

__

Admission Control and Media Delivery

Subsystems for Video on Demand

Proxy Server

Computer Science Department

Unit of Computer Architecture and

Operating Systems

Barcelona (Spain), April 2004

A thesis submitted by Bahjat

Mohammad Khaleel Qazzaz In

fulfilment of the requirements for the

degree of Doctor by the University

Autónoma of Barcelona.

__

Admission Control and Media Delivery

Subsystems for Video on Demand

Proxy Server

Barcelona (Spain), April 2004

Thesis Advisor

Remo Suppi Boldrito

Thesis submitted by Bahjat Mohammad

Khaleel Qazzaz In fulfilment of the

requirements for the degree of Doctor by

the University Autonomy of Barcelona. This

work has been developed in the Computer

Science Department of the University

Autónoma of Barcelona and was supervised

by Dr. Remo Suppi Boldrito.

__

........ اليهم

*

*
"� and say, O my Lord! Advance me in knowledge�"

Quran, Sura Ta,Ha 20:114

Acknowledgments
__

 vii

Acknowledgements

In my case, I have so many people to thank for the completion of this

dissertation. Some of them are in the occupied Palestine and many of them are

in Spain.

I am grateful to my advisor, Dr. Remo Suppi for motivating and guiding my

research and especially for his rescue ideas each time I was close to failure. I am

thankful to the time he devoted to my work and to his insistence and willingness

to make this work fruitful for me and for my people as well as for our

department.

I would like to thank Dr. Emilio Luque for giving the help that I needed since I

came to Spain and for standing by me in all situations. It was really joyful and

fruitful to discuss and share ideas with him at all levels. He is a nice person to

talk with and to join in travelling.

My thanks go to Dr. Ana Ripoll who was always offering me her help with a nice

smile. Also, my thanks go to Porfidio Hernandez for the support he gave to me

since I came to Spain.

Special thanks go to Dr. Lola Rexachs for the persistent encouragement she

presented to me and for standing by me and my family during my stay in Spain.

I am grateful to the UAB for granting me a full scholarship and to the PEACE

program (Palestinian European and American Cooperation in Education) for

partially supporting my stay in Spain. Special thanks go to all those who made

my travel to Spain possible, Dr. Munzir Salah and Dr. Rami Alhamdallah of An-

najah University, Dr. Gabi Baramkeh director of the PEACE program, Dr. Luis

Lemkowv the Vice president of the International Affairs at UAB, Señora Rosa

Maria Vila for preparing all means of my stay in Spain.

I would like also to thank my colleagues in the Computer Science Department at

An-najah University in Palestine Dr. Nizar Awartani, Dr. Wa�el Mustafa, Dr. Lu�ai

Acknowledgements
__

 viii

Malhis, Husam AbdulHalim, Mut�asim Abu Zanat, I thank them for encouraging

and supporting me during my study and for taking the responsibility of my

academic load when I left for Spain.

I am also grateful to Dr. Dani Franco, Diego Mostaccio, and Josep Jorba for

taking the responsibility of my academic load while I was finishing this work.

Thanks go to my colleagues from the Computer Architecture and Operating

Systems Group, especially Gemma Roque, as well as to those who have passed

through the Group during the preparation of this work for their constant support

and encouragement.

I would like to thank my parents who blessed my travelled to Spain and

encouraged me all the time.

And finally, I am so grateful to my wife and my daughters for the patience and

the suffer they had to bear in order to make this work possible.

Contents

__

 ix

Contents

PREFACE

CHAPTER 1. INTRODUCTION……………………………………………………..

xvii

1

1.1 Motivation�������������������������������������. 1

1.2 Video on Demand Characteristics�����������������������. 4

1.3 Interactive Video on Demand�������������������������. 5

1.3.1 IVoD Components���������������������������������. 5

1.3.2 IVoD Functions�����������������������������������. 6

1.4 Video on Demand Service���������������������������.. 7

1.5 Servers Architecture������������������������������� 10

1.5.1 Single Video Server��������������������������������.. 10

1.5.2 Multiple Video Servers������������������������������� 11

1.6 Single Video Server Architecture�����������������������.. 12

1.6.1 Admission Control (AC) ������������������������������ 14

1.6.2 Resources Management (RM) ��������������������������. 15

1.6.3 Media Storage and File System�������������������������.. 19

1.6.4 Video Data Transmission�����������������������������. 24

1.6.5 Scheduling Policies for Media Delivery���������������������. 26

1.7 Network Manager and Transmission Protocols���������������. 30

1.8 The Client�������������������������������������. 32

1.9 Thesis Overview and Organization����������������������.. 33

CHAPTER 2. VOD ON DEMAND ARCHITECTURE AND DESIGN………… 37

2.1 Introduction������������������������������������ 37

2.1.1 Server Design Objectives�����������������������������. 38

2.1.2 Server Characteristics�������������������������������. 39

2.1.3 Server Functionality and Components���������������������.. 39

2.2 VPS Design and Architecture�������������������������� 40

2.3 Admission Control Module���������������������������.. 42

Contents
__

 x

2.3.1 Requests Handling���������������������������������. 42

2.3.2 Communication Commands���������������������������.. 43

2.4 Resource Manager Module (RMM) ����������������������. 44

2.4.1 Obtaining Metadata��������������������������������.. 48

2.4.2 Overview of Applied Policies���������������������������.. 51

2.4.3 CPU Broker�������������������������������������.. 51

2.4.4 Network Broker�����������������������������������. 55

2.4.5 Memory Broker��������������������������.��������� 57

2.4.6 Disk Broker����������������������������..��������� 57

2.5 Server Internal Communication������������������������. 59

2.5.1 Client-ACM Communication���������������������������.. 60

2.5.2 ACM-RMM Communication����������������������������. 60

2.5.3 CB_MDA-RMM-Client Communication��������������������..... 62

2.5.4 Client-Client Communication��������������������������.. 62

CHAPTER 3. CREDIT BASED MEDIA DELIVERY ALGORITHM………….. 63

3.1 Introduction�����������������������������������.. 63

3.2 The CB_MDA Algorithm����������������������������� 64

3.3 The CB_MDA Implementation�������������������������. 67

3.4 Dynamic Adaptation������������������������������� 76

3.4.1 New User Arrival����������������������������������. 77

3.4.2 User Departure (Leaving the system) ���������������������. 78

3.4.3 VCR-Function������������������������������������. 80

3.4.4 Reducing Unicast Usage Time��������������������������. 81

CHAPTER 4. IMPLEMENTATION AND EXPERIMENTS…………………….. 85

4.1 Introduction������������������������������������ 85

4.2 The VPS Implementation and Experimental Study������������. 86

4.2.1 Development Steps�������������������������������. 86

4.2.2 Stage One: Preliminary Architecture and Response Time���������.. 88

4.2.3 Stage Two: RMM and Admission Control Policies���������������. 91

4.2.4 Stage Three: CB_MDA and Data Prefetching�����������������.. 96

4.2.5 Stage Four: CB_MDA and Multicast and Unicast Transmission������� 122

4.2.6 Stage Five: CB_MDA and Prefetching from Unicast Channels�������.. 127

CHAPTER 5. CONCLUSIONS………………………………………………………. 141

5.1 Conclusions������������������������������������. 141

Contents

__

 xi

5.2 Contributions�����������������������������������. 143

5.3 Future Work������������������������������������ 145

5.4 Publications and Activities related with the Dissertation���������� 146

5.4.1 Publications related to the dissertation��������������������� 146

5.4.2 Technical Demo����������������������������������� 148

5.4.3 Other Publications���������������������������������.. 148

5.4.4 Publications Related with Final Projects��������������������� 148

APPENDIX A. MEDIA STREAMING ALGORITHMS SUMMARY…………… 151

A.1 Introduction������������������������������������ 151

A.1.1 User Centered Approach������������������������������ 152

A.1.2 Data-Centered Approach�����������������������������. 152

A.2 Deadline Scheduling������������������������������� 154

A.3 Batching��������������������������������������. 154

A.4 Piggybacking�����������������������������������. 155

A.5 Chaining��������������������������������������. 155

A.6 Stream Tapping���������������������������������� 155

A.7 Patching��������������������������������������. 156

A.8 Famous Broadcasting Protocols������������������������. 157

A.8.1 Equally-Spaced Interval Broadcasting�������������������.�� 157

A.8.2 Pyramid Broadcasting�����������������������������.�.. 157

A.8.3 Permutation-Based Pyramid Broadcasting�������������������. 158

A.8.4 Skyscraper Broadcasting���������������������������.�� 158

A.8.5 Greedy Disk-Conserving Broadcasting��������������������.. 158

A.9 Harmonic Schemes�������������������������������� 159

A.10 Asynchronous Multicasting��������������������������. 159

APPENDIX B. CLIENT DESIGN FOR PLAYING VIDEO DATA……………. 160

B.1 Introduction������������������������������������ 160

B.2 Client Architecture�������������������������������� 162

B.2.1 Interface Module����������������������������������. 163

B.2.2 Video-Player Module��������������������������������. 163

B.2.3 Communication Module������������������������������. 164

B.2.4 Internal Client/Server Implementation������.................................. 164

B.3 Interaction with the Application������������������������. 165

B.4 Libraries Used����������������������������������� 169

Contents
__

 xii

B.5 More Enhancement�������������������������������.. 170

REFERENCES…………………………………………………………………………… 161

ABBREVIATIONS……………………………………………………………………… 181

Figures and Tables

__

 xiii

Figures

Figure 1.1. Video on demand architecture������������������������. 2

Figure 1.2. Single VoD architecture����������������������������. 11

Figure 1.3. Distributed VoD architecture�������������������������. 12

Figure 2.1. Main components of a VoD server����������������������. 38

Figure 2.2. Overview of VPS architecture������������������������� 40

Figure 2.3. Our proposed VoD clients/server architecture���������������. 41

Figure 2.4. Resources Management Brokers�����������������������. 46

Figure 2.5. Middleware implementation of the brokers����������������� 46

Figure 2.6. Sequence of communications between VPS modules����������� 61

Figure 3.1. CB_MDA flowchart�������������������������������.. 70

Figure 3.2. Multicasting with classical patching���������������������. 82

Figure 3.3. Multicasting with CB-MDA scheduling��������������������. 83

Figure 4.1. Average Round Trip Time for 32kbytes packet size������������ 89

Figure 4.2. Round Trip Time Statistics for 1,3Mbytes data size������������ 90

Figure 4.3. Maximum CPU���������������������������������.. 93

Figure 4.4. Maximum bandwidth������������������������������ 93

Figure 4.5. Throughput (Number of requests / processing time) ����������.. 94

Figure 4.6. Client waiting time and throughput��������������������� 95

Figure 4.7. Maximum CPU and bandwidth������������������������. 95

Figure 4.8. Frame-based: waiting time and throughput���������������� 96

Figure 4.9. Serving 40 clients with arrival delay < 1 sec. ��������������� 99

Figure 4.10. The buffers status of 40 clients after being finished����������� 100

Figure 4.11. The buffer status of client i+10����������������������� 101

Figure 4.12. The buffer status of client i+30����������������������� 101

Figure 4.13. The buffer status of client i+40����������������������� 102

Figure 4.14. The buffers status of the clients� sample�����������������. 102

Figure 4.15. The PRV of 50, 57, and 59 clients���������������������. 104

Figure 4.16. The PRV of the 50-client group�����������������������. 105

Figure 4.17. The buffers status of the clients� sample 57���������������. 105

Figure 4.18. The buffer status of client i+30 from 50-client group���������� 105

Figures and Tables
__

 xiv

Figure 4.19. The buffer status of client i+30 from 57-client group���������� 106

Figure 4.20. The buffer status of client i+30 from 59-client group���������� 106

Figure 4.21. The PRV of clients groups with IO=3 CVs����������������� 107

Figure 4.22. The buffer of client i+30 from 59-client group with IO=3�������. 108

Figure 4.23. The buffer of client i+30 from 62-client group with IO=3�������. 109

Figure 4.24. The buffers status of a sample of 7 clients����������������. 109

Figure 4.25. The PRV of 62 clients after increasing the buffer������������.. 110

Figure 4.26. The buffers status of 62 clients after being finished����������.. 110

Figure 4.27. The buffers status of clients� sample from 62-client group������.. 111

Figure 4.28. The buffers status of the clients� groups 40,50,57, and 59������. 114

Figure 4.29. The buffers status with bigger files for 59-client group��������� 114

Figure 4.30. No frames loss is witnessed after increasing the IO����������� 116

Figure 4.31. Frames loss when the no. of clients is increased to 63��������� 116

Figure 4.32. The memory needed when all the CVs are assigned����������. 118

Figure 4.33. The CPU computing time when all the CVs are assigned�������� 118

Figure 4.34. The required bandwidth when all the CVs are assigned��������.. 119

Figure 4.35. Response time for retrieving data block of different sizes�������. 119

Figure 4.36. The QoS from the server point of view������������������. 121

Figure 4.37. The QoS from the client point of view ������������������.. 121

Figure 4.38. The PRV of 52 clients for each file���������������������. 124

Figure 4.39. PRV with buffer size of only 15% of small file size�����������.. 125

Figure 4.40. PRV with buffer size of only 15% of big file size������������� 125

Figure 4.41. The PRV of client i+30 requesting small file���������������. 125

Figure 4.42. The PRV of client i+30 requesting big file����������������� 126

Figure 4.43. BW required of different techniques (Ontario file)������������ 128

Figure 4.44. BW required of different techniques (Futurama file)����������. 129

Figure 4.45. BW required of different techniques (StarWar file)�����������. 130

Figure 4.46. BW and time of different techniques (Futurama file)���������� 132

Figure 4.47. BW and time for different techniques (StarWar file)����������. 133

Figure 4.48. Multicast and unicast without prefetching����������������� 134

Figure 4.49. Multicast and unicast with prefetching������������������.. 135

Figure 4.50. Prefetching with both, multicast and unicast ��������������.. 135

Figure 4.51. No. of streams when patching is 15% of the file length �������� 137

Figure 4.52. No. of streams when patching is 10% of the file length��������. 137

Figure 4.53. No. of streams when patching is 5 minutes.���������������. 138

Figure 4.54. No. of streams when patching is 2,5 minutes��������������. 138

Figure B.1. Single Client multiple players design��������������������.. 163

Figures and Tables

__

 xv

Figure B.2. Functionality of the tool bar controls��������������������.. 166

Figure B.3. Client Player Interface�����������������������������. 166

Figure B.4. Browsing local files�������������������������������. 167

Figure B.5. Start up window��������������������������������� 168

Figure B.6. Adding or modifying a server... 169

Figure B.7. The new version of the player GUI 170

Tables

Table 1.1. On demand multimedia applications��������������������. 2

Table 1.2. Percentage of VoD participants�����������������������.. 3

Table 1.3. Examples of media compression formats������������������ 9

Table 1.4. Between middleware and OS kernel enhancement������������ 19

Table 2.1. Snapshot from a video file��������������������������. 48

Table 2.2. Frames sequence from a video file���������������������. 49

Table 2.3. Partial list of video files����������������������������. 50

Table 3.1. The CB_MDA abbreviations�������������������������� 65

Table 3.2. The CB_MDA variables����������������������������� 68

Table 3.3. Initial values at slot Li����������������������������� 72

Table 3.4. Streams scheduling during Li+1����������������������� 73

Table 3.5. Streams scheduling at Li+2�������������������������� 75

Table 3.6a. Streams status after S4 arrival at Li�������������������� 78

Table 3.6b. Streams scheduling at Li+1������������������������� 78

Figures and Tables
__

 xvi

Preface

__

 xvii

Preface
The recent advances and development of inexpensive computers and high speed

networking technology have enabled the Video on Demand (VoD) application to

connect to shared-computing servers, replacing the traditional computing

environments where each application was having its own dedicated computing

hardware. The VoD application enables the viewer to select, from a list of video

files, his favorite video file and watch its reproduction at will.

A successful VoD application must provide long-lived video streams (e.g.

7200 seconds) which consume high resources such as I/O and network

bandwidth to a large number of clients. Therefore, a video server must secure

the necessary resources for each stream during the video reproduction so that

the clients don�t witness starvation in their buffers.

Early video on demand applications were based on single video server where

video streams are initiated from a single server, then with the increase in the

number of the clients who became interested in VoD services, the focus became

on Distributed VoD architectures (DVoD) where the VoD service is distributed

among a set of distributed VoD servers called proxy servers. However, whether

the VoD service is presented by a single or multiple video servers, a key stone in

the success of the VoD systems is the design of a single video server (proxy

server) that can be a building block in the construction of DVoD architecture.

The VoD server must handle several issues in order to be able to present a

successful service. It has to receive the clients� requests and analyze them,

calculate the necessary resources for each request, and decide whether a

request can be admitted or not. Once the request is admitted, the server must

schedule the request and send the video data in a timely manner so that the

client does not suffer data starvation in his buffer during the video reproduction.

In addition, the server must be able to provide true video on demand (TVoD)

service, by which the user can interact with the server and invoke VCR functions

and receive the response in a short period of time.

The type of data transmission determines the type of the VoD service. During

the last 15 years the VoD service has been delivered mainly in two ways; one-

to-one and one-to-many. In one-to-one policy, each client is assigned a channel

for receiving the video data so that he can interact with the server and invoke

Preface
__

 xviii

VCR-Like functions at will. However, the server runs out of resources after

accepting a small number of clients. On the other hand, in the one-to-many

policy, the server broadcasts the video stream allowing many users to view the

video data causing better use of the system resources and high performance.

However, the client in this type of service is almost passive and can�t interact

with server freely.

This thesis presents the design and implementation of a video proxy server

(VPS) that provides scalable interactive video on demand service yet it maintains

the performance that can be gained from broadcast transmission. The VPS

consists of three main parts. The first part is the Admission Control Module

(ACM) which receives the clients� requests, negotiates the required resources,

and decides whether to accept or reject a client based on the available

resources. The second part is the Resources Management Module (RMM) which

manages several shared resources, such as the CPU, Memory, Network, and the

Disk, and reserves them. These resources are managed by four brokers: the CPU

broker, the Memory broker, the Network broker, and the Disk broker.

The third part is the CB_MDA algorithm which controls the flow of the data by

regulating the resources assignment and scheduling the video streams. The

CB_MDA provides TVoD service and VCR-functions without the need to reserve

dedicated resources (such as the bandwidth) such these which were proposed in

the literatures. Rather, it uses all the available resources in order to send work-

ahead video data with the intention of reducing the service time and recovering

these resources whenever they are needed. The CB_MDA uses a hyper technique

which combines multicast and unicast channels for transmitting the video data.

The multicast streams transmit a video file from the beginning while the unicast

channels are used to join the later arrivals to the appropriate multicast stream.

To validate our work, we have studied and conducted exhaustive

experiments in order to validate the CB_MDA within the design of the VPS. In

addition, we have created real experimental platform which can be used to

conduct further experiments with different parameters.

The thesis further goes beyond the design of the VPS and presents a video

client architecture that can synchronize with the server and work as a plug-in for

reproducing the video data by different players.

The thesis organization

The first chapter gives an overview about VoD systems and their

architectures (single and Distributed VoD). Also, it highlights the main

Preface

__

 xix

components that should exist in a VoD server such as the admission control (AC)

subsystem, the resources management subsystem using enhancement of the OS

kernel and/or creating a middleware approach, and the storage subsystem. In

addition, it explains the types of the video transmission followed by the main

scheduling policies used for guaranteeing proper video on demand service. Then,

it mentions the main network protocols that can be used for the communication

and video transmission.

At the end, chapter one makes conclusions from what has been mentioned

before and makes a summary of the main objectives of the thesis followed by

the main contributions.

• Chapter two concentrates on the design and implementation of our video on

demand server. The main objectives are to design a VoD server that can

work as a video proxy server in DVoD systems, to provide a scalable VoD

server, to allow users to interact with the server, to provide true video on

demand, to guarantee continuous video reproduction without jittering, and

to support instantaneous VCR-like functions. Therefore, the chapter shows

the architecture of our video proxy server (VPS) and shows how the main

components are laid and connected to each other. It describes the

functionality of the ACM (admission control module and the RMM (resources

management module). In addition, it presents an analysis for four admission

policies which have been implemented by any of these brokers. These

policies are the Maximum Policy, the Adaptive Maximum Policy, the Average

Policy, and the Adaptive Average Policy.

• Chapter three focuses on the CB_MDA which is responsible for controlling the

flow of the video data from the server to the client. It describes how the

CB_MDA guarantees the QoS of the clients being in service, and it shows

how the algorithm prohibits data starvation, overflowing the bandwidth, and

overflowing the clients� buffers. Also, chapter three shows the working

principle of the algorithm CB_MDA which adapts dynamically to the changes

during the video reproduction. The CB_MDA takes into considerations that

the clients can be heterogeneous in terms of the capacity of their machines

specifications, and it uses a combination of multicast and unicast channels

for data transmission. The multicast streams transmit a video file from the

beginning while the unicast channels are used to join the later arrivals to the

appropriate multicast stream. Also, it tries to create work-ahead video data

in the appropriate clients� buffers in order to reduce the service time by

implementing pre-fetching and patching techniques.

Preface
__

 xx

• Chapter four presents and demonstrates the experiments which have been

carried out to verify the viability of the server components with the focus on

the CB_MDA. It discusses the results obtained from the admission policies

which have been implemented in the resources brokers. The results show

the difference between the admission policies and show that, with these

policies, the brokers are able to reserve the necessary resources and to

block any request that might affect the QoS of other clients being in service.

In addition, chapter 4 presents a detailed discussion and analysis to the

results obtained from experiments carried out with the CB_MDA. The results

show that the algorithm is capable of increasing the system performance by

joining the later arrivals to appropriate multicast channels so that a group of

clients can view the same video data yet none of them lose the initial part of

the video thus more clients can be served by the server. Also, the results

show that the CB_MDA reduces the service time especially of the short

unicast channels which are important for providing the vide prefix and the

VCR-like functions.

• Chapter five summarizes the main conclusions driven from the experiments

and outlines the future work. In addition, it lists the publications produced

from this work and a list of final projects made based on this work.

• Finally, a complete bibliography is provided in addition to two appendices A

and B which are related to the video scheduling algorithms and the client

architecture respectively.

Chapter 1
Introduction

__

1.1. Motivation

Video on Demand (VoD) applications, which deliver digitized video to users, are

gaining increasing interest and becoming widely-used nowadays due to the

recent advances in computing and communication technology coupled with

advances in computer, storage, and display technology. They allow remote users

to select from a large collection of videos and to playback any of them at any

time (Figure 1.1).

Within the applications field (e.g. movie-on demand, distance learning,

interactive news), these are expected to provide continuous media distribution to

a high number of clients, distributed geographically and with different access

speeds to the interconnection systems.

The 1990�s have witnessed an increase in the number of Personal Computers

(PCs) in homes and offices, and an increase in the performance of the PCs

accompanied by reduction in their prices. This has led to a tremendous increase

in the number of computers which have become a part of one global network

called the Internet [VEN96]. The Internet, then, made it possible to create a

wide spectrum of VoD applications. Some multimedia applications categorized

under video on demand are: Movies on Demand, Interactive Video Games,

Interactive News�etc (Table 1.1).

This variety in VoD services causes one to speculate that VoD systems will

become one of the most important services supported by the next generation of

Introduction
__

 2

computer networks, video servers and distributed multimedia systems [PAD99].

It is also expected that movies on demand applications will soon replace the

traditional video rental stores [TAN03].

Video
Proxy

Video
Proxy

Video
Server

Local
Network

Local
Network

Network
Backbone

Switch

Switch

Table 1.1. On demand multimedia applications

Application Description

Movies on Demand Users are allowed to select a movie and decide
when to play it and invoke VCR-like functions at
will.

Interactive Video Games Users can download games to their machines
without the need for purchasing them.

Interactive News Users can view news from selected top stories.

Interactive Advertising Users can check and purchase commercial
products.

Distance Learning Students can register classes and view classes
materials

Catalogues Browsing Users checks the latest available products

Video Conferencing Users can negotiate with each other

Tele-Shopping Users can choose from a list of goods and order
their items.

In a report called Present and Future by In-Stat/MDR [WPG01] expectations

indicate that by the end of 2004, the number of consumers using family oriented

on demand IP services will out number the users of adult content services. Also,

Figure 1.1. Video on demand architecture

Chapter 1

__

 3

the report shows that by the end of 2006, family oriented on demand services

will overtake the adult content sites in terms of annual revenue. Therefore, as

consumer-oriented VoD services over IP become more pervasive, revenue

generated by family-oriented VoD services will eventually surpass those of adult

content sites.

In the report, the author speculates that by the end of 2006, 40% of

worldwide consumers who have high-speed Internet connections to their

residences will be using on demand services for which they pay monthly fees.

Table 1.2 shows the participation and the share of the countries worldwide in

providing VoD services. It indicates that, although Europe is occupying the

middle of the world, it needs to spend more in this area of services so that it can

compete with other countries.

Table 1.2. Percentage of VoD participants

Countries %

United States 43.3

Asia, especially South Korea,

Taiwan, Singapore and others

37.0

Europe 15.0

Rest-of-the-world 4.7

These expectations have encouraged researchers world-wide to investigate

and spend in this area with the hope of providing different varieties of VoD

applications. They have concentrated on the main issues that affect the

performance of VoD systems in one way or another.

Such issues include; video on demand services and their characteristics, VoD

servers architectures and their internal design, video storage management,

video data transmission techniques, and scheduling policies which are

responsible for admission control and video data delivery.

In addition, the client design and architecture have received great

consideration since the video will be played at the client�s machine were the VoD

service will be evaluated.

Introduction
__

 4

1.2. Video on Demand Characteristics

The design of such multimedia services differs significantly from traditional

text/numeric retrieval services since the playback of digital video and audio

consumes data at a very high rate [GEM95]. Also, video data needs to be played

back continuously in a timely manner in order to preserve its meaning, while

text data does not have temporal constraint. Therefore, when designing VoD

systems, one should take into consideration the VoD service characteristics such

as Long-Lived Session, High Bandwidth Requirements, Support for VCR-Like

Interactivity, and Quality of Service [HUA02].

! Long-Lived Session: a VoD system should take into consideration the

support of long-lived sessions during the transmission from the server to the

client�s playback machine. This is required since some video files require long

time of playback. For example, a typical movie-on-demand service might last

90-120 minutes in servicing a single movie. That is, if the video data is sent

at a rate equal to real-time play back rate then the server�s resources which

are needed to maintain this session must be reserved for 90-120 minutes.

! High Bandwidth Requirements: video data transmission requires high I/O

and network bandwidth. For example, the server storage I/O and network

bandwidth requirements for a MPEG-1 stream are 1.5 Mbps (mega bits per

second). Another example is the MPEG-2 standard which specifies a higher

compressed bit streams for high-quality digital video at a rate of 2-80 Mbps.

Thus, a two-hour MPEG-2 video with a resolution 720x486 and bit rate 4.5

Mbps requires about 4 GB of storage. Likewise, MPEG-4, NTSC, and HDTV

formats also require high bandwidth. Sending such video data from the

server to the client without interruption is a great challenge.

! Support for VCR-Like Interactivity: a client expect the VoD system to

offer VCR-like functions, such as the ability to play, forward, reverse and

pause. This requirement will increase the cost of the service since it

implicates that each user might be assigned a dedicated session in order to

give him the total freedom to invoke the VCR functions at will.

! Quality of Services (QoS): the QoS, that VoD consumers and service

providers might be concerned about, includes service latency, defection rate,

interactivity, playback effects of videos�etc. Therefore, some mechanisms

must be implemented to achieve the best QoS. The acceptance of a new user

must not affect the QoS provided to the users being serviced, and adequate

Chapter 1

__

 5

resources must be available throughout the entire system from the server to

the user during the playtime [MUN99][REI00].

These are general characteristics which play an important role in the design

of video on demand services. However, the kind of application designed might

relax some of these characteristics. For example, running video clips does not

require as long a time session as running typical movies. Also, in some VoD

applications, e.g. in advertisement, the interactivity might not be a requirement

and therefore does not need to be applied.

VoD services enable clients to select a video program, often a movie like you

would get from the video rental store, and have it sent to them, in a form called

a stream, over a channel via a network such as a cable or satellite TV network.

This way, the clients are imitating television viewers. However, the VoD clients

can go beyond the typical television viewers since they will be able to interact

with the service and invoke VCR-like functions such as; pause, jump forward,

jump back, stop, and so forth like they would if it was running on their own VCR

or DVD devices.

Different from the VoD services, television viewers are passive and can�t

interact with the service provider and have no control over what they watch,

since the service provider is the one who chooses what to broadcast. Thus, VoD

applications, in addition to the flexibility in the freedom of choice, have added

the interactivity on the television-like programs and introduced what is called

Interactive Video on Demand (IVoD) which contributed to the wide increases in

the popularity of VoD applications.

1.3. Interactive Video on Demand

Interactive Video on Demand (IVoD) is an extension of video on demand

application where the user can negotiate with the service in order to achieve his

requirements such as deciding what to watch and when to watch a specific

video. In addition, the user would be able (depending on the system

implementation) to invoke VCR-Like functions such as the ones which have been

previously mentioned.

1.3.1. IVoD Components

An IVoD system consists of three major parts:

Introduction
__

 6

• The client with a graphical user interface which allows him to

communicate and negotiate with the server and visualize the video.

• The network over which the video data will be delivered, and

• Servers with archives of movies (or whatever the server is offering to

show). The clients machines are expected to have a storage medium to

buffer parts of the video data.

1.3.2. IVoD Functions

The IVoD system usually provides the same VCR functions that you would see in

your VCR system. However, the IVoD applications can go beyond the VCR and

provide additional functions that might not have been implemented in the VCR

system. The interactive functions that the IVoD applications might provide

include:

• Play: start the movie presentation (usually from the beginning of the

video file or resume from the stopping point).

• Pause: freeze the movie playback. With this command the user usually

will watch a still picture on the displaying machine.

• Stop: stop the movie presentation. Stop function works as double

functions in VCR. It stops the playback completely and cause rewind. That

is, if the client tries to play the movie again then his request would be

considered as a new none active request.

• Jump forward: jump to a particular scene (point) of the movie in a

forward direction. This function can be satisfied by two ways; first, the

video data from the skew point onward can be available in the user buffer

so the request is achieved at the user end; second, the video data is not

available at his buffer and the request is satisfied by having the server

delivering the video data from the skew point.

• Jump backward: jump to a particular point in the movie in a backward

direction. As in jump forward, if the requested video scene is available in

the client�s buffer then this function will be handled at the user end.

Otherwise, the server has to intervene in order to deliver the requested

video data.

• Fast Forward: fast forward is different from jump forward in that it

browses through the movie in the forward direction with picture and

sound on. In fact, such a service is not recommended since it consumes a

Chapter 1

__

 7

lot of resources such as bandwidth. If the user is interested in such a

service in order to know where to start from, an alternative way can be

implemented. For example, clips or scene from the movie can be browsed

so that the user can determine where to start from.

• Backward: backward allows the user to browse through the movie in the

backward direction with picture and sound on. As in fast forward, this

function is not recommended since it might cause a serious degradation

in the system performance. This happens when the user does not have

enough buffer to keep storing the already played data and/or the policy of

the service does not allow storing the video data on the client�s disk.

Therefore, if the reviewed data dose not exist in the client�s buffer or local

disk then the backward command must be satisfied by the server. This

indicates that the server must dedicate resources to this command.

• Slow Down: going forward at a lower rate than normal but with picture

and sound.

• Slow Reverse: go backward at a slower speed, with picture and sound.

Although the clients will be pleased to enjoy all these functions, their

implementation is left to the choice of the designers. That is, it is not necessarily

that all IVoD systems are obliged to include these functions or the same

functions.

In fact, some functions can be excluded such as fast forward and backward

and replaced by jump forward and jump backward respectively, and new

interactive functions can be included such as the ability to avoid or select

advertisements during the video program downloading, to investigate additional

details about news events and to browse, select, and purchase goods. In

addition, IVoD might provide the possibility of storing some images and/or parts

of the movie.

1.4. Video on Demand Service

From the business point of view, the VoD services delivery tends to be provided

in three forms [WPG02]:

Free VoD services where the users can download free video clips such as

movies clips, advertisement, and news.

Introduction
__

 8

Subscription VoD services, where users are obliged to pay a monthly or

annual fee so that they can access the service (e.g. Showtime On

Demand and HBO On Demand) [WPG02].

Pay-Per-View VoD services, in these services the movies are ordered at

will and, the users don�t have to make monthly subscription and pay only

for what they watch.

Most likely, the customer would be interested in free delivery of movies on

demand service. This service fits perfectly in assumable none profitable

organizations and educational institutions such as universities and schools. The

users can use an IP address to connect to the video server and browse a list of

movies from which they can select their favorite one.

From the server point of view, the video file can be downloaded in its entirety

and stored at the client�s side before it can be played. This action would have the

following benefits:

♦ Allow the end-user to watch the whole movie from their hard drive. Thus,

once the movie is downloaded the user can decide when to play it.

♦ Allow the user to invoke the VCR-Like functions at will. This would give

him the ability to pause, do other activities and resume.

♦ Eliminate exchanging messages produced between the client and the

user, as a result of invoking interactive functions by the user.

♦ Eliminate the user trips to the video rental store.

However, downloading the whole video file and storing it on the client�s hard

drive before it can be played back would definitely have some drawbacks on the

server side as well as the client side. These drawbacks are stated as follow:

• The client must have a huge hard drive since the compression bit rate of

multimedia data is high (Table 1.3). In the past, such solution was not

acceptable since the storage was costly. Nowadays, this can be applicable

to some home PCs, but not all the clients have this capability. For

example a two-hour MPEG-2 movie with a bit rate of 4.5 MB/s would

require 32.4 Giga Byte (GB).

• The response time will be high. That is, the client must wait long before

he can watch the movie. For example, downloading a two-hour MPEG-2

movie with a bit rate 4.5 MB/s over 10Mb/s network would require 432

minutes. That is, the user must wait 7.2 hours before he can watch the

movie on his playing screen.

Chapter 1

__

 9

Table 1.3. Examples of media compression formats

Media type (specifications) Bit Rate

Voice quality audio
(1 channel, 8 bit samples at 8kHz)

64 Kb/s

MPEG encoded audio (equivalent to
CD quality)

384 Kb/s

CD quality audio (2 channels, 16 bit
samples at 44.1 kHz)

1.4 Mb/s

MPEG-1 encoded video 512 Kb/s � 1.5 Mb/s

MPEG-2 encoded video 1.5 � 5 Mb/s

MPEG-4 encoded video 40 Kb/s � 1 Mb/s

NTSC quality video 27 MB/s

HDTV quality video (1280 X 720
pixels/frame, 24 bits/pixel)

81 MB/s

• The server performance in term of the number of users connected to it is

degraded since most of the user would turn their back and cancel their

request if they don�t get the service in an acceptable short response time.

An alternative way to downloading and storing the whole video file at the

client buffer is to stream the video data to the client and start the playback right

after the arrival of the video data to the player buffer. This would be done by

delivering the video data over a network in real time to the user�s set-top box or

PC, and store part of the video in the client�s machine. At the same time, the

server must be able to discover that it has the capability to stream the video

data at a rate greater than the real time rate and find out the clients who can

benefit from the available resources and send them video data at a rate greater

than the video rate consumption.

Also, the server should be able to notice that there are new arrivals who

request the same movie file at the same time or within a short interval of time

between them. In this case, the server must be able to serve all of them as if

they were one request. This way, the number of clients served by the server is

increased. These issues are discussed further in chapter three where the

scheduling algorithms for media delivery are discussed.

Introduction
__

 10

1.5. Servers Architectures

For VoD systems to be successful and for their applications to compete

successfully with video rental stores, it is necessary to design video servers and

media data transmission mechanism which achieve the following objectives:

• Servicing a large number of users

• Permitting users to decide when, where and what to watch

• Providing short response time to the different users� requests.

• Guaranteeing a continuous media without jittering during the playback of

the video.

• Supporting instantaneous interactive VCR-Like functions such as Stop,

Play, Pause, Jump forward, and Jump backward without delay.

Solutions to VoD applications have been proposed via two types of severs called

single server (usually termed as centralized video server) and multiple servers

(decentralized servers or distributed servers DVoD) [REI98].

1.5.1 Single Video Server

The basic model of a single video server is illustrated in Figure 1.2. In this

model, the video streams are transmitted from a single server, and each user is

assigned a stream. The disadvantage of such a model is that, its cost and

technical characteristics make it unfeasible to offer acceptable VoD services.

Also, this kind of server can�t meet the increasing number of clients who are

becoming interested in VoD services.

The most important problems that can be noted in single video server

architectures are stated as follows:

• Higher cost,

• Non-scalability and

• The inefficiency in the utilization of the available media.

However, depending on the objective of the design, this kind of architecture can

be used at small scale as follows:

• It fits well in small institutions where the number of clients is small.

Chapter 1

__

 11

• Also, it can be enhanced so that it works as a building block for

designing a larger video system where multiple single servers work

together to provide VoD services to a large number of users such as the

case in DVoD systems.

1.5.2 Multiple Video Servers

Another possible solution would be the distribution of the service in order to

handle distributed clients. Figure 1.3 shows multiple local video servers (termed

as proxy servers) which feed sets of clients connected to them via local network.

