Chapter 4

Optimization Techniques:

Comparative Study.

“-dijo Sancho- ;No le dije yo a vuestra
merced que mirase bien lo que hacia,...”

Miguel de Cervantes

Once the optimization framework has been satisfactory implemented includ-
ing some optimizing techniques, we tested them for the particular case of forest
fire propagation in order to find the points of strength and weaknesses of these
algorithms and, furthermore, to realize their ability to afford this real problem.
In this chapter, we describe the performed experiments to tune these algorithms
and to try to answer the question “Which method is most suitable to solve this

problem?” Some discussion of the obtained results is also provided.

4.1 Platform Description

We used a cluster of 21 PCs with Celeron processor 433 MHz. Each had 32
MB RAM connected with Fast Ether Net 100 Mb. Furthermore, the operating
system installed was Linux SuSe. All the machines were configured to use NFS
(Network File System) based on one server which has the same characteristics
of the other machines. The middle-ware used to make parallel programs was
MPI[51, 50]. MPI is a library specification for message-passing, proposed as a
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standard by a broad based committee of vendors and implementors.

4.2 Experiment Description

The strategy we used to perform our experiments was to start from very simple
cases in order to obtain a good knowledge of the problem behavior. The next
step consists of developing such simple cases toward more complex situations
until we reach a real case. Since the wind has been shown to have a great
effect on the shape and size of the fire front, we started our set of experiments
optimizing the wind parameters and the rest of input parameters were kept
fixed. Once we had our system mature, we expanded the optimization to all the
parameters of the simulator.

In order to simplify the initial experiments, we deal with an easy imaginary
terrain description. The terrain we used was a completely plain square terrain,
whose dimensions were 6750mx5150m and which also contains homogeneous
vegetation in the whole area.

To optimize the simulator using our framework, we need to compare the re-
sults obtained during the optimization process against a real fire line. However,
to have access to real data about fires such as the initial shape of the fire line,
fire line propagation, wind parameter and so on, in the time of the experiment
was virtually impossible. For this reason, we created our own real fire line using
the same simulator we wanted to tune (ISS). This real fire line was obtained
by fixing all the input parameters needed by the ISS simulator as has been de-
scribed above, and using as a wind vector (wind speed and wind direction) two
values by us set a priori. Once the real fire line was obtained, we supposed that
we did not know the real parameters’ values that leads to the synthetic real fire
line. Afterward, we used the BBOF system to find the two parameters related
to wind.

As we mentioned in chapter 1, one potential source of simulation errors
may reside in the model simulated itself because of its impossibility of exactly
reflecting the real behavior of the fire spread. Therefore, this initial way of
proceeding - where the objective fire line is created in a synthetic way- have the
advantage of avoiding the possible errors in the simulator, because we have the
certainty that there exist some parameters’ values that if applied to ISS leads
to the synthetic real fire line we have.

The aim of the following experiments was to investigate the ability of the
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proposed Optimization Framework to tune the hidden parameters but not to
test the simulation modules. However, the proposed BBOF system can also
be used to test the goodness of the model itself. For that purpose, we should
follow the same scheme mentioned above for finding some lost parameter and,
afterward, analyze whether the obtained vector of parameters can be found in
the nature or not. If the obtained values are impossible to be matched within
the reality it can be considered that there is some error in the model that keeps
track of those parameters.

In the following section, we shall describe the procedure to obtain the syn-
thetic real fire lines to be used in the set of experiments reported in this chapter.

4.2.1 Creating the Synthetic Real Fire Line

As mentioned in the previous section, wind direction and wind speed have been
chosen as the tested parameters in our experimental study. Since we have in-
cluded ISS the possibility to deal with wind fields, we have divided our ex-
periments into two groups: depending on whether the real fire line has been
obtained using the same wind speed (W;) and wind direction (Wy) for all the
terrain or a variable wind field. In the first case we talk about a fire line ob-
tained with a homogeneous wind field, whereas in the second case, we refer to
it as heterogeneous wind field. Within the heterogeneous group, two different
wind fields have been used to generate a real fire line: smooth wind field and
rough wind field, in order to test different wind conditions. Subsequently, we
describe how each fire line has been obtained using the different wind fields just
described.

4.2.2 Homogeneous Wind Field

We used the simulator with homogeneous wind field (i.e. one wind speed and
wind direction for all simulation time and all the terrain) as is shown in figure 4.1.
Wind speed and wind direction were set up to 15 km/h and 180° respectively.
We have chosen these values because the fire line outcoming from this speed is
not so large to exit from the terrain we have and not so small that the effects
of changing will be slight.
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Figure 4.1: homogeneous wind field

4.2.3 Smooth Heterogeneous Wind Field

We have created a realistic wind field by changing the wind vector from one
terrain cell to its neighbor’s cells. The wind vector changes across time and the
two resulting space dimensions (X,Y). The terrain of the simulation have been
divided virtually into 10x10 cells and we assigned for each cell a different wind
value. Each wind value differs from its neighbors by an arbitrary factor (sp).
Furthermore, we have divided the time of the simulation which was 45 minutes
into 3 time steps, each of 15 minutes. The vector assigned to each cell changes by
another arbitrary factor (¢4m). Taking into account these two variation factors,
the formulas used to generated the wind speed and wind direction for a given
cell are the following:

Ws(z,y,8) = ws —ws X $p X T+ ws X sp X y+ ws X sp X tim X §
Where:

T is an integer representing the horizontal location of the cell,

Y is an integer which represents the vertical location of the cell,
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S is integer number representing the order of the time step (1,2 or 3

in this case),
Ws(z,y,s) is the wind speed for cell (x,y) in time step number s,

ws is the seed for the wind speed.

The wind direction is calculated in the same way:

Wd(z,y,s) = wd+ wd x sp X x —wd X tim X s

Where :
wd is the wind direction for the cell (x,y, 2),
wd is the seed for the wind direction.

Applying the formulas, the wind speed increases by factor (tim) by time and
by factor (sp) by y diminution and decreases by (sp) through the z diminution.
And wind direction increases by time and both directions by factors (¢tim) and
(sp), respectively. In order to create a smooth wind field, we used wind speed
ws equal to 10 and a wind direction wd equal to 45, furthermore, sp and tim
were set to 0.01 each. The wind field created by these parameters was not very
abrupt and, therefore, it could be considered as smooth. Figure 4.2 illustrates
a small heterogenous wind field for a 3x4 cells terrain.

4.2.4 Rough Heterogeneous Wind Field:

We also created a rough wind field in the same way as the smooth heterogeneous
wind field was created but, in this case, we use sp equal to 0.02 and tim equal
to 0.1. This wind field description provides a wind that varies more than the
smooth wind field. This case reflects when the wind changes quickly, and in this
text will be called rough heterogeneous wind field (see figure 4.3).

4.3 The Objective Function

In our case, the objective function should consider two different aspects: the
suitableness of the solution and its reliability. The suitableness deals with the
degree of matching between the fire-line obtained for a particular parameters
vector after executing the ISS simulator for a time period equal to T, and the real
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Figure 4.3: Rough heterogeneous wind field



4.3. THE OBJECTIVE FUNCTION 75

fire-line after expired this period 7. Reliability considers physical restrictions
in order to avoid solutions that provide impossible real situations. We will try
to optimize both objectives at the same time.

For suitability we have chosen the Hausdorff distance [89]. Hausdorff dis-
tance is used in the literature of shape recognition to measure the degree of
concordance of two shapes.

In order to deal with the reliability of the objective function, spectacular
wind changes were considered less likely to occur than light wind speed and
wind direction variations. For this purpose, we include a factor P that measures
such restriction. The P factor is evaluated as the addition of vector difference
between consecutive wind vectors provided by a particular solution. Formally,

the P factor is defined as follows:

m—1
P=Y [t - @)
n=1
More precisely, for each parameter vector we need to evaluate the Hausdorff
distance and the P factor. In order to consider both aspects in the prediction
error and control their influence on this, we introduce a parameter called o which
determined the weight of each aspect in the objective function (L). Finally, the
L is evaluated as
L=aH+ (1-a)P

The smaller the prediction error, the better the corresponding solution.

4.3.1 Preliminary Analysis of the Objective Function

As we have previously mentioned, we are interested in finding the optimal pa-
rameters that make the result of the simulator match the real fire line. Since
the Hausdorff distance HD will tend to zero as the objective results improve,
our aim is to find the global minimum of this objective function, that means
that Hausdorff distance between the simulated fire line and the real fire line is
minimum.

At this point, many questions about the shape of the objective function occur
to us like: does our objective function have local minimums or only one global
minimum? Is the function smooth all over the space? Is there more than one
global minimum of the function? In order to answer all these questions, we tried
to sketch some cross sections of the simplest objective function. For this purpose,
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Figure 4.4: Objective function cross section at optimal wind speed (15 km/h)
using a homogeneous wind field to generate the real fire line

we deal with the fire line created in the simplest way using the homogeneous
wind field. In this case our search space have only two dimensions, wind speed
and wind direction, which provides us an easy and affordable objective function
(the Hausdorff distance).

In order to easily analyze the search space of our objective function, we have
fixed one dimension at the true value and we have drawing the other one within
its valid range. Therefore fixing the wind speed on the optimal value (15 Km /h)
and changing the direction, we will have a cross section of the function in the
optimal wind speed. Figure 4.4 shows that the function has one global minimum
and several local minimums and it is somewhat symmetric around the global
minimum, having a "V" shape in general.

For sake of completeness, we also sketched the objective function at wind
speed equal to 20 km/h and 5 Km/h, which are respectively depicted in figures
4.5 and 4.6. The graph shown in figure 4.5 denotes a strange behavior of the
function: it has many local minimums and the global minimum of this cross
section (which is also a local minimum) is shifted from the optimal minimum a
little.

Furthermore, when we observe the shape of the search space depicted in
figure 4.6, we notice that the behavior of the function is very strange. The
reason for such a behavior is because the direction does not affect the fire-line
very much when the speed of the wind is small and it has no effect at the speed
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Figure 4.5: Objective function cross section at wind speed=20 Km/h using a
homogeneous wind field to generate the real fire line
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Figure 4.6: Objective function cross section at wind speed=5 Km/h using a
homogeneous wind field to generate the real fire line
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Figure 4.7: Two simulated fire lines with speed smaller than real.

of 0 km /h.

It seems strange that in the optimal direction we have the maximum (worst)
distance. This can be explained as the following: in the optimal direction the
curve is well centered inside the real fire line when calculating the Hausdorff
distance, we get the distance behavior as show in the figure 4.7, which is greater
than the distance of the rotated simulated fire line. In other words, when
rotating the graph, in this case, their points get closer to the points of the real
graph, which is larger.

Once we have analyzed the behavior of the objective functions taking into
account its relation to the wind direction, we perform the same analysis but
now considering what happens to the Hausdorff distance when fixing wd to
180° (the optimal value) and varying the wind speed. The obtained graph is
shown in figure 4.8.

We can observe that the curve is smooth but not very symmetric. It has a
more linear form when the speed is greater than optimal and the slope changes
when the speed is less than optimal. More precisely, it starts with a big slope,
then the slope decreases by the decreasing of the speed.

The function we have is not continuous because we are calculating the dis-
tance of the farthest two points of the two fire lines. By changing the orientation
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Figure 4.8: Objective function cross section when wind direction is fixed at the
optimal value (180°)

or the size of the graph the function may return the distance between other two
points.

After this study of the objective function, we could imagine a surface that
has a dominating global minimum and several local minimums. If we look at
the surface as a whole, ignoring the local minimum, it may have a bowl shape,
which can be approximated to a parabolic function. This conclusion is useful
to create the approximation model for the analytical optimization approach.

Subsequently, we describe the performed experiment considering the differ-
ent wind field created and bearing in mind the "assumption" that our objective
function could have a parabolic aspect.

4.4 Homogeneous wind Field

We started our experiments with a simple case: homogeneous wind field (i.e.
one wind speed and one wind direction). Therefore, we had only two parameters
to tune. Since we do not consider any wind variation (temporally or spatially)
throughout all the experimental study reported in this section, the objective
function to be evaluated can be reduced to evaluate the Hausdorff distance
without considering the physical restrictions. Bear in mind the full description of
the objective function that has been introduced, the complete objective function
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is described as follows:
L=aH+(1-a)P

In this case, factor « is considered to be 1 and, therefore, the objective

function will be reduced as follows:
L=H

where H represents the Hausdorff distance.

