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Introduction

Celestial Mechanics is devoted to study the motion of planets, asteroids, satellites,

. . .. Its starting point can be considered in the XVII century when Johannes Ke-

pler formulated the laws of the motion of the planets in Astronomia Nova (1609).

In the year 1687 Newton gave in his work Philosophiae Naturalis Principia Math-

ematica the formulation of the principal object of study of Celestial Mechanics:

the n–body problem. This problem studies the motion of n particles system under

their mutual attraction, governed by the Newton Gravitational Law. Even though

the formulation of the equations that describes the n–body problem is easy, it is

difficult to solve them. In fact, the only case completely solved is the 2–body prob-

lem. All the efforts to solve explicitly the equations for n ≥ 3 have failed. Poincaré

showed that the main difficulty comes from the existence of small divisors. In his

very famous Méthodes Nouvelles de la Mécanique Céleste (1899), Poincaré starts

the study of the problem from a qualitative point of view. Actually, qualitative

methods play a very important role in the study of differential equations.

However, some special solutions of the n–body problem are known: the homo-

graphic solutions. For these solutions the configuration of the particles is preserved

for any time. This can only be achieved for the so called central configurations. It

is well–known that for the Planar Three Body Problem there exists three collinear

central configurations, where the masses are located on a straight line, and two

triangular ones, in which the masses are on the vertices of an equilateral triangle.

Concerning the number and type of central configurations for n ≥ 4 only partial

results are known.

On the other hand for many applications one can make several assumptions

which simplify the mathematical problem. The Restricted Three Body Problem

(RTBP) is one of the most used models to get a first insight in many applications.

In this problem the main assumption is to suppose that one of the bodies has

infinitessimal mass, in such a way that it does not influence the motion of the

other two bodies, called primaries. Then, one can assume that the primaries move

on a solution of the Kepler problem. The Restricted Three Body Problem tries

to explain the motion of the infinitessimal mass influenced by the gravitational
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6 Introduction

forces exerted by the primaries. The most interesting cases for the applications

correspond to elliptic orbits of the primaries. If the eccentricity, e, of these orbits is

zero then we obtain the Circular Restricted Three Body Problem and for e ∈ (0, 1)

the Elliptic Restricted Three Body Problem.

In a rotating system of coordinates the Planar Circular Restricted Three Body

Problem is described by a Hamiltonian system with two degrees of freedom ([Sz.]).

For this problem it is well–known that there exists three collinear equilibrium

points L1,2,3 and two triangular ones L4,5. The collinear equilibrium points are of

centre–saddle type. Let be CLi
the value of the Jacobi constant at the equilibrium

Li. The Lyapunov theorem ([S.M.],[Ms.]) ensures the existence of a family of peri-

odic orbits born at the equilibrium. This family can be parametrized by the Jacobi

constant in such a way that for a fixed level of the Jacobi constant such that CLi
−C

is small enough, the periodic orbit is the unique bounded orbit that for any time it

remains in a small neighbourhood of the equilibrium point. Moreover these orbits

are hyperbolic. They have stable and unstable 2–dimensional invariant manifolds

of codimension 1 once the Jacobi constant has been fixed. Using these invariant

manifolds it is possible to give a classification of the orbits passing through a small

neighbourhood of the collinear equilibrium points ([Co.2],[McG.1]). The existence

of transversal homoclinic orbits to the periodic Lyapunov orbit has been studied in

[L.M.S.] for different values of the mass parameter and the Jacobi constant. This

allows to introduce a symbolic dynamics ([L.M.S.],[Ms.2]) which gives the existence

of orbits passing through different regions of the phase space. The applicability of

these orbits to space missions have been studied in [K.L.M.R.].

In this work we distinguish mainly three parts. In the first one we study

some questions related to the stability of homographic solutions. The second

part is devoted to the Spatial RTBP. For that problem we study the existence of

heteroclinic/homoclinic connections to the invariant tori contained in the centre

manifold of the Spatial RTBP. Finally we study the applicability of KAM theorem

to the centre manifold of the collinear equilibrium points in the Planar Three Body

Problem. Next we introduce these three topics.

Homographic solutions

We consider the Planar Three Body Problem with homogeneous potential of degree

−α, 0 < α < 2, of the following type

U(q1,q2,q3) =
m1m2

‖q1 − q2‖α
+

m1m3

‖q1 − q3‖α
+

m2m3

‖q2 − q3‖α
.
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Notice that if α = 1 we get the Newtonian potential. One can generalize the

homographic solutions introduced for the Newtonian potential to the general case

(0 < α < 2). These solutions can be written as equilibrium points of a periodic

Hamiltonian system with 6 degrees of freedom. To this end one should introduce

a change of variable which depends quasiperiodically (periodically if α = 1) on

time.

As we are interested in the stability of these solutions it will be necessary to

compute the eigenvalues of the monodromy matrix. To reduce 2 degrees of freedom

we use first the integrals of the centre of masses. At this point the linearized

system for homographic solutions has order 8. Then we show that one can write

this system as two four dimensional uncoupled system. The monodromy matrix

of one of these systems has 1 as eigenvalue with multiplicity four. So, in order to

obtain the non trivial characteristic multipliers we need to study the other four

dimensional system,

ẋ = A(t)x, (1)

where t is the true anomaly in the Newtonian case. Beyond the degree of ho-

mogeneity −α, this system depends on two parameters: β, that depends on the

masses, and e, some generalized eccentricity. We note that the parameter β is

different for collinear and triangular cases.

When e equals zero, system (1) has constant coefficients and the characteristic

exponents, or equivalently the stability parameters, are trivially computed. As e

increases some bifurcation can appear. Furthermore as e goes to 1, we get in the

limit case a matrix A(t) in (1) which has a singularity at t = 0.

Our purpose is to study the stability of systems which generalize in some sense

the behaviour of the linearized homographic case for e near 0 and e near 1. So,

we consider linear systems of the following type

ẋ = A(t, e)x, A(t, e) =











0 0 1 0

0 0 0 1

λ1G1(t, e) 0 0 −2
0 λ2G2(t, e) 2 0











, (2)

where x ∈ R4, λ1, λ2 are real parameters, e ∈ [0, 1), and G1, G2 are periodic

functions in t, depending on e. We shall study the stability for e & 0 and e . 1.

In any case, we shall make different hypothesis on G1 and G2 that will be satisfied

in particular in the homographic case.

A system like (2) has several applications. One of them is the study of the

stability for the equilibria of some Mechanical systems. Moreover, system (2) can

be obtained as a first variational system on a periodic solution of an autonomous



8 Introduction

system. Chapters 2 and 3 are devoted to study the stability parameters of (2) for

e > 0 small enough and for e . 1, respectively.

In chapter 2 we study the stability of system (2) for e & 0 in the case that

G1, G2 are even periodic functions of t and analytic in e. First of all, in section

2.2 we study the trivial case e = 0 where some resonant points are found. As e

increases some bifurations can appear giving rise to some regions in the parameters

spaces λ1, λ2, e with different stability character. To study the boundary surfaces

of that regions we use the Normal Form technique. In [B.S.1] this method was

used to study the resonant tongues for Hill’s quasiperiodic equation depending on

two parameters, and in [B.S.2] to the unfolding of Mathieu–like equations in the

periodic case.

In this work to study the boundary surfaces we concentrate mainly in the

d’Alembert case, that is we assume that for G1 and G2 the kth harmonic has an

amplitude which is at least of order k in e. This is in fact a very common situa-

tion in mechanical systems. For example, it occurs in the study of the stability of

families of periodic orbits which born at an equilibrium point from purely imag-

inary eigenvalues. Assuming d’Alembert property we distinguish between single

and double resonances. The most interesting case is the second one. Under non

degeneracy conditions in a neighbourhood of a double resonance, by changing the

parameters one can get regions of any type for e & 0.

In chapter 3 we study the stability of system (2) for e . 1. We assume

G1 = G2 with some singularity for e = 1 at t = 0. The main result in this chapter

is an asymptotic formula for the stability parameters. We use a kind of blow up

technique to see the limit case as an heteroclinic connection.

In chapter 4 we use the results on chapters 2 and 3 in order to study the

stability of the homographic solutions of the Planar Three Body Problem. In

this case, the parameters λ1, λ2 depend on a unique mass parameter β. So, the

bifurcation diagram is represented in the plane (β, e) for fixed α. We compute the

resonant parameters at e = 0 for any α. However we concentrate mainly in the

Newtonian case. Using the Normal Form Method developed in chapter 2, we get

the resonant tongues born at e = 0 up to a given order.

In the collinear case, β ∈ (0, 7) for the physical problem. However, mathemat-

ically we can consider β > 0. Resonances are obtained at e = 0 for frequencies
k

2
, k ≥ 3. If k = 2n no bifurcation takes place for e > 0. If k = 2n + 1 resonant

tongues T 2n+1
2

are born at e = 0. Despite only T 3
2
, T 5

2
are the unique tongues

which emanate from e = 0 for β ∈ (0, 7), all the other tongues T 2n+1
2

enter this

range of β for values of e in (0, 1). The width of T 3
2
, T 5

2
is of order 3 and 5 in e

respectively. Moreover the asymptotic formula for e near 1 predicts that all these

tongues accumulate at β =
1

8
as e goes to 1. This behaviour agrees with the
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numerical computations done for any e ∈ (0, 1).

Concerning the triangular case, for 0 < β < 1 and e = 0 the system is elliptic–

elliptic and only one resonant tongue T born at β =
3

4
is found. It defines an

elliptic–hyperbolic region in the plane (β, e). The width is of order 1 in e. The

behaviour for β =
3

4
and e & 0 was studied by G. Roberts (see [R.]). By expand-

ing the monodromy matrix in series on e, he proves the existence of an elliptic–

hyperbolic region for this value of β and for e small enough. The method used in

[R.] is not useful in the collinear case because the computations are hard. This is

due to the fact that in the collinear case the width of tongues is of bigger order in e

and so, one needs to compute at least the third order terms in e of the monodromy

matrix of the linearized system on the collinear solution.

Spatial RTBP

Chapter 5 is devoted to the study of homoclinic orbits to the centre manifold of L2

in the Spatial Restricted Three Body Problem. It is well–known that L2 is a centre–

centre–saddle equilibrium point. Then, it has one–dimensional stable and unstable

invariant manifolds, and a four–dimensional centre manifold. In a neighbourhood

of L2 there exist the well–known families of planar and vertical periodic orbits

of Lyapunov. These families of periodic orbits have two–dimensional stable and

unstable manifolds. Moreover, in the centre manifold there exist invariant tori,

with three dimensional stable and unstable manifolds. For the dynamics on the

centre manifold see [J.M.], [G.M.]. The intersection of the unstable manifold of

one torus in the centre manifold and the stable manifold of another torus give

heteroclinic orbits from the first torus to the other one. If we consider the stable

and the unstable manifold of the same torus, then we obtain homoclinic orbits to

this torus. All these homoclinic and heteroclinic orbits are homoclinic orbits to

the centre manifold of L2. In order to get heteroclinic (or homoclinic) orbits we

follow the main ideas developed in [L.M.S.] for the Planar RTBP. We compute

up to a given order the intersection of the unstable invariant manifold of a given

torus with the section y = 0 at the other side of the bigger primary. To do that we

consider the Spatial RTBP as a perturbation of the 3–dimensional Hill’s problem

in a neighbourhood of the equilibrium point and then as a perturbation of the

Spatial Synodic Two Body Problem. The stable manifold is obtained from the

unstable one using the symmetries of the problem.

We give also some estimates on the difference in action space for two tori in

order to have an heteroclinic connection. This allows us to construct heteroclinic

chains. In particular from invariant tori close to the planar periodic orbit to
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invariant tori close to the vertical one in a neighbourhood of the L2 point.

Planar Three Body Problem

Finally, in chapter 6 we study the existence of invariant tori on the centre man-

ifold of the collinear equilibrium points in the Planar Three Body Problem with

Newtonian potential. To this end we do the following steps. First, we perform

some canonical transformations to write the Hamiltonian in normal form. Then we

reduce the Hamiltonian to the centre manifold. After that, we check, by numerical

evaluation of the coefficients of the normal form up to order 4, the nondegeneracy

conditions of KAM theorem. The results presented in section 6.4 show that both

conditions (either isoenergetic or not) are satisfied for any values of the masses in

the triangle of masses.

The linearized system on a collinear equilibrium point has eigenvalues ±λ, ±i,
±iω, λ, ω ∈ R+. Then the collinear points are of centre–centre–saddle type. Up

to order 4 it is proved that we only need to take into account the resonance 2 : 1.

The corresponding resonant masses describe a curve in the triangle of masses.

Therefore, for resonant masses it is expected to get resonant monomials of order

three in the normal form of the Hamiltonian. We prove in section 6.3 that this is

not the case. In fact, we prove that the coefficients of these monomials are different

from zero for general masses but they become zero for resonant masses, and also

in the symmetrical case m1 = m3. The existence of the homographic solutions

allows us to compute analytically, in an easy way, the coefficients of the resonant

monomials of order three. These coefficients have (ω − 2) as a factor. The results

given in chapter 6 are published in [M.S.].
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També vull agrair–li la seva comprensió i ajuda en alguns moments dif́ıcils que he

passat durant la realització d’aquest treball.
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Chapter 1

Homographic solutions in the

Planar Three Body Problem

1.1 Equations of motion

Consider three positive point masses m1,m2,m3 moving in an inertial coordinate

system in R2. Let us denote by q1,q2,q3 ∈ R2 the position vector of the jth

particle of mass mj , j = 1, 2, 3 (see figure 1.1).

Figure 1.1: Masses m1,m2,m3 and the respective position vectors q1,q2,q3.

Assume that the only forces acting on the masses are described by an homo-

13



14 1. Homographic solutions in the Planar Three Body Problem

geneous potential of the form

U(q1,q2,q3) =
m1m2

‖q1 − q2‖α
+

m1m3

‖q1 − q3‖α
+

m2m3

‖q2 − q3‖α
, (1.1)

where 0 < α < 2. The purpose of the Planar Three Body Problem with homoge-

neous potential U is to describe the motion of these three masses.

Applying Newton’s second law yields the equations of motion

miq
′′
i =

3
∑

j=1,j 6=i

mimj(qj − qi)

‖qi − qj‖α+2
=
∂U

∂qi
, i = 1, 2, 3 (1.2)

where U(q1,q2,q3) is defined in (1.1) and ′ =
d

dt
.

If α = 1 we obtain the equations of the Planar Three Body Problem with

Newtonian potential, that is, the only forces acting on the three masses are their

mutual gravitational attraction.

Let us define ∆ij = {q = (q1,q2,q3) ∈ R6|qi = qj} for 1 ≤ i < j ≤ 3, and

∆ = ∪1≤i<j≤3∆ij . ∆ is said to be the collision set. It is clear that U is not defined

for q ∈ ∆.

Let q = (q1,q2,q3) ∈ R6 \∆ and M = diag(m1,m1,m2,m2,m3,m3). Then,

equations (1.2) can be written as

Mq′′ = ∇U(q).

If we define p = (p1,p2,p3) ∈ R6 by p = Mq′, then pj = mjq
′
j and pj is the

momentum of the jth particle. In variables (q,p) the equations of motion

q′ = M−1p,

p′ = ∇U(q), (1.3)

form a Hamiltonian system with 6 degrees of freedom, with Hamiltonian function

H(q,p) =
1

2
pTM−1p− U(q). (1.4)

It is well known that there exist six first integrals for the Planar Three Body

Problem. These integrals can be used to reduce the order of the system.

First, we can assume that the centre of masses is fixed at the origin. Then

m1q1 +m2q2 +m3q3 = 0,

p1 + p2 + p3 = 0, (1.5)
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obtaining 4 integrals for the system. Therefore, we can reduce the system in 4

equations. We also have that the angular momentum is a first integral for system

(1.3). Then, if we fix the angular momentum

q1 ∧ p1 + q2 ∧ p2 + q3 ∧ p3 = c,

one can reduce in one the dimension of the system.

Moreover, the Hamiltonian function (1.4) is a first integral.

Remark 1.1.1. Let be m := m1 +m2 +m3 and µj =
mj

m
, j = 1, 2, 3. After the

change of variables Q = m−
1

α+2q, P = m−
α+3
α+2p, we get the same equations (1.3)

for Q, P with µj instead of mj , j = 1, 2, 3. So, we can assume m1 +m2 +m3 = 1.

As m1 +m2 +m3 = 1, we can represent the set of admissible masses as points

in a triangle defined by

(

x

y

)

=

(

0

0

)

m1 +

(

1

0

)

m2 +







1

2√
3

2






m3,

where (x, y) denote the usual coordinates in R2. This relation represents a triangle

in which the vertex (0, 0), (1, 0) and

(

1

2
,

√
3

2

)

correspond to m1 = 1, m2 = 1 and

m3 = 1, respectively (see figure 1.2).

Figure 1.2: Triangle of masses

Notation 1.1.2. In stands for the identity matrix of order n, J2n =

(

0 In
−In 0

)

is the 2n × 2n skew symmetric matrix, and K2n is the 2n × 2n diagonal matrix

defined as K2n = diag(J2, . . . , J2).
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1.2 Homographic solutions

In this section we describe briefly central configurations and homographic solutions

for the Planar Three Body Problem with homogeneous potential of degree −α,
0 < α < 2. For details, see [M.H.]. Homographic solutions for a n–body problem

are remarkable solutions for the simplicity of motions that describe. This kind

of solutions are obtained from central configurations. A central configuration is a

configuration in the position space such that for any mass mj its acceleration, q̈j ,

is proportional to the position, qj .

We identify R2 with the complex plane C by considering qj as complex num-

bers. We seek for solutions of (1.2) of the form

qj(t) = z(t)qcj , j = 1, 2, 3, (1.6)

where qcj are complex constant numbers and z(t) is a complex valued function

(the complex product is considered in the right hand part of (1.6)). Notice that

the product by a complex number is a rotation followed by an homotecy, that is,

an homography. So, a solution like (1.6) is called homographic solution.

If we substitute the expression of these special solutions into (1.2) and we

rearrange the terms, yields

‖z(t)‖α+2z′′(t)z(t)−1miqci = α
3
∑

j=1,j 6=i

mimj(qcj − qci)

‖qci − qcj‖α+2
.

As the right–hand part of last expression is constant, left–hand part needs also to

be constant. Then, we obtain

z′′(t) = −λ z(t)

‖z(t)‖α+2
, (1.7)

where λ is a constant such that

−λmiqci = α
3
∑

j=1,j 6=i

mimj(qcj − qci)

‖qci − qcj‖α+2
, i = 1, 2, 3. (1.8)

Therefore, (1.6) is a solution of the Planar Three Body Problem (1.2) if and only

if z(t) is a solution of (1.7) and qc = (qc1 ,qc2 ,qc3) satisfies (1.8). Equation (1.7)

is the Kepler problem with homogeneous potential of degree −α, 0 < α < 2. The

solutions of this equation are discussed in the appendix A.

A solution qc ∈ R6 \∆ of (1.8) is called a central configuration.

In the special case when z(t) is a circular solution of (1.7) and qc is a cen-

tral configuration, the solution is also called a relative equilibrium because it
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becomes an equilibrium solution in a rotating coordinate system. For a relative

equilibrium the three bodies rotate as a rigid body.

Equations (1.8) is a nontrivial system of nonlinear equations. This system can

be written as

−λMqc = ∇U(qc). (1.9)

Then, on a central configuration, the acceleration is proportional to the position.

If we consider the scalar product with qc in the equation above, using Euler’s

Theorem about homogeneous functions (that stays that if F : Rm −→ R is a C1

homogeneous function of degree β then the equality xT∇F (x) = βF (x) holds) we

obtain λ = α
U(qc)

qT
c Mqc

> 0.

(1.9) is invariant under rotations and under any uniform scaling. That is, if qc

is a central configuration and we introduce s ∈ R6 as qc = kR(θ)s where

R(θ) = diag(R1(θ), R1(θ), R1(θ))

is a 6× 6 matrix, θ ∈ [0, 2π], R1(θ) =

(

cos θ sin θ

− sin θ cos θ

)

and k ∈ R, then

−λ̃Ms = ∇U(s),

with λ̃ = λkα+2. That is, s is a central configuration.

We will say that two central configurations are similar if they differ in a rotation

or in an uniform scaling. Then, when counting central configurations one only

counts similarity classes.

Remark 1.2.1. It is not restrictive to assume that λ = 1. This is due to the fact

that if we introduce new variables Q = λ
1

α+2q, P = λ
− α

2(2+α)p and scale the time

by λ
1
2 t, the equations of motion are (1.3) and equation (1.9) holds with λ = 1.

Summarizing, assume that qc is a central configuration. Then for any z(t)

solution of the Kepler Problem with homogeneous potential (1.7), an homographic

solution of (1.2) is obtained as

q(t) = z(t)qc.

We shall consider bounded homographic solutions. So, let z(t) be a bounded

solution of (1.7). It can be written (see appendix A) as z(t) = r(t)eif(t) where r

satisfies

r′′ = −dV
dr

(r), (1.10)
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being V (r) = − 1

αrα
+
ω2

2r2
the effective potential of the associated Kepler problem

and

f(t) =

∫ t

0

ω

r(s)2
ds. (1.11)

We note that ω is the angular momentum for the Kepler problem (1.7). In the

Newtonian case, f is the true anomaly.

We shall denote the energy of (1.10) by

EK =
(r′)2

2
+ V (r). (1.12)

V (r) has a minimum at r∗ = ω
2

2−α and V (r∗) = −
(

2− α
2α

)

ω−
2α

2−α . For a fixed

value ω > 0, if EK is such that V (r∗) < EK < 0, we get a periodic solution of

(1.10) and then a bounded solution of (1.7) as z(t) = r(t)eif(t). On the level energy

EK = V (r∗), (1.10) has an equilibrium point at r = r∗. Then, z(t) = r∗eif(t) is a

circular solution of (1.7) and the corresponding homographic solution is a relative

equilibrium.

It is well known from Euler and Lagrange that in the Newtonian case there

exist three collinear central configurations with the three masses on a line and two

triangular ones with the masses on the vertex of an equilateral triangle. From

these central configuration, and by (1.6), we obtain the collinear and triangular

homographic solutions, respectively. Figure 1.3 shows an elliptic and a circular

collinear homographic solutions for the Newtonian Planar Three Body Problem.

Figure 1.3: An elliptic and a circular collinear homographic solution for the Newtonian

Planar Three Body Problem
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In the homogeneous case there also exist three collinear homographic solutions

and two triangular ones, as we shall see in section 1.5.

1.3 The homographic solutions as equilibrium

points

Homographic solutions satisfy the equations of the Planar Three Body Problem

with homogeneous potential, that is, a Hamiltonian system with six degrees of

freedom. In this section we perform a suitable change of coordinates in such a way

that the homographic solutions become equilibrium points of a periodic Hamilto-

nian system with six degrees of freedom. Moreover, we shall use the integrals of

the centre of masses in order to reduce the order of the system by four.

We introduce a rotating and pulsating coordinate system through

q(t) = r(t)Ω(f(t))ζ(t),

where Ω = diag(Ω1,Ω1,Ω1), Ω1(f) =

(

cos f − sin f

sin f cos f

)

, and r(t), f(t) as defined

in section 1.2, that is, for a given ω > 0, r(t) is a bounded solution of (1.10) and

f(t) is defined in (1.11). Using f as independent variable the new system can be

written as

ζ̇ = K6ζ +M−1η,

η̇ = ∇V(ζ) +K6η, (1.13)

where ˙ stands for the derivative with respect to f , η is the conjugate variable

of ζ and

V(ζ) =
r2−α

ω2
U(ζ) +

1

2

(

r2−α

ω2
− 1

)

ζTMζ.

In these variables, the homographic solutions are equilibrium points of system

(1.13).

The Hamiltonian in the new variables becomes

H(ζ,η) =
1

2
ηTM−1η − ζTK6η − V(ζ).

We note that (ζ∗,η∗) is an equilibrium of (1.13) if and only if

∇U(ζ∗) = −Mζ∗,

η∗ = −MK6ζ
∗,
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that is, ζ∗ is a central configuration. If we recover the initial variables we get an

homographic solution q(t) = r(t)Ω(f(t))ζ∗.

The system (1.13) is a periodic (due to the presence of r(f)) Hamiltonian

system with six degrees of freedom. A first reduction of (1.13) is done using the

integrals of the centre of masses (1.5). We introduce new variables

ui = ζi − ζ3, vi = ηi, i = 1, 2,

u3 = ζ3, v3 = η1 + η2 + η3.

The equations of motion become

u̇1 = J2u1 + α1v1 +
1

m3
v2 −

1

m3
v3,

u̇2 = J2u2 +
1

m3
v1 + α2v2 −

1

m3
v3,

u̇3 = J2u3 +
1

m3
(v3 − v1 − v2),

v̇1 =
∂

∂u1
V(ũ) + J2v1,

v̇2 =
∂

∂u2
V(ũ) + J2v2,

v̇3 = J2v3,

where ũ = (uT
1 ,u

T
2 ,u

T
3 )

T and

V(ũ) =
r2−α

ω2
U(u1,u2) +

1

2

(

r2−α

ω2
− 1

)

ũT C̃ũ,

with

U(u1,u2) =
m1m2

‖u1 − u2‖α
+
m1m3

‖u1‖α
+
m2m3

‖u2‖α
, (1.14)

C̃ =

(

C 0

0 0

)

, C = m1m2

(

α2m3I2 −I2
−I2 α1m3I2

)

, (1.15)

α1 =
m1 +m3

m1m3
, α2 =

m2 +m3

m2m3
. From the integral of the centre of masses (1.5)

we get v3 = 0. The equations for ui,vi, i = 1, 2, do not depend on u3. So, we can

reduce to consider the following system

u̇ = K4u+ C−1v,

v̇ = ∇V(u) +K4v, (1.16)
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where u = (uT
1 ,u

T
2 )

T , v = (vT
1 ,v

T
2 )

T and

V(u) = r2−α

ω2
U(u) + 1

2

(

r2−α

ω2
− 1

)

uTCu,

with U(u) and C given in (1.14) and (1.15), respectively. We note that we can

recover ζ1, ζ2 from u1, u2 using

(

m1ζ1

m2ζ2

)

= C

(

u1

u2

)

.