Systems based on this approach are called Distributed Video on Demand (DVoD)

and it can be demonstrated that with a minimal cost, a solution for distributed

continuous media streaming applications is possible [BAR96].

The Distributed VoD systems allow distributing the traffic on the network in

order to reduce the bandwidth requirements. The objective of this architecture is

attained by distributing the clients and a set of video proxy servers through the

network topology, avoiding traffic concentration in the inferior levels of the

hierarchy.

A DVoD system requires the arrangement of those servers that offer the

video retrieval and playback services in a distributed system, in order to support

a large number of concurrent streams. In the literature, arrangements are

classified as follows:

♦ The use of independent servers, this approach is based on replicating

VoD servers close to clients� networks so that these users do not need to

access the main server [CHA99].

Figure 1.2. Single VoD architecture

Segmented
Switch

Proxy
Server

Clients

Port

Port

Clients

Introduction
__

 12

♦ One-level proxies, this type of DVoD tries to reduce the size of local

servers in such a way that they only store those videos with a higher

access frequency; these servers are managed as main-server caches

and are called proxies [FAB01].

♦ Hierarchical distributed systems, hierarchical DVoD systems are based

on a network with a hierarchical topology, with individual servers on the

nodes and network links on the edge of the hierarchy. The nodes at the

leaves of the hierarchy, termed head-ends, are points of access to the

system where clients are usually connected [CHA01] [HUA98].

1.6. Single Video Server Architecture

From the previous discussion, it is clear that DVoD system can present a scalable

and economical solution to meet the increasing number of the clients who

request VoD services. However, for the DVoD to achieve its objective, it is

necessary to give great attention to the local video servers (or video proxy

serves) which are considered to be directly responsible for delivering the video

data to the clients. So, whether the video server architecture is a single video

architecture or a local video server that forms part of multiple-video

Segmented
SwitchProxy

Server

Clients

Brother Port

Father Port

Child Port

BP
FP

CP
BP

FP

CP Level 2

Level n

Level 1

Proxy
Server

Proxy
Server

Clients Clients

Figure 1.3. Distributed VoD architecture

Chapter 1

__

 13

architecture, the internal architecture of these servers must take into

consideration some issues that affect the server design and performance.

To understand these issues, we again follow the sequence of making a

successful request for a VoD service. In a typical VoD system, the sequence and

the actions taken to provide VoD services to a new client are done as follows:

• The client connects to the server using a communication channel

• The server receives the request and analyzes it.

• The server checks to see whether it has enough resource in order to

accept the client and to grant him the service.

• If the request is accepted, then the server starts to transmit the video

data to the client.

These basic steps give the VoD researchers an idea about the major issues

that need to be handled during the VoD design. Some of these issues are related

to the server design and others issues are related to the client design. The

network, of course, is also an issue that needs to be taken into consideration.

At the server side, the VoD server should have a mechanism for the

acquisition of the request and admission control. The admission control must be

applied to all resources of the system. These resources include the CPU,

Memory, Disk and Network. If the system has enough resources then the server

should provide the service. In addition, the server must take into consideration

the file system and the way the video data is stored in the system. Also, the

server must define an algorithm for scheduling the requests and a mechanism

for the transmission of the video data from the server to the client.

On the other hand, the client must have a mechanism such as a GUI from

which he will be able to connect to the server, to browse the video files available

in the server, to be able to synchronize with the server based on the

transmission mechanism, and finally to display the video data.

In the following subsections, the major issues related to the VoD server

design are presented. The admission control policies and the resources

management system are discussed first since they decide the acceptance or the

rejection of the clients. Also the file system and the media storage, where video

files are stored, are discussed. Then, the transmission mechanisms are discussed

since they decide the type of the VoD service that the server would present to its

clients. Thereafter, various scheduling video data delivery algorithms from

previous researches are also presented.

Introduction
__

 14

1.6.1. Admission Control (AC)

Given the fact that the video data must be continuous, the server must

employ an admission control algorithm before accepting new requests. It must

ensure first, that adequate resources are available to the new request

throughout the entire path from the video server to the client�s presentation

device, and second, that the acceptance of a new request does not affect the

performance requirements of other clients being already in service

Also, the admission control should be able to negotiate and renegotiate the

client�s requirements which will be translated into system resources and quality

of service. The client is always looking for the best quality which implicates that

the server must meet the performance requirements of the clients.

Prior to admitting a new client for VoD services, the VoD server must have

sufficient resources in order to guarantee that the QoS contracted to existing

clients is not jeopardized.

To implement admission control, four scenarios can be assumed:

Deterministic Server, Statistical Server, Predictive Server, and Background (or

Best Effort) Server. These scenarios are explained in more details as follows:

• Deterministic: All deadlines are guaranteed to be met. For this level of

service the admission control algorithm considers worst-case scenario in

admitting new clients [DEN96]. To implement deterministic service,

resources are reserved in worst case manner for each stream admitted.

This scenario is used when the client can�t tolerate any deadline violation.

• Statistical: deadlines are guaranteed to be met with a certain probability

[VIN94][NER97]. For example, a client may subscribe to a service which

guarantees that, 90% of deadlines will be met over an interval. To

provide such guarantees, admission control algorithms must consider

statistical behaviour of the system while admitting new clients.

Implementing statistical service would proceed as with deterministic

service, but instead of using worst case values in computing the change

to round length, some statistical distributions would be used. For

instance, instead of using a worst case rotational delay value, an average

value may be used, which can be expected some percent of the time

based on a random distribution of rotational delays.

Providing statistical service guarantees is essential not only due to

the variation in the seek time and rotational latency, but also due to the

variation in the data transfer requirements of compressed media streams.

Chapter 1

__

 15

To provide statistical service guarantees, a server could employ precise

traffic characterizations, rather than the worst-case or the average-case

values. It is also possible that when variable rate data is stored, a

complete and accurate description of the rate change could be computed,

so that the server could use the information during playback to reserve

only the required amount of the server resources.

• Predictive: The consumed resources rate is predicted from the history,

assuming that the past behavior is an indicator for the future [HOL97].

Thus, the server can predict the resources that will be needed in the

future and make the scheduling based on this prediction. Although

prediction might give high resource utilization, it provides weak

guarantees.

• Background(or Best Effort): no guarantees are given for meeting

deadlines. The server schedules such access only when there is time left

over after servicing all guaranteed and statistical clients [GEM95].

1.6.2. Resources Management (RM)

Upon receiving the client�s request for VoD service, the request�s parameters

are extracted in order to calculate the necessary resources in terms of CPU,

Memory, Network, and Disk. However, these resources can be shared with

traditional best�effort tasks such as background tasks. As a result, these tasks

might compete with multimedia applications, such as VoD application, causing

resource contention. This resource contention might deprive the VoD application

from getting scheduled in a timely manner causing low Quality of Service (QoS)

such as, starvation and jitter at the client side. Therefore, there has to be some

kind of resource management mechanisms that provide guaranteed video data

delivery within specified temporal and spatial constraints. Also, these

mechanisms should be able to accommodate changes in resource allocation in

order to avoid jittering and starvation.

Operating Systems (OS) such as Linux and Windows were originally designed

for best-efforts applications, and they need to be enhanced in order to meet the

requirements of multimedia applications which have timeliness constraints. In

general there are two ways to solve this problem, they include, Enhancing the

Operating System Kernel or creating a Middleware between the operating system

and the application in order to provide QoS to multimedia applications [SHE02].

These approaches are discussed in this thesis.

Introduction
__

 16

However, before discussing the two approaches that can be implemented in

order to provide resource management to the system resources, the main

elements that affect the QoS in multimedia applications are presented first.

These elements include the application QoS parameters, the system QoS

parameters, and the network QoS parameters.

! Quality of Service

Employing resource management mechanisms is very important in multimedia

systems in order to provide guaranteed services. The importance comes from

the fact that delivering multimedia data over unmanaged resources cause some

problems such as jittering or starvation caused by delaying packets delivery.

This delay might violate the temporal quality requirements. Therefore, these

resources must be controlled so that the QoS required by the users is satisfied.

The users usually submit their requirements, which are represented as

parameters. These parameters are then translated into resources which will be

allocated to the users demands.

To ease the customization of the resources and to allow for flexibility, the

International Standard Organization (ISO) has defined a standard for

parameterization of the Quality of Service. In general, there are three common

types of parameters that should be considered during the design of the resource

management [NAH98]. These parameters are:

• The application QoS parameters: Describe requirements for the

application services possibly specified in terms of,

1. Media quality which includes the media source/sink characteristics,

such as media data unit rate, and their transmission

characteristics, such as end-to-end delay.

2. Media relations that specify the relations among media, such as

media conversion, or inter/intra stream synchronization [NAH95].

• The system QoS parameters: describe requirements on the

communication services and operating system services resulting from

application QoS. They are specified in terms of,

1. Quantitative criteria specifies the parameters that can be

evaluated in terms of concrete measures, such as bit rate per

second, number of errors, task processing time, data unit size, etc.

2. Qualitative criteria specifies the expected services needed for

provision of QoS, such as interstream synchronization, ordered

Chapter 1

__

 17

delivery of data, error recovery mechanism, scheduling

mechanism, etc.

• The network QoS parameters: describe requirements on network

services, They can be specified in terms of,

1. Network load, describing requirements on the ongoing network

traffic, such as inter-arrival time.

2. Network performance, describing requirements which the network

services have to guarantee, such as latency, bandwidth or jitter

(the variance delay across many packets) [FER90].

These parameters can be specified in a deterministic, statistical, or predictive

manner. Deterministic and statistical parameters require guaranteed services

[FER90], while parameter values estimated from past behaviour requires

predictive services [CLA92]. However, if no parameters were specified, best-

effort services would be employed.

To understand the nature of the system resources, in [NAH98], they

classified resources as active or passive according to their characteristics. For

example, resources such as CPU and network adapter are considered to be

active resources since they provide services. On the other hand, the main

memory and bandwidth are considered to be passive since they indicate system

capabilities required by active resources. Thus, parameters specify requirements

on resource capacities allocated to the multimedia system services as well as the

service disciplines managing the resources. For example, the end-to-end delay

QoS parameter determines the behaviour of transmission services along the path

between media source and sink with respect to packet scheduling (bandwidth

allocation), queuing (buffer allocation), and task scheduling (CPU processing

time allocation) [NAH98].

! Enhancing of OS Kernel

The enhancement is done by making changes in the OS kernel. These changes

involve adding resource management mechanisms to the OS in order to support

multimedia applications and provide explicit QoS guarantees to soft real-time

applications. The OS kernel enhancement, of course, has advantages and

disadvantages.

The advantages come as a result of having the kernel itself to arbitrate

resources among the contending applications. This causes high accuracy and

reduces the overheads.

Introduction
__

 18

On the other hand, changing the OS kernel requires access to the kernel

source code which might not be feasible. Also, a change made in an operating

system might not be portable to another OS since the OS architectures vary

from one to another.

! Middleware Layer

In the middleware approach, the system resources are all controlled by a

middleware which works as a layer between the application and the operating

system. Thus, requests generated for the system resources by the application go

through the middleware. This way, the middleware can arbitrate access to

system resources and decide how to allocate resources to various applications

providing QoS guarantees to these applications.

As it is the case with OS kernel enhancement, this approach has also

advantages and disadvantages. One of the main advantages of the middleware

approach is that, it does not require any change in the OS kernel making this

approach portable. That is, the middleware can be reused in any operating

system. Also, this approach has the advantage of implementing any scheduling

algorithm that can provide the best QoS.

On the other hand, the middleware approach has the disadvantage of the

inefficiency. That is, since the middleware approach involves creating a new

layer between the application and the OS in order to control the resources, the

application performance will be reduced as a result of the increase in the runtime

overheads. Also, developing a middleware might impose some kind of complexity

to the application developer especially if the application needs to be programmed

to a new API.

The above discussion shows that there are trade offs between the two

approaches. So, the decision is made based on whether to change the OS kernel

by creating additional extension or to make all the changes in the middleware.

The designers can make their decision based on the application requirements

and the system objectives. For example, if the goal is to design a special

purpose system, then it could be better to augment the resources management

in the OS kernel. Otherwise, middleware mechanism would be much better for

general purpose systems where portability is feasible without causing major or

any changes. Also, the designer might choose to create a hybrid resources

management. That is, some of the enhancements are implemented within the

OS kernel and the rest are implemented at the user-level. Table 1.4 present a

summary of the different factors that help to make the decision [SHE02].

Chapter 1

__

 19

Table 1.4. Between middleware and OS kernel enhancement

Key points Enhancing OS Kernel Use of Middleware

Portability
Not directly portable to
another kernel

Portable to different OS

Overheads
Has low overheads Imposes runtime

overheads

OS Design complexity

Imposes a significant
challenge on the system
designer

The fewer inter-
dependencies between
the middleware and the
kernel reduce the
complexity.

Application Design
Complexity

Results in low complexity for
the application developer

Increases complexity for
application developers

Resource management
mechanisms

New OS enhancements need
to coexist with existing
mechanisms making the task
of the system designer more
complex

Can employ any resource
management mechanism
to provide QoS support
for multimedia
applications

1.6.3. Media Storage and File System

Another critical issue in the design of multimedia services is the design of

multimedia storage servers that can support continuous retrieval of video data

from disks to a large number of clients. Originally, storage servers have been

designed to provide efficient access to text and numerical information. This had

to be changed as a result of the need to provide multimedia services which

involve heterogeneous data types such as text, images, audio, and video. In

addition, and as it has been said before, multimedia services require large

storage space and large data transfer rate in real-time. Consequently,

conventional file systems which were designed for managing textual files do not

suffice for managing multimedia objects. Therefore, storage servers must

provide mechanisms for storing and retrieving multimedia data in timeliness

manner and in large quantities at high speed.

To provide high bandwidth and to support a large number of clients,

researchers have focused on replicating video files and distributing these files on

disk arrays. To effectively utilize a disk array, video streams have been striped

across disks in the array.

Introduction
__

 20

Data stripping allows each video stream to be divided into units, called logical

blocks or media blocks, which are then distributed among multiple storage

nodes. This mechanism achieves high disk bandwidth and maximizes the

throughput of a disk array [TEW96], however data stripping creates some

problems that need to be solved and, it has some disadvantages [CHO97]:

1. A distributed scheduling mechanism among all nodes of the server is

required which imposes clock synchronization problems among all nodes

in the server.

2. Relatively, larger start-up latency which refers to the time elapsed since a

request is made by the client to initiate a new stream until a fragment of

the video stream is received. In no-stripping technique the start-up

latency is shorter.

3. Lack of scalability. That is, if more disks or storage nodes are added, the

whole data must be redistributed among the disks causing unacceptable

overhead and cost.

4. The popularity of movies cannot be considered since replicating popular

movies in a server fails to increase the number of clients that can be

serviced simultaneously [LIT93].

To reduce the impact of these problems, a hybrid solution which combines data-

stripping and no-stripping would be required. In [CHO97], the author presents a

hybrid solution where the storage server is divided into server clusters. Video

streams are stripped across all the storage nodes in a server clusters. Also, video

streams are replicated in all server clusters so that they provide streams to the

clients independently.

The hybrid technique is implemented based on the number of server clusters

and nodes. That is, if the size of the server cluster equals the number of nodes in

the server, video streams are stripped. On the other hand, if the size of the

server cluster is equal to one, no-stripping scheme is employed in the server.

! Load Balancing Techniques

These techniques deal with balancing the load on the disk array. The placement

policy employed can simplify and produce balanced load on disk array causing

higher throughput. This policy can be decided based on the characteristics of the

media block since each media block might contain either a fixed number of

media units (e.g., video frames or audio samples), or a fixed number of storage

Chapter 1

__

 21

units (e.g. bytes). But before describing the load balancing techniques, it is

worthwhile mentioning some facts about media blocks.

If a media stream is compressed using a variable bit rate (VBR) compression

algorithm, then the storage space requirement may vary from one media unit to

another. Hence, a server that constructs a media block using a fixed number of

media units will be required to store variable size media blocks on the array. On

the other hand, if media blocks are of fixed size, then they will contain a variable

number of media units. Thus, depending on the placement policy, accessing a

fixed number of media units for a stream will require the server to retrieve either

a fixed number of variable size blocks, or a variable number of fixed-size blocks.

Due to the sequential playback of media stream, the variable-size block

placement policy yields predictable access patterns for the disk array, and

thereby simplifies disk bandwidth management. This, however, comes at the

expense of increased complexity of storage space management. The fixed-size

block placement policy simplifies storage space management at the expense of

more complex disk bandwidth management algorithms. Hence, the variable-size

blocks are suitable for predominantly read-only environments (e.g. video-on-

demand servers), while fixed-size blocks are better suited for environments that

involve frequent creation, deletion, and modification of media streams (e.g.,

multimedia file systems).

In general, multimedia servers might use a combination of static and

dynamic load balancing techniques in order to achieve load balancing [GEM95],

these techniques include:

• Statistic load balancing: The load balance across disks is done based on

the unit size of the stripe, the stripping degree, and the replication amount.

The stripe unit size can be chosen based on whether the multimedia designer

is interested in either minimizing the average response or minimizing the

variance in response time that lead to decrease in the frequency of playback

discontinuities while, in either case, maximizing the throughput.

Small unit size of the stripe produces a uniform load distribution in a disk

array. Consequently, the variance in response times is decreased however, the

overhead of disk seeks and rotational latencies are increased causing a decrease

in disk array throughput. In contrast, large stripe units produce unbalanced load

in the disk array and variance in response time however they increase the array

throughput. So, the trade off should be done in a way that maximizes the

number of requests that can be attended to.

Introduction
__

 22

The striping degree depends on whether the system has a small or a large

number of disks in the array. If the array has a small number of disks, then

striping media streams across all disks in the array (i.e., wide-striping) yields a

balanced load and maximizes the throughput [SHE95].

However, in large disk arrays, the media streams are stripped and replicated

in subsets of disks in order to achieve load balancing and to maximize the

throughput.

Two factors must be considered in order to decide the amount of replication

for each media stream. These are: the popularity of the video stream

(sometimes termed as hot videos) and the total storage space constraints.

Popular movies require more replication than unpopular ones (cold movies), and

a larger storage space gives the ability to increase the amount of the replication

in order to create more streams.

• Dynamic load balancing: In multimedia servers, the pattern of requests

arrival affects the load balance across disks. That is, the requests might

overload a disk in disks array. Therefore, the server must employ dynamic

mechanisms in order balance load across disks.

For example, multiple replicas for the requested stream can be created and

stored on the disks. Thereafter, the server can service the requests from the

least loaded disks containing the replicas.

! Local Storage Management

Video servers must store the available video files in their storage. In single

video servers, all video files are available in the server node and accessible

directly by the server. Of course, this would require high disk space.

In distributed systems, local servers (proxy servers) can be implemented

based on limited storage capacity in order to reduce storing cost. Therefore, the

storage space available in the proxy servers is divided into two parts: one of

these parts can function as a cache where, the most popular and requested

video files are stored; the other part of the server space can be used for making

a distributed mirror of system videos catalog.

The cache allows the increase of the number of requests that can be served

locally using a small portion of total server capacity. The inclusion of mirroring

schemes aims to reduce the distance of the requests which have failed in their

local proxy and to reduce the main server saturation since all requests situated

beyond a determined server distance cannot reach the server, thus, less

workload. Also, it aims to increases fault-tolerance, since there are several

Chapter 1

__

 23

copies of videos within the system, thus, partial system failure does not prevent

the rest of the system from continuing its work.

However, the performance of mirroring depends on the distributed

architecture and the way the proxy storage is dedicated. For example, one-level

proxies achieve a better performance than decentralized systems. The reason is

that, when a local-proxy cannot serve a request, this request has to cross one

network level to reach the main server. With mirroring scheme, the proxy-miss

service distance is affected by distributed-mirror capacity, which depends on the

number of proxies situated at the same distance from the local network.

Increasing the dedicated caching in the proxy storage implies a better proxy-

hit probability but increases the average distance needed to serve the proxy

misses from distributing mirror. On the other hand, if more storage is dedicated

for mirroring, the average mirror distance is reduced but proxy-misses are

increased. So these two factors are dependent. To enhance the distributed-

mirror capacity without modifying the proxy capacity would be done by

increasing the number of adjacent proxies from every local network.

! Video Data Retrieval

The retrieval of video data in multimedia servers can be done based on one of

two main paradigms: server-initiated or client-initiated. In server-initiated

paradigm, the server generates video streams in a periodical manner with which,

the clients will be able to join these streams.

In the client-initiated paradigm, the streams are initiated based on the

clients� requests arrival. More about these paradigms are discussed in section

1.6.5 in the context of video transmission mechanisms.

Regardless of the data retrieval paradigm, the storage server must employ

admission control in order to ensure that the acceptance of a new request for

data retrieval does not affect the real-time requirements or the quality of service

of the streams already being serviced.

From the above discussion, it can be realized that great attention must be

paid to the way the video data must be stored and distributed among the server

storage, the way the video data is retrieved, and the amount of the video data

that should be retrieved in a timely manner. These factors make multimedia

storage servers different from conventional storage servers. These differences

come from the fact that multimedia systems require different scheduling

algorithms and paradigms to be adopted. Even the choice of the disk hardware

Introduction
__

 24

affects the storage server since they influence the storage server throughput and

play a great role in the success of providing video on demand services.

1.6.4. Video Data Transmission

A crucial point in the design of proxy servers is the media transmission from the

video server to the client�s playback machine. The video can be transmitted via

unicast, broadcast or multicast channels. Therefore, video servers must employ

an efficient mechanism for video data delivery in order to improve the efficiency

of the service. The way the requests are served and the way the video data is

delivered determine the type of the VoD service. In general, current VoD servers

can be classified into five categories based on the way the video data is delivered

and the interactivity they provide [LIT94][STE95]. These categories are:

Broadcast (No-VoD), Pay-Per-Review, Near Video on demand, Quasi Video on

Demand, and True Video on Demand.

! Broadcast (No-VoD)

Video broadcasting represents services similar to broadcast TV, in which the

video is transmitted from a central server and all of the users are displaying the

same view. In this type of service, the user is a passive participant and has no

control over the session. It is true that this kind of service does not consume a

lot of resources in order to serve large numbers of users however it can�t

compete with the traditional video rental stores since the user can�t interact with

the video. Several variations [appendixA] to this kind of systems have been

proposed in order to attract the users to the on line VoD services and to give

them flexibility to decide when to watch the video and to be able to invoke some

VCR-Like functions at will.

! Pay-Per-View (PPV)

PPV provides services in which the user signs up and pays for specific

programs, similar to existing Cable TV PPV services. This way, the user will be

obliged to pay only for what he decides to watch. Subscribers can use today�s

set-top decoder box. Previously, the viewer has no control over the movie shown

since these set-top boxes do not give the viewers any freedom other than the

choice of whether to view the program or not. However, currently this service

has been improved so that various scenes can appear on the screen from a set

of camera angels (e.g. playing football games). The user, thereafter, can choose

from a specific camera.

Chapter 1

__

 25

! Near Video on Demand (NVoD)

Typical NVoD systems permit popular movies to be transmitted repeatedly over

multiple broadcast or multicast channels to enable multiple users to share a

single video channel so that the system cost can be drastically reduced. The

down sides are none-interactive control, fixed movie playback and high response

time.

! Quasi Video on Demand (QVoD)

QVoD presents services, in which programs are scheduled based on a threshold

of the number of pending requests. The objective was to batch a number of

users who can be serviced at the same time so that the I/O and network

bandwidth is reduced. Users can perform at the simplest level temporal control

activities by switching to a different group.

In QVoD, the throughput is found to be usually greater than that of NVoD,

except for the extreme case of nonstationary request arrivals. This observation is

then used to improve throughput without compromising customers' QoS in terms

of average phase offset and the corresponding dispersion[ABR97].

! True Video on Demand (TVoD)

A common way to provide TVoD services is to allocate a dedicated unicast

channel for every user allowing them to select their favorite video to play and

perform interactive VCR-like controls at will. In [SUP01], a system has been

created based on a multithreaded VoD server which adopted this approach. The

design dedicated a unicast channel for each client. This architecture was shown

to provide interactive VCR functions and short response time giving the user

complete control over the channel. However, the server runs out of resources

after a small number of clients are accepted. The reason was that, the resources

and the network bandwidth were not efficiently utilized. Therefore, it can�t meet

the increasing number of the clients while maintaining a complete TVoD to all

clients without delay. The TVoD remains a key issue in designing a successful

VoD services.

From the previous discussion, it can be deduced that it is important to use a

combination of unicast and multicast transmission techniques in order to provide

True Video on Demand (TVoD). Multicast channels are used to initiate new video

sessions from the beginning of the video file, while unicast channels are

allocated to users who join the multicast sessions in order to transmit the

Introduction
__

 26

missing initial part of the video (Video Prefix) upon their arrival. Meanwhile the

client will buffer the video data from the skew point of the multicast channel. The

video rate sent over the multicast channel and the unicast channels is

determined by a scheduling algorithm depending on the resources availability

and clients� machines specifications.

Also, in the DVoD architecture, it is important to design and implement a

video proxy server which will be responsible for providing a direct VoD services

to the clients. Due to the long-lived sessions and large bandwidth requirements

of VoD services, the architecture of this system requires a careful design and

layout of the different components that co-operate among each other to

guarantee a successful continuous just-in-time delivery of the requested

information.

1.6.5. Scheduling Policies for Media Data Delivery

As mentioned before, a key issue in VoD service is the ability to stream

continuous video data from servers to clients across the network providing TVoD

service without delay and playback interruption (jitter). Fifteen years ago, most

multimedia pundits were predicting that VoD would radically change our home

entertainment habits. However, none of the companies that invested in VoD

have been able to come up with a single successful commercial system since

VoD is still too costly to compete with either video rental or pay-per-view

television.

In 1998/1999 Time Warner Cable Comcast piloted a service using Scientific-

Atlanta�s (SFA) �Explorer 2000� digital set-top box and a SUN MicroSparc/Power

TV based STB. Trials by Bell Atlantic and Time Warner proved that though

streaming video-on demand was possible, the capital expense of 7000 pound per

video stream (per end-user) did not justify the business model [PER01]. If a

provider wanted to sell each stream at 2 pound (3�) (i.e. 3� per movie), viewers

would have to buy two movies every day for five years just to cover the initial

expense. However, the price for video-on-demand servers has been subjected to

Moore�s Law, and what used to cost 10500 � now costs less than 1050 �

[PER01].

The VoD service is still costly due to the high requirements of server and

bandwidth resources (in particular, server I/O bandwidth and network

bandwidth). The long-lived nature of digital video would hold these channels for

long a time. For example, if a typical two-hour movie is played back at a rate

equal to real-time playback rate, then the video channel will be occupied for two

Chapter 1

__

 27

hours, and the server must maintain streaming the video data transmission for

two hours. This means that the server�s resources are also occupied for two

hours.

The problem is further complicated by the fact that conventional video

streaming systems use a linear playback scheme that forces users to download

from the beginning of video. Also, during the playback, the clients may wish to

invoke one of the VCR-like functions such as pause, stop, jump forward and

jump backward, and they expect that the server should be able to respond

without delay.

These factors might have been the reason behind limiting the widespread

usage of video streaming over the Internet. Therefore, in order to reduce the

VoD service cost and to provide interactive video-on-demand, the server must

employ appropriate techniques to efficiently utilize the server resources and

stream media data to the clients. In general, there are two approaches for

allocating server channels for the delivery video data called: user-centered

approach and data-centered approach.

! User-Centered Approach

A conventional VoD system assumes the user-centered scheduling scheme in

which a user eventually acquires some dedicated bandwidth [AGG96b] [VIS96].

The consumption rate of a video object is equal to the amount of bandwidth

necessary to view it continuously. When a client makes a request to the server,

the server sends the requested object to the client via a dedicated channel. This

scheme incurs high system costs, especially in terms of server storage-I/O and

network bandwidths. However, some techniques can be implemented to reduce

the cost (See appendix A).

! Data-Centered Approach

Data-centered scheduling dedicates channels to video objects, instead of users.

It allows users to share a server stream by batching and using the multicast

facility of modern communication networks. Also, it has the potential to

dramatically reduce the network and server bandwidth requirements. The data-

centered multicast VoD service can be either client-initiated or server-initiated

[SHE95] [GAO99].

• In the client-initiated service, channels are allocated among the users

and the service is initiated by clients so, it is also known as a scheduled

or client-pull service.

Introduction
__

 28

• In the server-initiated service, the server channels are dedicated to

individual video objects, so it is also called a periodic broadcast or

server-push service. Popular videos are broadcast periodically in this

scheme, and a new request dynamically joins, with a small delay, the

stream that is being broadcast.

• Another option would be combining the above two schemes. This

combination is called hybrid batching. In practice, it is efficient to use

hybrid batching that combines the above two schemes.

The delivery of video data to the client involves three steps: (1) reading

blocks of video data from the disk (storage node) to a buffer, (2) transmission of

the block from the storage node to the network node and (3) the transmission of

the block from the network node to the consumer desktop.

! Media Data Delivery Algorithms

A video server has to supply data blocks of the movie at regular periods to

the client. If data is not transferred at regular intervals, the client may

experience glitches in the delivery of the movie. To ensure glitch-free service,

the video server has to guarantee finishing the three steps of service in a fixed

amount of time. Several previous algorithms have been proposed to guarantee

the video data delivery in a timely manner. These algorithms are explained in

details in Appendix A. In this section we highlight and mention some of the

major algorithms used for video data delivery scheduling.

Deadline scheduling algorithms such as [LIU73] and [JEF91] are shown to be

optimal however, both of these studies assume that the task completion times

are known in advance, but this is not realistic from the point of view of the user.

A slot-based algorithm presented in [RED99] addresses the block

transmission from the storage node to the network node over interconnected

network but does not consider the block transmission from the network node to

the client.

Another approach called batching [DAN94] has been proposed to schedule

video requests at the cost of undesirable latency to respond to client requests.

The idea is to queue users who request the same video data, then to assign a

single multicast channel instead of multiple independent unicast channels in

order to reduce resource requirements.

A set of well-known approaches have been presented to improving VoD

systems efficiency, such as piggybacking [GOL95] [GOL96] [AGG96a]. The idea

Chapter 1

__

 29

is similar to that of batching [DAN94], but the grouping is done dynamically and

while the displays are in progress.

Chaining [SHEU97] is also a generalized dynamic multicast technique to

reduce the demand on the network-I/O bandwidth by caching data in the client�s

local storage to facilitate future multicasts. The advantage of chaining is that not

every request has to receive its data directly from the server. A large amount of

video also becomes available from clients located throughout the network.

The authors of [CAR97] present stream tapping that allows a client to

greedily tap data from any stream on the VoD server containing video data.

To eliminate the service latency, patching was introduced in [HUA98]. The

objective of patching is to substantially improve the number of requests each

channel can serve per time unit, thereby sufficiently reducing the per-customer

system cost.

Broadcasting protocols share the common objective of reducing the total

bandwidth required. They repeatedly broadcast the same video over several

channels in such a way that a customer may have to wait for a few minutes (e.g.

5 minutes) before he can start watching the video. In [PAR99], the author states

two factors that make broadcasting protocols accepted: 1) The saving is

considerable since about 40% of the demand is for small number of popular

movies (10 to 20) [CLA93] [DAN94] [DAN96], 2) any reduction in the cost of

distributing popular videos through the use of more efficient broadcasting

protocols will thus have a direct impact on the overall cost of VoD and,

ultimately, on its success on the market place.

Pyramid broadcasting [VIS96], permutation-based pyramid broadcasting

[AGG96b], skyscraper broadcasting [HUA97], harmonic broadcasting [JUH97]

and its variants [PAR98], all, share the same goal and a similar organization

(See appendix A).

Asynchronous multicasting [WOO96], [KAL96] intended to improve the

system efficiency by allowing the user to join a multicast group and store some

video data in local buffer for later use. This is achieved by breaking up the video

into segments and sending out these segments at a rate greater than the

consumption rate of the video. These approaches send work-ahead data and can

be utilized to enhance the system performance.

All practical scheduling policies are guided by three primary objectives:

minimize the reneging probability, minimize average waiting time, and be fair.

The tradeoffs are between increasing the server performance and the client

Introduction
__

 30

satisfaction. A hybrid technique would be desirable in order to maximize the

server throughput and to provide an acceptable QoS to the clients.

1.7 Network Manager and Transmission Protocols

Network management is essential in order to alert the service provider in the

event of failure or degradation in quality of service. Thus, a network manager

may play the role of monitoring the network continuously, alerting the people in

case of error occurrence, recovery from failures and errors, and reporting

solutions [WPG03].

With regard to video transmission from the server to the client, the

transmission protocols which manage the video data delivery are considered. In

general, there are two important transport protocols that can be implemented

for this purpose:

i. The Transmission Control Protocol/Internet Protocol (TCP/IP), and

ii. The User Datagram protocol/Internet Protocol (UDP/IP) [TAN03].

However, other recent protocols have been designed at the top of the TCP and

UDP in order to serve the same purpose such as the Real Time Protocol (RTP),

the Real Time Control Protocol (RTCP), Real Time Session Protocol (RTSP), and

ReSerVation Protocol (RSVP).

In general, the TCP is considered as a connection-oriented protocol since it

guarantees the delivery of the packets from a sending machine to a receiving

machine in the network without errors. Also, it controls the flow of the data in

order to ensure that a fast sender of packets does not overwhelm a slow

receiver.

On the other hand, the UDP/IP is a connectionless protocol that does not

present any guarantee, and it fits well for the applications that don�t require the

control of the data flow implemented in TCP, rather, they implement their own

flow control mechanisms [TAN03]. The IP protocol is responsible for formatting

the data packets and forwarding these packets to their destination avoiding the

congestion.

The RTP protocol is built over UDP protocol and, it works together with its

RTCP protocol in order to implement a mechanism for video data delivery in real

time. It can be used to transfer different data types in real time. The RTP

protocol has a field called Payload-type identification which permits the receiver

to identify the format of the data received.

Chapter 1

__

 31

The RTP, however, does not guarantee the delivery of the packets in

sequence. That is, out of sequence packets might be received at the receiver

side. Therefore, it adds a sequential number at each packet so that the receiver

can reconstruct these packets in sequence.

Also, the RTP, by itself, neither offers real time delivery nor guarantees the

quality of the service. It assumes that the network layer guarantees that.

However, it provides a time-stamping mechanism which is added within the

transferred data from the server to the client. The time-stamping corresponds to

the instant of generating the data packets. When the receiver receives the

packets, it can use the time-stamping in order to synchronize the packets and

calculate the delay.

Like RTP protocol, the RTCP is also built over the UDP protocol. However,

each protocol uses different ports for communication. The RTCP provides quality

of service by using feeding back mechanism. That is, RTCP packets are sent to a

multicast session. This allows all receivers to receive these packets and calculate

the bit rate and the QoS of data transmission through Sender Reports and

Receiver Reports.

The receiver reports provides information about the packets lost and the

delays which may be experienced and which might cause jitters. The sender can

use the feedback in order to adapt to the changes that take place in the system.

The RTP/RTCP protocols support multicast transmission. In multicast

sessions, the RTCP controlling packets can be generated by all receivers and

received by all members of the sessions. This situation would definitely cause

network overhead. An alternative way is to have a process that controls the QoS

of all members who are belonging to a specific session.

Although they cause network overhead, RTP protocols would be very efficient

in systems that require real-time services since they can guarantee a minimum

QoS requested by the receiver.

As a continuation, there is another real-time protocol called Real Time

Streaming Protocol (RTSP). RTSP is a client/server protocol implemented at the

application level, and offers control over the delivery of video data in real time

[WPG04]. It establishes and controls either a single or several time-synchronized

streams of continuous media. In other words, it controls the data flow that is

transmitted by transport protocols such as UDP, multicast UDP, TCP, and RTP.

The servers and the clients who use RTSP cannot maintain the establishment

of a connection. The RTSP determines the session and establish a mechanism for

Introduction
__

 32

media streaming, deliver the data from the client to the server, close the

connection and free the resources. For each session, RTSP defines a unique

identifier which identifies the session and its correspondent messages.

In RTSP, the clients can use open and close connection-oriented protocol

(TCP) or connectionless protocol (UDP) in order to send requests to the server

and to communicate with it. For each requesting message, RTSP assigns a

sequence number in the Cseq field. So, the answering message will have the

same number which corresponds to the requesting message in its Cseq field.

Finally, the RSVP protocol is part of a larger effort to enhance the current

Internet architecture with support for Quality of Service flows. The RSVP protocol

is used by a host to request specific qualities of service from the network for

particular application data streams or flows. RSVP is also used by routers to

deliver quality-of-service (QoS) requests to all nodes along the path(s) of the

flows and to establish and maintain state to provide the requested service. RSVP

requests will generally result in resources being reserved in each node along the

data path [WPG05].

In order to decide what protocol to choose, one has to decide what kind of

VoD services the server is going to provide. This is important since each protocol

has its own features. For example, if a video server transmits work-ahead data

then a TCP protocol with additional data regulation would work well. RTP protocol

generates network overhead and does not guarantee the data delivery but it can

work well with addition control protocols and would be a good choice for

applications such as video conferencing.

