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Introduction

Celestial Mechanics is devoted to study the motion of planets, asteroids, satellites,
.... Its starting point can be considered in the XVII century when Johannes Ke-
pler formulated the laws of the motion of the planets in Astronomia Nova (1609).
In the year 1687 Newton gave in his work Philosophiae Naturalis Principia Math-
ematica the formulation of the principal object of study of Celestial Mechanics:
the n—body problem. This problem studies the motion of n particles system under
their mutual attraction, governed by the Newton Gravitational Law. Even though
the formulation of the equations that describes the n—body problem is easy, it is
difficult to solve them. In fact, the only case completely solved is the 2-body prob-
lem. All the efforts to solve explicitly the equations for n > 3 have failed. Poincaré
showed that the main difficulty comes from the existence of small divisors. In his
very famous Méthodes Nouvelles de la Mécanique Céleste (1899), Poincaré starts
the study of the problem from a qualitative point of view. Actually, qualitative
methods play a very important role in the study of differential equations.

However, some special solutions of the n—body problem are known: the homo-
graphic solutions. For these solutions the configuration of the particles is preserved
for any time. This can only be achieved for the so called central configurations. It
is well-known that for the Planar Three Body Problem there exists three collinear
central configurations, where the masses are located on a straight line, and two
triangular ones, in which the masses are on the vertices of an equilateral triangle.
Concerning the number and type of central configurations for n > 4 only partial
results are known.

On the other hand for many applications one can make several assumptions
which simplify the mathematical problem. The Restricted Three Body Problem
(RTBP) is one of the most used models to get a first insight in many applications.
In this problem the main assumption is to suppose that one of the bodies has
infinitessimal mass, in such a way that it does not influence the motion of the
other two bodies, called primaries. Then, one can assume that the primaries move
on a solution of the Kepler problem. The Restricted Three Body Problem tries
to explain the motion of the infinitessimal mass influenced by the gravitational
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forces exerted by the primaries. The most interesting cases for the applications
correspond to elliptic orbits of the primaries. If the eccentricity, e, of these orbits is
zero then we obtain the Circular Restricted Three Body Problem and for e € (0, 1)
the Elliptic Restricted Three Body Problem.

In a rotating system of coordinates the Planar Circular Restricted Three Body
Problem is described by a Hamiltonian system with two degrees of freedom ([Sz.]).
For this problem it is well-known that there exists three collinear equilibrium
points Lj 23 and two triangular ones L4 5. The collinear equilibrium points are of
centre-saddle type. Let be Cr, the value of the Jacobi constant at the equilibrium
L;. The Lyapunov theorem ([S.M.],[Ms.]) ensures the existence of a family of peri-
odic orbits born at the equilibrium. This family can be parametrized by the Jacobi
constant in such a way that for a fixed level of the Jacobi constant such that C'r, —C'
is small enough, the periodic orbit is the unique bounded orbit that for any time it
remains in a small neighbourhood of the equilibrium point. Moreover these orbits
are hyperbolic. They have stable and unstable 2—dimensional invariant manifolds
of codimension 1 once the Jacobi constant has been fixed. Using these invariant
manifolds it is possible to give a classification of the orbits passing through a small
neighbourhood of the collinear equilibrium points ([Co.2],[McG.1]). The existence
of transversal homoclinic orbits to the periodic Lyapunov orbit has been studied in
[L.M.S.] for different values of the mass parameter and the Jacobi constant. This
allows to introduce a symbolic dynamics ([L.M.S.],[Ms.2]) which gives the existence
of orbits passing through different regions of the phase space. The applicability of
these orbits to space missions have been studied in [K.L.M.R.].

In this work we distinguish mainly three parts. In the first one we study
some questions related to the stability of homographic solutions. The second
part is devoted to the Spatial RTBP. For that problem we study the existence of
heteroclinic/homoclinic connections to the invariant tori contained in the centre
manifold of the Spatial RTBP. Finally we study the applicability of KAM theorem
to the centre manifold of the collinear equilibrium points in the Planar Three Body
Problem. Next we introduce these three topics.

Homographic solutions

We consider the Planar Three Body Problem with homogeneous potential of degree
—a, 0 < a < 2, of the following type

mimsa mims mams

U(q;,d2,93) = )
(@,92:9) = =0 T g — @l | e al
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Notice that if o = 1 we get the Newtonian potential. One can generalize the
homographic solutions introduced for the Newtonian potential to the general case
(0 < a < 2). These solutions can be written as equilibrium points of a periodic
Hamiltonian system with 6 degrees of freedom. To this end one should introduce
a change of variable which depends quasiperiodically (periodically if « = 1) on
time.

As we are interested in the stability of these solutions it will be necessary to
compute the eigenvalues of the monodromy matrix. To reduce 2 degrees of freedom
we use first the integrals of the centre of masses. At this point the linearized
system for homographic solutions has order 8. Then we show that one can write
this system as two four dimensional uncoupled system. The monodromy matrix
of one of these systems has 1 as eigenvalue with multiplicity four. So, in order to
obtain the non trivial characteristic multipliers we need to study the other four
dimensional system,

x = A(t)x, (1)

where t is the true anomaly in the Newtonian case. Beyond the degree of ho-
mogeneity —c, this system depends on two parameters: (3, that depends on the
masses, and e, some generalized eccentricity. We note that the parameter 3 is
different for collinear and triangular cases.

When e equals zero, system (1) has constant coefficients and the characteristic
exponents, or equivalently the stability parameters, are trivially computed. As e
increases some bifurcation can appear. Furthermore as e goes to 1, we get in the
limit case a matrix A(¢) in (1) which has a singularity at ¢ = 0.

Our purpose is to study the stability of systems which generalize in some sense
the behaviour of the linearized homographic case for e near 0 and e near 1. So,
we consider linear systems of the following type

0 0 1 0

. 0 0 0 1

X = A(t,e)x, Alte)= MGt e) 0 0 o0 @
0 XoGa(te) 2 0

where x € R*, A\, \y are real parameters, e € [0,1), and G1, G2 are periodic
functions in ¢, depending on e. We shall study the stability for e = 0 and e < 1.
In any case, we shall make different hypothesis on G1 and G2 that will be satisfied
in particular in the homographic case.

A system like (2) has several applications. One of them is the study of the
stability for the equilibria of some Mechanical systems. Moreover, system (2) can
be obtained as a first variational system on a periodic solution of an autonomous
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system. Chapters 2 and 3 are devoted to study the stability parameters of (2) for
e > 0 small enough and for e < 1, respectively.

In chapter 2 we study the stability of system (2) for e 2 0 in the case that
(1, G2 are even periodic functions of ¢ and analytic in e. First of all, in section
2.2 we study the trivial case e = 0 where some resonant points are found. As e
increases some bifurations can appear giving rise to some regions in the parameters
spaces A1, Ag, e with different stability character. To study the boundary surfaces
of that regions we use the Normal Form technique. In [B.S.1] this method was
used to study the resonant tongues for Hill’s quasiperiodic equation depending on
two parameters, and in [B.S.2] to the unfolding of Mathieu-like equations in the
periodic case.

In this work to study the boundary surfaces we concentrate mainly in the
d’Alembert case, that is we assume that for (G; and G5 the kth harmonic has an
amplitude which is at least of order k in e. This is in fact a very common situa-
tion in mechanical systems. For example, it occurs in the study of the stability of
families of periodic orbits which born at an equilibrium point from purely imag-
inary eigenvalues. Assuming d’Alembert property we distinguish between single
and double resonances. The most interesting case is the second one. Under non
degeneracy conditions in a neighbourhood of a double resonance, by changing the
parameters one can get regions of any type for e 2 0.

In chapter 3 we study the stability of system (2) for e < 1. We assume
G1 = G2 with some singularity for e = 1 at ¢ = 0. The main result in this chapter
is an asymptotic formula for the stability parameters. We use a kind of blow up
technique to see the limit case as an heteroclinic connection.

In chapter 4 we use the results on chapters 2 and 3 in order to study the
stability of the homographic solutions of the Planar Three Body Problem. In
this case, the parameters A, Ao depend on a unique mass parameter 3. So, the
bifurcation diagram is represented in the plane (3, ¢) for fixed . We compute the
resonant parameters at e = 0 for any . However we concentrate mainly in the
Newtonian case. Using the Normal Form Method developed in chapter 2, we get
the resonant tongues born at e = 0 up to a given order.

In the collinear case, 5 € (0,7) for the physical problem. However, mathemat-
ically we can consider S > 0. Resonances are obtained at e = 0 for frequencies
> k > 3. If k = 2n no bifurcation takes place for e > 0. If kK = 2n + 1 resonant
tongues T% are born at e = 0. Despite only 7: 3, ’Tg are the unique tongues
which emanate from e = 0 for 5 € (0,7), all the other tongues 7: 241 enter this
range of (3 for values of e in (0,1). The width of Tg, Tg is of order 3 and 5 in e
respectively. Moreover the asymptotic formula for e near 1 predicts that all these

tongues accumulate at 8 = 3 as e goes to 1. This behaviour agrees with the
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numerical computations done for any e € (0,1).
Concerning the triangular case, for 0 < 8 < 1 and e = 0 the system is elliptic—-
elliptic and only one resonant tongue 7 born at 8 = 1 is found. It defines an

elliptic-hyperbolic region in the plane (/3,e). The width is of order 1 in e. The
3
behaviour for 5 = 1 and e 2 0 was studied by G. Roberts (see [R.]). By expand-

ing the monodromy matrix in series on e, he proves the existence of an elliptic—
hyperbolic region for this value of 5 and for e small enough. The method used in
[R.] is not useful in the collinear case because the computations are hard. This is
due to the fact that in the collinear case the width of tongues is of bigger order in e
and so, one needs to compute at least the third order terms in e of the monodromy
matrix of the linearized system on the collinear solution.

Spatial RTBP

Chapter 5 is devoted to the study of homoclinic orbits to the centre manifold of Lo
in the Spatial Restricted Three Body Problem. It is well-known that Lo is a centre—
centre—saddle equilibrium point. Then, it has one—-dimensional stable and unstable
invariant manifolds, and a four-dimensional centre manifold. In a neighbourhood
of Lo there exist the well-known families of planar and vertical periodic orbits
of Lyapunov. These families of periodic orbits have two—dimensional stable and
unstable manifolds. Moreover, in the centre manifold there exist invariant tori,
with three dimensional stable and unstable manifolds. For the dynamics on the
centre manifold see [J.M.], [G.M.]. The intersection of the unstable manifold of
one torus in the centre manifold and the stable manifold of another torus give
heteroclinic orbits from the first torus to the other one. If we consider the stable
and the unstable manifold of the same torus, then we obtain homoclinic orbits to
this torus. All these homoclinic and heteroclinic orbits are homoclinic orbits to
the centre manifold of Lo. In order to get heteroclinic (or homoclinic) orbits we
follow the main ideas developed in [L.M.S.] for the Planar RTBP. We compute
up to a given order the intersection of the unstable invariant manifold of a given
torus with the section y = 0 at the other side of the bigger primary. To do that we
consider the Spatial RTBP as a perturbation of the 3—dimensional Hill’s problem
in a neighbourhood of the equilibrium point and then as a perturbation of the
Spatial Synodic Two Body Problem. The stable manifold is obtained from the
unstable one using the symmetries of the problem.

We give also some estimates on the difference in action space for two tori in
order to have an heteroclinic connection. This allows us to construct heteroclinic
chains. In particular from invariant tori close to the planar periodic orbit to
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invariant tori close to the vertical one in a neighbourhood of the Lo point.

Planar Three Body Problem

Finally, in chapter 6 we study the existence of invariant tori on the centre man-
ifold of the collinear equilibrium points in the Planar Three Body Problem with
Newtonian potential. To this end we do the following steps. First, we perform
some canonical transformations to write the Hamiltonian in normal form. Then we
reduce the Hamiltonian to the centre manifold. After that, we check, by numerical
evaluation of the coefficients of the normal form up to order 4, the nondegeneracy
conditions of KAM theorem. The results presented in section 6.4 show that both
conditions (either isoenergetic or not) are satisfied for any values of the masses in
the triangle of masses.

The linearized system on a collinear equilibrium point has eigenvalues +\, +i,
+iw, \,w € R*. Then the collinear points are of centre—centre-saddle type. Up
to order 4 it is proved that we only need to take into account the resonance 2 : 1.
The corresponding resonant masses describe a curve in the triangle of masses.
Therefore, for resonant masses it is expected to get resonant monomials of order
three in the normal form of the Hamiltonian. We prove in section 6.3 that this is
not the case. In fact, we prove that the coeflicients of these monomials are different
from zero for general masses but they become zero for resonant masses, and also
in the symmetrical case m; = mg. The existence of the homographic solutions
allows us to compute analytically, in an easy way, the coefficients of the resonant
monomials of order three. These coefficients have (w — 2) as a factor. The results
given in chapter 6 are published in [M.S.].
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Chapter 1

Homographic solutions in the
Planar Three Body Problem

1.1 Equations of motion

Consider three positive point masses m1,mg, m3 moving in an inertial coordinate
system in R%. Let us denote by qi,q2,q3 € R? the position vector of the jth
particle of mass mj, j =1,2,3 (see figure 1.1).

q2 my

q1

q3

Figure 1.1: Masses m1, m2, m3 and the respective position vectors qi, qz, qs3.

Assume that the only forces acting on the masses are described by an homo-

13



14 1. Homographic solutions in the Planar Three Body Problem

geneous potential of the form

mi1me9 mims maoms

U(q1,q2,q3) = (1.1)

Clar —a2l|* flar —asl* T la2 — asl|e’

where 0 < o < 2. The purpose of the Planar Three Body Problem with homoge-
neous potential U is to describe the motion of these three masses.

Applying Newton’s second law yields the equations of motion

23: mim;i(q; —q;)  OU

= i=1,2,3 1.2
T — 2 o (1.2)

"
m;q;
J=1j#i

where U(q1,q2,qs) is defined in (1.1) and ' = %

If & = 1 we obtain the equations of the Planar Three Body Problem with
Newtonian potential, that is, the only forces acting on the three masses are their
mutual gravitational attraction.

Let us define A;; = {q = (q1,92,q3) € R%|q; = q;} for 1 <i < j < 3, and
A = Ui<icj<a3A;j. Ais said to be the collision set. It is clear that U is not defined
for q € A.

Let g = (q1,q2,q3) € RS\ A and M = diag(my,m1, ma, m2, m3, m3). Then,
equations (1.2) can be written as

Mq" = VU(q).

If we define p = (p1,p2,pP3) € RS by p = Md/, then p; = m;q; and p; is the
momentum of the jth particle. In variables (q,p) the equations of motion

q = M'p,

p’ = VU(a), (1.3)

form a Hamiltonian system with 6 degrees of freedom, with Hamiltonian function

Hia.p) = 5p"M'p—Ula) (14)

It is well known that there exist six first integrals for the Planar Three Body
Problem. These integrals can be used to reduce the order of the system.
First, we can assume that the centre of masses is fixed at the origin. Then

miqi + maqz +msqs = 0,
p1+p2+ps = 0, (1.5)
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obtaining 4 integrals for the system. Therefore, we can reduce the system in 4
equations. We also have that the angular momentum is a first integral for system
(1.3). Then, if we fix the angular momentum

Qi Ap1+qAp2+dqsAps = ¢,

one can reduce in one the dimension of the system.
Moreover, the Hamiltonian function (1.4) is a first integral.

Remark 1.1.1. Let be m := mq + mg + m3 and p; = ﬁ, j=1,2,3. After the
m

__1 _at3 .
change of variables Q = m™ a+2q, P = m™ »+2p, we get the same equations (1.3)
for Q, P with pu; instead of m;, j = 1,2,3. So, we can assume m1 +mg +ms3 = 1.

As m1 +mo +ms3 = 1, we can represent the set of admissible masses as points
in a triangle defined by

x 0 1 9
y = 0 my + 0 ma + é ms,
2

where (z,y) denote the usual coordinates in R?. This relation represents a triangle

in which the vertex (0,0), (1,0) and

3
2’ 7) correspond to m; = 1, my = 1 and

ms = 1, respectively (see figure 1.2).

m3:1

m1:1 m2:1

Figure 1.2: Triangle of masses

0 I,
—I, 0
is the 2n x 2n skew symmetric matrix, and Ky, is the 2n x 2n diagonal matrix
defined as Ko, = diag(Ja,...,J2).

Notation 1.1.2. I, stands for the identity matrix of order n, Jo, =
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1.2 Homographic solutions

In this section we describe briefly central configurations and homographic solutions
for the Planar Three Body Problem with homogeneous potential of degree —a,
0 < a < 2. For details, see [M.H.]. Homographic solutions for a n—-body problem
are remarkable solutions for the simplicity of motions that describe. This kind
of solutions are obtained from central configurations. A central configuration is a
configuration in the position space such that for any mass m; its acceleration, q;,
is proportional to the position, q;.

We identify R? with the complex plane C by considering q; as complex num-
bers. We seek for solutions of (1.2) of the form

qj(t) = z(t)qc]., .7: 172737 (16)

where q.; are complex constant numbers and z(t) is a complex valued function
(the complex product is considered in the right hand part of (1.6)). Notice that
the product by a complex number is a rotation followed by an homotecy, that is,
an homography. So, a solution like (1.6) is called homographic solution.

If we substitute the expression of these special solutions into (1.2) and we
rearrange the terms, yields

m;m;
HZ(t)Ha+2zll(t)2<t>_lmiqci - Z 1110 qc] (3:;)
j= 1‘]#1 ”ch - chH

As the right—-hand part of last expression is constant, left—hand part needs also to
be constant. Then, we obtain

" z(t
2'(t) = —)\W, (1.7)

where ) is a constant such that

m;m
—Amiqe, = « E 7 (A, aqf;), i=1,2,3. (1.8)
lae; — ag; |l
J=1,j#i

Therefore, (1.6) is a solution of the Planar Three Body Problem (1.2) if and only
if z(t) is a solution of (1.7) and q. = (d¢,, 9e,, Qey) satisfies (1.8). Equation (1.7)
is the Kepler problem with homogeneous potential of degree —a, 0 < a < 2. The
solutions of this equation are discussed in the appendix A.

A solution q. € RS\ A of (1.8) is called a central configuration.

In the special case when z(t) is a circular solution of (1.7) and q. is a cen-
tral configuration, the solution is also called a relative equilibrium because it
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becomes an equilibrium solution in a rotating coordinate system. For a relative
equilibrium the three bodies rotate as a rigid body.
Equations (1.8) is a nontrivial system of nonlinear equations. This system can

be written as
—AMq. = VU(q). (1.9)

Then, on a central configuration, the acceleration is proportional to the position.
If we consider the scalar product with q. in the equation above, using Euler’s
Theorem about homogeneous functions (that stays that if F : R™ — R is a C!

homogeneous function of degree 3 then the equality x” VF(x) = BF(x) holds) we
U(ac)

qf Mqc

(1.9) is invariant under rotations and under any uniform scaling. That is, if q.

obtain A = «

is a central configuration and we introduce s € R® as q. = kR(#)s where
R(0) = diag(R1(6), R1(6), R1(0))

cosf sind

is a 6 X 6 matrix, 6 € [0,27], R1(0) = ( il cosd
—sin

) and k € R, then

~A\Ms = VU(s),

with A = Ak®*2. That is, s is a central configuration.

We will say that two central configurations are similar if they differ in a rotation
or in an uniform scaling. Then, when counting central configurations one only
counts similarity classes.

Remark 1.2.1. It is not restrictive to assume that A\ = 1. This is due to the fact
1 _ (]
that if we introduce new variables Q = Aa+2q, P = A 2C+o) p and scale the time
1
by A2t, the equations of motion are (1.3) and equation (1.9) holds with A = 1.

Summarizing, assume that q. is a central configuration. Then for any z(t)
solution of the Kepler Problem with homogeneous potential (1.7), an homographic
solution of (1.2) is obtained as

We shall consider bounded homographic solutions. So, let z(¢) be a bounded
solution of (1.7). It can be written (see appendix A) as z(t) = r(t)el/() where
satisfies

av
"= - 1.10
r dT (T), ( )
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2
being V (r) = -——+ ;—2 the effective potential of the associated Kepler problem
ar r
and

tw
t) = ——ds. 1.11
10 = [ s (111)
We note that w is the angular momentum for the Kepler problem (1.7). In the
Newtonian case, f is the true anomaly.

We shall denote the energy of (1.10) by

2
Ex = <T2) + V(). (1.12)
2 2—a\ _ 2o
V(r) has a minimum at r* = w2« and V(r*) = — < o > w™ 2-a. For a fixed

value w > 0, if Fx is such that V(r*) < Ex < 0, we get a periodic solution of
(1.10) and then a bounded solution of (1.7) as z(t) = 7(t)e//®). On the level energy
Ex = V(r*), (1.10) has an equilibrium point at 7 = r*. Then, z(t) = r*el/®) is a
circular solution of (1.7) and the corresponding homographic solution is a relative
equilibrium.

It is well known from Euler and Lagrange that in the Newtonian case there
exist three collinear central configurations with the three masses on a line and two
triangular ones with the masses on the vertex of an equilateral triangle. From
these central configuration, and by (1.6), we obtain the collinear and triangular
homographic solutions, respectively. Figure 1.3 shows an elliptic and a circular
collinear homographic solutions for the Newtonian Planar Three Body Problem.

ma my

S

v

Figure 1.3: An elliptic and a circular collinear homographic solution for the Newtonian
Planar Three Body Problem
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In the homogeneous case there also exist three collinear homographic solutions
and two triangular ones, as we shall see in section 1.5.

1.3 The homographic solutions as equilibrium
points

Homographic solutions satisfy the equations of the Planar Three Body Problem
with homogeneous potential, that is, a Hamiltonian system with six degrees of
freedom. In this section we perform a suitable change of coordinates in such a way
that the homographic solutions become equilibrium points of a periodic Hamilto-
nian system with six degrees of freedom. Moreover, we shall use the integrals of
the centre of masses in order to reduce the order of the system by four.