In the following section, we will discuss Genetic Algorithm (GA), Taboo Al-
gorithm (TA), Analytical and Random algorithms for the simple case. Since
GA and TA have themselves certain parameters that should be tuned in order
to obtain their best performance, we attempted to tune GA and TA parame-
ters for our particular case. Afterwords, we compare the performance of the
four optimizations techniques with respect to the number of evaluations of the
objective function and the goodness of the best value obtained.

4.4.1 Tuning Genetic Algorithm

As has been described in section 2.6.3, the Genetic Algorithm has many param-
eters to be tuned and they all affect the performance of the algorithm. These
algorithm parameters are: generation size, mutation probability, crossover prob-
ability, number of crossover points, scaling factor and, in our implementation,
we have added the mutation distance which is the real number that is added to
the mutated parameter. To start the process of tuning, we fixed certain algo-
rithm parameters from the preliminary experiment and we extensively studied

others.

Fixed Parameters:

Mutation: This involves two parameters mutation probability and mutation
distance. We used a large probability of mutation 40% and a large distance
to generate genetic diversity, because we use real number representation.
If we look at the binary representation, we see that the probability is for
each bit which will be more for each real number because the real number
is more than one bit. In the binary representation, mutation is reversing
mutated bit from 1 to 0 or from 0 to 1, which means a big number in the
higher significant bits. (16, 32, 64 ... etc).
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| Scaling factor | No scaling | 1.1 | 1.2 | 1.3 |
| Hausdorff Distance | 11 | 135 [ 85 | 96 |

Table 4.1: The effect of scaling factor on the convergence of GA with generation
size equal to 20 after 200 evaluations.

Crossover: This also involves 2 parameters the crossover probability and crossover
number of crossover points. As recommended in the literature, we have
chosen a very high crossover probability (99%) to force the algorithm to
explore more space every generation, however, this setting can be tuned in
later search. The second parameter is the crossover number of points; In
this case, we have chosen the simplest one which was one crossover point.

Tuned Parameters:

Generation Size and Scaling: were subject to the tuning process, which is

subsequently described.

Since each experiment starts from a random set of initial guesses of the param-
eters, we performed 5 different experiments for each particular setting of the
generation size and scaling factor. The five results were averaged in order to
obtain a reliable value. From the literature, we have extracted that the best
scaling factor is around 1.2 [27], therefore, we have tried three scaling factors
around this recommended value 1.1, 1.2 and 1.3. Furthermore, and in order to
observe what happens if this factor was not considered, we also checked by not
scaling. The generation size chosen for doing these experiments was 20.

Figure 4.9 shows the evolution of the best distance (objective function) as
the number of executions of the objective function increases (each generation ex-
ecutes the objective function as many times as indicates the generation. Which
was equal to 20). The distance after 200 evaluations is summarized in table 4.1.

If we only consider the effect of the scaling factor when this is non-negligible,
we observe that the best results are obtained when the scaling factor is set to
1.2. However, in this case, without scaling the system converges to the optimal
of the objective function faster. This fact is due to the kind of crossover we
use, which uses the average of the parameters and the mutation. This seems
to be sufficient to create genetic diversity and there is no need to use scaling.
In order to evaluate the effect of scaling to different generation sizes, we also
analyzed the evaluation of the optimization process for a generation size equal
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Figure 4.9: The effect of the scaling factor on the convergence of GA using a
generation size equal to 20

to 10. Since the best scaling factors for the previous experiments were 1.2 and

no-scaling, we performed the new experiments only considering the two values.

Figure 4.10 shows the Hausdorff distance as the number of generations in-
crease for the above commented set of GA’s parameter. We can observe that,
without scaling, the algorithm converges faster at the beginning of the search
process, but this becomes slower after certain number of iterations. The HD
distance at the end of the optimization process was 98m when no-scaling is used

and 50m when we applied a 1.2 scaling factor.

Once we have performed the two previous experiments, we compare the
best result for each one between themselves. In the case of generation size 20,
the best distance was obtained when no scaling factor was used, whereas with
generation size 10 was with scaling factor equal to 1.2. Figure 4.11 shows this
comparison. For comparison purpose, we look at the number of evaluations
of the objective function, which is shown in the x-dimension, whereas the y-
dimension represents the objective function. Since our aim is to minimize the
number of objective function evaluations, the best result will be the one that
minimizes this factor (bear in mind that the number of function evaluations is

obtained by multiplying the generation size by the number of generations).
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Figure 4.10: The effect of the scaling factor on the convergence of GA using a
generation size equal to 10
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Figure 4.11: Comparison between generation size 10 and 20 when executing GA
as optimization techniques
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In figure 4.11, we can observe that using a generation size of 20 without
scaling converges faster all over the test iterations. We can conclude then that
the generation size of 20 and the mutation we used are sufficient to maintain

the genetic diversity and there is no need to use scaling.

4.4.2 Tuning Taboo Algorithm

We used the Taboo algorithm described in section 2.6.1. Taboo algorithm has
fewer parameters than GA, therefore, it is easier to tune. The parameters that
should be tuned are the following:

¢: frequency participation in the sorting of the evaluated vectors, which has an
effect on choosing the vector for the next move.

taboo tenure: The number of iterations that a given move is taboo have been
chosen for obvious reasons. Taboo tenure was equal to 1 and contra move
tenure equals to 1 as well. We have chosen the taboo tenure in such a way
that lets no more than the half of the moves be marked as taboo in each
iteration due to short-term taboo memory. If many moves are marked
as taboo, the algorithm will choose moving directions that are very bad,
while using a very small number of tenures makes almost all the moves
available and the algorithm chooses the minimum of the neighbors every

time falling in local minimums very easily.

The algorithm needs to start from a point in the search space. Since we con-
sider that we are totally ignorant at the beginning of the process, we can start
from more than one random choice. Then, we can continue with the normal
algorithm. However, in this case, we start from one random point because the
number of evaluations of the objective function is not so large as spend some of
them randomly.

On average, we have observed that the taboo algorithm is able to converge
to zero (i.e. finds the optimal solution) in 55 iterations. Since during each
iteration, the TA evaluates 4 point in the search space, which means that 220
evaluations of cost function are needed to reach the optimal.

Furthermore, we tried to see the effect of frequency on the taboo algorithm.
For this purpose, we execute the algorithm without using frequency and with a
weight of 10% (¢ = 0.9).

Figure 4.12 shows the convergence of taboo search with ¢ equal to 1.0 and
shows the same algorithm changing ¢ to 0.9. The results obtained for a value of
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Figure 4.12: Taboo Algorithm evolution with ¢ = 1.0 and 0.9

| |q§=1|¢=0.9| =038 |
ITERATIONS 62 54,6 Do not converge
NUMBER OF EVALUATIONS | 248 218,4 | Do not converge

Table 4.2: Taboo Algorithm performance changing ¢.

¢ equal to 0.8 are not depicted because these experiments do not converge to a
stable value. Using frequency has a direct effect on diversification. This result
means that some degree of diversification is good but too much is very bad.

The optimization process was executed until the optimal distance (Om) was
reached (notice that in the case of GA this distance has not been reached). The
same process has been performed 4 times and the average for these 4 runs of
the algorithm is provided in Table 4.2

From table 4.2 we conclude that there is a difference between the results pro-
vided by the different frequency used (in the cases that the process converges),
the best result, on average, is obtained when using ¢ equals to 0.9. This result is
expected because using the frequency helps in exploring the search space. Using
¢ less than 0.9 will make the algorithm explore more space that is not necessary
to be explored. We have experimentally observed that the algorithm did not
converges to zero using ¢ equal to 0.8 within acceptable number of iterations.
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| Degree | X2 | Wind speed | Wind direction | Distance |
2 8.097e+06 7.5 251 621
3 4.174e+06 9.9 264 443
4 3.983e+06 6.9 43.9 477
5 3.307e+06 5.4 40 654
6 4.381e+07 2.4 40 845
7 3.837e+07 0 125 888
8 6.689¢+07 0.3 46 887

Table 4.3: The results of analytical algorithm for different degrees

4.4.3 Analytical Search

As described in section 3.3.2.1, one of the implemented optimization techniques
in our optimization framework was the analytical approach. From the simple
analysis of the behavior of the objective function performed in section 4.3, we
assumed that a parabolic approximation was a justifiable choice in our case.
However, as we will see throughout the following experimented results, this
choice has been shown not to fit well to our problem. Furthermore, we state
what was widely mentioned in the literature: analytical optimization is not
recommended when the objective function is not calculus friendly [27].

We ran the analytical algorithm changing the degree of the fitted function
from 2 to 8. The set of vectors was generated randomly as in the other op-
timization scenarios. In table 4.3 the results for different runs changing the
degree of the approximated function are shown. We can see that x? increases
until reaching the degree of 5 and it decreases again for bigger degrees. The
best distance was at degree 3, which is 443 meters, however this is a very poor
result.

Using this analytical method in any degree, we did not reach an acceptable
result. We can see in table 4.3 that the best HD is 443m, which is even worse
than the random search, as we will show later on this chapter. We also tried
to use mesh (i.e. divide the search space into equal parts and then take the
corner vectors of the division) and a set of vectors that was the last generation
of the genetic algorithm but the results were the same. The values we get are far
from optimal, even farther than the random search. The reason for these bad
results can stem from the rare shape of the objective function always preceding
a deviation from the global minimum that means that the objective function
cannot be approximated to the mathematical model we have proposed.
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| Algorithm | Genetic | Taboo | Mathematics | Random |

Distance 11 0 443 147,25
Evaluations 200 220 200 200

Table 4.4: Comparison between all the algorithms for homogeneous wind field

4.4.4 Random Search

The main purpose of experimenting random search is to compare with other
techniques. To be fair in the comparison, we used the same number of objective
function evaluations used in the other techniques. When using the random
algorithm for the homogeneous wind field we ran the program 4 times for 200
wind vectors randomly created, keeping the minimum of each run. We obtained
the average of minimums as 147,25m of the distance between the real and the
simulated fire line. These results clearly differ from the results obtained when
GA and TA are applied.

4.4.5 Comparison Study

In this section, we summarize the results obtained for all tested optimization
techniques in order to deal with the following question: "What is the best
algorithm to optimize the objective function we have under more complex wind
field conditions?"

In table 4.4 we illustrate together the results from all the algorithms we
have tested in order to easily compare them. In particular for the GA and TA
techniques, the results included in table 4.4 are the mean results of the tuned
algorithm.

As we can observe, TA manages to reach the optimal number (distance 0) in
220 evaluations, on average. However, the GA reaches a distance, on average,
equal to 11m and it goes gradually to the optimal. The Analytical algorithm
suffers from deviation from the optimal due to the model and the rare shape of
the objective function.

Comparing the Genetic and Taboo algorithms with respect to the Random
algorithm is a way to obtain the improvement provided by those algorithms. In
other words, the utilization of some optimization technique, which improves the
goodness of the guesses during the optimization process, provides a significant
improvement in the results.

From table 4.4 we can extract that, on the one hand, Genetic and Taboo
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are both candidate algorithms to solve optimization problems of the type we
are dealing with. On the other hand, in the case of the analytical approach,
we need a better model, which is very complex to determine and, furthermore,
which will be problem specific.

Since the previous experiments consider only two parameters and in order to
make sure of the abilities of the algorithms, we need to test them against harder
problems. In the following section, we will use a more complex real fire line by
using the heterogeneous wind field to obtain it. Consequently, we experimentally
check how GA and TA react under more complex problems. In this case, since
the wind characterization involves more that only one wind vector the number

of parameters to be optimized increases.

4.5 Smooth Heterogeneous Wind Field

In order to deal with more realistic synthetic fire lines, we used the heterogeneous
wind filed described in section 4.2.3, to obtain them. This wind field produces
a fire line that cannot be exactly reproduced using only two parameters. It can
be approximated to some precision using 2/ 4 or more parameters. So we used
4 parameters in this set of experiments to test the ability of the algorithm to
reach the optimal distance. These 4 parameters have been obtained as follows:
we have divided the total time into two time steps. The first time interval lasted
30 minutes and the second time interval was 15 minutes long. Since the terrain
was considered as only one cell, our vector of parameters include wind speed
and wind direction for the above two time intervals. Consequently we had four
parameters.