1.8. The Client

The client is the one who connects to the server, negotiates the QoS, and

receives the video data which will be played at his display machine. In fact, the

real evaluation of the VoD service will be done at the client�s side.

Typical video client architecture consists of the following two components:

1. A graphical user interface: by which the user can connect to the server

and browse the video files.

2. Video player. In the market, it is possible to find so many different video

players. For the researches, it would be better to pick up the ones which

have an open source. This will allow researchers to investigate, analyze

and make some enhancements, if necessary, to the player. An example

Chapter 1

__

 33

for such player is MPEG Berkeley-based player [WPG06] and Xine

[WPG07].

In the past, the client did not have large buffer space and had lower I/O

bandwidth than today�s clients. That situation put constraints on the quality of

VoD applications. The lack of buffer space, for example, forced the designers to

provide real-time transmission. That is, the amount of video data transmitted

within a period of time (let�s say 1 second) must be enough to produce video

display on the client�s machine for one second. Otherwise, starvation or jitter will

occur. This situation raises some problems such as imposing strict deadlines on

scheduling the video streams and the system resources in order to meet such

service. Another problem would be the reduction in the server performance. That

is, even if the server had plenty of resource and was able to provide more video

data, yet it was not able to do that and the video delivery was restricted to the

client capacity.

Likewise, having small I/O bandwidth reduces the video QoS and the server

performance. We know from a previous section (1.4) that the bit rate of the

multimedia data is high compared with text material. So, the solution is to send

video data at a very small bit rate.

Currently, the client is becoming smarter and more cooperative. That is, the

client can help in increasing the server performance and QoS by providing a

moderate buffer space and a high I/O bandwidth. These changes will cause the

researchers to revise their previous work and to consider the progress of the

client�s capacities in any future design.

For example, today�s clients can receive the video data from multiple

channels and buffer work ahead video data. This situation affects positively on

the design of the client architecture, and affects positively on the way the

scheduling algorithms are designed and the way the video streams are

streamed. That is, if the server has plenty of resources, and the client has the

ability to receive at a rate greater than the real-time playback rate, then the

server can assign more resources to this client increasing its performance and

providing better quality of service at the client side.

1.9. Thesis Overview and Contributions

The objective of the thesis is the design and implementation of an efficient video

on demand server that could play the role of a centralized VoD server and/or a

proxy VoD server in DVoD systems. From the above information, it can be

Introduction
__

 34

concluded that VoD server architecture can be divided into a set of modules

(such as Admission Control module, Resources Management module, Video

Storage module, and delivery algorithm) that needs to work and cooperate

among each other in order to output a successful job which is providing VoD

services. The way these modules are designed and laid out in the server

architecture affects the server performance and the quality of service.

In addition, the video streaming mechanisms implemented, determines the

type of the service that can be provided. In this work, we provide video

streaming using multicast and unicast channels and means of patching and pre-

fetching techniques. Multicast channels will be created as a response to a

request to a new none-active video file (a file that does not have any active

session) or as a response to a request that could not be incorporated to an

existing multicast session, so another session for the same video file is

produced. The unicast channels, however, will be used mainly to transmit the

initial part of the video (video prefix) and support VCR functions.

This approach does not require the split of the channels into dedicated

unicast and dedicated multicast channels to provide the VoD service. These

channels are allocated dynamically and according to their use. Also, contrary to

broadcasting and batching techniques, we provide interactive VCR functions and

treat our video files fairly without classifying the video files into popular and non-

popular. This fairness comes from the fact that, in the educational centers such

as universities, schools and other institutions the clients (e.g. students) usually

request old video files such as history, documents or experiments done in earlier

years. Thus, we can�t ignore these video files in favor of the recent 10 or 20

popular movies.

Another important issue considered in this work is that, clients usually have

different machine capabilities in terms of buffer space and I/O bandwidth.

Therefore, our approach takes into consideration this fact and adapts itself to the

heterogeneity of the clients who may join the multicast channels. The

heterogeneity can have positive impact when the clients have high capacity in

terms of buffer space and I/O bandwidth and the server has available resources

that can be assigned to these clients. However, heterogeneity may have a

negative impact when clients with less capacity are merged into multicast

streams which transmit at higher capacity. This will require that transmission

rate be adjusted to an appropriate rate that matches the capacity of all clients

joining the multicast stream. These problems are tackled by our proposed

algorithm called Credit Based Media Delivery Algorithm (CB_MDA).

Chapter 1

__

 35

The contributions of the thesis are the following:

! The design and implementation of a scalable multithreaded video on demand

system with concentration on video data delivery algorithm. This system

provides interactive video on demand where the user can select his favorite

video from videos list and decide when to watch it. The server employs

admission control module which enables high requests acquisition and allows

the users to get served in a short period of time.

! The proposal and analysis of four representative admission control policies.

These policies translate the users� requests into resources using four brokers:

CPU Broker, Memory Broker, Disk Broker, and Network Broker. This analysis

has required extracting meta information from the video files. We have

created some programs to generate the necessary information from MPEG

video files.

! Conclusions from the analysis of the brokers and the need to provide

interactive TVoD service have led to design and implement a Credit_Based

Media Delivery Algorithm (CB_MDA) which regulates and controls the flow of

the video data from the server to the client, guarantees on time delivery

during the video reproduction, and provides VCR-Like functions such as

pause, stop, play, jump forward, and jump backward, yet the algorithm does

not require reserving dedicated channels in order to achieve its goals. The

CB_MDA uses multicast and unicast channels and implements patching and

pre-fetching techniques in order to increase the performance of the server

and supply instantaneous VCR commands. The algorithm can, also,

dynamically adapt to the system changes such joining and disjoining the

service during the video reproduction.

! Providing interoperable client architecture. This is done creating a

communication module which is separated from the graphical User Interface

and the player decoder modules. The architecture allows other players to be

used without significant change.

The characteristics of our VoD server are the following:

• Multithreaded server

• True Video on Demand and short response time

• Free of starvation service

• Scalable video services

Introduction
__

 36

In our work, and to be more specific, we use the term VoD in order to refer to

Movie on Demand service. The movie on demand system was the choice since,

as we mentioned before, this type of applications is supposed to deliver a huge

amount of video data per second for a long period of time (e.g. two hours)

(Table 1.4). Although other types of video applications include huge amount of

video data per second but many of them are played in a short period of time and

may not provide interactive VCR-like functions.

Chapter 2
Video-on-Demand Architecture and Design
__

2.1 Introduction

As it can be seen from the previous chapter, the internal design of the video

server, whether the server is working as a single video architecture or as a proxy

server in multiple-video architecture, plays a great role in the success of

providing a scalable interactive VoD services.

This fact has led us to concentrate on the issues related to the major

components that compose the internal design of the server, such as the

admission control, the resource management, the video storage, and the internal

communication, with concentration on the video data delivery algorithm.

Also, we have seen that a careful design of the client architecture is

important in order to synchronize well with the server and to guarantee multiple

video screen and interoperable client. For this reason, and to test our design, we

dedicated a great work on the design of the client architecture.

Figure 2.1 shows a general view of the main components that will compose

our VoD clients/server architecture. As the figure indicates, the clients send their

requests as commands (Cmds), the commands are received, processed and the

quality of service is negotiated by the admission control (AC) module.

The resource manager provides the AC with the necessary information for

decision making. Also, the media delivery algorithm is informed by these

information and schedule the media data delivery. The server, in general, needs

to store information about the video files and the users who have been admitted

Video-on-Demand Architecture and Design
__

 38

by the server. This information is important for calculating the system resources

and for deciding the bit rate that can be sent to the clients.

2.1.1 Server Design Objectives

In this chapter, the focus is on the design and implementation of the admission

control and resource management sub-systems as well as the internal

communication between them. From now on, the terminologies video server and

proxy server are used interchangeably to indicate the same thing which is a

single video server responsible for a direct video data transmission to the user.

Also, the words client, user, viewer, and customer are used to refer to the same

person (male or female) who requests the VoD service.

The entire work which includes the server design and the architecture has

been implemented with the following objectives in mind:

• Designing a VoD server that can function as a central VoD server or as a

Proxy Video Server that can be used as a building block in Distributed VoD

(DVoD) architectures such as the one presented by our group [COR02].

• Providing scalable service in order to support a large number of users.

• Permitting users to decide when, where and what to watch.

• Providing a True Video on Demand (TVoD) service with a short response time

to the different users� requests.

Client
Negotiation

Module

Server
Negotiation

Module

Admission
Control

Algorithm
(AC)

CPU, I/O Bw,
Buffers & Ne t

St at e

Media Delivery
Module

Delivery
Policies

Cmds

Cmds

Media to the client

Authentication
Media available

QoS, ...

RM
Informatio n

Users ' Da ta
Base

Client Side Server Side

Figure 2.1. Main components of a VoD server

Chapter 2

__

 39

• Guaranteeing a continuous media without jittering during the playback of the

video.

• Supporting instantaneous interactive VCR-Like functions such as Stop, Play,

Pause, Jump forward, and Jump backward without delay.

• The final server design could play the role of en educational instrument in

educational institution such as universities and schools.

2.1.2 Server Characteristics

The environment where we have implemented our design and tested our

objectives assumes off shelf products and has the following characteristics:

• Scalable VoD Server with data storage system based on optimized file-

system-oriented server.

• Network without real time protocol. Real time protocols (RTP/RTCP) have

been considered for calculating the overhead caused by implementing these

protocols.

• Public domain based software (Operating System) such as Linux distributions

(e.g. SuSe, Red Hat, Mandrake).

• Control and management of network / storage devices and, CPU scheduling

from the user layer. This implicates the creation of a middleware which will

take over the control of the corresponding systems.

2.1.3 Server Functionality and Components

Recalling from the previous chapter, a typical Video on Demand (VoD) system is

composed of video server/s, clients and communicating channels. Clients

connect to the server and select their favorite movies that they would like to

play. Servers store movie files, process clients� requests and guarantee video

data delivery in timely manner. The network communicates the clients� requests

to the server and, in return, it delivers the video data to the clients. The clients

can then playback the movie at their displaying machines with the ability to

invoke VCR-commands using GUI.

To handle the task cycle of requesting services and delivering data, we have

created the server based on modules which work as a client/server. Each module

is responsible for executing a specific task and conveying the result to the

module requesting the service.

Figure 2.2 shows a high-level overview of our video on demand architecture

which consists of two main parts, a Video Proxy Server (VPS) and Client

Video-on-Demand Architecture and Design
__

 40

architecture. The VPS includes the main components that compose the server

and the internal communication between them. The client architecture is focused

on the video daemon, the player and the GUI. The network is expected to

provide high bandwidth since VoD systems deliver great amount of video data.

The next section will focus on the details of the design and implementation of

the VPS architecture. It explains the main components of the admission control

module followed by the resources management. Also, it analyzes four admission

policies which can be implemented in order to manage the system resources.

The communication between the different components and the storage

management are also presented.

2.2. VPS Design and Architecture

As it can be noted from the previous discussion, requesting movies at will

involves steps taken by the server before the service can be granted. These

steps are classified and summarized in our architecture as follows:

1. Requests Acquisition and Analysis

2. Admission Control

3. Resources Management and Assignment

4. Video Data Retrieval and

5. Video Data Scheduling and Transmission

To carry out these steps, we have studied, analyzed, and designed different

important modules which compose the VPS (Figure 2.3). The Admission

Control Module (ACM) and the Resource Manager Module (RMM) control

Resource
Manager

(RM)

Hierachical
Storage
Server

Network
ManagerLocal

Storage
Server

MVS

Clients

Multimedia
Information

Negotiation &
Interactive
Commands

Admission
Control

(AC)

Video Data Delivery

Figure 2.2. Overview of VPS architecture

VPS

Chapter 2

__

 41

the admission of the requests and the assignment of the server�s resources. The

CB_MDA Module is designed to schedule the delivery of the video data to the

clients. The Local Storage Server (LSS) is responsible for storing video files

which will be served to the clients, and providing zero delay to the different

requests. Also, the communication between the different modules and the

control of signals and data flow between the different components is also

considered.

On the other side, we have the client architecture. The client has been

designed to test the server viability. In its design, we have considered the data

transmission from the server to the client so that the client can synchronize with

the server. In the design, the client has been created as an interoperable one.

That is, other client can use other type of players such as real player.

The media delivery algorithm and the client architecture are discussed in

chapter three and appendix-B respectively.

In VPS architecture, and before we describe its components, it is worthwhile

mentioning that we have purposely separated the ACM and the RMM from each

Player

Buffers

Video
Daemon

Graphical
Interface

Client Archite cture

Resource
Manage r

Admiss ion
Control

CB_MDA
Module

1 2 NVideo
Threads

Buffers

1 2 N
Disk

Threads

Local
S torage

Segmented
Switch

VPS Archite cture

Figure 2.3. Our proposed VoD clients/server architecture

Video-on-Demand Architecture and Design
__

 42

other. The decision of having the ACM and RMM as different and separated

components is due to two major points: first, reducing response time and

second, making the system scalability feasible.

Also, we made separation between video data path and control flow in both,

the VPS and the client architectures. This separation comes from the fact that

data path and control function imposes different requirements on the underlying

system.

Another important principle embodied in VPS and client architectures is the

use of IP multicast. Multicast offers excellent scalability which, in turn, enables

servicing a large number of clients and provides excellent cost / performance

benefits. In spite of these advantages, multicast VoD introduces certain new

difficulties in supporting VCR commands such as interactivity with multicast

services while improving service efficiency.

The Multicasting transmission and providing instantaneous interactive VCR-

commands without glitches are handled by the CB_MDA algorithm, which is

discussed in chapter three.

The main components of the VPS architecture and the main issues related to

each one of them are clarified with details in the following section.

2.3. Admission Control Module

The Admission Control Module (ACM) makes sure that the acceptance of a new

client does not affect the performance requirements of other videos already

being serviced, and, that adequate resources are available throughout the entire

path from the video server to the client displaying device.

Also, the ACM attends to requests received from clients by analyzing them

and deciding, based on information received from the resource manager about

the resources availability, whether a request can be attended to, and, given that

a request cannot be attended to because of the lack of resources in the system,

the ACM renegotiates a QoS for the request so that it can be successfully

accepted according to a given policy defined by the resource manager.

2.3.1 Requests Handling

For the ACM to handle the requests arrival and the negotiation and renegotiation

with the client, we have created three sub-modules to manage these actions.

The sub-modules are: Requests Acquisition Sub-Module, Requests Admission

Sub-Module, and Renegotiation Sub-Module.

Chapter 2

__

 43

$ Requests Acquisition Sub-module: This sub-module is a single listener

thread that listens on a well-known port for incoming client requests. It

is, simply, responsible for receiving the requests invoked by the clients.

Once it receives a request, it puts it in the arrival queue and signals the

requests admission module in order to handle this request.

$ Requests Admission Sub-module: This sub-module is responsible for

negotiating with the client and deciding, depending on the available

resources, whether a petition can be attended to or not. In the case of

rejection, the request can be renegotiated.

$ Renegotiation Sub-module: given that a request has not been accepted

because of the lack of resources in the system, this module can

renegotiate a QoS for the requested video data so that it can be

successfully accepted according to a given policy.

2.3.2. Communication Commands

For the ACM to communicate with the clients and other parts of the server, we

have created a set of commands in order to distinguish the requests type from

each other. These commands include:

1. NEW, means that the client is new and has no profile in the system. For

this request the ACM creates a thread in order to negotiate with the client.

Then, it informs the client about the negotiating port. At this stage, the

client synchronizes with the server and the thread sends a list of available

video files in the system along with their format, size, frame rate, and

playing time.

The idea behind having a thread to negotiate with the new clients

rather than the ACM itself is to achieve high requests acquisition by the

server and to achieve a very short response time from the client point of

view.

2. LIST: This command is sent by the ACM to the client, and it indicates to

the client that the attached data represents a list of the video files

available in the server.

On the other side, the client has a GUI where he can browse the video

files and some information related to these files. He selects his favorite

video file and sends his request accompanied with the command PORT.

3. PORT, means that the client has chosen the file, and he wants to know the

port where he can receive the media data from. The ACM asks the resource

Video-on-Demand Architecture and Design
__

 44

manager to create two kinds of threads which are: video retrieving thread

�Vthr-i� and video delivery thread �Dthr-i�, for data retrieving from the disk

and data delivery to the client respectively. Thereafter, the ACM informs

the client about the receiving port.

As it can be seen from the above command, we are making another

separation between the video data retrieval and the video data

transmission to the client. This separation of functionalities is very

important for three main reasons.

i. It helps the data delivery scheduling algorithm (CB_MDA) to assume

zero delay in data retrieval. And this is can be guaranteed by any of the

disk scheduling that could guarantee zero delay scheduling. However, in

our case we are relying on the disk broker which has been designed by

our group.

ii. The separation creates flexibility in choosing or changing the disk

scheduling algorithm at will without the need to make changes in the

video data delivery algorithm.

iii. This separation also increases the server efficiency since it reduces the

communication overhead that would be generated between the threads

and the system resources if each thread had to investigate the

resources availability. Instead, the resource manager reports

periodically, or as a result of changes in the system, the resources

availability to the ACM, then the ACM uses this information to decide

whether to admit a request or not.

4. CMND, means that the client is registered as an active one and is sending

one of the interactive control commands (Play, Pause, Jump forward, Jump

backward, Stop). The ACM responds by forwarding this request to the

delivery algorithm (CB_MDA) which will reschedule this request according

to its type.

5. RESOURCE: The command is sent from the ACM to the RMM in order to

check resources availability. The RMM investigates its resources such as

the disk, memory, CPU and the network and then, reports to the ACM.

2.4. Resource Manager Module (RMM)

It becomes clear that, prior to admitting a new client for VoD services, the VoD

server must make sure that it has sufficient resources in order to guarantee that

Chapter 2

__

 45

the QoS contracted to existing clients is not jeopardized. Therefore, we have

considered and implemented the resources management in our VoD system so

that the resources can be guaranteed and reserved for the accepted requests

during the entire video session.

Unfortunately, variable bit-rate video streams create difficulties in

determining the amount of resources needed. Of course, this has created

problems for us in determining how to guarantee and reserve the required

resources.

To solve this problem, two solutions that can be studied and implemented

are presented. The first one is called optimistic solution, with which, the

reservation of resources can be made based on the minimum bit-rate. However,

this approach may overload the resources when unpredictable behavior occurs. A

second solution would be based on pessimistic approach. The pessimistic

approach generates an under-utilization of the resources since the maximum bit

rate would be expected.

The assignment represents a trade-off between both approaches [NAH99].

That is, shall we create an in-between or an intermediary solution where we

create a deterministic mechanism to determine the required resources, or create

a predictive solution augmented by mechanisms in order to adapt to the changes

that may occur during the video sessions?

To answer these questions, in this section, we explore the impact and the

effects of the deterministic and predictive policies on the server performance.

These policies are applied to the server resources which are managed by RMM.

In our work the Resource Manager Module (RMM) translates the user�s

requests into QoS parameters, requests the necessary resources and reserves

them using four brokers (threads) which are: CPU broker, Memory broker,

Network broker, and Disk broker (figure 2.4). Each broker works separately and

reports to the RMM about its status according to a predefined policy. If all of

them report positive confirmations to the RMM, the petition is then accepted and

registered in the admitted users list.

The CPU broker calculates the CPU computing time of the requested media

data, the memory broker computes the memory needed to buffer the media data

before delivering it to the client, the required network bandwidth is calculated by

the network broker and, finally, the disk broker calculates and guarantees the

requested bandwidth. The data generated by these brokers is translated into

information used by the ACM in order to decide whether to accept or reject a

Video-on-Demand Architecture and Design
__

 46

request. Also, this information is used by the CB_MDA for scheduling the video

threads which are responsible for video data delivery.

Local Storage

ACRM

Network DiskMemory CPU

CB_MDA

C
lie

nt
s

Video Data

Requests
Negotiation &
Renegotiation

The brokers have been designed as an intermediate layer, called middleware,

between the application layer and the operating system layer (Figure 2.5). The

decision to implement a middleware is based on the fact that, normal operating

systems don�t offer a QoS required by VoD systems.

Therefore, and as we have mentioned in the previous chapter, for an

operating system to provide a QoS, its kernel must be modified and the

reservation algorithms are contained in the kernel. Being included in the kernel,

a higher resolution and exact time can be obtained in order to reserve the

resources. However, the modification process of the kernel is complex, and the

Figure 2.4. Resources Mangaement Brokers

CPU
Broker

Application

Middleware

OS

Hardware

RMM

Memory
Broker

Network
Broker

Disk
Broker

CPU
Scheduler

Memory
Scheduler

Disk
Scheduler

Network
Scheduler

Figure 2.5. Middleware implementation of the brokers

Application

Middleware

OS

Hardware

Chapter 2

__

 47

service will be always committed to the implemented algorithms inside the

kernel.

On the other hand, the middleware has the advantage of applying and select

between different scheduling policies. Also, the middleware approach permits to

adapt to the characteristics of the hardware.

In the brokers design, we have studied, analyzed, and implemented four

specific policies for the admission control [QAZ03a]. These algorithms are:

Maximum Policy (MP), Adaptive Maximum Policy (AMP), Average Policy (AP) and

Adaptive Average Policy (AAP). The adaptive policies are developed to improve

the application throughput.

To test and to evaluate these algorithms, we have used MPEG-1 and MPEG-2

format for the examples analyzed in order to present a real comparison between

them. The MPEG files such as MPEG-1 and MPEG-2 are compressed files which

consist of a sequence of three types of frames I, P, and B. These frames are

explained as follows:

• I-frames (Intra-coded images) are coded as a standalone images that

have no reference to any other frame in the sequence of the frames.

• P-frames (Predictive-coded images) are coded based on information

from the previous I-frame and/or all previous P-frames located

between the previous I-frame and the P-frame. This implicates that,

the decoder software needs these frames to be available in order to

generate the new decoded frame.

• B-frames (Bi-directionally predictive-coded frames) are coded based

on information from the previous and next I-frames or P-frames.

These frames can�t be coded unless and until the following I-frames or

P-frames are processed in order to obtain the reference points.

The algorithms can work with two modes, frame-mode where video data is

sent frame by frame, and block-mode where a block of video data, instead of

frame, is sent. The algorithms in their version of frames (I, P, B) and blocks (a

packet of fixed number of bytes), are pertaining to the Deterministic and

Predictive categories and, they are analyzed and implemented in the CPU,

memory, disk and Network brokers.

However, since the CPU broker is the first one to start the discussion with, it

can be realized that it has more details than the other brokers. This situation of

unbalance shall not indicate less importance of the other brokers rather, it refers

to the fact that, the policies are introduced the first time in the CPU broker. So,

Video-on-Demand Architecture and Design
__

 48

more details would have been needed to create an understanding to the

implementation of the different policies. Thus, in the subsequent brokers, it

would be enough to make references to the same concepts which have been

mentioned in the CPU broker.

The analysis of the algorithms in the context of the resources management

brokers, of course, requires some information about the contents of the video

files such as; data format, file size, frames sizes, frame rate per second. This

information has been extracted from the video files as it is explained in the

following subsection.

2.4.1. Obtaining Metadata

The algorithms require the extraction of meta-information from MPEG video files,

and the creation of necessary tables which are used to keep track of the system

status. For this reason, we have used a Berkeley analysis tool called mpeg_stat

[http://bmrc.berkeley.edu] along with our programs in order to generate the

necessary information files from the video files. The information generated from

these file is also used to make some calculations such as the computing time of

accessing a frame or a block of video data and to create necessary files and

tables used by these algorithms.

For each mpeg video file (e.g. Futurama206.mpg) a series of meta-

information files are generated with different extensions. One of the files which,

has been used as a base for generating other information, is the one with the

extension .sz (e.g. Futurama206.sz). Table 2.1 shows the kind of the information

that would appear in such files like Futurama206.sz.

Table 2.1. Snapshot from a video file

Frame No. Frame Type Frame Size

0 I 20792

1 I 108320

2

.

The table shows that Futurama206.sz contains three columns. The first one

refers to the frame number. This number is sequential and indicates how many

frames are in the video file. The second column corresponds to the type of the

frame. As we said before, MPEG format contains three types of frames, the Intra

frame I, the prediction frames P, and the bidirectional predictive frames B.

Chapter 2

__

 49

From the (.sz) files we have generated useful meta-information for the

analysis of the algorithms. For example, we have extracted the frames I, P, and

B which have the maximum sizes. Also, we have counted the number of I

frames, P frames, and B frames in each file. In addition, we have calculated the

average sizes of these frames (I, P, and B). This information has been stored in

files which have (.meta) extension.

The algorithms are analyzed with frame-based and block-based modes. That

is, the video data can be retrieved from the storage disks frame by frame or

block by block. Therefore, it is important to determine the block size (e.g. 32KB)

of the video data that will be sent to the client. Based on the block size, we

calculate the number and the average numbers of the I, P, and B frames in each

block. The generated data for each video file is stored with (.bk) extension.

Table 2.2 shows the structure of the (.bk) file.

Table 2.2. Frames sequence from a video file

Block No. Frames per block

0 IIBPBB

1 PBBPBBP

2 BBIBB

3 PBBPBBP

.

.

Table 2.2 shows that Block 0 has a combination of I, P, and B frames. The

next block has only two types of frames (P and B). The number of blocks

depends on the block size, and the bigger the block size is the larger the number

of frames is.

In order to incorporate new files, we basically have created a file called

movies.info which contains all available video files. The file includes information

about each video file such as Identification number (Id), file name, dimx and

dimy (Table 2.3). Using movies.info file, we call a process which creates a

directory for each file. The directory is named after the Id of the video file.

The previous table indicates that the Futurama206.mpg has an Id equal to 1.

Thus, a directory named after the movies Id is generated starting from a

directory called meta directory and, all the generated file will have the same

name (Futurama206) but with different extensions such as, Futurama206.bk,

Futurama206.info, Futurama206.zs�etc.

Video-on-Demand Architecture and Design
__

 50

Table 2.3. Partial list of video files

Id File name Dimx Dimy

1 Futurama206.mpg 352 240

2 BC.mpg 352 240

3 Christmas.mpg 240 160

4 Flash.mpg 352 240

5 Ontario.mpg 352 240

. . . .

In addition to what we have mentioned above and to facilitate the admission

control and to permit the adaptation of the VoD system to the characteristics of

the hardware used, we have used the above information in order to calculate the

computing time of the largest I frame size, the computing time of the largest P

frame size, the computing time of the largest B frame size, the computing time

of the average I frame size, the computing time of the average P frame size, the

computing time of the average B frame size, and the computing time of the data

block of each movie. This information is made available to the different

algorithms by a table called mptable (Movies Profile Table), and will be used

mainly when the algorithms calculate the CPU resources needed to satisfy a

client�s request.

Another table called mmtable (Movies Meta Table) is also made available to

the algorithms. This table contains the total number of the frames, the number

of I frames, the number of P frames, the number of B frames, the largest size of

I frames, the largest size of the P frames, the largest size of B frames, the

average size of I frames, the average size of P frames, the average size of B

frames, the block size, the number of blocks in the video file, and the number of

frames per block. This information is used based on the algorithm used. For

example, the Maximum Policy uses the largest frames while, the Average policy

uses the average sizes of the different frames.

The importance of the information extracted from these files can be seen

more clearly when they are implemented during the analysis process of these

algorithms in the context of the resources brokers.

2.4.2. Overview of the Applied Policies

In the MP policy (Maximum Policy), the brokers consider the size of the

largest I-frame and maintain this value during the whole service. Therefore, this

Chapter 2

__

 51

policy achieves high quality of service since the maximum value is maintained all

the time, however it miss utilizes the server resources since it might reserve

more resources than what would be actually needed by each request.

To overcome this problem, the AMP (adaptive maximum policy) takes into

considerations the average size of the largest I-frame, P-frame and B-frame

during the service. The AMP achieves high performance since the amount of the

reserved resources is reduced, yet it provides an acceptable high quality of

service.

In the AP policy, the brokers considers the video average sizes of I-frames,

P-frames, and B-frames, while in AAP policy the brokers consider the

characteristics of the video (increase or decrease of the quality of service when

the number of I-frames is increased or decreased) using the values of the AP

policy. The performance results are discussed in chapter four and reported in

[QAZ03a].

The brokers have been designed with the flexibility of applying any of these

policies at the starting time of the server. This depends on the server load. For

example, if the server is lightly-loaded then the brokers can make the

reservation of the resources based on MP. Otherwise, they might apply the AMP

in order to reduce the amount of the resources assigned to the requests so that

more clients can be accepted.

The adaptive algorithms show that they use an exponential weighted average

to guess the future resource needs of a stream, rather than just using the

maximum or mean over the whole period. Thus, they provide some smoothing

and so a closer matching of resources used to those reserved and so higher

capacity.

2.4.3. CPU Broker

 The CPU broker is responsible for reserving the necessary resources and

scheduling them based on a policy defined by the RMM. In this broker, there are

three parameters which will be considered in calculating whether a request (reqi)

will be admitted or not. These parameters are CPU computing time Ci, CPU cycle

time Ti and CPU utilization Ui.

The translation of C and T are calculated differently from one algorithm to

another, except for the CPU utilization, which can always be expressed as it is

stated in (1).

Video-on-Demand Architecture and Design
__

 52

Ui = Ci / Ti. (1)
In the analysis of our VoD application, the computing time of the video

frames and blocks have been generated off-line. Thus, the CPU utilization is

calculated by dividing the computing time of a frame or block by how many

times the computing time has to be done.

In the frame-based, the computing time is changing while the period time

remains constant however; in the block frame the computing time remains

constant while the period time is changing. The reason for this difference refers

to the fact that video files consists of frames of different sizes. The frequency of

playing these frames per second (fps) determines how many times the

calculation is done. On the other hand, a block of data consists of varying

number of frames which makes the number of calculations varying from time to

time.

Whether frame-based or the block-based is implemented, the criterion to

admit reqi is based on the following admission test:

1
1

≤+ ∑
=

N

j j
i T

C
U j

 (2)

where N is the number of attended requests and Ui is the CPU utilization of the

reqi. If this test is fulfilled, the CPU broker will attend to the new request and

register it in the list of the admitted requests.

The parameters C and T which intervene in the admission test are calculated

according to the implemented policies as follows:

• Maximum Policy with Frame-based mode. This policy considers the

computing time (ct) of the largest frame in the video file. This implicates that the

computing time of the largest I-frame max(I) is considered, and this value is

maintained throughout the entire service. Thus, Ci is assigned the computing

time of the larges I-frame as in (3). With regard to Ti, since the mode is frame-

based, in (4) Ti is calculated by dividing 1 by the number of the frames.

Ci = ct (maxi(I)), (3)
Ti = fpsi

-1 (4)

The fps represents the frame rate of the video file per second (fps). As we

said before, fps is extracted from meta data files and used to calculate Ti.

Chapter 2

__

 53

Thereafter, the values of (3) and (4) are substituted in (1) in order to

calculate the cpu utilization so that the admission control test is done according

to (2).

• Maximum Policy with Block-based mode. With this policy, it is

assumed that all frames are of type (I) since the largest frame is considered.

Therefore, the computing time Ci of the block (ctBlock) will be as in (5) and, it

will be constant all the time since the block size is constant too.

Ci = ctBlock (5)
Ti, in this case, is calculated differently since the number of the frames varies

from block to block. Therefore, the number of frames per block (fpb) is

calculated as in (6) where, the BlockSize is defined by the application (e.g. 32

KByte, 64 KByte�etc), and then, Ti is calculated as in (7).

fpbi = BlockSize / Size (maxi(I)) (6)
Ti = fpbi / fpsi (7)

Thereafter, and likewise, the values of (5) and (7) are substituted in (1) in

order to calculate the cpu utilization so that the admission control test is done

according to (2).

• Adaptive Maximum Policy with Frame-based mode. The Adaptive

Maximum policy is different from the Maximum policy in that it considers the

computing time of the largest I-frame (maxI), P-frame (maxP), and B-frame

(maxB), and, it adapts to the changes while the film is running. The computing

time of these frames is calculated. In addition the frequency of the frames

appearance in the video file must be known. This frequency is represented as the

percentage or the probability of the frames appearance in the video file.

With Frame-based mode, the steps for testing the admission control are done

as follows:

1. The ct of I-frame is assigned the ct of the largest I-frame as in (8a),

the ct of P-frame is assigned the ct of the largest P-frame as in (8b),

and the ct of B-frame is assigned the ct of the largest B-frame as in

(8c).

cti(I)=ct(max(I)), (8a)

cti(P)=ct(max(P)), (8b)

cti(B)=ct(max(B)), (8c)

Video-on-Demand Architecture and Design
__

 54

2. The Ci is calculated as in (9) by multiplying the ct of each frame by the
probability of its appearance in the video file. pI, pP, and pB are the

frequency of the frames appearance in the film.

Ci = cti (I) pI + cti (P) pP + cti (B) pB (9)

3. Since the policy is frame-based, Ti is calculated the same as it is stated in
(4). This equation is stated below for the ease of reading it.

Ti = fpsi
-1

4. The adaptive mechanism, (10) (11), consists of recalculating the

computing time in terms of the frequency of each frame type that

appears in the future time t where t>1. The degree of adjustment is

considered as parameter λ where, (0 ≤ λ ≤ 1) and is used for each pk,

where k can be I-frame, P-frame, or B-frame. The probability of the

appearance of future frames in (t+1) is obtained using the meta-

information extracted from the video files. Therefore, we can predict

the type of the frame before sending it. If lambda is equal to 1 then the

adaptation is totally predictive.

Ci (t)= cti(I) pI(t) + cti(P) pP(t) + cti (B) pB(t) (10)
pk(t) = (1-λ)pk(t-1) + λ pk(t+1) (11)

5. Ti is computed as in 4 since the mode is frame-based, and the Ui is

calculated by using (11) divided by (4).

• Adaptive Maximum Policy with Block-based mode. With Block-based

mode, having in mind the maximum sizes of I-frame, P-frame, and B-frame, the

weighted size Size of a frame is calculated as in (12). Thereafter, the number of

frames per each block (at the application level) is obtained as in (13). With this

value, the period T, when the server has to send, is computed as in (14). The

computing time of a block is constant while the time period depends on the

client�s petition. It is interesting to notice that if the number of frames per block

becomes 1 then this method works well the same as the frame-based method.

Sizei = maxi(I)pI + maxi(P)pP + maxi(B)pB (12)

fpbi = BlockSize / Sizei (13)

Ti = fpbi / fpsi (14)

Chapter 2

__

 55

Thus, the Ui will be equal to ctBlock/Ti. As in (11), the adaptation depends on

the knowledge of the contents of the next block to be sent. Thus, the adaptation

equation for block-based mode is rewritten as in (15).

Ti(t) =((1-λ) fpbi(t-1) + λ fpbi(t+1))/ fpsi (15)

• Average Policy with Frame-based mode. In Average Policy with Frame-

based mode, the ct is equal to the ct associated with the average sizes of frames

(I,P,B). Thus (8a, 8b, 8c) are rewritten as follows:

cti(I)=ct(avg(I)) (16)

cti(P)=ct(avg(P)) (17)

cti(B)=ct(avg(B)) (18)

The translation for C and T is then equivalent to that exposed in (9) and (4)

respectively. Since this policy is non-adaptive, its values are maintained during

the entire service.

• Average Policy with Block-based mode. The Block-based mode takes

into account the average (avg) sizes of I-frame, P-frame, and B-frame and then,

it calculates the weighted size of a frame as in (19) then, fpb and Ti are

computed as in (13) and (14) respectively.

Sizei = avgi(I) pI + avgi(P) pP + avgi(B) pB (19)

• Adaptive Average with Frame and block modes. Finally in Adaptive

Average with Frame and block modes, at the beginning, the equations of the

previous policies are used. The difference is that the values are adapted to the

characteristics of the movie decreasing or increasing the QoS when the number

of frames (I) decreases or increases. The adaptive mechanism for the frame-

based mode is obtained from (10) and (11) while for block-based mode it is

obtained from (15).

2.4.4. Network Broker

This broker applies the same policies used with the CPU broker. However, only

the mode guided to frame-based makes sense since the network subsystem

works with constant-size packets and is independent of the characteristics of the

movie.

Video-on-Demand Architecture and Design
__

 56

The parameters that the network broker must know are the following:

Bandwidth (B), Data Unit Size of the protocol (MTU), peer-to-peer delay (D) and

type of reliability (T). The type of reliability in our case is determined by the IP

protocol that is a service guided to best-effort datagrams and does not offer any

guarantee in the resource reservation. To make such reservation, it is necessary

to compute the bandwidth for reqi (including headers overheads of the protocol)

and the peer-to-peer latency in order to conduct the admission test.

To compute the necessary bandwidth (Breqi) for reqi we have to calculate the

packet rate (PacketRatei) and the frame size (FrameSizei) which has different

values for each policy. With Maximum policy, the frame size is calculated as in

(20). In Adaptive Maximum we use (11) to calculate it as in (21). In the Average

policy, it is computed as in (22).