We introduce a rotating and pulsating coordinate system through

cosf —sinf

where Q = diag(Qy,Q1,Q1), A (f) = ,and r(t), f(t) as defined

sin f cos f
in section 1.2, that is, for a given w > 0, r(¢) is a bounded solution of (1.10) and
f(t) is defined in (1.11). Using f as independent variable the new system can be
written as

¢ = Ke(+Mn,
7 = VV(C) + Ken, (1.13)

where ° stands for the derivative with respect to f, 1 is the conjugate variable
of ¢ and

2—a 1 7“2_a T
V() = QU(C)+2<U)2—1>C Mg¢.

In these variables, the homographic solutions are equilibrium points of system
(1.13).
The Hamiltonian in the new variables becomes

HGm) = oMy - ¢ K - V(Q).

We note that (¢*,n*) is an equilibrium of (1.13) if and only if

VU(C") = —M(¢,
77* = _MKGC*7
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that is, ¢* is a central configuration. If we recover the initial variables we get an
homographic solution q(t) = r(¢)Q(f(¢))¢*.

The system (1.13) is a periodic (due to the presence of r(f)) Hamiltonian
system with six degrees of freedom. A first reduction of (1.13) is done using the
integrals of the centre of masses (1.5). We introduce new variables

ui:Ci_C?n Vi =1, i:1727
uz = (3, V3 =11+ 12+ Ns3.

The equations of motion become

) 1 1
u, = Joup +ajvy+ m—3V2 - m_3V37
) 1 1
u, = Joug + m—3V1 + aovoy — m—3V3,
) 1
us = J2u3 =+ m—3(V3 — V] — VQ),
v 0 va) + J
vi = —V(u Vi,
1 oy 2V1
v 0 va) + J
vo = —V(u v
2 au2 2V2,
vy = Jovg,
where @ = (u!,ul’, u)? and
22—« 2—a
. T 1 /r .
V() = 5 U(ug,uz) + 3 ( = 1> TCu,
with
mimso mims mams
Uu uj, Uz , 1.14
)= =l e e 1
=~ cC 0 a2m3]2 —IQ
C= , C=mm , 1.15
< 0 0 ) H ( —I;  armsly (1.15)
a) = M, ag = M From the integral of the centre of masses (1.5)
mims moms

we get vg = 0. The equations for u;, v;, ¢ = 1,2, do not depend on us. So, we can
reduce to consider the following system

= Kuu+Clv,
= VV(u)+ Kyv, (1.16)
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where u = (ul,ul)?, v = (v{,v])T and

2—a 1 2—a
V(u) = ! U(u) + 3 <Tw2 - 1) u’ C,

with U(u) and C given in (1.14) and (1.15), respectively. We note that we can
recover ¢, ¢y from uy, us using

m1Gy _ u
(ne) - o(%)

Then, {5 is obtained using the integral of the centre of masses (1.5) as {3 =

1
——(m1¢y + maQy).
ms
The equilibria (u*, v*) of this system are homographic solutions in these vari-
ables. An equilibrium point of system (1.16) must satisfy

v = —CKyu". (1.17)

Moreover, as VV(u*) + K4v* = 0, we have

T2—o¢

Vi (u) + ( —

T2_a

— 1) Cu" "+ Kyv* =0 . (1.18)

2
From (1.17) we obtain K4v* = Cu* and therefore (1.18) becomes
VU (u*) = —Cu”, (1.19)

which together with (1.17) characterize the equilibria of (1.16).

1.4 The linearized system. Reduction of the
order

We have seen that the homographic solutions are equilibrium points of a periodic
system of differential equations. In this section we shall reduce the linearized sys-
tem on an equilibrium point to a four dimensional system of differential equations.
This reduction will be used in chapter 4 in order to study the stability of the
homographic solutions.

The linearized system of (1.16) on an equilibrium (u*, v*) is

—1
y = Ay, A= ( P ) (1.20)
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where

7.2701

D—
wQ

DVU(u*) + <r;a - 1) C, (1.21)

and D denotes the differential.
We will see that system (1.20) can be written as two uncoupled systems of
order four.

Lemma 1.4.1. Let u* be a solution of (1.19). System (1.20) can be written as
two uncoupled linear systems of order four with matrices

0 0 1 -1 0 -1 1 0
0 0 1 -1 1 0 0 1
Bi(f) = . Ba(f) = (122
1) hy -1 0 0 2(f) by by 0 —1 (1:22)
1 1 0 0 bia b 1 0
T2—a
where hy = h1(f) = (@ +2)—5 — 1, and
w
2—a T2—a r2—o¢ ,r2—a
b= —5- (it =1, biz=—3m2, bu=-—3m, bn=—0Ontl)-1

being vi1, Y12, V21 and Yoo constant coefficients depending on u*.

Proof
We introduce the following vectors

< = u* < — 0 o — 0 s — Kiu*
1 = 0 ) 2 = K4Cll* ) 3 = Cu* ) 4 = 0 .

First, we shall show that the subspace X of R® spanned by x1, X2, X3, X4 is invariant
under A. Then, we will introduce also the skew—orthogonal complement in R® of
X in order to uncouple the system (1.20).

In order to show that X is invariant under A we need some relations between
DVU(u) and VU(u). By Euler’s Theorem for homogeneous functions we have
VU(u)Tu = —ald(u). If we differenciate this equality, we obtain

DVU(u)u = —(a+1)VU(u). (1.23)

Moreover, due to the homogeneity of ¢/(u) we obtain
DVU(u)Kqu = K4VU(u). (1.24)
So, if u* is a central configuration from (1.23) and (1.24) and using (1.19) we get

DVU(u*)u" = (o + 1)Cu”, DVU(u")Kyu* = —K,Cu”*. (1.25)
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Then

7,2704

Du* = [(Oé +2)—5 - 1] Cu’, DKju* = —~CKju*, (1.26)
w

where the second equality holds due to the fact that K4 and C' commute. Using
(1.26) we get easily

Ax) = x4 + hixg, Axo=x4—x3, Axz=x1+x9, Ax4=—X1— Xo,

r?—a

where hy = (a+2) 3
by x1,X2,X3,X4 is invariant under A and the system (1.20) reduced to X is given
by the matrix By (f).

Let us denote by W the four dimensional subspace of R® spanned by wy, wa,

— 1. So, the four dimensional subspace, X, of R® spanned

w3, W4 where

-1 -1
w1 = ¢ T ; W = ¢ 2 ’ W3 = 0 ) Wy = 0 )
0 0 L) 2

and

(u*)TK4J4u*

& (1.27)
[}

n = Jyu*t + i Kgut, gy = Kyny, M=

We want to see that W is the skew—orthogonal complement in R® of X, that
is, W ={w e R®|wlgx; =0,i =1,...,4}.
We have that

nfu* = —(u*)TJu* — 4 (u)TKju* =0,
niu* = (w) LK+ (u) Kiu® = 0.
Using these relations we find that W is the subspace that we are looking for.

Next and last step is to find the system reduced to W.
We have that

B KO~ ln, . K,yC 'y
.AW1 = ( Dc_lnl s AWQ = DC_ITIQ ,
Aws = wi + wy, Awy = wy — w3, (1.28)

with

T,2—o¢

DC?l??j = 2 (DVU(U*)Cflanrnj) -n; Jj=12
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As u*, Kqu*,m;,m, span R*, we can write
DVUU)C ™ n; = iy +vjeme + ysu’ +yuKau®, j=1,2, (1.29)

for some constants vj;, j =1,2,i=1,...,4.
Due to the symmetry of DVU(u*) and C, from (1.25) we have that

(") DVUMT)C = (a+ )(u) Ty =0, j=1,2
(Kqu) DVUW)C = (0) T CKLC 'y = ()T, = 0,
(Kqu")" DVUWT)C 1y = (0) CKLC ™y = —(u") Ty = 0.

Then, DVU(u*)Cilnj =911 + V22, J = 1,2, and

1 1
Y11 = 11 DVUU)C Iy, y12 = ——n3 DVUUT)C 'y,

112 17212
1 o 1 o
1 2

A simple computation shows that

DC~'ny = bumy + bian,
DC‘lnz = bo1my + baamy.

Then, from (1.28),

Aw; = wa+b11ws +biows,  Awg = —wWq + bai w3 + baawy,

.AW3 = Wi + Wy, .AW4 = W2 — W3,

and the system (1.20) reduced to W is defined by the matrix Ba(f). O

We shall see that, for any equilibrium (u*,v*) of (1.16), 1 is an eigenvalue
with multiplicity four of the monodromy matrix of the system defined by Bi(f).
Then, the nontrivial characteristic exponents will be given by the system defined
by Ba(f).

Bi(f) and Ba(f) depend on f through the function r 5

w
of (1.10). We recall that for the levels of energy of interest one has r(¢) bounded.

Its minimum tends to zero when w does. Notice that in the Newtonian case (o = 1)
T 1

w? 1+ecosf’

2—a

where r is a solution

where e denotes the eccentricity of the orbit.

_2
22—«

We introduce the function g = . Using (1.10) we obtain that

a—1

g = —g+g",
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d
where we recall that ~ stands for —. Then ¢ is a periodic solution of

df

dU . 22 2@
—E(z), with U(z) = - (1.31)

z = ?
We denote by T' the period of g in time f.

2\ Z-a
U has a positive zero at z = <—> , and a minimum at z = 1 attaining the
«

a—2

value U(1) = . Figure 1.4 shows some plots of U.

2a

oG U(2). (1.32)

@ d
Using g = —w?2-a7r’ (where we recall ' = a), we get

o [1 2 1 o
E = wia [(r/)Q—f—w— = Wi By, (1.33)

2 22 are

where F is given in (1.12).
Once a central configuration has been fixed, we get a family of homographic

9 _
solutions for £ € [_2_0[7 O>. For the sake of simplicity we shall fix a value of
e

FEx,say Ex = —5 and move w in the following range
0 <w< we,

where w, satisfies

—5%2?* = - (1.34)
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which corresponds to a relative equilibrium. In that case, g = 1.

Let us define go = ¢(0) the minimum of g. It is clear that if 0 < w < w,
2—a
r
0 < go < 1. Moreover, go tends to zero as w tends to zero. However, —— =g

w
If we consider the linear systems defined by Bi(f) and Ba(f) as w tends to 0, the
limit systems have a singularity at f = 0. In this case we have an homagraphic

a—2

solution going to collision.

—2
Remark 1.4.2. Tf w = w, then E = U(1) = <

point z* = 1. Then, g(f) = 1 and the function hi(f) defined in Lemma 1.4.1
becomes constant. In fact, hy = o+ 1. In this case the linear systems defined by
2

and (1.31) has an equilibrium

Bi(f) and Ba(f) have constant coefficients. Furthermore, r = w?== and so, we
have a circular solution of the Kepler problem.

Lemma 1.4.3. For 0 < w < w,. the monodromy matriz C of the linear system
U = B.(f)U (1.35)
has the eigenvalue 1 with multiplicity four.

Proof

In order to compute the monodromy matrix C of (1.35) it is necessary to
integrate the variational equations. In this case, we need to solve the same system
(1.35) with initial conditions the vectors e;, j = 1,...,4, of the canonical basis.

Let be V = (ul,UQ,U3,’LL4)T. We denote by V;(f), j =1,...,4, the solution of
(1.35) with initial condition V;(0) = e;. Then, C = (V1(T), V2(T), V3(T), V4(T))"
where T is the period of g.

System (1.35) can be written as

U = u3z— ug,

Uz = U3 — U4,

i3 = hiuy — ug,

Uy = UL+ uo, (1.36)

with hy(f) = (@ +2)g* 2 — 1.

First we consider w = w,. From remark 1.4.2 we know that the matrix By (f)
is constant, and the solution of (1.31) for this value of w corresponds to a circular
solution z.(t) = wra el O) of the planar Kepler problem. Moreover, hi(f) = a+1.
The statement of the Lemma in this particular case follows due to the fact that
the constant rr21atrix Bi(f) has eigenvalues 0,0, +i1/2 — a and the circular solution

T
V2 —«

has period (see appendix A).
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Assume now that 0 < w < we.
From the two first equations in (1.36) it is easy to see that u; —ug = k with k
a real constant. Then, as i1 = 13 — 14, uy satisfies the following equation

iy = [(a42)g*? — 4u; + 2k. (1.37)

Once uy is obtained, us is recovered from ue = u; — k and us, u4 are obtained by
integration of the following equations

us = [(a+ 2)90‘_2 — 2]uq + k,

Uy = 2u; —k.

Now, we compute V3, V4. For these vectors, the initial conditions for u; and us
are u1(0) = u2(0) = 0. Then, we need to solve equation (1.37) with £ = 0. It can
be seen easily that ui(f) = cgg, ¢ a constant, is a solution of this equation.

As for V3 the initial conditions for uz and u4 are u3z(0) = 1,u4(0) = 0, we have
that 4;(0) = 1. Then

1
c = —3. (1.38)
90 — 90

We note that ¢ is well defined due to the fact that for 0 < w < w,. one has
0<go<l
A simple computation shows that

. . o+ 2
Vi(f) = (cgg, cgg, 1+c——(9" —g§) — clg” — g0), c(g” — 93))""
Taking into account that for Vy, 41(0) = —1, one can prove that
. ) a+ 2
Va(f) = (—cgg, —cgg, —e——(9" = g§) + clg” = 93), 1 = clg” = g3))"

where ¢ is given in (1.38). As g is T—periodic, V3 and V4 are also periodic with
period T'. Then,

Vi3(T) = (0,0,1,0)7, V4(T)=(0,0,0,1)T.

Now we look for V(f). The initial conditions u;(0) = 0, u2(0) = 1 imply that
k = —1. Moreover, as u3(0) = 0 and u4(0) = 0, %;(0) = 0. So, we have to solve
the equation (1.37) for £ = —1 with initial conditions u1(0) = 0, %1(0) = 0. Let us
assume, for the moment being, that u;(7") = 0. Therefore us(T) = w1 (T)+1=1
and

Vo(T) = (0,1,u3(T),us(T))T.
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The monodromy matrix has the following form

¥ ¥ = O
o = O O
= o O O

EOEEE S

where * denotes some values that are not relevant. However the Liouville Theorem
implies that det(C) = 1. Therefore, 1 is an eigenvalue of C with multiplicity four.
Our purpose now is to prove that u;(7") = 0.
We introduce variables 1 = uj, z9 = 41 and write the equation (1.37) for

k = —1 as a non homogeneous linear system. So, we consider the initial value
problem

jjl = T2,

iy = Mz -2, h(f)=[(a+2)g"7 4], (1.39)

$1(0) = O, .2132(0) =0.
We know that @o(f) = (b1(f),b2(f))T with
bi(f) =cgg, ba(f) =c(g® — g* +9%),

is a solution of the homogeneous system such that ¢2(0) = (0,1)7. Moreover, it is
periodic with period T'. Then, p2(T) = ¢2(0).

Let ®(f) be the fundamental matrix of the homogeneous system such that
®(0) = Io. We write

o(f) = (pu(f) e2(f)),

where 1 (f) = (a1(f),a2(f))? is a solution of the homogeneous system such that
01(0) = (1,0)7T. Usmg Liouville Theorem, det(®(f)) = 1 for any f. Then,

det(®(T)) = ar(T) =
Let x(f) = (z1(f ) 2(f))T be the solution of the initial value problem (1.39).
Using variation of parameters we can write

f
x(f) = <I>(f)/0 O L(s)r(s)ds,

where r(s) = (0, ~2)T. The first component of x(f) is

f f
zi1(f) = al(f)/o 2b1(s)ds—b1(f)/0 2a4(s)ds.
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We recall that b;(T") = 0. Then,

T T
(@) = 2 [ hilsds =2¢ [ gads = clg?(T) - 6*(0)] =0,
0 0
where the periodicity of g(f) has been used. O

Let us consider now the linear system U = Bo(f)U. After Lemma 1.4.3 we
know that the eigenvalues of the monodromy matrix of this system give us the non
trivial characteristic multipliers.

I, 0

We introduce w = M ~'U, where M =
Jo Iy

) , and then we can write

our system as
. 0 I
=B B(f) = ~
W = B(f)w, (1) ( B _on ) :

B =go2 yi1+1 921 (1.40)
Y12 Y2 + 1

We recall that g depends on the angular momentum w, and 711, Y12, Y21, Y22
are constant depending on the solutions of (1.19), that is, on the central config-
urations. In the following section we shall solve the equation (1.19), and we will
compute these constants v;;, 4,7 = 1,2, for the collinear and triangular central
configurations.

1.5 Central configurations

In this section we study the solutions of the equation (1.19), that is, we seek central
configurations. Our purpose is to compute the coefficients v11,v12, y21, Y22 for any
solution u* of (1.19). Moreover, we will study some properties of these coefficients
that will be useful in chapter 4 in order to study the stability of the homographic
solutions.

We write (1.19) as

_amlmz(ul —uy) gty —mima(azmsu; — ug)
fur —wgo2 o |
mlmQ(ul — 112) mamsug
_ = —mimao(—uy + aymsausy 1.41
Hul _ uQHoH—Q Hu2||a+2 ( )7 ( )
where we know from section 1.3 that a; = Lt s and ap = M
mims mams

We look for the solutions u* of this system of equations.
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First we study the case when the three particles lie on a straight line. This
kind of solutions are known as collinear configurations. We can assume that
this line is the abscissa axis and we consider the masses ordered from left to right
as mg, ma, my (see figure 1.5). Other collinear configurations are obtained from
this by a permutation of the masses. So, we can assume u* = ((uf)7, (u3)?)? with
u;} = (u1,0)T and u} = (uz,0)?. We introduce p and a by u1 = a(p + 1), uz = a.

a(p+1)
e o
ms mao ma
E—
a

Figure 1.5: Coordinates u; and us in a collinear configuration

If we substitute these expressions of u; and uy in (1.41) we obtain that p > 0 is
the solution of the equation

ma[p®? — (p+ 1))+ map™ (o + 1) — 1] +

ma(p+ 1) (p" — 1) =0, (1.42)
and
ot = afma(p + 1)°F! 4 mgpat?] |
Pt (p + 1)t mg(p + 1) 4+ map]
We note that p = 1 is the solution of (1.42) in the symmetric case in which

m1 = mg. In the Newtonian case (o = 1) (1.42) is the well known quintic equation
for collinear configurations.

Now we look for non collinear solutions. We note that to solve the equation
1.19) is equivalent to compute the critical points of the function
q p b

Ou) = L{(u)+%uTC’u, (1.43)

where U and C' are given in (1.14) and (1.15), respectively. We define r; = |ju; —
||, 7o = |Juy||, r3 = [|Jug||. Let us see that U can ve written in terms of r1, r, and
r3. A simple computation shows that

u’Cu = mima(agms|juy||? — 207wy + aymas||ug)?).
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As 2ufuy = |[ug||? + |Juz||? — |[u; — uz||? we obtain that

~ 1 1} 1 3
Uu) = m1m2<ﬁ+5>+m1m3<@+5 + mams r_“+_ .

It is easy to see that a non collinear critical point of U satisfies 1y = 1o = r3 = aa%ﬂ.
In this case, the three masses are at the vertices of an equilateral triangle and
lui]| = ||luz|| = ||lur — ve|| = o where p = aa+2. These solutions are known as
triangular configurations. There are two triangular configurations (see figure
1.6). We shall work with the first case in this figure. The other triangular config-
uration is obtained from this by changing the masses m; and mg. We can assume

thautu1:<g V3 )Tandu2:< ¢ V3 )T.

9 @ Ty ¢

% 0
ma my my ma

ms ms

Figure 1.6: The triangular configurations in the Planar Three Body Problem with ho-

mogeneous potential of degree —a, 0 < a < 2

We note that the three variables r1, r9 and r3 are local coordinates near a non
collinear configuration. Therefore, we have obtained all the non collinear solutions
of the equation for central configurations of the Planar Three Body Problem with
homogeneous potential of degree —a, 0 < a < 2.

Now we want to compute the coefficients v11, 712, V21, ¥22 in (1.40). To this end
we shall distinguish between a collinear and a triangular central configuration.

We fix u* = ((u})7, (u3)")7, ui, u € R? a central configuration. It is easy to
check that ||n]|%, | n,]/? and 71 in (1.27) can be computed through

2(uf)” Jous
M Tk 2 1 w12
[[ui]? + [[us|?
Im|? = [lufll® + [us)*](1 +7) — 4y (u)) " Jous, (1.44)

lmol® = .
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We begin with a triangular configuration. In this case, we have taken u; =

T T
3 3
(Q £ > and uy = (_Q £ ) . Using (1.44) we obtain that

2’ 2 2’ 2
V3 0
"= 50 HmHQ = H772H2 = 9

From the definition of n; and my in (1.27) we have that these vectors can be
. T T 0
written as 7 = (c1,c2,c1,—c2) and m3 = (c2, —c1, —c2, —c1), where ¢; = 2 and

V3o

Ccy = R Moreover
a; ay az O
0
DVUuY) = | @ ™ “ |, (1.45)
as 0 ag a7
0 a5 a7y asg
where a;, j = 1,...,8 are constants depending on the masses and on p. They are

given in appendix B. Then after some trivial computations and using (1.30) we
get the constants ;; for the triangular configurations as

a—+2

= —1+( 1 )(’m1+m2+4’m3), V22 = Q= s
a—+2

Y2 = Y21 = T\/g(”w_ml)'

So, B in (1.40) is a symmetric matrix.
Our purpose now it to write the linearized system on a triangular configuration
as the system

x = A(f)x, (1.46)

with

A(f) = ( A?f) _;QJQ ) . A=g"2A (1.47)

where A is a 2 x 2 diagonal constant matrix. To this end, it will be useful the
following remark.

Remark 1.5.1. Let us consider the system
w = B(f)w, (1.48)

. 0 I
with B(f) = < B() _2%]2

not diagonal constant matrix. Let P be an orthogonal matrix such that P~1AP is

) and B = ¢ 2A where A is a 2 x 2 symmetric but
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diagonal. We introduce new variables as X = A;lw with A; = diag(P, P). Then,
(1.48) becomes

X — Bl(f)X7

with By(f) = A;'B(f)A;. We have that

0 I
Bi(f) = <A(f) —2P‘21J2P>

where A(f) = g 2P~'AP is like in (1.47). Due to the orthogonality of P it is
easy to check that P~1Jo P = £.J5, where the sign + stands for det(P) = 1 and —
0 I
A(f) —2CJ2
T T3 T4
We define x = (z1,x9,x3,24)" by 1 = X1, 19 = X9, X3 = —, Xy = —.
c c

Scaling the time by a factor of ¢ the system in variables x is written as (1.46).

for det(P) = —1. Then, B;i(f) = < ) with ¢ = £1.

