
Chapter 3

Supervised Clustering Competition
Scheme.

3.1 General framework and main goal

The main goal in this work is to find an integrated framework for supervised and
unsupervised classification techniques so that both can compete for the classification
of a data point. Since clustering methods are usually based on the minimization
of a dissimilarity measure or maximization of a similarity measure, it can be easily
seen that an hybrid approach can take advantage of this fact and try to express
both processes, the supervised and the unsupervised, as minimization of functionals.
Therefore, our aim is to find a way to blend supervised and unsupervised classification
schemes at the same time. Let us define,

L(x) = h(minx(α · SF (x) + (1− α) · UF (x))) (3.1)

where SF stands for supervised functional, a functional the minimums of which are
close to the centers of each class and that has an explicit maximum on the border
between classes; UF stands for unsupervised functional, expressing a dissimilarity
measure; α is the mixing parameter; and the function h(·) is a decision scheme that
allows the classification of each data sample.

Applying the gradient descent, we get,

∂x
∂t

= −∇F (x)

The iterative scheme is,
xt+1 = xt −4t · ∇F (x)

where ∇F (x) = {∂F (x)/∂xi}. Since we want both techniques to compete for the
data points, both functionals are combined by a mixing parameter α,

∂x
∂t

= −α
∇SF (x)
‖∇SF (x)‖ − (1− α)

∇UF (x)
‖∇UF (x)‖ (3.2)
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Now, we have to define the minimization processes that represent the supervised
classification and the clustering process.

3.2 Robust Similarity Clustering

Cluster analysis is concerned with grouping data by means of their similarity, there-
fore, it divides data in most dissimilar groups in different clusters [102] [107] [108].
Although different techniques have been proposed in the bibliography [114] [113],
[105] [108], [103] [109] [111] [115] (just to mention a few), we are interested in tools
for robust clustering related to invariability of the initial state, capability to differ-
entiate among different volumes of different sizes and toleration to noise and outliers
[100] [106] [97]. Recently, a simple but effective algorithm has been proposed to solve
most of the problems of robust clustering [97]. This method solves the initialization
and volume issues by means of a self-organizing technique of the data. This is the
work we have chosen to use as a unsupervised classification technique. The method
is based on a similarity clustering algorithm and an agglomerative hierarchical clus-
tering algorithm to find the optimal cluster number and reject outliers. Since, we are
not interested in finding the optimal number of clusters, because it is given a priori,
we simply obviate the agglomerative hierarchical algorithm step, and replace it by a
decision step that labels each cluster once it converges.

Figure 3.1: Scheme of the unsupervised clustering classification algorithm.

Figure 3.1 shows the three steps of the unsupervised clustering design. The
first step is the correlation comparison algorithm (CCA). This algorithm is
an automatic parameter extractor that analyzes exhaustively how different similarity-
clustering results correlate when the algorithm parameter changes. The second step is
similarity clustering algorithm (SCA). It is the self-organizing technique, which
output is a set of cluster centers around which the input data points are grouped.
SCA is the iterative procedure that allows each center to converge according to the
similarity measure. The more similar the data is, the more centers converge to the
same point. The result is a set of points indicating where each original data point has
converged. Though the number of final clusters is not known a priori the decision
step will set them to the number of classes desired. The last step is a supervised
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classifier, in particular, the same classifier used as a model in the supervised classifier
section. The decision of the classifier on the self-organized data allows the proper
labelling of the data points.

3.2.1 Similarity clustering core

Most of the clustering algorithms procedures are based on minimization of a total dis-
similarity measure, for instance, k-means or fuzzy c-means. In the approach we have
chosen a similarity measure between two points S(zj , xi) is used in a maximization
framework. Our goal is to maximize the total similarity measure Js(x) defined as:

Js(x) =
c∑

i=1

n∑

j=1

f(S(zj , xi))

where f(·) is a monotone increasing function, x represents the centers of each cluster
and z is the original data set (where z = {z1, . . . , zn} and zi is a D-dimensional data
point). As a similarity relation S(zj , xi), we use,

S(zj , xi) = e−(
‖zj−xi‖2

β )

where β is a normalization term. Let the monotone increasing function f(·) be,

f(·) = (·)γ , γ > 0

Therefore, the complete similarity measure Js(x) is,

Js(x) =
c∑

i=1

n∑

j=1

(
e−

‖zj−xi‖2
β

)γ (3.3)

The parameter β is superfluous in this scheme and can be defined as the sample
variance,

β =

∑n
j=1 ‖zj − z̄‖2

n
where z̄ =

∑n
j=1 zj

n
The parameter γ gains a considerable importance in this scheme since a good γ esti-
mate induces a good clustering result. The process of maximizing the total similarity
measure is a way to find the peaks of the objective function Js(x). It is shown in
[97] that the parameter γ is used as a neighboring limiter, as well as a local density
approximation. To find γ one can use an exhaustive search of the correlation of the
similarity function for each point when changing the parameter. If the correlation
value is over a certain threshold, we can consider that the similarity measure repre-
sents the different variability and volumes of the data set accurately. The authors set
this threshold experimentally to 0.97 but can change according to the application.

The similarity clustering approach uses the same similarity function but, as it is
a self-organizing approach, we define the initial data and centers by the unlabelled
data points z0 = x0,

UF (x) = Js(x) =
n∑

j=1

(
e−

‖zj−xk‖2
β

)γ
, k = 1 . . . n
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Getting its gradient, we obtain,

∇UF (x) = −2
γ

β

n∑

j=1

(
e−

‖zj−xk‖2
β

)γ(zj − xk), k = 1 . . . n (3.4)

3.3 Supervised classifier functional

As our goal is to combine supervised and unsupervised classifiers in a fair competi-
tion scheme, we must take a common framework for both processes to be comparable.
Since the clustering problem is solved as a self-organizing iterative process, we refor-
mulate the supervised classifier process as a self-organizing iterative process.