At this point, we should bear in mind the full description of the objective

function that was introduced in section 4.4 that is as follows:
L=aH+(1-a)P

As mentioned before, there are two aspects that our objective function takes
into account: the suitability (H) and the reliability (P). The first one deals with
the degree of matching between the obtained fire line and the synthetic real fire
line. This aspect has been considered for the experimental study reported in
the case of homogeneous wind field. The second aspect, which manages the
physical restrictions, has not been included in the objective function because all
the experiments only deal with one wind vector (This means that the factor «
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was set to 1 for those experiments). In this section, since we are dealing with
a heterogeneous wind field, we may consider the physical restrictions that are
represented by the factor P in the objective function. Therefore, in this case, the
value of a should be different to 1 in order to consider both objective function
aspects. Consequently, we have another parameter to be tuned for both TA and
GA schemes, which is the physical penalty that should be applicable, when we
have more than one wind vector. The physical penalty, as previously described,
is the difference between all wind vectors. In other words, we added another
objective to the process, which is to minimize changes in the wind field.

As for the homogeneous wind field study, we first needed to properly tune
GA and TA in order to maximally exploit their abilities under the new problem
conditions. In the subsequent sections, we report the experiments performed
to tune both strategies by analyzing the evolution of the Hausdorff distance
throughout 20,000 evolutions of the objective function.

4.5.1 Tuning Genetic Algorithm

As in the homogeneous wind field experimental study, we fixed certain algorithm
parameters and changed others as follows:

e Mutation probability: This was set to 40% or, in other words, there is 40%
probability of adding or subtracting a real number from a parameter.

e (eneration size: This takes the values 25, 50, 100,200,400 and 800.

e Scaling constant: (c) we tested the scaling factor equal to 1.2 and without

scaling.

e Physical penalty: the a factor was set to two values: 0.5 and 0, in order to
analyze what happens if we consider this restriction or if it was dismissed.

Furthermore, due to the existence of random factors, we execute 4 tests for
each setting of algorithm parameters and we then calculate the average of the
obtained results. The results of the experiments are shown in the figure 4.13.
The graph shows the result of changing the generation size in various scenar-
ios of using and not using penalty and scaling factors. Each curve corresponds
to a certain scenario, and the horizontal axes shows various generation sizes.
Each point of a given curve is the mean value of the final situation. From the
graph we observe that the algorithm converges to the optimal faster in the two
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Figure 4.13: GA best distance changing generation size, scaling constant (c)
and physical penalty ().

scenarios that do not use scaling. Here the scaling has a negative effect because
the scaling and mutation both work in the same way to explore more space that
produces the exploration of unnecessarily evaluations.

The physical penalty has an irrelevant effect in this case. Since we are using
two wind vectors, the evaluation of the difference between them, which is at
the beginning of the iterations, is small compared to the Hausdorff distance.
Therefore, it has a small effect on the selection process. In particular, the
Hausdorff distance varies between 600 to 200 and the physical penalty ranges
between 30 to 10. We suggest normalizing both Hausdorff distance and physical
penalty before getting their weighted average.

Also we can observe a tendency to smaller generation sizes. The optimiza-
tion process reaches the same performance as the random search in very large
generation sizes. We can observe in figure 4.13 when the generation size is 200 or
greater with scaling and in the case of not using scaling it is accelerated toward
the random search as the size of the generation increases. It is better to have a
higher number of iterations using a small generation size than to perform fewer
number of iterations with a larger generation size. The main reason for such

behavior is that large generation sizes have redundant information about the
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search space, therefore, they explores search space unnecessarily. Notice that
if we use one generation of size equal to 20,000 individuals, we are practically
making a random search. Accordingly, the recommended generation size here is
no more than 25 individuals (guesses of the parameter vector).

These results are not very far from the results we have obtained using the
simple experiments. Recalling that in the simple experiment, when a homoge-
neous wind field has been considered, we conclude that a generation size equal
to 20 without scaling was a good election. This value is very close to the gen-
eration size recommended in this case, which is no more that 25 individuals
per generation and without scaling. Furthermore, we have also observed that
for tuning only three parameters of the genetic algorithm, we made many ex-
ecutions, which take a long period of time on several non-dedicated machines.
Therefore, we can conclude that the difficulty of the GA resides in tuning its own
parameters, because its performance hardly depends on them. GA has a high
number of parameters and we need to execute a great number of experiments
to tune them all. We have observed that non-tuned GA behaves like a Random
search, and GA, which has been properly tuned, gives excellent results.

As mentioned in the case of homogeneous wind field, TA also involve the
process of tuning its own parameter in order to obtain the highest performance.
In the following section, we deal with this tuning process for the Taboo Algo-
rithm. All the experiments reported have been performed using the same fire

line and the same number of parameters as in the case of GA.

4.5.2 Tunning Taboo Algorithm

As with the genetic algorithm, we used the fire line that has been created using
the heterogeneous wind field where the parameter vector involves 2 time steps
and one terrain cell, i.e., we deal with 4 real number parameters.

From preliminary studies, it seems that the algorithm reaches a good optimal
at the precision of speed equal to 0.05 km/h and direction equal to 0.5 degree,
and then it did not show any more obvious improvement. So, the move step
schedule was shown in table 4.5 where the first column indicates the different
distance values that have been used as threshold in order to change the speed
move and direction move parameter of the TA. The second and third columns
show the new values for the corresponding parameters when the threshold dis-
tance has been reached.

Furthermore, tenure time was set at 1 (taboo time 7 = 1) and the taboo
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| Best distance | Speed move | Direction moves |

>100 1.0 10
<100 1.0 5.0
<50 0.5 2.0
<20 0.1 1

<10 0.05 0.5

Table 4.5: Move distance schedule

contra move time was initialized to 3. We have 4 parameters and 8 moves and
with these settings we will have a maximum of 4 moves marked as taboo from
the moves available due to the short-term taboo. The Taboo list size is equal
to 1000 individuals. The list size has to be large because its function is to
keep track of the old points that have been visited to prevent the entrance in
non-productive loops.

In order to find the effect of the algorithm parameters, we have changed ¢
from 1 to 0.9, as we did in the case of homogeneous wind field. Furthermore,
the o parameter (physical penalty factor) has been set 1 and 0.5. Figure 4.14
shows the effect of these parameters on the average number of iterations that
the algorithm spends to find the optimal parameter (note: the numbers in the

graph are the average of 4 experiments).

We can see that with ¢ equal to 0.9 and a value of alpha (a equal to 1) for
some frequency factor and no physical penalty, the number of iterations is the
minimum. The maximum number of iterations is achieved when ¢ has a value
of 1 and « is set to 0.5 or no frequency is present but a physical penalty is
included. Therefore, TA exhibits a different behavior with respect to GA when
considering the physical penalty. Whereas this factor does not affect the results
provided by GA, in the case of TA one can observe that the presence of physical
penalty appears to have a slightly negative effect. With respect to the ¢ factor,
we can conclude that the physical penalty done not help in accelerating the
convergence, but may helps in giving better quality vectors.

As a conclusion from this set of experiments, we obtain that Taboo Algo-
rithm does not need too much tuning to be productive.
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Figure 4.14: Taboo algorithm average number of iterations to reach the optimal
solution with respect to physical penalty () and frequency (¢).

4.5.3 Comparison of Optimization Techniques Using Het-

erogeneous Wind Fields

In this section, we compare the two optimizations techniques studied in the
previous sections (GA and TA) when a parameter vector with four parame-
ters (wqt, wst, wqe?, ws?) is used. For this purpose, we simply consider the best
distance obtained throughout all the experiments performed which is shown in
table 4.6. Furthermore, in table 4.6 we include the best distance obtained in
the case of Random search in order to denote the improvement provided by GA
and TA. Table 4.6 also reports the number of evaluations of the objective func-
tion that have been needed to achieve such distances. The maximum number
of evaluations has been set a priori and it is equal to 20,000 evaluations. From
the analysis of the table, we can easily conclude that TA converges faster than
GA and, of course, faster than the Random search.

The advantage that TA has over GA may come from the implementation of
the move. TA in this implementation does not search the entire search space.
Instead it has a limited subset of the search space that GA searches in. TA
searches do not have floating-point representation of the parameters as their
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| Algorithm | Distance | N° of evaluations |

Random 97,5 20’000
Genetic 17,6 20000
Taboo 8,95 2596

Table 4.6: Comparison between genetic, taboo and random search using smooth
heterogeneous wind field

domain but GA do. In addition TA uses an adaptive move distance which
makes convergence even better.

The following section experiments the effect of adding more parameters and
complicates the fire line produces on the number of evaluations of the objective
function when GA and TA are used.

4.5.4 Algorithm Scalability

In this section, we aim to analyze the robustness of the algorithms and the effect
of assigning more parameters to be tuned on the quality of the solution. For
this purpose, we have used the same fire line as in the previous sections (smooth
heterogeneous wind field).

In table 4.7, we summarize the mean values obtained for all the experiments
for the different sizes of the parameter vector we have used (2, 4 and 6). The
first two columns show the results of the experiment with the simple fire line
and the other columns show the results of the experiment with the smooth
heterogeneous wind field for 4 and 6 parameters, respectively.

If we analyze what happens in the case of Genetic Algorithm, we can observe
that the number of evaluations increased from 200 to 20,000, which means an
increment of 100 times in the number of evaluations. However, in the case of
Taboo Algorithm, the number of evaluations has increased from 218 to 2’596
which implies an approximate increment of 12 times. Furthermore, when we
change the number of parameters from 4 to 6 parameters using the same real
fire line and the same number of evaluations of objective function, we do not
reach better distance, on the contrary, the obtained distance increases.

Using 4 parameters, we reach a smaller distance in the same number of iter-
ations, which means that when the number of parameters increases, the number
of iterations needed to find the optimal solution increases as well. Therefore,
we suggest using smaller number of parameters to find the optimal and, subse-
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| | Simple | Heterogeneous |
Param. 2 4 6
Tter. | distance | Iter. distance | Iter. distance
Genetic | 200 11 20’000 18.8 20’000 84.75
Taboo | 218 0 2’596 8.95 15’648 48.43

Table 4.7: Comparison between TA and GA with respect to the number of
parameters

quently, apply the optimal vector to create extended vectors with more param-
eters. Afterward, these enlarged vectors can be tuned if we need more accurate
vectors. In other words, it is not recommended to start from an ignorant state
using the full size of the vector we want to tune. It seems to be better to initiate
the optimization process using a few rough parameters and, when we are in the
neighborhood of the optimal solution, we can enlarge the size of the vector in
order to reach more accurate solutions. We can consider the values optioned
in the first stage as the starting values of the parameters when the vector is
enlarged. For instance, in the case of using 2 time steps where the first step is
30 minutes and the second is 15 minutes, these could be used as the first stage of
the optimization process. Afterward, once we have found the optimal values for
the two time steps process, we could then divide the first step into two steps of
15 minutes each and consider the number we have optioned for the time period
of 30 minutes as the same for the two new smaller steps. Subsequently, we could
proceed with the optimization process starting with this new vector.

After these results, some new questions arise: "What happens when the real
fire line becomes more complicated and the wind field changes more? What
is the effect of the real fire line on the performance of the algorithms? " The

following section tries to answer these questions.

4.6 Rough Heterogeneous Wind Field

The experiments reported in this section have been performed for the tuned
algorithms (GA and TA) and considering a different real fire line. We have
changed the fire line that has been created by using a smooth wind field for one
that has been created using a rough wind field with a space factor (sp) equal to
0.02 and time factor (¢tém) 0.1 (see creating real fire line section 4.2.1 ).

Table 4.8 shows the results, on average, obtained for both experiments
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| Wind Field | Smooth | | Rough | |
Distance | Evaluations | Distance | Evaluations
Genetic 18,8 20’000 47,75 20’000
Taboo 8,95 2’596 25 1’830

Table 4.8: Comparison between TA and GA with respect to changing a real fire
line using different wind fields and 4 parameters.

(smooth and rough wind field) by maintaining the same settings of the algo-
rithms.

We can consider the wind as fixed for more time and larger terrain cell in the
case of a smooth wind field than in the case of a rough wind field. Therefore,
we need to divide the time and/or space more to reach the same distance as we
did with smoother wind field. We expect that using a rough wind field gives an
objective function that has a large distance global minimum, in other words, the
absolutely optimum vector with 4 parameters has an objective function shifted
from zero with more distance than the one calculated against smooth wind field.

The distance using Genetic Algorithm increased from 18.8 to 47.75 and in
the case of Taboo from 8.95 to 25 which is almost the same ratio of increase or
the same shift, due to the shift of the objective function.