After this remark, we can write the linearized system on a triangular configu-
ration as (1.46) by taking A = diag(A1, A2) being A1, A2 the zeroes of
B

p(A) =X\ — (a+2)\ + T By = 3k(a + 2)?, (1.49)

where kK = mimeo + mims + moms. Then, we have that

M+tXX=a+2 and MMAy= % (150)
Remark 1.5.2. We have that 3x < 1 is satisfied for all positive values of the masses
in the triangle of masses. Moreover, the equality holds for mi = mo = ms.

After this remark we have that the the zeroes of (1.49) are real. Moreover, it
is clear that g; € (0, (o + 2)?].

Now we study the collinear central configurations. For u* a collinear configu-
ration we have that (u})?Jou} = 0. Then, from (1.44) we have 7; = 0 and from
(1.27), ny = Jyu*, ny = K4my. In order to compute the coefficients v;5, 7,7 = 1,2,
we need to know the matrix DVU(u*). It turns out that

aj 0 a 0
* 0 as 0 a4
DVU(u*) = 4 0 as 0 ,

0 a4 0 ag
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for some constants aj, j = 1,...,6, that depend on m1,ma,m3 and p. From this
expression it is easy to prove that 12 = v91 = 0. Therefore, the 2 x 2 matrix
B in (1.40) is diagonal. Moreover, after some computations we get the following

expressions

Y1 = —(a+ 1)y,

Y22 = —-1- 607
where

«
= —]1— 2 1 —a—2
ﬁc aa+2[1 4 (p + 1)2] [(IO+ )[(p+ )ml + m2]ﬂ +
(p+ 1)map +ma(p+1)] + (ms —mup)(p+1)7*77). (1.51)

Therefore,

b= g0 (a+1Df.+a+2 0 '
0 _ﬁc
Now we study some properties of the function .. We note that it depends on
the three masses and on the solution of (1.42).

We consider the Newtonian case, that is, & = 1. Then, equation (1.42) is the
well-known Euler’s quintic equation and can be written as

q(p) = p°(ma+m3)+ p*(2ma + 3ma) + p*(ma + 3m3) — p*(3m1 + ma) —
—p(83m1 + 2mg) — (mq +mg) = 0. (1.52)
Moreover, a® = —m—; + LQ + mgo + m3 and
P~ (p+1)
g Mo o) bms (Lt py' 4057 (153)
‘ mi +ma (pr % + py %) +mg 7
where
P and ! (1.54)
= — 1 = — .
1 o+ 1 P2 p+1
(see [S.M.]).

Remark 1.5.3. As we have assumed that mq + mo + ms = 1, fixed my € (0,1
we can take (. in (1.53) as a function of m; and mg. Then, if we write 5. =
Be(m1,m3) we obtain that S.(mi,ms) = Bc(ms,m1) and then [, is symmetric
with respect to m; = ms. To see this, fixed mo € (0,1) it is only necessary
to take into account that if p(m1,ms) denotes the solution of the quintic (1.52)

then p(ms, my) = where p(mg, m1) is obtained from (1.52) by changing

p(mhm?))
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mq1 by ms and viceversa. Then, the expressions of p; and py in (1.54) satisfy
p1(mi1,ms) = pa(ms,mq) and pa(mq,ms3) = p1(ms, my). Therefore, B.(m1,m3) =
Bc(ms,m1). We note that in the triangle of masses the values such that m; = ms
correspond to the height [ of the triangle (see figure 1.7).

m3:1

m1:1 m2:1

Figure 1.7: Line m; = ms3 in the triangle of masses

We note that ¢(1) = 7(m3 — m1) and therefore, if m; < ms3 we have that the
solution of the quintic equation satisfies p < 1 and the solution is p = 1 if and only
if my = mg. Moreover, ¢(0) = —(m1 +mz2) and p = 0 if and only if my; = mg = 0.

For this problem we know the ranges of 3. (see [M.S.]).

Lemma 1.5.4. In the Newtonian case, for any positive masses, B. € (0,7). The
1

values 0 and 7 are attained in the limit cases mo =1 and mg =0, m1 = mg = 37

respectively.
Proof

We fix my; € (0,1) and we take m3 = 1 — mj — ma. We have that mgy €
(0,1 —my). From (1.53) we obtain

_ ma(3p* +3p+ 1)(1 —my —ma)p®(p* +3p +3)

e 4 mallp T D2+ %) — o)

As p is a solution of (1.52) we can consider p as a function of mg. Therefore g, is
a function of ms.

df.
It has been proved that b
dm2

(mg) < 0 (see [M.S.]). Then, B.(m2) is a strictly

decreasing function of mo.

Due to the symmetry of 8. with respect to the line mq; = mg in the triangle
of masses, it is only necessary to consider m; < mg, that is, p € (0,1]. Therefore,
fixed a value of m4 the monotonicity of §. implies that its maximum is taken when
mg = 0 and the minimum at m; = ms3. In the case m; = ms we have that p =1

7(1 — MQ)
d th ==
and then 3, T
In this case, 8. = 0.

. The minimum of this function is attained when my = 1.
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For my = 0 the quintic equation (1.52) can be written as m1(3p? +3p + 1) =
msp>(p? + 3p +3), and B, = (1 —m1)(1 + p)(p? + 3p + 3). Using these equalities
we obtain that

(P*+3p+3)(3p% +3p+1)

be= s 2 2p+ 1

It is easy to check that 5. < 7 and 8. = 7 if and only if p = 1. Then, the maximum
in the triangle of masses is 7. This ends the proof of the lemma. O

Remark 1.5.5. Numerically it can be seen that fixed mo € (0,1), G.(mq1,m3) has
a maximum at m; = ms. Figure 1.8 shows the numeric behaviour of function
Be(m1, m3) taking into account that S.(mi,m3) = Bc(m1).

f 08— T—T—T—T—T
0.75
0.7
0.65

0.6

055 1 1 1 1 1 1 1 1 1
0 0.050.10.150.20.250.30.350.4 0.45 0.5
my

Figure 1.8: Graphic of the function 3. in terms of m; for ms = 0.5

Now we consider the general case. Numerical computations shows that, fixed
ma € (0,1), the maximum of (. is also attained at m; = mg (see figure 1.9).
Moreover, numerically it can be seen that 3. is a decreasing function of ms. Then,
the maximum is attained at m; = m3 and m9 = 0. For these values of the masses
the solution of (1.42) is p = 1 and 3. = 227 — 1. Therefore, we shall assume that
Be € (0,2072 — 1),



1.6. About the study of the stability of the homographic solutions 37

ﬁc 0.85 T T T T T T T T T

0.8

0.75

0.7

0.65

0.6

0.55

05 1 1 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05

Figure 1.9: Graphic of 3. in terms of m; for my = 0.5 and a = 0.5, a« = 1.5

1.6 About the study of the stability of the
homographic solutions

In this section we shall see that the linearized system on an homographic solution
can be included in a three parametric family of four dimensional periodic linear
systems. This family can be written in a Hamiltonian formulation. Using the
theory of Hamiltonian systems (see [M.H.]), we describe briefly how to study the
stability parameters of these differential equations.

We consider the periodic linear system

x = A(f,e)x, (1.55)
with x € R4,
0 0 10
Alfre) = >\1G10(f,e) 8 8 7; ’
0 XGa(fie) 2 0
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where A1, Ao are real parameters different from zero, e € [0,1), and G1(f,e),
Gao(f,e) are smooth functions. Let us assume that for e = 0, G1(f,0) = 1,
Ga(f,0) = 1.

We want to see that the linearized system on an homographic solution can be
written as (1.55).

First we note that, as we have seen in last section, system (1.40) can be written

as
0 0 1 0
0 0 0 1
. 1.56
x @2 0 0 -2 |F (1.56)
0 2 2 0

where Aj, A2 depends on the central configuration we are considering and g is
a periodic solution of (1.31). Table 1.1 shows the expression of A\; and Ay in
both collinear and triangular case. We distinguish between the general and the
Newtonian case.

‘ Newtonian case ‘ General case ‘
Triangular A1, Aoy zeroes of A1, Aoy zeroes of
configuration | p(A\) = A% — 3\ + %, p(A) =2 — (a+2)\ + %
ﬂt =27k ﬂt = 3(0& + 2)21“6
Collinear M =26.+3 M=(a+1)B.+a+2
configuration Ao = —f3, Ay = —f3,
B, € (0,272 — 1) B. € (0,7)

Table 1.1: Values of A\;, Ay for a triangular and a collinear central configuration.

We define a generalized eccentricity

2 o
e::\/1+ a EKw22——a,
2—«

where Fy is defined in (1.12). We recall that we have normalized scales so that

1
Ex = ~3 and w is such that 0 < w < w, where w, is defined in (1.34). Then,

/ a 2o
e = 4/1-— SRS e€0,1). (1.57)
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Given a value of w, we have that F is fixed by (1.33) and so, g depends on e.

In the Newtonian case (o = 1), e is the eccentricity of the orbit. From remark
1.4.2 we know that the case w = w, corresponds to the relative equilibrium solution.
For this value of w we have that e = 0. On the other hand, we have seen in section
1.4 that when w tends to 0 then go tends to 0. So, for e = 1 system (1.56) has a
singularity.

Then, it is clear that system (1.56) can be written as (1.55) by taking G1(f,e) =
g 2\1 and Ga(f,e) = g® 2\g, where A\; and \g are given in table 1.1.

System (1.55) can be written as a linear Hamiltonian system by the change of

. I 0
M = <J2 1’2)' (1.58)

The Hamiltonian function is

variables y = Mx with

1
H(y,f) = §(y§ +y2) 4+ y1ya — y2us — V(y1, v2, fr€), (1.59)

where y = (y1,y2, y3, y4)T and

NN

2
Ve o) = MGi(f0) =15 + DaGalfie) - 112, (1.60)
Let ®(f) the fundamental matrix of (1.55) such that ®(0) = I4. It is easy to
check that

B(f) = V1104 ()1, (1.61)

where ®1(f) is the fundamental matrix of the linear Hamiltonian system defined
by (1.59). The symplectic character of ®;(f) implies that if i is an eigenvalue of
®(T) then ! is also an eigenvalue (see [M.H.]). We denote by g1, ", pa, iy *
the eigenvalues of ®(7") and define the stability parameters as

tri:ui—i—u;l, 1=1,2.

The stability of the system (1.55) can be studied in terms of tr;, j = 1,2. From
the real character of (1.55), if tr; € C\ R for some j = 1,2 then trz_; = tr; where
the bar stands for the complex conjugate. Therefore (1.55) is complex—saddle.
We assume that tr; € R for some j = 1,2. If |trj| > 2 then p; € R and one of
the characteristic multipliers has modulus bigger that 1. In this case, (1.55) is
unstable. If |tr;| < 2 then p; € C with ||u;|| = 1. Bifurcations can occur when
trj| = 2 for some j = 1,2, and when tr; = tro.
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In chapters 2 and 3 we shall study the stability parameters of the system (1.55)
for a family of functions G, j = 1, 2. In chapter 2 we will analize the case e 2 0 and
in chapter 3 the case e < 1 will be considered. In this last case, we shall introduce

9 _
a parameter ¢ defined by § = Ta(l — 62) and we will study the system for § > 0
o

small enough. Using the theory developed in these chapters, in chapter 4 we shall
determine the stability parameters of the homographic solutions.



Chapter 2

Stability of a family of periodic
linear systems: the
perturbative case

2.1 Introduction

Let us consider the family of periodic linear systems

x = At e)x, (2.1)
with x € R%,
0 0 1 0
0 0 0 1
Alt,e) =
GO =1 \eto 0 0o —2 |’
0 )\QGQ(t,e) 2 0

A1, Ao are real parameters different from zero, € is a small positive parameter,
and G;(t,e) = 1 — F(t,e), i = 1,2, where Fj(t,e), i = 1,2, are even functions,
T—periodic in ¢t and analytic in €, satisfying F;(¢,0) = 0. Then, we can write

Fi(tie) = Y dei(t), Fat,e) =) eld;(t), (2.2)

jeN JjEN

with ¢;(t),d;(t) T-periodic even functions for j € N.

If ¢ = 0 then system (2.1) is linear with constant coefficients and one can obtain
easily the stability and instability regions in the plane (A1, A2). These regions are
described in section 2.2. The goal of this chapter is to study the bifurcations for ¢
small and positive.

41
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In chapter 1 we have seen that (2.1) can be written as a linear Hamiltonian
system with Hamiltonian function

1
H(y,t) = 5(2/% +y3) + v1ya — v2us — V(y1, y2, t, €), (2.3)
where y = (y1,y2,y3,4)” and
y? Y3
V(y,y2,t,e) = [MGi(te) —1] ?1 + [A2Ga(t,e) — 1] 72 (2.4)

The analysis of system (2.1) has several applications. One of them is the study
of the stability for the equilibria of mechanical systems defined by a Hamiltonian
function of the form (2.3) with a potential V(y1,y2,t,€) even in t and such that
the quadratic part in y; and y2 has the form (2.4). In this case, the linearized
system on the equilibrium point can be written as (2.1).

On the other hand, system (2.1) can be obtained as a first variational system
on a periodic solution of an autonomous system. As we have seen in chapter
1, one example is given by the homographic solutions of the planar three body
problem with homogeneous potential of order —«, with 0 < a < 2, since after
some reductions the linear stability of these orbits is given by the study of the
non-autonomous linear system (1.40), that has the form (2.1). This application is
developed in chapter 4.

As we have seen in chapter 1 the fundamental matrices of (2.1) and of the
system associated to (2.3) have the same characteristic multipliers. Then, it is
equivalent to study the linear stability of the two systems and we can apply the
stability theory for Hamiltonian systems (see [M.H.]) to the system (2.1).

Using this theory, in order to study the linear stability of the system (2.1) it is
only necessary to compute the stability parameters tr; = u; + p}l, j =1,2, where
s ,uj_l, 7 =1,2, are the characteristic multipliers of the system.

If try, tro € C\ R, then try = tr; and (2.1) is a complex-saddle.

Assume that trq,trg € R. If |tr1] < 2,|tre| < 2, then (2.1) is elliptic—elliptic, if
|tr1] > 2, |tre| > 2, hyperbolic-hyperbolic and if one of the stability parameters has
absolute value less than two and the other bigger than two then (2.1) is elliptic—
hyperbolic.

We note that in our case the stability parameters depend on A1, Ao, €.

Now we explain briefly the methodology used in order to study the bifurcations
of (2.1) for £ > 0 small enough.

Definition 2.1.1. We say that (A1, A2) = (a1, a2) is a resonant point for ¢ = ¢
of the system (2.1) if for (A1, A2,e) = (a1, a2,€0), [trj| = 2 for some j = 1,2 or
tr; = tro.
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Let us consider (A1, A2) = (a1, a2) a resonant point for ¢ = 0 . Our purpose
is to study try, tre in a neighbourhood of (a1, az) for £ > 0 small enough. To this
end, we introduce small parameters 01,92 € R and we shall consider \; = a; + d;,
j=1,2.

We will apply the Normal Form techniques (see [B.S.2]) in order to detect
changes in the stability. The idea is to perform some canonical transformations to
cancel the time dependence up to high order in d1, d2, &, if this is possible. In fact,
we shall obtain the Floquet matrix up to a fixed order in d1, do, €.

The analysis of this Normal Form will give us the linear stability as well as the
boundaries of the stability regions.

2.2 The case e =0

In this section we study the stability parameters of system (2.1) for £ = 0.
For € = 0 we obtain the linear system with constant coeficients x = Agx where

0O 0 1 0
Ay = 0 0 0 1
A 0 0 =2
0 X 2 0
The characteristic polynomial of Ay is
plz) = a'— (A4 — 42 + M. (2.5)

We note that a zero p of (2.5) satisfies

2,02 = )\1+)\2—4:|:\/()\1+)\2—4)2—4)\1)\2.

The stability parameters have different character depending on the region of the
plane (A1, \2) considered. Therefore, we distinguish on this plane the following
regions

Ri = {(O1,A2) € RZA A <0},

Ro = {(M,22) € R A2 > 0, (A1 + A2 —4)% > 4hi o, At + Ao — 4 < 0},
Ry = {(A,A2) €R* A >0,( A + Ao —4)2 < 4r1 o),

Ra = {(M, ) €R*Ada >0, (A1 + A —4)* > 4\ Ao, A + o — 4> 0}

The boundaries of these regions are given by the coordinate axes and for the
graphs of the functions Ao = (v/A1 £2)2. Figure 2.1 shows these regions and their
boundaries in the plane (A, A2).
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R

R

Figure 2.1: Regions R, Rz, R3, R4 in the plane (A1, \2).

In Ry, (2.5) has zeroes +a, +iw with a,w € R*. Therefore, u; = e’ and
po = €T Then we have that tr; > 2 and |try| < 2. Possible bifurcations for
e > 0 will be for |tra| = 2.

In Ry the eigenvalues of /Nlo have the form +iwq, +iws with wi,ws € RT and
w1 > wa. Therefore, p1 = €17 and pg = €27, fact that implies [tr1], [tra| < 2. If
|tr1| = 2 or [tra| = 2 or try = tre, then bifurcations can be found for € > 0.

In the region R3 the zeroes of (2.5) are +a 443 with o, 3 € RT. Therefore, the
characteristic multipliers are p = e(*T9)T 1y = e(@=#T and their inverses. We
note that if 8T # nx for all n € N then the stability parameters are complex, and
in the other case are real. In this last case a bifurcation can occur since tr; = tra.

In R4, (2.5) has zeroes +a1, +as, a1, a0 € RT, a1 # ag. Therefore, pu; = eM 7
and o = €27, In this case, trj| > 2 for j = 1,2 and no bifurcation can occur for
€ > 0 small enough.

Now we study the stability parameters in the boundaries of these regions.

On the axis A; one stability parameter is equal to two, and the other is
2cos (v4—MT) if Ay < 4 and bigger than 2 if \; > 4. We obtain a symmet-
ric behaviour on the axis As.

If Ao = (VA1 — 2)? then tr; = try. In this case, if 0 < A\; < 4 then |tr{| =
tra| < 2 and tr; = try > 2 if Ay > 4. On Ay = (v/A1 +2)2, we obtain tr; = try > 2
if Ay #£0.
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The points (4,0), (0,4) in the plane (A1, A2) correspond to degenerate cases
in which 1 is a characteristic multiplier with multiplicity 4. Therefore, on these
points we have tr; = tro = 2.

We are interested in the study of the bifurcations for values of (A1, A2) in the
region R = Ry URy U Rs3.

Now we study the curves in the plane (Aj, A2) € R formed for resonant points
when € = 0. We will refer to these curves as resonant curves.

We know that in Ry U R9 one has a resonant curve if wT = nm, n € N. We
note that p(iw) = w* + (A1 + A2 — 4)w? + A1 X2. Then the resonant curve is given
by

A+ )Mo +0?) =40?, w= % neN. (2.6)
In R; we obtain a uniparametric family of resonant curves indexed by n € N.
However, in Ro there are two uniparametric families of resonant curves of this

type corresponding to wy and ws, respectively. For one of them, n € N. The other

2T 2T
family is defined forn > —, n e Nif A\ <0, and n < —, n € Nif \; > 0.
w T

nmw
In R there are also resonant points for € = 0 when wy £ wy = T n €N,

which correspond to the case when tr; = tro. The corresponding resonant curves

n2m? n2m2
Ay = )\1+4<1— T2>:|:4\/)\1<1— 7o ) (2.7)

If Ay > 0, this uniparametric family of resonant curves is indexed by n < %, n €N,
and if A\; < 0, the index are given by n > %, n € N.
Finally, if (A1, \2) € Rg3, the resonant points are given when T3 = nm with

are

n € N. A simple computation shows that the possible bifurcations in R3 are given
on the uniparametric family of curves

N o= (Vax2/T-@7 p=7T, (2.8)

forn < z, n € N.

In ﬁgqlre 2.2 there are some examples of resonant curves in the different regions.

The red curves are of the form (2.6) and the green curves corresponds to both
curves in (2.7) or (2.8), depending on the region they are. We note that the curves
(2.8) in the parameter space (A1, A\2) are exactly the same as (2.7).

In region R there are only curves of the form (2.6) and there are no intersection
between these curves. Then, in this region we only have single resonances.
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-20
-20

Figure 2.2: Some resonant curves in the plane (A1, \g) for T = with a = 0.5.

Color codes: Red for |tr;| = 2 for some j = 1,2, Green for |tri| = [tra|, Blue for the

boundary of region Rs.

In region Ry we distinguish different intersections. The intersection between
nym
curves of the form (2.6) corresponds to a double resonance in which wy = L and
N 2nm
wy = % for some ny,n2 € N. We note that if n; = na(mod 2) then wy tws = T
for some n € N. In this case, the intersection point belongs also to a resonant curve
(2.7).

In region R3 there are only single resonances.

Given a point (aj,a2) on a resonant curve, that is, (a1, a2) is a resonant point
for ¢ = 0, we want to study if there is a bifurcation near (a1, a2) for ¢ 2 0. To
this end we shall introduce small parameters d1, d2, and we will take \; = a1 + 41,
A2 = ag + d2. In section 2.3 we shall give the Normal Form of the Hamiltonian
(2.3) in the regions R1,R2 and R3 up to a given order in 1, d2,£. Then in section
2.4 we will study the conditions for bifurcation depending on the region Ri, Rs or
Rs. In section 2.5 we shall study with more detail the boundaries of the resonant
regions as well as the bifurcation diagram in the particular case that the periodic
functions Fj, j = 1,2, in (2.2) satisfies d’Alembert property. Section 2.6 is devoted
to the proof of the Normal Form given in section 2.3.
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2.3 Normal Form

In this section we reduce the Hamiltonian system associated to (2.3) to Normal
Form.

Let us fix (a1,a2) € R a point on a resonant curve, that is, (A1, A2) = (a1,a2)
is a resonant point for e = 0. Let us take \; = a; + 65, j = 1,2, with |J;|, j = 1,2,
small enough.