Without loss of generality, we restrict our classifier design to a two class supervised
classification process using a Bayesian framework with known class probability density
functions. Assuming that we can estimate each class probability density function
fA(x|c = A) and fB(x|c = B), the optimal discriminative rule using a Bayesian
approach is given by,

h(x) =
{

A f(x|c = A)P (A) > f(x|c = B)P (B)
B f(x|c = A)P (A) ≤ f(x|c = B)P (B)

If a priori knowledge of the probability appearance is not known, we assume P (A) =
P (B).

The manifold we are looking for, must maintain the optimal borderline as a max-
imum, since we want the minimums to represent each of the classes. It can be easily
seen that the following family of functions satisfies the requirement,

SF = −(f(x|c = A)− f(x|c = B))2N , ∀N ∈ {1..∞} (3.5)

As a minimization tool, we apply the gradient descent method,

∂x
∂t

= −∇SF (x),

the iterative scheme is,
xt+1 = xt −4t · ∇SF (x) =

xt − 2N4t · (fA(x)− fB(x))2N−1(f ′A(x)− f ′B(x))

In order to obtain a feasible closed form of the functional we can restrict the
density estimation process to a Gaussian mixture model,

SF (x) = fK(x) =
Mk∑

i=1

πigi(x, θi)

where Mk is the model order and gi(x, θi) is the multidimensional gaussian function,

gi(x, µi,Σi) =
1

(2π)d/2|Σi|
e−

1
2 (x−µi)

T Σ−1
i (x−µi)
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where θi = {µi,Σi} are the parameters for the gaussian, the covariance matrix and
the mean, and d is the dimensionality of the data.

Therefore,

∇SF ((x) =
Mk∑

i=1

(−πi

2
Σ−1

i (x− µi)gi(x, θi)) (3.6)

3.4 The procedure

Summarizing the overall procedure, we begin the process with three data sets, the
labelled data, the unlabelled data and the test set. Labelled data is used to create
the model for the supervised functional as well as used for the final decision step.
Unlabelled data feeds the competition scheme and it is the data that will be labelled
according to the balance of the supervised and unsupervised processes. The final
algorithm is as follows:

Step 1 Determine a supervised set L of data among labelled data and a set
U of unlabelled data.

Step 2 Estimate ∇SF (x) x ∈ L from (3.6).

Step 3 Apply the CCA step to set the parameter γ of UF (x) x ∈ U .

Step 4 Feed the competition scheme by evolving the clusters (that come from
unlabelled data U) according to (3.2) and let them converge.

Step 5 If the error of the minimization process is less than a fixed threshold,
stop the process. Otherwise, go to Step 3.

3.4.1 Behavior of the Supervised Clustering Competition

(a) (b)

Figure 3.2: (a) Original labels for the experiment. (b) Maximum likelihood classifier
performance using a mixture of 1 gaussian per class.
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This section shows an example to compare supervised classification, clustering and
supervised clustering competition. In figure 3.2 a classical supervised classification is
performed, the classifier is estimated and the corresponding Gaussian functions are
drawn. Figure 3.2.a show the original labels of the data. The points noted by + and o
are the labels assigned to the test data by the estimated already supervised classifier.
Note that the supervised process misses one of the data points (see the bottom left o
in the figure should be + to be correctly classified) assigning it an incorrect label.

(a) (b)

(c)

Figure 3.3: Behavior of the supervised self-organizing schemes, (a) Supervised func-
tional minimization at t=3. (b) Supervised functional minimization at t=14. (c)
Unsupervised functional minimization at t=20.

Figures 3.3, 3.4 and 3.5 show the supervised self-organization procedure, the un-
supervised clustering and the supervised clustering competition scheme respectively.
In those figures, the + and the o displayed are the labels of each data point from
the labelled training data and the . denote the clusters initialized by the unlabelled
data. Figures 3.3.a, 3.3.b and 3.3.c show the motion of the clusters by time when
only the supervised part of the functional in (3.1) is minimized. These figures show
how the data points mimic the supervised classification scheme as a self-organization
procedure. At each stage the points gather near the center of each of the classes. If
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we follow the path of each of the points we easily see that the resulting classification
is that displayed in figure 3.2, achieving the objective of having the same behavior
than the supervised classification process. This means that as the supervised as the
unsupervised frameworks can misclassify some of the points.

(a) (b)

(c)

Figure 3.4: Behavior of the unsupervised self-organizing schemes, (a) Unsupervised
functional minimization at t=3. (b) Unsupervised functional minimization at t=14.
(c) Unsupervised clustering functional minimization at t=20.

Figure 3.4 shows the result of the unsupervised clustering on the same example.
In this figure, the + and the o displayed are the real labels of each data point, and
the dots are the points as they gather around the centers of each class. Figures 3.4
show how the data points gathers in a unsupervised way. Note that the unsupervised
process misses one of the points, in particular the isolated point near the center of the
feature space converge to the wrong class due to the unsupervised procedure. Finally,
figures 3.5 show the Supervised Clustering Competition in action. The process uses a
mixing value of α = 0.3, and following the points as they evolve we can see that each
of the data points converges to its real class.



54 SCCS

(a) (b)

(c)

Figure 3.5: Behavior of the hybrid self-organizing schemes, (a) Supervised clustering
functional minimization at t=3. (b) Supervised clustering functional minimization
at t=7. (c) Supervised clustering functional minimization at t=14.



Chapter 4

Deformable models

4.1 Statistic Deformable Models: Generative Snakes

Generative snakes is the first proposal of this work. It is based on the definition of
a new external potential that describes the image features of interest. This potential
is derived from a generative model, and creates the likelihood map of an image. In
this context the feature modelling process is the first step for the likelihood map
computation. The likelihood map measures how likely each of the pixels of the image
is to belong to the desired pattern. This approach addresses the problems of unfilled
and unconnected regions in region classification as well as provide a constrained model
for searching in the likelihood space. It is worth mention that this scheme does not
depends on a previous classification since the classification step and the high-level
integration step are performed at the same time.