Then, ζ3 is obtained using the integral of the centre of masses (1.5) as ζ3 =

− 1

m3
(m1ζ1 +m2ζ2).

The equilibria (u∗,v∗) of this system are homographic solutions in these vari-

ables. An equilibrium point of system (1.16) must satisfy

v∗ = −CK4u
∗. (1.17)

Moreover, as ∇V(u∗) +K4v
∗ = 0, we have

r2−α

ω2
∇U(u) +

(

r2−α

ω2
− 1

)

Cu∗ +K4v
∗ = 0 . (1.18)

From (1.17) we obtain K4v
∗ = Cu∗ and therefore (1.18) becomes

∇U(u∗) = −Cu∗, (1.19)

which together with (1.17) characterize the equilibria of (1.16).

1.4 The linearized system. Reduction of the

order

We have seen that the homographic solutions are equilibrium points of a periodic

system of differential equations. In this section we shall reduce the linearized sys-

tem on an equilibrium point to a four dimensional system of differential equations.

This reduction will be used in chapter 4 in order to study the stability of the

homographic solutions.

The linearized system of (1.16) on an equilibrium (u∗,v∗) is

ẏ = Ay, A =

(

K4 C−1

D K4

)

, (1.20)
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where

D =
r2−α

ω2
D∇U(u∗) +

(

r2−α

ω2
− 1

)

C, (1.21)

and D denotes the differential.

We will see that system (1.20) can be written as two uncoupled systems of

order four.

Lemma 1.4.1. Let u∗ be a solution of (1.19). System (1.20) can be written as

two uncoupled linear systems of order four with matrices

B1(f) =











0 0 1 −1
0 0 1 −1
h1 −1 0 0

1 1 0 0











, B2(f) =











0 −1 1 0

1 0 0 1

b11 b21 0 −1
b12 b22 1 0











, (1.22)

where h1 = h1(f) = (α+ 2)
r2−α

ω2
− 1, and

b11 =
r2−α

ω2
(γ11+1)−1, b12 =

r2−α

ω2
γ12, b21 =

r2−α

ω2
γ21, b22 =

r2−α

ω2
(γ22+1)−1,

being γ11, γ12, γ21 and γ22 constant coefficients depending on u∗.

Proof

We introduce the following vectors

x1 =

(

u∗

0

)

, x2 =

(

0

K4Cu
∗

)

, x3 =

(

0

Cu∗

)

, x4 =

(

K4u
∗

0

)

.

First, we shall show that the subspaceX of R8 spanned by x1,x2,x3,x4 is invariant

under A. Then, we will introduce also the skew–orthogonal complement in R8 of

X in order to uncouple the system (1.20).

In order to show that X is invariant under A we need some relations between

D∇U(u) and ∇U(u). By Euler’s Theorem for homogeneous functions we have

∇U(u)Tu = −αU(u). If we differenciate this equality, we obtain

D∇U(u)u = −(α+ 1)∇U(u). (1.23)

Moreover, due to the homogeneity of U(u) we obtain

D∇U(u)K4u = K4∇U(u). (1.24)

So, if u∗ is a central configuration from (1.23) and (1.24) and using (1.19) we get

D∇U(u∗)u∗ = (α+ 1)Cu∗, D∇U(u∗)K4u
∗ = −K4Cu

∗. (1.25)
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Then

Du∗ =
[

(α+ 2)
r2−α

ω2
− 1

]

Cu∗, DK4u
∗ = −CK4u

∗, (1.26)

where the second equality holds due to the fact that K4 and C commute. Using

(1.26) we get easily

Ax1 = x4 + h1x3, Ax2 = x4 − x3, Ax3 = x1 + x2, Ax4 = −x1 − x2,

where h1 = (α+2)
r2−α

ω2
− 1. So, the four dimensional subspace, X, of R8 spanned

by x1,x2,x3,x4 is invariant under A and the system (1.20) reduced to X is given

by the matrix B1(f).

Let us denote by W the four dimensional subspace of R8 spanned by w1, w2,

w3, w4 where

w1 =

(

C−1η1

0

)

, w2 =

(

C−1η2

0

)

, w3 =

(

0

η1

)

, w4 =

(

0

η2

)

,

and

η1 = J4u
∗ + γ1K4u

∗, η2 = K4η1, γ1 =
(u∗)TK4J4u

∗

‖u∗‖2 . (1.27)

We want to see that W is the skew–orthogonal complement in R8 of X, that

is, W = {w ∈ R8 |wTJ8xi = 0, i = 1, . . . , 4}.
We have that

ηT
1 u

∗ = −(u∗)TJ4u
∗ − γ1(u

∗)TK4u
∗ = 0,

ηT
2 u

∗ = (u∗)TJ4K4u
∗ + γ1(u

∗)TK2
4u
∗ = 0.

Using these relations we find that W is the subspace that we are looking for.

Next and last step is to find the system reduced to W .

We have that

Aw1 =

(

K4C
−1η1

DC−1η1

)

, Aw2 =

(

K4C
−1η2

DC−1η2

)

,

Aw3 = w1 +w4, Aw4 = w2 −w3, (1.28)

with

DC−1ηj =
r2−α

ω2
(D∇U(u∗)C−1ηj + ηj)− ηj , j = 1, 2.
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As u∗,K4u
∗,η1,η2 span R4, we can write

D∇U(u∗)C−1ηj = γj1η1 + γj2η2 + γj3u
∗ + γj4K4u

∗, j = 1, 2, (1.29)

for some constants γji, j = 1, 2, i = 1, . . . , 4.

Due to the symmetry of D∇U(u∗) and C, from (1.25) we have that

(u∗)TD∇U(u∗)C−1ηj = (α+ 1)(u∗)T ηj = 0, j = 1, 2

(K4u
∗)TD∇U(u∗)C−1η1 = (u∗)TCK4C

−1η1 = (u∗)Tη2 = 0,

(K4u
∗)TD∇U(u∗)C−1η2 = (u∗)TCK4C

−1η2 = −(u∗)Tη1 = 0.

Then, D∇U(u∗)C−1ηj = γj1η1 + γj2η2, j = 1, 2, and

γ11 =
1

‖η1‖2
ηT

1D∇U(u∗)C−1η1, γ12 =
1

‖η2‖2
ηT

2D∇U(u∗)C−1η1,

γ21 =
1

‖η1‖2
ηT

1D∇U(u∗)C−1η2, γ22 =
1

‖η2‖2
ηT

2D∇U(u∗)C−1η2. (1.30)

A simple computation shows that

DC−1η1 = b11η1 + b12η2,

DC−1η2 = b21η1 + b22η2.

Then, from (1.28),

Aw1 = w2 + b11w3 + b12w4, Aw2 = −w1 + b21w3 + b22w4,

Aw3 = w1 +w4, Aw4 = w2 −w3,

and the system (1.20) reduced to W is defined by the matrix B2(f). 2

We shall see that, for any equilibrium (u∗,v∗) of (1.16), 1 is an eigenvalue

with multiplicity four of the monodromy matrix of the system defined by B1(f).

Then, the nontrivial characteristic exponents will be given by the system defined

by B2(f).

B1(f) and B2(f) depend on f through the function
r2−α

ω2
where r is a solution

of (1.10). We recall that for the levels of energy of interest one has r(t) bounded.

Its minimum tends to zero when ω does. Notice that in the Newtonian case (α = 1)
r

ω2
=

1

1 + e cos f
, where e denotes the eccentricity of the orbit.

We introduce the function g =
ω

2
2−α

r
. Using (1.10) we obtain that

g̈ = −g + gα−1,
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where we recall that ˙ stands for
d

df
. Then g is a periodic solution of

z̈ = −dU
dz

(z), with U(z) =
z2

2
− zα

α
. (1.31)

We denote by T the period of g in time f .

U has a positive zero at z̃ =

(

2

α

) 1
2−α

, and a minimum at z = 1 attaining the

value U(1) =
α− 2

2α
. Figure 1.4 shows some plots of U .

Figure 1.4: Plot of U(z) =
z2

2
− zα

α
for α =

1

2
, 1,

3

2
, respectively

The energy of the problem (1.31) is

E =
(ż)2

2
+ U(z). (1.32)

Using ġ = −ω α
2−α r′ (where we recall ′ =

d

dt
), we get

E = ω
2α

2−α

[

1

2
(r′)2 +

ω2

2r2
− 1

αrα

]

= ω
2α

2−αEK , (1.33)

where EK is given in (1.12).

Once a central configuration has been fixed, we get a family of homographic

solutions for E ∈
[

−2− α
2α

, 0

)

. For the sake of simplicity we shall fix a value of

EK , say EK = −1

2
, and move ω in the following range

0 < ω ≤ ωc,

where ωc satisfies

−1

2
ω

2α
2−α
c = −2− α

2α
, (1.34)
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which corresponds to a relative equilibrium. In that case, g ≡ 1.

Let us define g0 = g(0) the minimum of g. It is clear that if 0 < ω < ωc,

0 < g0 < 1. Moreover, g0 tends to zero as ω tends to zero. However,
r2−α

ω2
= gα−2.

If we consider the linear systems defined by B1(f) and B2(f) as ω tends to 0, the

limit systems have a singularity at f = 0. In this case we have an homagraphic

solution going to collision.

Remark 1.4.2. If ω = ωc then E = U(1) =
α− 2

2α
and (1.31) has an equilibrium

point z∗ = 1. Then, g(f) ≡ 1 and the function h1(f) defined in Lemma 1.4.1

becomes constant. In fact, h1 = α + 1. In this case the linear systems defined by

B1(f) and B2(f) have constant coefficients. Furthermore, r = ω
2

2−α and so, we

have a circular solution of the Kepler problem.

Lemma 1.4.3. For 0 < ω ≤ ωc the monodromy matrix C of the linear system

U̇ = B1(f)U (1.35)

has the eigenvalue 1 with multiplicity four.

Proof

In order to compute the monodromy matrix C of (1.35) it is necessary to

integrate the variational equations. In this case, we need to solve the same system

(1.35) with initial conditions the vectors ej , j = 1, . . . , 4, of the canonical basis.

Let be V = (u1, u2, u3, u4)
T . We denote by Vj(f), j = 1, . . . , 4, the solution of

(1.35) with initial conditionVj(0) = ej . Then, C = (V1(T ),V2(T ),V3(T ),V4(T ))
T

where T is the period of g.

System (1.35) can be written as

u̇1 = u3 − u4,

u̇2 = u3 − u4,

u̇3 = h1u1 − u2,

u̇4 = u1 + u2, (1.36)

with h1(f) = (α+ 2)gα−2 − 1.

First we consider ω = ωc. From remark 1.4.2 we know that the matrix B1(f)

is constant, and the solution of (1.31) for this value of ω corresponds to a circular

solution zc(t) = ω
2

2−α eif(t) of the planar Kepler problem. Moreover, h1(f) = α+1.

The statement of the Lemma in this particular case follows due to the fact that

the constant matrix B1(f) has eigenvalues 0, 0,±i
√
2− α and the circular solution

has period
2π√
2− α (see appendix A).
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Assume now that 0 < ω < ωc.

From the two first equations in (1.36) it is easy to see that u1 − u2 = k with k

a real constant. Then, as ü1 = u̇3 − u̇4, u1 satisfies the following equation

ü1 = [(α+ 2)gα−2 − 4]u1 + 2k. (1.37)

Once u1 is obtained, u2 is recovered from u2 = u1 − k and u3, u4 are obtained by

integration of the following equations

u̇3 = [(α+ 2)gα−2 − 2]u1 + k,

u̇4 = 2u1 − k.

Now, we compute V3,V4. For these vectors, the initial conditions for u1 and u2

are u1(0) = u2(0) = 0. Then, we need to solve equation (1.37) with k = 0. It can

be seen easily that u1(f) = cgġ, c a constant, is a solution of this equation.

As for V3 the initial conditions for u3 and u4 are u3(0) = 1, u4(0) = 0, we have

that u̇1(0) = 1. Then

c =
1

gα0 − g2
0

. (1.38)

We note that c is well defined due to the fact that for 0 < ω < ωc one has

0 < g0 < 1.

A simple computation shows that

V3(f) = (cgġ, cgġ, 1 + c
α+ 2

α
(gα − gα0 )− c(g2 − g2

0), c(g
2 − g2

0))
T .

Taking into account that for V4, u̇1(0) = −1, one can prove that

V4(f) = (−cgġ, −cgġ, −cα+ 2

α
(gα − gα0 ) + c(g2 − g2

0), 1− c(g2 − g2
0))

T ,

where c is given in (1.38). As g is T–periodic, V3 and V4 are also periodic with

period T . Then,

V3(T ) = (0, 0, 1, 0)T , V4(T ) = (0, 0, 0, 1)T .

Now we look for V2(f). The initial conditions u1(0) = 0, u2(0) = 1 imply that

k = −1. Moreover, as u3(0) = 0 and u4(0) = 0, u̇1(0) = 0. So, we have to solve

the equation (1.37) for k = −1 with initial conditions u1(0) = 0, u̇1(0) = 0. Let us

assume, for the moment being, that u1(T ) = 0. Therefore u2(T ) = u1(T ) + 1 = 1

and

V2(T ) = (0, 1, u3(T ), u4(T ))
T .
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The monodromy matrix has the following form

C =











∗ 0 0 0

∗ 1 0 0

∗ ∗ 1 0

∗ ∗ 0 1











,

where ∗ denotes some values that are not relevant. However the Liouville Theorem

implies that det(C) = 1. Therefore, 1 is an eigenvalue of C with multiplicity four.

Our purpose now is to prove that u1(T ) = 0.

We introduce variables x1 = u1, x2 = u̇1 and write the equation (1.37) for

k = −1 as a non homogeneous linear system. So, we consider the initial value

problem

ẋ1 = x2,

ẋ2 = h̃(f)x1 − 2, h̃(f) = [(α+ 2)gα−2 − 4], (1.39)

x1(0) = 0, x2(0) = 0.

We know that ϕ2(f) = (b1(f), b2(f))
T with

b1(f) = cgġ, b2(f) = c(ġ2 − g2 + gα),

is a solution of the homogeneous system such that ϕ2(0) = (0, 1)T . Moreover, it is

periodic with period T . Then, ϕ2(T ) = ϕ2(0).

Let Φ(f) be the fundamental matrix of the homogeneous system such that

Φ(0) = I2. We write

Φ(f) = (ϕ1(f), ϕ2(f)),

where ϕ1(f) = (a1(f), a2(f))
T is a solution of the homogeneous system such that

ϕ1(0) = (1, 0)T . Using Liouville Theorem, det(Φ(f)) = 1 for any f . Then,

det(Φ(T )) = a1(T ) = 1.

Let x(f) = (x1(f), x2(f))
T be the solution of the initial value problem (1.39).

Using variation of parameters we can write

x(f) = Φ(f)

∫ f

0
Φ−1(s)r(s)ds,

where r(s) = (0,−2)T . The first component of x(f) is

x1(f) = a1(f)

∫ f

0
2b1(s)ds− b1(f)

∫ f

0
2a1(s)ds.
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We recall that b1(T ) = 0. Then,

x1(T ) = 2

∫ T

0
b1(s)ds = 2c

∫ T

0
gġds = c[g2(T )− g2(0)] = 0,

where the periodicity of g(f) has been used. 2

Let us consider now the linear system U̇ = B2(f)U. After Lemma 1.4.3 we

know that the eigenvalues of the monodromy matrix of this system give us the non

trivial characteristic multipliers.

We introduce w = M−1U, where M =

(

I2 0

J2 I2

)

, and then we can write

our system as

ẇ = B(f)w, B(f) =

(

0 I2
B̃ −2J2

)

,

B̃ = gα−2

(

γ11 + 1 γ21

γ12 γ22 + 1

)

. (1.40)

We recall that g depends on the angular momentum ω, and γ11, γ12, γ21, γ22

are constant depending on the solutions of (1.19), that is, on the central config-

urations. In the following section we shall solve the equation (1.19), and we will

compute these constants γij , i, j = 1, 2, for the collinear and triangular central

configurations.

1.5 Central configurations

In this section we study the solutions of the equation (1.19), that is, we seek central

configurations. Our purpose is to compute the coefficients γ11, γ12, γ21, γ22 for any

solution u∗ of (1.19). Moreover, we will study some properties of these coefficients

that will be useful in chapter 4 in order to study the stability of the homographic

solutions.

We write (1.19) as

−αm1m2(u1 − u2)

‖u1 − u2‖α+2
− αm1m3u1

‖u1‖α+2
= −m1m2(α2m3u1 − u2),

α
m1m2(u1 − u2)

‖u1 − u2‖α+2
− αm2m3u2

‖u2‖α+2
= −m1m2(−u1 + α1m3u2), (1.41)

where we know from section 1.3 that α1 =
m1 +m3

m1m3
and α2 =

m2 +m3

m2m3
.

We look for the solutions u∗ of this system of equations.
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First we study the case when the three particles lie on a straight line. This

kind of solutions are known as collinear configurations. We can assume that

this line is the abscissa axis and we consider the masses ordered from left to right

as m3, m2, m1 (see figure 1.5). Other collinear configurations are obtained from

this by a permutation of the masses. So, we can assume u∗ = ((u∗1)
T , (u∗2)

T )T with

u∗1 = (u1, 0)
T and u∗2 = (u2, 0)

T . We introduce ρ and a by u1 = a(ρ+ 1), u2 = a.

Figure 1.5: Coordinates u1 and u2 in a collinear configuration

If we substitute these expressions of u1 and u2 in (1.41) we obtain that ρ > 0 is

the solution of the equation

m1[ρ
α+2 − (ρ+ 1)α+2] +m3ρ

α+1[(ρ+ 1)α+2 − 1] +

m2(ρ+ 1)α+1(ρα+2 − 1) = 0, (1.42)

and

aα+2 =
α[m2(ρ+ 1)α+1 +m3ρ

α+1]

ρα+1(ρ+ 1)α+1[m3(ρ+ 1) +m2ρ]
.

We note that ρ = 1 is the solution of (1.42) in the symmetric case in which

m1 = m3. In the Newtonian case (α = 1) (1.42) is the well known quintic equation

for collinear configurations.

Now we look for non collinear solutions. We note that to solve the equation

(1.19) is equivalent to compute the critical points of the function

Ũ(u) = U(u) + 1

2
uTCu, (1.43)

where U and C are given in (1.14) and (1.15), respectively. We define r1 = ‖u1 −
u2‖, r2 = ‖u1‖, r3 = ‖u2‖. Let us see that Ũ can ve written in terms of r1, r2 and

r3. A simple computation shows that

uTCu = m1m2(α2m3‖u1‖2 − 2uT
1 u2 + α1m3‖u2‖2).
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As 2uT
1 u2 = ‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2 we obtain that

Ũ(u) = m1m2

(

1

rα1
+
r21
2

)

+m1m3

(

1

rα2
+
r22
2

)

+m2m3

(

1

rα3
+
r23
2

)

.

It is easy to see that a non collinear critical point of Ũ satisfies r1 = r2 = r3 = α
1

α+2 .

In this case, the three masses are at the vertices of an equilateral triangle and

‖u1‖ = ‖u2‖ = ‖u1 − u2‖ = % where % = α
1

α+2 . These solutions are known as

triangular configurations. There are two triangular configurations (see figure

1.6). We shall work with the first case in this figure. The other triangular config-

uration is obtained from this by changing the masses m1 and m2. We can assume

that u1 =

(

%

2
,

√
3

2
%

)T

and u2 =

(

−%
2
,

√
3

2
%

)T

.

Figure 1.6: The triangular configurations in the Planar Three Body Problem with ho-

mogeneous potential of degree −α, 0 < α < 2

We note that the three variables r1, r2 and r3 are local coordinates near a non

collinear configuration. Therefore, we have obtained all the non collinear solutions

of the equation for central configurations of the Planar Three Body Problem with

homogeneous potential of degree −α, 0 < α < 2.

Now we want to compute the coefficients γ11, γ12, γ21, γ22 in (1.40). To this end

we shall distinguish between a collinear and a triangular central configuration.

We fix u∗ = ((u∗1)
T , (u∗2)

T )T , u∗1,u
∗
2 ∈ R2 a central configuration. It is easy to

check that ‖η1‖2, ‖η2‖2 and γ1 in (1.27) can be computed through

γ1 =
2(u∗1)

TJ2u
∗
2

‖u∗1‖2 + ‖u∗2‖2
,

‖η1‖2 = [‖u∗1‖2 + ‖u∗2‖2](1 + γ2
1)− 4γ1(u

∗
1)

TJ2u
∗
2, (1.44)

‖η2‖2 = ‖η1‖2.



32 1. Homographic solutions in the Planar Three Body Problem

We begin with a triangular configuration. In this case, we have taken u1 =
(

%

2
,

√
3

2
%

)T

and u2 =

(

−%
2
,

√
3

2
%

)T

. Using (1.44) we obtain that

γ1 =

√
3

2
, ‖η1‖2 = ‖η2‖2 =

%2

2
.

From the definition of η1 and η2 in (1.27) we have that these vectors can be

written as ηT
1 = (c1, c2, c1,−c2) and ηT

2 = (c2,−c1,−c2,−c1), where c1 =
%

4
and

c2 =

√
3%

4
. Moreover

D∇U(u∗) =











a1 a2 a3 0

a2 a4 0 a5

a3 0 a6 a7

0 a5 a7 a8











, (1.45)

where aj , j = 1, . . . , 8 are constants depending on the masses and on %. They are

given in appendix B. Then after some trivial computations and using (1.30) we

get the constants γij for the triangular configurations as

γ11 = −1 + (α+ 2)

4
(m1 +m2 + 4m3), γ22 = α− γ11,

γ12 = γ21 =
α+ 2

4

√
3(m2 −m1).

So, B̃ in (1.40) is a symmetric matrix.

Our purpose now it to write the linearized system on a triangular configuration

as the system

ẋ = A(f)x, (1.46)

with

A(f) =

(

0 I2
Ã(f) −2J2

)

, Ã = gα−2Λ (1.47)

where Λ is a 2 × 2 diagonal constant matrix. To this end, it will be useful the

following remark.

Remark 1.5.1. Let us consider the system

ẇ = B(f)w, (1.48)

with B(f) =

(

0 I2
B̃(f) −2J2

)

and B̃ = gα−2Λ̃ where Λ̃ is a 2× 2 symmetric but

not diagonal constant matrix. Let P be an orthogonal matrix such that P−1Λ̃P is
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diagonal. We introduce new variables as X = A−1
1 w with A1 = diag(P, P ). Then,

(1.48) becomes

Ẋ = B1(f)X,

with B1(f) = A−1
1 B(f)A1. We have that

B1(f) =

(

0 I2
Ã(f) −2P−1J2P

)

where Ã(f) = gα−2P−1Λ̃P is like in (1.47). Due to the orthogonality of P it is

easy to check that P−1J2P = ±J2, where the sign + stands for det(P ) = 1 and −

for det(P ) = −1. Then, B1(f) =

(

0 I2
Ã(f) −2cJ2

)

with c = ±1.

We define x = (x1, x2, x3, x4)
T by x1 = X1, x2 = X2, X3 =

x3

c
, X4 =

x4

c
.

Scaling the time by a factor of c the system in variables x is written as (1.46).

After this remark, we can write the linearized system on a triangular configu-

ration as (1.46) by taking Λ = diag(λ1, λ2) being λ1, λ2 the zeroes of

p(λ) = λ2 − (α+ 2)λ+
βt
4
, βt = 3κ(α+ 2)2, (1.49)

where κ = m1m2 +m1m3 +m2m3. Then, we have that

λ1 + λ2 = α+ 2 and λ1λ2 =
βt
4
. (1.50)

Remark 1.5.2. We have that 3κ ≤ 1 is satisfied for all positive values of the masses

in the triangle of masses. Moreover, the equality holds for m1 = m2 = m3.

After this remark we have that the the zeroes of (1.49) are real. Moreover, it

is clear that βt ∈ (0, (α+ 2)2].

Now we study the collinear central configurations. For u∗ a collinear configu-

ration we have that (u∗1)
TJ2u

∗
2 = 0. Then, from (1.44) we have γ1 = 0 and from

(1.27), η1 = J4u
∗, η2 = K4η1. In order to compute the coefficients γij , i, j = 1, 2,

we need to know the matrix D∇U(u∗). It turns out that

D∇U(u∗) =











a1 0 a2 0

0 a3 0 a4

a2 0 a5 0

0 a4 0 a6











,
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for some constants aj , j = 1, . . . , 6, that depend on m1,m2,m3 and ρ. From this

expression it is easy to prove that γ12 = γ21 = 0. Therefore, the 2 × 2 matrix

B̃ in (1.40) is diagonal. Moreover, after some computations we get the following

expressions

γ11 = −(α+ 1)γ22,

γ22 = −1− βc,

where

βc = −1− α

aα+2[1 + (ρ+ 1)2]
[(ρ+ 2)[(ρ+ 1)m1 +m2]ρ

−α−2+

(ρ+ 1)[m2ρ+m3(ρ+ 1)] + (m3 −m1ρ)(ρ+ 1)−α−2]. (1.51)

Therefore,

B̃ = gα−2

(

(α+ 1)βc + α+ 2 0

0 −βc

)

.

Now we study some properties of the function βc. We note that it depends on

the three masses and on the solution of (1.42).