FrameSizei = max(I) (20)

FrameSize =max(I) pi(I)+max(P)pi(P)+max(B) pi(B) (21)

FrameSizei= size(I)pi(I)+ size(P) pi(P) + size(B) pi(B) (22)

Regarding the adaptive average, the values of (22) are used then, (11) is

applied to get the adaptive FrameSizei. Thereafter, we calculate the theoretical

bandwidth without including the protocol headers as follows:

PacketRatei = (FrameSizei / BlockSize) fpsi (23)

where BlockSize is the network packet. Then, the real bandwidth is computed

including protocols headers (e.g. TCP/IP). For these calculations, there was a

need to know the real packet size (BlockSize�) of the network. This value

depends on the physical network characteristics and the protocols used. For

testing the brokers, FastEthernet and TCP/IP (IPv4) have been considered. The

protocol defines the value of MSS (Maximum Segment Size)=1526 bytes and the

MTU (Maximum Transfer Unit) =1460 bytes thus,

BlockSize’ = (BlockSize/1460*66) + BlockSize (24)

Breqi = PacketRatei * BlockSize’ (25)

Thereafter, peer-to-peer latency is calculated to check whether the delay is

too high for providing a requested QoS. The network broker executes a one-

packet ping to compute this value. In WANs, this analysis would have to be

increased. Finally, the Network Admission Test is executed as follows:

Chapter 2

__

 57

NBBacceptedBreq
N

j
ji ≤+ ∑

=1
 (26)

where, NB is nominal bandwidth

2.4.5. Memory Broker

As a rule, the memory subsystem is very complex, however, just as in [NAH98],

only the main memory is considered. The QoS parameter that we are interested

in is the quantity of necessary memory needed to attend to reqi, and it is

calculated as follows:

Mem_reqi = Number of packets * c (27)

where the number of packets is obtained by dividing the block size by the size of

the network packet that will be sent over the network, and c is the buffer size in

number of packets that has the functionality of reducing the jitter [VEN98]. The

criterion to admit (or not) a petition from the perspective of memory subsystem

is based on the following Admission Test:

MemoryAvailablereqMemreqMem
N

j
ji ≤+ ∑

=1
__ (28)

If the test is true, reqi is accepted and the RMM is informed.

2.4.5 Disk Broker

In the design of the storage server, the focus has been on providing

continuous video streams and maximizing the number of streams that can be

provided at the same time. To achieve these objectives, the design has

concentrated on analyzing the data distribution on the disks and the policies

implemented for data retrieving. The disk broker provides a mechanism for

admission control in order to block the admission of requests that might affect

the Quality of Service (QoS) and cause jittering at the client side. The

implementation of the storage subsystem and the broker have been realized and

presented as a joint project at our department [YAN03].

The disk broker determines and manages two resources of the storage

system which are the bandwidth of the storage system and the available space

for storing more video data.

Video-on-Demand Architecture and Design
__

 58

As far as our work is concerned, the disk broker must reserve the necessary

bandwidth during the video reproduction, and the storage server must provide a

large number of streams and short response time. For the disk broker to do its

work, it calculates the requested bandwidth based on the meta-information

extracted from the video files. The meta-information includes the distribution of

the frames, the size of each frame, and the variations between the bandwidth

during the reproduction of the video.

Like other brokers, the disk broker adopts two approaches; the optimistic

approach and the pessimistic approach. In the optimistic approach, the

bandwidth is calculated based on the maximum size of I frames, while in the

pessimistic approach, the bandwidth is calculated based on the average size of

different frames.

In addition to the above approaches, the disk broker makes a predictive

calculation of the amount of the necessary resources which are requested by the

RMM based on the past history. In general, the Broker neither accepts nor

rejects a petition based on the video contents only. Rather, it makes a constant

monitoring and calculates the system throughput Thi during a cycle i. From this

parameter the adaptive average policy is applied to calculate the throughput as

follows [YAN03]:

Th = ∝ * iTh + (1-α) * Th, where 0< ∝ <1.

Another parameter needed is T which is the cycle time. The test that the broker

uses to accept a request is:

TThTfpsFrameSize
N

j
diskjj ≤∑

=0

/)**(

From the point of view of the media delivery algorithm (CB_MDA), it is

assumed that the storage server with the cooperation of the disk broker makes

the video data available in an exchanging buffer from which, the video thread

sends the data to the network according to the CB_MDA scheduling.

When the client decides to watch a specific video data, his request is

analyzed and translated into system parameters by the RMM. The disk broker

guarantees the requested bit rate per second. That is, the client�s request is

translated into a bandwidth that has to be provided by the disk storage during a

period of time. During this time, the bandwidth will be reserved all the time

Chapter 2

__

 59

during the service. Therefore the CB_MDA expects two things from the storage

system:

• Providing a short delay for data retrieving from the disk. The disk broker has

achieved a delay of 2 to 3 microsecond. This delay does not affect the

scheduling of the algorithm since it is close to zero delay.

• Maximizing the number of the video session that the disk can provide. This

has been achieved by providing video data stripping among a set of disks

(RAID system).

After incorporating the new disk storage, with little changes into the server

architecture, the disk storage gave an almost zero delay (2 to 3 microseconds).

This is done by making the video data available in a specific buffer for the

algorithm delivery. However, we have faced some problems related to the new

disk storage. The problem was that, for large files (long-lived streams) the

system was interrupted in the middle of the service. Our interpretation is

referred to some leak of memory that needed to be fixed.

2.5 Server Internal Communication

It becomes clear that the architecture of the proposed video proxy server (VPS)

consists of a set of modules where each module may consist of sub-modules.

These modules and sub-modules require some kind of communication and

exchanging of messages between them. To understand the sequence of the

communication and the flow of data and messages between the different parts of

the server, the communications between these parts can be classified into four

main categories as follows:

• Client-ACM communication

• ACM-RMM communication

• CB_MDA-RMM-Client communication

• Client-Client communication

Within each category, there are also local communications between the parts

that compose each module. Figure 2.6 shows a complete picture of the

communications between all parts that compose the video server and the client.

2.5.1 Client-ACM communication

This communication is a bidirectional communication between the server and the

Video-on-Demand Architecture and Design
__

 60

client. The contact is ignited by the client using sockets in order to communicate

with the ACM. The ACM represents the entrance and the acquisition point

through which all requests generated by the clients are received at this point.

The requests can be requesting new video, invoking VCR commands, or

renegotiation the QoS.

After delivering his request to the ACM, the client can continue his work or

simply go to sleep until he receives an answer. Meanwhile, the ACM analyzes the

received request and tries to satisfy it. Satisfying the request might involve the

interference of other modules or sub-modules of the ACM. That is, the ACM

might need to get in contact with other parts of the system in order to respond

to the client�s request. The type of the request determines what kind of

communication is to be taken and at which level.

If the client is a new arrival, then the ACM assigns to it a thread in order to

present to him initial services such as sending him a list of the available video

files and negotiating with him the QoS. Meanwhile, the ACM goes back to listen

to new requests or gets involved in doing other work such as contacting the RMM

to investigate the resources availability. As a continuation, the ACM can always

communicate with the thread through shared memories such as global variables

and global structures for queuing the arriving requests and maintaining the

negotiation status of each client. Meanwhile, the client continues his

communication with the thread using sockets.

2.5.2. ACM-RMM communication

The communication between the ACM and RMM is done using sockets and, it

works in client-server manner. That is, the ACM requests a service from the RMM

and the RMM responds by presenting a service to the ACM. The ACM might

request a report about the resources availability in general or check whether a

request with specific QoS parameters can be accepted or not.

The RMM might have the information available and send them to the ACM or,

it might need to get in contact with its brokers before it can give the response.

All the communication between the ACM and the RMM are done by sockets. The

reason for this is to give the possibility of having the ACM on machine A while

the RMM is residing on machine B. This is done when there is a need to replicate

the video server in order to distribute the service among a set of servers. In this

case, the ACM will centralize the requests and decides to which server the

request can forwarded.

Chapter 2

__

 61

Figure 2.6. Sequence of communication between VPS modules

8.2.

5
7

4.

7. port

8.

3

2

1. ACM: Initialize
2.1. Process video list (V-List)
3. Send v-list
4.1. Process v-file
4.2. Get meta data of v-file
5. New port (meta data v-file)
6.1. Process (meta data)
7. Forward v-thr port
8.2. forward play cmnd

1. RMM: Initialize
5.1. check memory
5.2. check cpu
5.3. check net
5.4. check disk
5.5. reserve resources
6. create new v-thr
7. Send v-thr port
8.3. Awake CB_MDA

1. Client-Daemon:
Initialize
2. New request
3.1. Video list arrival
4.1. Request video file
7.1. Create r-thr
8.1 Forward play
command
10.3. Signal client-GUI

1. Client-GUI: Initialize
1.1. New request
3.2. select v-file
4. request v-file and
 wait for a signal
7.3 wake up
7.4. create pipe thread
7.5. wait for data arrival to
the pipe. (blocked)
10.4. Wake up (autom.)
when data reaches the pipe.
10.5. Read from pipe and fill
correspondent buffer.
10.6. Call play function

7.2. r-thr created, wait
until pipes are created.
8. Play (movie)
10.1. v-received to pipe
10.2 set daemon flag

6.1. v-thr initialize
6.2. wait for a signal
8.4. wake up
9. retrieve v-data
10. Send v-data

CB_MDA:
Wait for request arrival
Check the queue
Signal v-thr

Network

Video-on-Demand Architecture and Design
__

 62

2.5.3. CB_MDA-RMM-Client communication

As it has been mentioned before, the CB_MDA is responsible for regulating the

video streaming from the server to the clients. The details of this algorithm are

presented in the next chapter. The implementation of the CB_MDA is done in a

multithreaded fashion. The CB_MDA needs to get information from the RMM

about the amount of the available resource in the system in order to schedule

the delivery of the video data. This communication between the CB_MDA and the

RMM is done by using global variables and structures.

With regard to the client, the client never gets a direct contact with the

CB_MDA since all requests generated by the clients are forwarded by the ACM.

There is only a one way contact from the RMM to the client in order to stream

the video data from the media storage to the client�s displaying machine. The

clients command (e.g. pause, stop�etc) are received at the ACM first and then

forwarded to the RMM and the CB_MDA in order to be processed. The client is

informed about where to receive the video data from during the negotiation

session between the ACM�s thread and the client.

2.5.4. Client-Client communication

 The client design and implementation is explained with details in appendix B.

However, to complete the discussion about the communication, we only mention

that, the client consists of three parts that communicate between each other.

These parts are; the GUI, the communication module, and the player. The GUI

allows the client to connect to the video server and other parts of the client. The

communication module works as a communicating point between the video

server and the client�s GUI and player. The player displays the video data.

The communication between the client and the server is done by sockets.

The communication between the clients� parts has been also achieved by using

sockets. The reason for that was to present some kind of flexibility in case we

decide to separate these parts from each others.

Chapter 3
Credit Based Media Delivery Algorithm

__

3.1 Introduction

As we mentioned before, a key issue in VoD service is the ability to stream

continuous video data from the server to the clients across the network

providing TVoD service without delay and without playback interruption (jitter).

In this chapter we present a simple yet a starvation-free algorithm called Credit

Based Media Delivery Algorithm (CB_MDA) [QAZ03b]. The algorithm is data-

centered and implements client-initiated scheme (client-pull). The main objective

of the CB_MDA is to provide TVoD service, short response time and scalability.

Scalability is defined as the ability of the system to scale well as the number of

the clients is increased. That is, the server will be able to cope with the

increasing number of the clients without significant changes. To achieve these

objectives, the CB_MDA uses multicast and unicast channels for transmitting the

video data.

The unicast channels will be used as short ones to transmit the video prefix

to a later arrival client while the client is merged to an appropriate multicast

stream and buffering the media data from it. Also, the unicast channels will be

used to serve interactive service such as the case when the client invokes any of

the VCR-like functions. During the delivery process, the algorithm takes into

consideration the server�s resources and the client�s buffer space and I/O

bandwidth.

The algorithm provides video streams using means of patching and pre-

fetching. Multicast channels will be created as a response to a request to a new

none-active video file (a file that does not have any active session) or as a

Credit Based Media Delivery Algorithm
__

 64

response to a request that could not be incorporated to an existing multicast

session, so another session for the same video file is produced. The unicast

channels will be used mainly to incorporate new requests into the server and

transmit the initial part of the video (video prefix).

Our approach does not require the split of the channels into dedicated unicast

and dedicated multicast channels to provide the VoD service. These channels are

allocated dynamically during the service. Also, contrary to broadcasting and the

classical batching techniques, the interactive VCR functions are provided and the

video files are treated fairly without classifying them into popular and non-

popular ones. This fairness comes from the fact that video files can be any thing

other than movies. For example, in the educational centers such as universities,

schools and other institutions, the clients (e.g. students) usually request old

video files such as videos related to history, documents or experiments done in

earlier years. Thus, these video files must not be ignored in favor of the recent

10 or 20 popular movies.

Another important issue we consider in this work is that, clients usually have

different machines capabilities in terms of buffer space and I/O bandwidth.

Therefore, our approach takes into consideration this fact and adapts itself to the

heterogeneity of the clients who may join the multicast channels. The

heterogeneity can have positive impact when the clients have high capacity in

terms of buffer space and I/O bandwidth and the server has available resources

that can be assigned to these clients. However, heterogeneity may have

negative impact when clients with less capacity are merged into multicast

streams that transmit at a higher capacity. This will require that the transmission

rate be adjusted to an appropriate rate that matches the capacity of all clients

joining the same multicast stream.

These problems are tackled by our proposed algorithm, which is called, Credit

Based Media Delivery Algorithm (CB_MDA). In the next subsection we present

the essence of the CB_MDA followed by its implementation. Thereafter, we

present an example which clarifies the working principle of the algorithm. Due to

the fact that requests can arrive at any time and the clients can be

heterogeneous, in subsection 3.4 we explain how the algorithm handles these

requests and adjusts dynamically the transmission rate of the streams.

3.2 The CB_MDA Algorithm

The essence of the CB_MDA is based on two principles: first, the clients� requests

can be served through a combination of multicast and unicast channels, second,

Chapter 3

__

 65

there will be periods of time during which the servers resources are not utilized,

and there are heterogeneous clients whom their machines can cope with these

resources. Therefore, the idea is to observe the resources availability and the

clients who can receive video data at a rate greater than the movie reproduction

(playback) rate and, then, assign these resources to those clients who can

receive and cope with more video data in their buffers.

Of course, this requires that the CB_MDA has knowledge of the server�s

resources availability and the user�s machine characteristics such as buffer space

and I/O bandwidth. Before discussing the algorithm and for the sake of

clarification, Table 3.1 contains some of the abbreviations which will be used

throughout this chapter.

To achieve its goal, the CB_MDA translates the information generated by the

RMM into Credit Values (CV) which will be assigned to the ongoing streams in

the proxy server. These CVs make representation of the amount of the data that

the algorithm can transmit to the appropriate clients� buffers during a period of

time L, and they are ranging from 1 to V. The Value (V) represents the

maximum credit value that the client can receive during L, and it is calculated in

terms of the client�s buffer space and I/O bandwidth. A Credit Value (CV) equal

to 1 (CV=1) is interpreted differently from the point of view of the client and the

server.

Table 3.1. The CB_MDA abbreviations

 Definition

L Slot of time (e.g. 1 second) during which a
set of video streams are scheduled.

CVs Credit Value/s, makes representation of the
amount of transmitted video data.

Ci Client i

V Max. credits that C i can receive during Li

CV A credit value where, (1 ≤ CV ≤ V)

maxcv Maximum credits value at slot Li

SiCV The CV assigned to Stream Si.

From the client (player) point of view, a CV=1 means that the algorithm

must make available in the client�s buffer, during L, an amount of video equal to

the Frames playback rate Per Second (fps) of the video. That is, the received

video data is sufficient to make, at least, 1 second of normal playback during L.

Credit Based Media Delivery Algorithm
__

 66

In fact, this is equal to real-time play back rate. If the CV was less than 1, and

the client�s buffer was empty, then the client would definitely face video jitter.

From the server point of view, however, CV=1 represents the required

resources (such as the CPU computing time, the size of the memory buffer, the

network bandwidth, and the disk bandwidth) that guarantee the transmission of

the amount of the data needed by the player to make a 1 second of video

reproduction.

If a client Ci requests a video stream Si, the algorithm checks to see whether

the video is active (that is there is an ongoing session/s for that video) or not. If

the video is not active a multicast stream is initiated. However, if the requested

video is being broadcast (in other words, it is active), the CB_MDA determines

whether the client can join the multicast channel or a new multicast stream must

be initiated.

If the client can be merged to a multicast channel, then the algorithm creates

a unicast channel in order to transmit the video prefix to the clients� player. The

decision when to initiate a new multicast channel requires a detailed

investigation which is beyond of this work. However, we have conducted some

experiments in this matter in order to explore a close to realistic result value

that we can utilize to test our algorithm. The results indicated that a period of 10

to 15 minutes would give good results for a two-hour video file in terms of:

1. System throughput

2. Resources utilization

A period greater than 15 minutes would allow more users to join the multicast

channels. However, this period would increase the number of unicast channels.

Also, a value less than 10 minutes would increase the number of multicast

channels. Consequently, the system will be less able to support interactive VCR

functions and merge new clients to the multicast channels.

During the transmission of the media data, the CB_MDA does not distinguish

between the multicast streams and unicast streams during the scheduling

process. Whether the initiated stream is multicast or unicast, the CB_MDA

assigns a CV to each stream where, CV is ranged from 1 to V.

The client whom his request invokes the stream initiation determines the

maximum V of the stream based on his machines specifications such as the

buffer space and the I/O bandwidth. This condition will be relaxed when we

discuss the adaptation process of the algorithm when new clients who have less

Chapter 3

__

 67

capability will be incorporated in multicast channels where the clients who have

been joining these multicast channels were having greater capabilities.

The CV is also determined in terms of the credits availability in the server,

and it can be increased or decreased dynamically during the service. A CV > 1

means that the algorithm is able to create a pre-fetched media data reserve in

the client�s buffer. The more the server can send video data ahead of its

playback time the more the server can supply interactive requests when the

system gets saturated. That is, if the CB_MDA reaches a point where all the CVs

are assigned, and all streams have CV equal to one each, and a new user arrives

or a client invokes a VCR action, the CB_MDA recollects the credits from the

streams which have been previously assigned CVs > 1 in order to serve the new

requests. In other words, some streams which have pre-fetch video reserve will

be ignored for a while in subsequent scheduling slots in order to serve the new

request.

After the initiation of the streams the server begins to transmit the video

data into the network. Upon receiving the media data, the player starts playing

back the video and, under normal circumstances, it continues the playback of

the video unless it is interrupted by one of the VCR-like commands, which will be

conveyed to the server.

The clients can be homogeneous or heterogeneous. They can be new arrivals

or older clients who are being served. The algorithm explores these situations

and tries to handle them accordingly.

3.3 The CB_MDA Implementation

Before and during the scheduling process, the CB_MDA needs information

related to the requested video streams such as video size, frame rate, and

reproduction time. This information, which is termed as Meta information, is

created off-line for each video file and made available for the Admission Control

Module (ACM) and the Resources Manager module (RMM). Thus, for each

accepted request, the RMM provides the CB_MDA with this information. The

CB_MDA, then, maintains a list of all active streams along with their Meta

information.

Also, the algorithm needs to maintain information about the status of each

stream during the scheduling process. Therefore, for each stream Si, it uses a

set of variables (Table 3.2) which keep track of the scheduled streams and

Credit Based Media Delivery Algorithm
__

 68

reflect the status of the scheduling process. These variables are summarized in

Table 3.2.

Table 3.2. The CB_MDA variables

 Definition
Li Slot of time (e.g. 1 second).
Si An active stream
SiCV The Credit Value that the algorithm assigns to

Si during L.
SiV The maximum credit value that can be

assigned to Si
SiTCV Total Credits Value assigned to Si up until Li
SiCCV The total Consumed Credits Value as a result

of the playback of Si.
SiPRV The total Pre-fetch Reserve Value of the media

data downloaded from Si in the client�s buffer.
SiP The time needed to Play Si. It is obtained from

Meta information of video files. (e.g. 3600
seconds).

SiET The Expected finishing Time of Si. That is, the
time when the server finishes transmitting the
stream Si

SiF The maximum number of frames in Si
Sifps Frames rate Per Second of Si

Moreover, the algorithm needs to know the maximum number of credits

value that it can assign during a period of time L. This value is determined based

on information received from the resources manager (RMM).

To start with the scheduling process, the algorithm divides time into slots of

length L. In our implementation, L is determined in terms of the periodicity of

the normal frames playback rate, which is equal to one second. In other words,

the video characteristic is measured by how many frames are displayed per

second. Therefore, the player needs to receive a number of frames per second

(fps) in order to make a one second of video reproduction. The reproduced

frames, based on the buffer size, can remain or be removed from the client�s

buffer.

During each slot Li, the algorithm determines the maximum number of

credits (maxcv) that it can assign during Li and finds out the streams that can be

scheduled during Li as follows:

• The algorithm picks up the next stream Si which has the smallest pre-

fetch video data reserve SiPRV in its buffer,

• It assigns to Si a CV (termed SiCV) where, 1 ≤ SiCV ≤ SiV.

Chapter 3

__

 69

• It increments SiTCV, which is the total credits value assigned to Si, as in

(1).

SiTCV = SiTCV + SiCV (1)

• It increments SiCCV, which represents the consumed credit value that

would be consumed from Si by the end of the slot Li as a result of the

video reproduction, as in (2). The SiCCV is always incremented by 1

during normal playback since the CV of the video reproduction rate is

always equal to one.

SiCCV = SiCCV + 1 (2)

• It calculates the amount of the pre-fetch reserve of Si (SiPRV) that would

be in the client�s buffer by the end of Li, as in (3).

SiPRV = SiTCV � SiCCV (3)

• And finally, it transmits the video data at a rate equals to the stream�s

credit value SiCV.

The above steps, which are represented in figure 3.1, show the process of

choosing only one stream for scheduling during Li. However, within the same

slot, the algorithm repeats this process over and over until no more streams can

be scheduled and/or no more credits can be assigned.

During each iteration, and since the server has finite transmission rate, the

algorithm tries to avoid over utilizing the server resources. It uses a variable

(W), which keeps track of the number of credits assigned to the scheduled

streams at each iteration during slot Li. Thus, before the algorithm intents to

assigns a CV to a stream Si, it checks to see if

W + SiCV < maxcv

If the condition holds, Si is scheduled and W is incremented as in (4).

W = W +SiCV (4)

At the end of each slot, W is reset to zero.

Likewise, the client has finite buffer space and I/O bandwidth. Therefore, the

algorithm makes sure that the transmission neither overflows the client�s buffer

nor over-saturates the client�s I/O bandwidth during each slot. To achieve these

goals the following two conditions must hold before the transmission can take

place:

Credit Based Media Delivery Algorithm
__

 70

SiTCV = SiTCV + CV
SiCCV = SiCCV + 1

SiPRI = SiTCV -SiCCV
W = W + SiCV

W+SiCV
<=Maxcv

W = 0

Maxcv = getMaxCV()

More
streams

Yes

No

Si=getNextStream()

SiCV = getCV(Si)

Add Si to ready list

Awake up correspondent
delivery threads

quueue
is empty

No

No

Yes

Start

Yes

For each Si in ready list

Si is
finished

Queue Si

Next

No

Figure 3.1. CB_MDA flowchart

Chapter 3

__

 71

SiCV ≤ SiV and

(SiPRV + SiCV - 1) ≤ Sibuff

The first condition is always guaranteed since the CB_MDA has knowledge of

the client�s buffer space and I/O bandwidth and, thus, never assigns to Si a CV >

SiV. The second condition, and to simplify the discussion, assumes that the

reproduced frames are removed from the buffer. Therefore, it considers the pre-

fetched reserve of Si (SiPRV), the current assigned CV of Si, and the consumed

value CCV, which is always one during normal playback, in its calculations. If

both conditions hold, the stream is scheduled. If the second condition does not

hold, then the CB_MDA tries to reduce the SiCV until the second condition holds

or SiCV = 1. If SiCV reaches 1, at this point, the SiCV will become 1 in the

subsequent slot/s since the buffer has become full. This means that, the

transmission rate will be equal to the playback rate during the next slots.

Another policy that can be implemented is to leave the consumed frames in

the buffer since the client has the habit of reviewing the last few seconds.

Therefore, the second condition can be rewritten as follows:

SiCCV + SiPRV + SiCV ≤ Sibuff or simply

SiTCV + SiCV ≤ Sibuff, since SiTCV = SiPRV + SiCCV.

If the above condition does not hold the algorithm must overwrite the video

data that has already been played back. The algorithm can keep overwriting the

played back video data until SiPRV is equal to Sibuff. This is possible if the client

pause playing the video while the server continues sending the video data.

The CB_MDA can calculate the expected finishing time of a video stream

(SiET) during any slot Li since it can calculate the playing time (SiP) of each video

stream (e.g. 3600 seconds). This is needed when the number of active streams

becomes larger than maxcv, so the algorithm tries to create a new stream but all

CVs are assigned to all streams. Therefore, it calculates the finishing time of the

streams to see which one is close to finish so that its credits can be reassigned

to the new request. The playing time of Si (SiP) is obtained from the Meta

information of video files and calculated as follows:

SiP = SiF / Sifps (5)

Where SiF is the maximum number of frames in Si and, Sifps is the frame rate

per second in Si. Thus, the SiET is calculated as follows:

Credit Based Media Delivery Algorithm
__

 72

SiET = SiP � SiTCV (6)

Based on SiET, the server can know when the streams are finishing and, thus,

decide whether to accept more requests or not.

The admission test is carried out by the CB_MDA when the number of the

active streams exceeds the maximum CVs (maxcv) in order to protect the QoS

of the ones who are being served. The streams which exceed the maximum CVs

are called Extra Streams (ES). The admission control consists of calculating

whether the new stream causes starvation in any of the existing streams. The

calculation is done as follows:

For the first extra stream, it calculates the number of slots which are needed

before the shortest stream (the closest stream to the finishing time) can be

finished, then it calculates the total pre-fetched reserve value (PRV) in the

clients buffers. Based on these calculations, the admission test is carried out as

follows:

((Total PRV+ ES)/ (ES)) >= (total required slots/maxcv+ES)

If this condition holds, a new stream will be generated. For the next extra

stream, it calculates the number of slots which are needed before the next

shortest stream (the next closest stream to the finishing time) can be finished,

then it calculates the total pre-fetched reserve value (PRV) in the clients buffers.

Thereafter, the admission test is applied. This process is repeated for each extra

client who causes the initiation of a new stream.

Case Study 1:

To clarify the algorithm more, and without loss of generality, suppose that the

algorithm can assign up to 5 credits (maxcv = 5) during a slot and, in an instant

during the service, say by the end of slot Li, we have four streams S1, S2, S3

and S4, each with a CV, buffer space (buff) and I/O bandwidth as elaborated in

Table 3.3.

Table 3.3. Initial values at slot Li

 S1 S2 S3 S4

 CV=1 CV=2 CV=2 CV=0

buff 20 10 10 20

I/O 1 2 3 2

 PRV=1 PRV=9 PRV=8 PRV=11

Chapter 3

__

 73

As the Table 3.3 indicates, during slot Li, S1, S2, S3, and S4, each has a CV

equal to 1, 2, 2, and 0 respectively. The CV of each stream is subjected to

change dynamically during subsequent slots. The buffer space (buff) of the

clients connected to S1, S2, S3, and S4 can take up to, as a maximum, 20, 10,

10, and 20 credits respectively. The I/O bandwidth of the clients receiving from

S1, S2, S3, and S4 is 1, 2, 3 and 2 respectively. The buff and I/O values are

fixed since they represent the clients� machines specifications.

Also, suppose that the pre-fetch reserve values (PRV) by the end of Li of

streams S1, S2, S3, and S4 in the clients� buffers are 1, 9, 8 and 11 respectively

(Table 3.3).

Table 3.4 shows the status of the streams after the subsequent scheduling

during slot (Li+1). The table shows the following things:

• It shows which stream has been chosen at each iteration.

• It shows how the PRV of each stream has changed and

• It shows how the variable W, which is reset to 0 at the beginning of each

slot, keeps track of the credits assigned during the slot.

The following steps clarify how the algorithm has scheduled the streams of table

3.4 taking into consideration the credits availability in the server (5 credits in our

case) and the clients� machine characteristics (see Buff and I/O in table 3.3).

Table 3.4. Streams scheduling during Li+1

 S1 S2 S3 S4 w

Iteration1 CV=1 - - - 1

Iteration2 - - CV=3 - 4

Iteration3 - CV=1 - - 5

 PRV=1 PRV=9 PRV=10 PRV=10

The scheduling of the subsequent slot (in our example Li+1) is always based on

the result of the previous slot (in our example L):

• During Li+1, the CB_MDA finds the stream with the lowest PRV from table

3.3. This table indicates that S1 has the lowest none scheduled stream.

Therefore S1 is chosen, and the algorithm assigns to S1 a CV equal to 1

(CV=1) since the I/O of S1 can�t take more than one credit. Then, the

algorithm increments the PRV of S1 and the global variable W by the

Credit Based Media Delivery Algorithm
__

 74

value of the CV which is equal to 1, then it decrements PRV by 1 since the

playback consumption rate is always equal to 1. Thus the PRV of S1

remains 1 and W becomes 1 (table 3.4). This process called the 1st

iteration (iteration1), and is shown in table 3.4.

• The algorithm, still, has four more credits that can be assigned.

Therefore, it checks to see if there are other streams that can be

scheduled.

• At the 2nd iteration (iteration2), the CB_MDA again looks at table 3.3 in

order to pick up the next stream, S2, S3 or S4. Following the same

procedure, table 3.4 shows that S3 has a lower PRV than that of S2 and

S4. Therefore, S3 is scheduled, and the algorithm assigns to S3 a CV

equal to 3 (CV=3) since this value neither overflows the buffer space nor

saturate the I/O of S3. The PRV of S3 is incremented by 3 and then

decremented by 1, and W is incremented bye 3 too. Thus, during slot

Li+1 the PRV of S3 becomes 10 and W becomes 4 (see table 3.4, it2).

• Two more credits can be assigned, so the algorithm repeats the same

process and finds out that S2 has a lower PRV than that of S4. Thus, S2

is selected to be scheduled. Although, S2 can receive 2 credits, however

the algorithm assigns to S2 only one credit (CV=1) since it can�t assign

more credits than maxcv (W becomes equal to maxcv). Then, it

increments the PRV of S2 and decrements it by 1, thus, it becomes

(remains) 9, and increments W which becomes 5. Table 3.4 shows this

last iteration (iteration3).

• All the credits have already been assigned during this slot (Li+1). S4 is

the only one that has not been scheduled. However, the algorithm

decrement the PRV of S4 by 1 since by the end of each slot, a credit

value equal to one is consumed from all ongoing streams. Therefore, all

ongoing streams must be decremented.

• In the above example, in order to ease the understanding of the

scheduling process, we were decrementing the PRV of each stream at the

end of each iteration. In fact, this process is done by the end of each slot.

That is, the algorithm runs through all ongoing streams which are in the

queue and decrements their PRV by one.

Case study 2:

To further show how the algorithm distributes the credits among the streams, we

will go through the algorithm during Li+2. Table 3.5 shows how the streams

Chapter 3

__

 75

have been scheduled during this slot by showing how the values are changed

during the different iterations. Following the same procedure as above, the

scheduling is done as follows:

• The algorithm uses the PRV of the streams from Table 3.4 (slot Li+1) to

decide which stream to choose.

• W is reset to 0 (W = 0).

• S1 is scheduled first since it has the lowest PRV, and a CV=1 is assigned

to it. Thus, the PRV of S1 becomes 1, this value is calculated as follows:

 (1+1-1),

and W becomes 1 too since (W=W+CV) (Table 3.5, at Iteration1).

• At Iteration3, S2 is scheduled next, its CV=2, its PRV becomes 10, (9+2-

1), and W becomes 3.

• Two more credits are left.

• S3 and S4 have the same PRV. According to their order in the queue, S3

is chosen at Iteration3. Notice that the algorithm assigns only one credit

(CV=1) to S3 since any value greater than one would overflow the client�s

buffer of S3. The PRV of S3 becomes 10, and W becomes 4.

• Finally, the algorithm chooses S4 at Iteration4, and assigns to it a CV

equal to 1 since W becomes 5 (W = maxcv).

Table 3.5. Streams scheduling at Li+2

 S1 S2 S3 S4 W

Iteration1 CV=1 - - - 1

Iteration2 - CV=2 - - 3

Iteration3 - - CV=1 - 4

Iteration4 - - - CV=1 5

 PRV=1 PRV=10 PRV=10 PRV=10

From the above examples we can reach the following conclusions:

1. The algorithm protects the overflow of the clients� buffers. This is done by

verifying that PRV+CV-1 ≤ client�s buff.

Credit Based Media Delivery Algorithm
__

 76

2. It does saturate neither the server nor the clients� I/O bandwidths. This is

clear since the algorithm verifies that W ≤ maxcv, and the CV ≤ the

client�s I/O.

3. It distributes the CV dynamically, and this is important when new request

are accepted by the server or some clients finish the service.

4. It can create a pre-fetch reserve (work ahead) in the clients� buffers.

5. It maintains a balanced pre-fetch reserve in the clients� buffers since the

client with the lowest PRV is selected.

Although, during the media data delivery, some streams are no longer able to

receive more than what it can be consumed, these streams might have had pre-

fetch reserve in their buffers which can be recollected. That is, during urgent

situations and when there are no alternatives, these streams can be ignored for

a period of time equal to their PRVs. Also, if the normal playback does not get

interrupted by any of VCR commands, the service time for the streams will be

reduced by their pre-fetched values. This way, some clients can get finished

before the time that would be needed if the stream were transmitted at real-time

rate, new requests/clients enter the system and, thus, the throughput of the

system is increased.

During the VoD service, new clients might arrive to the systems and others

may leave the systems. Some clients may invoke VCR functions such as jump

forward or jump backward and others may simply pause the playback. These

situations require the algorithm to be able to adapt itself to these changes so

that:

1. New clients can be incorporated in the service.

2. Interactive VCR actions can be supplied.

3. Accepting any of the above action does not interrupt other client being in

the service

4. The QoS contracted with the clients being served is maintained or

negotiated as it has been agreed upon.

In the following discussion, we show how the algorithm handles these situations

and how it incorporates itself to the changes.

3.4 Dynamic Adaptation

During the delivery service new requests might arrive and/or old users might

leave the system. The requests could be requests for a new video data that

Chapter 3

__

 77

cause the initiation of new streams, requests for video data that has ongoing

streams, or commands for VCR functions

In this section we describe how the algorithm adjusts the delivery service

based on the type of the requests made. In general, the requests can indicate

one of the following situations: New user arrival, User departure (leaving the

system) or Invocation of VCR functions.

3.4.1. New User Arrival

The arrival of new users is not necessarily causing redistribution of the system

credits. It depends on whether the requested stream is active or not, and

whether the request arrives at the beginning of the stream initiation or at some

time later. Therefore, we show how the algorithm handles each case without

violating the continuity of other streams being in service. In general, there are

two cases to be considered:

Case 1: Request for active stream

In this case, the client is asking for video data which is about to be streamed or

have already been streamed. That is, if the request arrives at the beginning of

the stream initiation, then the new request can be incorporated in this stream

and the video data will be multicast to both users.

Clearly, this situation causes positive impact since the same resources are

used to serve more than one user at the same time, and thus more performance

is achieved. If the request, however, arrives some time after the initiation of the

stream, then, the algorithm applies patching technique where the video data

from the arrival point of the request upward is patched and the video prefix is

served using unicast channel.

If the server has plenty of credits, then the other ongoing streams will not be

affected by the new requests. Otherwise, the algorithm will make a redistribution

of the credits. If the algorithm can manage to assign a CV greater than one to

the unicast channel, then the usage time of the unicast channel is reduced

leading to the release of the unicast channel earlier than the time that would be

needed if the data were sent at real-time rate.

Case 2: Request for a none-active stream

If the client is requesting a non-active stream, then a new stream must be

initiated. The algorithm checks to see whether it has enough resources in order

to grant them to the new stream or make a redistribution of the resources. To

clarify the credits assignment, suppose that the system status is as it appears in

Credit Based Media Delivery Algorithm
__

 78

Table 3.6a, and the algorithm can assign up to 5 credits and, suppose that a new

client requests a new stream S4 with buffer space and bandwidth specifications

equal to 20 and 2 respectively, then the algorithm must redistribute the credits

of S3 in favor of S4 or ignore S2 and S3 in subsequent slots, since they have

pre-fetched reserve in order to satisfy the new request.

Following the principle work of the algorithm, the credits will be redistributed

and S4 will be, at the beginning, scheduled repeatedly since it has the lowest

PRV (Table3.6b).Table 3.6b indicates that for the next subsequent slots, S4 will

be scheduled most frequently since it has the lowest PRV.

Table 3.6a. Streams status after S4 arrival at Li

 S1 S2 S3 S4

buff 20 10 30 20

I/O 1 2 3 2

 PRV=1 PRV=9 PRV=9 PRV=0

Table 3.6b. Streams scheduling at Li+1

 S1 S2 S3 S4 w

it-1 - - - CV=2 2

it-2 CV=1 - - - 3

it-3 - CV=1 - - 4

it-4 - - CV=1 - 5

 PRV=1 PRV=10 PRV=10 PRV=1

3.4.2. User Departure (leaving the system)

When a user finishes the playback or quits the system for a reason or another

then, depending on whether the user disjoins a multicast or a unicast channel,

there is a possibility of having some released credits. These credits can be

assigned to other streams.