We notice that the number of iterations of taboo is smaller. This result can
be explained because we collect the average of 4 tests and the starting point is
random which means that chance can influence the results. In order to eliminate

this factor, we need to make more tests.

4.7 Comparing Modern Heuristic Techniques

In this section, we extend the optimization process to include all the input
parameters required by the ISS simulator. As in the previous experiments, a
synthetic real fire line was obtained. Once this synthetic fire line had been
obtained, it was dismissed and was only used as a comparative member to
calculate the objective function. Table 4.9 summarizes the input parameters
that are required by the simulator and optimized in this study.

The Genetic algorithm, which was tuned in the previous sections, was used
in this experiment. The Simulated Annealing algorithm have two important
parameters that can be guessed easily,Ty and T, . Simulated Annealing does
not need extensive tuning and it was not introduced earlier in the study. These
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Param. Meaning Units | Typical Min. Max.

Name value value value

W Fuel loading Kg/m2 | - 0.3 4

B8 Compactness factor - - 0.005 0.12

o Fuel particle area- | 1/m | - 315 11500
to-volume ratio

St Fuel particle total - 0.0555 0.0001 0.09
mineral content

Se Fuel particle total - 0.01 0.0001 0.07

mineral  contents
except silica

Mz Moisture of Extinc- - - 0.1 0.4
tion

My Humidity contents - - 0 Mx

h Fuel particle low | MJ/kg | 20.3 19.5 24.0
heat content

U wind speed Km/h |5 0 20

Table 4.9: Typical and bounding values for ISS input parameters

two parameters ware set to 1000 and 10, respectively. From our experience with
Taboo algorithm, the taboo moves need to be no more than half of the moves
available in each iteration. The algorithm do not perform well when the taboo
tenure is more than one. Therefore taboo tenure was set to 1 and taboo tenure
contra move was set to 5, so that we have 6 moves marked as taboo out of 20.
The frequency factor ¢ was set to 0.9, as the tuning experiment shows that this
was the optimal.

In this study, the optimization process has been iterated 1000 times and,
furthermore, since the initial set of guesses for all strategies was obtained in a
random way, the global optimization process was performed 10 times. There-
fore, all the values reported in this study correspond to the means values of
the corresponding 10 different experiments conducted. In figure 4.15, we show
the evolution of the Hausdorff distance while optimization is iterating. We can
observe that SA,TS and GA exhibit a similar behavior, whereas the pure ran-
dom has a different convergence speed pattern. If we analyzed each individual
optimization technique more carefully, we would also observe that TS converges
faster at the beginning, but, after 200 iterations, provides almost the same
results as SA. However, after 300 iterations, both exhibit a particularly tight
behavior.

We can also observe that GA exhibits a slight convergence speed at the
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Figure 4.15: Hausdorff distance throughout the optimization process

| iteration n® | Random | SA [ TS | GA |

100 840.5 149.7 | 125.3 | 287.5
500 3234 102.3 | 111.8 | 137.2
1000 249.1 91.0 | 109.9 | 115.1

Table 4.10: Hausdorff distance (m) for RS, SA, TS and GA optimization algo-
rithms.

beginning of the optimization process compared to TS and SA, which may stem
from the difficulty of tuning the quantity of parameters involved. However,
this feature is overcome as the iterations progress. Table 4.10 shows, in greater
detail, the exact Hausdorff distance, on average, at iteration numbers 100, 500
and 1000. As we can observe, the Taboo Search practically freezes after almost
500 iterations and shows a slow development after 100 iterations. The value of
the distance at iteration 100 was 125.3 m, and at iteration 527, the value was
109.9m, which is the same as at the end of the optimization process (iteration
number 1000).

To summarize, The experiments were carried out using different fire scenar-

ios. The results show that Simulated Annealing, Taboo Search and Genetic
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Algorithm provide similar patterns. At the beginning of the process, the Taboo
search algorithm provides better configuration, but, after a certain number of
iterations, results were improved by Simulated Annealing.

4.8 Chapter Conclusion

The implemented optimization techniques described in section 3.3, have been
tuned and tested to optimize real life objective function that consists of forest
fire simulator and a prediction error. We started with a simplified problem by
tuning two parameters for a simple synthetic fire line and we then complicated
the problem to reach a full simulator input parameters. Classical optimization
techniques get out from the beginning of the race. However, modern heuristic
evolutionary techniques shows robustness against the changing and complication
of the problem. Some techniques show small advantages in certain cases. But
in general, all the modern heuristic evolutionary techniques (genetic, taboo and
simulated annealing) shows the ability to solve the problem.
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Chapter 5

Accelerating Optimization

Convergence

“han de poder poco sus malas artes
contra la bondad de mi espada”

Miguel de Cervantes

As mentioned in chapter 3, parallelizing the method will reduce the time
needed to execute every iteration. In this chapter, we will develop methods to
reduce the number of iterations necessary to reach a “good“ solution. In par-
ticular, this technique depends on reducing the search space. Since the number
of parameters is quite large, the resulting search space becomes enormous, con-
sequently, to assess the whole search space is not feasible. In order to reduce
the underlying search space, we propose applying a sensitivity analysis to the
input parameters. The sensitivity analysis will asses the impact on output of
each input parameter and, consequently, it will allow us to determine which
parameters are worth spending time on tuning and which are better to avoid
spending such effort on.

5.1 Reducing the Search Space

To reduce the search space we propose the following three techniques: reduc-
ing the problem dimensionality: searching in reduced ranges and sampling the

101
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search space. All three techniques needs a sensitivity index to reduce the search
space in a rational way. In the following we shall briefly describe how each one
of these techniques work, and, then, we will concentrate on how the sensitivity
analysis has been carried out inorder to determine the sensitivity index of each

input parameter.

5.1.1 Fixing Some Parameters to their Nominal Values

Fixing some parameters to their nominal values will reduce the dimensionality
of the search space which will reduce the search space. Recalling the example of
section 2.2.2 where we need to optimize 10 real parameters on a machine that
guarantees 7 decimal digits of accuracy, if we reduce the number of parameters
from 10 to 9 the search space will be reduced from 1E70 to 1E63 and, conse-
quently, reducing the number of parameters to 8, 7 and 6 parameters will reduce
the search space to 1E56, 1E49 and 1E42 possible combinations, respectively.

Choosing the parameters to be fixed is not an arbitrary process. If we
fix some parameters that have significant effect on the result to bad values,
will deviate the optimization process from the good optimums. But fixing the
parameters with less significant effect will not affect finding good solutions and
at the same time will reduce the search space.

5.1.2 Introducing a Certain Degree of Knowledge

In order to be more effective in tuning the most sensitive parameters, we also
propose introducing a certain degree of knowledge during the optimization pro-
cess. This knowledge will consist of limiting the range of the tuned parameters
around an estimated value (which may be the real measurement if any, bear-
ing in mind that all measurement instruments have a degree of error) for those

parameters.

5.1.3 Sampling the Search Space

The other possible way to accelerate the convergence of the optimization is sam-
pling the search space. What we mean by sampling is to select some discrete
values from the range of possible values of the parameter to be used by the
optimizer. The values that will be examined cannot be any value within the
range of possible values of the parameter that permits the floating-point rep-
resentation but will be a discrete subset of them. Once again, with the same
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example of 10 parameters and machine of 7 decimal digits, instead of using all
the parameters with the full machine accuracy (of 7 digits), we reduce some of
them to 4 digits - let us imagenimagine a situation where 3 parameters have the
accuracy guarantee of 4 decimal digits and the rest will remain with 7 decimal
digits of accuracy- the original search space of 1E70 will be reduced to 1E61. It
is expected that sampling the parameters may accelerate the convergence of the
optimizing technique but, at the same time, we may lose the optimal solution.
A good balance between sampling and arriving at a reasonable minimum can be
reached by decreasing the sampling frequency of the parameters that has little
effect on the result, at the same time using a rather high sampling frequency of
the parameters that have little effect on the result, and by using a rather high
sampling frequency for the parameters with higher effects. The parameters that
have a greater sensitivity index need to have more sampling frequency because
by definition a little change in the parameter with great sensitivity index has a
big effect on the result, so sampling frequency needs to be correlated with the
sensitivity index. The distribution of the points across the axes of the param-
eters of more sensitivity need to be more dense than the distribution of points
in the axes of parameters with less sensitivity.

In essence, the three above-proposed techniques to accelerate the conver-
gence of the optimization process, are based on knowledge about the sensitivity
of each involved input parameters. Therefore, in the following section, we will

outline different strategies to deal with the sensitivity analysis.

5.2 Sensitivity Analysis

Sensitivity Analysis (SA) classically aims to ascertain how a model/simulator
depends upon the information fed into it (input model/simulator parameters).
The objective of any sensitivity analysis is to identify the most important factor
among all inputs, which will be defined as the input that, if determined (i.e.
fixed to its true although unknown value), would lead to the greatest reduction
in the variance of the model/simulator output. Likewise, we can define the
second most important factor, and so on, until all factors are ranked in order of
importance [99].

Sensitivity methods can be classified as: mathematical, statistical and graph-
ical. In the following, we briefly describe each of these methods.
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Mathematical Mathematical sensitivity methods assess the sensitivity of a
model output to the range of variation for an input. These methods typically
involve the output evaluation for a few values of an input, representing the
possible range of the input. Such methods do not address variance in the output
due to the variance in the input, but they can assess the impact on the output
of range of variation in input values. In some cases, mathematical methods can
be helpful in screening the most important inputs. These methods also can be
used for verification and validation, as well as in identifying inputs that require

further data acquisition or research [38].

Statistical Statistical methods involve running simulations in which inputs
are assigned probability distributions and processing the effect of variance in
inputs on the output distribution. Depending upon the method, one or more
inputs are varied at a time. Statistical methods allow us to identify the effect

of interactions among multiple inputs [61].

Graphical Graphical methods give representation of sensitivity in the form
of graphs, charts, or surfaces. Generally, graphical methods are used to give a
visual indication of how an output is affected by variation in inputs. Graphical
methods can be used as a screening method before further analysis of a model
or to represent complex dependencies between inputs and outputs. Graphical
methods can be used to complement the results of mathematical and statistical

methods for better representation.

5.2.1 Sensitivity Analysis on the Enhanced Prediction Ap-
proach.

A suitable method in our case is a method based on nominal range sensitivity
analysis, which is also known as local sensitivity analysis or threshold analysis
[99]. This method is applicable to deterministic models. It is usually not used for
probabilistic analysis. One use of nominal sensitivity analysis is as a screening
analysis to identify the most important input to propagate through a model in
a probabilistic framework. Nominal range sensitivity can be used to prioritize
data collection needs.

Basic nominal sensitivity analysis evaluates the effect on the model output
exerted by individually varying only one of the model inputs across its entire
range of possible values, while holding all other inputs at their nominal or base-
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case values. The difference in the model output due to the change in the input
variable is referred to as the sensitivity or swing weight of the model to that
particular input variable, in that given case.

However, there may be interdependencies among the parameters. Therefore,
the effect of one parameter may depend on the values of the fixed parameters.
The model can be very sensitive for one parameter when the other parameters
have certain values, and not so sensitive in other values. To have a global view
of the sensitivity of one parameter we need to examine its sensitivity in various
representative cases. We define the “case” here as a certain values setting of
all the parameters except the parameter we are analyzing. For example if we
are analyzing the wind, we define several cases in which the fire can occur and
the model sensitivity to the wind might change. Consider, for instance, the
case of very large surface-to-volume ration (e.g. straw) and the compliment
case of low surface-to-volume ration (e.g. woody fuel) in these two cases, we
observe different wind sensitivity. The wind has greater effect in the first case.
So we cannot depend on one case to calculate the sensitivity of a parameter.
Therefore, we create all the possible cases and calculate the nominal sensitivity

for all the cases.

All the possible cases in the fire propagation models can be defined by com-
bining all the combination of minimum and maximum values of the parameters.
Suppose we have 10 parameters and we want to calculate the sensitivity of the
first parameter, we need to construct all the possible cases then calculate the
nominal sensitivity of the first parameter for all the cases. Setting the rest of
the parameters at their minimum is considered as one case, setting all the pa-
rameters at their minimum except one, we set it to its maximum, is considered
as another case, and so on for all the parameters. Following this approach we
will have 29 different cases. The nominal sensitivity of the first parameter needs
to be calculated in 27! cases where n is the number of the parameters of the
model.