We consider the Newtonian case, that is, α = 1. Then, equation (1.42) is the

well–known Euler’s quintic equation and can be written as

q(ρ) := ρ5(m2 +m3) + ρ4(2m2 + 3m3) + ρ3(m2 + 3m3)− ρ2(3m1 +m2)−
−ρ(3m1 + 2m2)− (m1 +m2) = 0. (1.52)

Moreover, a3 = −m1

ρ2
+

m1

(ρ+ 1)2
+m2 +m3 and

βc =
m1

(

1 + ρ−1
1 + ρ−2

1

)

+m3

(

1 + ρ−1
2 + ρ−2

2

)

m1 +m2

(

ρ−2
1 + ρ−2

2

)

+m3

, (1.53)

where

ρ1 =
ρ

ρ+ 1
and ρ2 =

1

ρ+ 1
, (1.54)

(see [S.M.]).

Remark 1.5.3. As we have assumed that m1 + m2 + m3 = 1, fixed m2 ∈ (0, 1)

we can take βc in (1.53) as a function of m1 and m3. Then, if we write βc =

βc(m1,m3) we obtain that βc(m1,m3) = βc(m3,m1) and then βc is symmetric

with respect to m1 = m3. To see this, fixed m2 ∈ (0, 1) it is only necessary

to take into account that if ρ(m1,m3) denotes the solution of the quintic (1.52)

then ρ(m3,m1) =
1

ρ(m1,m3)
where ρ(m3,m1) is obtained from (1.52) by changing
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m1 by m3 and viceversa. Then, the expressions of ρ1 and ρ2 in (1.54) satisfy

ρ1(m1,m3) = ρ2(m3,m1) and ρ2(m1,m3) = ρ1(m3,m1). Therefore, βc(m1,m3) =

βc(m3,m1). We note that in the triangle of masses the values such that m1 = m3

correspond to the height l of the triangle (see figure 1.7).

Figure 1.7: Line m1 = m3 in the triangle of masses

We note that q(1) = 7(m3 −m1) and therefore, if m1 ≤ m3 we have that the

solution of the quintic equation satisfies ρ ≤ 1 and the solution is ρ = 1 if and only

if m1 = m3. Moreover, q(0) = −(m1 +m2) and ρ = 0 if and only if m1 = m2 = 0.

For this problem we know the ranges of βc (see [M.S.]).

Lemma 1.5.4. In the Newtonian case, for any positive masses, βc ∈ (0, 7). The

values 0 and 7 are attained in the limit cases m2 = 1 and m2 = 0, m1 = m3 =
1

2
,

respectively.

Proof

We fix m1 ∈ (0, 1) and we take m3 = 1 − m1 − m2. We have that m2 ∈
(0, 1−m1). From (1.53) we obtain

βc =
m1(3ρ

2 + 3ρ+ 1)(1−m1 −m2)ρ
2(ρ2 + 3ρ+ 3)

ρ2 +m2[(ρ+ 1)2(1 + ρ2)− ρ2]
.

As ρ is a solution of (1.52) we can consider ρ as a function of m2. Therefore βc is

a function of m2.

It has been proved that
dβc
dm2

(m2) < 0 (see [M.S.]). Then, βc(m2) is a strictly

decreasing function of m2.

Due to the symmetry of βc with respect to the line m1 = m3 in the triangle

of masses, it is only necessary to consider m1 ≤ m3, that is, ρ ∈ (0, 1]. Therefore,

fixed a value of m1 the monotonicity of βc implies that its maximum is taken when

m2 = 0 and the minimum at m1 = m3. In the case m1 = m3 we have that ρ = 1

and then βc =
7(1−m2)

1 + 7m2
. The minimum of this function is attained when m2 = 1.

In this case, βc = 0.
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For m2 = 0 the quintic equation (1.52) can be written as m1(3ρ
2 + 3ρ+ 1) =

m3ρ
3(ρ2 + 3ρ+ 3), and βc = (1−m1)(1 + ρ)(ρ2 + 3ρ+ 3). Using these equalities

we obtain that

βc =
(ρ2 + 3ρ+ 3)(3ρ2 + 3ρ+ 1)

ρ4 + 2ρ3 + ρ2 + 2ρ+ 1
.

It is easy to check that βc ≤ 7 and βc = 7 if and only if ρ = 1. Then, the maximum

in the triangle of masses is 7. This ends the proof of the lemma. 2

Remark 1.5.5. Numerically it can be seen that fixed m2 ∈ (0, 1), βc(m1,m3) has

a maximum at m1 = m3. Figure 1.8 shows the numeric behaviour of function

βc(m1,m3) taking into account that βc(m1,m3) = βc(m1).

Figure 1.8: Graphic of the function βc in terms of m1 for m2 = 0.5

Now we consider the general case. Numerical computations shows that, fixed

m2 ∈ (0, 1), the maximum of βc is also attained at m1 = m3 (see figure 1.9).

Moreover, numerically it can be seen that βc is a decreasing function of m2. Then,

the maximum is attained at m1 = m3 and m2 = 0. For these values of the masses

the solution of (1.42) is ρ = 1 and βc = 22+α − 1. Therefore, we shall assume that

βc ∈ (0, 2α+2 − 1).
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Figure 1.9: Graphic of βc in terms of m1 for m2 = 0.5 and α = 0.5, α = 1.5

1.6 About the study of the stability of the

homographic solutions

In this section we shall see that the linearized system on an homographic solution

can be included in a three parametric family of four dimensional periodic linear

systems. This family can be written in a Hamiltonian formulation. Using the

theory of Hamiltonian systems (see [M.H.]), we describe briefly how to study the

stability parameters of these differential equations.

We consider the periodic linear system

ẋ = A(f, e)x, (1.55)

with x ∈ R4,

A(f, e) =











0 0 1 0

0 0 0 1

λ1G1(f, e) 0 0 −2
0 λ2G2(f, e) 2 0











,
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where λ1, λ2 are real parameters different from zero, e ∈ [0, 1), and G1(f, e),

G2(f, e) are smooth functions. Let us assume that for e = 0, G1(f, 0) = 1,

G2(f, 0) = 1.

We want to see that the linearized system on an homographic solution can be

written as (1.55).

First we note that, as we have seen in last section, system (1.40) can be written

as

ẋ =











0 0 1 0

0 0 0 1

gα−2λ1 0 0 −2
0 gα−2λ2 2 0











x, (1.56)

where λ1, λ2 depends on the central configuration we are considering and g is

a periodic solution of (1.31). Table 1.1 shows the expression of λ1 and λ2 in

both collinear and triangular case. We distinguish between the general and the

Newtonian case.

Newtonian case General case

Triangular λ1, λ2 zeroes of λ1, λ2 zeroes of

configuration p(λ) = λ2 − 3λ+
βt

4
, p(λ) = λ2 − (α + 2)λ+

βt

4
βt = 27κ βt = 3(α + 2)2κ

Collinear λ1 = 2βc + 3 λ1 = (α + 1)βc + α + 2

configuration λ2 = −βc λ2 = −βc

βc ∈ (0, 2α+2 − 1) βc ∈ (0, 7)

Table 1.1: Values of λ1, λ2 for a triangular and a collinear central configuration.

We define a generalized eccentricity

e :=

√

1 +
2α

2− αEKω
2α

2−α ,

where EK is defined in (1.12). We recall that we have normalized scales so that

EK = −1

2
and ω is such that 0 < ω ≤ ωc where ωc is defined in (1.34). Then,

e =

√

1− α

2− αω
2α

2−α , e ∈ [0, 1). (1.57)



1.6. About the study of the stability of the homographic solutions 39

Given a value of ω, we have that E is fixed by (1.33) and so, g depends on e.

In the Newtonian case (α = 1), e is the eccentricity of the orbit. From remark

1.4.2 we know that the case ω = ωc corresponds to the relative equilibrium solution.

For this value of ω we have that e = 0. On the other hand, we have seen in section

1.4 that when ω tends to 0 then g0 tends to 0. So, for e = 1 system (1.56) has a

singularity.

Then, it is clear that system (1.56) can be written as (1.55) by takingG1(f, e) =

gα−2λ1 and G2(f, e) = gα−2λ2, where λ1 and λ2 are given in table 1.1.

System (1.55) can be written as a linear Hamiltonian system by the change of

variables y = M̃x with

M̃ =

(

I2 0

J2 I2

)

. (1.58)

The Hamiltonian function is

H(y, f) =
1

2
(y2

3 + y2
4) + y1y4 − y2y3 − V (y1, y2, f, e), (1.59)

where y = (y1, y2, y3, y4)
T and

V (y1, y2, f, e) = [λ1G1(f, e)− 1]
y2
1

2
+ [λ2G2(f, e)− 1]

y2
2

2
. (1.60)

Let Φ(f) the fundamental matrix of (1.55) such that Φ(0) = I4. It is easy to

check that

Φ(f) = M̃−1Φ1(f)M̃, (1.61)

where Φ1(f) is the fundamental matrix of the linear Hamiltonian system defined

by (1.59). The symplectic character of Φ1(f) implies that if µ̃ is an eigenvalue of

Φ(T ) then µ̃−1 is also an eigenvalue (see [M.H.]). We denote by µ1, µ
−1
1 , µ2, µ

−1
2

the eigenvalues of Φ(T ) and define the stability parameters as

tri = µi + µ−1
i , i = 1, 2.

The stability of the system (1.55) can be studied in terms of trj , j = 1, 2. From

the real character of (1.55), if trj ∈ C \R for some j = 1, 2 then tr3−j = trj where

the bar stands for the complex conjugate. Therefore (1.55) is complex–saddle.

We assume that trj ∈ R for some j = 1, 2. If |trj | > 2 then µj ∈ R and one of

the characteristic multipliers has modulus bigger that 1. In this case, (1.55) is

unstable. If |trj | < 2 then µj ∈ C with ‖µj‖ = 1. Bifurcations can occur when

|trj | = 2 for some j = 1, 2, and when tr1 = tr2.
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In chapters 2 and 3 we shall study the stability parameters of the system (1.55)

for a family of functions Gj , j = 1, 2. In chapter 2 we will analize the case e & 0 and

in chapter 3 the case e . 1 will be considered. In this last case, we shall introduce

a parameter δ defined by δ =
2− α
2α

(1−e2) and we will study the system for δ > 0

small enough. Using the theory developed in these chapters, in chapter 4 we shall

determine the stability parameters of the homographic solutions.



Chapter 2

Stability of a family of periodic

linear systems: the

perturbative case

2.1 Introduction

Let us consider the family of periodic linear systems

ẋ = A(t, ε)x, (2.1)

with x ∈ R4,

A(t, ε) =











0 0 1 0

0 0 0 1

λ1G1(t, ε) 0 0 −2
0 λ2G2(t, ε) 2 0











,

λ1, λ2 are real parameters different from zero, ε is a small positive parameter,

and Gi(t, ε) = 1 − Fi(t, ε), i = 1, 2, where Fi(t, ε), i = 1, 2, are even functions,

T–periodic in t and analytic in ε, satisfying Fi(t, 0) = 0. Then, we can write

F1(t, ε) =
∑

j∈N

εjcj(t), F2(t, ε) =
∑

j∈N

εjdj(t), (2.2)

with cj(t), dj(t) T–periodic even functions for j ∈ N.

If ε = 0 then system (2.1) is linear with constant coefficients and one can obtain

easily the stability and instability regions in the plane (λ1, λ2). These regions are

described in section 2.2. The goal of this chapter is to study the bifurcations for ε

small and positive.

41
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In chapter 1 we have seen that (2.1) can be written as a linear Hamiltonian

system with Hamiltonian function

H(y, t) =
1

2
(y2

3 + y2
4) + y1y4 − y2y3 − V (y1, y2, t, ε), (2.3)

where y = (y1, y2, y3, y4)
T and

V (y1, y2, t, ε) = [λ1G1(t, ε)− 1]
y2
1

2
+ [λ2G2(t, ε)− 1]

y2
2

2
. (2.4)

The analysis of system (2.1) has several applications. One of them is the study

of the stability for the equilibria of mechanical systems defined by a Hamiltonian

function of the form (2.3) with a potential V(y1, y2, t, ε) even in t and such that

the quadratic part in y1 and y2 has the form (2.4). In this case, the linearized

system on the equilibrium point can be written as (2.1).

On the other hand, system (2.1) can be obtained as a first variational system

on a periodic solution of an autonomous system. As we have seen in chapter

1, one example is given by the homographic solutions of the planar three body

problem with homogeneous potential of order −α, with 0 < α < 2, since after

some reductions the linear stability of these orbits is given by the study of the

non–autonomous linear system (1.40), that has the form (2.1). This application is

developed in chapter 4.

As we have seen in chapter 1 the fundamental matrices of (2.1) and of the

system associated to (2.3) have the same characteristic multipliers. Then, it is

equivalent to study the linear stability of the two systems and we can apply the

stability theory for Hamiltonian systems (see [M.H.]) to the system (2.1).

Using this theory, in order to study the linear stability of the system (2.1) it is

only necessary to compute the stability parameters trj = µj +µ
−1
j , j = 1, 2, where

µj , µ
−1
j , j = 1, 2, are the characteristic multipliers of the system.

If tr1, tr2 ∈ C \ R, then tr2 = tr1 and (2.1) is a complex–saddle.

Assume that tr1, tr2 ∈ R. If |tr1| < 2, |tr2| < 2, then (2.1) is elliptic–elliptic, if

|tr1| > 2, |tr2| > 2, hyperbolic–hyperbolic and if one of the stability parameters has

absolute value less than two and the other bigger than two then (2.1) is elliptic–

hyperbolic.

We note that in our case the stability parameters depend on λ1, λ2, ε.

Now we explain briefly the methodology used in order to study the bifurcations

of (2.1) for ε > 0 small enough.

Definition 2.1.1. We say that (λ1, λ2) = (a1, a2) is a resonant point for ε = ε0
of the system (2.1) if for (λ1, λ2, ε) = (a1, a2, ε0), |trj | = 2 for some j = 1, 2 or

tr1 = tr2.
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Let us consider (λ1, λ2) = (a1, a2) a resonant point for ε = 0 . Our purpose

is to study tr1, tr2 in a neighbourhood of (a1, a2) for ε > 0 small enough. To this

end, we introduce small parameters δ1, δ2 ∈ R and we shall consider λj = aj + δj ,

j = 1, 2.

We will apply the Normal Form techniques (see [B.S.2]) in order to detect

changes in the stability. The idea is to perform some canonical transformations to

cancel the time dependence up to high order in δ1, δ2, ε, if this is possible. In fact,

we shall obtain the Floquet matrix up to a fixed order in δ1, δ2, ε.

The analysis of this Normal Form will give us the linear stability as well as the

boundaries of the stability regions.

2.2 The case ε = 0

In this section we study the stability parameters of system (2.1) for ε = 0.

For ε = 0 we obtain the linear system with constant coeficients ẋ = Ã0x where

Ã0 =











0 0 1 0

0 0 0 1

λ1 0 0 −2
0 λ2 2 0











.

The characteristic polynomial of Ã0 is

p(x) = x4 − (λ1 + λ2 − 4)x2 + λ1λ2. (2.5)

We note that a zero ρ of (2.5) satisfies

2ρ2 = λ1 + λ2 − 4±
√

(λ1 + λ2 − 4)2 − 4λ1λ2.

The stability parameters have different character depending on the region of the

plane (λ1, λ2) considered. Therefore, we distinguish on this plane the following

regions

R1 = {(λ1, λ2) ∈ R2|λ1λ2 < 0},
R2 = {(λ1, λ2) ∈ R2|λ1λ2 > 0, (λ1 + λ2 − 4)2 > 4λ1λ2, λ1 + λ2 − 4 < 0},
R3 = {(λ1, λ2) ∈ R2|λ1λ2 > 0, (λ1 + λ2 − 4)2 < 4λ1λ2},
R4 = {(λ1, λ2) ∈ R2|λ1λ2 > 0, (λ1 + λ2 − 4)2 > 4λ1λ2, λ1 + λ2 − 4 > 0}.

The boundaries of these regions are given by the coordinate axes and for the

graphs of the functions λ2 = (
√
λ1 ± 2)2. Figure 2.1 shows these regions and their

boundaries in the plane (λ1, λ2).
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Figure 2.1: Regions R1,R2,R3,R4 in the plane (λ1, λ2).

In R1, (2.5) has zeroes ±α,±iω with α, ω ∈ R+. Therefore, µ1 = eαT and

µ2 = eiωT . Then we have that tr1 > 2 and |tr2| ≤ 2. Possible bifurcations for

ε > 0 will be for |tr2| = 2.

In R2 the eigenvalues of Ã0 have the form ±iω1,±iω2 with ω1, ω2 ∈ R+ and

ω1 > ω2. Therefore, µ1 = eiω1T and µ2 = eiω2T , fact that implies |tr1|, |tr2| ≤ 2. If

|tr1| = 2 or |tr2| = 2 or tr1 = tr2, then bifurcations can be found for ε > 0.

In the region R3 the zeroes of (2.5) are ±α± iβ with α, β ∈ R+. Therefore, the

characteristic multipliers are µ1 = e(α+iβ)T , µ2 = e(α−iβ)T and their inverses. We

note that if βT 6= nπ for all n ∈ N then the stability parameters are complex, and

in the other case are real. In this last case a bifurcation can occur since tr1 = tr2.

In R4, (2.5) has zeroes ±α1,±α2, α1, α2 ∈ R+, α1 6= α2. Therefore, µ1 = eα1T

and µ2 = eα2T . In this case, |trj | > 2 for j = 1, 2 and no bifurcation can occur for

ε > 0 small enough.

Now we study the stability parameters in the boundaries of these regions.

On the axis λ1 one stability parameter is equal to two, and the other is

2 cos (
√
4− λ1T ) if λ1 < 4 and bigger than 2 if λ1 > 4. We obtain a symmet-

ric behaviour on the axis λ2.

If λ2 = (
√
λ1 − 2)2 then tr1 = tr2. In this case, if 0 < λ1 < 4 then |tr1| =

|tr2| ≤ 2 and tr1 = tr2 > 2 if λ1 > 4. On λ2 = (
√
λ1 +2)2, we obtain tr1 = tr2 > 2

if λ1 6= 0.
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The points (4, 0), (0, 4) in the plane (λ1, λ2) correspond to degenerate cases

in which 1 is a characteristic multiplier with multiplicity 4. Therefore, on these

points we have tr1 = tr2 = 2.

We are interested in the study of the bifurcations for values of (λ1, λ2) in the

region R = R1 ∪R2 ∪R3.

Now we study the curves in the plane (λ1, λ2) ∈ R formed for resonant points

when ε = 0. We will refer to these curves as resonant curves.

We know that in R1 ∪ R2 one has a resonant curve if ωT = nπ, n ∈ N. We

note that p(iω) = ω4 + (λ1 + λ2 − 4)ω2 + λ1λ2. Then the resonant curve is given

by

(λ1 + ω2)(λ2 + ω2) = 4ω2, ω =
nπ

T
, n ∈ N. (2.6)

In R1 we obtain a uniparametric family of resonant curves indexed by n ∈ N.

However, in R2 there are two uniparametric families of resonant curves of this

type corresponding to ω1 and ω2, respectively. For one of them, n ∈ N. The other

family is defined for n >
2T

π
, n ∈ N if λ1 < 0, and n <

2T

π
, n ∈ N if λ1 > 0.

In R2 there are also resonant points for ε = 0 when ω1 ± ω2 =
2nπ

T
, n ∈ N,

which correspond to the case when tr1 = tr2. The corresponding resonant curves

are

λ2 = λ1 + 4

(

1− n2π2

T 2

)

± 4

√

λ1

(

1− n2π2

T 2

)

. (2.7)

If λ1 > 0, this uniparametric family of resonant curves is indexed by n ≤ T
π , n ∈ N,

and if λ1 < 0, the index are given by n ≥ T
π , n ∈ N.

Finally, if (λ1, λ2) ∈ R3, the resonant points are given when Tβ = nπ with

n ∈ N. A simple computation shows that the possible bifurcations in R3 are given

on the uniparametric family of curves

λ2 = (
√

λ1 ± 2
√

1− β2)2, β =
nπ

T
, (2.8)

for n ≤ T

π
, n ∈ N.

In figure 2.2 there are some examples of resonant curves in the different regions.

The red curves are of the form (2.6) and the green curves corresponds to both

curves in (2.7) or (2.8), depending on the region they are. We note that the curves

(2.8) in the parameter space (λ1, λ2) are exactly the same as (2.7).

In regionR1 there are only curves of the form (2.6) and there are no intersection

between these curves. Then, in this region we only have single resonances.
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Figure 2.2: Some resonant curves in the plane (λ1, λ2) for T =
2π√
2− α with α = 0.5.

Color codes: Red for |trj | = 2 for some j = 1, 2, Green for |tr1| = |tr2|, Blue for the

boundary of region R3.

In region R2 we distinguish different intersections. The intersection between

curves of the form (2.6) corresponds to a double resonance in which ω1 =
n1π

T
and

ω2 =
n2π

T
for some n1, n2 ∈ N. We note that if n1 ≡ n2(mod 2) then ω1±ω2 =

2nπ

T
for some n ∈ N. In this case, the intersection point belongs also to a resonant curve

(2.7).

In region R3 there are only single resonances.

Given a point (a1, a2) on a resonant curve, that is, (a1, a2) is a resonant point

for ε = 0, we want to study if there is a bifurcation near (a1, a2) for ε & 0. To

this end we shall introduce small parameters δ1, δ2, and we will take λ1 = a1 + δ1,

λ2 = a2 + δ2. In section 2.3 we shall give the Normal Form of the Hamiltonian

(2.3) in the regions R1,R2 and R3 up to a given order in δ1, δ2, ε. Then in section

2.4 we will study the conditions for bifurcation depending on the region R1, R2 or

R3. In section 2.5 we shall study with more detail the boundaries of the resonant

regions as well as the bifurcation diagram in the particular case that the periodic

functions Fj , j = 1, 2, in (2.2) satisfies d’Alembert property. Section 2.6 is devoted

to the proof of the Normal Form given in section 2.3.
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2.3 Normal Form

In this section we reduce the Hamiltonian system associated to (2.3) to Normal

Form.

Let us fix (a1, a2) ∈ R a point on a resonant curve, that is, (λ1, λ2) = (a1, a2)

is a resonant point for ε = 0. Let us take λj = aj + δj , j = 1, 2, with |δj |, j = 1, 2,

small enough.

If we take ε = 0 in (2.3) then the system associated to the Hamiltonian function

is written as

ẏ = A0y, (2.9)

with

A0 =











0 −1 1 0

1 0 0 1

a1 − 1 0 0 −1
0 a2 − 1 1 0











. (2.10)

We note that A0 depends on a1 and a2.

The Hamiltonian function (2.3) can be written as

H(y, t) = H0(y) + H̃(y, t), (2.11)

where

H0(y) = −
1

2
yTJ4A0y =

=
1

2
(y2

3 + y2
4) + y1y4 − y2y3 + (1− a1)

y2
1

2
+ (1− a2)

y2
2

2
, (2.12)

H̃(y, t) = −δ1
2
y2
1 −

δ2
2
y2
2+

+(a1 + δ1)
y2
1

2
F1(t; ε) + (a2 + δ2)

y2
2

2
F2(t; ε). (2.13)

The Hamiltonian system associated to H0 is a linear system with constant coeffi-

cients, and depends on a1 and a2. Once a1 and a2 are fixed the Hamiltonian (2.13)

depends on three parameters, δ1, δ2 and ε.

Hamiltonian (2.11) admits the following symmetry.

Lemma 2.3.1. The Hamiltonian (2.11) satisfies H(y, t) = H(y,−t) and H(Ly, t) =

H(y, t) for all y ∈ R4 and t ∈ R, where L = diag(−1, 1, 1,−1).

Proof
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The equality H(y, t) = H(y,−t) for all y ∈ R4, t ∈ R is due to the fact that

Fj , j = 1, 2, are even functions.

To show that H(Ly, t) = H(y, t) for all y ∈ R4, t ∈ R it is only necessary to

take into account that if we change y1 by −y1 and y4 by −y4 the Hamiltonian does

not change. 2

2.3.1 Reduction to diagonal form

In this section we shall diagonalize the system associated to (2.12). In order to

keep the Hamiltonian character of the system, it will be necessary to perform

a symplectic change of coordinates. To this end, we will take into account the

different Rj regions that defines R.

We denote by ±ρ1, ±ρ2, the eigenvalues of A0. In what follows, we will take

ρ1 = λ, ρ2 = iω, λ, ω ∈ R+ if (a1, a2) ∈ R1, ρ1 = iω1, ρ2 = iω2 with ω1, ω2 ∈ R+,

ω1 > ω2 if (a1, a2) ∈ R2, and ρ1 = α+ iβ, ρ2 = ρ1, α, β ∈ R+, if (a1, a2) ∈ R3.

It is easy to check that

uρ = (2ρ, a1 − ρ2, a1 + ρ2, ρ(a1 − ρ2 − 2))T , (2.14)

is an eigenvector of eigenvalue ρ of A0.

Let us denote by u1,u2 ∈ C4 the eigenvectors corresponding to eigenvalues

ρ1, ρ2, respectively.

Using the symmetry given by L in lemma 2.3.1, and the fact that A0L = −LA0,

we obtain that v1 := Lu1 and v2 := Lu2 are eigenvectors of eigenvalues −ρ1,−ρ2,

respectively.

If we restrict to the generic case, as ρ1 ± ρ2 6= 0, the eigenvectors u1 and v1

are J–orthogonal to u2 and v2. That is, u
T
1 Ju2 = 0, uT

1 Jv2 = 0, vT
1 Ju2 = 0 and

vT
1 Jv2 = 0. Moreover, a vector is J–orthogonal with itself.