Case 1: Quitting a multicast channel

Quitting the service can be temporary (such as pause command) or permanent

such as stopping the service or finishing receiving the necessary video data. If

Chapter 3

__

 79

the client invokes the pause command then two scenarios can be implemented

as follows:

• The first scenario is to let the server continues delivering the video data until

the client�s buffer becomes full, then the client will disjoin the stream. As a

continuation, when the client decides to continue the reproduction of the

video the server gets informed about that and tries to join him with the

same stream implementing patching or, to join him with an appropriate

active stream which transmit the same video content.

• The second scenario is simply to disjoin the client from the stream.

Thereafter, when the client invokes the play command the server tries to

rejoin him with the same stream or an appropriate one.

If a user makes an early quit of a multicast channel and he is not the only one

connected to that channel, then his quit does not have neither positive nor

negative impact on the server�s credits. That is, his quit does require resources

and does not release the multicast channel and thus, the credits will remain

assigned to the multicast channel until it is finished or all the clients are quitting

the multicast channel.

Case 2: Quitting unicast channels

In fact, unicast channels are allocated as short channels for providing the video

prefix when the client joins a multicast channel. Therefore, quitting or releasing

unicast channels can happen for two reasons:

• The first reason is that, the server has finished the transmission of the video

prefix and thus, the channel is released and its credits can be redistributed

among others.

• The second reason is that, the client is making an early quit of the service. In

this case, the same scenarios which have been mentioned in the previous

case can be considered in order to see how to adapt to the client behavior

and decide whether to fill the client�s buffer or not.

In general, quitting unicast channels always leave some available credits.

Therefore, these credits can be distributed among other streams so that, the

pre-fetched reserve is increased in the clients� buffers.

Increasing the pre-fetched reserve causes a bigger distance between the

delivery time of a movie and its deadline. Bigger distance means that the client

is less dependent on the system. Thus the system finishes servicing some users

Credit Based Media Delivery Algorithm
__

 80

before the time that would be required if the credit values were equal to 1 all the

time.

3.4.3. VCR-Functions

The algorithm allows VCR-Like control such as pause, forward and backward

temporal jumps. These interactive actions are performed with minimal delay.

VCR-functions might have positive, neutral or negative impact on the

performance.

Whenever a user invokes an interactive action, the client sends a message

indicating the command invoked (stop, pause, forward, backward) to the server.

Suppose that a client who is connected to stream Si pauses the movie. Upon

receiving the VCR command, the server checks to see whether Si is a multicast

or unicast stream. If Si is a unicast stream, the server can put on hold Si until a

different command is received or simply continue streaming the data until the

client�s buffer is full or the video prefix is totally transmitted.

However, if Si is a multicast channel then, the user disjoins the multicast Si

while Si keeps going on in order to serve the other members of Si. Meanwhile,

the disjoined client�s buffer status is kept at its level. A different policy would be

to continue delivering the video data until the client�s buffer is full.

Suppose that the user makes a forward temporal jump equal to n credits. If

(TCV+n) < TCV+PRV then the algorithm discard n credits from the head of the

buffer and the PRV is set to (PRV = PRV � n) and the CCV is set to (CCV = CCV

+ n). If n >= PRV then all the data will be discard from the buffer and the PRV is

set to 0 (PRV = 0) and the CCV is set to (CCV = CCV + n).

It is important to always keep track of the TCV in order to calculate the

finishing time. This way, the algorithm might accept new requests with the hope

that some users will disjoin soon.

Finally suppose that the user makes a backward temporal jump. Likewise,

the algorithm checks to see whether the jump is within the buffered data or not.

If jump equal to �n is within the buffered data then PRV = PRV � (-n), else all

pre-fetched data are simply discard and the PRV set to zero (PRV = 0) and the

values of TCV and CCV are updated accordingly.

In term of the impact of each command on the server, pausing of streams

actually improve the performance since the data can be accumulated in the

Chapter 3

__

 81

user�s buffer and other active streams can be assigned more resources

increasing their CVS and PRVs during subsequent slots.

Frequent forward commands degrade the performance since pre-fetch

buffers would be frequently set to zero. Leaving some of the played back video

in the buffer can reduce the impact of backward jump. This can be noticed

during the peak time when the server cannot assign a CV > 1. In this case, the

server will never be able to have the buffers full. Thus, it is much better to leave

the portion of the played movie since the client has the tendency of replaying

over and over again the last few seconds of the played video.

3.4.4. Reducing Unicast Usage Time

The objective this subsection is to utilize the server resources as much as

possible. In the final implementation, multicasting has been the choice in order

to increase the server performance in terms of the number of the clients that can

be accepted for the service. Again, the CB_MDA presented the solution by

implementing patching and pre-fetching techniques. The idea, as it has been

mentioned above is to have the later arrivals to join existing multicast sessions if

the requested video contents matches the contents of the multicast sessions. At

the same time, the client should receive the video prefix. This is can be done by

employing a unicast channel for sending the video prefix.

This indicates that, the unicast channels are becoming a critical issue. That is,

the server should always have unicast channels so that the later arrivals can join

the active sessions. Therefore, these unicast channels must be allocated and

released as soon as possible. To solve this problem, the algorithm utilizes the

server resources and sends work-ahead data over the unicast channels in order

to reduce the usage time of these channels.

Figure 3.2 and 3.3 show the implementation and the time needed for

transmitting the video prefix over unicast channels without pre-fetching and then

with pre-fetching respectively. Figure 3.2 shows the patching technique with

which a video server periodically �broadcasts� a video object via a number of

dedicated multicast channels. If a new client joins a multicast channel then, he is

allocated a unicast channel in order to start the playback of the missing initial

video data (video prefix). Meanwhile, the data from the multicast channel is

patched and stored into the user�s buffer figure 3.2a. After finishing playing back

the video prefix, the unicast channel is released and the player continues playing

back from the buffer, figure 3.2b. Of course �Patching� assumes that the client

Credit Based Media Delivery Algorithm
__

 82

has sufficient I/O bandwidth and buffer space to receive from multiple channels

and to buffer the video data.

Figure 3.2a shows that the unicast channel will be occupied during the time t

in order to download the initial part of the video and, at time 2t, figure 3.2b, the

unicast channel will be released. This shows that unicast channels play an

important role in the success of �Patching�. Therefore, it is important to reduce

the usage time of the unicast channels whenever it is possible in order to serve

other new requests and/or VCR-like functions. The Credit-Based Media Delivery

Algorithm (CB_MDA) which schedules the data delivery can be used to reduce

the usage time of the unicast channels.

Multicast
Stream

Arriving
Point

Video Prefix
t0

Player Buffer Joining
Client

Unicast

Multicast
Stream

Releasing point
of unicast
channel

Video Prefix
t0

Player Buffer Joining
Client

2t

In the implementation, it is proposed another buffer called Unicast Buffer

(Ubuffer) which will be receiving the video prefix at a rate greater than the

playback rate (figure 3.3). When a new client (request) is arrived, first, the user,

as in patching, is allowed to join a multicast channel and, the video data

received from that channel is stored in the client�s Mbuffer, at the same time,

the user is allocated a unicast channel with a data rate equal to �icv� where �icv�

is an initial credit value defined by the CB_MDA, and when �icv� is greater than 1

, the data rate is greater than the playback rate, second, the video prefix goes,

Figure 3.2. Multicasting with classical patching

a) Client arrival, b) unicast channel release

a)

b)

Chapter 3

__

 83

first, to a unicast buffer (Ubuffer) and then to the player as it is shown in figure

3.3a. Thus, the time needed for transmitting the video prefix is t/icv (figure

3.3b), and the unicast channel is released at t+t/icv. The player, however,

continues playing back from the Ubuffer. Only at 2t (figure 3.3c) the Ubuffer is

released since the playback rate is always equal to credit value �1�, and the

player then continues playing the video from Mbuffer. It can be noticed that,

when the value of icv > 1 then the time needed for downloading the video prefix

will be reduced for a period of time equal to 2t � (t + t/icv).

Multicast
Stream

Arriving
Point

Video Prefix
t0

Player MBuffer Joining
Client

Unicast

Releasing of
unicast channel 2t

UBuffer

Multicast
StreamVideo Prefix

t0

Player MBuffer Joining
Client

UBuffer

t+t/icv

2t Multicast
StreamVideo Prefix

t0

Player MBuffer Joining
Client

These techniques were important for providing multicast transmission,

incorporating new clients in the multicast session, and creating work-ahead

video in the client�s buffers. The experiments in chapter four have shown that

the CB_MDA outperforms other delivery algorithms such as the batching and the

classical patching, as well as the periodic broadcasting techniques. This

Figure 3.3 Multicasting with CB_MDA patching

a) Client arrival, b) Unicast release, d) UBuffer release

a)

b)

c)

Credit Based Media Delivery Algorithm
__

 84

performance is measured in terms of the response time, the number of request

served by the server, and the implementation of VCR-Like commands.

Chapter 4
Implementation and Experiments

__

4.1. Introduction

The implementation of the Video Proxy Server has been done by integrating the

different parts of the system in order to examine the overall behavior of the

server. This chapter demonstrates the implementation of the Video Proxy Server

(VPS) followed by the experiments conducted for the main parts of the

architecture.

These parts include the resources manager and the admission control policies

as well as the delivery algorithm (CB_MDA). To check the viability of the

different parts of the system, a series of experiments have been organized and

conducted in stages.

In the first stage, the experiments measure the time needed for retrieving

the data from the disk, and they measure the round trip time needed for

attending to a request in order to measure the response time. Thereafter, the

experiments go one level up in order to test the admission control policies

(Maximum Policy, Adaptive Maximum Policy, Average Policy, and Adaptive

Average Policy) which are implemented in the brokers of the resource manager.

The experiments of this level reflect the necessary resources which will be

needed for serving a specific request. These resources are the CPU, the Memory,

the Network, and the Disk.

At the top of the architecture sits the CB_MDA algorithm which will be tested

exhaustively since it is responsible for scheduling and regulating the flow of the

video data from the server to the clients.

Implementation and Experiments
__

 86

4.2 The VPS implementation and Experimental Study

As it has been mentioned in chapter two, the architecture is based on a set of

modules. These modules are: the admission control which works as a negotiating

and acquisition as well as admission module, the resources manager which

employs four brokers for the resources reservation, and the delivery algorithm

(CB_MDA) which schedules and regulates the streaming of the video data from

the server to the client.

The admission control and the resources managers have been created as

standalone programs, and the communication between them has been done by

using sockets programming. The reason for the separation has been done based

on the following reasons:

a. Providing scalability. This means that, if there is a need for the server

to extend its operations and include multiple servers, then this is

guaranteed without making significant changes in the admission control

and the resources manager programs.

b. Allowing the admission control module to play a central role in

controlling all requests received from the clients.

4.2.1 Development steps

The implementation of the server has been created from scratch and it has been

achieved in stages. The reason for creating it from scratch rather than using built

in functions and tools refer to the fact that this server will work as a building

block for the Distributed VoD (DVoD) architecture which has been explained in

chapter two. Therefore, there is always a need for testing the effect of each part

on the over all design of the architecture, which requires the availability of the

source code. In addition, our code gives us the flexibility to face any changes

and improvements that might be needed in the future such as adding new

modules, modifying some of the modules, and/or replacing one of the modules

by another one. The major programs of the VPS cover the following parts:

• The acquisition of requests and the negotiation with the clients.

• The admission control policies for resources management.

• The scheduler of media data delivery (CB_MDA) and the delivery threads

which are responsible for delivering the video data.

• Network communications with multicast and unicast.

Chapter 4

__

 87

• A client program which requests a service and synchronizes with the

server in order to receive from multicast and unicast streams.

At the beginning, we have studied the characteristics of the video format and the

transmission of the video from the server to the client. This study has shown

that the VoD applications require long-live sessions with high system resources.

Also, it has shown that the clients expect to get the service in a very short period

of time. Consequently, and to start with, the concentration has become on the

response time followed by the problem of the server resources. Thus, the first

task has become exploring and guaranteeing a short response time. The

response time has been classified as of two types:

• Connection response time. It is the time needed to establish a connection

with the client for negotiation.

• Delivery response time. It is the time needed to deliver the required video

data when a client selects a video file and/or invokes a VCR-like function.

In both cases the response time has to be as short as possible. The first problem

is solved by implementing multiple threads in order to negotiate with the clients.

The second problem, however, is discussed with details in the experiments of

next stages.

As a continuation, the first task which has been achieved was creating a

module which worked as an entrance and admission point for the arrival of all

requests. This module is called Admission Control Module (ACM) and its

preliminary tasks were:

• Listening at a specific port for the arrival of new requests.

• Analyzing these requests and then,

• Serving them.

However, a problem has occurred when a new request arrives while the previous

one is in service. The new request had to be queued until the first one is done.

To solve this problem, the ACM uses multiple threads for serving the arriving

requests. That is, when a request arrives, the module (as a father) assigns a

thread to the new request in order to negotiate with it while the previous request

is being served. The process of communication between the client and the server

has been done as follows:

1. The client connects to the server.

2. The ACM realizes that this client is a new one and creates a new thread

for serving him and goes to listening state.

Implementation and Experiments
__

 88

3. The thread negotiates with the client. In case of no confirmation the

thread informs the ACM and dies.

4. In case of confirmation, the thread also informs the ACM and dies, then

5. The ACM creates another thread for retrieving the video data and

transmitting it to the client.

4.2.2 Stage One: Preliminary Architecture and Response Time

In this stage, and as a preliminary architecture, we have created a multithreaded

ACM, a multithreaded client, and a reader thread for reading and transmitting

the video data to the client. The client, so far, was built in text mode with two

threads. One of the threads was dedicated for receiving the video data, and the

other was dedicated for invoking VCR commands such as Play, Fast Forward,

Slow forward, Pause, and Stop.

To validate this architecture and to verify its viability in a real system, a

series of tests have been accomplished in a real environment based on

clients/server module. The real framework (VoD server) is based on Linux OS

(SuSE, Mandrake, and RedHat Distributions) and a set of clients who are

independent of the OS, but for the testing purposes they also have used Linux

based machines.

With regard to the network, a 100Mbits local area network (LAN) has been

used with an average workload of 25% to evaluate the performance of the

service under unfavorable conditions. This criterion has been chosen to extract

conclusions with respect to the server installation in systems with very high load.

The first series of experiments have been carried out in order to calculate the

Round Trip Time (RTT) which is defined as the time elapsed from the moment

the client requests a video file until the media data (or fragment of it) arrives to

the client. These experiments have been carried out with 2 clients, 4 clients, 8

clients, 16 clients, and 32 clients running on different PCs. These clients have

been served by sending to them packets of 1KB (KiloByte), 2KB, 4KB, 8Kb,

16KB... and 100KB. The response time has been calculated for different

combinations of clients in different PCs for different file sizes with different

packet sizes from 1KB to 100KB. The experiments have shown that a client from

the group of 16 clients with a file size of 95KB required a Round Trip Time of

10,9 milliseconds (for each client).

Other groups of experiments have been conducted for the same reason

(figure 4.1). The first group includes 8 clients, the second group includes 16

Chapter 4

__

 89

clients, and the third group includes 32 clients. The first group was distributed

into two processors (PCs) where four clients were running on processor A

requesting file I, and the other four clients were running on processor B and

requesting file II. Thereafter, the number of clients has been increased to 16

where, 8 clients were running on processor A requesting file I, and the other 8

clients were running on processor B requesting file II. Then, the number of the

clients has been increased again to 32 clients where, 8 clients were running on

processor A requesting file I, and another 8 were running on the same processor

but requesting file II. Then, another 8 clients were running on processor B

requesting file III, and the other 8 were running on the same processor but

requesting file IV.

Figure 4.1 shows the system stability (Server thread - Client thread)

measuring the round trip time for sending 32 Kbytes multimedia packets for

different configurations of clients and different files. Also, it shows that the

response time was fluctuating between 25 ms to 40ms. This time would be

acceptable for two reasons; first, it does not violate the real-time requirements

where 1Mb (MegaBits) to 4.5 Mb must be present at the client buffer so that he

can make 1 second of video reproduction, second, this time is considered as

small enough for providing short response time during the negotiation, which

does not involve transferring large data, between the client and server.

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35
Clients

M
ili

se
co

nd
s

8 Clients -4 Processor A, 4 Processor B-
16 Clients -8 Processor A, 8 Processor B-
32 Clients -16 Proc.A (8 File I, 8 File II), 16 Proc.B (8 File III, 8 File IV)-

Figure 4.2 shows the result of executing (300 times for each configuration)

different clients requesting the same and different files with the server sending

1,3 Mbytes per second for each client. A set of statistical values has been

Figure 4.1. Average Round Trip Time for 32kbytes packet size

Implementation and Experiments
__

 90

generated for the Round Trip Time (minimal and maximum value, standard

deviation, geometric average and mean deviation) valuing the capacity of the

VoD Server and the clients.

In conclusion, the experiments have shown that retrieving 32 KB or 64 KB

from the disk was giving the best response time. Therefore, a packet size of

32KB has been recommended for video retrieving from the storage system.

However, the video data delivery must be regulated in order not to overflow the

clients� buffers and over-saturate the bandwidth.

In general, these experiments have driven us to concentrate on other parts

of the systems such as, increasing the number of users served at the same time,

regulating the delivery of the transmission, creating graphical user interface for

communicating with the server and visualizing the video, and guaranteeing a

dual service which does not accept new arrivals who might affect the quality of

service.

The results and the progress in the implementation have motivated us to

create a tool for visualizing the video data. Therefore, a video client has been

created in order to synchronize with the server and to watch the movie as well

as to make an evaluation to the server. This part has been tested successfully

and has been presented as an undergraduate final project at the Computer

Science Department of the University Autonomy of Barcelona

[AppendixB][VALL02].

Figure 4.2. Round Trip Time Statistics for 1,3Mbytes data size

0

500

1000

1500

2000

2500

3000

3500

4000

M
ill

ise
co

nd
s

8 clients

16 clients

32 clients

 Standard Average Geometric Max. Value Min. Value
 Desviation Desviation Average Deviation Deviation

Chapter 4

__

 91

The client player was able to connect and communicate as well as to

negotiate with the server successfully. The server has been placed at the

department of computer science at UAB. The clients have been tested from the

labs of UAB and Sabadell which is located at about 10 Km north of the UAB

campus.

4.2.3 Stage Two: RMM and Admission Control Policies

The first stage of the implementation has shown the need for guaranteeing the

service for multiple clients so that new arrivals don�t affect the ones being in

service. That is, the quality of service (QoS) of the clients being in service is not

jeopardized. Therefore, sufficient resources must be assigned to these clients.

As it has been stated in chapter two, the traditional operating systems don�t

guarantee the QoS for the long-live sessions in multimedia applications. Also,

the operating systems treat all requests equally unless priorities are defined.

This implicates that a new request might acquire the resources of others being in

service causing an interrupt in the reproduction of the video at the client side.

Therefore, there was a need for creating a middleware with a set of policies that

take control over the operating system resources and control their assignment to

the different clients. The middleware includes the admission control policies,

discussed in chapter two, in order to decide whether to accept or reject a

request based on the available resources.

No doubt, this extension in the system design required an extension in the

architecture design and implementation, and required the need for investigating

the main elements that play a role, directly or indirectly, in the designing process

of the architecture such as the CPU, the Memory, the Network, and the Disk.

The implementation of the resources assignment and the admission policies

have been done by creating another multithreaded module called Resources

Manager Module (RMM). The RMM module consists of the following parts:

• The main program

• The CPU thread

• The memory thread

• The network thread

• The disk thread

• The reader and transmission thread

Implementation and Experiments
__

 92

When the admission control module (ACM) forwards a request to the main

program of the RMM, the RMM analyzes the request and translates the requests�

parameters into resources based on the metadata related to that request.

Thereafter, the RMM awakes up the threads of the CPU, memory, network, and

the disk and passes to them the metadata and the policy that they must

considered in calculating the amount of the required resources.

The resources threads then make their tests and reservations based on the

policy defined by the RMM and inform the result to the RMM. If all the resources

confirm the admission then, the request is registered as accepted in the

acceptance list and a reader thread is created for retrieving the video data and

transmitting it to the client.

For the experiments, the task of the video storage (the disk) has been

separated from the rest of the implementation. The reason behind that was due

to the fact that typical video files require a huge amount of disk space thus;

storing and retrieving these files require especial and careful treatment. For

example, the files can be stored in their entirety in sequential order. Another

implementation would be stripping the video files among a set of disks.

Therefore, this issue has been done by a separated study. The task assigned to

that study has provided a very short delay (less than 3 ms) for retrieving the

video by the thread which is in charge of delivering the data to the clients.

With the objective of analyzing the RMM along with the admission control

policies and of adjusting the parameters within a real system, a set of

experiments has been carried out. These experiments have used MPEG video

files and required extracting metadata from theses files. The experiments consist

of a set of clients requesting services from the VoD server.

To accomplish these experiments, two mechanisms have been used for

generating the petitions: gaussian and random. In the gaussian model the

interval between two petitions is defined by a gaussian variable T=G(µ,σ)

seconds while in the second model the petitions are generated in a random form

in the interval [a, b] seconds. The function parameters have been determined

based on real studies presented by [VEN97] with µ=2.5, σ=1, a=0 and b=6. The

parameters for the system are: number of frames/sec requested 29, free CPU

time 10%, λ=1(predictive) and λ=0.5 (arithmetic average), available memory

size 64MB, packet size 32 KB, and LAN with FastEthernet.

Figures 4.3 to 4.8 show the result of these experiments for the two-client

models working with frame-based (data is retrieved and sent frame by frame,

where a frame can be of type I, P, or B) or block-based (data is retrieved and

Chapter 4

__

 93

sent block by block, where a block can be of 32KB or 64 KB) and with the

different admission policies, where M=Maximum, A=Average, AM=Adaptive

Maximum and AA=Adaptive Average.

Figures 4.3 and 4.4 show that, the Maximum policy uses greater resource

quantity (CPU and Bandwidth) than the Average policy (a behavior that could be

anticipated) and that the CPU quantity used by the block-based mode is slightly

inferior to that of the method frames-based mode. Furthermore, the Adaptive

Average policy uses smaller resource quantity (CPU and Bandwidth) than the

other policies, with the exception of the Average policy.

0

2

4

6

8

10

M
ax

. C
PU

 [%
]

Gaussian Clients - Frame Gaussian Clients - Block
Random Clients - Frame Random Clients - Block

Max. Aver. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

0
5

10

15
20
25
30

35
40

M
ax

. B
an

dw
id

th
 [M

bp
s]

Gaussian Clients - Frame
Gaussian Clients - Block
Random Clients - Frame
Random Clients - Block

Max. Aver. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

As it can be observed from the figures, the best policy would be the Average

policy, but this is the only one that is totally unacceptable due to the great

quantity of I frames which are lost. In our case, this policy accomplishes an

underestimate of the quantity of necessary resources when the movie contains a

Figure 4.4. Maximum bandwidth

Figure 4.3. Maximum CPU

Implementation and Experiments
__

 94

high number of I frames that cannot be sent, making this policy unacceptable in

terms of QoS.

For the remaining policy, a selected parameter would be the quantity of

attended petitions (figure 4.5). In the first place, we need to bear in mind the

number of attended petitions (this may be some what inadvisable index, since

not all petitions are equal). It can happen that a policy attends to an equal

number of petitions of another policy but with a greater consumption of

resources. That is, the requests that have been rejected by a policy could be

accepted by the other. This can be observed in the throughput of Gaussian

clients of block-based with Average policy (Aver.) and Adaptive Average (AA),

with λ=0.5 attending to the same number of petitions; however, in the later

(AA), the quantity of necessary resources is much greater.

0,06

0,08

0,1

Th
ro

ug
hp

ut
 [

R
eq

ue
st

/T
im

e] Gaussian Clients - Frame
Gaussian Clients - Block
Random Clients - Frame
Random Clients - Block

Max. Aver. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

Figures 4.3, 4.4, 4.5, and 4.6, show that the frame-based method gives

better results than that of the block-based mode. The justification is that the

policies used are adapted better when the processing time is constant and not

when the size of the information is constant (block-based working mode).

Because of this, and discarding the average policy (high number of lost

frames), frame-based results have been represented in the figures 4.7 and 4.8

as two-axis graph for the CPU-bandwidth utilization and the throughput-waiting

time for each policy respectively.

Figure 4.5. Throughput (Number of requests / processing time)

Chapter 4

__

 95

0

0,5

1

1,5

2

M
ax

. W
ai

tin
g

Ti
m

e
[s

ec
].

Gaussian Clients - Frame Gaussian Clients - Block
Random Clients - Frame Random Clients - Block

Max. Aver. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

8 60 62 62 53

0
5

10
15
20
25
30
35
40

M
ax

. B
an

dw
id

th
 [M

bp
s]

0

2

4

6

8

10

M
ax

. C
PU

 [%
]

Gaussian Clients - BW Random Clients - BW
Gaussian Clients - CPU Random Clients - CPU

 Max. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

As it can be observed from figures 4.7 and 4.8, the adaptive policies are

better in general, and the Adaptive Average is better than the Adaptive

Maximum since it reduces considerably the waiting time. In terms of resources,

the Adaptive Average policy is also better since it has a high throughput with low

need of resources. Furthermore, these policies have a better behavior when the

value of λ is close to 1 and the client�s model is Gaussian.

As a conclusion to these experiments, the RMM, which is implemented as a

middleware using four brokers, can reserve the necessary resources based on a

Figure 4.7. Maximum CPU and bandwidth

Figure 4.6. Client waiting time and throughput

Implementation and Experiments
__

 96

predefined admission policy and provide a quality of service represented in

providing the video data without starvation.

0

0,5

1

1,5

2

M
ax

. W
ai

tin
g

Ti
m

e
[s

ec
].

0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
0,08
0,09

Th
ro

ug
hp

ut
 [s

ec
-1

]

Gaussian Clients - WTime Random Clients - WTime
Gausian Clients - Througput Randon Clients - Througput

 Max. AM AM AA AA
 λ=0.5 λ=1.0 λ=0.5 λ=1.0

However, the resource manger does not make use of the resources

availability in order to assign the double or may be the triple of the resources to

the clients who have high machine specification so that they get work-ahead

video data and leave the server earlier. It can only calculate and reserve the

necessary resources for each arriving request.

4.2.4 Stage Three: CB_MDA and Data Pre-fetching

As it has been said before, the brokers can only guarantee the required

resources according to a predefined policy. However, regulating the video

streaming and controlling the flow of the data between the server and the clients

are carried out by the CB_MDA. Thus, the CB_MDA also allows the server to

avoid using protocols that might cause network overhead such as RTP.

The main experiments of this stage are intended to test the CB_MDA. These

experiments are related to the following issues:

• Combining multicast and unicast channels for video streaming

• Implementing patching technique for the clients who join one of the

active multicast streams so that they can buffer from these streams

• Providing the video prefix through short unicast channels so that the

client can start right away the reproduction of the video.

• Implementing video pre-fetching with the unicast channels so that they

can be released earlier.

Figure 4.8. Frame-based: waiting time and throughput

Chapter 4

__

 97

These techniques are expected to lead to a better utilization of the resources.

As we have mentioned in chapter three, streaming the video data in real time

does not give high performance since there are moments when the server has

available resources that can be assigned to some clients, who are capable of

receiving video data at a rate greater than the real time rate, but the server

does not utilize these moments. The alternative solution would be transmitting

and controlling the flow of the video data at a rate greater than the real-time

rate whenever it is possible so that, the server can finishes serving these clients

some time earlier than the time that would be needed if the server were sending

at a real time rate only. As a result, and before the peak time, these clients will

be finished and new clients will be able to join the service.

Consequently the CB_MDA has presented a solution with which, it discovers

the periods of time during which the server resources are underutilized and, at

the same time, there are clients who have high machine specifications such as

the IO bandwidth and buffer space so that, the CB_MDA assigns to those clients

more resources than others creating a work-ahead in their buffers.

In addition, and at the application level, the algorithm guarantees, if there is

no network failure, the flow of the data from the server to the client without

causing starvation at the client side.

The first set of experiments has been conducted with the transmission being

sent over unicast channels only. That is, each client has been assigned a unicast

channel. Meanwhile, the algorithm, whenever it was possible, was trying to send

the video data at a rate greater than the real time rate to those who can receive

it. In general, the experiments verify that, the algorithm can take advantage of

the available resources at the server and the client sides and manages to send

work-ahead video data. Also, they show how the algorithm adapts dynamically,

during the service, to the changes that take place in the server and to the arrival

of heterogeneous clients. For example, the change can be due to the arrival of

more clients and/or the departure of clients being in service. The incorporation of

the new arrivals (clients) is done dynamically without affecting other clients

being in service. Also, some clients might have better machine specifications so

that more resources can be assigned to them during the service. So, the

adaptation to these changes is done on the fly while the server is running.

Experiments set 1:

The objective of the first set of experiments is of two folds: first, testing the

ability of the system to handle so many clients that might arrive at the same

time (with an interval < 1 sec), second, testing the ability of the algorithm to

Implementation and Experiments
__

 98

create a pre-fetched (work-ahead) video data reserve in the clients� buffers so

that, the clients can finish before the time that would be needed if the server

was sending at the video reproduction rate. The main parameters and

characteristics of these experiments are as follows:

• Maximum credit values that can be assigned (Maxcv) = 40 cvs which

means that the server can generates 40 streams at the same time,

(Recalling from chapter three, a cv represents the amount of the video

data that the server must transmit so that the client can play one second

of the video).

• Maximum number of clients that have arrived (Max clients) = 40,

• Short video files (e.g. Ontario.mpg with 314 sec). This file is an MPEG

format and has this size of about 50MB (Mega Byte).

• The clients I/O bandwidth (Clients� IO) = 2 cvs, which means that he can

receives from multiple streams.

• The maximum video data that the client can buffer (Max Buffer) is

equivalent to 105 seconds of video reproduction. If the server manages

to send 2 cvs during a slot then, 1 cv will be consumed for the video

reproduction and the other cv will be buffered at the client side as a pre-

fetched reserve (PRV).

• The average arrival time of the clients has been applied as < 1 second

and then 5 seconds. That is, the average delay between the arrivals of

the requests is less than 1 second (in the first trial) and equal to five

seconds in subsequent trials.

The following table presents a summary of the experiment set1:

Experiments Set 1
Objective The objective is to the ability of the systems to handle so many clients at

the same time, and to test whether the algorithm can create prefetched
reserve when the number of the client is equal to the number of the credit
values CV.

Parameters No. of
Clients

MaxCv IO BW Buffer
size (sec)

Arrival
Delay

File
Size

Play
Time

 40

40

40

40

2 cv

2 cv

105

105

< 1 sec

5 sec

50MB

50MB

314 sec.

314 sec.

In the first experiment, when the arrival delay was less than one second, the

server (mainly the ACM) was able to receive and handle all of the clients who

have connected to the server. However, the average service time was two

Chapter 4

__

 99

seconds for each client. That is, although the clients were arriving every less

than one second, the server (in general) needed about 2 seconds in order to

verify the client request, create the necessary thread, and start transmitting the

video data. As an example, figure 4.9 of set 1 (the word �set� indicates set of

experiments) shows clearly that client i+10 and client i+40 have received the

first fragment of their video file at about 20 and 80 seconds respectively.

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40

Also, this first experiment (figure 4.9) shows that, even though the server

needed around 2 seconds before it can serve each request the algorithm has

utilized this little delay and was able to create pre-fetched reserve in the clients�

buffers. Thus, the arrival delay can be utilized to create pre-fetched reserve in

order to reduce the service time. Therefore, the time delay has been increased

to five seconds in subsequent experiments for three reasons; first, as it has been

said before, the server needs 2 seconds to handle each new request, second, it

is preferable that the user waits 2 to 3 second before he can start the video

reproduction so that some video data can be accumulated in his buffer, third, the

five seconds value was one of those values generated by Gaussian and random

models and used in the RMM experiments. The most important thing is that,

guaranteeing that, within this value (5 sec), the last arrival client is entering the

server while the first client is still in service.

Figure 4.10 shows the status of the clients� buffers after the algorithm has

finished servicing all of them. The graph shows that all the clients have finished

with PRV in their buffers. Also, it shows that the clients who have arrived earlier

had less pre-fetched reserve values (PRV) than those who came later and, it

shows that some clients (the latest arrivals) had their buffers full.

Figure 4.9. Serving 40 clients with arrival delay < 1 sec.

Implementation and Experiments
__

 100

This is true due to the fact that, when the number of the clients was less than

Maxcv, the algorithm created PRV in the buffers of earlier clients. Then, when all

the clients were present in the system, the earlier clients have been scheduled

less frequently in some subsequent slots since they had larger PRV in their

buffers than those who came later. Thereafter, those who came first began to

exit the system, since they got all the requested video data, and their resources

have been assigned to the rest of the clients. As a result, there were moments

when the later clients were receiving at their high capacity and their PRV was

frequently increasing. For example, figure 4.10 shows that clients 31 to 40 got

their buffers full with video data.

40 clients, arrival delay = 5 sec,IO = 2, Buff=105

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40

Client Id

Pr
ef

et
ch

ed
 fr

am
es

To have a more detailed picture about the buffers status during the service,

figures 4.11, 4.12, and 4.13 show how the buffers were evolving during the

service for a sample of 3 clients who have the id i+10, i+30, and i+40. The

buffer status of these clients has been registered every five seconds since the

files sizes were small.

These figures show clearly how the buffers of the earlier clients were

frequently increasing with the video data and then, when more clients were

arriving, these buffers started to decrease since the clients had to share their

resources with the new arrivals. That is, the earlier clients have been ignored in

subsequent scheduling slots causing them to consume more than what they used

to receive.

For example, figure 4.11 shows that client i+10 has his buffer increasing

frequently during the service. Thereafter, and with the arrival of more clients, his

buffer started decreasing, which indicates, that he has been ignored in some

subsequent scheduling slots.

Figure 4.10. The buffers status of 40 clients after being finished

Chapter 4

__

 101

Figure 4.12 shows that client i+30 has been also ignored in subsequent slot

but less times than those who arrived before him. Also, it shows that he has

utilized the exit of the earlier clients so that his buffer went back to increase

again.

0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250 300 350

Time[sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+10 Tendency (Polonomic grade 4)

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300 350 400

Time in [sec]

Pr
ef

et
ch

ed
 fr

am
es Client i+30 Tendency (Polynomic grade 4)

With regard to client i+40, figure 4.13 1.5 shows that he has been frequently

scheduled in subsequent slots. This is due to the fact that, when the clients have

reached a balanced level in their buffers, the earlier ones started to exit the

system giving up their resources which have been shared among those who were

still in service.

Figure 4.14 combines a set of clients (i, i+10, i+20, i+30, i+40) in one graph

so that, it can be seen clearly how the buffers of the different clients are

Figure 4.11. The buffer status of client i+10

Figure 4.12. The buffer status of client i+30

Implementation and Experiments
__

 102

changed during subsequent slots and how the algorithm brought the buffers into

a balanced level.

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+40 Tendency (Polynomic grade 4)

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300 400 500

Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40

As a conclusion, the first set of experiments, which are represented in the

figures 4.9 to 4.14 have shown that, the algorithm was able to create pre-

fetched video data reserve in the appropriate clients buffers and that, it was able

to maintain a balanced pre-fetched reserve in their buffers.

Consequently, all the clients of the first set were able to finish ahead of the

time. That is, the server has finished serving them before the time that would be

needed if the server has been sending the video data at the consumption rate of

the video reproduction all the time. This is will be beneficial in implementing

Figure 4.13. The buffer status of client i+40

Figure 4.14. The buffers status of the clients� sample

Chapter 4

__

 103

multicast along with the short unicast channels which will be used for

transmitting the video prefix at a rate greater than the real time rate.

Another point that can be deduced from the first set of experiments is that,

figures 4.10 to 4.14 have shown that the clients had pre-fetched reserve in their

buffers. This reserve represents the resources that have been allocated ahead of

the time. The idea now is to think of these resources as borrowed slots that can

be taken back from the clients. This can be implemented by ignoring these

clients in subsequent slots, as if the borrowed resources are reclaimed, in favor

of new arrivals.

Experiments set 2:

In the real life, when some body gives a loan to another, the former is

expected to get it back from the later whenever the former asks for it. The

algorithm is imitating this situation by assigning more resources, whenever it is

possible, to the clients with the intention of getting these resources back

whenever they are needed. Getting the resources back means ignoring those

clients who have large pre-fetched reserve in their buffers in subsequent

scheduling slots without causing starvation in their buffers.