4.1.1 Background of parametric snakes

The basic goal of active contours is to find a parameterized curve that minimizes
the weighted sum of its internal energy (Ei) and external energy (Ee). Given a
traditional snake curve x(s) = (x(s), y(s)), s ∈ [0, 1], the snake can be formulated as
the minimization of the following equation:

S(x) =
∫

Ei + Eeds =
∫ 1

0

(α(s)
∣∣∂x

∂s

∣∣2 + β(s)
∣∣∂2x

∂s2

∣∣2 + Ee)ds (4.1)

The internal energy specifies the tension and smoothness of the contour. The first
order derivative prevents stretching (elasticity, controlled by α) while the second order
derivative discourages bending (stiffness, controlled by β). The external energy is
derived from the image data. Regardless of the external function the problem of
finding the curve x(s) that balances the internal and external forces must satisfy the
Euler-Lagrange equation which can be solved iteratively as follows:

∂x

∂t
=

∂

∂s

(
α

∂x

∂s

)
− ∂2

∂s2

(
β

∂2x

∂s2

)
−∇Ee(x) (4.2)
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When x(s, t) stabilizes xt(s, t) vanishes, leading to the solution of the system.
This system can be seen as a gradient descent algorithm; the solution can be found
by discretizing the equation and solving it iteratively.

The classic approach to the external energy is the potential energy which takes
smaller values at object boundaries as well as other features of interest. The typi-
cal potential function designed to lead a deformable contour toward step edges is a
function of the high-gradient location of the original image pixels.

P (x, y) = −γ|∇(Gσ(x, y) ∗ I(x, y))|2 (4.3)

where ∇ is the gradient operator, γ is a weighting parameter, Gσ(x, y) is the gaussian
filter of standard deviation σ, and I(x, y) is the image data. As it can be observed,
greater σ will increase the attraction range but will blur the edges.

In contrast to physics-based snakes, Geodesic snakes take the following form:

∂x

∂t
= c(κ + V0)|∇x| (4.4)

where
c =

1
1 + |∇(Gσ(x, y) ∗ I(x, y))| (4.5)

where V0 is constant and κ is the curvature of the deformable model at a given point.
To solve the segmentation problem, the snake curve is embedded in a higher order
manifold that deforms to adjust to image features. The final segmentation result is
obtained as the level set curve of the stabilized manifold. Positive V0 shrinks the
curve. It must be noted that both approaches have a term dependent on the image,
the external energy (Ee) in parametric snakes and the speed function (c) in geometric
snakes. Our approach focuses on these terms, therefore, it can be applied to both
methods by changing the defined image energy in equations (4.2) or the speed in
equation (4.4).

Different convergence problems affect the performance of snakes: a need for close
initialization, stopping criterion, impossibility of converging to concave boundaries,
etc. One of the most standard approaches used to try to solve problems in parametric
snakes is the Generalized Gradient Vector Flow (GGVF) [81] [80]. The GGVF begins
with the definition of an edge map f(x, y) derived from the image I(x, y). Therefore,
the ∇f vector is directed towards the edges with a narrow capture range, while
leaving the rest with no information. A regularization process is applied in order
to propagate information from the contours to assure continuity of the vector flow.
Formally, GGVF is defined as a vector field v(x, y) = (u(x, y), v(x, y)) that minimizes
the energy functional:

F =
∫ ∫

g(|∇f |)(u2
x + u2

y + v2
x + v2

y) + h(|∇f |)|v −∇f |2dxdy (4.6)

This equation follows the principle of propagating data at image regions where
the gradient, |∇f |, cancels. Usually, h(.) is a monotonically decreasing function, with
maximum value on the edges provided by |∇f |. This means that information from the
contours is propagated smoothly where f contains no data, while near image edges
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should be as similar as possible to ∇f . Function g(|∇f |) is chosen as complementary
to h(.) and governs the trade-off between both terms. Xu et al.[80] use g(|∇f |) =
e−(|∇f |/K) and h(|∇f |) = 1 − g(|∇f |) to cope with narrow concavities and some
speckle noise when deforming.

The solution of this system can be found iteratively by discretizing the Euler
equations:

ut(x, y, t) = g(|∇f |)∇2u(x, y, t)− h(|∇f |)(u(x, y, t)− fx(x, y)) (4.7)

vt(x, y, t) = g(|∇f |)∇2v(x, y, t)− h(|∇f |)(v(x, y, t)− fy(x, y)) (4.8)

where ∇2 is the Laplacian operator. Note that in homogeneous regions the second
term of the former equations is zero, thus making the Laplace term govern the evolu-
tion. The result is somewhat similar to a filling-in and spreading of information taken
from the boundaries. After the computation of v(x, y), the external force −∇Ee of
the snake is replaced by v(x, y) in (4.2) or (4.4).

4.1.2 Enhanced Likelihood Map for Statistical Snakes

Instead of using a heuristically defined potential field or its regularized version, we are
interested in defining the external energy of the snake as a likelihood map. To achieve
this purpose, given a set of target regions S = {si}, si ∈ c a feature extractor is used
to take out representative information of this set, which results in a feature vector
for each of the regions (Fi = {f1(si), f2(si), . . . , fn(si)}). This allows us to model
the likelihood (L(Fi)) of the data in the feature space given a set of target feature
points. This measure is related to the probability density function corresponding to
the texture region of interest.

The likelihood function is used to create a likelihood map (L(x, y) = L(F (x, y)|Mi)).
Each value in the likelihood map indicates how likely a pixel of the image is to belong
to the likelihood model Mi (Mi is the model of the target region of interest). This
process is done by applying the aforementioned linear discriminant analysis and the
gaussian mixture model on the feature vector (see section 2.2).

Usually, in general analysis, once the likelihood has been estimated, a classification
map is constructed by applying a fixed threshold estimated from a ROC curve. An
alternative for the classification of pixels consists in comparing distances to the class
centers, using the class membership of the nearest neighbor, and so for.