In the particular case of fire propagation, the number of parameters is quite
high and the number of combinations that must be evaluated in order to reach

the sensitivity index is enormous.
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5.3 Experimental Study

The aim of the experiments in this section consist of investigating the ways
of reducing the time necessary to execute the enhanced prediction method de-
scribed in chapter 2. As mentioned in the beginning of this chapter, we can
accelerate the optimization convergence by reducing the search space. In this
section, we focus on the experimental study developed to reduce the search
space. We will start with calculating the sensitivity index needed by the tree
proposed methods.

5.3.1 Calculating the Sensitivity Index

The sensitivity of the parameters, in our case, depends on the fire propagation
model used in the core of the objective function. For a generic study, we studied
the effect of the parameters of the model in one dimension. In particular, we fo-
cused on the propagation speed, thus the wind had only one scalar value, which
is the speed of the wind in the direction of the fire propagation. To calculate
the sensitivity index for each parameter, it is necessary to define a minimum
and maximum value for the parameter. These values are typically obtained
from field and lab measurements. For all the possible combinations of the other
parameters, therefore, two simulations are executed considering the minimum
and the maximum value of the parameter currently studied. The speed dif-
ference between both propagation simulations represents the effect of changing
that particular parameter from its minimum to its maximum for that particular
combination of the other parameters. Let Vj; be the effect of varying factor i
from its minimum to its maximum (difference of the speed of the minimum and
the speed of the maximum) at case k.

The total effect of parameter ¢ is defined as the addition of the effect of each

possible case:

Vi=> Va
Vk

where k is all the possible cases (combinations of input factors).

Thus, V; will be our index of sensitivity for the parameter i. This index not
only reflects the effect of the parameter, but also the effect of its range. Higher
parameter ranges mean greater uncertainty in the measurement of that param-

eter.
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| parameter | Min | Max | Index |
Wo 0.1 1 0.77
3 0,01 011 | 0,86
o 315 11500 0,56
S, 0,001 0,08 | 0,03
3, 0,0001 0,07 0,16
M, 0.1 0.4 0,28
My 0 Mx | 0,61
h 18571429 | 22000000 | 0,13
U 0 15 0,71

| Parameter | Index |

Table 5.1: Ranges used to calculate the sensitivity index.
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B 0,36
Wo 0,77
U 0,71
M; 0,61
o 0,56
M, 0,28
S. 0,16
h 0,13
S; 0,03

Table 5.2: Parameters ordered by sensitivity index

As we have previously commented, for simulation purposes, we used the ISS
forest-fire simulator, which incorporates the Rothermel fire spread model [96].
Therefore, the Rothermel model input parameters will conform the vector to be
optimized in our case. Table 5.1 outlines each one of these parameters and their
corresponding minimum and maximum values according to [7], also showing
the calculated index. Using the value of the index, we can classify the input
parameters by their sensitivity, as shown in table 5.2. This table shows that
the two most important parameters are the load parameters (W,3); the third
is wind (U), followed by humidity (M;). The parameters with weakest effect
are metal content (S;, Se) and heating content (h). This result concords with
the results obtained by [98], which also uses the Rothermel set of equations as

a forest fire propagation model.

Since sensitivity analysis implies a high number of simulations, we have
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also used the master/worker programming paradigm to evaluate all sensitivity
indexes. The master prepares the set of parameters that need to be evaluated
and keeps the resulting values; then it calculates the index. The worker executes
the simulator and calculates the corresponding spread speed. After that, it sends
back the result to the master. After the master prepares the set of parameters
that need to be evaluated. The evaluation process can be executed in parallel
without any need for communication, except sending the results.

5.3.2 Reducing Problem Dimensionality

Considering the definition of the sensitivity index, if we were able to find the
real value of the parameters with greatest importance, we would minimize the
divergence of the simulator from the reality. Therefore, it is crucial to calibrate
the parameters that have greater sensitivity index, while we do not know their
real values. Likewise, we can say that calibrating the parameters that have little
effect on the results will not significantly improve the simulator results, and this
will consume processing time. The impression is therefore created that it is
not worth tuning the parameters with small sensitivity index. If we have fewer
parameters to be optimized, the process will converge faster and, at the same
time, fixing certain unimportant parameters to a given value with a reasonable
error will not deviate the optimization process too far from the global minimum.

However, it is evident that if we need more accuracy, we then need to tune
all the parameters, regardless of their importance.

This experiment, is designed to observe the effect of fixing the parameters that
have a small sensitivity index on the convergence of the optimization process.
The real values plus 10% of their full range is used as estimated values for the
parameters to be fixed. This percentage of variation allows us to experiment the
effect of having an error of 10% in the estimation of the parameter. Table 5.3
shows the real value of the less sensitive parameters, and their corresponding
estimated values, when applying this estimation error (10%).

Figure 6.3 shows the convergence of the optimizing process by reducing the
number of optimized parameters. Each curve differs from the other by omitting
one parameter each time, i.e., the curve labeled ‘10 parameters’ shows the con-
vergence of the tuning process when all parameters are considered. The curve
labeled ‘9 parameters’ plots the convergence evolution when tuning all the pa-
rameters except that with a smaller sensitivity index (‘Sy’ in this case), and so

on.
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| Parameter | Real value | Estimated value |

St 0.04 0.04799
h 18971429 19314270
Se 0.02 0.0269

M, 0.3 0.33

Table 5.3: The real and estimated values of the fixed parameters.
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Figure 5.1: Optimization Convergence Changing the Number of Parameters
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As we can observe, we can clearly distinguish two different phases: one
phase from the beginning of the optimization process up to iteration 500, ap-
proximately, and a second phase, which goes from iteration 500 until the end.
During the first phase, independently of the number of parameters optimized, we
clearly observe fast convergence and, in particular, the case where two param-
eters are fixed (the curve labeled ‘8 parameters’) has a superior optimization
performance. In contrast, in the second phase, the convergence speed for all
cases seems to stabilize.

However, since GAs may have a warm-up phase (i.e. starting iterations
before the convergence), we applied statistical hypothesis testing [107] to the
results in order to asses whether or not the observed behavior can be considered
statistically different. We can observe in figure 5.2 that at iteration 500, in
general, for each case (fixing a certain number of parameters) the corresponding
mean value lies inside the confidence intervals of the other cases. That means
that there is no statistical evidence that the differences are relevant between the
means due to fixing some parameters at that iteration. However, figure 5.3 shows
that the means have a trend to diverge one from the other at iteration 1000.
In the same way we have applied statistical hypotheses testing for iterations
100, 200, 300, 400, 500, 600, 700, 800, 900 and 1000. We found that there is
no statistical difference between the means before iteration 500; consequently,
it is irrelevant to discus the behavior of the curves during the first phase of the
optimization process.

However, at iteration 1000, the results show a statistical difference between
optimizing all parameters as opposed to fixing 1, 2, 3 and 4 parameters (figure
5.4) because the mean value for the case of ‘10 parameters’ clearly lays out of
the other confidence intervals. Furthermore, we can observe that, as the number
of fixed parameters increases, a statistical difference also appears (i.e., 8 and 9
versus 6 and 7). The mean values of the objective function (prediction error) at
the end of the optimization process (iteration 1000) is shown in figure 5.3. As
we can see, the objective function for the case of ‘6 parameters’ is one third of
the mean value obtained for the case of ‘10 parameters’. Therefore, since the
statistical study has shown that the convergence improvement for the case of '6
parameters’ is not a matter of chance, we can conclude that reducing the search
space is a good policy to speedup the optimization convergence.

Table 5.4 shows the search space reduction for cases plotted in figure 5.3. As
we can observe, the search space reached a considerable size reduction from the
‘10 parameters’ case to that of ‘6 parameters’ case. This reduction is directly
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Figure 5.3: mean value of the prediction error (PE) at iteration 1000
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Figure 5.4: 95% confidence intervals at iteration 1000.

| N° parameters | Search space size |

10 1.0E+77
9 1.0E+69
8 1.0E+61
7 1.0E+53
6 1.0E+45

Table 5.4: Search space size for different number of parameters.

related to the improvement obtained in the objective function.

However, we should bear in mind that, these results are obtained using an
error of estimation equal to 10%. If the error is greater, the practice of fixing
the value of the parameters to estimated values will not be good. This method
therefore assumes a "good" estimation of the real parameter value.

5.3.3 The Effect of Limiting the Parameters Ranges.

Once we have observed that fixing 4 parameters to a certain estimated value
provides a considerable improvement in optimization convergence, we focus on
this case to introduce a certain degree of knowledge of the optimized parameters

in order to further improve such convergence. We assume that we have some
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Figure 5.5: Optimization convergence comparison using both the full and limited
ranges.

knowledge about the limits within which a parameter can vary, therefore it is
not necessary to search within its full possible range. For the purpose of this
experiment, we limited the range of the parameter to 15% above and below
its "known value", so as to simulate the expected range. Figure 5.5 shows the
optimization convergence when optimizing 6 parameters using either their full
range or a limited searching range. As we can observe, cutting the range of the
parameters significantly accelerates optimization convergence. Although from
the figure it seems that, at iteration 1000, both situations provide similar results,
the limited range at the end of the optimization process provides an objective
function (prediction error) equal to 98.71, on average, whereas the final value is
175.47, using the full range.

5.3.4 Sampling the Search Space.

In section 5.3.1, we ranked input parameters according to their sensitivity index.
The parameters that have a greater sensitivity index need to have high sampling
frequency since, by definition, a small change in a certain parameter with a
great sensitivity index has a large effect on the result. Thus, the sampling

frequency of all parameters that are going to be tested, needs to be correlated
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with their sensitivity index. The distribution of the points across the axes of
the parameters of greater sensitivity need to be denser than the distribution of
points in the axes of parameters having less sensitivity.

To establish a relation between the sensitivity index and the sampling fre-
quency of the parameter, we did the following: we want to associate the param-
eter with the greater sensitivity index to the highest sampling frequency that we
want to use, and associate the parameter with lowest sensitivity to the lowest
sampling frequency that we want to use. The relation between the sampling

frequency and the sensitivity index is therefore as follows:

Frow — Frui
F;=F, + -2 —™7rT
Ima:c - Imin
where :
F; is the number of selected points (sampling frequency) in the feasible
range of parameter .
I; sensitivity index of 4

Lin, Imaz minimum and maximum index of all the parameters.

Frins Frnge minimum and maximum sampling frequency.

In this experiment, the value selected as F),;, is 1 and as a maximum sampling
frequency (Fiaz), we tested several cases. The obtained values is used as a
power of 10, so that the lowest sampling frequency selects 10 values from the
range of feasible values, and the maximum will be 1E+6 and 1E+4. Table
5.5 demonstrates the effect of applying the formula in different parameters and
different sampling frequencies.

Since we are dealing with a well determined search problem, by using the
value of that table, we can easily obtain the size of the whole search space. Using
the sampling technique with the sensitivity index reduces the search space and,
at the same time, uses a large sampling frequency for the parameters with a
large sensitivity index. The resulting search space for the float representation
was calculated for this specific problem as 1le+77, however the search space
when F,,.equals to le + 4 is 1e + 28 and for F,.,equals to le + 6 is 1e + 39.

In order to evaluate improvement in the optimization convergence using the
proposed Sampling Input Parameters technique, we repeated the same opti-

mization process using sampling frequency of le+4 , le+6 and using floating
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| parameter | Frnaz =1le +6 | Frngo = le 44 |

Wo le+6 le+4
B8 le+6 le+4
o le+4 le+3
S le+1 le+1
S, le+2 le+2

M, le+3 le+2

My le+d le+3
h le+2 le+1
U le+5 le+4

Table 5.5: The result of applying the (SIP) formula on different parameters

point representation. Figure 5.6 plots the optimization process convergence us-
ing the normal floating point representation for the optimized parameters and
using the sampling technique representation with frequency 1E+6 and 1E-+4.
We can observe that actually before iteration 500 all the curves have almost
the same convergence pattern, but after iteration 500, we can observe that the
curve that represents the floating point representation convergence slower than
the other two curves. At iteration 1000, we can clearly observe that sampling
with frequency of 1E+4 reaches better solutions and converges faster (figure
5.7). We can see that a clear trend for faster convergence by decreasing sam-
pling frequency. We can conclude that using less sampling frequency helps in
accelerating the optimization process. This is because the technique reduces
the search space, which makes it easier for the optimizer to reach minimum, as
there are fewer combinations to examine. At the same time, the points that
participate in the process are distributed throughout the search space. How-
ever, using such a technique has the risk of missing the global minimum. We
cannot guarantee that the global minimum is one of the values selected. Even
when using a computer representation of real values, we do not guarantee the
existence of the mathematical real minimum, as the computers’ representation
of real values is limited to a certain precision. Furthermore, the use of sampling

is more likely to deviate from the global minimum.