For this reason, another set of experiments have been conducted with the

objective of injecting more clients in the service without causing starvation in the

buffers of the clients being in service. That is, the total number of the clients

that can be served at the same time will be greater than Maxcv, yet the quality

of the service is not jeopardized. The parameters of these experiments have

been maintained the same as the previous experiments except the number of

the clients which has been incremented to 50. The following table presents a

summary of the experiment set 2:

Experiments Set 2
Objective Check whether the algorithm can cope with more clients by reclaiming

the borrowed resources without causing frames loss (starvation).
Parameters No. of

Clients
MaxCv IO BW Buffer

size (sec)
Arrival
delay

File
size

Play
time

 50
57
59

40 2 cv 105 5 sec 50MB 314 sec

The experiments have shown that the algorithm has managed to serve all the

50 clients without starvation. Therefore, the number has been increase to 57 and

then to 59 clients. Figure 4.15 shows the amount of the pre-fetched reserve in

the buffer of each client (defined by a unique id) when there were 50, 57 and 59

Implementation and Experiments
__

 104

clients. As the figure indicates, the curves of 50 and 57 clients show that all the

clients had pre-fetched reserve when the last fragment of the requested video

file has been received. On the other hand, the curve of the 59 clients indicates

that some clients were about to suffer from starvation.

In all cases, the same explanation made on the buffer status in the previous

experiments can be implemented on theses experiments. Many clients have

finished with pre-fetched reserve in their buffers. This is true since the first

clients have collected high reserve before the server has become saturated, and

thereafter they have finished before sharing all of the reserve with the rest of

the clients. The later clients have utilized these resources to increase their pre-

fetched reserve, and the last few of them were even about to have their buffers

full before they have finished.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60
Client's Id

Pr
ef

et
ch

ed
 fr

am
es

50 clients 57 clients 59 clients

To show how the buffers were evolving during the service, figure 4.16, shows a

sample of 6 clients chosen from the experiments of 50 clients. The graph shows

clearly how the buffers were increasing at the beginning of the service since the

number of the clients was less than MaxCV and then, they have been decreasing

since more clients have arrived so that, they have been ignored in subsequent

slots for the sake of the new arrivals.

In the same way, a sample of 6 clients from the experiments of 57 clients

have been combined in figure 4.17 in order to compare it with figure 4.16 and to

show how the pre-fetched reserve has been decreasing yet, none of the clients

has had his buffer empty. However, when the number of the clients has been

increased to 59, some of the clients� buffers have registered zero level in

subsequent slots (figures 4.18, 4.19, and 4.20).

Figure 4.15. The PRV of 50, 57, and 59 clients

Chapter 4

__

 105

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500
Time [sec]

Pr
e-

fe
tc

he
d

re
se

rv
e Client i

Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600
Time [sec]

Pr
ef

et
ch

ed
 F

ra
m

es

Client i
Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

The next figures 4.18, 4.19, and 4.20 are present to make a comparison

between the pre-fetched reserve of client i+30 from 50 clients, i+30 from 57

clients, and i+30 from 59 clients respectively.

0
500

1000
1500
2000
2500
3000

0 100 200 300 400 500
Time [sec]

Pr
e-

fe
tc

he
d

re
se

rv
e

Client i+30
Tendency (Polynomic grade 4)

Figure 4.16. The PRV of the 50-client group

Figure 4.17 The buffers status of the clients� sample 57

Figure 4.18. The buffer status of client i+30 from 50-client group

Implementation and Experiments
__

 106

0

500

1000

1500

2000

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 F

ra
m

es
Client i+30 Tendency(Polynomic grade 4)

0

500

1000

1500

2000

2500

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+30
Tendency (Polynomic grade 4)

These graphs show the status of the buffer of client i+30 which represents

one of those who arrived in the middle of the service where the server was

becoming saturated. Figure 4.20 shows how the reserve in the buffer has almost

reached zero level in comparison with the graphs of figures 4.18 and 4.19. The

reason for that, of course, is referred to the increase in the number of the clients

attended to by the server at the same time.

As a conclusion, any further increase in the number of the clients in the

previous experiments will definitely jeopardize the clients� quality of service.

However, these experiments have proved that the algorithm was able to

recollect the resources which have been assigned to some clients when the

server had light load in order to meet the increasing number of the clients. In

other words, there were moments when the number of the active streams has

become larger than the Maxcv that the server can offer.

Another important point that can be noticed is that, none of the first clients

had his buffer full although the server was able to provide more video data and

Figure 4.19. The buffer status of client i+30 from 57-client group

Figure 4.20. The buffer status of client i+30 from 59-client group

Chapter 4

__

 107

increase the pre-fetched reserve in their buffers. This can be explained as a lack

of the IO bandwidth. That is, had the earlier clients had an IO larger than 2, the

server would have sent more data to these clients. Therefore, the focus has

become on the IO in order to explore how the increment of the IO might affect

the number of the clients who can be served by the server.

Experiments set 3:

The objective of this experiment is to test whether the increase of the IO

value can prohibit frames loss which has occurred with the 59 clients group

(figure 4.20) and allow incorporating more clients in the service. Therefore, the

IO has been increased to 3 CVS in order to send the video data at a faster rate

whenever it is possible. Then, the experiments have been conducted with 59

clients and then with 62 clients. The following table presents a summary of

experiments set 3:

Experiments Set 3
Objective Checking the possibility of avoiding frames loss, which was about to

occur in the previous experiment, and increasing the clients if the IO
value of the clients is increased.

Parameters No. of
Clients

MaxCv IO BW Buffer
size (sec)

Arrival
delay

File
size

Play
time

 59
62

40 3 cv 105 5 sec 50MB 314 sec

To make a comparison, figure 4.21 shows the 59-client curve of figure 4.15

when the IO was 2, in addition, it shows the curves of 59 clients and 62 clients

when IO became 3.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60
Client's Id

Pr
ef

et
ch

ed
 fr

am
es

59 clients, IO=2 59 clients, IO=3 62 clients, IO=3

Figure 4.21. The PRV of clients groups with IO=3 CVs

Implementation and Experiments
__

 108

The 59-client curve with IO=3 shows that, with the increase of the IO, none

of the clients� buffers has reached zero level. On the other hand, the 62-client

curve also shows that, the increase in the IO value resulted in an increase in the

number of the clients served by the server yet, none of them has suffered from

the lack of data and many of them finished with a pre-fetched reserve.

To have a more clear picture about how the pre-fetched reserve was

changing during the service, figure 4.22 and 4.23 show the buffers status during

the service for the client i+30 from 59-client group and 62-client group when

IO=3. Notice that, the status of client i+30 will be shown in all the experiments

as a base for comparison.

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+30
Tendency (Polynomic grade 4)

The graph of figure 4.22 shows clearly that, when IO became 3, client i+30 of

group 59 clients did not suffer any more from the lack of video data and that, he

has finished with a pre-fetched reserve causing him to finish receiving the last

fragment of the data ahead of the time.

Also when IO is equal to 3, figure 4.23 shows that, this client (i+30) was

about to have his buffer empty and suffer from the starvation. However, the

experiment did not register any suffer at any of the clients of this group. To

verify this, figure 4.24 shows a global picture for a sample of 7 clients from the

62-client group.

The graph of figure 4.24 shows that the pre-fetched reserve was increasing in

the buffer then it has fallen down as a result of receiving more clients. During

the period 375 and 450, the clients were about to suffer from the jitter but this

did not happen.

As a conclusion, the increase of the IO bandwidth has produced better results

especially for the earlier clients. This means that, if the transmission of the video

Figure 4.22. The buffer of client i+30 from 59-client group with IO=3

Chapter 4

__

 109

can be at a faster rate then some clients will get more reserve before the server

gets saturated.

0

500

1000

1500

2000

2500

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+30
Tendency (Polynomic grade 4)

0
500

1000
1500
2000
2500
3000
3500

0 100 200 300 400 500 600
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40
Client i+50
Client i+60

An interesting point figure 4.24 shows is that, the buffers of the earlier clients

(i to i+10) have reached full level since the curves have reached a stable point.

This means that their buffers have become full before the system has become

saturated. Now, the question is:

What would happen if the buffers were larger? In other words, had these

clients had bigger buffers, would they have more pre-fetched reserves which will

lead to better results in terms of prohibiting frames loss?

Experiments set 4:

The objective of these experiments is to test whether the increase of the buffer

improves the server performance. The same parameters of experiments set 3

were used except the buffer size which has been increased to 157. The following

table presents a summary of experiments set 4:

Figure 4.23. The buffer of client i+30 from 62-client group with IO=3

Figure 4.24. The buffers status of a sample of 7 clients

Implementation and Experiments
__

 110

Experiments Set 4
Objective Checking if the increase in the buffer size can prevent frames loss when

the clients number reaches 62.
Parameters No. of

Clients
MaxCv IO BW Buffer

size (sec)
Arrival
delay

File
size

Play
time

 62 40 3 cv 157 5 sec 50MB 314 sec

Figure 4.25 shows a comparison between the pre-fetched reserves when the

buffer size was 105 (dotted line) and when the buffer size has become 157

(Continued line). It is clear from the graph that the earlier clients have utilized

the server resources before it has become saturated. Figure 4.26 shows that

client i+30 from 62-client group has survived the lack of the data after

increasing the buffer size.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60
Client's Id

Pr
ef

et
ch

ed
 fr

am
es

62 clients, IO=3, Buff=105
62 clients, IO=3, Buff=157

0

500

1000

1500

2000

2500

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+30
Tendency (Polynomic grade 4)

Figure 4.27 shows the pre-fetched reserve for a sample of 7 clients after the

buffer has become 157. In comparison with figure 4.24, this graph (4.27) shows

that clients i to i+10 were no longer able to have their buffers full. This means

Figure 4.25. The PRV of 62 clients after increasing the buffer

Figure 4.26. The buffers status of 62 clients after being finished

Chapter 4

__

 111

that any further increase in the buffer space will be useless unless it is

accompanied with an increase in the IO value.

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es Client i

Client i+10
Client i+20
Client i+30
Client i+40
Client i+50
client i+60

As a conclusion, the increase in the buffer size was beneficial in case of the

earlier clients. As a result, it is not necessary to have all the clients had large

buffer size. For example the data in the buffers of the clients, i+30 to i+50, did

not even reach 60% of the buffer size. Thus, a bigger buffer size will be useful

only and only when the server has available resources and the client can receive

at a high rate.

As a quick summary to all sets of the previous experiments, the algorithm

has shown its capacity to adapt itself to the changes of the parameters

dynamically. Also, it has shown that, in some moments, an increase in the IO

bandwidth and the buffer size resulted in an increase in the number of the

clients served by the system.

In addition, there were moments when the number of the clients was larger

than the server resources due to the fact that, the algorithm was sending work-

ahead video data to the appropriate buffers so that it can ignore those clients

who have PRV for the sake of coping with the later arrivals. Furthermore, and

consequently, the algorithm managed to reduce the service (finishing) time as it

has been explained before giving the chance for more clients to enter the

system.

After finishing these sets of experiments, we have calculated the percentage

that the value of the average arrival represents with respect to the play time of

the video (file length). This value is calculated by dividing the average arrival

time by the video length as follows:

Figure 4.27. The buffers status of clients� sample from 62-client group

Implementation and Experiments
__

 112

Ontario file:
TheAverageArrivalPercent = The average arrival time/FileLength
Example:
FileLength = 314 seconds
The average arrival time = 5
TheAverageArrivalPercent = 5/314 ≈ 0.0159 = 1.59%

Thereafter, other sets of experiments have been conducted with a video file

which was 4 times larger than that of the previous experiments (e.g. Futurama

= 1402 sec.). The average arrival time for the new file has been calculated

based on the same percentage (1.59%) with regard to the file length used in the

previous experiments as follows:

Futurama file:
TheAverageArrivalTime = (1.59 * FileLength)/100
TheAverageArrivalTime = (1.59 * 1402)/100
TheAverageArrivalTime = 22.2918

Thus, the average arrival time is approximately 22 seconds. This value has

been applied for the new file along with the rest of the parameters such as the

buffer space and the IO bandwidth.

For testing purposes, and in the same way as in the previous experiments,

the buffer of the client has been assumed to be 30% of the length of the file.

The value of the client�s IO has been also used in the same way (e.g. 2 and 3

CVs).

Experiments set 5:

The objective of these experiments is to check the behavior of the algorithm

when the same percentages of the buffer size along with the same value of the

IO and the same number of clients as well as the average delay time are applied

to video files which are 4 times bigger than the previous small files. The

characteristics and the parameters of the next experiments have become as

follows:

• Maximum credit values that can be assigned (Maxcv) = 40,

• Video file length = 1402 sec, (220MB)

• The average arrival time of the clients = 22 seconds

The rest of the parameters such as the buffer space, the IO, and the number of

the clients were changing with each set of experiments. For the first set of

experiments the selected parameters were as follows:

Chapter 4

__

 113

• The maximum video data that the client can buffer (Max Buffer) = 467,

which represents 30% of the file length.

• Maximum number of clients that have arrived (Max clients) = 40, 50, 57,

and 59.

• The clients I/O bandwidth (Clients� IO) = 2.

The following table presents a summary of experiments set 5:

Experiments Set 5
Objective Using the same percentage of the buffer size and the arrival delay used

in the previous experiments and apply them to a video file which is four
times bigger in order to se if the algorithm can maintain the same
behaviour.

Parameters No. of
Clients

MaxCv IO BW Buffer
size (sec)

Arrival
delay

File
size

Play
time

 40
50
57
59

40 2 cv 467 22 sec 220MB 1402
sec

These values coincide with the values used in the first set of experiments when

small files were used (e.g. Ontario). The only difference is the value of the buffer

size which represents 30% of the video file length (1402) and the average

arrival time (22 sec.) which represents 1.59% of the file length.

Figure 4.28 shows the status of the buffers in four tries when the number of

the clients was 40, 50, 57, and 59. Again, the figure shows that the algorithm

was able to create pre-fetched reserve in the same way with the small files and,

it shows that the curves of this figure have the same tendency as the

correspondent ones in figures 4.10 and 4.15.

A little comparison of this graph with the correspondent graphs of the

previous experiments shows clearly the similarity between them. In the

correspondent 59-client curve of the smaller files, the curve indicated that the

clients were about to suffer from the starvation. Likewise, the 59-client curve

indicates that some starvation has occurred. This is can be explained as a result

of rounding the delay time to 22 instead of 23 seconds.

The rest of the curves (40-client, 50-client, and 57-client) indicate that all the

clients of these curves have finished before their buffers reached zero level, and

the algorithm did not register starvation in subsequent slots.

Implementation and Experiments
__

 114

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60

Client's Id

Pr
ef

et
ch

ed
 fr

am
es

40 clients,IO=2,Buff467 50 clients,IO=2,Buff467
57 clients,IO=2,Buff467 59 clients,IO=2,Buff467

Before commenting on the 59-client curve, it is worthwhile mentioning that

the algorithm is able to block the clients and the requests that might cause

frame loss to any of the clients being in the service. The frame loss has been

permitted in order to study and analyze the parameters which might have some

influence on the server performance.

The 59-client curve shows lack of video data in some moments. Figure 4.29

shows how the pre-fetched reserve has evolved in the buffers of the 59-client

group, and it shows that increasing the number of the clients to 59 has caused

frames loss in some clients� buffers (figure 4.29).

0
2000
4000
6000
8000

10000
12000
14000

0 500 1000 1500 2000 2500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es Client i

Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

With 59 clients, the algorithm has registered frames loss in 270 slots from

2376 scheduled slots. These 270 slots were distributed only among the last 50

clients since the first 9 clients did not suffer any loss.

Figure 4.29. The buffers status with bigger files for 59-client group

Figure 4.28. The buffers status of the clients� groups 40, 50, 57, and 59

Chapter 4

__

 115

Excluding the 9 clients who have survived the loss, the average loss per

client for the rest of the clients is 270/50 = 5.4. This value is equivalent to

approximately 157 frames (5.4 * 29frames per second).

The total number of the frames received is 1402 * 29 = 12618 frames.

The percentage loss thus will be 157/12618 = 0.0124.

This problem, the frames loss, has almost occurred in the experiments of the

small video files when the number of the clients reached 59 clients and, it has

been solved by increasing the IO from 2 to 3. The question is: would the

increase of the IO value prevent the frames loss in the same way it did with the

small files?

Experiments set 6:

In the next experiments the IO has been increased in order to see whether the

frame loss can be eliminated. Thus, the parameters of the next experiment have

remained the same except the IO which has become 3. The following table

presents a summary of experiments set 6:

Experiments Set 6
Objective Testing if an increase in the IO value and buffer space with big files

using the same percentage of the small files will eliminate the frames
loss appeared in the previous experiments.

Parameters No. of
Clients

MaxCv IO BW Buffer
size (sec)

Arrival
delay

File
size

Play
time

 59
62
62

40 3 cv 467

600

22 sec 220MB 1402
sec

With the change in the IO values, figure 4.30 shows that the frames loss

does not exist any more and that, the first 10 clients have even got their buffers

full during the service before they have fallen down.

Similar to previous experiments, the graph shows that, had these clients had

more buffer space they would have maintained more pre-fetched reserve.

Therefore, and to prove this assumption, another set of experiments has been

conducted after increasing the buffer space to 600 (40% of file length) and the

number of the clients to 62, but jitter has been witnessed.

Then, the number has been increased to 63 causing some starvation (figure

4.31). With the increase of both the IO and the buffer space, the first clients

have increased their reserve but were not able to get their buffers full. This

means, that any increase in the buffer space will be worthless unless it is

accompanied by an increase in the IO.

Implementation and Experiments
__

 116

0

2000

4000

6000

8000

10000

12000

14000

16000

0 500 1000 1500 2000 2500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

0
2000

4000
6000

8000

10000

12000
14000

16000
18000

0 500 1000 1500 2000 2500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

client1
client10
client20
client30
client40
client50
client62

Again, although the algorithm can prohibit the starvation, this experiment

has been conducted with starvation occurrence in order to analyze it and make

sure that it does not occur in the real implementation.

The first 15 clients did not suffer from the starvation since they have

accumulated pre-fetched reserve before the server has become saturated. The

rest of the clients, especially those who came later, have had frames loss and

suffered from jittering.

To give an idea about the amount of the frames loss, the following steps

calculates the percentage of the jitter that has occurred in this set of

experiments including all clients:

Figure 4.30. No frames loss is witnessed after increasing the IO

Figure 4.31. Frames loss when the no. of clients is increased to 63

Chapter 4

__

 117

Futurama file:
Total slot = 2387
Total slots which have witnessed jitter = 176
Total number of clients = 63
The average number of jittering slot per client = 176/63 ≈ 2.8
The average percent of jitter per client = 2.8/fileLength
 = 2.8/1402 * 100
 = 0,2%

Another point that can be deduced from the above experiments is that, it is

not necessary that all clients have to have large buffers space and IO bandwidth.

It is sufficient that the first clients and the last ones have high machine

specifications because, the first clients can utilize the server resources since the

server does not yet have so many clients, and the latest clients can also utilize

the server resources since the earlier client exit the system rendering their

resources to the rest of the clients.

With regard to the CPU and the memory resource, all the experiments have

shown that these resources don�t represent a bottleneck and can�t be a major

obstacle in providing VoD services. Figure 4.32 and figure 4.33 shows the

required memory and CPU respectively based on parameters taken from

experiment set 5. The reason for this selection refers to the fact that these

parameters (57 clients, IO=2, MaxCV=40...etc.) did not cause starvation, with

small and big files, at the client side yet the server reached a point where all the

CVS have been assigned.

Figure 4.32 shows the real size of the memory which is required by the VoD

server when all the clients are present. Notice that, this size does not include the

memory required by the application. The algorithm assigns a memory buffer of

32Kbytes and 2 CVs for each scheduled client. Thereafter, a block of video data

equal to 32Kbytes is retrieved from the disk and temporarily stored in the

memory buffer from which the delivery thread transmits the video data to the

client.

As figure 4.32 shows, the maximum amount of memory needed is around

640KB for transmitting the video data. In fact, this amount is used for serving

20, rather than 57, clients at the same time. The reason for this is that, the

algorithm can assign, as a maximum, 40 CVs however, when all the clients are

present the algorithm assigns 2 CVs for each of the next 20 scheduled clients

instead of assigning 1 CV for each of the next 40 clients in order to reduce the

overhead generated from reordering and shuffling the lists of the requests in the

server. Had the algorithm has assigned 1 CV for each client the amount of the

Implementation and Experiments
__

 118

memory would be doubled since each client will be assigned a 32KByte memory

buffer. In fact, this is possible when the clients� buffers get full and thus the

clients can�t receive more than 1 CV in subsequent slots. Therefore, more clients

will be scheduled and more memory buffers will be assigned to these clients.

This situation can raise the memory needed up to 1.28 MB.

0

150

300

450

600

750

0 20 40 60 80 100 120
Time [sec]

V
oD

 A
llo

ca
te

d
m

em
or

y
[K

B
yt

e]

With regard to the CPU, figure 4.33 shows the maximum CPU computing time

needed for the process of retrieving 32KB of video data from the disk and

transmitting the last fragment of it over the network. Again, the figure does not

include the computing time required by the application.

0

5

10

15

20

25

30

0 20 40 60 80 100 120
Time [sec]

V
oD

 C
PU

 c
om

pu
tin

g
tim

e
[m

s]

Different from the memory, the needed CPU computing time during a slot is

calculated as if 40 clients were served instead of 20. The reason is due to the

fact that, although 20 clients are scheduled, all the CVs (40) are assigned during

Figure 4.32. The memory needed when all the CVs are assigned

Figure 4.33. The CPU computing time when all the CVs are assigned

Chapter 4

__

 119

this slot. Thus, the total amount of the retrieved and transmitted data is the

same in both cases. Thus, the calculation is doubled for each client. In other

word, the assigned CPU resource for each client is doubled.

Concerning the required bandwidth, figure 4.34 shows only the bandwidth

required by the VoD without calculating the packets headers. It shows the

maximum bandwidth needed when all the CVs are assigned.

0

10

20

30

40

50

60

0 20 40 60 80 100 120
Time [sec]

V
oD

 A
llo

ca
te

d
ba

nd
w

id
th

 [M
bi

ts
]

The disk storage guarantees a very low respond time when the block of the

data is between 32KB and 64KB. Figure 4.35 [YAN03] shows the result of

retrieving blocks of video data of different sizes. The delay for retrieving 32KB or

64KB is between 2 to 3 milliseconds. This delay is acceptable by the CB_MDA

algorithm and does not affect the scheduling process of the video streams.

0,0000
0,0025
0,0050
0,0075
0,0100
0,0125
0,0150
0,0175
0,0200
0,0225
0,0250
0,0275

0 100000 200000 300000 400000 500000 600000

Bits

M
ic

ro
se

co
nd

s

Figure 4.34. The required bandwidth when all the CVs are assigned

Figure 4.35. The response time for retrieving data block of different sizes

Implementation and Experiments
__

 120

With regard to the quality of service (QoS), we have defined two ways for

measuring the QoS. The first one refers to the quality of the video reproduction

and the second one refers to the client investment in his machine.

The client gets the best QoS in term of video reproduction when the average

CVs assigned to him during the service is >= 1 and, during the service, the

client buffer did not register any starvation during any subsequent slot. In other

words, if the client gets a CV=1 during all the slots then this indicates that, he

has been assigned the necessary disk bandwidth, network bandwidth, memory,

and CPU so that, he does not suffer from the starvation and he gets the answer

in a short period of time.

On the other side, the QoS can be measured based on the client�s machine

capacity. That is, if the client can support 2 CV but he gets an average of 1 CV

then, he gets half of the quality of service that he was expecting. To see this

clearly, the buffers of client i+30 of experiment set 1 (figure 4.14) and client

i+30 of experiment set 2 (figure 4.19) show that, no starvation has been

registered in both cases however, the Quality of Service in the former case is

better than that of the later case.

For example, the client of experiments set 1 started the service at time 145

and finished at time 355. Thus, the service time is 220. Knowing that the video

length is 314, the client has finished 94 second before the time that would be

needed had the server assigned only 1 CV during the whole service. As a result,

the QoS from the server point of view, for this client, is the total video sent plus

the saved time (314+94) divided by the file length (314). Thus, the result is

equal to approximately 1.15. However, from the client point of view, the QoS

would be the time of the video received (314) plus the time he has gained (104)

divided by what the client�s machine can offer (2CVs). Thus, the QoS is

(314+104)/618 ≈ (0.58). This means that only 58% of the client resources have

been utilized.

On the other hand, and using the same calculations with the same file size

(314), client i+30 of experiment set 2 has a lower QoS, yet he did not suffer

starvation. He started the service at time 145 and finished at time 445. Thus,

the service time lasted 300 seconds. As a result, the client has gained 14

seconds only. Likewise, the server has finished servicing this client 14 seconds

ahead of the time however it incorporated more clients in the service.

Consequently, the QoS from the server point of view is equal to (314+14)/314 ≈

1.05 plus the extra clients who have been incorporated in the service while the

QoS from the client point of view is equal to (314+14)/628 ≈ 0.55. Figure 4.36)

Chapter 4

__

 121

and figure 4.37 show the QoS from the server and the client point of view

respectively for three sets of experiments with 40, 57, and 59 clients. Also, the

figures show the threshold line of the QoS.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

i i+10 i+20 i+30 i+40
Clients

Q
oS

 .

group 40
group 57
group 59

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

i i+10 i+20 i+30 i+40
Clients

Q
oS

 .

group 40
group 57
group 59

To satisfy the clients who have higher machines capacities than the rest of

the clients, it would be more efficient to the client as well as the server to

schedule them, if possible, during the periods when the server has sufficient

resources. Mathematically, the server must accept more clients. However, the

collision and the headers overhead restrain the server from doing that.

As a conclusion to all above sets of experiments, several assertions can be

stated as follows:

Real-time
(Threshold)

Figure 4.36. The QoS from the server point of view

Figure 4.37. The QoS from the client point of view

Real-time
(Threshold)

Implementation and Experiments
__

 122

• Assertion 1: The algorithm can send work ahead video data to appropriate

client�s buffers creating pre fetched reserve.

• Assertion 2: The algorithm can adapt dynamically to the changes that take

place in the system such as the arrival of new clients and the exit of clients

being serviced.

• Assertion 3: The algorithm can adapt to the heterogeneous clients who

have different capacities in terms of buffers space and IO bandwidth.

• Assertion 4: Although the starvation has been permitted in the previous

experiments, the algorithm is able to detect the clients who might affect the

quality of the service of others being in service and block them.

• Assertion 5: As a result of the first assertion, the server can finish some of

the clients before the time that would be needed if the service were in real

time for all the clients. Thus, the server can finish serving some clients

before the peak time when more clients are becoming interested in

connecting to the server.

• Assertion 6: Although the algorithm, so far, was using unicast channels, it

has shown that it was able to manage and cope with more clients than what

the resources would serve. Therefore, it is expected that multicast streaming

would increase the number of the clients that can be served and reduce the

required resource that would be needed for serving the same number of

clients.

• Assertion 7: Sine the increase and decrease of the memory and the CPU

resources bind to the way the algorithm schedules the clients, these

resources don�t represent bottleneck in the VoD service even though the

algorithm assigns all the available CVs. Therefore, they will not be discussed

in the following experiments.

4.2.5 Stage Four: CB_MDA and Multicast & Unicast Transmission

The next set of experiments refers to the transmission of video data using a

combination of multicast and unicast channels. As it has been explained in

chapter three, a request for a none-active video stream (file) is served by a

multicast channel. A subsequent request to the same stream is checked to see

whether it can be allowed to join the on going multicast stream or to initiate a

new multicast stream for this request.

If a client (or request) is managed to join a multicast stream then the

algorithm allows this client to patch (buffer) the video data form the multicast

Chapter 4

__

 123

channel and, at the same time, it assigns a short unicast channel to him in order

to transmit the video prefix. Therefore, the algorithm must decide when to allow

the client to join an on going stream and when to create a new multicast stream.

Chapter three has referred to studies which have used a patched value

between 8 to 15 minutes in order to have a balanced number of multicast and

unicast channels. However, in this stage, the experiments will use a patching

value of 15% of the file rather than 15 minutes. This value has been deduced

from preliminary experiments in order to decide an adequate patching value.

Further discussion will be presented in stage 5 where the experiments show that

having the patch as a percent of the video file will give a better performance.

Another issue tested in this stage is, the ability of the algorithm to reduce the

usage time of the unicast channels in order to allow more users to join the

ongoing multicast streams. The experiments which have done in stage three

have shown that it was possible to send work-ahead (pre-fetched reserve) data

so that the communication channels can be released earlier. Thus, the algorithm

tries to send work-ahead over the unicast channels in order to reduce their

usage time.

In this stage, two sets of experiments have been conducted in order to test

the following issues:

1. Testing whether the number of the clients that can be serviced at the

same time is greater than MaxCV when only 15% (a recommended

patching value) of the buffer size is available.

2. Under the same condition, testing how many clients can be serviced

when multicast is implemented. It is assumed that the client can

receive from multiple channels. If for example the IO is equal to 2,

then, it is divided as 1 for the multicast and one for the unicast.

Otherwise, the algorithm handles it dynamically and according to the

changes in the system.

Different file sizes have been used in these experiments. However, and for the

sake of consistency, the parameters of the small file �Ontario� and a bigger one

�Futurama� have been used so that the results can be compared with those of

the previous experiments which used the same files.

Experiments Set 7:

For the Ontario file, the buffer size used is 50 while the buffer size of the

Futurama is 215. These values represent approximately 15% of their files length

respectively. The following table presents a summary of experiments set 7:

Implementation and Experiments
__

 124

Experiments Set 7
Objective The objective is to test if the algorithm can still serve more clients

than MaxCV when the buffer size is represented by the patch value
which is 15 % of the file length.

Parameters No. of
Clients

MaxCv IO BW Buffer
size

Arrival
delay

File
size

Play
time

 52
53

52
53

40

40

2 cv

2 cv

15%
of files
length

15%
of files
length

1.59%
of files
play
time

1.59%
of files
play
time

50MB

220MB

314

1402

Figure 4.38 shows the amount of the pre-fetched reserve from the Ontario

and Futurama video files when the clients have finished the service.

Interestingly, this figure shows that both curves have the same tendency. Also,

the same tendency can be shown for a sample of clients from Ontario and

Futurama streams in figure 4.39 and figure 4.40 respectively. None of the clients

in both experiments has registered frames loss.

Thereafter, another test has been conducted after adding one more client for

the Ontario and Futurama files experiments. The objective was to saturate the

server and measure the percentage of frames loss with each file. The number of

clients has become 53. In both files a starvation has occurred and this starvation

is reflected in figures 4.41 and 4.42 for client i+30.

0

50

100

150

200

250

0 10 20 30 40 50 60
Client Id

Pr
ef

et
ch

ed
 re

se
rv

e
[s

ec
]

Ontario.mpg
Futurama.mpg

Figure 4.38. The PRV of 52 clients for each file

Chapter 4

__

 125

Ontario-52 clients, 1.59% arrival delay, IO=2, 15%Buff

0
200
400
600
800

1000
1200
1400
1600

0 100 200 300 400 500 600
Time[sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

Futurama-52 clients, 1.59% arrival delay, IO=2, 15%Buff

0
1000
2000
3000
4000
5000
6000
7000

0 500 1000 1500 2000 2500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i
Client i+10
Client i+20
Client i+30
Client i+40
Client i+50

Ontario-53 clients, 1.59 % arrival delay, IO=2, 15%Buff

0
200
400
600
800

1000
1200
1400

0 100 200 300 400 500
Time [sec]

Pr
ef

et
ch

ed
 fr

am
es

Client i+30
Tendency (Polynomic Grade 4)

Figure 4.39. PRV with buffer size of only 15% of small file size

Figure 4.40. PRV with buffer size of only 15% of big file size

Figure 4.41. The PRV of client i+30 requesting small file

Implementation and Experiments
__

 126

Futurama-53clients, 1.59% arrival delay, IO=2, 15%Buff

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500

Time [sec]

Pr
ef

et
ch

ed
 fr

am
es Client i+30

Tendency (polynomic grade 4)

The percentage of the jitter is calculated as follows:

Ontario file:
Total slot = 522
Total slots which have witnessed jitter = 22
Total number of clients = 53
The avg. number of jittering slot per client = 22/53 ≈ 0.42
The average percent of jitter per client = 0.42/fileLength
 = 0.42/314 * 100
 = 0,13%

The calculations for Ontario file show that the average suffer, which has been

purposely permitted, is less than 1 second (≈0.42) for each client. This value

represents 0,13% of the file length.

With respect to Futurama file, the same calculations have been done as follows:

Futurama file:
Total slot = 2331
Total slots which have witnessed jitter = 144
Total number of clients = 53
The avg. number of jittering slot per client = 144/53 ≈ 2.7
The average percent of jitter per client = 2.7/fileLength
 =2.7/1402* 100
 ≈ 0,19%

The final results show some kind of estimation of the percentage of the jitter

that could happen when the number of the clients is increased. If cheating is

allowed, then the server can send less number of frames causing minus yet

Figure 4.42. The PRV of client i+30 requesting big file

Chapter 4

__

 127

acceptable quality of service. That is, the users� eyes can�t recognize the

reduction in the play rate of the frames.

4.2.6 Stage Five: CB_MDA and Pre-fetching from Unicast Channels

Although it was possible to send work-ahead (pre-fetched reserve) video data

over unicast channels in order to utilize the server resources and increase its

performance, the unicast transmission is not recommendable since the system

runs out of the resources very quickly. For example, if the clients continue to

arrive with a very short period of time between their arrivals then, the server will

be able to serve only as many client as many unicast it can supports (Maxcv).

Consequently, very high bandwidth will be required in order to cope with the

increase number of the clients.

To solve this problem, and as it has been explained in chapter three,

multicast transmission presents a solution with which several clients who request

the same video file within a short period of time can receive the video data from

the same stream. However, to incorporate the later arrivals in the multicast

streams, short unicast channels are used for transmitting the video prefix. The

same technique of pre-fetching, which has been tested in the previous

experiments, can also be applied to the short unicast channels in order to reduce

their usage time.

In this stage, the experiments concentrate on showing that the combination

of multicast and unicast transmission along with patching and pre-fetching

techniques, which have been mentioned in chapter three, can reduce the

required systems resources, especially the bandwidth, and increase the system

performance in term of the number of clients served. Also, the finishing time of

servicing the clients is reduced in comparison with the time that would be

needed if the clients were served by unicast only and at a real-time rate.

Experiments Set 8:

The objective of the following experiments is to show the required bandwidth

when the unicast is used and when the combination of multicast and unicast are

used without and with pre-fetching. To maintain the consistency, the first set of

experiments has been done with small files such as Ontario.mpg (Figure 4.43).

The parameters are stated as follows: Maximum credit values that can be

assigned (Maxcv) = 40, Video file length = 314, The average arrival time of the

clients is 1.59% of the video play time (5 sec), The maximum video data that

the client can buffer (Max Buffer) = 15%, The patching value is 15 percent of

the file size, Maximum number of clients that have arrived (Max clients) = 61,

Implementation and Experiments
__

 128

The clients I/O bandwidth (Clients� IO) is 3, In case of buffering (pre-fetching)

transmission, unicast is assigned 2CVs and the multicast is assigned only 1CV

since not all the clients can receive from the multicast at 2CVs rate. The

following table presents a summary of experiments set 8:

Experiments Set 8
Objective Testing the required bandwidth when only unicast transmission is used with that

when the multicast and unicast are used implementing and not implementing pre-
fetching.

Parameters No. of
Clients

MaxCv IO
BW

Buffer size Arrival
delay

File
size

Play
time

52
53

52
53

40

40

2 cv

2cv

15% of
files length

15% of
files length

1.59% of
files play
time

1.59% of
files play
time

50MB

220MB

314

1402

 Mul. & Uni Mul. & Uni. Mul. & Uni. Mul & Uni

Pref. No No No Yes Yes No Yes Yes

Figure 4.43 shows three curves which represents the required CVs when 61

clients are served by the unicast transmission only (the doted line), by multicast

and unicast transmission without pre-fetching video data (the gray line), and by

the multicast and unicast but with pre-fetching (the continued line).

Ontario-61clients, arrival delay(1.59%), IO=3, 15%patching

0
5

10
15
20
25
30
35
40
45

0 100 200 300 400 500 600 700
Time [sec]

B
an

dw
id

th
 [C

V
]

Unicast Mul without pref. Mul with pref.

The graph shows that, with unicast transmission (the doted line), all the CVs

have been consumed after a short period of time (at time 70 sec.). At this time

(70 sec.), the algorithm registered 14 clients being in the service with 40 CVs

Figure 4.43. BW required of different techniques (Ontario file)

Chapter 4

__

 129

assigned to them. With multicast and unicast implementing pre-fetching, the

algorithm registered 14 clients yet with only 8 CVs.

Finally, with multicast and unicast implementing patching but without pre-

fetching, the algorithm registered 14 clients and 7 CVs which is less than that of

pre-fetching curve. This is true due to the fact that the algorithm utilizes the

bandwidth availability by assigning more CVs to the short unicast channels in

order to transmit the video prefix with pre-fetching to the later arrivals who join

the multicast.

However, another look at some points of the graph, specifically at time 80, it

can be seen clearly that the CV of the pre-fetching curve has drastically

decreased to (3 CVs) while the non-pre-fetching curve has remained the same (7

CVs). The reason is that, with pre-fetching, the unicast channels finish

transmitting the video prefix earlier, so these channels are released and become

available for future reuse.

The next figures 4.44 and 4.45 shows the same experiments but with larger

video files (Futurama and StarWar respectively) in order to show how the same

clients (61 clients) are incorporated very quickly in the service when multicast is

implemented reducing the required bandwidth.