The classification map can be extremely irregular, containing holes and ”islands”,
making its direct use as an external energy map not straightforward. Our approach
relies on substituting the classification step with organizing pixels in regions according
to their likelihood and spatial distribution. Analyzing the likelihood map, its con-
tours are indicative of likelihood changes, and therefore, are candidates to represent
object boundaries. The contours of the likelihood map suffer from some shortcom-
ings: a) contour displacement, b) irregular contour values, c) strong contours between
regions ( we want to have significant contours near the real boundaries and low values
otherwise) and d) appearance of non-desired edges inside the regions. This leads us
to define an enhancing procedure for the likelihood map. Hence, we define a new
Enhanced Likelihood Map (ELM) for the two class problem as follows:
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L̃ = (
λ

λ + |L(I|Mi)− L(I|M i)|
· L(I|Mi)) (4.9)

where L(I|Mi) is a compact notation for L(F (I(x, y))|Mi),∀x, y ∈ I, Mi is the
model of the target region, M i is the model of the complement of the target region
and λ is a weighing parameter. Here L(F (I(x, y))|Mi) means the likelihood that the
projected features of pixel (x, y) of image I belongs to the target model Mi. Note
that when both likelihood values are similar (L(I|Mi) ∼ L(I|M i)), the likelihood
map (L(I|Mi)) is emphasized. It keeps smooth elsewhere. This term highlights the
likelihood map in a range near the border given by L(I|Mi) = L(I|M i). In this
way, we enhance edges near the classification border weighted by their likelihood
value in the map. The proposed ELM partially overcomes the main drawbacks of
the usage of the contours of the likelihood map, giving better accuracy and removing
non-prominent edges.

(a) (b) (c)

(d) (e) (f)

Figure 4.1: (a) Original image, (b) Likelihood Map for target texture, (c) Enhanced
likelihood map, (d) Mask used to create (a), (e) Contours of the likelihood map, (f)
Contours of the enhanced likelihood map.

Figure 4.1 shows the process of constructing the ELM and obtaining its contours
for different texture prototypes. Figure 4.1.(a) shows a synthetic image generated with



4.1. Statistic Deformable Models: Generative Snakes 59

(a) (b) (c)

Figure 4.2: (a) Original image, (b) Contours of the likelihood map, (c) Contours of
the proposed enhanced likelihood map.

the mask of figure 4.1.(d). Figure 4.1.(b) shows the likelihood map obtained for the
target texture corresponding to the central region of the figure 4.1.(a) and figure 4.1.(e)
displays its contours. Figure 4.1.(c) shows the enhanced likelihood map obtained
for the target texture corresponding to the central region of the figure 4.1.(a) and
figure 4.1.(f) illustrates its contours. Note that the proposed enhanced likelihood map
(4.1.(c)) is smoother and more compact than the original likelihood map (4.1.(b)).
Analogously, it can be observed that the contours of the enhanced likelihood map
(4.1.(f)) are more accurate than the ones of the original likelihood map (4.1.(e)).

Figure 4.2 illustrates another comparison between the traditional likelihood map
and our enhanced version. The texture image of figure 4.2.(a) has been generated
using the same mask but a different pattern. Comparing contours of fig.4.2.(b) with
those of the enhanced likelihood map (fig.4.2.(c)), we see that not only are contours
of fig.4.2.(c) smoother but also they are more reliable than those shown in fig.4.2.(b).
Moreover, we have removed superfluous edges inside the textured object, which is
essential for a good snake convergence.

4.1.3 Snakes Maximizing the Likelihood (SML)

The contours of the enhanced likelihood map represent an approximation of the region
of interest boundaries, which serves to define explicitly a potential map for the snake.
Taking into account that physics-based and geodesic snakes present a poor conver-
gence to concave boundaries, we use the generalized gradient vector flow approach
applied over the likelihood map instead of using a heuristic potential field. Note that
this process is equivalent to a regularization procedure performed on the likelihood
map.
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It consists of minimizing the following functional:

E(v) =
∫ ∫

µe−
|∇L̃|

K |∇v|2 + (1− e−
|∇L̃|

K ) · |v −∇L̃|2dxdy (4.10)

where L̃ is the enhanced likelihood map, K and µ are constants. The minimum
of the functional (4.10), v, replaces the image force in the snake equation (4.2). Re-
call that v is a smooth vector field on the whole image domain that preserves the
gradient of the enhanced likelihood map at significant contours. As a result, this reg-
ularization allows the snake surpassing weak likelihood contours giving a much better
approximation to the region of interest. The definition of SML is not constrained to
parametric snakes and can be generalized to geometric deformable models. However,
geometric deformable models as they are formulated are not suitable for operating
under non-binary derived external force. This fact lead us to reformulate the geodesic
formulation and incorporate several improvements in the way to the final theory.

4.2 Stop and Go snakes

Most of current snakes define curve evolution within an energy minimization frame-
work. In this context, the energy functional should achieve a compromise between
adjusting to image features and achieving curve regularity. Two are the main tenden-
cies for the definition of the minimizing energy.

• Geodesic formulations in a contour space

General geodesic snake formulation defines the evolution of a snake within an
energy minimization framework. In particular, the solution to the problem is
the curve (Γ) of minimum length in a Riemannian surface with a metric (g)
depending on the image contrast changes. It follows that if we note by u the
image to be segmented, the geodesic functional is given by:

Egeod =
∫

Γ

g ds with g =
1

1 + |∇u|2 (4.11)

The normal component of the Euler-Lagrange formulation characterizes geodesic
snakes as the curve that satisfies:

< ∇g, ~n > −g · κ = 0

where κ is the curvature of Γ, ~n its inward unit normal and <,> stands for the
scalar product of two vectors. Therefore, using the gradient descent flow we
obtain the following evolution equation:

∂Γ
∂t

= (g · κ− < ∇g, ~n >) · ~n (4.12)

We can give the following interpretation to each of the terms involved in the
above formula. The role of < ∇g, ~n > ~n is pretty clear: it is a vector field
defined on the curve pointing to the region of interest that attracts the snake
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to the object boundary. Since its computation essentially relies on image edges,
from a vector flow point of view, it can be considered as a Static Vector Field
locally defining the target object. Notice that in the standard formulation (4.11)
the scope of this static term reduces to a narrow surrounding of the boundaries
of interest. The curvature term, g · κ~n, influences different aspects of the snake
evolution. On one hand, it defines its motion when it is located far away from the
object boundaries. Since it depends on the evolving snake, it acts as a Dynamic
Vector Field in the convergence process. On the other hand, it serves as a curve
regularizing term, ensuring continuity of the final segmenting snake in a similar
fashion [94] the membrane term of parametric snakes does. Finally, it gives
the process a smooth behavior and ensures continuity during the deformation,
in the sense that it prevents shock formation [83]. However, incorporating the
curvature term into the convergence scheme has some disadvantages. First, it
difficulties the snake convergence to concave areas. Second, guidance through
the curvature is extremely slow, so in spite of giving regularity to the evolution
equation, it hinders the numerical scheme since time increment is bounded by
the second order term [91].

