigenvalues are computed and sorted in decreas-
ing order. The k eigenvectors having the largest eigenvalues are chosen. With those
vectors a n×m matrix Wopt is built. This transformation matrix defines an m dimen-
sional subspace. Therefore, the representation of the data onto this m-dimensional
space is:

y = At(x− µ)

Principal component analysis is a general method to find the directions of max-
imum scatter of the set of samples. This fact however does not ensure that such
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directions will be optimal for classification. In fact, it is well-known that some spe-
cific distributions of the samples of the classes result in projection directions that
deteriorate the discriminability of the data. This effect is shown in figure 2.14 in
which the loss of information when projecting to the PCA direction clearly hinders
the discrimination process. Note that both projections of the clusters on the PCA
subspace overlap.

Fisher Linear Discriminant Analysis

A classical approach to find a linear transformation that discriminates the clusters in
an optimal way is discriminant analysis. Fisher Linear Discriminant Analysis
[38] [40] seeks a transformation matrix W such that the ratio of the between-class
scatter and the within-class scatter is maximized. Let the between-class scatter SB

be defined as follows:

SB =
c∑

i=1

Ni(µi − µ)(µi − µ)T (2.3)

where µi is the mean value of class Xi, µ is the mean value of the whole data, c is the
number of classes and Ni is the number of samples in class Xi. Let the within-class
scatter be:

SW =
c∑

i=1

∑

xk,i∈Xi

(xk,i − µi)(xk,i − µi)T (2.4)

where µi is the mean value of class Xi, c is the number of classes and Ni is the number
of samples in class Xi. If SW is not singular, the optimal projection matrix Wopt is
chosen as the matrix which maximizes the ratio of the determinant of the between-
class scatter matrix of the projected samples to the determinant of the within-class
scatter matrix of the projected samples:

Wopt = argmaxW

∣∣WT SBW
∣∣

∣∣WT SW W
∣∣ = [w1,w2, . . . ,wm] (2.5)

where wi, i = 1 . . .m is the set of SW -generalized eigenvectors of SB corresponding to
the m largest generalized eigenvalues.

Opposed to PCA behavior, FLD emphasizes the direction in which both classes
can be better discriminated. FLD uses more information about the problem as the
number of classes and the samples in each of the classes must be known a priori. In
figure 2.14 the projections on the FLD subspace are well separated.

In real problems, it can occur that it is not possible to find an optimal classifier.
A solution is presented by assembling different classifiers.

2.2.4 Adaboost classification process

The Adaboost process is a supervised learning and classification tool, since we know
exactly the classes we are seeking. Adaboost is created as a method for combining
simple classifiers to obtain a very accurate decision. Roughly, it is an iterative assem-
bling process in which each classifier is devoted to find a good division of the sub-set
of points formed by the samples that are more difficult classified up to that point.
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Figure 2.15: Diagram of the AdaBoost rule behavior.

In particular Adaboost is a shortening for Adaptative Boosting (AdaBoost), and
is widely recognized as one of the most accurate processes for high accuracy classifi-
cation.

AdaBoost procedure

Adaptative Boosting (AdaBoost) is an arcing method that allows the designer to keep
adding ”weak” classifiers until some desired low training error has been achieved [41]
[42] [50]. At each step of the proces, a weight is assigned to each of the feature points.
These weights measure how accurate the feature point is being classified at that stage.
If it is accurately classified, then its probability of being used in subsequent learners
is reduced, or emphasized otherwise. This way, AdaBoost focuses on difficult training
points at each stage.

The classification result is a linear combination of the ”weak” classifiers. The
weight of each classifier is proportional to the amount of data that classifies in a
correct way.

Figure 2.15 shows the evolution of the AdaBoost rule. The first learner tries to
deal with the great amount of data of the real rule. However, as it is a weak learner,
it probably could not represent the whole rule. Therefore, the AdaBoost process
emphasizes the difficult set of data (data that have not been correctly classified)
using weights that modify the probability density function of the appearance of each
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sample data point. Therefore, the next classifier will focus on those samples that are
not correctly classified. As the number of classifiers increases, the scope of each new
added weak classifier decreases.