We define the matrix M as follows

M = (k1u1, k2u2, k3v1, k4v2), (2.15)

with kj ∈ C, j = 1, . . . , 4, satisfying k1k3u
T
1 Jv1 = 1, k2k4u

T
2 Jv2 = 1. Matrix M

is symplectic and defines a canonical change of variables as y = Mz. Moreover,

this change of coordinates transforms the system associated to (2.12) in diagonal

form, that is, if H(z, t) denotes the transformed Hamiltonian, then

H(z, t) = H0(z) + H̃(z, t), (2.16)

where

H0(z) = ρ1z1z3 + ρ2z2z4, (2.17)
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ρ1 and ρ2 being the eigenvalues of (2.10) and z = (z1, z2, z3, z4)
T .

First, our purpose is to choose the constants kj , j = 1, . . . , 4, in an adequate

way in order to have some relations between the new variables. To this end, it will

be useful the next lemma.

Lemma 2.3.2. 1. If (a1, a2) ∈ R1 then uT
1 Jv1 > 0 if a1 > 0, and uT

1 Jv1 < 0

if a1 < 0. Moreover, iuT
2 Jv2 > 0.

2. If (a1, a2) ∈ R2 then iuT
1 Jv1 > 0 and, iuT

2 Jv2 > 0 if a1 < 0, and iuT
2 Jv2 <

0 if a1 > 0.

Proof

Let us consider uρ in (2.14) an eigenvector of eigenvalue ρ of A0.

It is easy to check that

uT
ρ Jvρ = 2ρ q(a1, a2; ρ

2), (2.18)

where

q(a1, a2; ρ
2) = −ρ4 + 2a1ρ

2 + 4a1 − a2
1. (2.19)

Recall that ρ is a solution of the characteristic polynomial of A0, that is,

p̃(ρ) = 0 where

p̃(x) = x4 − (a1 + a2 − 4)x2 + a1a2.

Then, −ρ4 = (4− a1 − a2)ρ
2 + a1a2, and therefore

q(a1, a2; ρ
2) = (4 + a1 − a2)ρ

2 + a1a2 + 4a1 − a2
1.

Moreover

ρ2 = α±, where α± =
a1 + a2 − 4±

√
∆

2
, with ∆ = (a1 + a2 − 4)2 − 4a1a2.

We have that

q(a1, a2;α±) = −
√
∆

2
[
√
∆∓ (4 + a1 − a2)],

where the sign − stands for α+ and + for α−.

If a1 > 0 (a1 < 0) we check that (4 + a1 − a2)
2 > ∆ ((4 + a1 − a2)

2 < ∆).

Therefore, if a1 < 0, one has
√
∆∓ (4 + a1 − a2) > 0 and then q(a1, a2;α±) < 0.

Furthermore, if a1 > 0, as far as (a1, a2) ∈ R1 ∪R2, 4 + a1 − a2 > 0 and then√
∆ − (4 + a1 − a2) < 0 and

√
∆ + (4 + a1 − a2) > 0. So, q(a1, a2;α+) > 0 and

q(a1, a2;α−) < 0.
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1. Let us consider (a1, a2) ∈ R1. Then ρ1 = λ, ρ2 = iω, λ, ω ∈ R+ and α+ = λ2,

α− = −ω2. Using (2.18), uT
1 Jv1 = 2λ q(a1, a2;α+) and, u

T
1 Jv1 > 0 if a1 > 0

and uT
1 Jv1 < 0 if a1 < 0. Moreover, iuT

2 Jv2 = −2ω2 q(a1, a2;α−) > 0.

2. Assume (a1, a2) ∈ R2. Then ρ1 = iω1, ρ2 = iω2, ω1, ω2 ∈ R+ with ω1 > ω2.

In this case, α− = −ω2
1, α+ = −ω2

2. We get iuT
1 Jv1 = −2ω2

1 q(a1, a2;α−) >

0 and iuT
2 Jv2 = −2ω2

2 q(a1, a2;α+). Then, iuT
2 Jv2 > 0 if a1 < 0 and

iuT
2 Jv2 < 0 if a1 > 0.

2

We note that if (a1, a2) ∈ R3 then uT
1 Jv1 and uT

2 Jv2 are complex.

Then, we can do the following choice for the constants kj , j = 1, . . . , 4.

1. If (a1, a2) ∈ R1, we take

k1 =
1

√

suT
1 Jv1

, k3 = sk1, k2 =
1

√

iuT
2 Jv2

, k4 = ik2, (2.20)

2. if (a1, a2) ∈ R2, we take

k1 =
1

√

iuT
1 Jv1

, k3 = ik1, k2 =
1

√

sivT
2 Ju2

, k4 = −sik2, (2.21)

3. if (a1, a2) ∈ R3, we take

k1 =
1

√

uT
1 Jv1

, k3 = k1, k2 =
1

√

uT
2 Jv2

, k4 = k2, (2.22)

where s = sgn(a1).

After lemma 2.3.2, if (a1, a2) ∈ R1 ∪R2 then k1, k2 ∈ R. If (a1, a2) ∈ R3 then

the real character of A0 implies that u2 = u1, v2 = v1 and therefore, k2 = k1 (bar

stands for complex conjugate).

From now on, M will be the 4 × 4 symplectic matrix defined in (2.15) with

k1, k2, k3 and k4 given in (2.20), (2.21) and (2.22) according to the region consid-

ered.

Let us define the following matrices

S1 = M−1LM, S2 = −JMTJM. (2.23)

Lemma 2.3.3. The new variable z satisfies z = S2z, and the following equalities

hold

H(z, t) = H(S1z,−t), H(z, t) = H(S2z, t), (2.24)

for all z ∈ C4, t ∈ R.

Moreover
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1. if (a1, a2) ∈ R1 then S1z = (sz3, iz4, sz1,−iz2)T , S2z = (z1, iz4, z3, iz2)
T ,

2. if (a1, a2) ∈ R2 then S1z = (iz3,−isz4,−iz1, isz2)T ,
S2z = (iz3,−isz4, iz1,−isz2)T ,

3. if (a1, a2) ∈ R3 then S1z = (z3, z4, z1, z2)
T , S2z = (z2, z1, z4, z3)

T .

Proof

The new variables z ∈ C4 are defined by y =Mz where we recall that y ∈ R4.

Then

z = M−1y = −JMTJMz = S2z, (2.25)

where we have used that M is a symplectic matrix and so, M−1 = −JMTJ . Now

z = S2z follows from (2.25).

From lemma 2.3.1,

H(S1z, t) = H(MS1z, t) = H(MS1M
−1y, t) = H(Ly, t) = H(y, t) = H(z, t),

and using the parity of H we get the first equality in (2.24).

Furthermore, H(z, t) is real. Therefore

H(z, t) = H(z, t) = H(z, t) = H(S2z, t).

A simple computation gives

S1 =

(

0 S̃1

S̃−1
1 0

)

with S̃1 = diag

(

k3

k1
,
k4

k2

)

.

Then,

S̃1 =











diag(s, i) if (a1, a2) ∈ R1,

diag(i,−is) if (a1, a2) ∈ R2,

I2 if (a1, a2) ∈ R3,

where I2 denotes the 2× 2 identity matrix.

Now we compute S2 = −JMT
JM .

In the region R1 we have that u1,v1 ∈ R4 and u2 = v2. Then, we obtain

M
T
JM =











0 0 k1k3u
T
1 Jv1 0

0 k2
2v

T
2 Ju2 0 0

k1k3v
T
1 Ju1 0 0 0

0 0 0 k4k4u
T
2 Jv2











=

=











0 0 1 0

0 i 0 0

−1 0 0 0

0 0 0 −i











,(2.26)
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In the region R2 we have uj = vj , j = 1, 2. Then,

M
T
JM = diag(k2

1v
T
1 Ju1, k

2
2v

T
2 Ju2, k3k3u

T
1 Jv1, k4k4u

T
2 Jv2) =

= diag(i,−is,−i, is). (2.27)

In R3 we get

M
T
JM =











0 0 0 k1k4u
T
2 Jv2

0 0 k3k3u
T
1 Jv1 0

0 k2k3v
T
2 Ju2 0 0

k1k4v
T
1 Ju1 0 0 0











=

=

(

0 B1

−B1 0

)

, with B1 =

(

0 1

1 0

)

. (2.28)

From (2.26), (2.27) and (2.28), S2 is easily computed at each region. 2

2.3.2 The Normal Form in the different cases

In this section we apply the Normal Form techniques in order to simplify the

Hamiltonian (2.16). To do this we need to distinguish the different regions.

In order to get the Normal Form we introduce K as a conjugate variable of

time t and we consider the Hamiltonian

H(z, t,K) = H0(z,K) + H̃(z, t), (2.29)

where H(z,K) = H0(z) +K and H0 is given in (2.17).

Let be ν =
T

π
and w = e

2it
ν . We can write the Hamiltonian as

H(z, w,K) = H0(z,K) +
∞
∑

m=1

Hm(z, w), (2.30)

where Hm(z, w) contains terms of order m in δ1, δ2 and ε. Moreover Hm(z, w) is

an homogeneous polynomial of degree 2 in z whose coefficients depend on w and

w−1.

We can use Lie series method to perform some canonical transformations in

order to cancel the time dependence on the Hamiltonian up to high order. This

is done in section 2.6 using the Giorgilli–Galgani algorithm ([G.G.]). Then, if

N = N0 +N1 +N2 + . . . denotes the transformed Hamiltonian, we obtain

Nm =
m
∑

j=0

Hj,m−j , Hm,j =

j
∑

l=1

l

j
[Gl,Hm,j−l], Hm,0 = Hm, (2.31)
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Nj

N0 H0,0

N1 H1,0 H0,1

N2 H2,0 H1,1 H0,2

N3 H3,0 H2,1 H1,2 H0,3

...

Nm Hm,0 Hm−1,1 . . . . . . . . . H1,m−1 H0,m

Table 2.1: Functions involved in the computation of Nj , j = 0, . . . ,m

and Gm is the solution of the homological equation

Mm + [Gm,H0] = Rm, (2.32)

where

Mm =
m−1
∑

j=0

Hm−j,j +
m−1
∑

l=1

l

m
[Gl,H0,m−l],

and Rm contains resonant terms of order m in δ1, δ2 and ε.

Table 2.1 shows the functions involved in Nj up to order m, that is, up to

j = m.

In what follows we shall denote the new variables, say Zj , j = 1, . . . , 4, obtained

by the canonical changes of variables involved in the normalization, as zj , j =

1, . . . , 4, again. The next proposition gives the Normal Form depending on the

region R1,R2 or R3. The proof is given in section 2.6.

Proposition 2.3.4. Let us denote by NF the Normal Form up to a fixed order

in the small parameters δ1, δ2, ε.

1. If (a1, a2) ∈ R1 and νω ∈ N, then

NF = K + λz1z3 + iωz2z4 + σ1z1z3 + iσ2z2z4 +

+σ3z
2
2w

−νω − σ3z
2
4w

νω, (2.33)

where σj ∈ R, j = 1, . . . , 4, depend on δ1, δ2 and ε.
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2. If (a1, a2) ∈ R2, then

NF =



























































































N0 +N1 if νω1 ∈ N, νω2 /∈ N,

N0 +N2 if νω1 /∈ N, νω2 ∈ N,

N0 +N1 +N2 if νω1 ∈ N, νω2 ∈ N,

and νω1 6≡ νω2(mod 2),

N0 +N3 if νωhs ∈ N, νωhd /∈ N,

(νω1 /∈ N, νω2 /∈ N),

N0 +N4 if νωhd ∈ N, νωhs /∈ N,

(νω1 /∈ N, νω2 /∈ N),

N0 +N1 +N2 +N3 +N4 if νω1 ∈ N, νω2 ∈ N

and νω1 ≡ νω2(mod 2),

(2.34)

where ωhs =
ω1 + ω2

2
, ωhd =

ω1 − ω2

2
, and

N0 = K + iω1z1z3 + iω2z2z4 + iσ1z1z3 + iσ2z2z4,

N1 = σ3z
2
1w

−νω1 − σ3z
2
3w

νω1 ,

N2 = σ4z
2
2w

−νω2 − σ4z
2
4w

νω2 , (2.35)

N3 = σ5z1z2w
−νωhs + sσ5z3z4w

νωhs ,

N4 = iσ6z1z4w
−νωhd − isσ6z2z3w

νωhd ,

where σj ∈ R, j = 1, . . . , 6 depend on δ1, δ2, ε, and s = sgn(a1).

3. If (a1, a2) ∈ R3 and νβ ∈ N then

NF = K + (α+ iβ)z1z3 + (α− iβ)z2z4 + σ1z1z3 + σ1z2z4 + σ3z1z4w
−νβ +

σ3z2z3w
νβ, (2.36)

where σ1 ∈ C, σ3 ∈ R depend on δ1, δ2, ε.

Remark 2.3.5. Proposition 2.3.4 gives the Normal Form up to a given order, say

n, when λ1 = a1 + δ1, λ2 = a2 + δ2 and (a1, a2) is a resonant point for ε = 0. The

Normal Form can be written as

NF = N0 +Nn(w),

where

N0 = K + (λ+ σ1)z1z3 + i(ω + σ2)z2z4 if (a1, a2) ∈ R1,

N0 = K + i(ω1 + σ1)z1z3 + i(ω2 + σ2)z2z4 if (a1, a2) ∈ R2,

N0 = K + (α+ iβ + σ1)z1z3 + (α− iβ + σ1)z2z4 if (a1, a2) ∈ R3,
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and all the monomials in Nn(w) depend on w and so, they are time dependent.

However, if ε = 0 the initial Hamiltonian (2.12) is autonomous. In this case,

the Normal Form does not depend on w. Therefore, for the coefficients σ3, σ4, σ5,

σ6 in Proposition 2.3.4 we have

σj = O(εk), j = 3, . . . , 6, (2.37)

for some k ≥ 1 which may depend on the index j.

Furthermore, σ1 and σ2 depend on δ1, δ2, ε. In fact σ1 and σ2 have terms of

order 1 in δ1, δ2. That terms can be easily computed by taking into account the

variation of the eigenvalues of the system when ε = 0 and we perturb (a1, a2) by

(δ1, δ2). These terms will be explicitly computed in section 2.5.

2.4 Bifurcations

In this section we study the conditions for bifurcation when ε > 0 is small enough.

We shall use the following notation for the different regions in the parameter space

(λ1, λ2, ε).

• EE (elliptic–elliptic) stands for a region such that |trj | < 2, j = 1, 2,

• EH (elliptic–hyperbolic) corresponds to |tr1| < 2, |tr2| > 2 (or vice–versa),

• HH (hyperbolic–hyperbolic) corresponds to trj > 2, j = 1, 2,

• CS (complex–saddle) stands for complex tr1, tr2 = tr1.

We obtain the equations for the boundaries of the different bifurcation regions in

terms of the coefficients of the Normal Form. In next section we shall concentrate

in the d’Alembert case, that is, when the functions Fj , j = 1, 2, defined in (2.2)

satisfy the d’Alembert property.

In order to obtain the boundaries of the bifurcation regions for ε > 0 small

enough we study the Hamiltonian system associated to the Normal Form given in

Proposition 2.3.4.

Let us take (a1, a2) ∈ R1 a resonant point for ε = 0.

For ε > 0, bifurcation occurs when a pair of characteristic multipliers on the

unit circle collides and become real. In this case, system turns from EH to HH.

Normal Form (2.33) defines the following uncoupled linear system

ż1 = (λ+ σ1)z1, ż2 = i(ω + σ2)z2 − 2σ3z4w
νω,

ż3 = −(λ+ σ1)z3, ż4 = −2σ3z2w
−νω − i(ω + σ2)z4,

(2.38)
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where we assume νω = n ∈ N.

The system for z1, z3 gives real characteristic exponents and, then, a stability

parameter is greater than two. This gives an hyperbolic behavior.

In order to study the system for z2, z4 we perform the change of variables

u = z2w
−νω/2, v = z4w

νω/2. Then, this system transforms in the following linear

system with constant coefficients

u̇ = iσ2u− 2σ3v,

v̇ = −2σ3u− iσ2v. (2.39)

The eigenvalues of the above system are ±
√

4σ2
3 − σ2

2. The bifurcation takes place

when these eigenvalues cros zero. In this case, a transition EH↔HH occurs. For

ε > 0 an instability region HH in the parameter space is created. The boundaries

of this region up to a given order in δ1, δ2, ε are defined by the equation

σ2
2 − 4σ2

3 = 0. (2.40)

Now we consider (a1, a2) ∈ R2 a resonant point for ε = 0.

We study the general case in (2.34), that is, NF = N0 +N1 +N2 +N3 +N4

where Ni, i = 0, . . . , 4, are given in (2.35). The other cases in (2.34) are obtained

by taking the suitable coefficients equal to zero. The linear system defined by NF

is the following.

ż1 = i(ω1 + σ1)z1 − isσ6z2w
ν
2
(ω1−ω2) − 2σ3z3w

νω1 + sσ5z4w
− ν

2
(ω1+ω2),

ż2 = iσ6z1w
− ν

2
(ω1−ω2) + i(ω2 + σ2)z2 + sσ5z3w

ν
2
(ω1+ω2) − 2σ4z4w

νω2 , (2.41)

ż3 = −2σ3z1w
−νω1 − σ5z2w

− ν
2
(ω1+ω2) − i(ω1 + σ1)z3 − iσ6z4w

− ν
2
(ω1−ω2),

ż4 = −σ5z1w
− ν

2
(ω1+ω2) − 2σ4z2w

−νω2 + isσ6z3w
ν
2
(ω1−ω2) − i(ω2 + σ2)z4.

We introduce new variables u1 = z1w
− ν

2
ω1 , u2 = z2w

− ν
2
ω2 , v1 = z3w

ν
2
ω1 , v2 =

z4w
ν
2
ω2 . Then, system (2.41) becomes the following constant coefficients linear

system

u̇1 = iσ1u1 − isσ6u2 − 2σ3v1 + sσ5v2,

u̇2 = iσ6u1 + iσ2u2 + sσ5v1 − 2σ4v2, (2.42)

v̇1 = −2σ3u1 − σ5u2 − iσ1v1 − iσ6v2,

v̇2 = −σ5u1 − 2σ4u2 + isσ6v1 − iσ2v2.

To study the bifurcations, we need to distinguish different cases.

1. νω1 ∈ N, νω2 /∈ N.
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In this case, σ4 = σ5 = σ6 = 0 and (2.42) is an uncoupled system

u̇1 = iσ1u1 − 2σ3v1, u̇2 = iσ3u2,

v̇1 = −2σ3u1 − iσ1v1, v̇2 = −iσ3v2.

The system in u2, v2 gives us a stability parameter |tr2| < 2 for δ1, δ2, ε

small enough. The study of the system in u1, v1 is analogous to (2.39) in

R1. Then, we have a transition EE↔EH. The boundaries of the region EH

are given by the equation

σ2
1 − 4σ2

3 = 0.

2. νω1 /∈ N, νω2 ∈ N.

This case is analogous to the previous one, obtaining an EH region, where

their boundaries are defined by

σ2
2 − 4σ2

4 = 0.

3. νω1 /∈ N, νω2 /∈ N and ωhs ∈ N.

In this case, σ3 = σ4 = σ6 = 0 and (2.42) becomes an uncoupled system

u̇1 = iσ1u1 + sσ5v2, u̇2 = iσ2u2 + sσ5v1,

v̇2 = −σ5u1 − iσ2v2, v̇1 = −σ5u2 − iσ1v1.

The characteristic polynomials of the two uncoupled linear systems above

are

x2 ∓ i(σ1 − σ2)x+ σ1σ2 + sσ2
5, (2.43)

where − stands for the system in u1, v2 and + is for u2, v1.

Let us define ∆ = −[(σ1 + σ2)
2 + 4sσ2

5] the discriminant of (2.43). The sign

of ∆ determines the character of the region.

Figure 2.3 shows the character of the characteristic multipliers depending

on the discriminant.

The boundaries of the region CS are given by

(σ1 + σ2)
2 + 4sσ2

5 = 0. (2.44)

4. νω1 /∈ N, νω2 /∈ N and ωhd ∈ N.

In this case system (2.42) becomes also an uncoupled system,

u̇1 = iσ1u1 − isσ6u2, v̇1 = −iσ1v1 − iσ6v2,

u̇2 = iσ6u1 + iσ2u2, v̇2 = isσ6v1 − iσ2v2.
(2.45)
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Figure 2.3: Characteristic multipliers in the case 3 according to the sign of ∆

The characteristic polynomials of these uncoupled systems are

x2 ∓ i(σ1 + σ2)x− sσ2
6 − σ1σ2, (2.46)

where − stands for the system in u1, u2 and + for v1, v2.

In this case, the discriminant of (2.46) is ∆ = −(σ1−σ2)
2 +4sσ2

6. As before

we get a transition EE ↔ CS when the discriminant of (2.46) is zero (see

Figure 2.3).

The boundaries of the new region CS are given by the equation

−(σ1 − σ2)
2 + 4sσ2

6 = 0. (2.47)

Remark 2.4.1. The equation (2.44) has no real solution if s = 1, that is a1 > 0.

So, there is no bifurcation for νωhs ∈ N when a1 > 0. In the same way, there is no

bifurcation if νωhd ∈ N when a1 < 0. This fact is well known as a consequence of

Krein theorem (see [K.]).

5. νω1 ∈ N, νω2 ∈ N with different parity.

In this case system (2.42) splits in two uncoupled systems

u̇1 = iσ1u1 − 2σ3v1, u̇2 = iσ2u2 − 2σ4v2,

v̇1 = −2σ3u1 − iσ1v1, v̇2 = −2σ4u2 − iσ2v2.
(2.48)

Let ∆1 = σ2
1 − 4σ2

3 and ∆2 = σ2
2 − 4σ2

4 be the discriminants of the charac-

teristic polynomials of the uncoupled systems above. Figure 2.4 shows the

behavior for the characteristic multipliers depending on the sign of ∆1 and

∆2.
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Figure 2.4: Characteristic multipliers according to the sign of ∆1 = σ2
1 − 4σ2

3 and

∆2 = σ2
2 − 4σ2

4

The boundaries of the EH region are given by

σ2
1 − 4σ2

3 = 0 or σ2
2 − 4σ2

4 = 0,

and the boundaries of the region HH are given by

σ2
1 − 4σ2

3 = 0 and σ2
2 − 4σ2

4 = 0.

The cases 1 to 5 are summarized in the following table.

νω1 ∈ N, νω2 /∈ N EE↔EH σ2
1 − 4σ2

3 = 0

νω1 /∈ N, νω2 ∈ N EE↔EH σ2
2 − 4σ2

4 = 0

νω1 ∈ N, νω2 ∈ N EE↔EH σ2
1 − 4σ2

3 = 0 or σ2
2 − 4σ2

4 = 0

with different parity EE↔HH σ2
1 − 4σ2

3 = 0 and σ2
2 − 4σ2

4 = 0

νω1 /∈ N, νω2 /∈ N, ν
2 (ω1 + ω2) ∈ N EE↔CS (σ1 + σ2)

2 + 4sσ5 = 0

νω1 /∈ N, νω2 /∈ N, ν
2 (ω2 − ω2) ∈ N EE↔CS (σ1 − σ2)

2 − 4sσ6 = 0

6. νω1 ∈ N, νω2 ∈ N with the same parity.

In this case, generically the coefficients σj , j = 3, 4, 5, 6 in (2.34) are different

from zero. Now the system is not uncoupled.
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However, due to his Hamiltonian character, the characteristic polynomial of

(2.42) is

q(x) = x4 + d1x
2 + d2, (2.49)

where

d1 = σ2
1 + σ2

2 − 4(σ2
3 + σ2

4) + 2s(σ2
5 − σ2

6), (2.50)

d2 = D1D2, (2.51)

D1 = (σ1 − 2sσ3)(σ2 + 2σ4) + s(σ5 + σ6)
2,

D2 = (σ1 + 2sσ3)(σ2 − 2σ4) + s(σ5 − σ6)
2. (2.52)

Let

d3 = d2
1 − 4d2, (2.53)

the discriminant of (2.49). Then, the different possibilities for the character

of the system, excluding boundary values, are

• EH if d2 < 0,

• CS if d2 > 0 and d3 < 0,

• EE if d2 > 0, d3 > 0 and d1 > 0,

• HH if d2 > 0, d3 > 0 and d1 < 0.

Figure 2.5 represents these situations.

Finally we take (a1, a2) ∈ R3 a resonant point for ε = 0.

We recall that for ε = 0 the system (2.1) is in general saddle-complex.

The linear system defined by the Normal Form (2.36) is

ż1 = (ρ+ σ1)z1 + σ3z2w
νβ,

ż2 = σ3z1w
−νβ + (ρ+ σ1)z2,

ż3 = −(ρ+ σ1)z3 − σ3z4w
−νβ , (2.54)

ż4 = −σ3z3w
νβ − (ρ+ σ1)z4,

with ρ = α+ iβ.

In order to study the stability parameters of system (2.54) we perform the

change of variables u1 = z1w
− νβ

2 , u2 = z2w
νβ

2 , v1 = z3w
νβ

2 , v2 = z4w
− νβ

2 . We

obtain the uncoupled linear system with constant coefficients

u̇1 = (α+ σ1)u1 + σ3u2, v̇1 = −(α+ σ1)v1 − σ3v2,

u̇2 = σ3u1 + (α+ σ1)u2, v̇2 = −σ3v1 − (α+ σ1)v2,
.
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Figure 2.5: Stability regions in the (d1, d2) plane

Let be ∆ = σ2
3 − Im(σ1)

2. If ∆ > 0 then we have a pair of real eigenvalues and

their opposites. Figure 2.6 shows the behavior of the characteristic multipliers in

terms of ∆.