The main problem of (4.12) is that convergence to the object of interest relies
on the properties of the external field. It is well known [84] that current external
potentials do not ensure convergence to concave regions [84]. Even considering
a regularization [93] of the external force, concave regions such that the unit
tangent turns around more than π between consecutive inflexion points of the
object contour, can not be reached [84]. In order to increase convergence to
concavities and to speed up the evolution a constant velocity term in the direc-
tion of the normal component is usually added to the evolution equation giving
rise to ’balloon’-like snakes. The new term corresponds to area minimization
and results in a constant dynamic speed in the gradient descent:

∂Γ
∂t

= (g · κ + V0− < ∇g, ~n >) · ~n (4.13)

for V0 a given constant. Notice that, in order to ensure that the scheme will
stop at the boundary of interest, an equilibrium between the constant shrinking
velocity, V0, and the static vector field, ∇g, must be achieved. One easily realizes
that, should this condition be satisfied, incorporating the curvature term into the
convergence scheme constitutes a significant drawback. For V0 must overpass
the magnitude of κ to enter into concave regions but, at the same time, it
should be kept under min|〈∇g, ~n〉| (minimum taken on the curve to detect!) to
guarantee non trivial steady states. This dichotomy motivates the restriction of
the bounding the scope of V0 to a given image region. On the other hand, V0

can be thought as a minimizing area term. The concept of minimizing area has
been studied further leading to the so called ”region schemes” [85]:

• Snake formulation in a region scheme

The ”region terms” [85] are added to the minimization scheme as follows:

E(Ωin, Ωout, Γ) =
∫ ∫

Ωin

g(Ωin)dxdy +
∫ ∫

Ωout

g(Ωout)dxdy +
∫

Γ

g(Γ)ds (4.14)
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(a) (b) (c) (d)

Figure 4.3: External force decoupling into Stop and Go terms. (a) Static external
force. (b) Repulsive term. (c) Attractive term. (d) Dynamic go term.

where Ωin and Ωout refer to the inside and outside of the region of interest.
There are two different approaches to determine the region: a ”pseudo-static”
approach and a dynamic one. In the first case, the attraction term that guides
the evolution of each point in the curve is previously computed and kept fixed
during the evolution [71], [82]. In the second one, measures of the regions
descriptors depend on the evolving curve [92] [95], so that all parameters must
be updated at each iteration.

Region-based approaches usually rely on a pseudo mask behavior. This effect
can be seen in Zhu and Paragios region term

E = αlog
PBackground

PTarget

The last equation creates a static vector field where the contours of interest are
located at PBackground = PTarget. The same effect could have been obtained if
we have a mask defined:

M(x, y) =
{

α if PBackground > PTarget

−α otherwise

Hence, for any region-based approach we can define a mask which emulates the
behavior of the region scheme and defines the object of interest.

We propose to reformulate (4.13) decoupling the regularity and convergence terms
and embedding the scheme in a region-based framework.

Putting aside the energy minimization interpretation, the evolution of the curve
is basically guided by an external force which defines an equilibrium state of the
evolution. Whatever the external vector field, from the point of view of the evolving
curve, achieving an equilibrium state can be decoupled into two stages: a straight
forward advancing front defined outside the region of interest, and an inside region
term opposed to it. Evolution stops if these two forces cancel along the curve of
interest. Standard snake vector fields will serve to build an external force ensuring
convergence and a mask of the region of interest, I, will be used to perform any vector
decoupling /restriction.
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4.2.1 Basics of Stop and Go formulation

To get an intuitive idea of the underlying mechanism of Stop and Go, let us assume
that there is a mask representation (characteristic function) of the object we want to
detect. That is, we have a function I defining the region of interest R as:

I(x, y) =
{

1 if (x, y) ∈ R
0 otherwise

Then, a simplistic region evolution could be formulated as:

∂Γ
∂t

= αsign(I) · ~n (4.15)

where α is a parameter and sign(I) is a sign function defined for each pixel by
(−1)I(x,y). This equation defines a simple dynamic vector field with an equilibrium
state at the boundary of the object. The dynamic field shrinks the snake if it is
located outside the object and blows it in its inside. Assuming that the initial snake
is placed outside R, the former evolutions correspond, respectively, to an ”inward”
motion in the curve normal direction and an ”outward” one in the opposite direction.

Although, unfortunately, we do not dispose of such a mask in practical applica-
tions, we can emulate the behavior of the former evolution. We will, first, derive the
snake evolution equation in an ideal case (that is, still assuming we can produce a
mask) and then describe in the next section how adapt Stop and Go formulation to
the schemes (contour and region-based spaces) described in section 4.2 and to the
likelihood map space, which estimates the characteristic functions/masks space.

First notice that in any minimization process, the snake deforms under two differ-
ent vector flows: an attractor vector field (GO) moving the curve towards the target
and a repulsive one (STOP) making that evolution stop. By means of the charac-
teristic function I these two motions can be decoupled and bounded like in (4.15).
That is, the scope of the attractor GO field will be restricted to the outside of R by
means of the function (1 − I), and the repulsive STOP to the inside through I. Let
us assume once again that the evolving curve is outside the region of interest. Then,
in a region-based approach, like the one given by (4.15), the GO term corresponds to
an area minimization process restricted to the outside of R:

VGO = (1− I) · V0 · ~n (4.16)

The above equation creates a dynamic ”inward” motion to the region of interest, in
the same fashion of that of ’balloon’ snakes. In order to define the outward ”motion”,
notice that there is no need to define the STOP field on the whole image. The scheme
will work, as long as this vector is well defined in the environment of the contour we
are looking for. This forces using a static vector field defined by the image features.
Therefore, the STOP term can be defined by the ”outward” gradient of any function,
namely g, locally defining the contours of the object of interest:

VSTOP = I · 〈∇g, ~n〉~n (4.17)
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It follows that the evolution of an outward initial curve to the region of interest in
Stop and Go formulation is given in the following terms:

∂Γ
∂t = < I · ∇g, ~n >︸ ︷︷ ︸~n + V0 · (1− I) · ~n︸ ︷︷ ︸

Stop Go
(4.18)

As in the case of ”balloon” snakes, the sum of both terms defines an (oscillating)
equilibrium solution if we assure that V0+ < ∇g, ~n >≤ 0 on the boundary of R.