The modification of the probability of appearance of each point in the process
can be troublesome, since we need to find classifiers that allow weighing the samples
points. Another possibility is to resample the data set according to the weights of each
feature data. The new set of feature points is used as inputs of the new classifier to
be added to the process. Although, this last method is more general it is unadvisable
to use it, since after several iterations, the training set can be trimmed to very little
data points. Therefore, it hinders the classification process.

As an additional feature, AdaBoost is capable of performing a feature selection
process while training. In order to perform both tasks, feature selection and classi-
fication process, a weak learning algorithm is designed to select the single features
which best separate the different classes. That is, one classifier is trained for each
feature, determining the optimal classification function (so that the minimum number
of feature points is misclassified). And then, the most accurate classifier-feature pair
is stored at that stage of the process. If feature selection is not desired, the weak
classifier focuses on all the features at a time.

The general algorithm is described as follows:
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• Determine a supervised set of feature points {xi, ci} where
ci = {−1, 1} is the class associated to each of the features
classes.

• Initialize weights w1,i = 1
2m , 1

2l for ci = {−1, 1} respectively,
where m and l are the number of feature points for each
class.

• For t = 1..T :

– Normalize weights

wt,i ← wt,i∑n
j=1 wt,i

so that wt is a probability distribution.

– For each feature, j train a classifier, hj which is re-
stricted to using a single feature. The error is evaluated
with respect to wt, εj =

∑
i wi|hj(xi)− ci|.

– Choose the classifier, ht with the lowest error εt.

– Update the weights:

wt+1,i = wt,iβ
ei
t

where ei = 1 for each well-classified feature and ei =
0 otherwise. βt = εt

1−εt
. Calculate parameter αt =

−log(βt).

• The final ”strong” classifier is:

h(x) =
{

1
∑T

t=1 αtht(x) ≥ 0
0 otherwise

Therefore, the strong classifier is the ensemble of a series of simple classifiers
(”weak”). Parameter αt is the weighting factor of each of the classifiers. The loop
ends when the classification error of a ”weak” classifier is over 0.5, the estimated
error for the whole ”strong” classifier is lower than a given error rate or if we achieve
the desired number of ”weaks”. The final classification is the result of the weighted
classifications of the ”weaks”. The process is designed so that if h(x) > 0, then pixel
x belongs to one of the classes.
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Figure 2.16: Error rates associated to the AdaBoost process. (a) Test error rate.
(b) ”Weak” single classification error (c) Strong classification error on the training
data.

Behavior of the Adaboost procedure

Analyzing the Adaboost process, we can figure out the error rate behavior when
adding new ”weak” classifiers. As we have described in the former section, the proba-
bility of each sample to be used in a ”weak” classifier raises if it has been misclassified
up to that moment by the ”strong” classifier. So if we want to add a classifier ht+1(x),
we take the misclassified points according h(x) =

∑T
t=1 αtht(x) and raise its probabil-

ity in t+1. As the set with higher probability is composed by the difficult data points,
the ”weak” classifier will easily fail in assigning the correct label to each sample. This
fact, tells us that the error rate will increase the more classifiers we add. This is true
for the transient time. To further understand the behavior of the stationary time, we
now describe the behavior of the ”strong” classifier error rate.

One of the conditions that stops the process is the fact that the ”weak” classifier
must perform better than the random guess. That is, we always want the error rate
of the ”weak” classifier to be under 0.5. If this condition is granted at each step,
it means that although the ”weak” is focusing on the most difficult data set, it still
manages to find a usable solution. This translates in the fact that some misclassified
points will now be correctly assigned to the true label. This, of course, is decreasing
the error rate of the compound of ”weaks”. This is true up to the point that if no
other stop condition is met, the error rate tends asymptotically to zero.

Resuming the ”weak” classification error rate in the stationary stage, it is expected
that the classifier will be able to classify correctly at least half plus one of the samples.
If this happens, the error will be better than random guess, though tending to 0.5.
Otherwise, the ”weak” can not be used to train the ”strong” classifier and the process
will end.

Figure 2.16 shows the evolution of the error rates for the training and the test
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feature points. Figure 2.16(a) shows the test error rate. One can observe, that the
overall error has a decreasing tendency as more ”weak” classifiers are added to the
process. Figure 2.16(b) shows the error evolution of each of the ”weak” classifiers.
The figure illustrates how the error increases as more ”weak” classifiers are added.
Figure 2.16(c) shows the error rate of the system response on the training data. As
it is expected, the error rate decreases to very low values. This, however does not
ensure a test classification error of such accuracy.