If we take ¢ = 0 in (2.3) then the system associated to the Hamiltonian function

is written as

with
0 -1 1 0
1 0 0 1
An — 2.10
0 ai—1 0 0 -1 (2.10)
0 aa—1 1 0

We note that Ay depends on a1 and as.
The Hamiltonian function (2.3) can be written as

H(y,t) = Holy)+H(y,1), (2.11)

where

1
Hoy(y) = —zy’ JiAgy =

2
L o 2 yi Y5
= §(y3+y4)+y1y4—y2y3+(1—a1)3+(1—a2)?, (2.12)
] 51 2 52 2
H = ——yr - =
(v:1) S UL~ St
yi Y3
+(a1 + 51)511?1 (t;e) + (a2 + 52)321?2(15; £). (2.13)

The Hamiltonian system associated to Hy is a linear system with constant coeffi-
cients, and depends on a1 and ay. Once a1 and ay are fixed the Hamiltonian (2.13)
depends on three parameters, 41,92 and €.

Hamiltonian (2.11) admits the following symmetry.

Lemma 2.3.1. The Hamiltonian (2.11) satisfies H(y,t) = H(y,—t) and H(Ly,t) =
H(y,t) for ally € R* and t € R, where L = diag(—1,1,1,—1).

Proof
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The equality H(y,t) = H(y,—t) for all y € R* ¢ € R is due to the fact that
Fj, j = 1,2, are even functions.

To show that H(Ly,t) = H(y,t) for all y € R* ¢ € R it is only necessary to
take into account that if we change y; by —y; and y4 by —y4 the Hamiltonian does
not change. O

2.3.1 Reduction to diagonal form

In this section we shall diagonalize the system associated to (2.12). In order to
keep the Hamiltonian character of the system, it will be necessary to perform
a symplectic change of coordinates. To this end, we will take into account the
different R ; regions that defines R.

We denote by +p1, £p2, the eigenvalues of Ag. In what follows, we will take
p1 =\, p2 = iw, \,w € RT if (a1,a2) € Rq, p1 = w1, p2 = iws with wy,ws € RT,
w1 > wy if (a1,a2) € Re, and p; = a+ i, p2 = py, o, 3 € RT | if (a1,a2) € Rs.

It is easy to check that

u, = (2[),@1 - pzaal + ,02,p((ll - 102 - 2))T7 (214)

is an eigenvector of eigenvalue p of Ag.

Let us denote by u;,us € C* the eigenvectors corresponding to eigenvalues
p1, P2, respectively.

Using the symmetry given by L in lemma 2.3.1, and the fact that AgL. = — LAy,
we obtain that v := Lu; and vy := Luy are eigenvectors of eigenvalues —p1, —p2,
respectively.

If we restrict to the generic case, as p1 + p2 # 0, the eigenvectors u; and vy
are J—orthogonal to uy and vy. That is, uF{Jug =0, u{JVQ =0, V?Jllz =0 and
vl Jvy = 0. Moreover, a vector is J-orthogonal with itself.

We define the matrix M as follows

M = (kiuy, koug, k3vy, kava), (2.15)

with k; € C, j = 1,...,4, satisfying ki1ksul Jv, = 1, kokgud Jvo = 1. Matrix M
is symplectic and defines a canonical change of variables as y = Mz. Moreover,
this change of coordinates transforms the system associated to (2.12) in diagonal
form, that is, if H(z,t) denotes the transformed Hamiltonian, then

H(z,t) = Ho(z)+ H(z,t), (2.16)

where

Ho(z) = pi1z12s3 + p2zo2, (2.17)
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p1 and py being the eigenvalues of (2.10) and z = (21, 22, 23, 24)” .

First, our purpose is to choose the constants k;, j = 1,...,4, in an adequate
way in order to have some relations between the new variables. To this end, it will
be useful the next lemma.

Lemma 2.3.2. 1. If (a1,a2) € Ry then ul Jvi > 0 if a; >0, and ul Jv; <0
if a1 < 0. Moreover, iungQ > 0.

2. If (a1,az2) € Ry then wul Jvi > 0 and, lJve >0 if a1 <0, and il Jvy <
0 if a; > 0.

Proof
Let us consider u, in (2.14) an eigenvector of eigenvalue p of Ay.
It is easy to check that

ul Jv, = 2p qla1,az; p*), (2.18)
where
qlar,a9;p?) = —p*+ 2a1p% + da; — a3 (2.19)

Recall that p is a solution of the characteristic polynomial of Ag, that is,
p(p) = 0 where

p(z) = zt — (a1 + a9 — 4)x? + ayas.

Then, —p* = (4 — a1 — a2)p? + aas, and therefore
q(ay,as; p2) = d+a — t12)p2 + araz +4a1 — a%.

Moreover

—4+ VA
0> = oy, where ai:a1+a2 5 \/_, with A:(a1+a2—4)2—4a1a2.

We have that

VA

—T[\/Zqi (4 + a1 — az)],

Q(al,az;ai) =

where the sign — stands for a4 and + for a_.
If a; > 0 (a; < 0) we check that (4 +a; —a2)? > A ((4+ a1 —a2)? < A).
Therefore, if a; < 0, one has VA F (4 + a3 — a2) > 0 and then g(ay, az; ax) < 0.
Furthermore, if a; > 0, as far as (a1, a2) € R1 UR2, 4+ a; — az > 0 and then
VA — (4+a; —az) < 0and VA + (4 +a; —ag) > 0. So, q(ar,a;a1) > 0 and
q(ai,az;a_) <0.
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1. Let us consider (ay,az) € Ri. Then p; = A, p2 = iw, \,w € RT and oy = A2,
a_ = —w?. Using (2.18), uf Jv; = 2) q(a1,az; a1 ) and, ul Jvy > 0ifa; >0
and u?JVl < 01if a1 < 0. Moreover, iugJV2 = —2w? q(ai,az;a_) > 0.

2. Assume (aj,as) € Re. Then p; = iwq, p2 = iws, wi,ws € RT with wy > wo.
In this case, a— = —w?, ay = —w3. We get iul Jv; = —2w? q(ay,a2;a-) >
0 and iulJve = —2w? q(a1,az;a4). Then, iulJvy > 0 if a1 < 0 and
iul Jvy < 0if a; > 0.
Od
We note that if (a1, a2) € R3 then ulTJvl and uQTJvQ are complex.
Then, we can do the following choice for the constants kj,j =1,...,4.

1. If (a1,a2) € Rq, we take

1 1
ki = ————=, kz=sk1, k2=

b
sur{Jvl \/iugJVQ

2. if (a1, a2) € Ra, we take

ky = iky,  (2.20)

1 1
—F—, kzy=iki, ky=—F——=,
\/iu{Jvl \/SngJUQ
3. if (a1, a2) € Rs, we take

1
k1= —F——=, ks=ki, ko=

1
\/u{Jvl \/u%—‘JVQ
where s = sgn(ay).

After lemma 2.3.2, if (al,ag) € R1URy then ki, ko € R. If (al, ag) € R3 then
the real character of Ay implies that uy = @y, vo = v and therefore, ko = k1 (bar

k‘4 = —Sikg, (2.21)

ky=ky,  (2.22)

stands for complex conjugate).

From now on, M will be the 4 x 4 symplectic matrix defined in (2.15) with
k1, k2, ks and k4 given in (2.20), (2.21) and (2.22) according to the region consid-
ered.

Let us define the following matrices

S, = M'LM, Sy=—-JMTJM. (2.23)

Lemma 2.3.3. The new variable z satisfies Z = Soz, and the following equalities
hold

H(z,t) = H(S12,—t), H(z,t)

for allz € C*, t € R.
Moreover

H(S2z,t), (2.24)
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1. if (a1,a2) € Ry then S1z = (sz3,iz4, 521, —i22)", Soz = (21,124, 23,122)7,
i23, —i524, —i21,15%2)"

T

(

2. if (a1,a2) € Ry then S1z = (i
S2Z: (123,—1524,1731, 1322) ,

(

3. if (a1,a2) € R3 then S1z = (23,24, 21, 22)", Soz = (22, 21, 24, 23)T .

Proof
The new variables z € C* are defined by y = Mz where we recall that y € R%.
Then
z = M7'y=—JM'JMz= 59z, (2.25)

where we have used that M is a symplectic matrix and so, M~ = —JMTJ. Now
Z = Soz follows from (2.25).
From lemma 2.3.1,

H(S12,t) = H(MSyz,t) = H(MS M 'y, t) = H(Ly,t) = H(y,t) = H(z,1),

and using the parity of H we get the first equality in (2.24).
Furthermore, H(z,t) is real. Therefore

H(z,t) = H(z,t) = H(Z,t) = H(S22,1).

A simple computation gives

0 gl . k3 k4
= - h
Si < S ) wit S; = diag <k k2>

Then,
diag(sa 1) if (CLl, a?) € Rl,
S1 = diag(i, —is) if (al, CLQ) € Ra,
I if (a1,a2) € Rs,

where I» denotes the 2 x 2 identity matrix.
Now we compute Sy = —JMTJM.
In the region R, we have that uy, vy € R* and @, = vy. Then, we obtain

0 0 klkgu{,]vl 0
—T 0 k:%v%’JuZ 0 0
kiksvi Juy 0 0 0
0 0 0 kaksu} Jvo
001 O
0 i 0 O
= .26
-1 0 0 O (2:26)
0 00
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In the region Ry we have u; = v;, j = 1,2. Then,

MM = diag(k2vT Juy, k3vI Juy, ksksu? Jvi, kskgul Jve) =

= diag(i, —is, —i, is). (2.27)
In R3 we get
0 0 0 kikqul Jvo
ZoiT
MTJM _ 0 _ OT /{?3]433111 JV1 0 _
0 k‘g]{gVQ JUQ 0 0
k‘1E4V¥1JU1 0 0 0

0 B : 0 1
= th By = : 2.28
(5 5) e (1)) 225)

From (2.26), (2.27) and (2.28), S is easily computed at each region. O

2.3.2 The Normal Form in the different cases

In this section we apply the Normal Form techniques in order to simplify the
Hamiltonian (2.16). To do this we need to distinguish the different regions.

In order to get the Normal Form we introduce K as a conjugate variable of
time ¢ and we consider the Hamiltonian

H(z,t,K) = Ho(z, K)+ H(z,t), (2.29)

where H(z, K) = Ho(z) + K and Hy is given in (2.17).
Let bev = — and w = e%. We can write the Hamiltonian as
T

H(z,w,K) = Ho(z, K)+ > Hmnlzw), (2.30)

m=1

where H,,,(z,w) contains terms of order m in 01,2 and . Moreover H,,(z, w) is
an homogeneous polynomial of degree 2 in z whose coefficients depend on w and
wl.

We can use Lie series method to perform some canonical transformations in
order to cancel the time dependence on the Hamiltonian up to high order. This
is done in section 2.6 using the Giorgilli-Galgani algorithm (|G.G.]). Then, if

N =Ny + N1+ Ny + ... denotes the transformed Hamiltonian, we obtain

Gl Hinj—1)y  Hmo = Hm, (2.31)

)
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N
-/\[0 HOO

)

M | Hip  Hoa

) )

Ny | Hap Hix  Hoz

’ ) )

N3 | Hsp Han Hi2 Hogs

) )

Nm HmO Hm—l,l s s <. 7_(l,m—l HO,m

)

Table 2.1: Functions involved in the computation of A, 5 =0,...,m

and G, is the solution of the homological equation
My, + |Gy Hol = R, (2.32)

where

m—1

m—1
Mm = Z Hm—j,j + Z %[GlaHO,m—l]v
=1

j:
and R, contains resonant terms of order m in 1, d9 and e.

Table 2.1 shows the functions involved in /\fj up to order m, that is, up to
j =m.

In what follows we shall denote the new variables, say Z;, j = 1, ..., 4, obtained
by the canonical changes of variables involved in the normalization, as z;, j =
1,...,4, again. The next proposition gives the Normal Form depending on the
region R1, Ra or R3. The proof is given in section 2.6.

Proposition 2.3.4. Let us denote by NF the Normal Form up to a fized order
in the small parameters 01,82, €.

1. If (a1,a2) € R1 and vw € N, then

NF = K+ A223 +iwzeozg + 012123 + 1092924 +
+o3zaw " — ozziw™, (2.33)

where 0; €R, j=1,...,4, depend on 41,02 and ¢.
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2. If (a1,a2) € Ra, then

No+ N if vwi €N, vwy ¢ N,
Ny + No if vwi ¢ N, vwy €N,
No + N1+ Ny if vwi €N, wvws €N,
and vwy # vwa(mod 2),
NF = No + N3 if vwps €N, vwpg ¢ N, (2'34)
(vw1 ¢ N, vws ¢ N),
No + Ny if vwpg €N, vwps € N,

(vw1 ¢ N, vwy ¢ N),

No+ N1+ No+ N3+ Ny if vwi €N, vwg €N
and vw) = vwe(mod 2),

\

w1 + wo W1 — w2

where wps = ————, Whd = , and
2 2
Nyg = K4 iwiz123+ twozozs + 1012123 + 1092924,
Ny = ng%w_”wl — nggwwl,
Ny = o4z5w "2 — oyziw"?, (2.35)
N3 = o5z120w " + so52324w" Y0,
Ny = iogzizaw Ve — jsogzoz3w”“hd,

where 0; € R, j =1,...,6 depend on 01,62,¢, and s = sgn(ay).
3. If (a1,a2) € R3 and v € N then

NF = K+ (a+if)z123+ (o —if)za24 + 012123 + T12224 + o3z124w P+

03222’3wyﬁ, (2.36)
where o1 € C, o3 € R depend on 41,09, €.

Remark 2.3.5. Proposition 2.3.4 gives the Normal Form up to a given order, say
n, when \; = aj + d1, A2 = ag + 02 and (aj, az) is a resonant point for e = 0. The
Normal Form can be written as

NFEF = Ny -l-/\/n(w),

where
No=K+ (A o01)z123 + i(w + 02)2224 if  (a1,a2) € Ry,
No = K +i(w1 4+ 01)2123 + i(w2 + 02) 2224 if  (a1,a2) € Ro,

No=K+ (a+if+01)z123+ (a —iB +T1)2224 if (a1,a2) € Rs,
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and all the monomials in AV, (w) depend on w and so, they are time dependent.

However, if ¢ = 0 the initial Hamiltonian (2.12) is autonomous. In this case,
the Normal Form does not depend on w. Therefore, for the coefficients o3, o4, o5,
og in Proposition 2.3.4 we have

o = OE"), j=3,...,6, (2.37)

for some k > 1 which may depend on the index j.

Furthermore, o1 and o9 depend on d1,d9,e. In fact o1 and o9 have terms of
order 1 in d1,62. That terms can be easily computed by taking into account the
variation of the eigenvalues of the system when ¢ = 0 and we perturb (a1, az2) by
(61,02). These terms will be explicitly computed in section 2.5.

2.4 Bifurcations

In this section we study the conditions for bifurcation when ¢ > 0 is small enough.
We shall use the following notation for the different regions in the parameter space
(A1, A2, €).

e EE (elliptic-elliptic) stands for a region such that |tr;| < 2, j = 1,2,

e EH (elliptic-hyperbolic) corresponds to [tr1| < 2, [tra| > 2 (or vice-versa),
e HH (hyperbolic-hyperbolic) corresponds to tr; > 2, j = 1,2,

e CS (complex-saddle) stands for complex try, trg = try.

We obtain the equations for the boundaries of the different bifurcation regions in
terms of the coefficients of the Normal Form. In next section we shall concentrate
in the d’Alembert case, that is, when the functions Fj, j = 1,2, defined in (2.2)
satisfy the d’Alembert property.

In order to obtain the boundaries of the bifurcation regions for € > 0 small
enough we study the Hamiltonian system associated to the Normal Form given in
Proposition 2.3.4.

Let us take (a1,a2) € R; a resonant point for ¢ = 0.

For ¢ > 0, bifurcation occurs when a pair of characteristic multipliers on the
unit circle collides and become real. In this case, system turns from EH to HH.

Normal Form (2.33) defines the following uncoupled linear system

2 = (A +o01)z1, 29 = i(w + 09) 29 — 20324W"Y,

i(w+ o9)en, (2.38)

Zg = —()\ + 0'1)23, Z4 = —20320w "
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where we assume vw =n € N.

The system for 2y, z3 gives real characteristic exponents and, then, a stability
parameter is greater than two. This gives an hyperbolic behavior.

In order to study the system for zs,z4 we perform the change of variables

—vw/2 vw/2

U = Zow , U= zZqw . Then, this system transforms in the following linear

system with constant coefficients

U = iO’QU-20’31),

0 = —203u— io9v. (2.39)

The eigenvalues of the above system are £/ 40% — 03. The bifurcation takes place
when these eigenvalues cros zero. In this case, a transition EH«HH occurs. For
€ > 0 an instability region HH in the parameter space is created. The boundaries
of this region up to a given order in d1, d2, ¢ are defined by the equation

03 — 403 = 0. (2.40)

Now we consider (a1, a2) € Ro a resonant point for £ = 0.

We study the general case in (2.34), that is, NF = Ny + N1 + No + N3 + Ny
where N;, i = 0,...,4, are given in (2.35). The other cases in (2.34) are obtained
by taking the suitable coefficients equal to zero. The linear system defined by N F
is the following.

z2 = i(wl + 0'1)2:1 — 150'62211)%(“’1*‘*’2) _ 20’323101/{'01 + 80.524wf%(w1+w2)7

Zo = iUGZ1w_§(w1—w2) +i(wy + 09) 20 + 80.523w%(w1+w2) — 20424072, (2.41)
i3 = —20321w " — o5zow” 2@ (W) 4 0y) 25 — logzaw 2172,

Zp = —oszw T 2@ 90 0w T2 4 isogzgw? 1792 —i(wy + 09)2y.

Yoo

v _
“Loug = zow™ 2

. . _ v
We introduce new variables u; = zjw™ 2 , U1 = z3w2Yt, vy =

zw2¥2. Then, system (2.41) becomes the following constant coefficients linear

System
111 = iUl’U,l — iSUGUQ — 2031}1 + so5v2,
o = logui + iogug + sosv1 — 20409, (2.42)
@1 = —20’3U1 — O5UQ — iO’l’Ul — i06?)2,
Vo = —05U] — 204Us + 1S0gU1 — i020V9.

To study the bifurcations, we need to distinguish different cases.

1. vwy € N, vwy ¢ N.
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In this case, 04 = 05 = 06 = 0 and (2.42) is an uncoupled system
iLl = ialul — 20‘3’()1, ﬂg = iO‘g’LLQ,

’l'}l = —20’3U1 — ialvl, 1'}2 = —iUgUg.

The system in wug,ve gives us a stability parameter |tro| < 2 for d1,09,¢
small enough. The study of the system in uj,v; is analogous to (2.39) in
R1. Then, we have a transition EE«<~EH. The boundaries of the region EH
are given by the equation

o} —403 = 0.

2. vw1 ¢ N, vwy € N

This case is analogous to the previous one, obtaining an EH region, where
their boundaries are defined by

o3 — 402 = 0.

3. vw1 ¢ N, vwy ¢ N and wps € N.
In this case, 03 = 04 = 06 = 0 and (2.42) becomes an uncoupled system

U] = 101U] + SO5V9, Uy = 102U + SO5V1,
Vg = —0O5U] — 10902, V] = —0O5Uy — 101V].

The characteristic polynomials of the two uncoupled linear systems above
are

22 Fi(o1 — 09)x + 01092 + 502, (2.43)

where — stands for the system in uy,ve and + is for ue, v;.

Let us define A = —[(01 + 02)? + 4s02] the discriminant of (2.43). The sign
of A determines the character of the region.

Figure 2.3 shows the character of the characteristic multipliers depending
on the discriminant.

The boundaries of the region CS are given by
(014 09)* + 450 = 0. (2.44)
4. vwi ¢ N, vws ¢ N and wpg € N.
In this case system (2.42) becomes also an uncoupled system,

U] = 101U] — 1S06U2, U] = —101V] — 1062, (2.45)

Uy = 106U + 102U2, Vo = 1S0gU1 — 102V3.
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A <0 A>0

b
o C

=/

Figure 2.3: Characteristic multipliers in the case 3 according to the sign of A

The characteristic polynomials of these uncoupled systems are
2% Fi(oy + 09)1 — 0% — 0109, (2.46)

where — stands for the system in u1,us and + for vy, vs.

In this case, the discriminant of (2.46) is A = —(01 — 02)? +4s02. As before
we get a transition EE < CS when the discriminant of (2.46) is zero (see
Figure 2.3).

The boundaries of the new region CS are given by the equation

—(01 — 09)? +4s02 = 0. (2.47)

Remark 2.4.1. The equation (2.44) has no real solution if s = 1, that is a; > 0.
So, there is no bifurcation for vwys € N when a1 > 0. In the same way, there is no
bifurcation if vwpy € N when a1 < 0. This fact is well known as a consequence of
Krein theorem (see [K.]).

5. vwy € N, vwse € N with different parity.

In this case system (2.42) splits in two uncoupled systems

U] = 101U] — 20301, Uy = 109Uy — 20409, (2.48)

1'}1 = *20’3U1 — io’lvl, ’(.)2 = *20’4’&2 — iUQUQ.

Let A1 = 0’% — 4a§ and Ay = U% - 402 be the discriminants of the charac-
teristic polynomials of the uncoupled systems above. Figure 2.4 shows the
behavior for the characteristic multipliers depending on the sign of Ay and
As.



2.4. Bifurcations 59
A <0 Ay >0
o <)
Ay >0
Figure 2.4: Characteristic multipliers according to the sign of A; = 0% — 402 and
AQ = 0'% — 40'4%
The boundaries of the EH region are given by
0?2 —403=0 or o3—403=0,
and the boundaries of the region HH are given by
0?2 —403=0 and o3 —407=0.
The cases 1 to 5 are summarized in the following table.
vwi € Nyvwy ¢ N EE~EH | 07 — 40§ =0
vwy & Nyvwy € N EE<~EH | 03 —40% =0
vwi € Nyvwy € N EE~EH | 0 —403 =0 or 03 — 403 =0
with different parity EE~HH | 0? — 403 = 0 and 03 — 407 =0
vwi € Nyvws € N, (w1 +ws) €N | EE&CS | (01 + 02)% +4s05 =0
vwq ¢N, vwo ¢N, %(WQ—(A)Q) € N | EE—~CS (0’1 —02)2—480'6:0

6. vwi € N, vwy € N with the same parity.