The drawings in fig.4.3 illustrate the grounds of a Stop and Go field. A standard
static field, ∇g, having the circle as minimum is displayed in fig.4.3 (a). Its decom-
position into the repulsive, I · ∇g and attractive, (1− I) · ∇g, vector fields is shown,
respectively, in fig.4.3 (b) and (c). We observe that, like in any geodesic formulation,
the VSTOP term given by formula (4.17) corresponds to the projection of the repulsive
vector field onto the snake unit normal, ~n. Finally, fig.4.3 (d) represents a dynamic
VGO field for the case of a shrinking ellipse placed outside the target gray circle.

4.2.2 Improving stop and go with a regularizing term

The ”stop and go” approach leads a curve to the desired boundary, however some
smoothness and continuity is desired on the final model. We will introduce the stan-
dard length minimizing curvature term to prevent high curvature segments in the
snake and to prevent it from leaking into small holes of the object contour. Because
regularity is only necessary in the final steps of the snake deformation, we will bound
its scope to a neighborhood of the target object. Such restriction can be performed
by means of a smoothed version of the mask I, given, for instance, by Ǐ = Gσ ∗ I; for
Gσ a gaussian filter with standard deviation σ. Adding this regularity term to (4.18)
the final evolution equation of Stop and Go snakes yields:

Γt = (I < ∇g, ~n > +V0(1− I)) · ~n︸ ︷︷ ︸ + ακǏ~n︸ ︷︷ ︸
Stop and Go Reg. term

(4.19)

The above formulation can be interpreted as selecting among all curves approaching
the boundary of the target object, those complying to a given degree of regularity.
Hence our formulation highly resembles that of parametric snakes, in the sense that
regularity and convergence have been decoupled.

Reducing the action range of the regularizing term, has the following consequences.
First of all, the curvature term has a radically different role than it had in the classical
geodesic snakes formulation. The main difference to existent geodesic snakes schemes
is that the snake only evolves under curvature near the object of interest. Removing
curvature from the convergence phase endows snakes evolving under (4.19) with some
useful properties. First, curvature is a strictly regularizing term in the same way
the parametric snakes have their internal energy, hence its importance on the final
curve is easily controlled by means of the weighting parameter α. Furthermore, since
its scope is bounded to the last steps of the snake deformation it does not trouble
convergence to the contour concave regions. Finally, by restricting curvature to a
band around contours, the integration step in an Euler numeric scheme, related to
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second order terms [83], is not a critical value. It follows that, except for the very last
refinement steps, it can be arbitrarily high, so that speed of convergence increases.
The above comments makes the scheme given by (4.19) conform to the following naive
idea: obtaining a rough representation of objects should be computationally efficient,
only requiring regularity is computationally expensive.

An important remark on the regularity of the final curve should be made. It is
well known that the curvature term alone only guaranties continuity of the curve,
preventing the snake from leaking into small holes. However, our scheme takes ad-
vantage of a synergy between the ”stop and go” formulation and the curvature term
to introduce a higher smoothness in the final shape. If we reformulate (4.19) as:

∂Γ
∂t = (V0 + I〈∇g,−→n 〉)−→n︸ ︷︷ ︸ + I · (ακ− V0)−→n︸ ︷︷ ︸

Convergence Regularizing term

we find that, if a small V0 ensures convergence, the snake regularity follows from the
competition between curvature and V0 near the object boundary. This competition
favors the regularization during that later steps of the convergence and produces a
smoothing effect on the curve. Our experiments show that the effect is extremely
close to the thin-plate (curvature minimizing) term of parametric snakes. In this
way, our scheme overcomes the problems that arise when the internal behavior of
parametric snakes is formulated in geometric terms. Although the implicit version of
parametric snakes internal energy is straightforward [94], the curvature minimizing
term introduces a 4th order differential operator in the level sets formulation. This
fact makes an efficient numeric implementation non feasible. Our approach allows
similar effects in a simpler way.

4.2.3 Stop and Go Snakes design

The roles of stop potential and the characteristic function. A design cri-
terion.

When trying to put the scheme to work some questions arise: Which is the stop
potential function g? How can I produce the mask, I, to decouple the different effects
provided by the scheme?

Analyzing the proposed scheme, we realize that although the stop potential and
the decoupling term I can be as general as we like, we can reduce the complexity of
the design by making g = 1 − I. This holds true because ∇(1 − I) locally defines
an outward vector field, in the same way the STOP term is desired to work. With
this simplification in mind we will show how our scheme performs on typical object
characterization spaces such as the contour-based space and the region-based space.
Notice that any segmentation scheme can be expressed as a contour-based or region-
based scheme. Remind that classical snake potentials are defined on the contour space,
while region-based snakes potential is defined on the characteristic function/mask
space. In this section we show the usage of the Stop and Go snake in both spaces.
Besides, we propose the likelihood map space as a decoupling function as well as the
stop potential function g.



66 DEFORMABLE MODELS

(a) (b)

Figure 4.4: Modelling of an open drop. (a) Snake without regularity term and (b)
Stop and Go snake.

Contour space The contour space is defined by the contours of the object of
interest. In the contour space the snake converges to the desired contours and tries
to close open edges. Although our approach is derived from the mask space, one can
consider contours as a degenerate approach to regions in which each contour is a mask
we want to approximate. This consideration allows our scheme to work on contour
maps.