Figure 2.6: Characteristic multipliers according to the sign of ∆ = σ2
3 − Im(σ1)

2

A transition HH↔CS occurs when ∆ goes through 0. Then, the equations for

the boundaries of the HH region are given by

Im(σ1) = ±σ3. (2.55)
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2.5 The d’Alembert case

In this section we study the resonant regions in the particular case that Fj in (2.2)

satisfy d’Alembert property, that is, functions Fj , j = 1, 2, are of the form

∑

m≥1

εm
m
∑

l=0

cm,l cos

(

l
2πt

T

)

,

where cm,l ∈ R.

After remark 2.3.5 we know that for the coefficients σj , j = 3, 4, 5, 6, in the

Normal Form, (2.37) is satisfied for k ≥ 1. The d’Alembert property can be used

to determine, under non degeneracy conditions, the order of these coefficients as

follows.

Let us go back to the initial Hamiltonian (2.11) and consider the time depen-

dent terms (see (2.13))

(a1 + δ1)
y2
1

2
F1(t; ε) + (a2 + δ2)

y2
2

2
F2(t; ε) .

Let us consider a fixed σj , j = 3, 4, 5, 6, and assume that it is the coefficient of a

resonant monomial zl,

σjw
±nzl with n ∈ N, (2.56)

where z = (z1, z2, z3, z4)
T and l = (l1, l2, l3, l4) with lj ∈ N satisfying l1+l2+l3+l4 =

2. For a fixed n ∈ N, the d’Alembert property implies that in F1 and F2 the terms

in cos

(

n
2πt

T

)

can be written as

cos

(

n
2πt

T

)

εn(cn,n +O1) =
wn + w−n

2
εn(cn,n +O1) ,

where w = e
2it
ν , O1 contains terms of order at least 1 in ε, and cn,n is a coefficient

eventually zero. We recall that in order to get the Normal Form, first we perform

the change of variables y = Mz to (2.11). For the new Hamiltonian as given in

(2.29) the terms in wn, w−n are of order n in ε. So, they only appear in Hm(z, w)

for m ≥ n. Now it is not difficult to see that this property is preserved by the

Giorgilli–Galgani algorithm. In fact, the terms εnwn, εnw−n appear for the first

time in the n–th row of table 1. Therefore, if j = 3, 4, 5, 6 for σj in (2.56) we get

σj = cjε
n(1 +O1),

where cj is a coefficient eventually zero and O1 contains terms of order 1 in δ1, δ2, ε.

We shall assume in the next as non degeneracy conditions that cj 6= 0, j = 3, 4, 5, 6.
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2.5.1 Single resonances

We shall consider resonant points (a1, a2) which belong to a unique resonant curve.

This kind of points are found at every region R1,R2 and R3.

We begin with R1 and assume that (a1, a2) belongs to a resonant curve (2.6),

that is,

γn(a1, a2) := (a1 + ω2)(a2 + ω2)− 4ω2 = 0, where ω =
nπ

T
, (2.57)

for some n ∈ N. From now on, n is fixed.

The boundary surfaces which separate the EH and HH regions for ε > 0 are

defined by (2.40). Our purpose is to give an estimation of the size of the HH

region.

As we have seen in the beginning of this section the d’Alembert property

implies that

σ3 = c3ε
n(1 +O1), (2.58)

where c3 ∈ R and O1 stands for terms of order 1 in δ1, δ2, ε. It is assumed that

c3 6= 0. The following lemma gives the terms of σ2 which are of order 1 in δ1, δ2.

Lemma 2.5.1. Let (a1, a2) ∈ R1 be such that γn(a1, a2) = 0. Then, the dominant

terms in the contribution of δ1 and δ2 to σ2 are

−
[

ω2 + a2

D(ω)
δ1 +

ω2 + a1

D(ω)
δ2

]

, (2.59)

where D(ω) = 2ω[2ω2 + a1 + a2 − 4] 6= 0.

Remark 2.5.2. This lemma is also true if Fj , j = 1, 2, do not satisfy the d’Alembert

property.

Proof

We use the hint given in remark 2.3.5, that is, assume ε = 0 and consider

σi = σi(δ1, δ2), i = 1, 2.

In the plane of parameters λ1, λ2, if λ1 = a1 + δ1, λ2 = a2 + δ2, the zeroes of

the characteristic polynomial p(x) defined in (2.5) are ±Λ(δ1, δ2) ∈ R, ±iΩ(δ1, δ2)
where

Λ(δ1, δ2) := λ+ σ1(δ2, δ2), Ω(δ1, δ2) := ω + σ2(δ1, δ2).

Here, ±λ, ±iω, are the zeroes of p(x) for (δ1, δ2) = (0, 0). Then, we can write

σ2(δ1, δ2) =
∂Ω

∂δ1
(0, 0)δ1 +

∂Ω

∂δ2
(0, 0)δ2 + . . .,
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and the partial derivatives are easily computed using that p(iΩ) = 0. 2

In order to describe the boundary surfaces we shall consider perturbations of

(a1, a2) in an orthogonal direction to the resonant curve (2.57), that is, λ1 = a1+δ1,

λ2 = a2 + δ2 with
(

δ1
δ2

)

= δ∇γn(a1, a2), (2.60)

for some parameter δ, being |δ| small enough. In this way, σ2 and σ3 depend on ε

and δ. Moreover, (2.59) becomes

−‖∇γn(a1, a2)‖2
D(ω)

δ.

We remark that ‖∇γn(a1, a2)‖ 6= 0. Otherwise, we should have ω = 0, but we

know that ω 6= 0 if (a1, a2) ∈ R1.

Therefore we can write

σ2 = c‖∇γn(a1, a2)‖2δ + φ0(ε) + δφ1(ε) + δ2f(ε, δ),

where c = − 1

D(ω)
, φ0 and φ1 are functions of order 1 in ε and f(ε, δ) is of order

1 in ε, δ.

Let us introduce the functions

f1(ε, δ) = σ2 − 2σ3, f2(ε, δ) = σ2 + 2σ3.

The boundaries of the HH region are defined by

f1(ε, δ) = 0, f2(ε, δ) = 0.

We have that σ2 = σ3 = 0 if (ε, δ) = (0, 0). Then, f1(0, 0) = f2(0, 0) = 0.

Moreover,

∂f1

∂δ
(0, 0) =

∂f2

∂δ
(0, 0) = c‖∇γn(a1, a2)‖2 6= 0.

Then, using the Implicit Function Theorem there exist δ+(ε), δ−(ε) analytic func-

tions in ε & 0 such that

f1(ε, δ+(ε)) = σ2(δ+(ε), ε)− 2σ3(δ+(ε), ε) = 0,

f2(ε, δ−(ε)) = σ2(δ−(ε), ε) + 2σ3(δ−(ε), ε) = 0.

Therefore, in the direction of ∇γn(a1, a2), the boundaries of the HH region are

given by

λ1 = a1 + δ+(ε), λ2 = a2 + δ−(ε),

for ε > 0 small enough.
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Proposition 2.5.3. Let be (a1, a2) ∈ R1 such that γn(a1, a2) = 0 for some n ∈ N.

Assume that F1 and F2 satisfy the d’Alembert property. If c3 6= 0 defined in (2.58)

then the width δ+(ε) − δ−(ε) of the HH region is of order εn being the dominant

term

−8c3ω(2ω
2 + a1 + a2 − 4)

‖∇γn(a1, a2)‖2
εn.

Proof

We have that

f1(ε, δ+(ε)) = c‖∇γn(a1, a2)‖2δ+(ε) + φ0(ε) + δ+(ε)φ1(ε) +

+δ+(ε)
2f(ε, δ+(ε))− 2c1ε

n(1 + g(ε, δ+(ε))) = 0,

with c = − 1

D(ω)
, g(ε, δ) a function of order 1 in ε, δ, and

f2(ε, δ−(ε)) = c‖∇γ1(a1, a2)‖2δ+(ε) + φ0(ε) + δ−(ε)φ1(ε) +

+δ−(ε)
2f(ε, δ+(ε)) + 2c1ε

n(1 + g(ε, δ−(ε))) = 0.

The difference f1(ε, δ−(ε))− f2(ε, δ+(ε)) is

c‖∇γn(a1, a2)‖2(δ+(ε)− δ−(ε)) + (δ+(ε)− δ−(ε))φ1(ε) + δ+(ε)
2f(ε, δ+(ε))−

δ−(ε)
2f(ε, δ−(ε))− 4c1ε

n − 4c1ε
n(g(ε, δ+(ε))− g(ε, δ−(ε))) = 0.

From this equation it is easy to obtain the dominant terms of δ+(ε)− δ−(ε). 2

A similar analysis can be done in regions R2 and R3 in the case of a single

resonance, that is, (a1, a2) belongs to a unique resonant curve (2.6), (2.7) or (2.8).

In any case we shall take (δ1, δ2) as (2.60) for the corresponding resonant curve.

We given explicitly the case R3 in the next proposition. We recall that Normal

Form in a neighbourhood of (a1, a2) is given by (2.36) and the boundaries of the

HH region are defined by (2.55).

Proposition 2.5.4. Let (a1, a2) ∈ R3, a1 6= a2, be a point on a resonant curve

(2.8) with β =
nπ

T
for some n ∈ N. Assume that F1 and F2 satisfy d’Alembert

property and σ3 = c3ε
n(1 +O1) with c3 6= 0. Then the width δ+(ε)− δ−(ε) of the

HH region is of order εn being the dominant term

2c3
c
εn, where c = −

√
a2 −

√
a1

16β
√
a1a2|ρ|2

(

(
√
a1 +

√
a2)

2

2
+ 2(1− β2)

)

, (2.61)

ρ = α+ iβ.
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Proof

Following the same ideas in the proof of lemma 2.5.1 it is not difficult to see

that the contribution of δ1 and δ2 to σ1 up to first order is

1

2ρW (ρ)
[(ρ2 − a2)δ1 + (ρ2 − a1)δ2], (2.62)

where W (ρ) = 2ρ2 − (a1 + a2 − 4) = 4αβi. Using (2.60) and (2.62) we get that

the terms of Im(σ1) of order one in δ are cδ where c is given in (2.61). Clearly

c 6= 0 if a1 6= a2. There exist two analytic functions δ+(ε), δ−(ε) which satisfy

Im(σ1) − σ3 = 0 and Im(σ1) + σ3 = 0 respectively. Then, the proposition follows

in a similar way as proposition 2.5.3 2

2.5.2 Double resonances

In this section we consider a double resonance, that is, (a1, a2) is a resonant point

which belongs to two or more resonant curves. Double resonances only occur at

R2. So, we assume (a1, a2) ∈ R2 and

νωj = nj , j = 1, 2, (2.63)

for some n1 > n2 natural numbers. We shall consider the case n1 ≡ n2(mod 2).

The Normal Form is N0 +N1 +N2 +N3 +N4 in (2.34). We want to discuss the

possibilities for the bifurcations for sufficiently small ε when we perturb a case

that for ε = 0 is totally elliptic and both frequencies are in resonance.

Resonant points are given by the zeroes of functions d1, d2 and d3 = d2
2 − 4d1

in (2.50), (2.51), (2.53), respectively. The analysis of the bifurcations amounts to

study the composition of the maps

N : (λ1, λ2, ε) 7→ (σ1, σ2, σ3, σ4, σ5, σ6),

and

P : (σ1, σ2, σ3, σ4, σ5, σ6) 7→ (d1, d2),

where N denotes the normalization map and P the characteristic polynomial of

the Floquet matrix.

Lemma 2.5.5. Let be (a1, a2) ∈ R2 and ω1 > ω2 the frequencies obtained for

ε = 0. Then, the dominant terms in the contribution of δ1 and δ2 to σ1, σ2 are

J
(

δ1
δ1

)

where J =

(

−ω2
1+a2

D1
−ω2

1+a1

D1

−ω2
2+a2

D2
−ω2

2+a1

D2

)

,

D1 = 2ω1[(a1 + a2 − 4) + 2ω2
1] 6= 0, D2 = 2ω2[(a1 + a2 − 4) + 2ω2

2] 6= 0. Moreover,

the matrix J is regular if ω1 6= ω2 and a1 6= a2.



2.5. The d’Alembert case 67

Proof

It follows the same idea given in the proof of lemma 2.5.1. In fact, if we denote

by iΩ(δ1, δ2) = i[ω1 + σ1(δ1, δ2)] and iΩ2(δ1, δ2) = i[ω2 + σ2(δ1, δ2)], the zeroes of

the characteristic polynomial p(x), then J is the Jacobian of Ω1,Ω2. It is easy to

check that D1D2 6= 0 if (a1, a2) ∈ R2. Furthermore,

|J | =
(λ1 − λ2)(ω

2
1 − ω2

2)

D1D2
.

2

After lemma 2.5.5 we can use σ1 and σ2 as parameters instead of δ1, δ2. Then

bifurcations will be described in terms of σ1 and σ2.

As the functions Fj in (2.2) satisfy d’Alembert property, we have,

σ3 = m1ε
n1(1 +O(ε, δ1, δ2)),

σ4 = m2ε
n2(1 +O(ε, δ1, δ2)),

σ5 = m3ε
n1+n2

2 (1 +O(ε, δ1, δ2)),

σ6 = m4ε
n1−n2

2 (1 +O(ε, δ1, δ2)),

wheremj , j = 1, . . . , 4, are real values. We shall assume non degeneracy conditions

in the sense that mj 6= 0, j = 1, . . . , 4.

Our purpose in this section is to prove the following theorem.

Theorem 2.5.6. Let (a1, a2) ∈ R2, a1 6= a2, and assume ωj = nj
π

T
, j = 1, 2,

n1 > n2, n1 ≡ n2(mod 2). In the d’Alembert case and if non degeneracy conditions

are satisfied, one has

(i) if n1 = 3n2, then around (λ1, λ2, ε) = (a1, a2, 0), regions EE, EH and CS

exist and a region HH has either 0, 1 or 2 connected components.

(ii) If n1 6= 3n2, then the regions EE, EH, HH, CS are always present and no

local changes in the topology of these domains occur.

The proof of the theorem will be given at the end of this section as a summary

of previous results.

First of all we study the magnitude of σj , j = 3, . . . , 6.

We note that n1 >
n1 + n2

2
> n2. Then, |σ4| >> |σ5| >> |σ3| if ε is sufficiently

small. Moreover,
n1 − n2

2
<

n1 + n2

2
, fact that implies |σ6| >> |σ5|. Now, we

distinguish different subcases.
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1. If n1 > 3n2, then n1 >
n1 + n2

2
>

n1 − n2

2
> n2 and therefore |σ3| <<

|σ5| << |σ6| << |σ4|.

2. If n1 = 3n2, then n1 >
n1 + n2

2
>

n1 − n2

2
= n2 and therefore |σ3| <<

|σ5| << |σ4| and σ6 is of the same order of magnitude of σ4.

3. If n1 < 3n2, then n1 >
n1 + n2

2
> n2 >

n1 − n2

2
and therefore |σ3| <<

|σ5| << |σ4| << |σ6|.

We introduce the following scaled parameters

σ̃j =
σj
σ4
, j = 1, 2, 3, 5, A =

σ6

σ4
, (2.64)

and we define µ := ε
n1−n2

2 .

We begin with the second case.

In this case, µ = εn2 and then

σ̃3 = O(µ2), σ̃5 = O(µ), A = O(1).

Using the scalings we introduce new functions (see section 2.4, case 6)

d̃1 =
d1

σ2
4

, D̃1 =
D1

σ2
4

, D̃2 =
D2

σ2
4

, d̃2 = D̃1D̃2, d̃3 = d̃2
1 − 4d̃2.

Let be B := sA2. We can write these functions in terms of µ like

d̃1 = σ̃2
1 + σ̃2

2 − (4 + 2B) +O(µ2),

D̃1 = σ̃1(σ̃2 + 2) +B +O(µ),

D̃2 = σ̃1(σ̃2 − 2) +B +O(µ), d̃2 = D̃1D̃2,

d̃3 = (σ̃2
1 − σ̃2

2 + 4)2 − 4B[(σ̃1 + σ̃2)
2 − 4] +O(µ).

In order to study resonant points we need to compute the zeroes of d̃j , j = 1, 2, 3

functions, as well as the intersections of the curves defined by d̃j = 0, j = 1, 2, 3.

We note that, up to terms of order µ, d̃1, D̃1, D̃2, d̃3 depends on B. The idea is

to study the bifurcation diagram in the plane (σ̃1, σ̃2) in terms of B. Notice that

B 6= 0.

First we will assume that µ = 0. We obtain the following result.

Proposition 2.5.7. Assume that hypothesis in theorem 2.5.6 are satisfied and

n1 = 3n2. Under the generic assumptionsm2 6= 0, m4 6= 0 in the Normal Form and

neglecting σ3, σ5 terms (i.e., setting µ = 0) the unique changes in the bifurcation

diagram are produced at B = −1 and B = −27

16
.
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Figure 2.7 shows the bifurcation diagram for µ = 0 in different cases. We note

that, in particular, no HH regions exists if B < −1.
Proof

In this case

d̃1 = σ̃2
1 + σ̃2

2 − (4 + 2B),

D̃1 = σ̃1(σ̃2 + 2) +B,

D̃2 = σ̃1(σ̃2 − 2) +B,

d̃3 = (σ̃2
1 − σ̃2

2 + 4)2 − 4B[(σ̃1 + σ̃2)
2 − 4].

The different stability regions are determined by the intersections of the zero

sets of the functions above according to the figure 2.5.

We consider first the set of zeroes of d̃2. The hyperbolas σ̃2 = ∓2 − B

σ̃1

defined by D̃1 = 0 and D̃2 = 0 respectively have no self intersections. Moreover,

d̃2 < 0 ⇔ −2 − B

σ̃1
< σ̃2 < −2 +

B

σ̃1
. Therefore, the region d̃2 < 0, which

corresponds to an EH region, has 2 connected components. Figure 2.8 shows the

boundaries of the region EH in the case B > 0. For B < 0 we get a symmetric

picture respect the σ̃2 axis.

In the region d̃2 > 0 we can have the following behaviors:

• if d̃3 < 0→ CS,

• if d̃3 > 0→
{

if d̃1 > 0 → EE

if d̃1 < 0 → HH
.

Now we consider the curve d̃3 = 0. We note that the set of zeroes of d̃3 is

symmetric with respect to the origin. Self intersections are determined by the

additional conditions
∂d̃3

∂σ̃1
= 0 and

∂d̃3

∂σ̃2
= 0. These equations only have common

solutions for B = −1 and B = 0. If B = −1 there is a unique solution (σ̃1, σ̃2) =

(0, 0). If B = 0 we get σ̃2
1 − σ̃2

2 + 4 = 0. However we assume B 6= 0. So, only the

origin when B = −1 gives a real self intersection for us.

In order to study the curve d̃3 = 0 for any value of B 6= 0, it will be useful to

introduce z1 := σ̃1 + σ̃2 and z2 := σ̃1 − σ̃2. Then, d̃3 can be written as

d̃3 = (z1z2 + 4)2 − 4B(z2
1 − 4).

The following claims for the solutions of d̃3 = 0 are trivially obtained. If B < −1,
for any real value of z2 there are two different solutions of z1 (see figure 2.9 (a)).

If B = −1, for any real value of z2, z2 6= 0, there exist two different solutions of

z1. One of them is z1 = 0, which corresponds to the straight line σ̃2 = −σ̃1 in the
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plane σ̃1, σ̃2. If −1 < B < 0, for any real value of z2, |z2| > 2
√
1 +B there are

two different solutions for z1. If |z2| = 2
√
1 +B, a double solution is obtained.

If B > 0, for any real value of z1, |z1| > 2 we get two real solutions for z2 = 0.

In the cases |z1| = 2 we get double solutions for z2, that means, straight lines

σ̃1 + σ̃2 = ±2 are tangent to d̃3 = 0. Figure 2.9 shows the evolution of the region

corresponding to d̃3 < 0, that is the CS region, in the plane σ̃1, σ̃2.

Now we go to study the intersections of d̃2 = 0 and d̃3 = 0. This is equivalent

to look at the intersections of d̃1 = 0 and d̃2 = 0. We recall that d̃2 = D̃1D̃2. So,

we shall consider the intersections of

d̃1 = 0, D̃1 = 0. (2.65)

Using the symmetry, the solutions of d̃1 = 0, D̃2 = 0 will be easily obtained.

The solutions of (2.65) are the intersection points of a circle of radius 4 + 2B

and the hyperbola σ̃2 = −2 − B

σ̃1
. We assume B > −2, otherwise (2.65) has no

solutions. We shall do the following steps. First we look for the points P1, P2 in

the hyperbola such that the distance to the origin has a relative minimum. Then,

we shall determine the values of B such that points P1, P2 are inside the circle of

radius 4+ 2B. We note that for any point P1 or P2 which satisfies that condition,

there are two solutions of (2.65) , and using the symmetry two additional solutions

of d̃1 = 0, D̃2 = 0 are obtained.

We begin by looking at the points in D̃1 = 0 such that the distance to the

origin is a relative minimum. To this end, we use a Lagrange multiplier ρ with

Lagrangian

L = σ̃2
1 + σ̃2

2 − ρD̃1.

We get a minimum (σ̃1,m, σ̃2,m) for

σ̃1,m =
4ρ

4− ρ2
, σ̃2,m =

2ρ2

4− ρ2
, (2.66)

where ρ satisfies

f1(ρ,B) := (4− ρ2)2 +
32ρ

B
= 0,

or equivalently (note that f1(0, B) 6= 0)

(4− ρ2)2

ρ
= −32

B
. (2.67)

Figure 2.10 shows the graphic of g1(ρ) :=
(4− ρ2)2

ρ
. For any value of B, B 6= 0

(2.65) has two real solutions ρ1, ρ2 giving rise to points P1, P2, respectively, in the
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plane σ̃1, σ̃2. If B > 0 then ρ1 < −2 < ρ2 < 0 and, 0 < ρ1 < 2 < ρ2 if B < 0. Now

we study the sign of d̃1 on P1, P2. Using (2.66) for B 6= 0 we get

d̃1(ρ) := d̃1(σ̃1,m, σ̃2,m) = −ρB
8

(4+ρ2)−(4+2B) = −B
8

[

ρ(ρ2 + 4) +
8

B
(4 + 2B)

]

.

Let be g2(ρ) = ρ(ρ2 + 4) + 16. It is clear that for any value of B 6= 0 there is

a unique ρ, ρ3, such that d̃1(ρ3) = 0 (see figure 2.10). We are interested in the

sign of d̃1(ρ1) and d̃1(ρ2). The figure 2.11 shows the graphics of g1(ρ) and g2(ρ)

as well as ρ1, ρ2, ρ3 for different values of B. If B > 0, ρ1 < ρ3 < −2 < ρ2 < 0.

Then, d̃1(ρ1) > 0 and d̃1(ρ2) < 0, that is, only P2 is inside the circle. If B < 0 we

distinguish three cases (see figure 2.11).

1. B < −27

16
. Then ρ3 < ρ1 < ρ2 and d̃1(ρi) > 0, i = 1, 2. P1 and P2 are

outside the circle, and (2.65) has no real solutions.

2. −27

16
< B < 0. In this case 0 < ρ1 < ρ3 < ρ2 and then d̃1(ρ1) < 0,

d̃1(ρ2) > 0. Only P1 is inside the circle and (2.65) has two different solutions.

3. B = −27

16
. Then d̃1(ρ1) = 0, d̃1(ρ2) > 0. (2.65) has a unique real solution,

(σ̃1, σ̃2) =

(

3

4
,
1

4

)

.

We summarize the results above. Consider the set of points in the plane σ̃1, σ̃2

such that d̃2 > 0 and d̃3 > 0. According to the figure 2.5, if d1 < 0 we get an HH

region and if d1 > 0 an EE region. We distinguish the following cases.

(a) B < −27

16
. There is no HH region (see figure 2.7 (f)).

(b) −27

16
< B < −1. There are 4 intersection points of d̃3 = 0 and d̃2 = 0. This

gives an HH region which has two connected components (see figure 2.7 (d)).

(c) −1 < B. There are 4 intersection points of d̃3 = 0 and d̃2 = 0. However the

HH region has one connected component (see figure 2.7 (a), (b)).

2

Now we study the case µ 6= 0, that is, we analize the effect of the neglected

terms. We obtain the following result.

Proposition 2.5.8. Assume that hypothesis in theorem 2.5.6 are satisfied and

n1 = 3n2. Under the generic assumptionsmj 6= 0, j = 1, . . . , 4 in the Normal Form

(2.34) the unique changes in the bifurcation diagram are produced at B = −(1+σ̃3)
2

and at B± = −27

16
± 1

2
sAσ̃5 +O(µ2).



72 2. Stability of a family of periodic linear systems: the perturbative case

Proof

We know from Proposition 2.5.4 that in the case µ = 0, bifurcations are pro-

duced at B = −1 due to self intersections of d̃3 = 0 and, B = −27

16
when d̃1 = 0

and d̃2 = 0 have tangencies. We recall that in this case no self intersections of

d̃2 = 0 occurs.

Let us consider µ 6= 0 small enough. In this case, self–intersections of d̃2 = 0

can occur. Using (2.52) these will occur if

D̃1 = (σ̃1 − 2sσ̃3)(σ̃2 + 2) + s(σ̃5 +A)2 = 0,

D̃2 = (σ̃1 + 2sσ̃3)(σ̃2 − 2) + s(σ̃5 −A)2 = 0.

Substracting this equations, we obtain that

σ̃1 − sσ̃2O(µ2) + sAO(µ) = 0.

If we substitute the relation obtained in D̃1 = 0 it turns that

σ̃2
2O(µ2) + σ̃2O(µ) +B +O(µ2) = 0.