In this case, generically the coefficients o, j = 3,4,5,6 in (2.34) are different

from zero. Now the system is not uncoupled.
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However, due to his Hamiltonian character, the characteristic polynomial of

(2.42) is
qz) = zt+di2? +dy, (2.49)
where
diy = o} 402 —4(03+03) +2s(02 — ad), (2.50)
do = DDy, (2.51)
Dy = (01 — 280’3)(02 + 20’4) + 8(05 + 06)2,
D2 = (0'1 + 280’3)(0’2 — 20’4) + 8(0'5 - 0'6)2. (252)
Let
ds = d? —4ds, (2.53)

the discriminant of (2.49). Then, the different possibilities for the character
of the system, excluding boundary values, are

e EH if dy <0,

e CS if do>0andds<0,

e EE if  do>0,d3>0andd; >0,

e HH if dy>0,d3>0andd; <O0.

Figure 2.5 represents these situations.

Finally we take (a1,a2) € R3 a resonant point for € = 0.
We recall that for e = 0 the system (2.1) is in general saddle-complex.
The linear system defined by the Normal Form (2.36) is

s o= (p+o1)z +ozznuw,

Z = ozznw P4 (54 71)2,

i3 = —(p+o1)zs—ozzaw "’ (2.54)
2y = —o3230"? — (p+T1)2,

with p = a +if.
In order to study the stability parameters of system (2.54) we perform the
. _vB vB vB _vB
change of variables u1 = z1w™ 2, ug = 20w 2, V1 = 23wW 2, Vg = zqw 2. We

obtain the uncoupled linear system with constant coefficients

U = (o + o1)ur + o3us, U1 = —(a + 01)v; — o302,
Uo = o3ul + (a —l—El)’LLQ, Vg = —03V] — (Oé +51)vg,
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HH

HE

Figure 2.5: Stability regions in the (d;,d>) plane

Let be A = 0 —Im(o1)%. If A > 0 then we have a pair of real eigenvalues and
their opposites. Figure 2.6 shows the behavior of the characteristic multipliers in
terms of A.

A>0 A <O

b
NI

Figure 2.6: Characteristic multipliers according to the sign of A = ¢2 — Im(0)?

A transition HH«+CS occurs when A goes through 0. Then, the equations for
the boundaries of the HH region are given by

Im(al) = :|:03. (255)
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2.5 The d’Alembert case

In this section we study the resonant regions in the particular case that F; in (2.2)
satisfy d’Alembert property, that is, functions F}, j = 1,2, are of the form

Z Emzm:c cos <l2m>
m>1 =0 " )
where ¢, ; € R.

After remark 2.3.5 we know that for the coefficients o, j = 3,4,5,6, in the
Normal Form, (2.37) is satisfied for k¥ > 1. The d’Alembert property can be used
to determine, under non degeneracy conditions, the order of these coefficients as
follows.

Let us go back to the initial Hamiltonian (2.11) and consider the time depen-
dent terms (see (2.13))

Y Y3
(a1 + 51)51171(75;6) + (a2 + 52)?2F2(t;5)

Let us consider a fixed o, j = 3,4,5,6, and assume that it is the coefficient of a
resonant monomial z!,

ojwttzl  with n €N, (2.56)

where z = (21, 22, 23, 24)T and 1 = (I1, l2, I3, 14) with l; € Nsatisfying l1+lo+I3+14 =
2. For a fixed n € N, the d’Alembert property implies that in F; and F3 the terms

. 27t .
n cos nT can be written as

2 t n —n
cos (n%) e(epm +01) = %6"(%7” +01)

where w = e%t, O contains terms of order at least 1 in €, and ¢, , is a coefficient
eventually zero. We recall that in order to get the Normal Form, first we perform
the change of variables y = Mz to (2.11). For the new Hamiltonian as given in
(2.29) the terms in w™, w™™ are of order n in £. So, they only appear in H,,(z, w)
for m > n. Now it is not difficult to see that this property is preserved by the
n

Giorgilli-Galgani algorithm. In fact, the terms e"w”, e™w™" appear for the first
time in the n—th row of table 1. Therefore, if j = 3,4,5,6 for o; in (2.56) we get

O’j = CjEn(l + 01),

where ¢; is a coefficient eventually zero and O contains terms of order 1 in 61, 92, €.
We shall assume in the next as non degeneracy conditions that ¢; # 0, j = 3,4, 5,6.
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2.5.1 Single resonances

We shall consider resonant points (a1, a2) which belong to a unique resonant curve.
This kind of points are found at every region R, Ro and Rs.

We begin with R; and assume that (a;, az) belongs to a resonant curve (2.6),
that is,

Yalar,as) = (a1 + w?)(az + w?) —4w? =0, where w = %, (2.57)

for some n € N. From now on, n is fixed.

The boundary surfaces which separate the EH and HH regions for ¢ > 0 are
defined by (2.40). Our purpose is to give an estimation of the size of the HH
region.

As we have seen in the beginning of this section the d’Alembert property
implies that

o3 = 03€n(1—|—01), (258)

where c3 € R and O; stands for terms of order 1 in d1,d9,e. It is assumed that
c3 # 0. The following lemma gives the terms of o9 which are of order 1 in 1, ds.

Lemma 2.5.1. Let (a1,a2) € Rq be such that vy, (a1,a2) = 0. Then, the dominant
terms in the contribution of 61 and d2 to oo are

w? + a9 w? + a1
o+
D(w) D(w)

o2, (2.59)

where D(w) = 2w[2w? + a1 + ag — 4] # 0.

Remark 2.5.2. This lemma is also true if £, j = 1,2, do not satisfy the d’Alembert
property.
Proof

We use the hint given in remark 2.3.5, that is, assume € = 0 and consider
g; = 0'1'(51,(52), 1= 1,2.

In the plane of parameters A1, Ao, if Ay = a1 + d1, Ay = ao + &2, the zeroes of
the characteristic polynomial p(z) defined in (2.5) are £A(d1,d2) € R, £iQ2(d1, J2)
where

A(51,52) = A + 0'1((52,(52), 9(51,52) =w + 02((51,(52).

Here, £\, +iw, are the zeroes of p(z) for (41,92) = (0,0). Then, we can write

o0 o0
02(01,02) = 8_51(0’0)61 + 8—52(0’0)52 + ...
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and the partial derivatives are easily computed using that p(iQ2) = 0. O

In order to describe the boundary surfaces we shall consider perturbations of
(a1, az2) in an orthogonal direction to the resonant curve (2.57), that is, \y = a;+4d1,
A9 = a9 + 99 with

<§1> = 0Vy(al,az), (2.60)
2

for some parameter ¢, being |4| small enough. In this way, o2 and o3 depend on ¢
and 6. Moreover, (2.59) becomes

B ||V7n(a1,a2)||25
D(w) '
We remark that ||V, (a1,a2)|] # 0. Otherwise, we should have w = 0, but we
know that w # 0 if (a1, a2) € Rq.
Therefore we can write

oy = c||[Vyn(ar,a2)||*d 4+ ¢o(e) + dp1(e) + 6% f (e, ),

1
where ¢ = —m, ¢o and ¢ are functions of order 1 in € and f(e,d) is of order

w
1in g,6.

Let us introduce the functions
fi(e,6) =02 — 203,  fa(e,0) = 02 + 203.
The boundaries of the HH region are defined by
f1(€,6):0, f2(8’5)20’

We have that o2 = o3 = 0 if (¢,6) = (0,0). Then, f1(0,0) = f2(0,0) = 0.
Moreover,

b 15)
%(0,0) = %(0,0) = ¢|Vn(a1, a2)[|* # 0.

Then, using the Implicit Function Theorem there exist d4(g), d_(¢) analytic func-
tions in € 2 0 such that

f1(e,01(€)) = 02(04(¢),€) — 203(d4.(¢),6) = O,
fa(e,0_(e)) = 02(6—(¢),e) + 203(6_(¢),e) = O.

Therefore, in the direction of V~,(a1,asz), the boundaries of the HH region are
given by

A= CL1+(5+(8), )\2:a2—|—5_(5),

for £ > 0 small enough.



2.5. The d’Alembert case 65

Proposition 2.5.3. Let be (a1, a2) € Ry such that vy, (a1,a2) =0 for somen € N.
Assume that Fy and Fy satisfy the d’Alembert property. If cs # 0 defined in (2.58)
then the width §4(g) — 0_(e) of the HH region is of order " being the dominant
term

_803w(2w2 +a;+ax—4) ,
IV (ar, az)||?

Proof
‘We have that

file,04(e)) = e Vm(ar, a2)]*0+(e) + dole) + 84 (e) () +
+0..(2)° f (2,01 () — 2c1" (1 + g(e,04.(€))) = O,

with ¢ = — g,0) a function of order 1 in €, §, and

1
m; g(
fa(e,6-(2)) = cllVy(ar,a2)|?61(e) + dole) +0-(e)p1(e) +
+6-(2)*f(e,04(2)) + 2c1™(1 + g(e,6_())) = 0.

The difference fi(e,d_(¢)) — fa(e,d+(g)) is

cl|Vyn(ar, a2)l*(84(€) = 0-(€)) + (4(¢) = 6-(£))¢1(e) + 04 (e)*f (e, 04()) —
3-(e)%f(e,0-(e)) — dere™ — dere™(g(e, 84 (€)) — g(e,5-(¢))) = 0.

From this equation it is easy to obtain the dominant terms of d4(¢) —d_(g). O

A similar analysis can be done in regions R2 and R3 in the case of a single
resonance, that is, (a1, az) belongs to a unique resonant curve (2.6), (2.7) or (2.8).
In any case we shall take (d1,d2) as (2.60) for the corresponding resonant curve.
We given explicitly the case R3 in the next proposition. We recall that Normal
Form in a neighbourhood of (aj,as) is given by (2.36) and the boundaries of the
HH region are defined by (2.55).

Proposition 2.5.4. Let (aj,a2) € R3, a1 # az, be a point on a resonant curve
n
(2.8) with 3 = % for some n € N. Assume that Fy and Fy satisfy d’Alembert

property and o3 = c3e"(1 + O1) with c3 # 0. Then the width 64 (g) — d_(g) of the
HH region is of order €™ being the dominant term

2¢3_p _ Vm—yar ((Ja+ Ja)? 2
e where ¢ = ENGTRE ( 5 +2(1-p )>, (2.61)

p=a+i3.
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Proof
Following the same ideas in the proof of lemma 2.5.1 it is not difficult to see

that the contribution of §; and ds to o1 up to first order is

i — 0218 + (0 = )b (2.62)
where W (p) = 2p? — (a1 + az — 4) = 4aBi. Using (2.60) and (2.62) we get that
the terms of Im(oy) of order one in ¢ are cd where ¢ is given in (2.61). Clearly
¢ # 0 if a; # as. There exist two analytic functions ¢4 (g),d_(e) which satisfy
Im(o1) — 03 = 0 and Im(o1) 4+ o3 = 0 respectively. Then, the proposition follows
in a similar way as proposition 2.5.3 O

2.5.2 Double resonances

In this section we consider a double resonance, that is, (a1, ag) is a resonant point
which belongs to two or more resonant curves. Double resonances only occur at
R2. So, we assume (a1, as2) € Ro and

vwj = nj, Jj=12, (2.63)

for some n; > ng natural numbers. We shall consider the case n; = na(mod 2).
The Normal Form is Ny + N1 + No + N3 + Ny in (2.34). We want to discuss the
possibilities for the bifurcations for sufficiently small € when we perturb a case
that for € = 0 is totally elliptic and both frequencies are in resonance.

Resonant points are given by the zeroes of functions dy, ds and ds = d% — 4d;
in (2.50), (2.51), (2.53), respectively. The analysis of the bifurcations amounts to
study the composition of the maps

N : (>\1))\275) — (01702703704705706)5
and
P . (01,02,03,04,05,06) — (di,d2),

where N denotes the normalization map and P the characteristic polynomial of
the Floquet matrix.

Lemma 2.5.5. Let be (aj,a2) € Ro and wi > wy the frequencies obtained for
e = 0. Then, the dominant terms in the contribution of 61 and dy to 01,09 are

51 _ w%-‘,—az _ w%+a1
— D1 D1
J 5 where  J = Cwitay  witra |0
Do Do

Dy =2wi[(a1 + az — 4) + 2w}] # 0, Dy = 2ws[(a1 + az — 4) + 2w3] # 0. Moreover,
the matriz J is regular if w1 # wa and a1 # as.
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Proof

It follows the same idea given in the proof of lemma 2.5.1. In fact, if we denote
by 19(51,52) = i[w1 + 0'1(51,(52)] and 192(51,52) = i[wg + 0'2(51,52)], the zeroes of
the characteristic polynomial p(x), then J is the Jacobian of 1,Qs. It is easy to
check that D1Ds # 0 if (a1, a2) € Ro. Furthermore,

(M1 — do) (Wi — w%)'

71 = D1Ds

After lemma 2.5.5 we can use o1 and o9 as parameters instead of d1,d2. Then
bifurcations will be described in terms of o1 and os.
As the functions Fj in (2.2) satisfy d’Alembert property, we have,

o3 = m16"1(1+0(€,51,(52)),
o4 = m2€n2(1+0(8,51,(52)),
ni+ng

05 = M3 2 (14—0(6,(51,62)),
2 (14 O, 61,82)),

g6 — TNy&

where m;, j = 1,...,4, are real values. We shall assume non degeneracy conditions
in the sense that m; #0, j =1,...,4.
Our purpose in this section is to prove the following theorem.

Theorem 2.5.6. Let (a1,a2) € Ra, a1 # az, and assume w; = nj%, j=12,
ny > ng, n1 = na(mod 2). In the d’Alembert case and if non degeneracy conditions
are satisfied, one has

(i) if n1 = 3ng, then around (A1, A2,e) = (a1,a2,0), regions EE, EH and CS
exist and a region HH has either 0, 1 or 2 connected components.

(ii) If ny # 3nga, then the regions EE, EH, HH, CS are always present and no
local changes in the topology of these domains occur.

The proof of the theorem will be given at the end of this section as a summary
of previous results.

First of all we study the magnitude of o, j = 3,...,6.

n n
We note that ny > 1+ 72

> ny. Then, |o4| >> |o5| >> |o3| if € is sufficiently
ny —ng ny +na
2

small. Moreover, , fact that implies |og| >> |o5|. Now, we

distinguish different subcases.
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n1 + neg ny —n2
2

1. If ny > 3ng, then nq > > ngy and therefore |o3| <<

los| << |og| << |o4].

ny+n ny—n
2. If ny = 3no, then ny > ! 2 L 2

= ng and therefore |o3| <<

|os| << |o4| and og is of the same order of magnitude of o4.

ni + ng ny —n2

3. If ny < 3ns, then ny > > ng >

and therefore |o3| <<
los| << |og| << |og].

We introduce the following scaled parameters

- gj .
G; = U—i j=1,2,3,5, A:a, (2.64)

ny1—ng

and we define p:=¢" 2

We begin with the second case.
In this case, u = ™ and then

o3 = O(M2)a 05 = O(M)a A= 0(1)

Using the scalings we introduce new functions (see section 2.4, case 6)

~ d - D - D ~ o ~ - -
dl = —;, Dl = —217 D2 = —227 d2 B D1D2, d3 — d% _4d2
04 0'4 0'4

Let be B := sA%. We can write these functions in terms of y like

dy = 67+62—(4+2B)+0(?),

D1 = 61(62+2)+ B+ 0(p),

Dy 51(62 —2) + B+ O(p), dy = D1 Do,
d3 = (6% —62+4)% —4B[(61+ d2)2 — 4] +O(p).

In order to study resonant points we need to compute the zeroes of Jj, 7=12,3
functions, as well as the intersections of the curves defined by czj =0,7=12,3.
We note that, up to terms of order p, Jl, Dy, Do, ds depends on B. The idea is
to study the bifurcation diagram in the plane (&1,62) in terms of B. Notice that
B #0.

First we will assume that 1 = 0. We obtain the following result.

Proposition 2.5.7. Assume that hypothesis in theorem 2.5.6 are satisfied and
n1 = 3ng. Under the generic assumptions mo # 0, my # 0 in the Normal Form and

neglecting os, o5 terms (i.e., setting u = 0) the unique changes in the bifurcation

diagram are produced at B = —1 and B = T
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Figure 2.7 shows the bifurcation diagram for p = 0 in different cases. We note
that, in particular, no HH regions exists if B < —1.
Proof

In this case

dy = &1+4+45—(4+2B),

Dy = &1(62+2)+ B,

Dy 1(&2—2)+B

dy = (67— 63 +4)° —4B[(61+52)> — 4],

The different stability regions are determined by the intersections of the zero

sets of the functions above according to the figure 2.5.

= B
We consider first the set of zeroes of da. The hyperbolas 69 = F2 — —
a1

defined by Dy =0and Dy =0 respectively have no self intersections. Moreover,

dy < 0 & —2— 3 < 09 < =2+ E Therefore, the region dy < 0, which
corresponds to an %IH region, has 2 co(rfﬁnected components. Figure 2.8 shows the
boundaries of the region EH in the case B > 0. For B < 0 we get a symmetric
picture respect the g9 axis.

In the region dy > 0 we can have the following behaviors:
o ifds <0 — CS,

» if dg>0 — EE
o ifd3 >0 ~ .
o { if d<0 — HH
Now we consider the curve CZg = 0. We note that the set of zeroes of CZg is
symmetric with respect to the origin. Self intersections are determined by the

dds dd.
additional conditions —> = 0 and —> = 0. These equations only have common

801 802

solutions for B = —1 and B = 0. If B = —1 there is a unique solution (61, d2) =
(0,0). If B =0 we get 67 — 63 + 4 = 0. However we assume B # 0. So, only the
origin when B = —1 gives a real self intersection for us.

In order to study the curve ds = 0 for any value of B # 0, it will be useful to
introduce z1 := 61 + 69 and 2z := &1 — &2. Then, dg can be written as

d3 = (2129 +4)% — 4B(2? — 4).

The following claims for the solutions of d3 = 0 are trivially obtained. If B < —1,
for any real value of 2z there are two different solutions of z; (see figure 2.9 (a)).
If B = —1, for any real value of z3, zo # 0, there exist two different solutions of
z1. One of them is z; = 0, which corresponds to the straight line 69 = —&7 in the
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plane &1,62. If =1 < B < 0, for any real value of 23, |22| > 2v/1 + B there are
two different solutions for z;. If |z3] = 2v/1 + B, a double solution is obtained.
If B > 0, for any real value of z1, |21| > 2 we get two real solutions for zo = 0.
In the cases |z1] = 2 we get double solutions for z9, that means, straight lines
01+ 02 = £2 are tangent to ds = 0. Figure 2.9 shows the evolution of the region
corresponding to ds < 0, that is the CS region, in the plane 1, .

Now we go to study the intersections of dy = 0 and d3 = 0. This is equivalent
to look at the intersections of ch =0 and JQ = 0. We recall that Jz = leg. So,
we shall consider the intersections of

d, =0, Dy = 0. (2.65)

Using the symmetry, the solutions of dy =0, Dy = 0 will be easily obtained.
The solutions of (2.65) are the intersection points of a circle of radius 4 + 2B

and the hyperbola 69 = —2 — P We assume B > —2, otherwise (2.65) has no
solutions. We shall do the followling steps. First we look for the points P, P in
the hyperbola such that the distance to the origin has a relative minimum. Then,
we shall determine the values of B such that points P;, P> are inside the circle of
radius 4 + 2B. We note that for any point P, or P, which satisfies that condition,
there are two solutions of (2.65) , and using the symmetry two additional solutions
of cil =0, DQ = ( are obtained.

We begin by looking at the points in D; = 0 such that the distance to the
origin is a relative minimum. To this end, we use a Lagrange multiplier p with

Lagrangian
L = 6246 pDy.

We get a minimum (61, 62,m) for

G1m = 7 fppz, Gom = 42_”;, (2.66)
where p satisfies
filp, B) = (4= g2+ 2L =0,
or equivalently (note that f;(0, B) # 0)
(4=p"? _ 32 (2.67)

0 B

4 — 2\2
Figure 2.10 shows the graphic of g1(p) := ﬂ For any value of B, B # 0
p

(2.65) has two real solutions p1, p2 giving rise to points Pj, P, respectively, in the
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plane &1,09. If B > 0then p1 < =2 < pa <0 and, 0 < p; <2< pgif B <0. Now
we study the sign of d; on Py, P,. Using (2.66) for B # 0 we get

~ ~ 5 B B 8
di(p) := d1(51,m, Fom) = —%(4+p2)—(4+23) =3 [P+ )+ S@+2B).

Let be go(p) = p(p? +4) + 16. It is clear that for any value of B # 0 there is
a unique p, p3, such that di(p3) = 0 (see figure 2.10). We are interested in the
sign of di(p1) and di(p2). The figure 2.11 shows the graphics of ¢1(p) and g2(p)
as well as pq, po, p3 for different values of B. If B > 0, p1 < p3 < —2 < pg < 0.
Then, d; (p1) > 0 and dy (p2) < 0, that is, only P; is inside the circle. If B < 0 we
distinguish three cases (see figure 2.11).

27 ~
1. B < TS Then ps < p1 < p2 and di(p;) > 0, i = 1,2. P; and P» are

outside the circle, and (2.65) has no real solutions.

27 ~
2. T < B < 0. In this case 0 < p; < p3 < p2 and then di(p1) < 0,
di(p2) > 0. Only Py is inside the circle and (2.65) has two different solutions.
27 ~ ~
3. B= 16 Then di(p1) = 0, di(p2) > 0. (2.65) has a unique real solution,

(61, 59) = (Zi)

We summarize the results above. Consider the set of points in the plane &1, 69
such that do > 0 and d3 > 0. According to the figure 2.5, if d; < 0 we get an HH
region and if d; > 0 an EE region. We distinguish the following cases.
27
(a) B< TS There is no HH region (see figure 2.7 (f)).
27

(b) 16 < B < —1. There are 4 intersection points of d3 = 0 and dy = 0. This

gives an HH region which has two connected components (see figure 2.7 (d)).