5.4 Chapter Conclusions

In this chapter we have described three ways to accelerate the convergence of

the optimization process. 1) Fixing some parameters to their nominal values
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2) Introducing a certain degree of knowledge 3) Sampling the search space. All
these techniques depends on calculating a sensitivity index to rationally reduce
the search space. We have shown in the experimental part in this chapter that
the proposed techniques are useful to accelerate the optimization process and,

therefore they will be useful in the case of real-time constraint.
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Chapter 6

Applying the Methodology on

Real Cases

“Dios lo haga como puede -respondié
Sancho Panza”

Miguel de Cervantes

In this chapter, we will apply the methodology in real life cases. We illustrate
some experiments using fire lines extracted from real laboratory fires, wich allow
us to compare the classical and enhanced prediction methods. We will start
the chapter with a discussion of the experiments’ platform and methodology,

followed by the analysis of each individual case.

6.1 Experiment Platform

The proposed fire-prediction model has been studied using a purposely-built
experimental device (picture 6.1). It is composed of a burn table of 3x3 m?
that can be inclined at any desired angle (slope) and by a group of fans that
can produce a horizontal flow above the table with an arbitrary velocity. In
order to gather as much information as possible about fire-spread behavior, an
infrared camera recorded the complete evolution of the fire. Subsequently, the
obtained video was analyzed and several images were extracted, from which the

corresponding fire contours were obtained.

119
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Figure 6.1: Experiment table (ADAI, Portugal)
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Figure 6.2: Enhanced wild-land fire prediction method

Subsequently, we will briefly describe the FS (fire simulator), input param-
eters and PE (prediction error) component of the enhanced-prediction method
depicted in figure 6.2 for our particular case. The Optimization strategy used
in this framework was a Genetic Algorithm (GA).

6.1.1 Fire Simulator Used to Make the Prediction.

For wild-land fire simulation purpose, we have used the wild-land simulator
proposed by Collin D. Bevins, which is based on the Fire-Lib library. Fire-
Lib is a library that encapsulates the BEHAVE fire behavior algorithm. In
particular, this simulator uses a cell automata approach to evaluate fire spread.
The terrain is divided into square cells and a neighborhood relationship is used
to evaluate whether a cell is to be burnt and at what time the fire will reach
the burnt cells. As inputs, this simulator accepts the maps of the terrain, the
vegetation characteristics, the wind and the initial ignition map. The output
generated by the simulator consists of the map of the terrain where each cells is
tagged with its ignition time. In our experiment, we divided the terrain (burn
table) into 40x40 cells, and 80x80 cells.

As previously commented, any fire-spread simulator needs to be fed with
certain input parameters. Since our experimental fire was carried out under
determined conditions (laboratory conditions), we have fairly good estimation
values for the input parameters. In the next section, we will describe how we
estimate the parameters.
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| parameter | value | unit |
fuel bed depth 1 feet
dead fuel extinction moisture contents 0.12 Ib water / 1b fuel
load 0.034 Ib fuel / sq ft bed
area-to-volume 3500 | sq ft fuel / cu ft fuel
density 32
total silica content 0.05555 1b silica / Ib fuel
effective silica content 0.01 Ib silica / 1b fuel
low heat of combustion 8000 BTU/Ib fuel

Table 6.1: model 1 in Rothermel classification

6.1.2 Input Parameters Estimation

The conducted experiments have been carried out using two types of fuel: straw
and maritime pine ("pinus pinaster"). Both fuels are considered to have the
characteristics of model number 1 in the Rothermel models classifications, which
have the values described in the table 6.1. We have used these values as input

values for the simulator to simulate the classical prediction method.

Sensitivity studies show that the Rothermel model has from weak to very
weak sensitivity against density, total silica content, effective silica content and
low heat of combustion. For this reason, we conducted the following experiment
to determine the effect of not including these parameters on the convergence
speed and to decide whether to include these parameters or not.

We have used the fire line that has been obtained from a table experiment
as one to be compared with the simulator output. The fuel used was maritime
pine (“pinus pinaster”) and the table dimensions was 3x3 m?. There was no
artificial wind and the slope of the table was 30° degrees. The real fire line is
the contour of the fire at the time 1.5 minutes. The optimization process was
repeated 10 times for each case and the average of these repetitions is plotted
in the curve.

Figure 6.3 shows the convergence of the optimizing process by reducing the
number of optimized parameters. The curve labeled 13 parameters represent
the optimizing of all the parameters in the table 6.2 and the other (labeled
10 parameters) represents the convergence of the optimization process when
fixing the parameters that appears in the table 6.3 to their nominal values. The
same experiment was repeated with the replacement of the real fire line to that
obtained in the same way described above, but with the time of burning from



6.1. EXPERIMENT PLATFORM 123

Parameter | Unit
Loading Ib fuel / sq ft bed
b water / Ib fuel

1-hr dead fuel moisture
10-hr dead fuel moisture
100-hr dead fuel moisture
Live herbaceous fuel moisture
Surface area-to-volume ratio
Fuel bed depth
dead fuel extension moisture content
Low heat of combustion (h)
Total silica content (St)
Effective silica content(Se)
Wind speed(U)
Direction of wind heading

b water / Ib fuel
1b water / Ib fuel
b water / lb fuel
sq ft fuel / cu ft fuel
feet
b water / Ib fuel
BTU / 1b fuel
Ib silica / 1b fuel
Ib silica / 1b fuel
feet / min
degrees clockwise from north

Table 6.2: Simulator input parameters

| Parameter || Nominal value
St 0.0555 1b silica/Ib fuel
Se 0.01 Ib silica/1b fuel
h 8000 BTU/Ib

Table 6.3: Estimated values of the fixed parameters.
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Figure 6.3: Optimization Convergence of all the parameters v.s. fixing some for
time of 1.5 minutes

the initial ignition time of 2 minutes and the result is shown in the figure 6.4.

The two figures (6.3 and 6.4) clearly show the tendency of faster optimiza-
tion convergence when fixing the parameters with low sensitivity index. This
behavior is due, on the one hand, to the reduction of the search space when
optimizing fewer parameters, and, on the other hand, because the possible error
of the fixed value does not have great influence on the result because the fixed
parameters have a low sensitivity index. We can conclude that we can exclude
the parameters in table 6.3 from the optimization process and use their nominal
values and only use the parameters listed in table 6.4 for optimizing.

Finally, humidity values needed by the simulator resulted from measure-
ments just before the fire experiment. The wind speed and direction are calcu-

lated from the fans’ rotation velocity.

6.1.3 The Prediction Error

As mentioned in section 2, in order to measure the goodness of the predicted
fire line, we need to define a prediction error. Taking into account the particular
implementation of the simulator used in this experiment, the terrain is treated
as a square matrix of terrain cells. We define the prediction error as the number
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Figure 6.4: Optimization Convergence all the parameters v.s. fixing some for
the time of 2 minutes.

| parameter | unit |
fuel bed depth feet
dead fuel extinction moisture contents b water / 1b fuel
load Ib fuel / sq ft bed
area-to-volume sq ft fuel / cu ft fuel
wind speed mil/h
wind direction degree
Moisture 1 hour b water / Ib fuel
Moisture 10 hours b water / 1b fuel
Moisture 100 hours b water / 1b fuel
Live herbaceous fuel moisture Ib water / Ib fuel

Table 6.4: Tuned parameters
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Figure 6.5: Evaluation of the XOR function as a fitness function for a 5x5 cell
terrain.

of cells that are burned in the simulation but are not burned in the real fire
map, and vice versa. This expression is known as the XOR function. Figure
6.5 shows an example of how this prediction error is evaluated for a 5x5 cell
terrain. The obtained value will be referred to as the prediction error that, for
this example, is 3.

6.1.4 Speedup Test of the Methodology

As mentioned in chapter 3, we use parallel processing to reduce the execution
time of the optimization techniques. We gain parallelism by distributing the
objective function evaluation over a farm of workers. In this section we will
experiment how much this structure can reduce execution time, and how much
it can scale by adding more machines.

As has been shown, in order to provide useful fire spread prediction, it is
necessary to work under real-time constrains, which must be accomplished for
the proposed enhanced prediction method. For this reason, we have analyzed
speedup improvement for the prediction process as the number of processors
increases.

The proposed method has been executed on a Linux cluster under an MPI
environment. The number of processors used were 1, 2, 4, 8 and 16. Figure
6.6 shows the evolution of the speedup for this particular example. From 4
processors (1 master and 4 workers) we clearly observe a speedup improvement,
which continues as the number of processors increases. Figure 6.6 illustrates that

by using more machines, we can carry out more iterations in a predetermined
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Figure 6.6: speedup for the enhanced prediction method for different number
of processors

limitation of time and a better quality of prediction can be obtain. Therefore, if
we want to predict fire evolution faster than real fire spread, the use of parallel
processing becomes crucial.

6.2 Experiments Methodology

The experiments were designed to test the difference between the classical pre-
diction method and the enhanced prediction method. For every time period we
therefore applied both classical and enhanced prediction methods.

During the total burning time for each experiment, we picked up several time
instants (to,t1,%s...etc.). We then extracted a fire line from the recorded film
at each of the selected instants (RFLO, RFL1, RFL2...etc.). We used the first
fire line (RFLO) as the initial fire line. As input to the simulator we used the
expected parameters mentioned in section 6.1.2. The duration of the simulation
time was equal to the time period we chose between the initial fire line time
and the next extracted fire line time (A#; = t1 — to). The fire line that the
simulator creates when executed with these settings is the predicted fire line
using the classical method (CPFL1). We then compare the predicted fire line
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using the classical method with the fire line extracted from the recorded film

at the next instance using the XOR function to estimate the prediction error
PE, = XOR(RFL,,CPFL,).

After that, we apply the enhance prediction method as follows: We used
the first fire line as initial fire line (RFL0). We used the fire line for the next
time (RFL1) as the reference fire line to optimize the parameters. The result
of the optimization process is a set of parameters that minimizes the prediction
error. We substitute the expected parameters used in the classical way with
the optimized parameters resulting from the optimization process, then as in
the classical method, we run the simulator using the optimized parameters to
predict the fire line at the next instance ¢;. At that moment, we have a fire line
that predicts the fire line at t the time ¢, (EPFL2). Then, as in the classical
prediction method, we use XOR to estimate the prediction error by comparing
the estimated fire line with the real fire line PE; = XOR(RF Ly, EPF L,).

When the burn time of the experiment was long enough, we repeated the
same process, but advancing the time by one. The initial fire line becomes the
fire line at the time instance ¢;, and the real fire line to be used as reference will
be at the beginning of the time ¢5 and the time of the predicted fire line will be

t3., and so on till the end of available time instants.

We start our optimization process with a set of guesses. This set of guesses
contains the expected parameters. At the next optimizations of the same burn-
ing experiment we use the final generation from previous optimization process

that includes the optimized set of parameters.

Note that the enhanced prediction method needs more fire lines than the
classical prediction time so we cannot apply it at the first time ¢;, but the
classical prediction method can be applied. In the experiment, we want to
compare the two methods so we do not apply the classical at the first time
because we have no enhanced prediction method to compare it with.

Despite the duration of this laboratory experiment, its post-mortem analysis
allows us to validate the behavior of our prediction method, as we will show in
the following sections.
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Figure 6.7: Ignition point of table experiment

6.3 Case 1: 35° Slope, no Wind and Maritime
Pine Fuel

In this experimental study, the laboratory environment was set up as follows:
table inclination was set to 35° grades; there was no artificial wind and the fuel
bed consisted of maritime pine ("pinus pinaster"). figure 6.7 shows ignition of
a table experiment. Figures 6.8a and 6.8b show the recorded images for the
ignition fire and fire spread after 1 minute, respectively. It should be taken into
account that the slope increases from the bottom of the images toward the top.
Fire time was about 1m 30" from the moment of ignition.

The parameters that can vary from one experiment to another with the same
kind of fuel are described in table 6.5, with their corresponding values. There
was no artificial wind, so the wind velocity and direction are set to zero. The
humidity was measured and load was set by the investigators.