Then, self–intersections of d̃2 = 0 can occur, but outside a local neighbourhood of

the origin on the (σ̃1, σ̃2)–plane. Hence, they should not be considered.

Concerning self–intersections of d̃3 = 0, they are produced if

d̃3 = 0,
∂d̃3

∂σ̃1
= 0,

∂d̃3

∂σ̃2
= 0 .

If µ = 0, the system above has the solution (B, σ̃1, σ̃2) = (−1, 0, 0). The Jacobian

with respect to B, σ̃1 and σ̃2 at that point is different from zero. Then, the Implicit

Function Theorem ensures the preservation of the intersection which will occur for

a value of B equal, a priori, to −1 +O(µ) and with values σ̃1, σ̃2 = O(µ).

An elementary computation shows that the self–intersections of d̃3 = 0 occurs

exactly for B = −(1 + σ̃3)
2 at σ̃1 = σ̃2 = σ̃5. Furthermore, for that value of B,

the line σ̃1 + σ̃2 = 2σ̃5 is one of the components of d̃3 = 0. Figure 2.12 shows an

illustration.

It remains to study the modification of the tangencies of the zero sets of d̃1 = 0

and d̃2 = 0. We note that symmetry is lost for µ 6= 0. So, one has to consider the

cases d̃1 = 0, D̃1 = 0 and d̃1 = 0, D̃2 = 0 separately. Let us consider the first case.

We have

d̃1 = σ̃2
1 + σ̃2

2 − (4 + 2B) +O(µ2) = 0,

D̃1 = σ̃1(σ̃2 + 2) +B + ν +O(µ2) = 0,
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where ν := 2sAσ̃5 = O(µ). Up to order µ, d̃1 = 0 is a cercle. Following the same

steps as in the proof of Proposition 2.5.4, we look for the points of D̃1 = 0 which

are at minimum distance to the origin. Using the Lagrangian L = σ̃2
1 + σ̃2

2 − ρD̃1

we get a minimum (σ̃1,m, σ̃2,m) as (2.66) where the Lagrange multiplier ρ satisfies

D̃1(σ̃1,m, σ̃2,m) =
32ρ

(4− ρ2)2
+B + ν = 0.

However,

d̃1(σ̃1,m, σ̃2,m) =
16ρ2

(4− ρ2)2
+

4ρ4

(4− ρ2)2
− (4 + 2B).

We must solve the following system

32ρ+ (B + ν)(4− ρ2)2 = 0,

16ρ2 + 4ρ4 − (4 + 2B)(4− ρ2)2 = 0.

For µ = 0, we have the solution ρ =
2

3
, B = −27

16
. One step of Newton’s Method

around that solution gives the critical value of B

B+ = −27

16
+

1

2
sAσ̃5 +O(µ2),

A similar study for d̃1 = 0, D̃2 = 0 gives a second critical value

B− = −27

16
− 1

2
sAσ̃5 +O(µ2).

2

Remark 2.5.9. The geometrical interpretation is that the two narrow HH domains

which in the figure 2.7 (f) disappear on the (b) plot (B = −27

16
) when going from

left to right, disappear for slightly different values of B if µ 6= 0. No further

changes occur in the bifurcation diagram for ε small enough in case 2).

Proof of Theorem 2.5.6

The item (i) follows from propositions 2.5.7 and 2.5.8.

To prove (ii) we study the cases 1. and 3.. To this end we use the same scalings

as in case 2. We have that A in (2.64) is of order O(ε
n1−3n2

2 ). Then, the case 1.,

n1 > 3n2, has the same characteristics than a very small value of |B|. In case 3.,

n1 < 3n2, has the same characteristics than a very large value of |B|. Then there

are no changes in the bifurcation diagram. 2
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2.6 Proof of Proposition 2.3.4

In this section we shall prove the proposition 2.3.4.

Let H(z, w,K) be the Hamiltonian defined in (2.29). Our purpose is to use

the Giorgilli–Galgani algorithm to obtain the Normal Form for this Hamiltonian.

Let be H(z, w) = H(z, w,K)−K. We recall that H(z, w) is an homogeneous

polynomial of degree 2 in z whose coefficients depend on w and w−1.

It will be useful to introduce the following functions.

F(z, w) = f1z
2
1 + f2z

2
2 + f3z

2
3 + f4z

2
4 + f5z1z2 + f6z1z3 + f7z1z4 + f8z2z3 +

+f9z2z4 + f10z3z4, (2.68)

where fj = fj(w), j = 1, . . . , 10 can be written as

f(w) =
∑

j≥0

(c̃jw
j + d̃jw

−j), (2.69)

being the coefficients c̃j , d̃j analytic functions on δ1, δ2, ε. Let us denote by HT
2

the vector space of functions (2.68).

Given F(z, w) in HT
2 , F(z, w) will be obtained from (2.68) by a substitution

of fj by f j = fj(w), for j = 1, . . . , 10, where the bar stands for the complex

conjugate.

From lemma 2.3.3 and taking into account that w has been defined in section

2.3.2 as w = e
2it
ν , we get

H(z, w) = H(S1z, w
−1). (2.70)

Moreover, as far as H(z, t) in (2.24) is an even function of t, we get

H(z, w) = H(S2z, w). (2.71)

We shall see that these two symmetries will be preserved to the Normal Form. To

do that we use the Giorgilli–Galgani algorithm (see appendix C) to get the Normal

Form.

Let us denote by NF the new Hamiltonian up to order m in δ1, δ2, ε. Then

NF = N0 +N1 +N2 + . . .+Nm with Nk defined at (2.31), that is,

Nk =
k
∑

j=0

Hj,k−j , Hk,j =

j
∑

l=1

l

j
[Gl,Hk,j−l], Hk,0 = Hk,

and Gk is the solution of the homological equation (2.32). In (2.32),

H0 = H0(z,K) = ρ1z1z3 + ρ2z2z4 +K.
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Functions Hi,j , Gk,Mk belongs to HT
2 . We denote each term as

g = hzlwj , h = c δj11 δ
j2
2 ε

j3 , (2.72)

where c ∈ C is a constant, ji ∈ Z, ji ≥ 0, i = 1, 2, 3, j ∈ Z, and zl = zl11 z
l2
2 z

l3
3 z

l4
4

with lk ∈ Z, lk ≥ 0, k = 1, 2, 3, 4 satisfying l1 + l2 + l3 + l4 = 2.

zlwj as in (2.72) is a resonant monomial if [zlwj ,H0] = 0, that is,

(l1 − l3)ρ1 + (l2 − l4)ρ2 +
2ij

ν
= 0.

From this equation it is easy to get the following lemma.

Lemma 2.6.1. z1z3, z2z4 are resonant terms for all (a1, a2) ∈ R. Moreover,

1. if (a1, a2) ∈ R1 with ων ∈ N then z2
2w

−νω, z2
4w

νω;

2. if (a1, a2) ∈ R2 with

(a) ω1ν ∈ N then z2
1w

−νω1, z2
3w

νω1,

(b) ω2ν ∈ N then z2
2w

−νω2, z2
4w

νω2,

(c)
ν

2
(ω1 + ω2) ∈ N, z1z2w

− ν
2
(ω1+ω2), z3z4w

ν
2
(ω1+ω2),

(d)
ν

2
(ω1 − ω2) ∈ N, z1z4w

− ν
2
(ω1−ω2), z2z3w

ν
2
(ω1−ω2),

3. if (a1, a2) ∈ R3 and νβ ∈ N, z1z4w
−νβ, z2z3w

νβ,

are resonant monomials.

Let F(z, w) be in HT
2 .

Definition 2.6.2. F(z, w) satisfies the S2–property if

F(z, w) = F(S2z, w), (2.73)

for all z ∈ C4, w ∈ C, |w| = 1.

Definition 2.6.3. F(z, w) satisfies the S+
1 –property if

F(z, w) = F(S1z, w
−1), (2.74)

for all z ∈ C4, w ∈ C, |w| = 1.

Definition 2.6.4. F(z, w) satisfies the S−1 –property if

F(z, w) = −F(S1z, w
−1), (2.75)

for all z ∈ C4, w ∈ C, |w| = 1.
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Lemma 2.6.5. The Normal Form up to order m, NF satisfies the S2–property.

Proof

We have seen in (2.71) that the initial Hamiltonian satisfies the S2–property.

So, we only need to prove the following statements.

(i) The Poisson bracket preserves the S2–property.

(ii) Assume that M ∈ HT
2 satisfies the S2–property and let G be the solution of

the homological equation

[G,H0] +M = 0.

Then, up to resonant terms, G satisfies the S2–property.

To prove (i) let us consider F ,G ∈ HT
2 satisfying the S2–property. Let be Q =

[G,F ]. Using (2.73) we get

Q(z, w) = ∇G(z, w)TJ∇F(z, w) = ∇G(S2z, w)
T S2JS

T
2 ∇F(S2z, w).

However, using the definition (2.23) of S2 and the symplectic character of M we

have that S2JS
T
2 = J . Then,

Q(z, w) = Q(S2z, w) .

Now we prove (ii). Let be D = diag(ρ1, ρ2,−ρ1,−ρ2) and the homological equation

M(z, w) +
∂G

∂t
(z, w) +∇G(z, w)TDz = 0. (2.76)

We assume M(z, w) =M(S2z, w). From (2.76) and using that DS2 = S2D we get

∂G

∂t
(z, w)− ∂G

∂t
(S2z, w) + [∇G(z, w)T −∇G(S2z, w)

TS2]Dz = 0.

Let us define Y (z, w) = G(z, w)−G(S2z, w). Then,

[Y,H0] =
∂Y

∂t
(z, w) +∇Y (z, w)TDz =

=
∂G

∂t
(z, w)− ∂G

∂t
(S2z, w) + [∇G(z, w)T −∇G(S2z, w)

TS2]Dz = 0.

Therefore Y (z, w) only has resonant terms. 2

Lemma 2.6.6. The Normal Form NF up to order m of H(z, w,K) satisfies the

S+
1 –property.
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Proof

From (2.70) the initial Hamiltonian satisfies the S+
1 –property. So, we shall

prove the following statements.

(i) If F ∈ HT
2 satisfies the S+

1 –property and G ∈ HT
2 satisfies the S−1 –property,

then Q := [G,F ] satisfies the S+
1 –property.

(ii) Assume thatM ∈ HT
2 satisfies the S+

1 –property. Let G ∈ HT
2 be the solution

of the homological equation

[G,H0] +M = 0.

Then, up to resonant terms, G satisfies the S−1 –property.

The proof of (i) follows the same steps as (i) in the proof of 2.6.5. However using

the definition (2.23) of S1 we get S1JS
T
1 = −J . Then,

Q(z, w) = −∇G(S1z, w
−1)T S1JS

T
1 ∇F(S1z, w

−1) = Q(S1z, w
−1) .

To proof (ii) let us assume that M satisfies the S+
1 property. Then, M(z, w) =

M(S1z, w
−1). Taking into account the homological equation we get

∂G

∂t
(z, w)− ∂G

∂t
(S1z, w

−1) + [∇G(z, w)T −∇G(S1z, w
−1)TS1]Dz = 0,

where the equality S1D = −DS1 has been used.

Let us define Y (z, w) = G(z, w) +G(S1z, w
−1). Then,

[Y,H0] =
∂G

∂t
(z, w)− ∂G

∂t
(S1z, w

−1) + [∇G(z, w)T +∇G(S1z, w
−1)TS1]Dz = 0.

Therefore Y (z, w) only has resonant terms.

As a consequence of (i) and (ii) we have that the functions Hi,j which appear

in the Giorgilli–Galgani algorithm satisfy the S+
1 –property, while Gk satisfy the

S−1 –property. 2

Now we use the S2 and S+
1 –properties of NF to get the relations between the

coefficients of fi(w) which appear in NF .

Let us consider (a1, a2) ∈ R1. The resonant terms are given in lema 2.6.1. So,

we write the Normal Form as

NF (z, w) = K + λz1z3 + iωz2z4 + a6z1z3 + a9z2z4 +

+a2z
2
2w

−νω + a4z
2
4w

νω,

for some constants a2, a4, a6, a9.
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Using that S1z = (sz3, iz4, sz1,−iz2)T (lemma 2.3.3),

NF (S1z, w
−1) = K + λz1z3 + iωz2z4 + a6z1z3 + a9z2z4 +

−a2z
2
4w

νω − a4z
2
2w

−νω.

The S+
1 –property for NF implies that

a4 = −a2. (2.77)

Moreover,

NF (S2z, w
−1) = K + λz1z3 + iωz2z4 + a6z1z3 − a9z2z4 +

−a2z
2
4w

νω − a4z
2
2w

−νω.

The S2–property implies that a6 ∈ R, a9 is imaginary and

a4 = −a2. (2.78)

From (2.77) and (2.78), a2 ∈ R and a4 = −a2. This proves (2.33).

Let be (a1, a2) ∈ R2. We consider the case for which the Normal Form contains

all possible resonant terms and we write it as

NF (z, w) = K + iω1z1z3 + iω2z2z4 + a6z1z3 + a9z2z4 + a1z
2
1w

−νω1 + a3z
2
3w

νω1+

a2z
2
2w

−νω2 + a4z
2
4w

νω2 + a5z1z2w
−νωhs + a10z3z4w

νωhs+

a7z1z4w
−νωhd + a8z2z3w

νωhd ,

where we recall that ωhs =
1

2
(ω1 + ω2) and ωhd =

1

2
(ω1 − ω2). Then,

NF (S1z, w
−1) = K + iω1z1z3 + iω2z2z4 + a6z1z3 + a9z2z4 − a1z

2
3w

νω1−
a3z

2
1w

−νω1 − a2z
2
4w

νω2 − a4z
2
2w

−νω2 + sa5z3z4w
νωhs + sa10z1z2w

−νωhs−
sa7z2z3w

νωhd + sa8z1z4w
−νωhd .

Then,

a3 = −a1, a4 = −a2, a10 = sa5, a8 = −sa7.

In a similar way, using the S2–property we get

a6 = −a6, a9 = −a9, a3 = −a1, a4 = −a2, a10 = sa5, a8 = sa7.

Therefore a1, a2, a5 ∈ R, a6, a7, a9 imaginary and a3 = −a1, a4 = −a2, a10 = sa5,

a8 = −sa7. This proves (2.34).
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Finally, we take (a1, a2) ∈ R3. Then, NF has the form

NF (z, w) = K + (α+ iβ)z1z3 + (α− iβ)z2z4 + a6z1z3 + a9z2z4 +

a7z1z4w
−νβ + a8z2z3w

νβ.

As S1z = (z3, z4, z1, z2)
T , we have

NF (S1z, w
−1) = K + (α+ iβ)z1z3 + (α− iβ)z2z4 + a6z1z3 + a9z2z4 +

a8z1z4w
−νβ + a7z2z3w

νβ.

Therefore, due to the S+
1 –property, a7 = a8. Moreover,

NF (S2z, w
−1) = K + (α+ iβ)z1z3 + (α− iβ)z2z4 + a9z1z3 + a6z2z4 +

a8z1z4w
−νβ + a7z2z3w

νβ.

By the S2–property, a9 = a6 and a8 = a7.

Then, a7 = a8 with a7 ∈ R and a9 = a6. This proves (2.36).
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Figure 2.7: A sample of the bifurcation diagrams near double resonance in the

d’Alembert case with n1 = 3n2 and µ = 0. Values of B: (a) 1, (b) −0.9, (c) −1, (d)
−1.1, (e) −27/16, (f) −4. Color codes: red for EE, green for HE, blue for HH, magenta

for CS. The horizontal (resp. vertical) variable is σ̃1 (resp. σ̃2).
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Figure 2.8: Region EH and their boundaries for B = 1 where f+(σ̃1) = −2 − B

σ̃1
and

f
−
(σ̃1) = 2− B

σ̃1
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Figure 2.9: Graphic of the curve d̃3 = 0 for B = −2, B = −1, B = −0.5 and B = 1,

respectively. The dashed area corresponds to d̃3 < 0.
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Figure 2.10: Graphic of g1(ρ) and intersections with −32

B
for B = 1, and B = −1

Figure 2.11: Graphic of g1(ρ), g2(ρ) and intersections with − 32

Bj
for B1 = −1, B2 = −27

16
and B3 = 1
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Figure 2.12: An example of self–intersections of d̃3 = 0 in the general case. Scaled

parameters used: σ̃3 = −1.3, σ̃7 = −0.5, A = −0.3, s = −1. Variables plotted as in figure

2.7. (b) plot shows a global view, (a) and (b) are magnifications. Up to 19 connected

components can be seen.



Chapter 3

Stability of a family of periodic

linear systems: the singular

limit case

3.1 Introduction

We consider again a periodic linear system as the one given in (1.55), that is,

ẋ = A(t)x, A(t) =

(

0 I2
Ã(t) −2J2

)

, Ã = gα−2diag(λ1, λ2), (3.1)

where 0 < α < 2, λ1, λ2 are real parameters different from zero and g = g(t; δ) is

a periodic function on t which depends on a parameter δ ∈ [0, δ0] with δ0 small

enough. Suppose g(t, δ) > 0 for all t and g(0, δ) → 0 for δ → 0. Therefore, the

system (3.1) has a singularity at t = 0 for δ = 0. Our purpose is to study the

stability parameters of system (3.1) for small values of δ > 0 under some hypothesis

to be specified below.

Let U(z) = zαV (z) be a real function defined on an open interval (0, zb) where

V (z) is an analytic function for z > 0 such that

(A1) there exists za, 0 < za < zb such that V (za) = 0, V (z) < 0 for all z ∈ (0, za)

and Vz(z) > 0 for all z ∈ (0, zb).

(A2) V (z) = γ + zsV1(z) with γ < 0, s >
2− α
2

and V1(z) and analytic function

on an open set J , J ⊃ [0, za].

In (A1), Vz(z) stands for the derivative of V (z) with respect to z.

85
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Remark 3.1.1. We have that the only zeroes of U(z) in [0, za] are 0 and za.

Figure 3.1 shows the plot of U(z) corresponding to the homographic system

(1.31) for different values of α.

Figure 3.1: Plot of U(z) = zα
(

− 1

α
+
z2−α

2

)

for values of α from left to right: 0 < α <

1, α = 1 (Newtonian case), 1 < α < 2

Let us consider the conservative system

z̈ = −Uz(z) (3.2)

with U(z) satisfying (A1) and (A2). Uz(z) stands for the derivative with respect

z. We denote the energy of (3.2) by

E =
ż2

2
+ U(z). (3.3)

We shall assume the following hypothesis for g(t; δ)

(B) For δ > 0, g(t; δ) is the periodic solution of (3.2) on the energy level E = −δ
such that g(0; δ) = g0, ġ(0; δ) = 0 being g0 the minimum of g(t; δ).

Figure on the left in 3.2 shows the phase portrait of system (3.2) on the plane

(z, ż) for U(z) = z
(

−1 + z

2

)

. Fixed δ > 0, the figure on the right shows how we

choose g(t; δ).

Note that for δ > 0, g(t; δ) is periodic with period T = T (δ). Moreover, from

(3.3) we have −δ = U(g0). Then, g0 =

(

δ

|γ|

) 1
α

(1 +O(δ
s
α )).

We remark that if g satisfies property (B) then g(t; δ) is an even function on t.

As we have seen in chapter 1, the motivation to study the system (3.1) comes

from the linear stability analysis of the homographic solutions. The corresponding

variational equations of the linearized system on these solutions can be reduced
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Figure 3.2: Phase portrait of (3.2) for U(z) = z
(

−1 + z

2

)

to a linear system of type (3.1). In particular the Newtonian case is obtained for

α = 1 and U(z) = z
(

−1 + z

2

)

. In this case, g(t; δ) = 1 − e cos t, where e is the

eccentricity of the homographic solution, and δ =
1− e2

2
. The time t is the true

anomaly. The singularity of the equations is attained for e = 1.

To simplify the notation the dependence on the parameters of system (3.1)

will not be explicitly written if there is no confusion. We shall use the same

simplification for all linear systems and their corresponding monodromy matrices

which appear in the chapter.

From section 1.6 system (3.1) can be written in Hamiltonian formulation. We

recall that the Hamiltonian function is

H =
1

2
(y2

3 + y2
4) + (−y2y3 + y1y4)−

(

λ1g
α−2 − 1

) y2
1

2
−
(

λ2g
α−2 − 1

) y2
2

2
. (3.4)

We shall give asymptotic formulae for these stability parameters. To do that

the main point is to use some kind of blow up technique to see the limit case when

δ tends to zero as a linear system on an heteroclinic connection.

We shall work, for δ > 0, with a linear system without any singularity. So,

we consider the change of variables u = S(t)x where S(t) = diag(1, 1, q, q) being

q = q(t; δ) defined by q = g
2−α

2 , and we use time τ defined through dt = qdτ . We

remark that for δ > 0, S(t) is non singular for all t.

Then, the new system can be written as

u′ = B(τ)u, B(τ) = q(Ṡ + SA)S−1, (3.5)
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where ′ stands for the derivative with respect to τ . The period T of g(t; δ) in the

new time τ will be denoted by T (δ) or simply T . In order to simplify the notation,

in the following we shall write q(t) instead of q(t; δ) if there is no confusion.

Let Ψ(τ) be the fundamental matrix of (3.5). We have that

Φ(t) = S−1(t)Ψ(τ(t))S(0), (3.6)

where Φ denotes the fundamental matrix of (3.1) such that Φ(0) = I4. Due to

the T–periodicity of S we get for the monodromy matrices the equality Φ(T ) =

S−1(0)Ψ(T )S(0) and so, Φ(T ) and Ψ(T ) have the same eigenvalues. Then, in

order to obtain the stability parameters of system (3.1) it is only necessary to

study the eigenvalues of Ψ(T ).
In order to compute the dominant terms of the traces of Ψ(T ) for values of δ

near 0 it will be useful to study some properties of q. To this, we shall introduce

in the next section an artificial planar system for the functions q and q̇ involved

in B(τ).

3.2 An auxiliary planar system

In this section we study an artificial planar system that will be useful in order to

study the stability parameters of system (3.1).

We define Q(τ) = −(2 − α)q−
α

2−α ġ where q = g
2−α

2 as before. We shall see

that q(τ), Q(τ) satisfies a planar system in time τ .

It is easy to see that q′ = −1

2
qQ. Moreover,

Q′ =
α

2(2− α)Q
2 − (2− α)q

2−2α
2−α g̈.

We recall that g is a solution of the potential equation (3.2). Then, using the time

τ , q(τ), Q(τ) is a solution of the following system

q′ = −1

2
qQ,

Q′ =
α

2(2− α)Q
2 + (2− α)q

2−2α
2−α Uz(q̂), (3.7)

where q̂ = q
2

2−α , that is, q̂ = g.

As (3.3) is a first integral of (3.2) and q̂ is a solution of this system, we have

that

E = q
2α

2−α

[

Q2

2(2− α)2 + V (q̂)

]

, (3.8)
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is a first integral of system (3.7).

From hypothesis (A2) we have that U(z) = γzα + O(zα+s), with s >
2− α
2

.

Then,

q
2−2α
2−α Uz(q̂) = γα+O(q

2s
2−α ), with

2s

2− α > 1.

Therefore the planar system (3.7) is well–defined at q = 0.

We study now the behavior of the orbits of system (3.7) for E = 0. On this

energy level there are two equilibrium points P± with (q,Q) = (0,±Qp) where

Qp = (2− α)√−2γ.
Taking into account that the Jacobian of the vector field that defines system

(3.7) is
(

−1
2Q −1

2q

(2− α)O(q
2s

2−α
−1) α

2−αQ

)

, with
2s

2− α > 1,

the eigenvalues of the linearized system at P± are ∓Qp

2
, ±Qp

α

2− α . Then, P± are

saddle points.

On the energy level E = 0 we distinguish also two orbits

γ0 = {(q,Q) ∈ R2 | q = 0, |Q| < Qp} and

γ+ = {(q,Q) ∈ R2 | q > 0,
Q2

2(2− α)2 + V (q̂) = 0}.

In a neighbourhood of P−, γ+ is given by

Q = G(q) = −(2− α)
√

−2V (q̂).

Then,
dG

dq
(0) = 0.

On γ0 (3.7) reduces to

Q′ =
α

2(2− α)Q
2 + α(2− α)γ.

So, we get the following solution

qL1(τ) ≡ 0, QL1(τ) = −Qp tanh
(

α
2(2−α)Qpτ

)

.

On γ+,
Q2

2(2− α)2 + V (q̂) = 0. Then, the system on γ+ is

q′ = −1

2
qQ,

Q′ = (2− α)q̂Vz(q̂). (3.9)
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Figure 3.3: Phase portrait of system (3.7) in the newtonian case.

We shall denote by qL2(τ), QL2(τ) the solution of (3.9) such that QL2(0) = 0.

Figure 3.3 shows the phase portrait of (3.7) for U(z) = z
(

−1 + z

2

)

which

corresponds to the homographic case for the newtonian potential.

As we are interested in E = −δ with δ > 0 small enough, we need to study

the behavior of the solutions of (3.7) near the heteroclinic connection defined by

γ0, γ+ and the equilibrium points P±.

To this end, we take ε, εi, i = 1, . . . , 4, small enough, and we define the following

sections

Σ0 = {(q,Q)|0 < q < ε1, Q = 0},
Σ1 = {(q,Q)|0 < q < ε2, Q = −Qp + ε},
Σ2 = {(q,Q)|q = ε, |Q+Qp| < ε3},
Σ3 = {(q,Q)|qa − q < ε4, Q = 0}.

For a fixed value of ε > 0 sufficiently small we can take small enough εi for

i = 1, . . . , 4, such that the Poincaré maps P1 : Σ0 → Σ1, P2 : Σ1 → Σ2 and

P3 : Σ2 → Σ3 be well defined.

Figure 3.4 shows these situation in the newtonian case.