(¢) —1 < B. There are 4 intersection points of ds = 0 and dy = 0. However the
HH region has one connected component (see figure 2.7 (a), (b)).

Now we study the case u # 0, that is, we analize the effect of the neglected
terms. We obtain the following result.

Proposition 2.5.8. Assume that hypothesis in theorem 2.5.6 are satisfied and
n1 = 3ng. Under the generic assumptionsmj # 0, j = 1,...,4 in the Normal Form
(2.84) the unique changes in the bifurcation diagram are produced at B = —(1+63)?

2 1
and at B4 = —1—2 + 5314&5 + O(/ﬂ).
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Proof
We know from Proposition 2.5.4 that in the case u = 0, bifurcations are pro-

duced at B = —1 due to self intersections of Jg =0 and, B = 16 when ch =0

and ds = 0 have tangencies. We recall that in this case no self intersections of
do = 0 occurs.
Let us consider p # 0 small enough. In this case, self-intersections of dy =0

can occur. Using (2.52) these will occur if

El = (5‘1 — 285’3)(5’2 + 2) + 5(5'5 + A)2 =0,
Dy = (61 +2563)(62 —2) +s(65 — A2 =0

Substracting this equations, we obtain that
&1 — s620(p%) + sAO(p) = 0.
If we substitute the relation obtained in Dl =0 it turns that
530(1%) + 520(p) + B+ 0O(p?) = 0.

Then, self-intersections of dy = 0 can occur, but outside a local neighbourhood of
the origin on the (61, d2)-plane. Hence, they should not be considered.

Concerning self-intersections of ds = 0, they are produced if

~ 0ds 0ds

ds =0, 95, =0, 95, =0
If 4 = 0, the system above has the solution (B, d1,62) = (—1,0,0). The Jacobian
with respect to B, 1 and &5 at that point is different from zero. Then, the Implicit
Function Theorem ensures the preservation of the intersection which will occur for
a value of B equal, a priori, to —1 4+ O(u) and with values 61,52 = O(p).

An elementary computation shows that the self-intersections of dsz = 0 occurs
exactly for B = —(1 + 63)? at 61 = 62 = G5. Furthermore, for that value of B,
the line &1 + 69 = 205 is one of the components of Jg = 0. Figure 2.12 shows an
illustration.

It remains to study the modification of the tangencies of the zero sets of d; = 0
and dy = 0. We note that symmetry is lost for 1 # 0. So, one has to consider the
cases dj = 0, Dy =0and d; = 0, Dy =0 separately. Let us consider the first case.
We have

dy = 614+63—(4+2B)+0p?) =
Dy = 61(62+2)+B+v+0(u?)

9

0
0,
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where v := 2sA65 = O(p). Up to order p, dy = 0 is a cercle. Following the same
steps as in the proof of Proposition 2.5.4, we look for the points of D; = 0 which
are at minimum distance to the origin. Using the Lagrangian L = 6% + 55 — pD;
we get a minimum (&1, 2,m) as (2.66) where the Lagrange multiplier p satisfies

s - 32
Dl(o'l,myo'Q,m) = ﬁﬂ-Bﬁ-V:O.
However,
s . 16p? 4p*
di1(G1,m,02,m) = a— 27 + @a— 22 (4+2B).

We must solve the following system

32p+ (B +v)(4—p*)* =0,
16p% + 4p" — (4+2B)(4 — p*)* = 0.

2 27
For p = 0, we have the solution p = 3 B = T One step of Newton’s Method
around that solution gives the critical value of B

27 1
By, = —L4 2545 2
n 16+28 a5 + O(u?),

A similar study for d; = 0, Dy = 0 gives a second critical value

27 1
B_.=—— —_-540 2).
16 25 a5+ O(p”)

Remark 2.5.9. The geometrical interpretation is that the two narrow HH domains
which in the figure 2.7 (f) disappear on the (b) plot (B = —i—g) when going from
left to right, disappear for slightly different values of B if 4 # 0. No further
changes occur in the bifurcation diagram for e small enough in case 2).

Proof of Theorem 2.5.6
The item (i) follows from propositions 2.5.7 and 2.5.8.
To prove (ii) we study the cases 1. and 3.. To this end we use the same scalings
n1—3ng

as in case 2. We have that A in (2.64) is of order O(¢~ 2 ). Then, the case 1.,
ni > 3ng, has the same characteristics than a very small value of |B|. In case 3.,

ni < 3ng, has the same characteristics than a very large value of |B|. Then there
are no changes in the bifurcation diagram. O
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2.6 Proof of Proposition 2.3.4

In this section we shall prove the proposition 2.3.4.

Let H(z,w, K) be the Hamiltonian defined in (2.29). Our purpose is to use
the Giorgilli-Galgani algorithm to obtain the Normal Form for this Hamiltonian.

Let be H(z,w) = H(z,w, K) — K. We recall that H(z,w) is an homogeneous
polynomial of degree 2 in z whose coefficients depend on w and w™!.

It will be useful to introduce the following functions.

F(z,w) = fizi + foz + f323 + fazi + 52122 + foz123 + frziza + fazazs +
+foz224 + f102324, (2.68)
where f; = fj(w), j =1,...,10 can be written as
flw) = Y (@EGuw +djuw™), (2.69)
j=0

being the coefficients ¢;, cij analytic functions on &1,d2,6. Let us denote by HI
the vector space of functions (2.68).

Given F(z,w) in HY | F(z,w) will be obtained from (2.68) by a substitution
of f; by 7]- = fj(w), for j = 1,...,10, where the bar stands for the complex

conjugate.
From lemma 2.3.3 and taking into account that w has been defined in section
2%
232asw = eTt, we get

H(z,w) = H(Siz,wt). (2.70)

Moreover, as far as H(z,t) in (2.24) is an even function of ¢, we get

H(z,w) = H(S2z,w). (2.71)

We shall see that these two symmetries will be preserved to the Normal Form. To
do that we use the Giorgilli-Galgani algorithm (see appendix C) to get the Normal
Form.

Let us denote by NF the new Hamiltonian up to order m in 1, d9,e. Then
NF =Ny + M + N+ ...+ N, with N}, defined at (2.31), that is,

k J I

Ne = ZHj,kfjv Hy,j = Z E[Gl,H/c,H], Hr,o0 = Hy,
j=0

=1

and G, is the solution of the homological equation (2.32). In (2.32),

Ho = Ho(z,K) = p1z123 + p2zozs + K.
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Functions H; j, Gy, M, belongs to HY. We denote each term as
g=nhz'wi, h=c 5{16§2£j3, (2.72)

where ¢ € C is a constant, j; € Z, j; > 0,47 =1,2,3, j € Z, and z' = zlllzégzé‘”’zi‘*
with {p € Z, [, > 0, k =1,2,3,4 satisfying [y + lo + I3+ 4 = 2.
zlw’ as in (2.72) is a resonant monomial if [z'w7, Hg) = 0, that is,
217
(ll —1I3)p1 + (lQ —lg)p2 + 7 = 0.

From this equation it is easy to get the following lemma.
Lemma 2.6.1. z123, 2024 are resonant terms for all (a1,as) € R. Moreover,
1. if (a1,a2) € Ry with wv € N then 23w™"%, 23w"*;
2. if (a1,a2) € Ra with
(a) wiv € N then z%w‘”wl, z%w”‘”l,
(b) wov € N then 23w "2, 23w"2,
(c) g(wl Fwo) €N, zizgw 5He2) s Florten)
(d) g(wl — o) €N, zizgw 5Een) | g F @)
3. if (a1,a2) € Rz and vB € N, 2124w ™70, zoz3w"5,
are resonant monomials.
Let F(z,w) be in HI.
Definition 2.6.2. F(z,w) satisfies the Sy—property if
F(z,w) = F(S2z,w), (2.73)
for all z € C*, w € C, |w| = 1.
Definition 2.6.3. F(z,w) satisfies the S;"—property if
F(z,w) = F(Siz,w™"), (2.74)
for all z € C*, w € C, |w| = 1.
Definition 2.6.4. F(z,w) satisfies the S; —property if
Flz,w) = —F(Siz,w™), (2.75)

for all z € C*, w € C, |w| = 1.
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Lemma 2.6.5. The Normal Form up to order m, NF satisfies the So—property.

Proof
We have seen in (2.71) that the initial Hamiltonian satisfies the So—property.

So, we only need to prove the following statements.
(i) The Poisson bracket preserves the So—property.

(i) Assume that M € HI satisfies the So—property and let G be the solution of
the homological equation

G, Ho] + M = 0.
Then, up to resonant terms, G satisfies the So—property.

To prove (i) let us consider F,G € HI satisfying the So-property. Let be Q =
[G, F]. Using (2.73) we get

Q(z,w) = VG (z,w)T JVF(z,w) = VG(Saz,w)T §2J§§ VF(Saz,w).

However, using the definition (2.23) of Sy and the symplectic character of M we
have that §2J§2T = J. Then,

Q(z,w) = Q(S2z, w)

Now we prove (ii). Let be D = diag(p1, p2, —p1, —p2) and the homological equation

M (z,w) + %(z,w) + VG(z,w)'Dz = 0. (2.76)

We assume M (z,w) = M (S2z,w). From (2.76) and using that DSy = SoD we get

%—Cj(z, w) — %—f(?gz,w) + [VG(z,w)" — VG(Soz,w)" So)Dz = 0.

Let us define Y (z,w) = G(z,w) — G(S22z,w). Then,

Y
Y, Ho] = %(Za w) + VY (z,w) Dz =
— aa_f(z,w) - %_?(ng, w) + [VG(z,w)" — VG(S22,w)" S2]Dz = 0.

Therefore Y (z,w) only has resonant terms. O

Lemma 2.6.6. The Normal Form NF up to order m of H(z,w, K) satisfies the
SiF —property.
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Proof
From (2.70) the initial Hamiltonian satisfies the S —property. So, we shall
prove the following statements.

(i) If F € HY satisfies the S; —property and G € HI satisfies the S; —property,
then Q := [G, F]| satisfies the S} —property.

(ii) Assume that M € HI satisfies the S} —property. Let G € HI be the solution
of the homological equation

G, Ho] + M = 0.
Then, up to resonant terms, G satisfies the S| —property.

The proof of (i) follows the same steps as (i) in the proof of 2.6.5. However using
the definition (2.23) of S we get S1JS¥ = —J. Then,

Q(z,w) = —VG(S1z,w™ )T SlJS;f VF(Si1z,w™!) = Q(S1z,w™!)

To proof (ii) let us assume that M satisfies the Sf property. Then, M(z,w) =
M (S1z,w™1). Taking into account the homological equation we get
oG G

a(z,w) - W(S’lz,w_l) + [VG(z,w)" — VG (S1z,w TS |Dz = 0,

where the equality S1D = —DS] has been used.

Let us define Y (z,w) = G(z,w) + G(S12,w™1). Then,

oG oG

Y, Ho] = E(z,w) — E(Slz,wfl) + [VG(z,w)" + VG(S12,w™ 1)1 S,]Dz = 0.
Therefore Y (z,w) only has resonant terms.

As a consequence of (i) and (ii) we have that the functions H; ; which appear
in the Giorgilli-Galgani algorithm satisfy the Sf —property, while G}, satisfy the
S| —property. O

Now we use the Sy and Sf —properties of NF' to get the relations between the
coefficients of f;(w) which appear in NF'.

Let us consider (aj,as) € Ri. The resonant terms are given in lema 2.6.1. So,
we write the Normal Form as

NF(z,w) = K+ Az123 + iwz2z4 + a62123 + 92224 +

—rVw

2 2
+a222w + az424'll)yw,

for some constants aso, a4, ag, ag.
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Using that S1z = (s23,124, 521, —i22)7 (lemma 2.3.3),

NF(S:z, w_l) = K+ Az123 +iwzozy + agz123 + agzozs +

—agzjw”” — agziw

The Sf‘ —property for NV F implies that
ay = —a. (277)
Moreover,

NF(S»z, wil) = K+ Az123 +iwzozy + Ggz123 — Q92924 +

—agzzw”“’ - E4z§w_”“’

The Sy—property implies that ag € R, ag is imaginary and
as, = —as. (278)

From (2.77) and (2.78), a2 € R and a4 = —asy. This proves (2.33).

Let be (a1, a2) € Ro. We consider the case for which the Normal Form contains
all possible resonant terms and we write it as

NF(z,w) = K +iwy 2123 + iwa2024 + ag2123 + agzazs + a1 22w "1 + agzgw”wl—k
agzgufl’“’2 + a4z£w”“’2 + a5z1 20w YYhs 4 aq19z324WYChs +

a7z1 24w YYhd 4 qgzo zgwPWhd,
1 1
where we recall that wys = §(w1 + ws) and wpg = §(w1 — wg). Then,

NF(S1z,w™t) = K +iwi 2123 + lwaz024 + ag2123 + 92224 — a3 25wt —
2

azziw Y — agsz”“’Q — a4z%w_”°"2 + saszgzzgw?“hs + sai9z1 29w VYR —
sa7z9z3wWY¥hd + sagzyzaw YV,
Then,
a3 = —aj, a4 = —az, aijp = sas, ag = —Ssary.
In a similar way, using the So—property we get
ag = —ag, a9 — —ag, a3z — —ai, a4 — —as, aip = Sas, ag = sary.
Therefore a1, a9,a5 € R, ag, a7, a9 imaginary and as = —ay, ag = —ao, ajg = sas,

ag = —say. This proves (2.34).
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Finally, we take (a1, a2) € R3. Then, NF has the form

NF(z,w) = K+ (a+iB)z123+ (o —if)z224 + az123 + agzazy +

arz1zaw "8 + agzozzw”?.
As 81z = (23, 24, 21, 22)", we have

NFE(Siz,w™') = K+ (a+iB)z123 + (o — iB)2024 + apz123 + agzozs +

agz1zaw "8 + arzozgw”®.
Therefore, due to the Sfr —property, ay = ag. Moreover,

NF(Soz,w™) = K4 (a+iB)z123 + (o — iB) 2024 + G921 23 + Gg2024 +

68212’4wfyﬁ+67222’3wyﬁ.

By the Ss—property, a9 = ag and ag = ar.
Then, a7 = ag with a7 € R and ag = ag. This proves (2.36).
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.
(a)
.
()
.
()

Figure 2.7: A sample of the bifurcation diagrams near double resonance in the
d’Alembert case with n; = 3ng and p = 0. Values of B: (a) 1, (b) —0.9, (¢) —1, (d)
—1.1, (e) —27/16, (f) —4. Color codes: red for EE, green for HE, blue for HH, magenta

for CS. The horizontal (resp. vertical) variable is &1 (resp. &2).
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-1 -0.5

. B
Figure 2.8: Region EH and their boundaries for B = 1 where f,(51) = —2 — — and

B o
f-(1)=2-—

o1
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Figure 2.9: Graphic of the curve d3 = 0 for B = —2, B= —1, B= —0.5 and B = 1,

respectively. The dashed area corresponds to ds < 0.
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B T e ~32

| |
4 3 -2 -1 01 2 3 4

. 32
Figure 2.10: Graphic of g1(p) and intersections with -5 for B=1,and B=—1

. 32 27
Figure 2.11: Graphic of g1(p), g2(p) and intersections with —— for By = =1, By = ——

B; 16
and B3 =1
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()

Figure 2.12: An example of self-intersections of d3 = 0 in the general case. Scaled
parameters used: 63 = —1.3, 67 = —0.5, A = —0.3, s = —1. Variables plotted as in figure
2.7. (b) plot shows a global view, (a) and (b) are magnifications. Up to 19 connected

components can be seen.



Chapter 3

Stability of a family of periodic
linear systems: the singular
limit case

3.1 Introduction

We consider again a periodic linear system as the one given in (1.55), that is,

x = A(t)x, A(t)z(A(()t) _£2J2>, A = ¢g°2diag(A1, Xa), (3.1)

where 0 < a < 2, A\1, Ay are real parameters different from zero and g = g(¢;0) is
a periodic function on ¢ which depends on a parameter § € [0,dg] with Jp small
enough. Suppose ¢g(t,d) > 0 for all ¢ and ¢(0,5) — 0 for 6 — 0. Therefore, the
system (3.1) has a singularity at ¢ = 0 for 6 = 0. Our purpose is to study the
stability parameters of system (3.1) for small values of § > 0 under some hypothesis
to be specified below.

Let U(z) = 2%V (2) be a real function defined on an open interval (0, z;) where
V(z) is an analytic function for z > 0 such that

(A1) there exists zq, 0 < 24 < 23, such that V(z,) =0, V(2) < 0 for all z € (0, z,)
and V,(z) > 0 for all z € (0, z).

(A2) V(z) =~v+ 2*Vi(z) withy <0, s >

on an open set J, J D [0, z4].

and Vi (z) and analytic function

In (A1), V.(2) stands for the derivative of V(z) with respect to z.

85
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Remark 3.1.1. We have that the only zeroes of U(z) in [0, z,] are 0 and z,.

Figure 3.1 shows the plot of U(z) corresponding to the homographic system
(1.31) for different values of a.

U(z) 15 U(z) 2 U(z) @

Z2—o¢

Figure 3.1: Plot of U(z) = 2 (—l + ) for values of « from left to right: 0 < a <
a

1, « =1 (Newtonian case), 1 < a < 2

Let us consider the conservative system
Z=-U,(z) (3.2)

with U(z) satisfying (A1) and (A2). U,(z) stands for the derivative with respect
z. We denote the energy of (3.2) by

E=—+U(z). (3.3)
We shall assume the following hypothesis for g(t; )

(B) Foré >0, g(t;9) is the periodic solution of (3.2) on the energy level E = —¢
such that g(0;9) = go, §(0;9) = 0 being go the minimum of g(t;d).

Figure on the left in 3.2 shows the phase portrait of system (3.2) on the plane
(2,2) for U(z) = 2 (—1 + g) Fixed 0 > 0, the figure on the right shows how we
choose ¢(t;0).

Note that for 6 > 0, g(¢;9) is periodic with period T' = T'(§). Moreover, from

) @ s
|’Y|> (14 0(d=)).
We remark that if g satisfies property (B) then g(¢;d) is an even function on t.

(3.3) we have —§ = U(gp). Then, gy = (

As we have seen in chapter 1, the motivation to study the system (3.1) comes
from the linear stability analysis of the homographic solutions. The corresponding
variational equations of the linearized system on these solutions can be reduced
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Figure 3.2: Phase portrait of (3.2) for U(z) = z (—1 + %)

to a linear system of type (3.1). In particular the Newtonian case is obtained for
a=1and U(z) = z(—l + E). In this case, g(t;0) = 1 — ecost, where e is the

2
. . . 1—e?
eccentricity of the homographic solution, and § =

. The time t is the true

anomaly. The singularity of the equations is attained for e = 1.

To simplify the notation the dependence on the parameters of system (3.1)
will not be explicitly written if there is no confusion. We shall use the same
simplification for all linear systems and their corresponding monodromy matrices
which appear in the chapter.

From section 1.6 system (3.1) can be written in Hamiltonian formulation. We

recall that the Hamiltonian function is

2

1 - vi - Y
H = §(y32, + 1) + (—y2us + y1ya) — (g™ 2 — 1) 71 — (Mag®? - 1) 72 (3.4)

We shall give asymptotic formulae for these stability parameters. To do that
the main point is to use some kind of blow up technique to see the limit case when
¢ tends to zero as a linear system on an heteroclinic connection.

We shall work, for § > 0, with a linear system without any singularity. So,
we consider the change of variables u = S(t)x where S(t) = diag(1, 1, g, q) being
q = q(t;0) defined by ¢ = gQ_Ta, and we use time 7 defined through dt = qdr. We
remark that for 6 > 0, S(¢) is non singular for all ¢.

Then, the new system can be written as

u' = B(7)u, B(1) = q(S + SA)S71, (3.5)
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where ’ stands for the derivative with respect to 7. The period T of ¢(t; ) in the
new time 7 will be denoted by 7 () or simply 7. In order to simplify the notation,
in the following we shall write ¢(t) instead of ¢(¢;0) if there is no confusion.

Let ¥(7) be the fundamental matrix of (3.5). We have that

o(t) = STHHY(r(1))S(0), (3.6)

where ® denotes the fundamental matrix of (3.1) such that ®(0) = I4. Due to
the T—periodicity of S we get for the monodromy matrices the equality ®(7) =
S=10)¥(7)S(0) and so, ®(T) and ¥(7) have the same eigenvalues. Then, in
order to obtain the stability parameters of system (3.1) it is only necessary to
study the eigenvalues of ¥ (7).

In order to compute the dominant terms of the traces of W(7) for values of ¢
near 0 it will be useful to study some properties of ¢. To this, we shall introduce
in the next section an artificial planar system for the functions ¢ and ¢ involved
in B(7).

3.2 An auxiliary planar system

In this section we study an artificial planar system that will be useful in order to
study the stability parameters of system (3.1).

We define Q(7) = —(2 — a)q_ﬁg where ¢ = g%Ta as before. We shall see
that ¢(7), Q(7) satisfies a planar system in time 7.

1
It is easy to see that ¢/ = —ti. Moreover,

(0% 2—2«a

ro_ N2 - a
Q = 2(2_a)Q (2—a)g?=g.

We recall that g is a solution of the potential equation (3.2). Then, using the time
7, (1), Q(7) is a solution of the following system

1
, f— —_——
qg = ZCJQ,
(e}

@ = e a@ - U, (3.7)

2
where ¢ = ¢2-«, that is, ¢ = g.
As (3.3) is a first integral of (3.2) and ¢ is a solution of this system, we have
that

2 Q2

s V@) (3.8)
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is a first integral of system (3.7).

From hypothesis (A2) we have that U(z) = v2% + O(2*"%), with s >
Then,

2—«

2s
2—«

g7aU.(q) = ya+O0(g7=), with > 1.

Therefore the planar system (3.7) is well-defined at ¢ = 0.

We study now the behavior of the orbits of system (3.7) for E = 0. On this
energy level there are two equilibrium points Py with (¢,Q) = (0,£Q,) where
Qp=(2—a)y/=27.