Futuram-61clients, 1.59% arrival delay, IO=3, 15%Buff

0
5

10
15
20
25
30
35
40
45

0 500 1000 1500 2000 2500 3000
Time [sec]

B
an

dw
id

th
 [C

V
]

Unicast Mul without pref. Mul with pref.

As a conclusion, although these experiments show that the unicast

transmission has survived the starvation in the experiments of this stage, they

show also that implementing unicast transmission is an inadequate solution for

the VoD applications since it consumes high bandwidth.

Figure 4.44. BW required of different techniques (Futurama file)

Implementation and Experiments
__

 130

StarWar-61clients, 1.59% arrival delay (115 sec), IO=3, 15%Buff

0
5

10

15
20
25
30

35
40
45

0 2500 5000 7500 10000 12500 15000
Time [sec]

B
an

dw
id

th
 [c

v]

Unicast Mul without pref. Mul with pref.

On the other hand, the multicast solution can drastically increase the system

performance since the same number of clients who have been served by the

unicast transmission can be served by multicast transmission with buffering and

pre-fetching techniques yet with less number of CVs. Also, these figures show

that, the combination of multicast and unicast with buffering and pre-fetching

techniques have consumed only about 37% of the CVs. Thus more clients can

join the service without reducing the quality of the service presented to the

clients being in the service.

The above experiments have proven that multicast transmission can reduce

drastically the required bandwidth. In addition, none of the above figures show

that the bandwidth has been saturated. Therefore, other experiments have been

conducted in order to check the algorithm behavior when more clients are

accepted.

Experiments Set 9

The objective of these experiments is to check the required bandwidth when

more clients are incorporated in the service. This is done by reducing the arrival

delay so that more clients can present in a shorter period of time.

The video prefix in these experiments has been transmitted with and without

pre-fetching in order to see how pre-fetching saturate the bandwidth but at the

same time might reduce the finishing time. The parameters and characteristics

of these experiments are stated as follows: Maximum credit values that can be

assigned (MaxCV) = 40, video files length =1402 and 7200 sec., The average

arrival time of the clients = 22 and 11 second for Futurama file, 57 (which is

50% less than that of the previous experiment),10, and 5 seconds for StarWar

Figure 4.45. BW required of different techniques (StarWar file)

Chapter 4

__

 131

file, the maximum video data that the client can buffer (Max Buffer) = 15% of

the video size, The patching value is 15% of the video size, Maximum number of

clients that have arrived (Max clients) = 61, The clients I/O bandwidth (Clients�

IO) is 3. The following table presents a summary of experiments set 9:

Experiments Set 9
Objective Testing the required bandwidth when more clients arrive and the

transmission is implemented with pre-fetching
Parameters No. of

Clients
MaxCv IO BW Buffer

size
Arrival
delay

File
size

Play
time

 61

61

105

40

40

40

3 cv

3 cv

3 cv

15%

15%

15%

1.59%
0.8%

1.59%
0.8%

5 sec

220MB

1,13GB

50MB

220MB

1,13GB

1402

7200

100
314
600
1402
1000
2000
3000
4000
7200

The short unicast channels are assigned 2CVs in order to create pre-fetching

reserve, and the multicast channels are assigned only 1CV since not all the

clients can offer 3CVs. If the client can offer only 2CVs then each channel is

assigned 1 CV.

Figure 4.46 shows the result from Futurama file. It shows, on one side, a

comparison between the transmission when the average delay arrival is 22 and

11 seconds and, on the other side, it shows the comparison between the

transmissions when the unicast channels are creating pre-fetched reserve.

As the figure indicates, with arrival delay of 22 seconds no saturation has

been witnessed, however the service has lasted longer. For example, the figure

shows that, in the 22 second curve, the last arrival (client i+61) was able to

receive the last fragment of the file around time 2500. However, when the

average arrival delay has been reduced to 11 seconds, but without pre-fetching,

the performance, in terms of the bandwidth and finishing time, has improved.

For example, the figure shows that, in the 11 second curve with no pre-fetching,

more bandwidth has been utilized but the last client received his video prefix at

time 1865 resulting in a reduction in the service time. This means that, the

Implementation and Experiments
__

 132

algorithm was able to finish serving all the clients, when the delay was 11

seconds, before the time that would be needed if the arrival delay was 22

seconds.

Futurama-61clients,IO=3, 15%Buff

0
2
4
6
8

10
12
14
16
18

0 500 1000 1500 2000 2500 3000
Time [sec]

B
an

dw
id

th
 [C

V
]

Mul+Uni witout pref., 22 sec
Mul+Uni without pref., 11 sec
Mul+Uni with pref., 11 sec

Also, with respect to the curves of the 11 seconds with pre-fetching, the

figure shows that, transmitting the video prefix at a faster rate permits utilize

the available bandwidth and permits the server to reduce the usage time of the

unicast channels causing the system to be able to reduce the finishing time and

to face new arrivals. For example, figure 4.46 shows that the 11-second figure

with pre-fetching is going up and down during the time 200 to 650. The reason

for this behavior is that, the algorithm was utilizing the available bandwidth in

order to transmit the video prefix at a faster rate resulting in releasing the short

unicast channels earlier.

Figure 4.47 shows the same experiments presented in the previous figure

but, with a bigger file (StarWar), in order to test the algorithm behavior. In

these experiments the arrival delay has not only been reduced to 50%, but also

to 90% (10 seconds). The figure shows the curves when the arrival delay is 57

seconds and 10 seconds. Also, it shows the curves of 10 seconds sending with

and without pre-fetching video data.

With pre-fetching and at some point (time 620), the algorithm was able to

utilize all the bandwidth so that the clients joined the multicast and got their

video prefix faster. At time 971 the last client has already received the last

fragment of his video prefix and at this time all the clients (61 clients) have

already joined the video stream.

Figure 4.46. BW and time of different techniques (Futurama file)

Chapter 4

__

 133

WarStar-61clients, 10 and 57 sec, 3IO, 15%Buff

0
5

10
15
20
25
30
35
40
45

0 2000 4000 6000 8000 10000 12000
Time [sec]

B
an

dw
id

th
 [C

V
].

Mul+Uni without pref., 57 sec
Mul+Uni without pref., 10 sec
Mul+Uni with pref., 10 sec

As a conclusion, the algorithm has managed to incorporate all the later

clients into the multicast stream by buffering the video data from the multicast

stream and assigning unicast streams to these clients in order to receive the

video prefix. Sending pre-fetched video data over the unicast channels has

allowed the algorithm to utilize the available bandwidth and to reduce the service

time of the video prefix resulting in releasing the unicast channels earlier.

This indicates that, the unicast channels are becoming a critical issue in the

success of joining the multicast channels. Therefore, these unicast channels

must be allocated and released as soon as possible. To solve this problem, the

algorithm uses the unicast channels with the work-ahead (pre-fetching) policy

which has been tested in the previous experiments. This technique has been

explained with details in chapter three (3.4.4) and the next experiments are

related to it.

Experiments set 10:

The objective of these experiments is to show how the algorithm assigns short

unicast channels with a CV > 1 in order to reduce the service time needed for

transmitting the video prefix. In these experiments, many different files with

different sizes (100, 214, 600, 1024, 2000, 3000, 4000, 7200 sec) have been

used. The buffer size is 15% of the files sizes. The patch value is also 15% of the

files sizes. In the first set of experiments (figure 4.48) the IO value is 2CVs (1CV

for the multicast channel and 1CV for the unicast channel).

In the second set of experiments (figure 4.49) the IO is 3CVs (1CV for the

multicast and 2 CVs for the unicast channel). The following table presents a

summary of experiments set 10:

Figure 4.47. BW and time of different techniques (StarWar file)

Implementation and Experiments
__

 134

Experiment set 10
Objective Testing the finishing time and the bandwidth when prefetching is applied to

the short unicast channels and compare it with other variations.
Parameters No. of

Clients
MaxCv IO

BW
Patch
value

Arrival
delay

File
size

Play
time

105 40 2 cv
3 cv

15% 5 sec 220MB

1,13GB

50MB

220MB

1,13GB

1402

7200

100
314
600
1402
1000
2000
3000
4000
7200

 Mul. & Uni Mul. & Uni. Mul. & Uni. Mul & Uni

Pref. No No No Yes Yes No Yes Yes

Figure 4.49 shows the required bandwidth and time for incorporating 105

clients. It also shows that the maximum number of unicast channels required

with pre-fetching (16 unicast channels) is less than that of figure 4.48 (23

unicast channel). Also, the figure shows that the time required for transmitting

the video prefix (approximately 670) is less than that of figure 4.48

(approximately 1005).

clients=105, patch=15% of the files sizes

0

5

10

15

20

25

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s

Mul without pref.
Uni without pref.

With regard to creating pre-fetching from the multicast channels, figure 4.50

shows that this choice is not recommendable since the maximum number of

multicast and unicast channels is increased drastically. Figure 4.50 shows that at

Figure 4.48. Multicast and unicast without pre-fetching

Chapter 4

__

 135

time (around 500 sec) the number of multicast streams reached 27 and the

number of unicast streams reached 27 (a total of 54 active streams). The reason

is that, when the multicast stream sends at a higher rate then the size of the

video prefix that the unicast channel must transmit gets longer. As a result, the

unicast spends more time for transmitting the video prefix. Furthermore, a

subsequent joining client will even make the next unicast channel last longer.

Therefore, in the final implementation, the priority for doing pre-fetching is given

to the short unicast channels.

105 clients, patch=15% of the files sizes

0

5

10

15

20

25

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s

Mul without pref.
Uni with pref.

105 clients, Patch=15% of files sizes

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s Multicast with pref.

Unicast with pref.

In general, the experiments have shown that the CB_MDA outperforms other

delivery algorithm such as the batching and the classical patching, as well as the

periodic broadcasting techniques. This performance is measured in terms of the

response time, the number of request served by the server, and the

Figure 4.49. Multicast and unicast with pre-fetching

Figure 4.50. Pre-fetching with both, multicast and unicast

Implementation and Experiments
__

 136

implementation of VCR-Like commands. The remaining question is, when should

the algorithm initiates a new multicast channel?

Experiments set 11:

Another issue which has been mentioned in chapter three is the decision when to

initiate a new multicast channel. To answer this question, different experiments

have been conducted with different patching values. These values are 15,

minutes, 10 minutes, 5 minutes, 2.5 minutes, 15% and 10% of the file length.

The reason for choosing between percentages of files sizes and fixed amount of

patching is to compare between them especially when the files sizes are small.

For example, if the video file length is less than 10 minutes then a patching

of 10 does not include this file. With the percentage, however, these short files

will have part of them patched. This way, the analysis of patching will be more

logical. The following table presents a summary of experiments set 11:

Experiment set 11
Objective Find out an optimal value for patching
Parameters No. of

Clients
MaxCv IO

BW
Patch
value

Arrival
delay

File
Size

Play
time

105 40 3 15% 5 sec 220MB
1,13GB

50MB

220MB

1,13GB

1402
7200
100
314

1402
1000
2000
3000
4000
7200

 Mul. & Uni Mul. & Uni. Mul. & Uni. Mul & Uni
Pref. No No No Yes Yes No Yes Yes
Patch 15% 15% 15% 15%
Patch 10% 10% 10% 10%
Patch 5 Min 5 Min 5 Min 5 Min

Patch 2,5 Min. 2,5 Min. 2,5 Min. 2,5 Min.

With regard to these experiments, they have been conducted without pre-

fetching from both or either of the multicast and unicast channels, and with pre-

fetching from both or either of the multicast and unicast channels. The next

figures (4.51, 4.52, 4.53, and 4.54) show only the cases when the CB_MDA does

not create pre-fetching from the unicast channels, however this technique is

applied in the real implementation. Figure 4.51 shows some kind of balance in

the number of unicast and multicast channels.

Chapter 4

__

 137

105 clients, patch=15% of the files sizes

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s

Mul without pref.
Uni with pref.

105 clients, Patch=10% of files sizes

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s Mul without pref.

Uni with pref.

Figure 4.52 shows that, when patching is equal to 10% of the files sizes then

the multicast channels are increased however, the finishing time of the unicast

channels is reduced. When patching is equal to 5 minutes (figure 4.53), the

finishing time of the unicast channels is even less than that of the previous

figures.

Finally, figure 4.54 shows that when the patching value is equal to 2,5

minutes the results are close to that of figure 4.51. As a result, we

recommended a patching value of 15% of the files sizes.

Figure 4.51. No. of streams when patching is 15% of the file length

Figure 4.52. No. of streams when patching is 10% of the file length

Implementation and Experiments
__

 138

105 clients, Patch=5 minutes

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s

Mul without pref.
Uni with pref.

105 clients, Patch=2,5 minutes

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200
Time [sec]

N
um

be
r o

f s
tre

am
s

Mul without pref.
Uni with pref.

In general, the experiments which have been carried out in the fourth and fifth

stages have proved the effectiveness of implementing the CB_MDA, which

controls the flow of the video data from the server to the client by using a

combination of multicast and unicast channels and by implementing patching

and pre-fetching techniques. These results have driven us to make the following

assertions:

• Assertion 1: The algorithm manages to use combination of multicast and

unicast channels in order to provide true video on demand.

• Assertion 2: The algorithm permits the joining of new clients to appropriate

multicast streams through unicast channels.

Figure 4.54. No. of streams when patching is 2,5 minutes

Figure 4.53. No. of streams when patching is 5 minutes

Chapter 4

__

 139

• Assertion 3: The algorithm reduces the usage time of the unicast channels

which are needed for serving short requests such as joining the multicast

channels.

• Assertion 4: As a result to the above assertions, more requests are served

in comparison with the experiments of stage three when the same

parameters and machines specifications are applied.

• Assertion 5: The algorithm has achieved balanced number of multicast and

unicast channels when 10 minutes of patching is applied. However, the

channels balance has no effect on increasing or decreasing the number of

requests served by the server. The ability of the server to adapt to the

changes that take place in the system is more effective, and this is done by

the algorithm.

As a conclusion to chapter four, the experiments have proved that there are so

many factors affect the performance of the VoD server such as the server

capacity, the client capacity, the scheduling algorithm and the transmission type.

In the UAB labs, we were able to mount a stable version of the server and run a

set of clients with real movies, and we have shown how multicasting, patching,

and pre-fetching techniques function at the server side, and how the clients have

connected to the server, synchronized with it in order to receive from one or

multiple channels, and were able to open multiple video windows with the same

and with different movies.

Implementation and Experiments
__

 140

Chapter 5
Conclusions

__

5.1 Conclusions

The major parts which have been investigated in this work are the admission

control subsystem (ACM), the resource management subsystem (RMM), and the

credit based media delivery algorithm (CB_MDA).

The ACM works as a connecting point between the system�s modules. It

acquires the clients� requests, creates threads for negotiating with clients, and

requests the necessary resources from the RMM. Then, it decides, based on the

information received from the RMM, whether a request can be attended to, and,

given that a request cannot be attended to because of the lack of resources in

the system, it can check with the CB_MDA to see if the request can be scheduled

soon.

To facilitate the acquisition of the requests and the negotiation with the

clients, the ACM creates a thread for each client for this purpose. This thread

sends a list of the available video files to the client and informs the client about

the port from which he will receive the video data.

With regard to the requests of the VCR commands, the ACM forwards these

requests to the CB_MDA in order to take an action based on the command type

(Stop, Pause, Play, Jump forward, jump backward).

The RMM has been designed and implemented to provide the necessary

resources for a specific request. Also, it makes sure that the acceptance of a new

client does not affect the performance requirements of other videos already

Conclusions
__

 142

being in service, and, that adequate resources are available throughout the

entire path from the video server to the client displaying device.

To achieve these objectives, the RMM translates the request into QoS

parameters, requests the necessary resources and reserves them. This process

has been achieved by using four brokers (threads) which are: CPU broker,

Memory broker, Network broker, and Disk broker.

The analysis of these brokers is centered on four policies: Maximum Policy

(MP), Adaptive Maximum Policy (AMP), Average Policy (AP), and Adaptive

Average Policy (AAP). Each broker works separately and reports to the RMM

about its status based on one of these policies. If all of them report positive

confirmations to the RMM, the petition is then accepted and registered in the

admitted users list.

The CB_MDA has been designed and implemented to support a scalable video

delivery from the server to the clients. The main objective of the CB_MDA is to

regulate and control the video data streaming to the appropriate clients, to block

the client who might affect the quality of service provided to the ones being in

service, to achieve an acceptable response time, and to handle the requests

related to the VCR functions.

The algorithm (CB_MDA) gets informed about the arrival of new requests

from the ACM, and about the resources availability from the RMM. The idea of

the CB_MDA is to better utilize the system resources. That is, instead of

reserving the resources for each request by the RMM, the RMM makes these

resources available to the algorithm which will be in charge of assigning these

resources to the appropriate requests.

In its implementation, the CB_MDA is capable of serving groups of clients

through multicast and unicast streaming. The algorithm uses meaning of

patching so that, the later arrivals who join the multicast streams can buffer the

data from the arriving point meanwhile, the algorithm assigns unicast channels

in order to transmit the video prefix (the initial part of the video).

In addition, the algorithm takes into considerations that the clients can be

heterogeneous. That is, some clients have better machines specifications, in

terms of bandwidth and buffer space, than others. Therefore, it uses the periods

of time when the server has availability in its resources and assigns these

resources to the appropriate clients. Thus, these clients might get finished before

the time that would be needed if the client had low capacity machines.

Chapter 5

__

 143

The client, on the other side, is synchronizing with the server so that it can

receive from multicast channel or from multiple channels (Multicast and unicast)

in order to receive the video prefix and buffer the video data received from the

multicast channel.

5.2 Contributions

This thesis makes contributions related to the design of the server VPS and the

scheduling algorithm CB_MDA:

The VPS Contributions:

! The design and implementation of a multithreaded video on demand proxy

server (VPS) that can work as a building block for constructing distributed

video on demand (DVoD) architecture.

! The design permits the scalability of the VPS without significant changes due

to the fact that the VPS architecture is composed of standalone modules

which are ACM, RMM, and CB_MDA.

! The design allows the separation of the ACM from the VPS in order to make a

replication of the other modules on a different machine so that the service

can be distributed. In this case, the ACM still work as a central point for all

replicated servers.

! The ACM achieves an acceptable short response time by implementing multi-

threaded mechanism for negotiating and attending to the clients.

The CB_MDA Contributions:

! The experiments show that the Credit_Based Media Delivery Algorithm

(CB_MDA) is able to provide true video on demand service, guarantee on

time delivery, and handle the VCR-Like functions (play, pause, jump forward,

jump backward, and stop).

! The CB_MDA guarantees the QoS of the clients being in service by blocking

all the requests which might cause starvation in any of these clients.

! The CB_MDA algorithm does not require reserving dedicated resources for

serving the VCR-functions allowing more requests to be handled.

! Also, the CB_MDA algorithm does not require dedicating specific number of

multicast or unicast channels giving more flexibility in handling all kind of

video type (popular and unpopular).

Conclusions
__

 144

! The (CB_MDA) implements patching and pre-fetching techniques in order to

increase the performance and supply instantaneous VCR commands as well

as increase the efficiency of the proxy server. It can also adapt to the system

changes dynamically switching users from one mode to another (multicast to

unicast).

! The CB_MDA reduces the usage time of the unicast channels required for

transmitting the video prefix allowing the release of the unicast channels

earlier.

! Like the classical patching algorithm the CB_MDA achieves a similar short

response time since it assigns a unicast channel for transmitting the video

prefix in order to start the reproduction immediately.

Experimental Study:

! In addition to the server capacity, the experiments have shown that the

client�s buffer and IO bandwidth play an important role in increasing the

server performance. For example, if the client can provide a moderate buffer

size equal to 25% of the file size and an IO equal to 2 CVs (multiple

channels), then the system performance, in terms of the number of clients

that can be served, is increased by, approximately, 50%.

! Any increase in the client�s buffer space should be accompanied by an

increase in the client�s IO bandwidth and vise versa.

! Using the same parameters, when the algorithm did not use combination of

multicast and unicast channel, and without implementing patching and pre-

fetching, the CB_MDA has served up to 60 clients before registering

starvation. With the use of multicast and unicast channels and patching and

pre-fetching techniques, the algorithm served up to 105 clients, yet only

about 40% of the resources have been used.

! The algorithm can mange to have balanced number of multicast and unicast

channels so that the system does not run out of unicast channels by creating

excessive multicast channels, and does reduce the system performance by

creating more unicast channels.

! As a result of this investigation, we have created real video on demand

server that implement the above techniques and allow the users to view real

video data. In addition, we have created a real experimental platform that

can be used to conduct more experiments and to change the parameters

Chapter 5

__

 145

values as needed. This is would be important for future modification and

enhancements.

The Client

! The client architecture provides interoperability so that other players can be

used such as Xine.

! Also, the client provides a GUI for communicating and negotiating with the

server. The GUI is consistent with other well-known players that can be

found in the market.

5.3 Future Work

This section discusses future research areas that can further expand the

capabilities of the VPS:

1. Users� behavior: the user behavior plays a great role in determining the

way the video stream must be transmitted. For example, if the user can

be convinced to wait few minutes before he can start the video

reproduction, then this will allow the algorithm to collect the requests

related to the same video and serve them at once. This requires that the

algorithm should work as a hybrid algorithm were patching, pre-fetching

and batching techniques are implemented.

2. Resources calculation: the video metadata shows that the frames sizes

vary from moment to moment. Therefore, it will be beneficial to create,

ahead of the time, a curve line for the resources needed for each video

file and then schedule the streams in way where the points of high

resources of one video can coincide with those points of low resources of

another video.

3. Machines specifications: this thesis has shown that there were moments

when high machines specifications can improve the server performance.

An example of an environment where the machines specifications vary

from one place to another is the schools and universities� departments.

Therefore, if the video server is to work in such environments then it

would be better, if possible, to schedule those who have low machines

specifications in the middle since, when the system gets saturated it will

sends at the lowest possible rate. That is, the clients gets only what they

see without pre-fetching.

Conclusions
__

 146

4. Storage disk: the disk broker implemented by our group requires more

modification so that the issue of caching and mirroring can be

implemented.

5. Client extension: the client must be able to synchronize with the server

especially in the case of multicasting and patching. The group of Xine, a

multimedia player, has shown a great interest in incorporating

multicasting and unicast reception of the video data at the same time in

their player. Therefore, creating a plug-in is needed for Xine player.

5.4 Publications and Activities Related with this Dissertation

5.4.1 Publications Related to the Dissertation

Latest and preliminary versions of the overall work have been published in

proceedings of several national and international conferences:

• B. Qazzaz, R. Suppi, F. Cores, A. Ripoll, P. Hernandez, E. Luque, �Providing

Interactive Video on Demand Services in Distributed Architecture�,

Proceedings of 29th EUROMICRO Conference, pp. 215-222, Belek-Antalya,

Turkey, September 2003.

o This paper presents the architecture of the VoD server as a building block

in the DVoD architecture.

o Also, it shows the working principle of the multimedia delivery algorithm

CB_MDA.

o The algorithm uses a combination of multicast and unicast channels and

implements patching and pre-fetching techniques in order to provide

interactive video on demand and reduce the usage time of the unicast

channels by sending work-ahead video data.

• B. Qazzaz, R. Suppi, F. Cores, A. Ripoll, X. Yang, P. Hernandez, E. Luque.

�Admission Control Policies For Video On Demand Brokers�, IEEE ICME:

International Multimedia & Expo Proceedings, pp. 529-532, Baltimore-

Maryland, USA, July 2003.

o This paper presents four admission control policies that can be

implemented in order to reserve the necessary resources so that the

contracted QoS can�t be jeopardized.

o Also, it presents four possible brokers where the admission policies are

implemented. The resources brokers are CPU, Memory, Network, and

Disk.

Chapter 5

__

 147

• B. Qazzaz, R. Suppi, E. Luque, �Video on Demand: Design and

Implementation of a Scalable Server�, II Congreso Internacional Sociedad de

la Información y del Conocimiento (CISIC), pp. 311-321, Madrid, Spain,

Mayo 2003.

o This paper combines the system brokers and the media delivery algorithm

for providing true video on demand.

o It provides dynamic adaptation to the changes that might occur in the

system and presents the server as an educational tool at the classroom.

• R. Suppi, B. Qazzaz, E. Luque. "Design and Development of a Multithreaded

Video on Demand Server for LAN", SCI/ISAS 5th World Multi-conference on

Systemics Cybernetics and Informatics, Vol. XII. pp. 380-388, Orlando,

Florida USA, July 2001.

o This work presents the first version of the video architecture.

o It provides interactive video on demand by dedicating a unicast channel

for each user.

• E. Luque, A. Ripoll, R. Suppi, P. Hernández, T. Diez, J.A. Marco, F. Cores, B.

Qazzaz, R. del Castillo, �Diseño e implementación de un sistema Interactivo

de vides bajo Demanda�, Septiembre 2000.

o It presents a general overview of the VoD system.

o It presents the main issues related to VoD system with the focus on the

QoS.

• F. Cores, A. Ripoll, B. Qazzaz, R. Suppi, X. Yang, P. Hernandez, E. Luque,

�Exploiting Traffic Balancing and Multicast Efficiency in Distributed Video-on-

Demand Architectures�, 9th International Euro-Par Conference, pp. 859-869,

Klagenfurt, Austria, August 2003.

o Our contribution to this work is to implement our architecture as a proxy

server.

o Provide interactive video on demand by implementing the CB_MDA

algorithm.

o This work has been selected as on of the best papers presented to the

Euro-par conference.

• F. Cores, A. Ripoll, X. Yang, B. Qazzaz, R. Suppi, P. Hernandez, E. Luque,

�Improving Bandwidth Efficiency in Distributed Video-on-Demand

Architectures�, Parallel Processing Letters, Vol. 13, No. 4, pp 589-600,

December 2003.

Conclusions
__

 148

o This paper came as a result of the previous presented in the 9th Euro-par

conference. The previous work has been selected as one of the best

contribution to the conference. Therefore, further improvement has been

made in order to improve the bandwidth efficiency.

5.4.2. Technical Demo

This work has been accepted as a technical demo at the International

Conference on Information Technology: Research and Education (ITRE03).

• B. Qazzaz, R. Suppi, E. Luque, �Video on Demand Proxy: Design and

Implementation�, ITRE2003 International Conference on Information

Technology: Research and Education (ITRE), New Jersey, USA, August 2003.

o This demo shows the transmission of the video data from the disk to the

client.

o It shows clearly how the algorithm adapts to the characteristics of the

clients� machines specification.

5.4.3 Other Publications

During my work on my Ph.D. dissertation, and as a partial time, I have worked

with a European Project called Forest Management and Monitoring System

FOREMMS. In FOREMMS, I have developed an application for the Hand-held

devices which work with GPS systems. The application has been deployed and

used by FOREMMS partner from Finland, Italy and Poland. In addition, part of

the design and the implementation has been presented and accepted at the

EnviroInfo2000 conference:

• B. Qazzaz, B. Abdalhaq, D. Tamajon, D. I. Rexachs, E. Luque, �A System for

Data Collection of Environmental Information�, Proceedings of the 16th

International Conference Informatics for Environmental Protection, pp. 428-

431, Vienna, Austria, September 2002.

5.4.4. Work Related with Undergraduate Final Projects

After the creation of the first version of the work in the year of 2000, many

students have become interested in the subject and shown their willingness to

work in this subject. Therefore, we facilitated to them the access to what we

were doing, and supervised and directed their work until they have finished and

presented it as a final project and as a requirement for their graduation.

Some of the final projects which have been produced from our work while it was

under investigation are the following:

Chapter 5

__

 149

• Mathias Beck, �Usage of Multicasting for Video-On-Demand Servers�,

Department of Computer Science, Technical University of Clausthal,

Clausthal-Zellerfeld, Germany, January 2004.

• Jens Lichtenberg, �Multicast Based Client for Video on Demand Services�,

Department of Computer Science, Technical University of Clausthal,

Clausthal-Zellerfeld, Germany, January 2004.

• Jordi Valls, �Visualizador de MPEG para Sistema de Video bajo Demanda�,

Escola Universitaria d�Informàtica, Sabadell, Spain, Septiembre 2002.

Conclusions
__

 150

Appendix A
Media Streaming Algorithms Summary

__

A.1. Introduction

The performance of any video on demand (VoD) system depends on the way the

media data is streamed and delivered from the server to the client. Several

algorithms have been put forward to serve this purpose. These algorithms were

changing with the time as a result of the advancement technology in the

computers, networks, and storage technologies.

In the past, the computer systems did not have large storage nor, they were

able to have high Input/output bandwidth. Likewise, the early networks were not

as fast as the today�s ones. As a result, and with this continuous progress in the

computer technology, the computer applications such as VoD applications are

becoming consuming more than what they were consuming before in terms of

bandwidth and memory.

Also, the users have become more willing to receive the best quality of

service (QoS). Therefore, there was always a need for providing video streaming

mechanisms which can make better utilization of the system resource and

provide an acceptable quality of service to the users.

During the last two decades, several algorithms dedicated to scheduling the

media data delivery and streaming over the net work have been presented.

These algorithms have considered unicast and multicast scheduling using

different policies such as, deadline scheduling algorithms, batching,

piggybacking, chaining, tapping, catching, patching, pre-fetching, Pyramid

broadcasting, permutation-based pyramid broadcasting, skyscraper

Media Streaming Algorithms Summary
__

 152

broadcasting, harmonic broadcasting and their variants. In general, there are

two schemes for allocating server channels for media data delivery called user-

centered and data-centered. These algorithms are explained in the following

subsections.

A.1.1. User-Centered Approach

A conventional VoD system assumes the user-centered scheduling scheme

[AGG96b] [VIS96] in which a user eventually acquires some dedicated

bandwidth. The consumption rate of a video object is equal to the amount of

bandwidth necessary to view it continuously. When a client makes a request to

the server, the server sends the requested object to the client via a dedicated

channel. This scheme incurs high system costs, especially in terms of server

storage-I/O and network bandwidths. To maximally utilize these channels,

researchers have proposed efficient scheduling techniques [DAN96d] [FRE95]

[HUA97b] [KEE95] [OYA95] [OZD94] [OZD95] [WAN00]. These techniques are

said to be �user-centered,� because channels are allocated to users, not data or

objects. These algorithms simplify the implementation, but dedicating a stream

to each viewer will quickly exhaust the server resources and the network

bandwidth.

A.1.2. Data-Centered Approach

Data-centered scheduling dedicates channels to video objects, instead of users.

It allows users to share a server stream by batching and using the multicast

facility of modern communication networks. Also, it has the potential for

dramatically reducing the network and server bandwidth requirements. The

data-centered multicast VoD service can be either client-initiated or server-

initiated [SHE95][GAO99].

• In the client-initiated service, channels are allocated among the users and

the service is initiated by clients, so it is also known as a scheduled or

client-pull service.

• In the server-initiated service, the server channels are dedicated to

individual video objects, so it is also called a periodic broadcast or server-

push service. Popular videos are broadcast periodically in this scheme,

and a new request dynamically joins, with a small delay, the stream that

is being broadcast.

Appendix-A

__

 153

• Another option would be would be combining the above two schemes.

This combination is called hybrid batching. In practice, it is efficient to

use hybrid batching that combines the above two schemes.

The Credit Based Media Delivery Algorithm (CB_MDA), which has been presented

in chapter three, is a simple yet a robust algorithm and it is data-centered and

belonged client-initiated scheme (client-pull). The main objective of the CB_MDA

is providing TVoD service, short response time and scalability.

Scalability is defined as the ability of the system to scale well as the number

of the clients is increased. That is, for the server it does not make any (or much)

difference whether 1 or 100 clients are connected to the server. To achieve these

objectives, the CB_MDA uses multicast and unicast channels for media data

transmission.

The unicast channels are used as short ones to transmit the video prefix to a

later arrival client while the client is merged to an appropriate multicast stream

and buffering the media data from it. Also, the unicast channels are used to

serve interactive service such as the case when the client invokes any of the

VCR-like functions.

During the delivery process, the algorithm takes in consideration the server�s

resources and the client�s buffer space and I/O bandwidth. That is, it tries to

explore and discover the possibility of sending video data over the unicast

channels at a rate of the consuming rate so that, the busy (usage) time of the

unicast channel is reduced. This way, the system will have more available

unicast channels for serving other requests.

The delivery of video data to the client involves three steps: (1) reading block

of video data from the disk (storage node) to a buffer, (2) transmission of the

block from the storage node to the network node, (3) the transmission of the

block from the network node to the consumer�s desktop.

A video server has to supply data blocks of the movie at regular periods to

the client. If data is not transferred at regular intervals, the client may

experience glitches in the delivery of the movie. To ensure glitch-free service,

the video server has to guarantee finishing the three steps of service in a fixed

amount of time. Guaranteeing delay bounds in step (1) can be addressed by

appropriate disk scheduling [YAN03]. The problem of ensuring delay bounds in

service steps (2) and (3) has been addressed in chapter three and four having in

mind that the storage node can be also a network node.

Media Streaming Algorithms Summary
__

 154

As a continuation, in the following sections some of the most famous

algorithms are explained.

A.2. Deadline scheduling

Deadline scheduling [LIU73][JEF91] are shown to be optimal however, both of

these studies assume that the task completion times are known in advance, but

this is not realistic from the point of view of the user. Another deadline-based

scheduling algorithm is presented in [ROT97] where the algorithm imposes a

time delay, between the arrivals of users, which makes the response time high.

A slot-based algorithm presented in [RED99] addresses the block transmission

from the storage node to the network node over interconnected network but

does not consider the block transmission from the network node to the client.

Reddy [RED95] has proposed a movie-scheduling algorithm in a multiprocessor

video server. His solution minimizes the contention for links over the

interconnection network. He assumes the homogeneous set of streams that

contains the same playback rate streams. In fact clients are likely to request

heterogeneous streams of which playback rates are different from each other.

A.3. Batching

Another approach called batching [DAN94] has been proposed to schedule video

requests at the cost of undesirable latency to respond to client requests. The

idea was to queue users who request the same video data then, to assign a

single multicast channel instead of multiple independent unicast channels in

order to reduce resource requirements.

Further studies [LI96] and [SHA97] have been realized to refine the batching

policies by incorporating knowledge of the next stream-completion time to

reduce the server capacity required to achieve similar throughput and viewer

turn-away probability.

The problem with batching is that, it causes undesirable latency and does not

support interactive VCR-like control since multiple users share a multicast

channel.

The equally-spaced batching mechanism has a fixed-maximum service

latency and supports NVoD interactivity, but its usually large service latency may

cause some clients to renege.

Appendix-A

__

 155

A.4. piggybacking

A set of well-known approaches have been presented to improving VoD systems

efficiency, such as piggybacking [GOL95] [GOL96] [AGG96a] where display rates

are dynamically adjusted so as to bring different streams to the same file

position, at which time the streams can be merged. The idea is similar to that of

batching [DAN94], but the grouping is done dynamically and while the displays

are in progress. However, the slow merging rate limits the system�s potential

(e.g. two streams with 3 minutes apart take 30 minutes to merge). Also, it

requires that the server stores (or computes in real time) extra encoding of the

media data that is delivered most often. Note that, the reduction in the I/O

demand is not quite as high as in the case of batching, since some time must

pass before the streams can merge; hence, the tradeoff (between these two

techniques) is between latency for starting the service of a request and the

amount of I/O bandwidth saved.

A.5. Chaining

Chaining [SHEU97] is also a generalized dynamic multicast technique to reduce

the demand on the network-I/O bandwidth by caching data in the client�s local

storage to facilitate future multicasts. Thus, data are actually pipelined through

the client stations residing at the nodes of the respective chaining tree, and the

server serves a �chain� of client stations using only a single data stream. The

advantage of chaining is that not every request has to receive its data directly

from the server. A large amount of video also becomes available from clients

located throughout the network. This scheme scales well because each client

station using the service also contributes its resources to the community. Hence,

the larger the chaining trees, the more effective the application can utilize the

aggregate bandwidth.

A.6. Stream Tapping

The authors of [CAR97] present stream tapping that allows a client to greedily

�tap� data from any stream on the VoD server containing video data he can use.

This is accomplished through the use of a small buffer on the client side and

requires less than 20% of the disk bandwidth used by conventional systems for

popular videos.

Media Streaming Algorithms Summary
__

 156

A.7. patching

To eliminate the service latency, patching was introduced in [HUA98]. The

objective of patching is to substantially improve the number of requests each

channel can serve per time unit, thereby sufficiently reducing the per-customer

system cost.

In the patching scheme, channels are often used to patch the missing portion

of a service or deliver a patching stream, rather than multicasting the video in its

entirety. Given that there is an existing multicast video, when to schedule

another multicast for the same video is crucial.

The time period after a multicast, during which patching must be used, is

called the patching window [HUA99].Two simple approaches to setting the

patching window are discussed in [HUA98]. The first one uses the length of the

video as the patching window. That is, no multicast is initiated as long as there is

an in-progress multicast session for the video. This approach is called the greedy

patching because it tries to exploit an in-progress multicast as much as possible.

However, an over-greedy can actually reduce data sharing [HUA98].

The second approach, called the grace patching, uses a patching stream for

the new client only if it has enough buffer space to absorb the skew. Hence,

under grace patching, the patching window is determined by the client buffer

size. Considering such factors as video length, client buffer size, and request

rate, the authors of [CAI99] generalized patching by determining the optimal

patching window for each video.