We denote by τL1 > 0 the time defined by QL1(τL1) = −Qp + ε, and τL2 > 0

such that qL2(−τL2) = ε. That is, τL1 is the time needed for (qL1 , QL1) to go from

Σ0 to Σ1, and −τL2 is the time used for the solution (qL2 , QL2) to travel backwards



3.2. An auxiliary planar system 91

Figure 3.4: Poincaré sections

from Σ3 to Σ2. Note that τL1 and τL2 are finite and independent of δ once ε is

fixed.

Fixed a value of δ > 0 small enough, we consider the solution of (3.7) with E =

−δ such that (q(0), Q(0)) ∈ Σ0. Taking into account that Q(0) = 0 and using the

hypothesis (A) and the energy (3.8) we get that q0 = q(0) =

(

δ

|γ|

)
2−α
2α

(1+O(δ
s
α )).

Let τ1 be the smallest positive time such that (q(τ1), Q(τ1)) ∈ Σ1. In a similar

way we define τ2 such that (q(τ2), Q(τ2)) ∈ Σ2. It is clear that τ1 and τ2 depend

on δ. Moreover, τ1 → τL1 and
T
2
− τ2 → τL2 when δ → 0.

The following lemma gives bounds of τ2 − τ1.

Lemma 3.2.1. Let ε > 0 be a fixed value small enough. Then, for any δ > 0

sufficiently small we have

2

Qp + ε
ln

(

ε

q(τ1)

)

≤ τ2 − τ1 ≤
2

Qp − ε
ln

(

ε

q(τ1)

)

.

Proof

We have that (q(τ1), Q(τ1)) ∈ Σ1 and (q(τ2), Q(τ2)) ∈ Σ2. Taking δ small

enough, for any τ ∈ [τ1, τ2] the following inequalities hold

−Qp − ε ≤ Q(τ) ≤ −Qp + ε.
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Multiplying these inequalities by −1

2
q(τ) and using the first equation in (3.7) we

get

1

2
(Qp − ε)q(τ) ≤ q′(τ) ≤ 1

2
(Qp + ε)q(τ). (3.10)

We note that q(τ) is an increasing function in [0, τ2]. Then, q(τ) > 0 in [τ1, τ2],

and the inequalities above can be written as

1

2
(Qp − ε) ≤

q′(τ)

q(τ)
≤ 1

2
(Qp + ε).

By integration of these inequalities one obtains

1

2
(Qp − ε)(τ2 − τ1) ≤ ln

(

ε

q(τ1)

)

≤ 1

2
(Qp + ε)(τ2 − τ1).

Now, the statement on the lemma follows by a simple computation. 2

The following lemma will be used in next sections.

Lemma 3.2.2. Let ε > 0 small enough. For any δ > 0 sufficiently small we have

(a)
∫ τ2
τ1
q(τ)dτ ≤ 2ε

Qp − ε
.

(b)
∫ τ2
τ1
|Q(τ) +Qp|dτ ≤ c0ε, for some constant c0.

Proof

(a) From (3.10) in the proof of lemma 3.2.1, for τ ∈ [τ1, τ2] the following in-

equality holds

q(τ) ≤ 2

Qp − ε
q′(τ).

We integrate between τ1 and τ2 the inequality above, obtaining

∫ τ2
τ1
q(τ)dτ ≤ 2

Qp − ε
(q(τ2)− q(τ1)) ≤

2

Qp − ε
q(τ2).

As q(τ2) = ε, we obtain the desired result.

(b) The idea is to study the distance between the component Q of a solution

defined in [τ1, τ2] and the unstable manifold of P− with q > 0.

We consider a neighbourhood of P− defined by |Q+Qp| ≤ ε, 0 < q ≤ ε. We

introduce ξ = Q+Qp in order to translate the equilibrium point P− to the

origin in the plane (q, ξ). Let W u,+ be the branch of the unstable invariant

manifold of the origin with q > 0. We know that in the plane (q,Q) the
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unstable manifold of P− is given by γ+, and then in a neighbourhood of P−
is given by Q = G(q) = −(2−α)

√

−2V (q̂). Then, in the plane (q, ξ), W u,+

is given by the graphic of the function F (q) = Qp − (2− α)
√

−2V (q̂), that

is, ξ = F (q).

We recall that Qp = (2 − α)
√−2γ and, by the hypothesis (A2), V (q̂) =

γ + zsV1(q̂). Then,

F (q) = Qp −Qp

√

1 + zs
V1(q̂)

γ
. (3.11)

Therefore if 0 < q ≤ ε, ε small enough,

|F (q)| ≤ kq
2s

2−α , (3.12)

for some constant k > 0.

We define y = ξ − F (q) for 0 < q ≤ ε. In this way, W u,+ lies on the q axis

in the plane (q, y) and our region of interest is a neighbourhood of 0 with

y ≥ 0. In that region using (3.7) and (3.11) we get the following equation

for y

y′ = − α

2− αQpy(1 +O(ε)).

So, there exists a constant c2 > 0 such that

− α

2− αQpy(1 + c2ε) ≤ y′ ≤ − α

2− αQpy(1− c2ε).

By integration of the inequality on the right hand we obtain

∫ τ2
τ1
y(τ)dτ ≤ 2− α

αQp(1− c2ε)
(y(τ1)− y(τ2)) ≤

2− α
αQp(1− c2ε)

y(τ1),

where we have used that y(τ) ≥ 0 for all τ ∈ [τ1, τ2].

Using that
2s

2− α > 1, from (3.12) we get

|F (q)| ≤ kq, (3.13)

in a small neighbourhood of P−. Then, y(τ1) = Q(τ1) + Qp − F (q(τ1)) ≤
Q(τ1)+Qp+|F (q(τ1))| ≤ (k+1)ε. Moreover, by integration of the inequality

(3.13) between τ1 and τ2 and using (a),

∫ τ2
τ1
|F (q(τ))|dτ ≤ 2k

Qp − ε
ε.

As Q+Qp = y + F (q) we have
∫ τ2
τ1
|Q(τ) +Qp|dτ ≤

∫ τ2
τ1
(y(τ) + |F (q(τ))|)dτ ≤ c0ε,

for some constant c0 > 0.

2
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3.3 Asymptotic formulae for the stability pa-

rameters

In this section we will prove the main result of this chapter, that give us asymptotic

formulae for the stability parameters of system (3.1). Some auxiliar results are

proven in sections 3.4 and 3.5.

Theorem 3.3.1. Let us consider the system (3.1) where g(t; δ) satisfies the hy-

pothesis (B). Let be λ̂ = γ
(2− α)2

8
where γ is defined in (A2). We assume that

λ1, λ2 satisfy λ1 > λ2 > λ̂ or, λ1 > λ̂ > λ2. Let be βj =

√

1− λj

λ̂
, j = 1, 2.

Then we have the following asymptotic behaviour for the stability parameters when

δ goes to 0

log tr1 = k1 −
2− α
2α

β1 log δ(1 + o(1)) + . . . ,

log tr2 = k2 −
2− α
2α

β2 log δ(1 + o(1)) + . . . , if λ2 > λ̂, (3.14)

tr2 = k3 + k4 cos[k5 − γ2(1 + o(1)) log(δ)] + . . . , if λ2 < λ̂,

provided that some coefficient, d1, is different from zero. In the last case γ2 denotes
β2

i
. The coefficients kj, j = 1, . . . , 5 are constants. The coefficient k4 is different

from zero if some coefficient e3 6= 0.

The coefficients d1 and e3 will be defined in lemma 3.3.5. They depend on the

particular potential U(z) as well as on the parameters λ1 and λ2.

About the hypothesis in theorem 3.3.1 we have β1 ∈ R+ and in the case

β2 ∈ R+, β1 > β2. These assumptions will give a dominant term depending on β1

in the stability parameters. As we will see in chapter 4, these hyphotesis will be

satisfied in the case of homographic solutions.

We note that asymptotic formulae (3.14) gives tr1 > 2 if δ is small enough.

Furthermore, if β2 > 0 then tr2 > 2 and the system is hyperbolic–hyperbolic. In

the case β2 = γ2i, tr2 oscillates between the values k3 + k4 and k3 − k4 as δ tends

to 0. Therefore it can cros the lines tr2 = 2 and tr2 = −2 infinitely many times

as δ tends to zero depending on the values of k3 + k4 and k3 − k4. In particular,

if k3 − k4 < −2 and k3 + k4 > 2, tr2 = −2 for a sequence δi → 0, and we found

intervals (δ2i, δ2i−1) with tr2 < −2, that is, hyperbolic-elliptic intervals. This will

be the case for the collinear homographic solutions to be studied in chapter 1. A

similar things occurs if k3 + k4 > 2 and k3 − k4 < 2.



3.3. Asymptotic formulae for the stability parameters 95

In order to prove Theorem 3.3.1 we need to study the stability parameters of

(3.1). As we have seen in section 3.1 this is equivalent to study the stability of

(3.5).

First we begin by writing the monodromy matrix Ψ(T ) in terms of the transi-

tion matrix in a half period.

Lemma 3.3.2. The equality

Ψ(T ) =
q0
qa
G0Ψ

(T
2

)T

GMΨ

(T
2

)

, (3.15)

holds, where

G0 =











0 0 −1 0

0 0 0 1

−1 0 0 −2q0
0 1 −2q0 0











, GM =











0 −2qa −1 0

−2qa 0 0 1

−1 0 0 0

0 1 0 0











,(3.16)

q0 = q(0) and qa = q(T/2).

Proof

Let Φ(t) be the fundamental matrix of the system (3.1) such that Φ(0) = I4.We

begin showing that the following equality holds

Φ(T ) = F−1Φ(T/2)TFΦ(T/2) (3.17)

where F =











0 −2 −1 0

−2 0 0 1

−1 0 0 0

0 1 0 0











.

Let

ẏ = BH(t)y (3.18)

the linear periodic Hamiltonian system with Hamiltonian function (3.4).

Now we prove that the fundamental matrix Φ1(t) of this system such that

Φ1(0) = I4 satisfies the relation

Φ1(T ) = −J4Φ1

(

−T
2

)T

J4Φ1

(

T

2

)

.

As Φ1(t) is a fundamental matrix of a T–periodic system, then Φ1(t + T ) is also

a fundamental matrix. Then, there exists a non–singular constant matrix C such

that Φ1(t+ T ) = Φ1(t)C. If we take t = t0 then

Φ1(t+ T ) = Φ1(t)Φ1(t0)
−1Φ1(t0 + T ).



96 3. Stability of a family of periodic linear systems: the singular limit case

Then, if t = 0 and t0 = −T
2
, Φ1(T ) = Φ1

(

−T
2

)−1

Φ1

(

T

2

)

.

As Φ1(t) is a symplectic matrix for all t, Φ1(t)
−1 = −J4Φ1(t)

TJ4. Taking

t = −T
2
, one obtain the desired relation.

The hypothesis (B) implies that g(t) is an even function of t. Then, BH(t) is

an even function of t. A simple computation shows that

BH(t) =

(

−J2 I2
Ã(t)− I2 −J2

)

.

Then, LBH(t)L = −BH(t) where L = diag(−1, 1, 1,−1), and the parity of BH

yields

LBH(t)L = −BH(−t). (3.19)

Let us take define Φ̃(t) := LΦ1(−t). Using the property (3.19) it is easy to

check have that Φ̃ is also a fundamental matrix of the Hamiltonian system (3.18)

associated to (3.4). Therefore, Φ1(−t) = LΦ1(t)L. In particular, Φ1

(

−T
2

)

=

LΦ1

(

T

2

)

L. Then,

Φ1(T ) = −JLΦ1

(

T

2

)T

LJΦ1

(

T

2

)

,

and taking into account (1.61), that is, Φ(t) = M̃−1Φ1(t)M̃ , where M̃ is defined

in (1.58), we obtain

Φ(T ) = −(M̃−1)TJ4L(M̃
T )−1Φ

(

T

2

)T

M̃TLJ4M̃Φ

(

T

2

)

.

From this equality and denoting F = M̃TLJ4M̃ , we obtain (3.17). From this

relation and using (3.6) we have that

Ψ(T ) = S(0)F−1S(0)Ψ

(T
2

)T

S−1

(

T

2

)

FS−1

(

T

2

)

Ψ

(T
2

)

.

The statement of the lemma holds taking G0 = 1
q0
S(0)F−1S(0) and GM =

qaS
−1
(

T
2

)

FS−1
(

T
2

)

. 2

Our purpose now is to get an expression for Ψ
(

T
2

)

which allows us to compute

the dominant terms of the traces of Ψ (T ) for values of δ near 0. To do that we

shall use the planar system (3.7) in order to split Ψ
(

T
2

)

in three matrices each
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obtained from (3.5) following the heteroclinic connections of that planar system,

that is, in a neighbourhood of γ0, P− and γ+, respectively.

For a fixed value of δ > 0 small enough, let (q(τ), Q(τ)) be the solution of (3.7)

for E = −δ such that q(0) = q0, Q(0) = 0, being q0 the minimum of q(τ). Then

the matrix B(τ) in (3.5) can be written as

B(τ) =











0 0 1 0

0 0 0 1

λ1 0 −Q(τ)/2 −2q(τ)
0 λ2 2q(τ) −Q(τ)/2











=: Ba(q,Q). (3.20)

From now on we consider

ẏ = B(τ)y.

Let Ψ̃(τb, τa) be the transition matrix of (3.5) from τa to τb, that is, Ψ̃(τb, τa) is

the fundamental matrix of (3.5) satisfying Ψ̃(τa, τa) = I4 evaluated at τ = τb.

Then, we can write

Ψ

(T
2

)

= Ψ̃

(T
2
, τ2

)

Ψ̃(τ2, τ1)Ψ̃(τ1, 0). (3.21)

We note that τ1 and τ2 (as defined in section 3.2) and also
T
2

depend on δ.

Our purpose is to approximate the transition matrices involved in (3.21) by

simpler ones. First, we shall give approximations of Ψ̃(τ1, 0) and Ψ̃

(T
2
, τ2

)

in

(3.21) by the transition matrices for the system (3.5) along γ0 and γ+, respectively.

Using (3.20) we define

BL1(τ) = Ba(0, QL1(τ)), BL2(τ) = BL2(qL2(τ), QL2(τ)), (3.22)

where we recall that (0, QL1(τ)), (qL2(τ), QL2(τ)) are the solutions of (3.7) corre-

sponding to γ0, γ+, respectively.

Let Z1(τ) be the fundamental matrix of

u′ = BL1(τ)u, (3.23)

such that Z1(0) = I4.

Remark 3.3.3. The system (3.23) only depends on λ1, λ2, α and λ. It does not

depend on the particular form of the function V1(z) defined in (A2).

We denote by Z2(τ) the fundamental matrix of

u′ = BL2(τ)u, (3.24)



98 3. Stability of a family of periodic linear systems: the singular limit case

such that Z2(−τL2) = I4.

For a fixed value of ε > 0 small enough P1 and P3 are diffeomorphisms. So,

we can write

Ψ̃(τ1, 0) = Z1(τL1) + ∆1, Ψ̃

(T
2
, τ2

)

= Z2(0) + ∆2,

for some matrices ∆1, ∆2 with ‖∆1‖ = O(q0), ‖∆2‖ = O(qL2(0)− q0) = O(δ). We

recall that q0 = O(δ
2−α
2α ).

This relations give us approximation of the matrices Ψ̃(τ1, 0) and Ψ̃

(T
2
, τ2

)

by the fundamental matrices of the system (3.5) on γ0 and γ+.

Now we want to obtain an approximation of the transition matrix Ψ̃(τ2, τ1)

We consider the system (3.5) in a neighbourhood of the equilibrium point P−,

and we write

B(τ) = Bp +B1(τ),

B1(τ) =

(

0 0

0 B11

)

with B11 =

(

−1
2(Q+Qp) −2q

2q −1
2(Q+Qp)

)

,

where

Bp = Ba(0,−Qp),

that is the matrix of (3.20) evaluated on P−. We note that Bp does not depend

on δ.

The characteristic polynomial of Bp is

p(x) = x2

(

Qp

2
− x
)2

+ (λ1 + λ2)x

(

Qp

2
− x
)

+ λ1λ2.

Performing the change of variables y =
Qp

4
− x, the equation for the eigenvalues

transforms in a biquadratic equation. Then, it is easy to compute the roots of p

and one obtains that the eigenvalues of Bp are

ρ±1 =
Qp

4
(1± β1), ρ±2 =

Qp

4
(1± β2), (3.25)

where βi =

√

1− 8λi
γ(2− α)2 , i = 1, 2. We note that under the hypothesis of The-

orem 3.3.1, β1 6= 0, β2 6= 0 and β1 6= β2. Hence the eigenvalues of Bp are also

differents.
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The associated eigenvectors are (1, 0, ρ±1 , 0)
T and (0, 1, 0, ρ±2 )

T , respectively.

Let P be the matrix

P =

(

I2 I2
P3 P4

)

, P3 = diag(ρ+
1 , ρ

+
2 ), P4 = diag(ρ−1 , ρ

−
2 ). (3.26)

P is nonsingular and

P−1BpP =
Qp

4
I + D̄

where D̄ =
Qp

4
diag(β1, β2,−β1,−β2). We introduce a new variable

w = exp

(

−Qp

4
(τ − τ1)

)

P−1y

and we get the following system for w

w′ = (D̄ + P−1B1(τ)P )w. (3.27)

Let W (τ) be the fundamental matrix of (3.27) such that W (τ1) = I. A simple

computation shows that

Ψ̃(τ, τ1) = exp

(

Qp

4
(τ − τ1)

)

PW (τ)P−1.

Then, from (3.21), we get

Ψ

(T
2

)

= σΨ̃

(T
2
, τ2

)

PW (τ2)P
−1Ψ̃(τ1, 0), (3.28)

where σ = exp

(

Qp

4
(τ2 − τ1)

)

.

Next lemma give us an approximation of W (τ) by a simpler matrix.

Lemma 3.3.4. Let ε > 0 be small enough. If δ > 0 is sufficiently small we have

for all τ ∈ [τ1, τ2]

W (τ) = (I4 +∆(τ))D(τ)(I4 +R),

where D(τ) = diag(eν1(τ−τ1), eν2(τ−τ1), e−ν1(τ−τ1), e−ν2(τ−τ1)), νi =
Qp

4
βi, i = 1, 2,

and ∆(τ) is a matrix such that ‖∆(τ)‖ ≤ c1ε for any τ ∈ [τ1, τ2] and R is a

constant matrix such that ‖R‖ ≤ c2ε, for some constants c1, c2, uniformly in δ.

The proof of this lemma is given in section 3.4.

We note that W (τ) can be approximated by a diagonal matrix for ε > 0 small

enough.
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Up to now, we have approximated the transition matrices Ψ̃(τ1, 0), Ψ̃

(T
2
, τ1

)

by Z1(τL1), Z2(0), respectively, and W (τ2) by D(τ2). Then, using (3.28), we have

that

Ψ

(T
2

)

= σ
[

Z2(0)PD(τ2)P−1Z1τL1

]

(I4 +∆3),

where ‖∆3‖ = O(ε, q0, δ). We remark that we are assuming that

‖Z2(0)PD(τ2)P−1Z1(τL1)‖

has the same order of magnitud as the product of norms. We shall see that this is

the case if the coefficient d1 6= 0.

Now, using (3.15), we get

Ψ(T ) =
q0
qa
σ2M(I4 +O), M = A1DA2DA3, (3.29)

where A1 = G00A
T
3 , A2 = P TZ2(0)

TGMZ2(0)P , A3 = P−1Z1(τL1), D = D(τ2),

G00 =

(

0 C

C 0

)

, C = diag(−1, 1), and O stands for a matrix with contains

terms of order ε, q0 and δ0. The same remark concerning the product of norms

holds for (3.29). We note also that matrices A1, A2 and A3 are independent of δ.

Now we want to obtain the stability parameters of (3.5). We recall that Φ(T )

has the same eigenvalues that Ψ(T ). Moreover, as Φ(T ) is symplectic, the charac-

teristic polynomial of Ψ(T ) is

p(x) = x4 + a1x
3 + a2x

2 + a1x+ 1,

where

a1 = −(tr1 + tr2),

a2 = 2 + tr1tr2. (3.30)

Then, the stability parameters can be obtained from a1 and a2 as the zeroes of

x2 + a1x + a2 − 2. To estimate the dominant terms of these coefficients we shall

use the matrix M.

Let us denote by

q(x) = x4 + b3x
3 + b2x

2 + b1x+ b0,

the characteristic polynomial of M. We denote k =
qa
q0σ2

. From (3.29),

det(Ψ(T )− xI4) =
1

k4
det(M+O − kxI4).
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Using the equality above we obtain the following relation between a1, a2 and

b0, . . . , b3,

a1 =
b3
k
, a2 =

b2
k2
, a1 =

b1
k3
,

b0
k4

= 1. (3.31)

From (3.30) and (3.31) we get that the stability parameters tr1 and tr2 satisfy, up

to order 1 in ε, the quadratic equation

k2t̃2 + kb3t̃+ b2 − 2k2 = 0. (3.32)

We are interested in the dominant terms of b2 and b3. The following lemma give

us these terms.

Lemma 3.3.5. Let ε > 0 be small enough. Assume that λ1 and λ2 satisfy the

hypothesis of teorem 3.3.1. Then

(a) There exist some constants di, i = 1, . . . 5 such that

−b3 = d1σ
2β1 + d2σ

2β2 + d3σ
−2β1 + d4σ

−2β2 + d5. (3.33)

The coefficient d1 is the product of two constants, d1 = dndg with dn depending on

λ1, λ2, α and γ but not on the function V1 defined in section 3.1. dg depends also

on V1. If λ1 and λ2 are different from zero, then dn 6= 0.

(b) The coefficient b2 does not contain terms in σ±4β1 nor σ±4β2, that is the dom-

inant terms are

b2 = e1σ
2β1 + e2σ

2β2 + e3σ
2(β1+β2) + e4σ

2(β1−β2) + . . . (3.34)

for some constants e1, e2, e3, . . . The coefficient e3 is the product of two constants

e3 = eneg where en depends on λ1, λ2, α and γ but not on the function V1 defined

in section 3.1. eg depends also on V1. If λ1, λ2 are different from zero then en 6= 0.

Moreover, if λ2 < γ
(2− α)2

8
, then d4 = d̄2, and e4 = ē3 where the bar stands

for the complex conjugate.

The proof of this lemma will be given in section 3.5.

Now, the stability parameters are obtained by solving the quadratic equation

(3.32). The solutions of this equation are

t̃ =
−b3 ±

√
d

2k
,

where d = k[b23 − 4b2 + 8k2].

We assume that the constant d1 in Lemma 3.3.5 is different from zero. If λ1,

λ2 satisfy the hypothesis of Theorem 3.3.1 then either β1 > β2 > 0 or β1 > 0 and
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β2 = γ2i, γ2 ∈ R. In any case, the dominant term in −b3 is d1σ
2β1 . Therefore, we

have that the dominant terms of d are

d = d2
1σ

4β1 d̃,

where d̃ = 1 + 2n1σ
−2β1 + 2n2σ

−2(β1−β2) + 2n3σ
−2(β1+β2) + . . ., and

n1 =
d1d5 − 2e1

d2
1

, n2 =
d1d2 − 2e3

d2
1

, n3 =
d1d4 − 2e4

d2
1

.

Then,

tr1 =
−b3 + d1σ

2β1

√

d̃

2k
=
q0
qa
σ2(d1σ

2β1 + . . .),

and

tr2 =
−b3 − d1σ

2β1

√

d̃

2k
.

As
√

d̃ = 1+ n1σ
−2β1 + n2σ

−2(β1−β2) + n3σ
−2(β1+β2) + . . . , the dominant terms in

tr2 are

tr2 =
1

2k
[(d2 − d1n2)σ

2β2 + (d4 − d1n3)σ
−2β2 + d5 − d1n1 + . . .]. (3.35)

If β2 is real the dominant term is given by (d2 − d1n2)σ
2β2 and then

tr2 =
q0
qa
σ2

(

e3
d1
σ2β2 + . . .

)

.

If β2 is imaginary, all the terms written in (3.35) are of the same order. From

lemma 3.3.5 we have that in this case d4 = d2 and e4 = e3. Then,

tr2 =
q0
qa
σ2

(

e1
d1

+ 2Re

(

e3
d1
σ2β2

)

+ . . .

)

.

Summarizing, we have that if d1 6= 0, then the stability parameters are obtained

as

tr1 =
q0
qa
σ2(d1σ

2β1 + . . .), (3.36)

and

tr2 =
q0
qa
σ2

(

e3
d1
σ2β2 + . . .

)

, if β2 > 0

tr2 =
q0
qa
σ2

(

e1
d1

+ 2Re

(

e3
d1
σ2β2

)

+ . . .

)

, if β2 = γ2i, γ2 ∈ R.

Now, using lemma 3.2.1 the result on the theorem 3.3.1 follows.
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Remark 3.3.6. We recall that matrices A1, A2 and A3 in (3.29) do not depend on

δ, so their norms are finite. Therefore ‖A1‖‖D‖‖A2‖‖D‖‖A3‖ depends mainly on

‖D‖2 for δ > 0 small enough. Furthermore D = D(τ2) is a diagonal matrix and

so, ‖D‖2 is of the order or σ2β1 . However, if d1 6= 0 from (3.36) we have that tr1
is of order σ2β1 . This gives an estimation of the spectral radius of M. Using that

‖M‖ is bounded from below by the spectral radius we conclude that it is of the

same order of magnitude of the product of norms and then (3.29) holds.

3.4 Proof of lemma 3.3.4

In order to prove lemma 3.3.4 it will be useful the following lemma.