Taking into account that the Jacobian of the vector field that defines system
(3.7) is

1 14 9
2 2s _q 2 5 Wlth >1,
(2- )0 2@ 7~ a

—

the eigenvalues of the linearized system at Py are :F%, iQP%. Then, Py are
-«

saddle points.
On the energy level £ = 0 we distinguish also two orbits

w0 = {(¢.Q) eR*[q=0,|Q <@y}  and

2
v = 0@ R 4> 0,555 V(@) =0,

In a neighbourhood of P_, ~4 is given by

Q=Glg) = —(2—a)y/=2V(9).

dG
Then, d—q(O) =0

On vy (3.7) reduces to

Q = Q*+a(2-a)y.

2(2-a)

So, we get the following solution

a1, () =0, Qr,(7) = ~Qptanh (5p55Qp7)

2
@ 5 +V(¢) = 0. Then, the system on v, is

<
Il

! —%QQ,
Q = 2-a)qV.(q). (3.9)
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Figure 3.3: Phase portrait of system (3.7) in the newtonian case.

We shall denote by ¢r,(7), Qr,(7) the solution of (3.9) such that Qr,(0) = 0.

Figure 3.3 shows the phase portrait of (3.7) for U(z) = = (—1 + g) which
corresponds to the homographic case for the newtonian potential.

As we are interested in F = —§ with § > 0 small enough, we need to study
the behavior of the solutions of (3.7) near the heteroclinic connection defined by
Y0, 7+ and the equilibrium points Py.

To this end, we take e,¢;,7 =1, ..., 4, small enough, and we define the following
sections

Yo = {(¢,Q)0<g<e,Q =0},

Y1 = {(¢Q)0<qg<e,Q@=-Qp+¢},
Yo = {(¢,Q)lg=¢,1Q+ Qp| <es},
¥3 = {(¢,Q)lga — g <e4,Q =0}.

For a fixed value of ¢ > 0 sufficiently small we can take small enough ¢; for
i = 1,...,4, such that the Poincaré maps Py : ¥9 — X1, P2 : ¥1 — X9 and
Ps3 : X9 — X3 be well defined.

Figure 3.4 shows these situation in the newtonian case.

We denote by 77,, > 0 the time defined by Qr,(77,) = —Qp + ¢, and 77, > 0
such that qr,(—7r,) = €. That is, 77, is the time needed for (¢r,,@r,) to go from
Yo to X1, and —7p, is the time used for the solution (¢r,,Qr,) to travel backwards
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Figure 3.4: Poincaré sections

from ¥3 to 3. Note that 77, and 77, are finite and independent of § once ¢ is
fixed.

Fixed a value of § > 0 small enough, we consider the solution of (3.7) with £ =
—6 such that (g(0),Q(0)) € Xy. Taking into account that Q(0) = 0 and using the

2—«

§\ 2 s
hypothesis (A) and the energy (3.8) we get that ¢o = ¢(0) = <‘—|> (1+0(d)).
Y
Let 71 be the smallest positive time such that (¢(71), Q(71)) € £1. In a similar
way we define 7o such that (g(72), Q(72)) € ¥a. It is clear that 71 and 7 depend
T

on §. Moreover, 71 — 77, and 5~ To — T, when § — 0.

The following lemma gives bounds of 79 — 77.

Lemma 3.2.1. Let € > 0 be a fized value small enough. Then, for any § > 0
sufficiently small we have

2 ln< ¢ ><7'2—7'1< 2 ln( ¢ )
Qpte q(r1)) — T Qp—c q(71)

Proof
We have that (¢(m1),Q(71)) € £1 and (g(m2),Q(72)) € ¥2. Taking ¢ small
enough, for any 7 € [y, 2] the following inequalities hold

_Qp_5 < Q(T) < _Qp+5-
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1
Multiplying these inequalities by —§q(7) and using the first equation in (3.7) we
get

5@ —<)a(r) < ¢'(7) < 3@ +)a(r). (310)

We note that ¢(7) is an increasing function in [0, 72]. Then, ¢(7) > 0 in |11, 7],
and the inequalities above can be written as

q'(7)
q(7)

By integration of these inequalities one obtains

< (Qp +€).

1 1
§(Qp_5) < 5

%(Qp_g)(w_ﬁ) Sln( > < %(Qp+€)(7'2—7'1).

q(m1)

Now, the statement on the lemma follows by a simple computation. O
The following lemma will be used in next sections.

Lemma 3.2.2. Let € > 0 small enough. For any § > 0 sufficiently small we have

() I a(r)ir < 5

2e

p—€
(b) f,r? |Q(T) + QpldT < cpe, for some constant cg.

Proof
(a) From (3.10) in the proof of lemma 3.2.1, for 7 € [y, 72] the following in-
equality holds
< 2
= q
Qp —€

We integrate between 71 and 75 the inequality above, obtaining

q(7) (7).

J7 q(r)dr < (a(r2) — a(r) < 5 2 4(r).

p—¢ p—¢
As q(m2) = &, we obtain the desired result.

(b) The idea is to study the distance between the component @ of a solution
defined in [71, 72] and the unstable manifold of P_ with ¢ > 0.

We consider a neighbourhood of P_ defined by |[Q+ Q| <¢e,0< g <e. We
introduce £ = @ + @), in order to translate the equilibrium point P_ to the
origin in the plane (g, &). Let W%* be the branch of the unstable invariant
manifold of the origin with ¢ > 0. We know that in the plane (g, Q) the
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unstable manifold of P_ is given by 74, and then in a neighbourhood of P_
is given by Q = G(q) = —(2 — a)/—2V(q). Then, in the plane (g, &), W*™*
is given by the graphic of the function F(q) = Q) — (2 — o)\/—2V (@), that
is, £ = F(q).

We recall that @, = (2 — a)y/—27 and, by the hypothesis (A2), V(§) =
v+ 2°Vi1(G). Then,

Vi(q)

F(q) = Qp—Qpy/1+2° ot (3.11)
Therefore if 0 < ¢ < &, € small enough,
F(q)) < kq¥s, (3.12)

for some constant k£ > 0.

We define y = £ — F(q) for 0 < ¢ < e. In this way, W™ lies on the ¢ axis
in the plane (¢,y) and our region of interest is a neighbourhood of 0 with
y > 0. In that region using (3.7) and (3.11) we get the following equation
for y

Vo= —5—Qul+0().

So, there exists a constant co > 0 such that

a «
5@l +ee) <y < —5—Qpy(1 — ee).
By integration of the inequality on the right hand we obtain
2 -« 2 -«
= dr< ————— — < —
T € oS )~ u(m) € ),
where we have used that y(7) > 0 for all 7 € [y, 7).
2
Using that 5 ° s 1, from (3.12) we get
-«
|F(q)| < kg, (3.13)

in a small neighbourhood of P_. Then, y(11) = Q(11) + Qp — F(q(m1)) <
Q(11)+Qp+|F(q(m1))] < (k+1)e. Moreover, by integration of the inequality
(3.13) between 71 and 7» and using (a),

(o e < 2
[ R ldr < 5=

As Q+ Qp =y + F(q) we have
JZ1Q(T) + Qpldr < [T (y(r) + |F(a(r)])dr < coe,

for some constant ¢y > 0.

E.
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3.3 Asymptotic formulae for the stability pa-
rameters

In this section we will prove the main result of this chapter, that give us asymptotic
formulae for the stability parameters of system (3.1). Some auxiliar results are
proven in sections 3.4 and 3.5.

Theorem 3.3.1. Let us consider the system (3.1) where g(t;0) satisfies the hy-
. 2 —a)?
pothesis (B). Let be A = ’y% where 7 is defined in (A2). We assume that

Aj

AL, Ao satisfy A1 > Ao > A or, \1 > A > Xo. Let be Bj = 1_T’ j =12
Then we have the following asymptotic behaviour for the stability parameters when
0 goes to 0
— o
logtry = ki — o Bilogdo(1+o0(1)) + ...,
logtrs = ko — ;aaﬂQ logd(1+0(1)+...,  if o> A (3.14)
tro = kg+ kg COS[k‘5 — ’)/2(1 + 0(1)) log(é)] + ..., if A< 5\,

provided that some coefficient, dy, is different from zero. In the last case o denotes

ﬁ—?. The coefficients kj, j = 1,...,5 are constants. The coefficient k4 is different
i

from zero if some coefficient e3 £ 0.

The coefficients dy and ez will be defined in lemma 3.3.5. They depend on the
particular potential U(z) as well as on the parameters A\; and As.

About the hypothesis in theorem 3.3.1 we have $; € RT and in the case
B2 € RT, 81 > (2. These assumptions will give a dominant term depending on 3
in the stability parameters. As we will see in chapter 4, these hyphotesis will be
satisfied in the case of homographic solutions.

We note that asymptotic formulae (3.14) gives tr; > 2 if ¢ is small enough.
Furthermore, if 32 > 0 then tro > 2 and the system is hyperbolic-hyperbolic. In
the case B2 = 721, tro oscillates between the values k3 + k4 and ks — k4 as § tends
to 0. Therefore it can cros the lines tro = 2 and trg = —2 infinitely many times
as 0 tends to zero depending on the values of ks + k4 and ks — k4. In particular,
if kg — kg < —2 and k3 + kg > 2, trog = —2 for a sequence d; — 0, and we found
intervals (d2;,d2;—1) with tra < —2, that is, hyperbolic-elliptic intervals. This will
be the case for the collinear homographic solutions to be studied in chapter 1. A
similar things occurs if ks + k4 > 2 and k3 — ky < 2.
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In order to prove Theorem 3.3.1 we need to study the stability parameters of
(3.1). As we have seen in section 3.1 this is equivalent to study the stability of
(3.5).

First we begin by writing the monodromy matrix ¥(7) in terms of the transi-
tion matrix in a half period.

Lemma 3.3.2. The equality

U(T) = %GO\IJ <§>TGM\1: (g) (3.15)
holds, where
00 -1 0 0 —2¢, -1 0
e T
0 1 -25 O 0 1 0 0
90 = q(0) and qq = q(T/2).
Proof

Let ®(t) be the fundamental matrix of the system (3.1) such that ®(0) = I,.We
begin showing that the following equality holds

O(T) = FroT/2)T Fo(T/2) (3.17)
0 -2 -1 0
where F = -2 0 01
-1 0 0 0
0 1 0 0
Let
y = Bu(t)y (3.18)

the linear periodic Hamiltonian system with Hamiltonian function (3.4).
Now we prove that the fundamental matrix ®;(¢) of this system such that
®,(0) = I, satisfies the relation

O (T) = —Jud (-%)T J4®1 @) .

As ®4(t) is a fundamental matrix of a T—periodic system, then ®;(¢ + 7T') is also
a fundamental matrix. Then, there exists a non-singular constant matrix C' such
that ®1(t +T) = ®1(¢)C. If we take t =ty then

O1(t+T) = O1(t)Py1(tg) '@y (to +T).
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T ™' (T
Then, if t=0 and t():—a, (I)l(T):‘I)l (—5) (I)l (§>
As ®1(t) is a symplectic matrix for all ¢, ®;(t)"t = —Jy;®1(t)TJ;. Taking
t = ——, one obtain the desired relation.

The hypothesis (B) implies that g(¢) is an even function of ¢. Then, By (t) is
an even function of t. A simple computation shows that

—J2 I
By(t) = ~ .
u(t) < Aty =L, —J >
Then, LBy (t)L = —Bp(t) where L = diag(—1,1,1,—1), and the parity of By
yields

LBy()L = —Bpy(-t). (3.19)

Let us take define ®(t) := L®;(—t). Using the property (3.19) it is easy to

check have that ® is also a fundamental matrix of the Hamiltonian system (3.18)

T
associated to (3.4). Therefore, ®;(—t) = L®;(¢t)L. In particular, ®; (—5> =

T
LY, <2>L. Then,

o (T) = —JLP (g)TLJQM <§> ,

and taking into account (1.61), that is, ®(t) = M~ ®,(t)M, where M is defined
in (1.58), we obtain

() = —(M HT LMo <§>TMTLJ4M<I> G)

From this equality and denoting F = MTLJ;M, we obtain (3.17). From this
relation and using (3.6) we have that

U(T) = SO)F'S0)w (%)Tsl @) Fs! (%) T <%> :

The statement of the lemma holds taking Gy = inS(O)}"*lS(O) and Gy =
457! (3) 77 (3)- O

Our purpose now is to get an expression for ¥ (%) which allows us to compute
the dominant terms of the traces of W (7) for values of § near 0. To do that we
shall use the planar system (3.7) in order to split W (%) in three matrices each
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obtained from (3.5) following the heteroclinic connections of that planar system,
that is, in a neighbourhood of 7y, P_ and ~y, respectively.

For a fixed value of § > 0 small enough, let (¢(7), Q(7)) be the solution of (3.7)
for E = —6 such that ¢(0) = go, Q(0) = 0, being go the minimum of ¢(7). Then
the matrix B(7) in (3.5) can be written as

0 0 1
0 0 0 1 .
BO=| 0 0 —omr s |~ B0Q) (320)

0 A 2q(1) —Q(7)/2

From now on we consider
y = DB(1)y.

Let W(m,7,) be the transition matrix of (3.5) from 7, to 7, that is, W(m,7,) is
the fundamental matrix of (3.5) satisfying W (7,,7,) = I4 evaluated at 7 = 7.
Then, we can write

] <%> = (%,TQ> (19, 7)U(r1,0). (3.21)

T
We note that 7 and 7 (as defined in section 3.2) and also B depend on 6.

Our purpose is to approximate the transition matrices involved in (3.21) by
~ ~ (T
simpler ones. First, we shall give approximations of ¥(71,0) and ¥ (5,72) in

(3.21) by the transition matrices for the system (3.5) along o and v, respectively.
Using (3.20) we define

Br, (T) = B, (07 Qr, (7—))7 Br, (T) = B, (QLQ (T)7 QrL, (T))7 (3'22)

where we recall that (0,Qr, (7)), (qr,(7), Qr,(7)) are the solutions of (3.7) corre-
sponding to 7o, v+, respectively.
Let Z1(7) be the fundamental matrix of

u = Br,(7)u, (3.23)

such that Z,(0) = I4.

Remark 3.3.3. The system (3.23) only depends on A1, A2, o and A. It does not
depend on the particular form of the function V;(z) defined in (A2).

We denote by Z3(7) the fundamental matrix of

u = Bp,(7)u, (3.24)
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such that Zy(—7z,) = I4.
For a fixed value of € > 0 small enough P; and Pj3 are diffeomorphisms. So,

we can write

- (T
\I/(Tl,O):Zl(TLl)-FAl, W(;,TQ) :ZQ(O>+A2a

for some matrices A1, Ag with ||A1]| = O(qo), ||A2|| = O(qr,(0) —qo) = O(9). We
recall that ¢ = 0(525_aa).

- - (T
This relations give us approximation of the matrices ¥(7;,0) and ¥ (5, 7'2)

by the fundamental matrices of the system (3.5) on vy and .
Now we want to obtain an approximation of the transition matrix ¥(7y,7;)
We consider the system (3.5) in a neighbourhood of the equilibrium point P-_,

and we write

B(r) = Bp+ Bi(7),

(o 0 ([ revQ) 2
Bl(”‘(o 311) i B“‘( T —%<Q+Qp>>’

Bp = Ba(O, _Qp)a

that is the matrix of (3.20) evaluated on P_. We note that B, does not depend
on 9.
The characteristic polynomial of B,, is

2
pla) = a° (% - :c) + (A1 + )z (% —~ x) + Ao,
@p
4

transforms in a biquadratic equation. Then, it is easy to compute the roots of p

Performing the change of variables y = — x, the equation for the eigenvalues

and one obtains that the eigenvalues of B), are

_ @
4

oi=2aep), o =Lazm), (3.25)

8\;
(271)2, i = 1,2. We note that under the hypothesis of The-
(2 -«

orem 3.3.1, 81 # 0, B2 # 0 and 31 # (2. Hence the eigenvalues of B, are also
differents.

where 3; = /1 —
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The associated eigenvectors are (l,O,pf,O)T and (0,1,0,p21)T, respectively.
Let P be the matrix

Iy I . o
p=|( 2 2, Py=dag(pf,p3), Pi=diaglpr,py). (3.26)
P, P

P is nonsingular and
P'B,P = %I + D

where D = %diag(ﬂl, B2, — 1, —F2). We introduce a new variable

w = exp (—%(7‘ - 7'1)> Py
and we get the following system for w
w' = (D + P7'By(7)P)w. (3.27)

Let W(7) be the fundamental matrix of (3.27) such that W(r;) = I. A simple
computation shows that

U(1,71) = exp <%(T — m) PW(r)P~L.

Then, from (3.21), we get

qf @) o (§T2> PW (r2) P11, 0), (3.28)

where o = exp (%(7—2 - 7'1)>.

Next lemma give us an approximation of W(7) by a simpler matrix.

Lemma 3.3.4. Let € > 0 be small enough. If § > 0 is sufficiently small we have
for all T € [11, ]

W(r) = (Is + A(7))D(7)(Is + R),

where D(1) = diag(e1(T=™)  ev2(T=T1) g=11(7=T1) g=v2(T=1)) 1 — %@‘, i1 =1,2,
and A(T) is a matriz such that ||A(T)|| < cie for any T € [11,72] and R is a
constant matriz such that |R|| < cae, for some constants c1, ca, uniformly in 9.

The proof of this lemma is given in section 3.4.
We note that W (7) can be approximated by a diagonal matrix for ¢ > 0 small
enough.
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Up to now, we have approximated the transition matrices \11(71, 0), T 507

by Zi(t1,), Z2(0), respectively, and W (r2) by D(72). Then, using (3.28), we have
that

T

v <§> = 0 [Z2(0)PD(r2) P~ Zy71,] (Is + As),

where ||As|| = O(e, qo,0). We remark that we are assuming that
1Z2(0)PD(r2) P~ Z1 (71, )|

has the same order of magnitud as the product of norms. We shall see that this is
the case if the coefficient d; # 0.
Now, using (3.15), we get

W(T) = Z—%QM(Q +0), M= ADADA;, (3.29)
where A; = GO(]A?;, Ay = PTZQ(O)TGMZQ(O)P, Az = P_lzl(TLl), D = D(TQ),
0 C

Goo = C = diag(—1,1), and O stands for a matrix with contains

c 0 )
terms of order ¢, gg and dy. The same remark concerning the product of norms
holds for (3.29). We note also that matrices Ay, Ay and As are independent of 4.

Now we want to obtain the stability parameters of (3.5). We recall that ®(7T")
has the same eigenvalues that W(7"). Moreover, as ®(7T') is symplectic, the charac-
teristic polynomial of W(7') is

p(z) = t + a2 + as® + e + 1,
where
ay = —(tr1 + trg),
as = 2+ tritrs. (3.30)

Then, the stability parameters can be obtained from a; and as as the zeroes of
22 + a1z + as — 2. To estimate the dominant terms of these coefficients we shall
use the matrix M.

Let us denote by

q(x) = x4+ b3x3 + box® + by + by,

the characteristic polynomial of M. We denote k = q—a2 From (3.29),
qoo

det(U(T) — 1) = %det(/\/l + O — kaly).
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Using the equality above we obtain the following relation between ai,as and
bg, ..., bs,

bs by b1 by

Ev a = ﬁ7 al =1 (331)

o = @ W
From (3.30) and (3.31) we get that the stability parameters tr; and tro satisfy, up

to order 1 in g, the quadratic equation
K202 + kbgt 4+ by — 2k* = 0. (3.32)

We are interested in the dominant terms of b and b3. The following lemma give
us these terms.

Lemma 3.3.5. Let € > 0 be small enough. Assume that A\ and Ao satisfy the
hypothesis of teorem 3.3.1. Then
(a) There exist some constants d;, i = 1,...5 such that

—bg = le'Zﬁ1 + d20'2ﬁ2 + d30’72ﬂ1 + d4072’82 + ds. (333)

The coefficient dy is the product of two constants, di = d,dy with d,, depending on
A1, A2, a0 and v but not on the function Vi defined in section 3.1. dy depends also
on Vi. If \y and Ao are different from zero, then d, # 0.

(b) The coefficient by does not contain terms in o0 nor o2, that is the dom-
mant terms are

by = 610251 + 6202ﬁ2 + 630’2(ﬁ1+ﬁ2) + 6402(61_ﬁ2) —+ ... (3.34)

for some constants eq, ea, es3,... The coefficient e3 is the product of two constants
e3 = epeq where e, depends on A1, A2, and vy but not on the function Vi defined
in section 3.1. ey depends also on Vi. If A1, A2 are different from zero then e, # 0.

(2 - )
8

for the complex conjugate.

Moreover, if Ao < 7y , then dy = da, and eqs = €3 where the bar stands

The proof of this lemma will be given in section 3.5.
Now, the stability parameters are obtained by solving the quadratic equation
(3.32). The solutions of this equation are

P —by £ Vd
N 2k

where d = k[b3 — 4by + 8k2].
We assume that the constant d; in Lemma 3.3.5 is different from zero. If Ay,
Ao satisfy the hypothesis of Theorem 3.3.1 then either §; > 82 > 0 or 1 > 0 and
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B2 = 791, 72 € R. In any case, the dominant term in —bs is d 02?1, Therefore, we
have that the dominant terms of d are

d = dio""d,

where d = 1 4 2n10 201 4 2nyo=2(01=52) 4 Opae=2B1+52) 4 and

d1d5 - 261 d1d2 — 263 d1d4 - 264
nG — ———— ny — ——— ng = ——
1 d% ) 2 d% ) 3 d%
Then,
1 ok qaa (dio™”t +...),
and

by — dyo?P\/d

t f—
2 2%

As \/;Z =1+ n10’251 + n2072(61’f82) + n30’2(61+52) + ..., the dominant terms in
tro are

1

trg = ﬂﬂ@—dmgﬁﬁ+@u—dmg¢4®+d5—mm+.q.@3@
If 35 is real the dominant term is given by (ds — d1n2)02ﬁ2 and then
trg = @02 <6—302ﬁ2 + .. > .
qa dy

If (9 is imaginary, all the terms written in (3.35) are of the same order. From
lemma 3.3.5 we have that in this case dy = dy and es = &3. Then,

trog = @02 <6—1 + 2Re <@02ﬁ2> +.. > .
qa dl dl

Summarizing, we have that if d; # 0, then the stability parameters are obtained

as
tr; = Do2(q0% 4. ), (3.36)
a
and
trg = (]002<€30252+...>, if B >0
a dy

trog = 0 52 (6—1 + 2Re <e—302ﬂ2> + .. > , Af Br =i, 12 €R.
da di di

Now, using lemma 3.2.1 the result on the theorem 3.3.1 follows.
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Remark 3.3.6. We recall that matrices A, A2 and As in (3.29) do not depend on
d, so their norms are finite. Therefore || A1]/||D||||A2||||D||||As|| depends mainly on
|D||? for 6 > 0 small enough. Furthermore D = D(73) is a diagonal matrix and
s0, || D||? is of the order or ¢?%. However, if d; # 0 from (3.36) we have that tr;
is of order ¢2%1. This gives an estimation of the spectral radius of M. Using that
IM]| is bounded from below by the spectral radius we conclude that it is of the
same order of magnitude of the product of norms and then (3.29) holds.