We used the prediction scheme described in figure 1.7 for two different situ-
ations. In the first case, the initial time ¢y was chosen as 30", consequently, the
fire line at that time was RFL1. For this initial situation, we predicted the new
situation of the fire front at time 1 minute by executing the fire simulator in
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Figure 6.8: case 1: Image recorded as an ignition fire (a), and fire spread after
1 minute (b)

| parameter | value | unit |
wind speed 0 mil/h
wind direction 0 degree

Moisture 1 hour 0.1536 | 1b water / 1b fuel
Moisture 10 hours | 0.1536 | lb water / b fuel
Moisture 100 hours | 0.1536 | 1b water / 1b fuel
Moisture of herpes | 0.1536 | 1b water / lb fuel

fuel depth 0.25 feet
fuel load 0.134 | Ib fuel / sq ft bed

Table 6.5: case 1: Input parameter values measured in the laboratory fire.
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initial time | prediction total prediction error %
time burned error
cells
30” 1 min 180 95 52%
1 min 1 min 307 401 101 25%

Table 6.6: case 1: Prediction error for the classical prediction method applied
in the laboratory fire.

an isolated way. The second prediction was performed by considering 1 minute
as the initial time and the predicted fire line was obtained for time instant 1m
30". Table 6.6 summarizes the obtained results. If we consider the prediction
errors in terms of percentage according to the total number of cells burnt, we
have 52% and 25% for the first and second prediction, respectively. Bearing in
mind the dimension of the fire (3x3 m?), this percentage of error is considered
high.

The values in table 6.6 show that the classical prediction method does not
provide accurate predictions, despite the study case being well known due to
its laboratory nature. What would happen in a real fire situation where there
are several types of uncertainty? We therefore applied the enhanced predic-
tion method to the same lab fire in order to compare the obtained prediction
with that from the earlier experiment. As commented, we used the Genetic
Algorithm as an optimization strategy, which will be iterated 1000 times. The
input parameters to be tuned are those shown in table 6.4, and the optimization
process will work under the assumption that there is no previous knowledge of
the input parameters. The complete enhanced prediction method, depicted in
figure 2.2, was applied twice, once at 30 seconds and again at 60 seconds. The
first optimization process provided an "optimal" set of input parameters, which
were used to predict the new fire line situation at 60 seconds. This prediction
was obtained by executing the fire spread simulator once, feeding it with the
real fire line at 30 seconds and with the "optimal" set of parameters obtained
for that time. Subsequently, we continue the process of optimization to predict
the fire line at 1 minute 30 seconds. We used the optimized parameters at 30
seconds as the initial generation, repeating the same process using the real-fire
line at 1 minute as reference. Optimized parameters were used to predict the
fire line at 1minute 30 seconds. The result obtained in terms of improvement in
prediction quality are shown in figure 6.9. This figure plots both the enhanced
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Figure 6.9: case 1: Predicted fire lines for the laboratory fire at 90" applying
the classical and the enhanced prediction methods.

and classical predicted fire line versus the real fire line. As we can observe from
both the plotted fire lines and the obtained prediction errors, the proposed pre-
diction scheme outperforms the results obtained applying the classical scheme.
In particular, the prediction errors obtained, in percentage, are 40% and 11%
for both predictions, respectively. This means a reduction of 20% of the error
in the first case with respect to the classical approach, and a reduction of more
than 50% of the error for the prediction at 90 seconds.

We can therefore conclude that the enhanced prediction method provides
better results than the classical prediction scheme in this case. In particular, we
observe that the accumulation effect of the optimization method (1000 iterations
at 30 seconds plus an additional 1000 iterations at 60 seconds) provides better
prediction quality. We should thus be able to iterate the process as much as
possible under real-time constraints in order to guarantee good prediction qual-
ity. For this reason, we apply parallel processing to accelerate the optimization

process.
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initial time | prediction time | classical predic- | enhanced pre-
tion error diction error
30”7 60” 95 72
60” 90” 101 45

Table 6.7: casel :Predicted error for the laboratory fire at 60” and 90" applying
the classical and the enhanced prediction methods

| parameter | value | unit |
wind speed 0 mil/h
wind direction 0 degree

Moisture 1 hour 0.12 | Ib water / Ib fuel
Moisture 10 hours 0.12 | 1b water / Ib fuel
Moisture 100 hours | 0.12 | 1b water / Ib fuel
Moisture of herbs 0.12 | 1b water / 1b fuel

fuel depth 0.25 feet
fuel load 0.0614 | 1b fuel / sq ft bed

Table 6.8: Input parameter values measured in the laboratory fire

6.4 Case 2: 30° Slope no Wind and Straw Fuel.

In this experiment, we repeated the same steps as in case 1, but at this time
we had different fuel and table slope. The fuel was straw and the table slope
was 30°. The moisture was measured before the burn and the result is shown in
table 6.8. We have loaded 0.3 kg/m2 of straw on the table, which is equivalent
to 0.0614 pounds per squared feet.

Once again we applied the classical prediction method by feeding the simu-
lator with the stated parameters values and calculate the prediction error using
the resulting simulated burned area and the extracted burned area from the
experiment infrared images. The duration of the burning in this experiment is
more than the previous one, which allows us to make further prediction steps.
In this case, we applied the method three times at time instances 60, 90 and
120 seconds. The results of classical and enhanced prediction methods are sum-
marized in table 6.9. The first row of the table means that if we are at time
instance 60 seconds and make a classical prediction for 90 seconds, we will get a
prediction error of 133 cells, and if we use the enhanced prediction we can make
the prediction with 97 cells of error.

In this case the classical prediction method (third column) also shows poor
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initial time | prediction classical enhanced Total burned
(seconds) time (sec- | prediction prediction cells

onds) error (cells) | error (cells)
60 90 133 97 539 at "90
90 120 136 83 913 at "120
120 150 130 90 1465 at "150

Table 6.9: case 2: comparison between classical and enhanced prediction meth-
ods

prediction accuracy. Comparing the enhanced prediction with the classical, the
numbers show clear enhancement of prediction quality. For instance, predicting
for 90 seconds, the classical prediction error was 24% of the total burned area
and the enhanced was 17%, at 120 seconds the classical prediction error was
14% and enhanced was 9%, at 150 9% and 6 %, respectively. This result shows
that the enhanced error is between 60% to 70% of the classical error. Or we
have from 30% to 40% of enhancement.

We can therefore conclude that the enhanced prediction method provides
better results than the classical prediction scheme in this case. However, we
cannot observe, as in the previous experiment, accumulative enhancement in

the prediction quality.

6.5 Case 3: No Slope, Variable Wind and Straw
Fuel.

The methodology assumes that the changes in the input parameters’ values in
the short term is not so radical. Therefore, if we know the best parameters for
the current time, we expect to have good prediction using the same parameters.
The wind is one of the parameters which is not static at all. However, in this
experiment we have changed the wind speed substantially during the experiment
in order to change the situation drastically. This experiment was set to identify
how the proposed methodology reacts when certain environment parameters
drastically change. We started the experiment by setting the fans at the speed
of 2.297 mph. Then, after 51 seconds, we switched the fans speed to 4.594 mph.
Table 6.10 shows the expected values of input parameters for this experiment.

The fire duration was 80 seconds, which is a very short time. So, we have
applied the method only for one step. Table 6.11 shows the prediction errors
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| parameter | value | unit |
wind speed 4.059 mil/h
wind direction 90 degree

Moisture 1 hour 0.12 | 1b water / 1b fuel
Moisture 10 hours 0.12 | Ib water / b fuel
Moisture 100 hours | 0.12 | lb water / Ib fuel
Moisture of herbs 0.12 | b water / Ib fuel

fuel depth 0.25 feet
fuel load 0.0614 | 1b fuel / sq ft bed

Table 6.10: Input parameter values measured at the laboratory fire

initial time | prediction classical enhanced Total
(seconds) time (sec- | prediction prediction burned cells
onds) error (cells) | error (cells)
| 60 | 80 | 184 | 161 | 1122 |

Table 6.11: case 3: comparison between classical and enhanced prediction meth-
ods

of applying the classical and enhanced prediction methods. We optimized the
parameters for 60 seconds, then we provided the simulator with the parame-
ters resulting from the optimization to predict the burned area at 80 seconds.
The resulting XOR between the real fire line and the simulated was 161 cells
(or 14% of the total burned area), while when we feed the simulator with the
input parameters that had been estimated as described in subsection 6.1.2, the
prediction error was 184 cells (or 16% of the burned area).

Even in this case where the wind changes drastically, we can conclude that
the enhanced prediction method provides better results than the classical pre-
diction scheme. However this case is of very short duration. In the next section
we will describe another similar experiment but of greater duration so we can

make more prediction steps to have better view of the method behavior.

6.6 Case 4: No Slope, Variable Wind and Mar-
itime Pine Fuel.

As in the previous experiment, we changed fan speed from 2.297 mph to 4.594
during the experiment. The only variation in this experiment was the fuel: in-
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| parameter | value | unit |

wind speed 2.297/4.594 mil/h
wind direction 0 degree

Moister 1 hour 0.16 b water / Ib fuel

Moisture 10 hours 0.16 b water / Ib fuel

Moister 100 hours 0.16 b water / Ib fuel

Moisture of herpes 0.16 1b water / Ib fuel

fuel depth 0.25 feet
fuel load 0.134 Ib fuel / sq ft bed

Table 6.12: Input parameter values measured at the laboratory fire

stead of using straw, we used maritime pine. The characteristics of maritime
pine are different to straw. It has more humidity and the load is different. Mar-
itime pine burns slower than straw, so we will have more time to make additional
prediction steps so we can understand the behavior of the methodology in more
details.

Table 6.12 shows the values of the parameters that have been measure and
set for the experiment.

After we have filmed the experiment with infrared camera and extracted the
fire lines every 15 seconds, we used the method to predict the behavior of the
fire. Table 6.13 summarizes the results of the classical and enhanced prediction.
At the first step, the enhanced prediction makes very good enhancement over
the classical prediction. The method adjusts the simulator inputs to the given
fire perimeter at time equal to 0.75 minutes and when using these values the
simulator can predict the behavior of the fire at time 1.25 minutes with good
prediction error. But when adjusting the parameters for the fire perimeter at
time 1.25, it fails to predict the behavior of the fire at time 1.75 because the
change of the wind speed has its effect on the fire at the time of prediction.
The wind speed value that fits well at 1.25 does not make since at 1.75. This
expected effect of changing the parameters drastically in short time. If we
look at figure 6.10 we can distinguish between the different fire behavior at the
beginning, where the fire lines are close together (the time of extracting different
fire lines is constant) which means that the fire is slow and then suddenly the fire
consumes large areas meaning that the speed of the fire propagation has been
increased. The method once again adjusts the values of the input parameters to
adapt to the change in the next step. Here we have to bear in mind two things:
first we are working on a small scale of time, second the classical prediction here
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initial time | prediction classical enhanced Total

(m) time (m) prediction prediction burned cells
error (cells) | error (cells)

0.75 1.25 38 28 224

1.25 1.75 81 123 518

1.75 2.25 117 50 965

2.25 2.75 123 67 1563

Table 6.13: case 4: comparison between classical and enhanced prediction meth-
ods

benefits from a knowledge of the changes in the wind speed. In real fire, the wind
will not be changed by anybody, instead it will be predicted with uncertainty.

We can conclude that the method requires two step executions when the
environment changes very roughly in order to react to the new environmental
states. In figure 6.10, we can observe that the first lines of the fire are close
together, then the last lines are sparse, which reflects that the fire starts slowly;
then, when we change the wind speed, the fire increases its speed. Optimizing
the parameters for the first part will give us a slow wind; then using this wind
will not be good for predicting the second part. When using the new fire line,
optimization will reflect the speed of the fire by increasing wind speed, which
will adjust the prediction.

We can also conclude that the method needs complementary tools of pre-
diction such as wind and humidity models to be more efficient. For example
if we have a prediction that the wind will increase, we can increase the wind
speed that we have as result of optimization before making the enhanced predic-
tion. Another possibility is to use the history of the parameters and extract the
trends from them, then, to add the trend on the optimized parameters. Or time
series analysis prediction methods can be used, this depends on the nature of
the parameter; for example wind parameters can depend on weather prediction,
humidity can use some other models to predict it. This method is therefore
not mutually exclusive with other methods: it can be used side by side and in
interaction with others.
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Figure 6.10: extracted fire lines of the experiment case 4

6.7 Case 5: 30° Slope, no Wind and Variable
Fuel.

This case has been especially designed to experiment the methodology when
the fuel parameters changes. Different from all other table experiment that
have been experimented, in this one we used two types of fuels. The lower half
of the burning table was covered with “pine pinuster” and the upper half with
straw. This experiment has several aspects of difficulties in comparison with
the previous cases. The first aspect is the sudden change of the fuel parameters.
In the previous experiment, only one parameter changes (wind speed), In this
experiment, when the fuel changes several important parameters change, such
as the humidity, load ...etc.