Figure 4.4 illustrates two effects of the stop and go scheme. The Stop and Go
active model is showed deforming over a contour map, thus serving as an illustration
of its usage in this kind of space. Figure 4.4.(a) shows the result of an evolution using
Stop and Go without the regularizing term. Figure 4.4.(b) illustrates the result of
the Stop and Go snake with the smoothing term. The figure shows a degenerated
characteristic function. In this case the characteristic function are the edges of the
”drop” figure. One can basically observe two main effects when comparing both
figures: the smoothness of the curve is higher, and the term prevent the snake from
leaking through small holes.

Mask space As mentioned in Section 3.2 region-based approaches usually rely on
a characteristic function. It is obvious, that our approach works in this space provided
that this was the theoretical scenery in which the active model has been designed to
work.

4.2.4 Term Decoupling. The likelihood map space

Lacking of object masks in practical applications motivates searching for an alternate
to perform the decoupling needed in the Stop and Go snakes. Likelihood maps arise
as the perfect candidates for an approximation of object masks.

As it has been described in the former subsections, classical approaches use heuris-
tically defined vector fields to create the velocity term of the snake. Usually, these
approaches need previous classifications or contain implicit classification schemes, on
which there is little control over the false positive and false negative regions. There-
fore, an implicit classification, such as the region term of Paragios [71] or Zhu [82],
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(a) (b)

Figure 4.5: (a) Original image. (b) Likelihood map associated to the tetra-foil
figure texture.

defines explicitly the regions we want the snake to converge to. The control on how
accurate this classification is and the control on the false positive or false negative
regions is introduced by adding terms (boundary term) to the region term. The
boundary term acts as well as a smoothing and regularizing term.

To solve the deficiencies of the classic region approaches, we propose the use of
a likelihood map. The likelihood map is defined as the likelihood value for each of
the pixels of a given space to represent the target object. In our case, the likelihood
map is the likelihood values for each of the pixels of a image. We can think of
likelihood values as pseudo-probabilities which represents a continuous pseudo-density
function. This approximation of the density function of the image features will serve
as object masks and as external potential in the STOP term. Likelihood maps contain
information about the accuracy of the classification to avoid false positive classified
regions. Our approach exploits this fact to guide the deformation to the most probable
regions. The main drawback of likelihood maps, as most region-based segmentation
techniques, is its lack of accuracy at the real boundaries of the region of interest. In
the particular case of likelihood maps, we obtain a set of regions with high likelihood
value representing the objects of interest but are smaller in size than the real regions of
interest. However, the boundary information of the likelihood map can be enhanced
in multiple ways [87] as has been seen in the former section. We are not going to
discuss now how to improve the likelihood and just stick to the matter in hand.

In figure 4.5(b) it is shown the likelihood map obtained for the textured tetra-foil
of 4.5(a). Because bright regions (fig. 4.5(b)) yield an accurate representation of the
target object, the likelihood map matches the behavior of a characteristic function.
Therefore our estimation of the object mask will be a version of the likelihood map, Ľ,
normalized between 0 and 1. That is, replacing I by Ľ in the Stop and Go formulation
proposed in section 3, we obtain the following evolution equation:

∂Γ
∂t

= ακĽ · ~n + βĽ < ∇g, ~n > ·~n + V0(1− Ľ) · ~n

It only remains to define the STOP term, Ľ · ∇g, that defines the object of interest.
Using likelihood maps to define the Stop and Go field
As pointed out in Section 3.2, any classic snake potentials (contour space, mask
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space) can be used as STOP term. The choice depends on the particular segmenting
problem we handle. In the contour-based space setting, the object of interest is defined
by image edges, and the snake converges to a closed model of the latter. Meanwhile,
region-based spaces, are more suitable when operating in features characterizing the
objects of interest (such as, statistical, texture based, motion based, color based,
etc). We propose basing the STOP term on likelihood maps for feature spaces based
segmentation using Stop and Go.

Notice that the gradient, ∇(1− I), properly defines the STOP direction, provided
we convolve with a gaussian kernel, to overcome lack of differentiability of the charac-
teristic function. Unfortunately, this step may close some concave areas to the snake.
Now, as argued in former paragraphs, likelihood maps are continuous approximations
of masks. Hence, the gradient ∇(1− Ľ), is a suitable STOP term. Besides since the
former gradient is negligible outside a band around the contours of L, we can merge
together the two factors, ∇g and Ľ of the STOP term. This leads to the following
simplified formulation:

∂Γ
∂t

= ακĽ · ~n + β < ∇(1− Ľ), ~n > ·~n + V0(1− Ľ) · ~n (4.20)

From the likelihood map point of view, our aim by using this formulation is to find
the areas with higher probability of being the region of interest. The evolution by
this equation will bypass the low likelihood regions. On the other hand, as the term
V0(1 − Ľ) · ~n can be interpreted to come from an area minimization, this effect will
be present in the process. Therefore, by varying the V0 parameter we will be able to
”filter” the likelihood map by area. The regularizing term weighted by the curvature
parameter α and the region parameter V0 will impose a smooth behavior of the curve
and, if desired, prevent the snake from leaking through little holes.

For the sake of the fastest speed of convergence possible, we use the following
numeric scheme:

4.2.5 Stop and Go Numeric Formulation

Evolution of an initial snake Γ0 under (4.20) is implemented using the Level Sets [86]
formulation. That is, given any initial surface (φ0) properly defining the interior of
Γ0, the snake evolution at time t coincides with the 0 level contour of the solution to:

∂φ

∂t
= (αĽ div(

∇φ

|∇φ| ) + V0(1− Ľ))|∇φ|+ β < ∇(1− Ľ),∇φ >

The explicit Euler scheme we use in the numeric implementation of the former equa-
tion is given by:

φt+1 = φt + (αĽ
uxxu2

y−2uxyuxuy+uyyu2
x

|∇u|2 +

+V0(1− Ľ)|∇φt|+ β < ∇(1− Ľ),∇φt >)∆t (4.21)

where φt stands for the solution at time t and derivatives are computed using centered
finite differences. Notice that the speed of convergence hinges upon the magnitude of
the time step ∆t, the higher it is, the less iterations the algorithm needs. Accuracy
is determined by V0.
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4.3 Likelihood map enhancements and Stop and Go

Stop and Go active models are suitable to absorb the generative approach used in the
statistical deformable models (generative snakes), as showed in the former sections. In
this section we want to deepen into the likelihood map enhancement process in order
to define a more robust characteristic function for the Stop an Go term decoupling.