3.4 Proof of lemma 3.3.4

In order to prove lemma 3.3.4 it will be useful the following lemma.
Lemma 3.4.1. Let us consider the system
x' = Dx + C(t)x, (3.37)

where D is a diagonal matriz n X n and C(t) is a continuous matrix in t. Assume
that there exists some constant € < 1/4 such that

t
/ 1C(s)]|ds < &. (3.38)
0
Let A be an eigenvalue of D and v an eigenvector corresponding to A. Then, there
exists a solution, ¢(t), of (3.37) such that

3€
1— 3¢’

-
lle™*(t) = vIl < vl

for all t € [0,1].

Proof

Let us consider Ay, ..., A, the eigenvalues of D. That is, D = diag(\1, ..., \,).
Assume that Re();) < Re()) for 0 < j <k <n, Re(\j) > Re(A) for k+1 < j <
m < n and Re(A;) = Re(A) for m+1 < j <n.

We denote by D1 = diag(A1, ..., Ag) the k x k diagonal matrix obtained from D
such that their eigenvalues have real part less than Re()\). Analogously, we define
Dy = diag(Ag+1,- .-, Am) the (m — k) x (m — k) diagonal matrix with eigenvalues
with real part bigger than Re()), and D3 = diag(Am+1,...,An) a (n—m) X (n—m)
diagonal matrix, which has eigenvalues with the same real part as A.

It could be possible that Dy or Dy does not contain any term, but it is clear
that A is in D3. We take A\, = .

We have that D = diag(D, D2, D3). Let us denote by X(¢) the funda-
mental matrix of the system x’ = Dx with X(0) = I,. Then, X(t) = e’ =
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diag(eP1t, eP2t ePst). We can write X (t) = X1(t) + Xo(t) + X3(t) where Xy (t) =
diag(eP1t,0 0) Xo(t) = diag(0,eP?t,0), X3(t) = diag(0, 0, e3t).
X;(t) = ePst is the fundamental matrix of the system

/ _— . .
X; = Djx;,

satisfying f(j(O) the identity matrix, j = 1,2,3. We note that x; € R*, xo € R™7F,
x5 € R
Then e X (t) is a fundamental matrix of the system

, _— ~. .
x; = Ajxj,

where flj = Dj; — A\ld, and Id denotes the identity matrix of suitable dimen-
sion. A; (As) has eigenvalues with negative (positive) real part. Then, there
exists a positive constant a > 0 such that ||e= X (t)|| < e~ for all t > 0, and
e~ M Xo(t)|| < e® for all t < 0.

Now we consider Ag, that has eigenvalues with zero real part. Let us write
A=a+if. Then, \; =a+iB;, j=m+1,...,n, and

eiAthg,(t) _ diag(ei(ﬁnrkl*ﬂ)t? . ei(ﬁn—lfﬁ)a 1).

Therefore ||e M X5(t)|| = 1.
As [leMX; ()| = le M X;(@)]| for j =1,2,3 we get [|e M X (t)|| < e~ for all
t >0, |le"MXy(t)]| < e for all t <0, for a constant a > 0, and |le”* X3(¢)|| = 1.
It is easy to check that the solution ¢(¢) of the integral equation

ot) = ¢ v+/ Xi(t—s)C )@(s)ds—/t Xo(t — 8)C(s)p(s)ds
/ X3(t — s)C(s)p(s)ds

is a solution of (3.37).
We want to obtain the solution of the integral equation above. To this end we
use an iterative scheme with g (t) = 0. For m > 1 we define

om(t) = € V+/ Xi(t—s)C )(pm_l(s)ds—/t Xo(t —5)C(s)pm—1(s)ds

—/ X3(t — 5)C(8)om—1(s)ds.
t
Then, for all ¢ € [0,] the following inequalities hold

lom(®) = em-1O < IIVIBE™ e < VB e, (3.39)

m—1
leem(t) = vl < ] Y (38" (3.40)
k=1
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The inequalities above will be proved now by induction.
For (3.39) is clear that

le1(t) = ol = ler @) < [Iville].

Assume that (3.39) is true for m — 1. We note that
t
Pn(t) = pma(t) = €2 {/ e NTIX (= 5)C(s)e™ M pm—1(5) — pm2(s))ds
0
t
= [ eI Xa(t - O A ona(s) — pma(9)ds
t

t
—/ e M Xt — 5)C(s)e M pm-1(s) — @mz(s))ds} :
t
Then, using the inequalities for |[e=*X;(t)||, j = 1,2,3, one obtains

t
lem(®) = om1 (Bl < [ { e Ie vl 2

i i
+ [ et ewiviean -2+ | HC(s)HHvH(%)m—?ds} <
t
<[] 3e™ .

This proves (3.39).
The proof of (3.40) for m = 1 is trivial. For m > 2, first we note that

t
e Ppo(t) —v = / e M= X (t — 5)CO(s)vds —
0

7 i
| Xl )Csvas [ NI Xa(t - )l
. t

Then

t

t
e ealt) =vI < [ e IC)livids + [ etIces)] v

t
+ [ le@livids < selvi.
t
For the general step we get

t
e_t)‘gpm(t) —v= / e_A(t_s)Xl (t— S)C(s)(e_S)‘gpm,l(s) —v)ds
0

— /t t e M=) Xy (t — 5)C(s) (e om_1(s) — v)ds

- /tt e M=) Xt — 5)CO(s) (e om_1(s) — v)ds + (e Py (t) — v).
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Therefore
t
e P m(t) — v < /0 )O3 le P pm(t) — v]ds
t t A
4 / )| O(s) e~ P pmor (t) — vilds
t A A
4 / 1C() e @mor(£) — vids + e Ppa(t) — v]|
m—2 i m—1
SHVH(ZC%)’“ [3 /0 1C(s) | ds +3é) < v S 30"
k=1 k=1

and (3.40) follows.
From (3.39) we have that ¢,, tends to ¢ uniformly on compacts.
Then, using (3.40) we have that

3é
1—3¢

le™o(t) = v < [[vI| 2272, (36)F = |Iv]]
This ends the proof of the lemma. O

To prove lemma 3.3.4 we shall apply the lemma 3.4.1 to the system (3.27).
For a fixed value of ¢ we consider gy > 0 small enough (we have that ¢y =

2—«a

J\ 2o s

(ﬂ) (14+0(6=))) and 7 € [r1, 2] where we recall that 71,7 depend on gp.

~

After a translation of time defined by s = 7 — 71 we can restrict to the system
dw — 1
T (D+ P " Bi(s+71)P)w, (3.41)

for s € [0, §], where § = §(qg) = 72 — 71. First we prove that the hypothesis (3.38)
is satisfied for C(s) := P~1B(s + 71)P. We recall that By(7) is defined in (3.22)
and it depends on §. We get

IC@I < IPIPHIBi (s + )l

For any § small enough, using lemma 3.2.2 we get

3 _ 4e CoE
< ! - |-
Jo IC(s)llds < [[P||[|P~]] (Qp — T3 )

4
Then (3.38) is satisfied with & = ec; being ¢ = || P||||P7!| (Q + 020> Ifeis
p — €

small enough we have € < 1 For technical reasons we shall assume that € < Toer"
c1
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We recall that D = %diag(yl,ug,yg,,zq) where v; = %ﬁj, j=1,2v3=—u,
vy = —1vy. Using lemma 3.4.1, there exist ¢1(s), pa2(s), pa(s), pa(s) solutions of
(3.41) such that for any s € [0, ]

le™5@i(s) —eill < lleill 25, i=1,....4,

where e1, €3, €3, e4 is the canonical basis. Then, p;(7) :=
are solutions of (3.27) such that for any 7 € [y, T2]

le " =pi(r) — e < 252, i=1,....4 (3.42)

We denote as Y (t) the matrix defined by @1, 2, 3 and ¢4 as column vectors.
We write

D—l(T) = diag(e_Vl(T_ﬁ)’ €_V2(T_Tl), 6—1/3(7—7—1)’ 6_V4(7—_71))7

and define A(7) = Y (7)D~!(7) — I4. Then, using (3.42)

3¢ 361
A < -
1AM =5z =T 302

for any 7 € [r,72]. The last inequality above comes from the assumption that

e < Tou We remark that matrices Y (7),D(7), and then A(7), depend on
1

0. Moreover, we can say that ||A(7)| < 1 for any 7 € [r,72]. In partic-
ular, ||A(71)|]] < 1. Then, Y(r1) = Iy + A(71) is a non singular matrix and
Y(7) = (s + A(7))D(7) is a fundamental matrix for the system (3.27). Further-
more, W(7) is the fundamental matrix of (3.27) such that W(7) = I4. Then

W(r) =Y ()Y (r) ™t = (Is + A(T)D(r) Iy + A(11)) L.

Furthermore, using standard results for natural matrix norms (see [.K.],[Ch.]) if
we define

R = I4 — (I4 -+ A(TI))_la

~
~ ~

< where & = —EA Therefore,
1-—3¢

~
~

we get [|R]| < !

361
Rl < e—  6epe.
1Bl = o5z <6as
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3.5 Proof of lemma 3.3.5

In this section we prove lemma 3.3.5. To this end we need some information about
the matrices involved in M. We recall that

M = AlD(TQ)AQD(TQ)AS,

where A1, As, A3 do not depend on 4.

We begin with A3. We recall that A3 = P~1Z(77,) where P is the constant
matrix defined in (3.26) and Z;(7r,) the fundamental matrix of the system (3.23),
that is,

u = B, (7)u, (3.43)
with Z1(0) = I4, where
0 O 1 0
B 0 O 0 1 544
0 AQ 0 _QLE(T)
I I

and P = , Py = diag(py, p3), Px = diag(py , 3 )-

P; Py

Then, the system (3.43) splits in two uncoupled systems, one for w1, us and the

second for ug, u4. Let us denote by e;, j = 1,...,4, the canonical basis of R*. If we

take as initial condition e, e3 (e2, e4) then ua(7) = ua(7) =0 (u1(7) = uz(7) = 0).
Then, Z;(7r,) is a 4 x 4 block diagonal matrix, that is,

Zy(r,) = (g; 2) with  C; = diag(cj1,¢j2),5 = 1,...,4.(3.45)

In order to compute A3 we need to know P~'. A simple check shows that

pP1l= < gl 32 ), where
3 4

. 1 5 . 1 1
Ql_dlag< _pl T+ _p2 +>7 QQ_dlag< + —y T F _>7
P1 —P1 P2 — P2 P1 —P1 P2 — P2

+ +
. P1 Po : 1 1
ngdlag< —, _>, Q4:d1ag< — — >>
o — o1 p3 — 03 Py =Py Py — P

and pli, péﬁ are given in (3.25) Then,

A, = (B B2 with  E; = diag(ej1,ej2),5 = 1,...,4.  (3.46)
E3 Ey
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Moreover,

E1 = Q1C1 + Q2C3, Ea = Q103 + Q2C%4,

B3 = Q301 + QuC3, Ey= Q302 + QuCy. (3.47)
P 0 C .
As Ay = GppAs where Gop = c oo ) C = diag(—1,1), we get that
Al = Hl H2 with Hj = diag(hﬂ, hjg),j = 1, e ,4. (348)
Hs Hy

Moreover, Hy = CEy, Hy = CE4, Hy = CFE,, Hy = CE3. Therefore, we get the
following relations between hj; and ej;,

hi1 = —e21, hia =e2, hao1 = —eq1, hao = eyo,
h31 = —e11, hza =e12, ha = —e31, hay = e3. (3.49)

From (3.29) we know that Ay = PTZ5(0)T G Z2(0) P, being Z3(7) the funda-
mental matrix of the system (3.24), that is u’ = By, (7)u, such that Zs(—7z,) = I4.

We denote
X1 Xy
Ay = 3.50
2 <X3&>’ (3:50)

for some 2 x 2 matrices X;, i = 1,...,4. We write also Ay = (x5).
We note that using remark (3.3.3), the matrices A; and As depend on \j, Ag,
« and ~ but they do not depend on function V;. However, Ay depends on V.

We recall that the matrix D(7) is defined in lemma 3.3.4. We can write D(12) =
diag(D1, Dy '), where Dy = diag(c™,0”) and o = exp <%(TQ - Tl)>. It is not
difficult to check that M = Dfl/\;lf)l where Dy = diag(D1, D) and

M = D%/\;h + My + D%/\;{g(bl_l)z + ./\;12([)1_1)2, (3.51)
- BiX\E H\X\Ey - HyXsBEy HyXsEy
L H3X By H3X1Es |’ 2T HyXsE, HyX3E> |’

~ [ HiXoE3 H1X2E, ~ [ HeX4E3 HyXuEy (3.52)
T\ H3XoE3 H3XoEy ) YT\ HXyEs HyXyEy )

We note that Mj, j=1,...,4, only depend on Ay, As and A3 and so, they do not
depend on §.
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So, we can reduce to consider the characteristic polynomial of M. For the
elements of these matrices we shall use the following notation Ml = (uij), Mz =
(vig), M3 = (pij), Ma = (w;j).

From (3.51) we get

trace(M) = 0% (ur1 + ugs) + 0 (uzz + waa) + 072 (win + wsz)+
o262 (wo2 + wyq) + trace(Mz) + trace(/\;lg),

where trace(My) and trace(Ms) do not depend on o.

Taking into account that by = —trace(M), we obtain (3.33) by taking d; =
w1y + usz, do = uga + Usa, d3 = w1y + w3z, dg = Wway + wyq and ds = trace(Mz) +
trace(M3).

From (3.52) and (3.49) we get
u11 = hiirienn,  usg = hairiiear, w3 = hiirnear,  usr = h31r11€(3.53)
d1 = h11x11e11 + haixi1e01 = —2x11€11€21. Then, if we denote by
dp = —2e11e21  and  dy = 211,

d, depends on A1, A2, and «y but not on V; and d, depends also on V.

Now we study the dominant terms in bs.

Given a 4 x 4 matrix A = (a;j), the coefficient of 22 in the characteristic
polynomial of A is

ai1(ag2 + asz + aqa) + a22(ass + aaa) + azzaaq — a12a21 — a13031 — A14041 —

123432 — 434043 — 424442

In our case, the terms on M are of the form k102 + koo 20i 4 kgaQ(@'_ﬁj) + k4 for
i #j, 14,7 € {1,2}, and some constants k,,, m = 1,...,4. By taking into account
this fact, it is easy to see that the dominant terms in by is (u11uss — U13U31)0'451.
However using (3.53) one has ujjuss — uizus; = 0.
An analogous computation shows that the coefficient of o%02 in by is ugotgy —
Uus4u42, which is equal to zero. Then, by does not contain terms in a*P1 nor o4P2,
Then, by is written as (3.34) with

e3 = (u11 + ussg)(ue + u44) — U12U21 — UT4U41 — U23U3D — U34U43.
It is easy to check that e = —4ejjejzea1e90det(Xy). If we denote by
€n — —4611612621622 and by eg = det(Xl),

we have that e, depends on A1, A2, and v, but not on Vi, and e, depends also
on Vj.
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(2-a)?

to the real character of M its characteristic polynomial is real and therefore

Now we assume that Ay < 7y . In this case (3 is pure imaginary. Due

doo® + dyo 2 cR=dy=dy
630252 + (240'72ﬁ2 ER = e4 =ek€3.
To finish the proof of lemma 3.3.5 we only need to prove that d,,e, # 0. To

do that, we shall see that e, e1s, €21, €99 # 0.
From (3.47) and (3.45), a simple computation shows that

1 1

el = ﬁ(cz)’l — pl_Cll), €21 = ﬁ(CZH - p1_021>7
P1 — P P1 — P
1 _ 1 _
€12 = ﬁ(Ciﬁ — P 012), €22 = ﬁ(aﬁ — P2 C22)~ (3'54>
P2 — P2 P2 = P2

System (3.43) can be written as two uncoupled systems of the following type

v, = Vg,
QL1(T)

vh = )\vl—Tvg, (3.55)

where A = A; for the system corresponding to ui,us and A = A9 for us, ug.

We note that [ ' ' | and ( cz 2 ) are the fundamental matrices
€31 €41 €32 C42
of (3.55) for A = A1 and X\ = A, respectively.
Therefore any e;; in (3.54) can be written in terms of va(7r,) — p~vi(7z,))
being (v1(7),v2(7)) a solution of (3.55) and

_Q . A
pm="F=p), with f=,/1 e (3.56)

We note that if A =0, p~ = 0 and (3.55) has solutions with va(7) = 0. Then, if
A1 =0, c31 =0 and e1; = 0. In a similar way, if Ao =0, ¢c3o = 0 and e1o = 0.

Next lemma applied to our systems will be very useful in order to finish the
proof of lemma 3.3.5.

Lemma 3.5.1. Assume \ # 0. Let v(7) = (v1(7),v2(7))T be one of the solutions
of (8.55) with initial conditions v(0) = (1,0)T or v(0) = (0,1)”. Let be p~ defined
in (3.56). Then, for any T > 0 sufficiently large

va(T) — pv1(1) # 0. (3.57)
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Proof
Assume that A\ < v(2 —a)?/8 < 0. In this case p~ is a complex number and as
we consider real solutions of the real system (3.55) then the result of the lemma

follows trivially.
72— )’

7 Cos ¢, vo = rsin ¢. Then

We assume A > . We introduce polar coordinates in (3.55) as v; =

ro=r (1+/\)cos¢sin¢—Q%(T)sin2¢ , (3.58)

Qr, (1)
2

¢ = Mcos?¢p—sin?¢ — sin ¢ cos ¢.

We are interested in the solutions of (3.55) with v(0) = (1,0)” and v(0) =
(0,1)”, that is, the solutions of (3.58) with r(0) = 1 and, ¢(0) = 0 and ¢(0) = g,
respectively. Moreover we have va(7) — p~v1(7) = 7(7)[sin ¢(7) — p~ cos ¢(7)]. We
note that » = 0 is invariant for (3.58). Then, we have to prove that sin¢(7) —
p~cos (1) # 0, or equivalently, that

tano(7) # p~, (3.59)

for any 7 > 0 sufficiently large. To do that we only need to consider the non au-
tonomous equation for ¢ in (3.58). If we consider time as a variable we are faced to
a system defined on a cilinder. For convenience, we shall consider a 2—dimensional
system on the plane taking into account the corresponding identifications.

ﬁ@ﬂ') and w = tan(¢(7)).

Condition (3.59) reduces to w(7) # p~ for 7 sufficiently large.
We get for w and w the following planar system

So, we define new variables u = tanh(

wo= —w?+ —2p uw + A,
/ o 2
= —Q,(1— 3.60

which is well defined for any u,w. However, for us, it only makes sense for |u| < 1.
It is also clear that u(7) is an increasing function for |u| < 1. Moreover, in order to
recover the solutions of (3.58) from (3.60) we must identify the solutions of (3.60)
with w(7) — —oo for 7 — 7, with the corresponding ones with w(7) — 400 for
T— Tt

If A > (2 — a)?/8 the system (3.60) has two equilibrium points on the line
u =1 located at (w,u) = (p~,1) and (w,u) = (pT, 1) respectively, where

@

1 (1+05).

P
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We study the stability of these equilibrium points. The Jacobian of the planar
vector field that defines (3.60) is

Q Q
2wk B . (3.61)
0 —5og @pu

Then, for (p~,1) matrix (3.61) has eigenvalues 5 a Qp < 0 and %[3 > 0, and
-«
then (7, 1) is a saddle point. The cigenvalues of (3.61) on (p*, 1) are —=—Qp <

0 and —%ﬁ < 0. Therefore p* is an attractor. Moreover, (3.60) has a vertical

isocline defined by —w? + %uw +A=0.

First we assume that A > 0. In this case, p~ < 0 and p™ > 0. The region
Ri1 = {(w,u)|w > 0,0 < u < 1} is positively invariant for the flow defined by
(3.60). In this region all the orbits tend to the attractor. Then, the orbits we are
interested in are contained for all positive time in Ri. As p~ ¢ Ry, w(r) # p~ for
7 > 0. (see Figure 3.5).

Now we consider values of A such that 7(2—a)?/8 < A < 0. Then 0 < p~ < p*.
Let W* be the branch of the unstable invariant manifold of the point (p~,1)
contained in the band {(w,u)||u| < 1}, and Re C {(w,u)|w >0, 0<u <1}
the unbounded region with boundaries W* and {(w,u)|w > p~,u = 1}. Then R2
is positively invariant and all the orbits in Ry tend to (p*, 1) when 7 — oco. As the
orbits we are interested in enter in Ro for some 7 large enough, then w(r) # p~ if
7 is sufficiently large (see Figure 3.6).

g

In order to apply this lemma to our case, first we take v(7) = (c11(7), c31(7))T
and A = ;. We know that v(0) = (1,0)7. Then,

c3i(r) —pen(r) # 0,

for 7 sufficiently large. We take § small enough in order to obtain the relation
above. Then, e;; # 0.
Analogously one can see that eqs, €21, €99 # 0.
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Figure 3.5: Phase portrait of system (3.60) for v+ = —1 and A = 1 on the
region R;.
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Figure 3.6: Phase portrait of system (3.60) for v = —1 and A = —1& on the

region Rs.
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