The second difficulty is for the simulator. The fire makes strange shapes at
the boundary of two fuels, one burns faster than the other. The simulator used
needs to reflect the behavior of the fire in a reasonable way.

Using two fuels means that we need to feed the simulator with two sets of
fuel parameters, so, when optimizing, we need to optimize more parameters (in
this case 18 parameters) which makes the search space exponentially bigger than

the search spaces in the previous cases. This increase in search space makes it
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Figure 6.11: Table experiment using two types of fuel

harder for the optimization algorithm to converge to fitter solutions.

With all the difficulties mentioned in this case, the method still has good
performance as in the previous case. Enhanced prediction is better than the
classical, except in the point of drastic change (table 6.14). The table shows that
the enhanced prediction method outperforms the classical prediction method
except in the step where the second fuel starts to burn, where the classical
outperforms the enhanced, but the method immediately readjust the parameters
and in the next step it has a better performance than the classical. From
these experiments, we can conclude that the method is robust and can enhance

prediction.

6.8 Chapter Conclusions

In this chapter, we have applied the enhanced prediction methodology on some
real experimental fires and we have compared it with the classical prediction
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Figure 6.12:

extracted fire lines of the experiment case 5

initial time | prediction classical  pre- | enhanced pre- | Total burned
(m) time (m) diction  error | diction  error | cells
(cells) (cells)
1.75 2.25 58 / 21% 16 / 6% 264
2.25 2.75 71/ 18% 17 / 4% 379
2.75 3.25 51 / 8% 92 / 14% 620
3.25 3.75 133/ 17% 96 / 12% 742
3.75 4.25 260 / 25% 138 / 13% 1009

Table 6.14: case 5: comparison between classical and enhanced prediction meth-

ods
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method. The experimental cases show that the classical prediction method
does not provide accurate predictions, despite the study cases being well known
due to their laboratory nature. As we can observe from the obtained predic-
tion errors in all cases, the proposed prediction scheme outperforms the results
obtained when applying the classical scheme. We can therefore conclude that
the enhanced prediction method provides better results than the classical pre-
diction scheme in these cases. On the whole, the enhanced method has 72% of
the classical error and, in the best case, it was 24% of the classical error.

Analyzing those cases where the environment changes drastically, we can
conclude that the method needs a two step execution when the environment
changes very roughly in order to adjust to the new environmental states. We
can also conclude that the method needs complementary tools of prediction such
as wind and humidity models to be more efficient.

The method overcomes many difficulties of the forest fire prediction problem
but in some extreme cases it is not so good and still needs to be associated with
other methods in order to forecast and model most particularly the wind and
humidity.
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Chapter 7

Conclusion and Future Work

“podemos, hermano Sancho Panza,
meter las manos hasta los codos en

esto que llaman aventuras.”

Miguel de Cervantes

This chapter presents the conclusions obtained from this thesis and the cur-
rent work and work plan to be undertaken in the future in order to continue

research on forest fire prediction.

7.1 Conclusions and Global Observations

Forest fire is a very important problem that requires precise prediction to min-
imize its effects. There are several propagation models in the literature, but
most of these require a great number of parameters that are usually difficult
to measure or estimate. In this work, we have proposed a methodology that
enhances the prediction of the fire propagation.

The amount of parameters and range of possible values mean that the search
space required to optimize the parameters is extremely large. Therefore, opti-
mization techniques supported by high performance computing is a significant
tool with which to allow the propagation models to become truly operational.
Using optimization techniques on distributed computing systems, it is possible
to guide the optimizing process by reducing the search space and to test many
possibilities in a short period of time (far faster than real time).

143
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To implement the proposed methodology, we have developed a meta-tool
for optimizing black-boxes. We call our tool BBOF (Black-Boxes Optimization
Framework). We show that BBOF is useful for the problem in hand. The de-

scription of BBOF and its application can be found in:

Baker Abdalhaq, “Cluster-Oriented Framework for Optimisation Prob-
lems” experimental work for postgraduate program for Computer
Architecture and Parallel Processing, Universitat Autonoma de Barcelona,
Barcelona (Spain), September 2001.

B. Abdalhaq. A. Cortés, T. Margalef. and E. Luque, “Evolutionary
Optimization Techniques on Computational Grids”, Computational
Science: International Conference: proceedings/ICCS 2002, Ams-
terdam, The Netherlands. PP. 513-522, April 2002, LNCS 2329.

B. Abdalhaq. A. Cortés, T. Margalef. and E. Luque, "Optimization
of Fire Propagation Model Inputs: A Grand Challenge Application
on Meta-computers”’, 8th International Euro-par Conference Pader-
born, Germany. 447-451, August 2002, LNCS 2400.

We have implemented several optimization techniques (Analytical optimization,
Random search, Genetic Algorithms, Taboo Search and Simulated Annealing)
and we have concluded that heuristic techniques are powerful tools for solving
this kind of problem, which can be considered as a Grand Challenge Application
(GCA).

The Analytical approach does not work if we have no clear information about
the objective function. We needs considerable research to reach a satisfactory
model, which will be problem specific. If we change some parameters in the
problem, the shape of the objective function will change and we need to search
for another model. For example, if we change the wind field or the terrain, there
is no guarantee of having the same shape of the objective function and, therefore,
a previous objective function cannot fit well for the new characteristics of the
problem.

The genetic algorithm needs a lot of tuning itself because there are several
parameters that must be tuned that affects the performance. There are some
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parameters without extensive tuning left for further work, which may lead to
better performance.

The Taboo Algorithm is a powerful algorithm, easy to program. It does not
have many parameters to tune.

Four optimization techniques (Random Search, Simulated Annealing, Taboo
Search and Genetic Algorithm) have been tested on a PC cluster with 21 PCs.
The experiments were carried out using different fire scenarios. The results show
that Simulated Annealing, Taboo Search and Genetic Algorithm provide similar

results. A summary of this experimental study can be found in :

B. Abdalhaq. A. Cortés, T. Margalef. and E. Luque, “Optimization
of parameters in forest fire propagation models” Forest Fire Research
& Wild-land Fire Safety 2002 abstract P. 114 full paper in CD.
ICFFRO2.

Since optimizing is a time-demanding task, we have proposed a global sensitiv-
ity analysis to accelerate optimization convergence. This technique reduces the
search space screened by fixing the less sensitive parameters to an estimated
value and by focusing optimization on the most sensitive parameters. We have
also reduced the range of each optimized parameter by introducing some degree
of knowledge for each of these. This was considered by limiting the variation
of these parameters around a known value (field measurement). Sampling the
search space is another way of reducing it. We extend the sampling to be related
to the sensitivity of the parameters in order to make more effort on the sensi-
tive parameters and save effort in optimizing non-sensitive parameters. These
techniques were carried out on a Linux cluster composed of 21 PC’s. We used
a master/worker programming paradigm, where the master and worker pro-
cesses communicate with each other using MPI. The results show that these
accelerating strategies help in reducing optimization time. Some results of this

experiment have been published in:

B. Abdalhaq. A. Cortés, T. Margalef. and E. Luque, ”Accelerating
optimization of input parameters in wild-land fire simulation.”, Fifth
International Conference on parallel processing and applied mathe-
matics, Czestochowa, Poland, LNCS 3019, 7-10 September 2003.
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B. Abdalhaq. G. Bianchini. A. Cortés, T. Margalef. and E. Luque,
"Improving convergence speed of optimization of input parameters in
wild-land fire simulation.”, congress: XIV Jornadas de Paralelismo.
15-17 September 2003, Leganés-Madrid, pp. 337, 15-17 September
2003.

We have experimented the methodology on a set of table experiments that have
been designed especially to challenge the method and mimic real fire situations.
The experiments show that the method is robust and has good performance in
all of these cases.

The most relevant results from this experiments in addition to a description
of the methodology have been published in:

B. Abdalhaq. G. Bianchini. A. Cortés, T. Margalef. and E. Luque,
"Improved Wild-land Fire Prediction on MPI Clusters”, 10th Eu-
ropean PVM/MPI User Group Meeting Venice,Italy. pp. 520-528,
September / October 2003., LNCS 2840.

B. Abdalhaq. G. Bianchini. A. Cortés, T. Margalef. and E. Luque,
”Accelerating Wildland Fire Prediction on Cluster Systems”, Congress:
International Conference on Computational Science, reference:Part
IT PP. 225-232 (volume number LNCS 3037), June 6-9, (2004).

B. Abdalhaq. G. Bianchini. A. Cortés, T. Margalef. and E. Luque
"Between Classical and Ideal: Enhancing Wildland Fire Prediction
Using Cluster Computing”, Jornal of Cluster Computing Special Is-
sue on cluster computing in science and engineering. (2004).

7.2 Current and Future Work

From the experience obtained throughout the development of this work, as
explained in this thesis, new ideas have emerged, some of which are practically
concluded, while others are still being worked on. We now outline all current
and future lines of work.

The implementation of the genetic algorithm that we have carried out has
some parameters that have not been intensively studied; therefore, an immedi-
ate work that could be performed constitutes studying how the tuning of these
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parameters affects the results. In particular, for the case of mutation probabil-
ity, which used to be constant all the time, we propose that it can vary as the
process continues in order to improve results. More precisely, it can be changed
dynamically while getting closer to the solution. It would start with a large
probability to insure exploring search space and, afterwords when the solution
gets closer to the optimal, we would use a smaller mutation distance to concen-
trate on elite solutions. This technique is borrowed from Taboo and Simulated
Annealing.

Other types of mutation can be introduced and experimented, for example,
a mutation that uses normal description and expected values as the mean.

Crossover is carried out using two selected individuals. We can add restric-
tion on the two individuals participating in the crossover process to increase
the speed of conversion. First we divide individuals into three groups: smaller
than the real fire line, greater than the real fire line and equal to real fire line.
Then, we do not allow the crossover between the individuals that are in the
same group. Bearing in mined that the crossover includes averaging, when we
choose one individual that yields fire line greater than the real fire line with one
yields fire line that is smaller than the real fire line it is most probably that the
product of the crossover is better individual.

It is worthwhile discovering more optimization methods, especially modern
heuristic methods, because it is clear from this study that these methods are
suitable for solving black-box optimization problem such as the one we have eval-
uated. Also hybrid methods that combine more than one optimization method
and work in two phases (globally and local) can be potentially powerful methods.

All the study reported in this work deals with the analysis of parameter
optimization on a post-mortem system. However, we have experimented on
several methods to accelerate the convergence that can be useful in the case of
using the method under the real time constraints. It would still be interesting
to study the method using a real fire in a real forest to experiment in what
conditions the method meets the real-time constraint, and when it fails to do
S0.

We have experimented on what we call a linear sampling technique, where
the relation between the sampling frequency and the sensitivity index is linear.
Other types of relations are possible and may have better performance.

Integrating the methodology in a complete decision-support system that
contains an on-line real fire line acquisition and supports the decisions of the

firefighters in the real emergency will be a very interesting line of investigation.
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It would be interesting to discuss the applicability of the method in other
similar broadcasting problems such as floods.

The idea of using the feedback from the fire itself can be used to create a new
generation of fire simulators that are intelligent and self-adapted. The simulator
can learn from the fire itself and tries to guess the basic rate of spread Ry, which
is the speed of spread without slope and wind depending on the characteristics
of the fuel. The wind can also be guessed and terrain is the only input of the
model. In this way, we will only have Ry and U as parameters to be optimized.

As mentioned in the introduction, the main purpose of all work in the field of
forest-fire simulation is to create operational tools to help the forest fire fighting
in two ways: fire prevention and fire fighting. In both cases, we need to decide
on the best way to act so as to minimize the loss. Good prediction tools are
vital to making good decisions. In this work, we provide a tool to provide good
predictions. But we can still make additional support for the decision process.
For example, we can create a tool that chooses the best evacuation plan for
the houses in the forest. We also can make a tool that allocates firemen in the
forest, taking into account the safety factor as well as the probability of the fire
reaching such locations. A wide range of such tools can be created based on a

prediction system.
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