One question arises at this point. What will happen with the test error rate? The
answer is not so simple. While we expect the test error rate to decrease in the same
way as the training error rate does, one can not guarantee this behavior. However, we
realize that if the training set is meaningful, in the sense that it correctly represents
the problem, the test error rate should decrease according with the ”strong” error
rate. But we also must take into account that we have a finite amount of samples,
and therefore, the ”weak” classifiers could try to distinguish among not representative
and conflictive points due to the sampling. This fact can lead to overtraining stages,
in which, though the training is correctly classified, as it is not a good representation
of the reality, the test samples are misclassified.

The role of the ”weak” classifier

The weak classifier has a very important role in the procedure. Different approaches
can be used, however it is relatively interesting to center our attention in low time-
consuming classifiers.

The first and the most straight forward approach to a ”weak” is the perceptron.
The perceptron is constituted by a weighed sum of the inputs and an adaptative
threshold function. This scheme is easy to embed in the AdaBoost process since it
relies on the weights to make the classification.

Another approach to be taken in consideration is to model the feature points as
Gaussian distributions. This allows us to define a simple scheme by simply calculating
the weighed mean and weighed covariance of the classes at each step of the process:

µj
i,t =

∑
wi,txi Σj

i,t =
∑

wi,t(xi − µj
i,t)

2

for each xj
i point in class Cj . Wi,j are the weights for each data point.

If feature selection is desired, this scheme is highly constrained to the N features
of the N-dimensional feature space. If N is not enough large, the procedure could not
improve its performance. Therefore we propose another classifier for relatively low
dimensional spaces (2 magnitude orders). Because the selection of a single feature for
each of the classifiers is quite a hard constraint, we can look for the most significant
pair of features which discriminates better the different classes.

For each pair of features of our space one can use linear discriminant analysis to
find the transformation which leads to the most discriminant axis. Therefore, the
pair of features with the lowest error can be chosen. We can describe this ”weak”
classifier as follows.

h(x) =
{

1 if pjW
t
j x < pjθj

0 otherwise
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where pj and θj are the parity and threshold parameters and Wj is defined as follows:

Wj = Σ−1
j (µ−1,j − µ1,j)

which is the canonical variate. Wj is the principal axis of the solution of the linear
discriminant analysis system which maximizes

J(W ) =
W tSBW

W tSW W

, where SB is the between-class scatter SB =
∑C

i=1 Ni(µi − µ)(µi − µ)t and SW is the
within-class scatterSW =

∑C
i=1

∑
x∈Ci

(x− µi)(x− µi)t, where µ is the mean value
of the whole data, c is the number of classes and Ni is the number of samples in class
i.

Figure 2.17: Optimal threshold search using ROC curves

Another approach to a ”weak” classifier relies on the use of the ROC curves.
The ROC curves show the amount of false positives and false negatives for each
possible parameter of the classifier. In particular, if we use a threshold value, it shows
the curves for each threshold value. At this point, the optimal threshold value is
the minimum of the sum of both curves. This is the optimal trade-off between the
misclassification in both classes. This process can be done for each feature using a
feature selection plus classification process. This is the approach we have used in this
article.

Figure 2.17 shows an example of the optimal threshold search using ROC curves.
False positives and false negatives are displayed as two curves. The search for the
optimal threshold involves a trade-off between both curves (the continuous line dis-
plays the trade-off function). In particular, we look for the minimum amount of false
classified data. Therefore, the solution is the minimum of the continuous curve.
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In general, the weak classifier information to store at each iteration consists of the
features selected fj , if the feature extraction process is desired, and the parameters
of the classifier Θj . Those parameters are a threshold θj , a parity pj . Although the
threshold separates the two classes it is not enough to identify which class is in either
side of the threshold. Therefore, a parameter pj (parity) is needed to indicate the
direction of the inequality sign when classifying:

hj(x) =
{

1 if pjfj(x) < pjθj

0 otherwise

Both, the feature extraction and the classification processes, are the central parts
of any classification system. We will use the framework explained in the former
sections in order to classify exhaustively the plaque in the IVUS image.