Lemma 3.4.1. Let us consider the system

x′ = Dx+ C(t)x, (3.37)

where D is a diagonal matrix n×n and C(t) is a continuous matrix in t. Assume

that there exists some constant ε̂ < 1/4 such that

∫ t̂

0
‖C(s)‖ds < ε̂. (3.38)

Let λ be an eigenvalue of D and v an eigenvector corresponding to λ. Then, there

exists a solution, ϕ(t), of (3.37) such that

‖e−λtϕ(t)− v‖ ≤ ‖v‖ 3ε̂

1− 3ε̂
,

for all t ∈ [0, t̂].

Proof

Let us consider λ1, . . . , λn the eigenvalues of D. That is, D = diag(λ1, . . . , λn).

Assume that Re(λj) < Re(λ) for 0 < j ≤ k < n, Re(λj) > Re(λ) for k + 1 ≤ j ≤
m < n and Re(λj) = Re(λ) for m+ 1 ≤ j ≤ n.

We denote by D1 = diag(λ1, . . . , λk) the k×k diagonal matrix obtained from D

such that their eigenvalues have real part less than Re(λ). Analogously, we define

D2 = diag(λk+1, . . . , λm) the (m− k)× (m− k) diagonal matrix with eigenvalues

with real part bigger than Re(λ), and D3 = diag(λm+1, . . . , λn) a (n−m)×(n−m)

diagonal matrix, which has eigenvalues with the same real part as λ.

It could be possible that D1 or D2 does not contain any term, but it is clear

that λ is in D3. We take λn = λ.

We have that D = diag(D1, D2, D3). Let us denote by X(t) the funda-

mental matrix of the system x′ = Dx with X(0) = In. Then, X(t) = eDt =
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diag(eD1t, eD2t, eD3t). We can write X(t) = X1(t) +X2(t) +X3(t) where X1(t) =

diag(eD1t, 0, 0), X2(t) = diag(0, eD2t, 0), X3(t) = diag(0, 0, eD3t).

X̃j(t) = eDjt is the fundamental matrix of the system

x′j = Djxj ,

satisfying X̃j(0) the identity matrix, j = 1, 2, 3. We note that x1 ∈ Rk, x2 ∈ Rm−k,

x3 ∈ Rn−m.

Then e−λtX̃j(t) is a fundamental matrix of the system

x′j = Ãjxj ,

where Ãj = Dj − λId, and Id denotes the identity matrix of suitable dimen-

sion. Ã1 (Ã2) has eigenvalues with negative (positive) real part. Then, there

exists a positive constant a > 0 such that ‖e−λtX̃1(t)‖ ≤ e−at for all t ≥ 0, and

‖e−λtX̃2(t)‖ ≤ eat for all t ≤ 0.

Now we consider Ã3, that has eigenvalues with zero real part. Let us write

λ = α+ iβ. Then, λj = α+ iβj , j = m+ 1, . . . , n, and

e−λtX̃3(t) = diag(ei(βm+1−β)t, . . . , ei(βn−1−β)t, 1).

Therefore ‖e−λtX̃3(t)‖ = 1.

As ‖e−λtXj(t)‖ = ‖e−λtX̃j(t)‖ for j = 1, 2, 3 we get ‖e−λtX1(t)‖ ≤ e−at for all

t ≥ 0, ‖e−λtX2(t)‖ ≤ eat for all t ≤ 0, for a constant a > 0, and ‖e−λtX3(t)‖ = 1.

It is easy to check that the solution ϕ(t) of the integral equation

ϕ(t) = etλv +

∫ t

0
X1(t− s)C(s)ϕ(s)ds−

∫ t̂

t
X2(t− s)C(s)ϕ(s)ds

−
∫ t̂

t
X3(t− s)C(s)ϕ(s)ds

is a solution of (3.37).

We want to obtain the solution of the integral equation above. To this end we

use an iterative scheme with ϕ0(t) ≡ 0. For m ≥ 1 we define

ϕm(t) = etλv +

∫ t

0
X1(t− s)C(s)ϕm−1(s)ds−

∫ t̂

t
X2(t− s)C(s)ϕm−1(s)ds

−
∫ t̂

t
X3(t− s)C(s)ϕm−1(s)ds.

Then, for all t ∈ [0, t̂] the following inequalities hold

‖ϕm(t)− ϕm−1(t)‖ ≤ ‖v‖(3ε̂)m−1|etλ| ≤ ‖v‖(3ε̂)m−1|et̂λ|, (3.39)

‖e−tλϕm(t)− v‖ ≤ ‖v‖
m−1
∑

k=1

(3ε̂)k. (3.40)



3.4. Proof of lemma 3.3.4 105

The inequalities above will be proved now by induction.

For (3.39) is clear that

‖ϕ1(t)− ϕ0(t)‖ = ‖ϕ1(t)‖ ≤ ‖v‖|eλt|.

Assume that (3.39) is true for m− 1. We note that

ϕm(t)− ϕm−1(t) = etλ
{∫ t

0
e−λ(t−s)X1(t− s)C(s)e−sλ(ϕm−1(s)− ϕm−2(s))ds

−
∫ t̂

t
e−λ(t−s)X2(t− s)C(s)e−sλ(ϕm−1(s)− ϕm−2(s))ds

−
∫ t̂

t
e−λ(t−s)X3(t− s)C(s)e−sλ(ϕm−1(s)− ϕm−2(s))ds

}

.

Then, using the inequalities for ‖e−λtXj(t)‖, j = 1, 2, 3, one obtains

‖ϕm(t)− ϕm−1(t)‖ ≤ |etλ|
{∫ t

0
e−a(t−s)‖C(s)‖‖v‖(3ε̂)m−2ds+

+

∫ t̂

t
ea(t−s)‖C(s)‖‖v‖(3ε̂)m−2ds+

∫ t̂

t
‖C(s)‖‖v‖(3ε̂)m−2ds

}

≤

≤ |etλ|‖v‖(3ε̂)m−1.

This proves (3.39).

The proof of (3.40) for m = 1 is trivial. For m ≥ 2, first we note that

e−tλϕ2(t)− v =

∫ t

0
e−λ(t−s)X1(t− s)C(s)vds−

∫ t̂

t
e−λ(t−s)X2(t− s)C(s)vds −

∫ t̂

t
e−λ(t−s)X3(t− s)C(s)vds.

Then

‖e−tλϕ2(t)− v‖ ≤
∫ t

0
e−a(t−s)‖C(s)‖‖v‖ds+

∫ t̂

t
ea(t−s)‖C(s)‖‖v‖ds

+

∫ t̂

t
‖C(s)‖‖v‖ds ≤ 3ε̂‖v‖.

For the general step we get

e−tλϕm(t)− v =

∫ t

0
e−λ(t−s)X1(t− s)C(s)(e−sλϕm−1(s)− v)ds

−
∫ t̂

t
e−λ(t−s)X2(t− s)C(s)(e−sλϕm−1(s)− v)ds

−
∫ t̂

t
e−λ(t−s)X3(t− s)C(s)(e−sλϕm−1(s)− v)ds+ (e−tλϕ2(t)− v).
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Therefore

‖e−tλϕm(t)− v‖ ≤
∫ t

0
e−a(t−s)‖C(s)‖‖e−tλϕm−1(t)− v‖ds

+

∫ t̂

t
ea(t−s)‖C(s)‖‖e−tλϕm−1(t)− v‖ds

+

∫ t̂

t
‖C(s)‖‖e−tλϕm−1(t)− v‖ds+ ‖e−tλϕ2(t)− v‖

≤ ‖v‖
(

m−2
∑

k=1

(3ε̂)k

[

3

∫ t̂

0
‖C(s)‖ds

]

+ 3ε̂

)

≤ ‖v‖
m−1
∑

k=1

(3ε̂)k

and (3.40) follows.

From (3.39) we have that ϕm tends to ϕ uniformly on compacts.

Then, using (3.40) we have that

‖e−λtϕ(t)− v‖ ≤ ‖v‖∑∞
k=1(3ε̂)

k = ‖v‖ 3ε̂

1− 3ε̂
.

This ends the proof of the lemma. 2

To prove lemma 3.3.4 we shall apply the lemma 3.4.1 to the system (3.27).

For a fixed value of ε we consider q0 > 0 small enough (we have that q0 =
(

δ

|γ|

)
2−α
2α

(1 +O(δ
s
α ))) and τ ∈ [τ1, τ2] where we recall that τ1, τ2 depend on q0.

After a translation of time defined by s = τ − τ1 we can restrict to the system

dw

ds
= (D + P−1B1(s+ τ1)P )w, (3.41)

for s ∈ [0, ŝ], where ŝ = ŝ(q0) = τ2 − τ1. First we prove that the hypothesis (3.38)

is satisfied for C(s) := P−1B(s + τ1)P . We recall that B1(τ) is defined in (3.22)

and it depends on δ. We get

‖C(s)‖ ≤ ‖P‖‖P−1‖‖B11(s+ τ1)‖,

For any δ small enough, using lemma 3.2.2 we get

∫ ŝ
0 ‖C(s)‖ds ≤ ‖P‖‖P−1‖

(

4ε

Qp − ε
+
c0ε

2

)

.

Then (3.38) is satisfied with ε̂ = εc1 being c1 = ‖P‖‖P−1‖
(

4

Qp − ε
+
c0
2

)

. If ε is

small enough we have ε̂ <
1

4
. For technical reasons we shall assume that ε <

1

12c1
.
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We recall that D̄ =
Qp

4
diag(ν1, ν2, ν3, ν4) where νj =

Qp

4
βj , j = 1, 2, ν3 = −ν1,

ν4 = −ν2. Using lemma 3.4.1, there exist ϕ̂1(s), ϕ̂2(s), ϕ̂3(s), ϕ̂4(s) solutions of

(3.41) such that for any s ∈ [0, ŝ]

‖e−νisϕ̂i(s)− ei‖ ≤ ‖ei‖ 3ε̂
1−3ε̂ , i = 1, . . . , 4,

where e1, e2, e3, e4 is the canonical basis. Then, ϕi(τ) := ϕ̂(τ − τ1), j = 1, . . . , 4,

are solutions of (3.27) such that for any τ ∈ [τ1, τ2]

‖e−νi(τ−τ1)ϕi(τ)− ei‖ ≤ 3ε̂
1−3ε̂ , i = 1, . . . , 4. (3.42)

We denote as Y (t) the matrix defined by ϕ1, ϕ2, ϕ3 and ϕ4 as column vectors.

We write

D−1(τ) = diag(e−ν1(τ−τ1), e−ν2(τ−τ1), e−ν3(τ−τ1), e−ν4(τ−τ1)),

and define ∆(τ) = Y (τ)D−1(τ)− I4. Then, using (3.42)

‖∆(τ)‖ ≤ 3ε̂

1− 3ε̂
= ε

3c1
1− 3c1ε

,

for any τ ∈ [τ1, τ2]. The last inequality above comes from the assumption that

ε <
1

12c1
. We remark that matrices Y (τ),D(τ), and then ∆(τ), depend on

δ. Moreover, we can say that ‖∆(τ)‖ <
1

3
for any τ ∈ [τ1, τ2]. In partic-

ular, ‖∆(τ1)‖ < 1. Then, Y (τ1) = I4 + ∆(τ1) is a non singular matrix and

Y (τ) = (I4 +∆(τ))D(τ) is a fundamental matrix for the system (3.27). Further-

more, W (τ) is the fundamental matrix of (3.27) such that W (τ1) = I4. Then

W (τ) = Y (τ)Y (τ1)
−1 = (I4 +∆(τ))D(τ)(I4 +∆(τ1))

−1.

Furthermore, using standard results for natural matrix norms (see [I.K.],[Ch.]) if

we define

R := I4 − (I4 +∆(τ1))
−1,

we get ‖R‖ ≤
ˆ̂ε

1− ˆ̂ε
where ˆ̂ε =

3ε̂

1− 3ε̂
. Therefore,

‖R‖ ≤ ε
3c1

1− 6c1ε
< 6c1ε.
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3.5 Proof of lemma 3.3.5

In this section we prove lemma 3.3.5. To this end we need some information about

the matrices involved in M. We recall that

M = A1D(τ2)A2D(τ2)A3,

where A1, A2, A3 do not depend on δ.

We begin with A3. We recall that A3 = P−1Z1(τL1) where P is the constant

matrix defined in (3.26) and Z1(τL1) the fundamental matrix of the system (3.23),

that is,

u′ = BL1(τ)u, (3.43)

with Z1(0) = I4, where

BL1(τ) =











0 0 1 0

0 0 0 1

λ1 0 −QL1
(τ)

2 0

0 λ2 0 −QL1
(τ)

2











, (3.44)

and P =

(

I2 I2
P3 P4

)

, P3 = diag(ρ+
1 , ρ

+
2 ), P4 = diag(ρ−1 , ρ

−
2 ).

Then, the system (3.43) splits in two uncoupled systems, one for u1, u3 and the

second for u2, u4. Let us denote by ej , j = 1, . . . , 4, the canonical basis of R4. If we

take as initial condition e1, e3 (e2, e4) then u2(τ) ≡ u4(τ) ≡ 0 (u1(τ) ≡ u3(τ) ≡ 0).

Then, Z1(τL1) is a 4× 4 block diagonal matrix, that is,

Z1(τL1) =

(

C1 C2

C3 C4

)

, with Cj = diag(cj1, cj2), j = 1, . . . , 4.(3.45)

In order to compute A3 we need to know P−1. A simple check shows that

P−1 =

(

Q1 Q2

Q3 Q4

)

, where

Q1 = diag

(

ρ−1
ρ−1 − ρ+

1

,
ρ−2

ρ−2 − ρ+
2

)

, Q2 = diag

(

1

ρ+
1 − ρ−1

,
1

ρ+
2 − ρ−2

)

,

Q3 = diag

(

ρ+
1

ρ+
1 − ρ−1

,
ρ+

2

ρ+
2 − ρ−2

)

, Q4 = diag

(

1

ρ−1 − ρ+
1

,
1

ρ−2 − ρ+
2

)

,

and ρ±1 , ρ
±
2 are given in (3.25) Then,

A3 =

(

E1 E2

E3 E4

)

with Ej = diag(ej1, ej2), j = 1, . . . , 4. (3.46)
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Moreover,

E1 = Q1C1 +Q2C3, E2 = Q1C2 +Q2C4,

E3 = Q3C1 +Q4C3, E4 = Q3C2 +Q4C4. (3.47)

As A1 = G00A
T
3 where G00 =

(

0 C

C 0

)

, C = diag(−1, 1), we get that

A1 =

(

H1 H2

H3 H4

)

with Hj = diag(hj1, hj2), j = 1, . . . , 4. (3.48)

Moreover, H1 = CE2, H2 = CE4, H3 = CE1, H4 = CE3. Therefore, we get the

following relations between hji and eji,

h11 = −e21, h12 = e22, h21 = −e41, h22 = e42,

h31 = −e11, h32 = e12, h41 = −e31, h42 = e32. (3.49)

From (3.29) we know that A2 = P TZ2(0)
TGMZ2(0)P , being Z2(τ) the funda-

mental matrix of the system (3.24), that is u′ = BL2(τ)u, such that Z2(−τL2) = I4.

We denote

A2 =

(

X1 X2

X3 X4

)

, (3.50)

for some 2× 2 matrices Xi, i = 1, . . . , 4. We write also A2 = (xij).

We note that using remark (3.3.3), the matrices A1 and A3 depend on λ1, λ2,

α and γ but they do not depend on function V1. However, A2 depends on V1.

We recall that the matrix D(τ) is defined in lemma 3.3.4. We can write D(τ2) =
diag(D1, D

−1
1 ), where D1 = diag(σβ1 , σβ2) and σ = exp

(

Qp

4
(τ2 − τ1)

)

. It is not

difficult to check that M = D̃−1
1 M̃D̃1 where D̃1 = diag(D1, D1) and

M̃ = D̃2
1M̃1 + M̃2 + D̃2

1M̃3(D̃
−1
1 )2 + M̃2(D̃

−1
1 )2, (3.51)

M̃1 =

(

H1X1E1 H1X1E2

H3X1E1 H3X1E2

)

, M̃2 =

(

H2X3E1 H2X3E2

H4X3E1 H4X3E2

)

,

M̃3 =

(

H1X2E3 H1X2E4

H3X2E3 H3X2E4

)

, M̃4 =

(

H2X4E3 H2X4E4

H4X4E3 H4X4E4

)

. (3.52)

We note that M̃j , j = 1, . . . , 4, only depend on A1, A2 and A3 and so, they do not

depend on δ.
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So, we can reduce to consider the characteristic polynomial of M̃. For the

elements of these matrices we shall use the following notation M̃1 = (uij), M̃2 =

(vij), M̃3 = (pij), M̃4 = (wij).

From (3.51) we get

trace(M̃) = σ2β1(u11 + u33) + σ2β2(u22 + u44) + σ−2β1(w11 + w33)+

σ−2β2(w22 + w44) + trace(M̃2) + trace(M̃3),

where trace(M̃2) and trace(M̃3) do not depend on σ.

Taking into account that b3 = −trace(M̃), we obtain (3.33) by taking d1 =

u11 + u33, d2 = u22 + u44, d3 = w11 + w33, d4 = w22 + w44 and d5 = trace(M̃2) +

trace(M̃3).

From (3.52) and (3.49) we get

u11 = h11x11e11, u33 = h31x11e21, u13 = h11x11e21, u31 = h31x11e11.(3.53)

d1 = h11x11e11 + h31x11e21 = −2x11e11e21. Then, if we denote by

dn = −2e11e21 and dg = x11,

dn depends on λ1, λ2, α and γ but not on V1 and dg depends also on V1.

Now we study the dominant terms in b2.

Given a 4 × 4 matrix A = (aij), the coefficient of x2 in the characteristic

polynomial of A is

a11(a22 + a33 + a44) + a22(a33 + a44) + a33a44 − a12a21 − a13a31 − a14a41−
a23a32 − a34a43 − a24a42.

In our case, the terms on M̃ are of the form k1σ
2βi +k2σ

−2βi +k3σ
2(βi−βj)+k4 for

i 6= j, i, j ∈ {1, 2}, and some constants km, m = 1, . . . , 4. By taking into account

this fact, it is easy to see that the dominant terms in b2 is (u11u33 − u13u31)σ
4β1 .

However using (3.53) one has u11u33 − u13u31 = 0.

An analogous computation shows that the coefficient of σ4β2 in b2 is u22u44 −
u24u42, which is equal to zero. Then, b2 does not contain terms in σ4β1 nor σ4β2 .

Then, b2 is written as (3.34) with

e3 = (u11 + u33)(u22 + u44)− u12u21 − u14u41 − u23u32 − u34u43.

It is easy to check that e3 = −4e11e12e21e22det(X1). If we denote by

en = −4e11e12e21e22 and by eg = det(X1),

we have that en depends on λ1, λ2, α and γ, but not on V1, and eg depends also

on V1.
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Now we assume that λ2 < γ
(2− α)2

8
. In this case β2 is pure imaginary. Due

to the real character of M its characteristic polynomial is real and therefore

d2σ
2β2 + d4σ

−2β2 ∈ R ⇒ d4 = d2 ,

e3σ
2β2 + e4σ

−2β2 ∈ R ⇒ e4 = e3.

To finish the proof of lemma 3.3.5 we only need to prove that dn, en 6= 0. To

do that, we shall see that e11, e12, e21, e22 6= 0.

From (3.47) and (3.45), a simple computation shows that

e11 =
1

ρ+
1 − ρ−1

(c31 − ρ−1 c11), e21 =
1

ρ+
1 − ρ−1

(c41 − ρ−1 c21),

e12 =
1

ρ+
2 − ρ−2

(c32 − ρ−2 c12), e22 =
1

ρ+
2 − ρ−2

(c42 − ρ−2 c22). (3.54)

System (3.43) can be written as two uncoupled systems of the following type

v′1 = v2,

v′2 = λv1 −
QL1(τ)

2
v2, (3.55)

where λ = λ1 for the system corresponding to u1, u3 and λ = λ2 for u2, u4.

We note that

(

c11 c21
c31 c41

)

and

(

c12 c22
c32 c42

)

are the fundamental matrices

of (3.55) for λ = λ1 and λ = λ2, respectively.

Therefore any eij in (3.54) can be written in terms of v2(τL1) − ρ−v1(τL1))

being (v1(τ), v2(τ)) a solution of (3.55) and

ρ− =
Qp

4
(1− β), with β =

√

1− 8λ

γ(2− α)2 . (3.56)

We note that if λ = 0, ρ− = 0 and (3.55) has solutions with v2(τ) ≡ 0. Then, if

λ1 = 0, c31 = 0 and e11 = 0. In a similar way, if λ2 = 0, c32 = 0 and e12 = 0.

Next lemma applied to our systems will be very useful in order to finish the

proof of lemma 3.3.5.

Lemma 3.5.1. Assume λ 6= 0. Let v(τ) = (v1(τ), v2(τ))
T be one of the solutions

of (3.55) with initial conditions v(0) = (1, 0)T or v(0) = (0, 1)T . Let be ρ− defined

in (3.56). Then, for any τ > 0 sufficiently large

v2(τ)− ρ−v1(τ) 6= 0. (3.57)
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Proof

Assume that λ < γ(2−α)2/8 < 0. In this case ρ− is a complex number and as

we consider real solutions of the real system (3.55) then the result of the lemma

follows trivially.

We assume λ >
γ(2− α)2

8
. We introduce polar coordinates in (3.55) as v1 =

r cosφ, v2 = r sinφ. Then

r′ = r

[

(1 + λ) cosφ sinφ− QL1(τ)

2
sin2 φ

]

, (3.58)

φ′ = λ cos2 φ− sin2 φ− QL1(τ)

2
sinφ cosφ.

We are interested in the solutions of (3.55) with v(0) = (1, 0)T and v(0) =

(0, 1)T , that is, the solutions of (3.58) with r(0) = 1 and, φ(0) = 0 and φ(0) =
π

2
,

respectively. Moreover we have v2(τ)− ρ−v1(τ) = r(τ)[sinφ(τ)− ρ− cosφ(τ)]. We

note that r = 0 is invariant for (3.58). Then, we have to prove that sinφ(τ) −
ρ− cosφ(τ) 6= 0, or equivalently, that

tanφ(τ) 6= ρ−, (3.59)

for any τ > 0 sufficiently large. To do that we only need to consider the non au-

tonomous equation for φ in (3.58). If we consider time as a variable we are faced to

a system defined on a cilinder. For convenience, we shall consider a 2–dimensional

system on the plane taking into account the corresponding identifications.

So, we define new variables u = tanh

(

α

2(2− α)Qpτ

)

and w = tan(φ(τ)).

Condition (3.59) reduces to w(τ) 6= ρ− for τ sufficiently large.

We get for w and u the following planar system

w′ = −w2 +
Qp

2
uw + λ,

u′ =
α

2(2− α)Qp(1− u2), (3.60)

which is well defined for any u,w. However, for us, it only makes sense for |u| ≤ 1.

It is also clear that u(τ) is an increasing function for |u| < 1. Moreover, in order to

recover the solutions of (3.58) from (3.60) we must identify the solutions of (3.60)

with w(τ) → −∞ for τ → τ−∗ with the corresponding ones with w(τ) → +∞ for

τ → τ+
∗ .

If λ > γ(2 − α)2/8 the system (3.60) has two equilibrium points on the line

u = 1 located at (w, u) = (ρ−, 1) and (w, u) = (ρ+, 1) respectively, where

ρ± =
Qp

4
(1± β) .
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We study the stability of these equilibrium points. The Jacobian of the planar

vector field that defines (3.60) is

(

−2w +
Qp

2 u
Qp

2 w

0 − α
2−αQpu

)

. (3.61)

Then, for (ρ−, 1) matrix (3.61) has eigenvalues − α

2− αQp < 0 and
Qp

2
β > 0, and

then (ρ−, 1) is a saddle point. The eigenvalues of (3.61) on (ρ+, 1) are − α

2− αQp <

0 and −Qp

2
β < 0. Therefore ρ+ is an attractor. Moreover, (3.60) has a vertical

isocline defined by −w2 +
Qp

2
uw + λ = 0.

First we assume that λ > 0. In this case, ρ− < 0 and ρ+ > 0. The region

R1 = {(w, u) |w ≥ 0, 0 ≤ u ≤ 1} is positively invariant for the flow defined by

(3.60). In this region all the orbits tend to the attractor. Then, the orbits we are

interested in are contained for all positive time in R1. As ρ− /∈ R1, w(τ) 6= ρ− for

τ > 0. (see Figure 3.5).

Now we consider values of λ such that γ(2−α)2/8 < λ < 0. Then 0 < ρ− < ρ+.

Let W s be the branch of the unstable invariant manifold of the point (ρ−, 1)

contained in the band {(w, u) | |u| ≤ 1}, and R2 ⊂ {(w, u) |w ≥ 0, 0 ≤ u ≤ 1}
the unbounded region with boundaries W s and {(w, u) |w ≥ ρ−, u = 1}. Then R2

is positively invariant and all the orbits in R2 tend to (ρ+, 1) when τ →∞. As the

orbits we are interested in enter in R2 for some τ large enough, then w(τ) 6= ρ− if

τ is sufficiently large (see Figure 3.6).

2

In order to apply this lemma to our case, first we take v(τ) = (c11(τ), c31(τ))
T

and λ = λ1. We know that v(0) = (1, 0)T . Then,

c31(τ)− ρ−c11(τ) 6= 0,

for τ sufficiently large. We take δ small enough in order to obtain the relation

above. Then, e11 6= 0.

Analogously one can see that e12, e21, e22 6= 0.
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Figure 3.5: Phase portrait of system (3.60) for γ = −1 and λ = 1 on the

region R1.
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Figure 3.6: Phase portrait of system (3.60) for γ = −1 and λ = − 1
16

on the

region R2.
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