As it has been introduced in former sections, likelihood maps suffer from several
drawbacks that should be solved, namely: its lack of accuracy at the real boundaries
of the region, and the fact that it has high value on ”safety” areas, and low likeli-
hood elsewhere. The ”safety” areas are usually sub-regions of the regions desired.
Therefore, we need to improve the boundary information by enhancing the likelihood
map.

4.3.1 Geometry based enhancement of the likelihood map

The likelihood map can be enhanced according to its geometry in order to preserve
the maximum information of the boundary possible. A plausible method for filtering
or enhancing images was proposed in another context by Salembier et al.[96]. In their
approach, Salembier et al. represent an image as a tree (Max-Tree) composed by
flat regions and linking information among regions. Each flat region is a node Ck

h in
the tree. The process for creating the tree is divided in two steps:

• Binarization step: For each temporary node TCk
h , the set of pixel belonging to

the local background is defined and assigned to the max-tree node Ck
h .

• Connected components definition step: The set of pixels belonging to the com-
plement of the local background (TCk

h\Ck
h , where \ is the set difference defined

on connected components) are analyzed and its connected components create
the temporary child nodes TCk

h+1.

The idea underlying the above formalization is to create a tree recursively by
the analysis of the relationships among connected components of the thresholded
versions of the image. Figure 4.6 illustrates the process for the max-tree creation.
The following explanation of the creation of the max-tree uses the notation for the
flat zones depicted in figure 4.6(b). In the first step, a threshold is fixed to the gray
value 0, and all the pixels at level h = 0 are assigned to the root node C1

0 = {A}.
The pixels with value strictly superior to h = 0 form the temporal nodes (in our case
TC1

1 = {B,C, D,E, F, G, H, I, J,K}). Each temporal node is processed as it was the
original image, and the new node will be the connected components associated to
the next level of thresholding h = 1, C1

1 = {B}. Let’s illustrate a split. Suppose
the process goes on till processing node C1

2 = {C}. The temporal nodes at that
point are the connected components strictly superior to h = 2, TC1

3 = {E, G, I}
and TC2

3 = {D, F,H, J,K}, and the associated nodes at h = 3 are C1
3 = {E} and

C2
3 = {D}.

Taking advantage of that concept, we use the Max-Tree representation to describe
the likelihood map. This representation allows further processing to be done keep-
ing topological issues unchanged. The likelihood map topological enhancement can
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(a) (b)

(c) (d)

Figure 4.6: Creation of the topological enhanced likelihood map. (a) Original
likelihood map. (b) Max-Tree representation. (c) Enhanced likelihood map without
constraining maximum values. (d) Final enhanced likelihood map.

be described as follows. Given the max-tree representation of the likelihood map T
and a parameter θ that represents the likelihood value and which we consider to be
high enough to determine a set of seed connected components, a safety set is defined
ST = {Ck

h | h > θ}. For instance, if the likelihood map represents a probability
map, we can assume that regions with probability over 90% are reliable enough to
represent safety areas that are used to initialize the method. The method enhances
topologically all the connected components that contain any of the safety areas by
weighting the value of the connected component by a function f(h), where h is the
threshold parameter for the connected component. The function f is monotonically
increasing and is desired to be S-shaped. Let’s define the set of connected components
that have a node in ST :

SN = {Ck
h | Ck

h ⊃ Cj
i , ∀ Cj

i ∈ ST }
Then, the topologically enhanced likelihood map is defined as:

Ľ(h) = (f(h) · SN (h)) ∪ SN (h)

where (f(h) ·SN (h)) is the product of the value of each of the connected components
of SN at level h with the value of a function at the threshold level. The result of
the product is an ”enhanced” set of components in which the value of each of the
components has been increased. SN is the complementary set of SN . The resulting
enhanced map Ľ is the union of the enhanced set and the complementary set. The ef-
fect of this enhancing process is to increase topologically the value of the neighboring
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connected components of the high likelihood value areas while preserving the rest of
the likelihood map intact. A final step is performed so that the resulting values after
enhancing never surpass the value of the connected component at level θ. Therefore,
each connected component the value of which is over θ is constrained to the value at
level θ. Recalling figure 4.6, fig 4.6(c) shows the non-constrained enhanced likelihood
map, and fig 4.6(d) depicts the final result. As can be observed in fig 4.6(d) the topo-
logically enhanced area has stepper slopes and therefore defines better the contours
of the region. On the other hand, the low probability region is kept at the same level.

4.3.2 Two class enhancement of the likelihood map

This last topological enhancement method can be applied also in conjunction with
the two class enhancement likelihood map providing much better results. Remember
that the formulation of the two class enhancement is as follows:

L̃(I) = (
λ

λ + |L(I|M)− L(I|M)| ) · L(I|Mi) (4.22)

where L(I|M) is the likelihood map for image I.

(a) (b)

(c) (d)

Figure 4.7: Different likelihood map enhancements. (a) Original image. (b) Likeli-
hood map associated to the tetra-foil figure texture. (c) Two class enhancing result
of the likelihood map. (d) Topological enhanced likelihood map.

Figure 4.7 shows the method when applied to a synthetic image of a tetra-foil figure
using a texture extraction process. Figure 4.7(a) shows the original tetra-foil image.
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The texture of the tetra-foil area is used in the learning process and the likelihood
map is built (fig. 4.7(b)). Figure 4.7(c) shows the enhanced likelihood map using the
first method described. As one can see, the borders are better defined and some low
likelihood areas which belong to the tetra-foil region are emphasized. Figure 4.7(d)
shows the result after the topological enhancement. We can observe that the borders
are clearly defined and the low likelihood regions are further emphasized keeping the
general topology of the tetra-foil unchanged.