An improved form of patching, called as the transition patching [CAI99], uses

either a patching stream or a transition stream and improves performance

without requiring any extra download bandwidth at the client site. Other optimal

patching schemes were described in [EAG99] [SEN99].

In patching, a client might have to download data on both regular multicast

and patching channels simultaneously. To implement patching, a client station

needs three threads: two data loaders to download data from the two channels,

and a video player to play back the video.

The controlled CIWP (Client-Initiated-With-Prefetching) [GAO99] is another

multicast technique similar to patching and tapping for near instantaneous VoD

service. The novelty of the controlled CIWP is that it uses a threshold to control

the frequency of multicasting a complete video stream. It uses simple FCFS

channel scheduling so that a client can be informed immediately of when its

request will begin service.

Appendix-A

__

 157

A.8. Famous Broadcasting Protocols

Broadcasting protocols share the common objective of reducing the total

bandwidth required. They repeatedly broadcast the same video over several

channels in such a way that a customer may have to wait for few minutes (e.g. 5

minutes) before he can start watching the video. In [PAR99], the author states

two factors that make broadcasting protocols accepted:

1) The saving is considerable since about 40% of the demand is for small

number of popular movies (10 to 20) [CLA93] [DAN94] [DAN96].

2) any reduction in the cost of distributing popular videos through the use of

more efficient broadcasting protocols will thus have a direct impact on the

overall cost of VOD and, ultimately, on its success on the market place.

A.8.1. Equally-spaced interval Broadcasting

One of earlier periodic broadcast schemes was the Equally-spaced interval

Broadcasting (EB) [DAN94]. Since it broadcasts a given video at equally-spaced

intervals, the service latency can only be improved linearly with the increase of

the server bandwidth. The author of [BAN94] also proposed the staggered VoD

which broadcasts multiple copies of the same video at staggered times.

Pyramid broadcasting [VIS96], permutation-based pyramid broadcasting

[AGG96b], skyscraper broadcasting [HUA97], harmonic broadcasting [JUH97]

and its variants [PAR98], all, share the same goal and a similar organization.

They divide each video into segments that are simultaneously broadcast on

separate data streams. Segments protocols can be subdivided into two groups:

1) Pyramid Broadcasting, Permutation-based Pyramid Broadcasting and

Skyscraper Broadcasting protocols. 2) Harmonic Broadcasting and its variants.

A.8.2. Pyramid Broadcasting

To significantly reduce the service latency, Pyramid Broadcasting (PB) was

introduced in [VIS95]. In PB, each video file is partitioned into the segments of

geometrically-increasing sizes, and the server capacity is evenly divided into K

logical channels. The i-th channel is used to broadcast the i-th segments of all

videos sequentially. Since the first segments are very small, they can be

broadcast more frequently through the first channel. This ensures a smaller

waiting time for every video.

A drawback of this scheme is that a large buffer � which usually corresponds

to more than 70% of the video�must be used at the receiving end, requiring

Media Streaming Algorithms Summary
__

 158

disks for buffering. Furthermore, since a very high transmission rate is used for

each video segment, an extremely high bandwidth is required to write data to

the disk as quickly as it receives the video. To address these issues, the authors

of [AGG96b] proposed a technique called Permutation-based Pyramid

Broadcasting (PPB).

A.8.3. Permutation-based Pyramid Broadcasting

PPB is similar to PB except that each channel multiplexes its own segments

(instead of transmitting them sequentially), and a new stream is started once

every short period. This strategy allows PPB to reduce both disk space and I/O

bandwidth requirements at the receivers. However, the required disk size is still

large due to the exponential nature of the data fragmentation scheme.

The sizes of successive segments increase exponentially, thus causing the

size of the last segment to be very large (typically more than 50% of the video).

Since the buffer sizes are determined by the largest segment, using the same

data fragmentation scheme proposed for Pyramid Broadcasting limits the savings

achievable by PPB. In PPB, a client needs to tune in different logical sub-

channels to collect its data for a given data fragment if the maximum savings in

disk space is desirable.

A.8.4. Skyscraper Broadcasting

To reduce the disk costs in the client side, the authors of [HUA97] introduced

Skyscraper Broadcasting (SB), which uses a new data fragmentation technique

and proposes a different broadcasting strategy. In SB, K channels are assigned

to each of the N most popular objects. Each of these K channels transports a

specific segment of the video at the playback rate. The progression of relative

segments size on the channel is bounded by the width parameter W, in order to

limit the storage capacity required at the client end. SB allows for simple and

efficient implementation, and can achieve low service latency, while using only

20% of the buffer space required by PPB.

A.8.5. Greedy Disk-conserving Broadcasting

The authors of [GAO98] provided a framework for broadcasting schemes, and

designed a family of schemes for broadcasting popular videos, called the Greedy

Disk-conserving Broadcasting (GDB). They systematically analyze the resource

requirements, i.e., the number of server broadcast channels, the client storage

space, and the client I/O bandwidth required by GDB.

Appendix-A

__

 159

GDB exhibits a tradeoff between any two of the three resources, and

outperforms SB in the sense of reducing resource requirements. The Dynamic

Skyscraper Broadcasting (DSB) in [EAG98] dynamically schedules the objects

that are broadcast on the skyscraper channels to provide all clients with a

precise time at which their requested objects will be broadcast, or an upper

bound on that time if the delay is small and reaps the cost/performance benefits

of the skyscraper broadcasting.

A.9. Harmonic Schemes

The above broadcasting schemes generally assume that the client I/O

bandwidths are limited to download data from only two channels. If the client

can download data from more than two channels, there are methods available

that can efficiently reduce the service latency with less broadcasting channels.

For example, a broadcasting scheme based on the concept of harmonic series is

proposed in [JUH97] [JUH98]; the scheme doesn�t require that the bandwidth be

assigned to a video equal to a multiple of a channel�s bandwidth.

For a movie of length of D minutes, if we want to reduce the viewer�s waiting

time to D=N minutes, we only need to allocate H(N) video channels to broadcast

the movie periodically, where H(N) is the harmonic number of N, i.e., H(N) = 1+

1/2 +�+ 1/N. The staircase scheme in [JUH97b] can reduce the storage and

disk transfer-rate requirement at the client end. However, both the staircase and

harmonic schemes cannot serve bufferless users.

In [JUH97c], a scheme called Fast Broadcasting (FB) is proposed, which can

further reduce the waiting time and the buffer requirement. Using FB, if a STB

does not have any buffer, its user can still view a movie insofar as a longer

waiting time is acceptable. The authors of [TSE00] proposed two enhancements

to FB, showing how to dynamically change the number of channels assigned to

the video and seamlessly perform this transition, and presenting a greedy

scheme to assign a set of channels to a set of videos such that the average

viewers� waiting time is minimal.

A.10. Asynchronous multicasting

Asynchronous multicasting [WOO96], [KAL96] intended to improve the

system efficiency by allowing the user to join a multicast group and store some

video data in local buffer for later use. This is achieved by breaking up the video

Media Streaming Algorithms Summary
__

 160

into segments and sending out these segments at a rate greater than the

consumption rate of the video.

All practical scheduling policies are guided by three primary objectives:

minimize the reneging probability, minimize average waiting time, and be fair. It

was shown in [DAN94][DAN96][GAO99] and [GAO99b] that a hybrid of the

above two techniques offered the best performance. For example, the Catching

proposed in [GAO99b] is a combination of periodic broadcast and client-initiated

prefix retrieval of popular videos. There are many hybrid schemes to improve

the overall performance of multicast VoD. The selective catching in [GAO99b]

further improves the overall performance by combining catching and controlled

multicast to account for diverse user access patterns. Because most demands

are on a few very popular movies, more channels are assigned to popular

videos. However, it is necessary (and important) to support unpopular videos.

We assume that scheduled multicasts are used to handle less popular videos,

while the server-initiated scheme is used for popular videos. In this approach, a

fraction of server channels are reserved and pre-allocated for periodically-

broadcasting popular videos. The remaining channels are used to serve the rest

of the videos using some scheduled multicasts. This hybrid of server initiated

and client-initiated schemes achieves better overall performance.

Appendix B
Client Design for Playing Video Data

__

B.1. Introduction

The real evaluation to the VoD service is done at the client side where, the video

data is received and played at the client�s displaying device. It is the client who

decides the required quality of service (QoS), it is him who decides when to

connect to the server and when to disconnect, it is him who chooses what to

watch and when, and it is him who evaluates the service and expresses his

satisfaction or dissatisfaction of the service. Therefore, we have taken in our

considerations the design of the VoD client in order to provide a tool for

visualizing the video and to make an evaluation for the VoD server.

For a successful delivery of video data as well as a successful display of the

video contents without interruptions, the client has to synchronize well with the

server so that the displayed video is not experiencing jittering. This implicates

that, if the server supports multiple channels then, the client should be able to

receive from multiple channels. Also, if the server is supporting multicasting

then, the client should be able to receive from multicast channels.

These facts and others, such as interacting with server and invoking VCR-

functions, have required the need for studying and analyzing the client

functionality and communication with server so that the design can be adequate

for playing video data. For this reason, we have put a set of objectives and

functional requirements in order to achieve a successful design and

implementation of the client architecture. These objectives and requirements

give the user the following abilities:

Client Design for Playing Video Data
__

 162

! Establishing communication between the server and the client

! Selecting the required video file to be viewed.

! Setting the parameters of the quality of service.

! Negotiating with server by sending requests and receiving answers.

! Setting specific configurations and saving them for future use

! Visualizing the video content. The video content can be reproduced

from a stream or a local file.

! Playing the video stream without the need to store the video data in

the disk before playing it.

! Visualizing more than one video simultaneously.

! Invoking VCR-like controls such as, stop, pause, jump forward, and

jump backward.

These objectives and the analysis of the VoD client have shown that the

client design can be made based on three separated modules. The first module is

the graphical user interface (GUI) where the user can introduce his requests in

order to connect to the server, to brows the video files list, to select between

multiple screens, and to visualize the video contents. The second module is the

communication module which works as a communicating point between the

server and the client�s modules. The third module is the video-player module

which decodes the video data and plays it, and it provides a way for invoking

VCR-like functions. The design and the implementation of each one of these

modules, and the objective of each one of them are discussed in the following

sections.

B.2. Client Architecture

The client architecture is based on a single end-client and multiple playback

video and, it consists of three modules which facilitate messages exchange

between the server and the client, video reception and video playback. These

modules are; the interface module, the communication module and the player

module.

Figure B.1 shows the implementation of the architecture. The idea of this

architecture is to allow the user from the interface module to control multiple

video players.

Appendix-B

__

 163

Buffers

Communication
Module

Graphical
Interface

player

Buffers

player

Segmented
Swit ch

Video dat a
from the server

 Negot iainge with
t he server

The figure shows a single interface and multiple video surfaces for playing the

video. The interface connects to the server through the communication module

and creates a thread for each video in order to visualize it. In its turn, the

communication module receives the video data and forwards it the appropriate

thread.

B.2.1. Interface module

This module allows the user to connect to the server and to interact as well as

negotiate with it by sending requests and receiving answers. The client is

designed in a graphical mode so that it facilitates to the user the interaction with

the application and the server.

As we said before, this module is functioning independently from the other

modules. It generates all the signals and messages which lead to the invocation

and displaying the video contents at the displaying device and, it demonstrate

the necessary windows where the user can set his configuration and modify

them as needed. In addition it allows the user to connect and to start the video

reproduction.

B.2.2. Video-Player Module

The video-player module is launched by the interface module when the user

requests the visualization of a movie. At the start up, the module configures the

video surface which will be used to play the movie according to the graphic card

and screen configurations. Once the video data is arrived to the player buffers,

the player module call the necessary function in order to it decodes the video

data and demonstrates it on the video surface.

Figure B.1. Single Client multiple players design

Client Design for Playing Video Data
__

 164

As it can be seen from the above figure B.1 and the above discussion, there

is a complete separation of functionality between the communication module and

the player module. This separation allows interoperability between our client and

any other widely used player such as Xine [WPG07].

B.2.3. Communication Module

This module is launched by the interface module when the application starts. It

is responsible for all communications carried out between the client and the

server as well as between the internal modules. It defines two types of

communications:

o Control of messages: it controls messages that could be generated by the

users and the messages that could be generated by the operating system

as a result of an error. The communication module translates this

information into messages that can be understood by the server. In the

same way, it controls the answering messages from the server and

conveys them to the corresponding module.

o Data transmission: It is responsible for receiving the video data packets

and forwards them to the player. Since the client is designed with

objective of reproducing multiple video simultaneously, it decides to

where the data should be delivered.

o Establishing of communication. This module is able to establish

o Unicast session.

o Multicast session.

o Combination of both at the same time.

o Communication with more than one client at the same time.

2.2.4. Internal Client/server implementation

The communication between the clients modules are done in a client/server

mode. These communications can be unidirectional or bidirectional. For example,

the communication between the GUI and the player module is done as a

unidirectional while the communication between the GUI and the communication

module is done in a bidirectional manner.

The GUI carry out a function requested by the user, the function is conveyed

to the player module and then, the player module reproduce and display the

Appendix-B

__

 165

requested data at the graphic surface. The graphic surface is shared between the

GUI module and the Player module.

The communication module does not initiate any command by itself. It only

offers service of communication between the client and server. The client

invokes the requests, the requests are conveyed to the server, the server sends

the answer in form of messages or video data and then, the communication

module forward the received answer to the appropriate module.

Since the application has client/server architecture between its modules, it is

necessary to define an internal communication protocol which permits the

modules to communicate between each other independently. Also, the internal

communication between the modules and the communication with the server are

also independent.

It would be easier to have both implementations done with the same

protocol. However, this would make the client server dependent. That is, the

client can�t use other servers which use different protocols.

B.3. Interaction with the Application

At the start up, the interface module reads the network configuration from a file

(e.g. the video packet size and the port used to communicate with the video

server). Thereafter, it executes the communication module and passes to it the

configuration data which will be needed for future connection with the server.

Thereafter, it appears on the screen a window from which the user can click or

hit a button in order to connect to the server. Figure B.2 shows a general view of

this window which includes three parts:

! Tools bar which is located at the top of the window and, it includes the

main controls which are needed to connect to the server and initiate the

video session. In addition, it has the volume control which controls the

sound level.

! The Video surface which is located in the middle where the video data will

be displayed.

! The VCR-Like controls which is located at the bottom of the window.

These controls will be disabled until the arrival and the display of the

video data.

To understand the functionality of the several controls of the player, figure B.2

shows the tool bar which appears at the top of the player GUI (figure B.3). The

Client Design for Playing Video Data
__

 166

figures show clearly a mapping between the tool bar controls and its equivalents

in a typical Microsoft window.

As the tool bar indicates, it has several controls. These controls are (from the left

to the right) sound volume, File, Connect, Disconnect, tools, help. In addition,

the tool bar has three buttons which are used to maximize the window, to hide

Figure B.3. Client Player Interface

Volume

Figure B.2. Functionality of the tool bar controls

Appendix-B

__

 167

the window and to close the application. In general, these controls which appear

in figure B.3 will be activated when the application is launched. Thereafter, these

controls are used to carry out the available operations available by these

controls.

The VCR controls appear at the bottom part of figure B.3, and they will

remain disabled until a video is displayed at the video surface. These controls

are classical ones and can be found in any player so, they share the same

functionality. Therefore, only the tool bar controls are explained. It includes

FILE, CONNECT, DESCONNECT, TOOL, and HELP.

FILE: The GUI allows the user to select a local file providing him a dialogue box

with directories tree from which a file can be selected (Figure B.4).

CONNECT: To establish a connection, the GUI provides a window from which

the connection can be invoked. This window allows the user to select a server

from a set of servers, add a new server, modify information of a server and

connect (Figure B.5). Once the Connect button is clicked, a list of the available

video files appears in the list box.

Figure B.4. Browsing local files

/home/vod/movies

/home/vod/src2

Create Delete File Rename File

Accept Cancel

Select:

Directories Files
Flash.mpg
LaMision1.mpg
StarWar.avi

./

./
movies/

Client Design for Playing Video Data
__

 168

If the user decides to modify a server then, it appears at the top another small

window where, the user can change the name of the server and the IP address

(figure B.5).

The main services that the GUI is presenting are summarized as follows:

• After the start up of the application, this module offers a window with a set of

options. The user can select a predefined server or add a new one. In

addition, the user can modify the information of a server and he can also

delete a server. In case of changing the server information or adding a new

server, the module offers a window for this purpose (Figure B.6).

• After selecting a server, the modify button, the delete button, and the

connect button are activated. Thus, by clicking the connect button, the user

will be connecting to the server

Servers Add

Modify

Delete

Close

Connect

Reproduce

List of available video files in the server

Figure B.5. Start up window

BC.mpg
Christmas.mpg
Flash.mpg
Futurama206.mpg
LaMision1.mpg
LaMision2.mpg
Ontario.mpg
Sh i

aopcfr1.uab.es
aovod1.uab.es
aovod3.uab.es

Appendix-B

__

 169

• It generates events in order to interact with the application. This can be done

by hitting a key or clicking a mouse as it is the case in connecting to the

server. The user can click on the connect button in order to connect to the

server.

• It demonstrates information for the user about the server and the video. This

information can be clickable or not clickable. For example, the user can

connect to the server and request a list of available video files. The server

responds by sending the list along with the necessary information about the

video files and the server in general. Upon receiving the answer and the

requested information, the video files are displayed in a list box from which

the user can click on a desirable one. Other information such as the file size

and format are displayed only and can�t be accessed.

• It demonstrates also control messages such as errors that might occur during

the presentation.

DISCONNECT: The client can disconnect at any time he wants by clicking on

the disconnect button.

TOOLS: It shows a window where the user can put or change the configurations

such as, the network protocol, the resolution of the video, the language, and

other information. Not all options in this window are implemented. They have

been left for future work.

HELP: It provides on-line help to the user about the application usage.

B.4. Libraries Used

For the implementation of the client, a set of tools have been used to design and

create the GUI and to handle the video functions and the network functions.

These libraries include GTK1.2, GTKSkin, and GTKSDL libraries for designing the

Name:

IP Address:

Accept Cancel

Figure B.6. Adding or modifying a server

aovod1

158 65 21109

Client Design for Playing Video Data
__

 170

GUI, the SDL1.2 and SMPEG0.4.4 libraries for designing the video functions, and

the sockets and FIFO for the transmission and inter-process communication.

B.5. More Enhancement

The first version of the player has been enhanced in order to meet the changes

which took place in the server after implementing the techniques of patching and

prefetching. In addition, the GUI has been modified (figure B.7) so that it can

offer other facilities such as switching between single and multiple modes to see

multiple video, getting information about the video, the buffers, the network

load, and the server status. Further work needs to be done with the new version.

Figure B.7. The new version of the player GUI

References

__

[ABR97] E. L. Abram-Profeta, K. G. Shin, �Scheduling video Programs in

Near Video-on-Demand Systems�, In proc. Of ACM Multimedia �97,
pp. 359-369, Seattle, USA, November 1997.

[AGG96a] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, �On Optimal Piggyback

Merging Policies for Video-On-Demand Systems�, ACM

SIGMETRICS �96, pp. 200-209, Philadelphia, PA, USA, May 1996.

[AGG96b] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, �A permutation-based

pyramid broadcasting scheme for video-on-demands systems�, in

proc. Of the IEEE Int�l Conf. on Multimedia Systems �96, pp. 118-

126, Hiroshima, Japan, June 1996.

[BAN94] R. O. Banker, J. Huppertz, M. Hayashi, D. Lett, V. Godlewski, and
M. Raley, �Method of providing video-on-demand with VCR-like

functions�, U.S. Patent 5357276, October 18 1994.

[BAR96] S. A. Barnett, and G. J. Anido, �A cost comparison of distributed

and centralized approaches to video-on-demand�, IEEE Journal on

Selected Areas in Communications, vol. 14, pp. 1173-1183,

August 1996.

[CAI99] Ying Cai and K.A. Hua, �An efficient bandwidth-sharing technique

for true video on demand systems,� Proc. ACM Multimedia�99,

pp.211-214, Orlando, November 1999.

[CAR97] S. W. Carter and D. D. E. Long, �Improving video-on-demand

server efficiency through stream tapping,� Proc. IEEE ICCCN�97,

Las Vegas, pp.200-207, September 1997.

References
__

 172

[CHA99] S. H. G. Chan and F. Tobagi, �Caching schemes for distributed

video services�, in Proc. of IEEE Int. Conference on

Communications (ICC'99), Canada, pp. 994�1000. June 1999.

[CHA01] S. H. G. Chan and F. Tobagi, �Distributed Servers Architecture for

Networked Video Services�, in IEEE/ACM Transactions on

Networking, vol. 9, No. 2, pp. 125-136 April 2001.

[CHO97] J. Cho, H. Shin, �Scheduling video streams in a large-scale video-

on-demand server�, Parallel Computing 23, 1997.

[CLA92] D. Clark, S. Shenker, L. Zhang, �Supporting Real-Time

Applications in an Integrated Services Packet Network:

Architecture and Mechanism�, In Proceedings of ACM

SIGCOMM�92, pp. 14-26, Baltimore, MD, August 1992.

[CLA93] D. Clark, �Oracle Predicts Interactive Gear by Early 1994.� The

wall Street Journal, pp. B1, B14, November 10, 1993.

[COR02] F. Cores, A. Ripoll, E. Luque, �Double P-Tree: A Distributed

Architecture for Large-Scale Video-on-Demand�, Euro-Par 2002,

LNCS 2400, pp. 816-825, August 2002.

[DAN94] A. dan, D. Sitaram, and P. Shahabuddin, �Scheduling Policies for

an On-Demand Video Server with Batching�, proc. of 2nd ACM

Multimedia Conf. pp. 15-24, San Francisco, California, USA,

October 1994.

[DAN96] A. Dan, D. Sitaram, and P. Shahabuddin, �Dynamic Batching

Policies for an On-Demand Video Server,� Multimedia systems,

vol. 4, pp. 112-121, June 1996.

[DAN96d] A. Dan, Y. Heights, and D. Sitaram, �Generalized interval caching

policy for mixed interactive and long video workloads,� In Proc. of

SPIE�s Conf. on Multimedia Computing and Networking, pp.344-

351, San Jose, CA, January 1996.

[DEN96] J. Dengler, C. Berhardt, E. Biersack, �Deterministic Admission

Control Strategies in Video Severs with Variable Bit Rate Streams�,

European Workshop IDMS96, pp.245-264, March 1996.

[EAG98] D. L. Eager and M. K. Vernon, "Dynamic skyscraper broadcasts for

video-on-demand," in Proc. 4th Int. Workshop on Multimedia

Information Systems (MIS'98), pp. 18�32, Istanbul, Turkey, Sept.

1998.

References

__

 173

[EAG99] D.L. Eager, M.K. Vernon, and J. Zahorjan, �Optimal and efficient

merging schedules for video-on-demand servers,� Proc. ACM

multimedia�99, pp.199-202, Orlando, November 1999.

[FAB01] H. Fabmi, M. Latif, S. Sedigh_Ali, A. Ghafoor, P. Liu, L.H. Hsu,

�Proxy servers for scalable interactive video support�, IEEE

Computer, vol. 34 Iss. 9, pp. 54 -60, September 2001.

[FER90] D. Ferrari, D.C. Verma, �A Scheme for Real-Time Channel

Establishment in Wide Area Networks�, IEEE J. on Selected Areas

in Communications, Vol. 8, No. 3, pp. 368-379, April 1990.

[FRE95] C. S. Freedman and D. J. Dewitt, �The SPIFFI scalable video-on-

demand system,� Proc. of ACM SIGMOD�95, pp. 352-363, San

Jose, CA, USA, May 1995

[GAO98] L. Gao, J. Kurose, and D. Towsley, �Efficient schemes for

broadcasting popular videos,� Proceedings of NOSSDAV�98,

Cambridge, UK, July 1998

[GAO99] L. Gao and D. Towsley, �Supplying instantaneous video-on-

demand services using controlled multicast,� Proc. of IEEE

ICMCS�99, pp. 117-121, Florence, Italy, June 1999.

[GAO99b] L. Gao, Z.-L. Zhang and D. Towsley, �Catching and selective

catching: efficient latency reduction techniques for delivering

continuous multimedia streams,� Proc. ACM multimedia�99,

pp.203-206, Orlando, Nov. 1999.

[GEM95] D.J. Gemmell, H. M. Vin, D. D. Kandlur, P. V. Rangan, L.A. Iwe,

Multimedia Storage Servers: A Tutorial, IEEE Computer, pp. 40-

49, May 1995.

[GOL95] L. Golubchik, John C.S. Lui and R.R. Muntz, �Reducing I/O

Demand in Video-On_Demand Storage Servers,� In Proc. of the

ACM SIGMETRICS/Performance �95 Conference, pp. 25-36, May

1995.

[GOL96] L. Golubchik, J. C. S. Lui, and R. R. Muntz, �Adaptive

Piggybacking: A Novel Technique for Data Sharing in Video-On-

Demand Storage Servers�, ACM Multimedia Syst., vol. 4(3), pp.

140-155, 1996.

References
__

 174

[HOL97] S. Hollfelder, �Admission Control for Multimedia Applications in

Client-Pull Architectures�, International Workshop on Multimedia

Info. Sys, pp. 25-27, Italy, September 1997.

[HUA02] Huadong Ma, Kang G. Shin, �Multicast Video-on-Demand

Services�, IEEE Computer, Vol. 35 Issue 2, February 2002.

[HUA97] K. A. Hua and S. Sheu, �Skyscraper Broadcasting: a New

Broadcasting Scheme for Metropolitan Video-On-Demand

Systems�, Proc. ACM SIGCOMM �97, pp. 89-100, September 1997.

[HUA97b] K.A. Hua, S. Sheu, and J. Z. Wang, �Earthworm: A network

memory management technique for large-scale distributed

multimedia applications,� Proc. of IEEE INFOCOM�97,pp. 990-997,

Kobe, Japan, April 1997.

[HUA98] K.A. Hua, Y. Cai, and S. Sheu, �Patching: A multicast technique for

true video-on-demand services,� Proc. ACM Multimedia�98,

pp.191-200, Bristol, U.K., September 1998.

[HUA99] Ying Cai, K.A. Hua and K. Vu, �Optimizing patching performance,�

Proc. of SPIE�s Conference on Multimedia Computing and

Networking (MMCN�99), pp.204-216, San Jose, January 1999.

[JEF91] K. Jeffery, D. F. Stanat and C. U. Martel, �On Non-Preemptive

Scheduling of Periodic and Sporadic Tasks�, Proc. Of Real-time

Systems Symp., pp. 129-139, December 1991.

[JUH97] L. Juhn and L. Tseng, �Harmonic Broadcasting for Video-On-

Demand Service,� IEEE Transactions on Broadcasting 43, pp. 268-

271, September 1997.

[JUH97b] L.-S. Juhn and L.-M. Tseng, �Staircase data broadcasting and

receiving scheme for hot video service,� IEEE Transactions on

Consumer Electronics, 43(4):1110-1117, November1997.

[JUH97c] L.-S. Juhn and L.-M. Tseng, �Fast broadcasting for hot video

access,� Proc. RTCSA�97, pp.237-243, Oct.1997.

[JUH98] L.-S. Juhn and L.-M. Tseng, �Enhanced harmonic data

broadcasting and receiving scheme for popular video service,�

IEEE Transactions on Consumer Electronics, 44(2):343-346, May

1998.

References

__

 175

[KAL96] H. Kalva and B. Furht, �Techniques for improving the capacity of

video-on-demand systems� in proc. 29th Annu. Hawaii Int. Conf.

Systems Science, pp. 308-315, January 1996.

[KEE95] K. Keeton and R. H. Katz, �Evaluating video layout strategies for a

high-performance storage server,� Multimedia Systems, 3(2), pp.

43-52, May 1995.

[LI96] V. O. K. Li, W. Liao, X. Qui, and E. W. M. Wong, �Performance

Model of Interactive Video-On-Demand Systems�, IEEE J. Select.

Areas Commun., vol. 14, no. 6, pp. 1099-1109, August 1996.

[LIT93] Thomas D.C. Little and D. Venkatesh, �Probabilistic assignment of

movies to storage devices in a video-on-demand�, Proc. Of

International Workshop on Network and OS Support for Digital

Audio and Video (NOSSDAV�93), pp. 213-224, Lancaster, UK,

1993.

[LIT94] Thomas D.C. Little and D. Venkatesh, �Prospects for interactive

video-on-demand�, IEEE Multimedia, Fall 1994.

[LIU73] C. L. Liu and J. W. Layland, �Scheduling Algorithms for

Multiprogramming in a Hard Real Time Environment�, J. Assoc.

Comput. Mach., pp. 46-61, 1973.

[MUN99] Mundur, P., Simon, R., Sood, A. Integrated admission control in

hierarchical video-on-demand systems. IEEE Multimedia Systems.

ICMCS '99. IEEE CS Press., pp. 220-225, 1999.

[NAH95] K. Nahrstedt, J. M. Smith, �The QoS Broker�, IEEE Multimedia

Magazine, Spring 1995.

[NAH98] K. Nahrstedt, H.-H. Chu, Srinivas Narayan, �QoS- Aware Resource

Management for Distributed Multimedia Applications�, Journal on

High-Speed Networking, IOS Press, Vol. 8 , No.3-4, 1998, pp.227-

255.

[NAH99] K. Nahrstedt �Quality of Service in Networked Multimedia

Systems�, Handbook of Multimedia Computing, CRC Press,

pp.839-873, 1999.

[NER97] GT. Nerjes, P. Muth and G. Weikum, �Stochastic Performance

Guarantees for Mixed Workloads in Multimedia Information

Systems�, Proc. of the IEEE Int. WS on Research Issues in Data

Eng. (RIDE´97), 1997.

References
__

 176

[OYA95] Y. Oyang et al., �Design of multimedia storage systems for on-

demand playback,� Proc. of Int�l Conf. on Data Engineering,

pp.457-465, Taipei, March 1995.

[OZD94] B. Ozden et al., �A low-cost storage server for movie on demand

databases,� Proc. of the 20th Int�l Conf. on VLDB, pp. 594-605,

Santiago, Chile, September 1994

[OZD95] B. Ozden et al.,�Demand paging for video-on-demand servers,�

Proc. of IEEE ICMCS�95, pp.264-272, Washington DC, May 1995

[PAD99] Padmavathi Mundur, Robert Simon, Arun Sood Integrated System

Architecture for Video-on-Demand Applications, Internal Report,

CS dept. George Mason University, 1999.

[PAR98] J. F. Pâris, S. W Carter, and D. D. E. Long, �Efficient Broadcasting

Protocols for Video On Demand,� in Proceedings of the 6th

International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (MASCOTS �98), pp.

127-132, July 1998.

[PAR99] J. F. Pâris, S. W Carter, and D. E. Long, �A Hybrid Broadcasting

Protocol for Video on Demand,� In Proceedings of the 1999

Multimedia Computer and Networking Conference, pp. 317-326,

San Jose, CA, January 1999.

[PER01] Perimele Consulting, �Digital Rights Management for Large Scale

Video-on-Demand Networks�, Oxford, London, August 2001.

[QAZ03a] B. Qazzaz, R. Suppi, F. Cores, A. Ripoll, X. Yang, P. Hernandez, E.

Luque. �Admission Control Policies For Video On Demand Brokers�,

IEEE ICME Multimedia & Expo Proceedings, pp. 529-532,

Baltimore-Myryland, USA, July 2003.

[QAZ03b] B. Qazzaz, R. Suppi, F. Cores, A. Ripoll, P. Hernandez, E. Luque,

�Providing Interactive Video on Demand Services in Distributed

Architecture�, Proceedings of 29th EUROMICRO Conference, pp.

215-222, Belek-Antalya, Turkey, September 2003.

[RED99] A. L. N. Reddy, �Real-Time Communication Scheduling in a

Multicomputer Video Server�, Journal of Parallel and Distributed

Computing 58, 425-445, 1999.

References

__

 177

[RED95] A. L. Reddy, �Scheduling and Data Ditribution in a Multiprocessor

Video Server�, in Proc. Of International Conference on Multimedia

Computing and Systems, pp. 256-263, Washington, DC, 1995.

[REI98] Martin Reisslein, Keith W. Ross, �High-Performance Prefetching

Protocols for VBR Prerecorded Video�, IEEE Network, Vol. 12, no.

6, pp. 46-55, November/December 1998.

[REI00] M. Reisslein, F. Hartanto, and K. W. Ross, �Interactive video

streaming with proxy servers�, Proc. of First International

Workshop on Intelligent Multimedia Computing and Networking

(IMMCN), February 2000

[ROT97] V. Rottmann, P. Berenbrink, and R. Lüling, �A Simple Distributed

Scheduling Policy for Parallel Interactive Continuous Media

Servers�, Parallel Computing 23, pp. 1757-1776, 1997.

[SEN99] S. Sen et al., �Optimal patching schemes for efficient multimedia

streaming,� Proc. IEEE NOSSDAV�99, Basking Ridge, NJ, June

1999.

[SHA97] H. Shachnai and P. S. Yu, �Exploring Waiting Tolerance in Effective

Batching for Video-On-Demand Scheduling�, in proc. 8th Conf.

Computer Systems and Software Engineering, pp. 67-76, June

1997.

[SHE95] P.J. Shenoy, P. Goyal and H.M. Vin, �Issues in Multimedia Server

Design�, ACM Computing Surveys, vol. 27, no. 4, pp. 636-639,

December 1995.

[SHE02] P. Shenoy, S. Hasan, P. Kulkarni, K. Ramamritham, �Middleware

versus Native OS Support: Architectural Considerations for

Supporting Multimedia Applications", Proceedings of Real-Time

Applications and Systems (RTAS), 2002.

[SHEU97] S. Sheu, K.A. Hua and W. Tavanapong, �Chaining: a generalized

batching technique for video-on-demand systems� Proc. IEEE

ICMCS�97, pp.110-117, Ottawa, 1997.

[STE95] Ralf Steinmetz, Klara Nahrstedt, 1995, �Multimedia: Computing

Communication and Application�, New Jersey, Prentice Hall PTR.

[SUP01] R. Suppi, B. Qazzaz, E. Luque. "Design and Development of a

Multithreaded Video on Demand Server for LAN", SCI/ISAS 5th

References
__

 178

World Multi-conference on Systemics Cybernetics and Informatics,

Vol. XII. pp. 380-388, Orlando-Florida, USA, July 2001

[TAN03] Andrew S. Tanenbaum, Computer Networks, Fourth edition 2003.

[TSE00] Y.-C. Tseng et al., �Data broadcasting and seamless channel

transition for highly-demanded videos� ProcIEEE INFOCOM�2000,

pp.727-736, Tel-Alrabee, Palestine, March 2000.

[VEN96] Chitra Venkatramani, Design, Implementation and Evaluation of

ETHER: A Real-Time Ethernet Protocol�, Ph.D. Dissertation 1996.

[VEN97] N. Venkatasubramanian, K. Nahrstedt, �An Integrated Metric for

Video QoS�, in proceeding of ACM Multimedia �97, pp. 371-381,

Seattle, USA, November 1997.

[VEN98] V. Venkataramani, �A Reservation Protocol for Multimedia

Management System�, 1998. http://cairo.cs.uiuc.edu

[TEW96] R. Tewari, R. Mukherjee, D. M. Vin, �Design and performance

tradeoffs in clustered video servers�, Proc. International

Conference on Multimedia Computing and Systems, pp. 144-150,

Los Alamitos, CA, 1996.

[VALL02] J. Valls, �Visualizador de MPEG para Sistema de Video bajo

Demanda�, Final Project, Escola Universitaria d�Informàtica,

Sabadell, Spain, Septiembre 2002.

[VIN94] H. M. Vin, A. Goyal, A. Goyal, P. Goyal,�An Observation-Based

Admission Algorithm for Multimedia Servers�, Proc. The First IEEE

Int. Conf. on Multimedia Computing and systems (ICMCS´94),

pp.234-243, Boston, 1994.

[VIS95] S. Viswanathan and T. Imielinski, �Pyramid broadcasting for video

on demand service� Proc. the SPIE Multimedia Computing and

Networking Conference, 2417, pp. 66-77, San Jose, CA, 1995

[VIS96] S. Viswanathan and T. Imielinski, �Metropolitan area video-on-

demand service using pyramid broadcasting�, ACM Multimedia

Syst., vol. 4, no. 4, pp. 197-208, 1996.

[WAN00] B. Wang and J. C. Hou, �Multicast routing and its QoS routing:

problems, algorithms, and protocols� IEEE Network, pp.22-36,

January/February 2000

References

__

 179

[WOO96] H. Woo and C. K. Kim, �Multicast scheduling for VoD services�,

Multimedia Tools Application, vol. 2, no. 2, pp. 157-171, 1996.

[YAN03] X. Y. Yang, �Sistema de almacenamiento dedicado a video bajo

demanda�, undergraduate Final Project, Departamento de

Informática, CAOS, Universidad Autónoma de Barcelona, 2003.

Web PaGes

[WPG01] http://www.usvo.com/history/instatmdr.html

[WPG02] http://www.itvdictionary.com/vod.html

[WPG03] http://www.ipmonitor.com/index.asp

[WPG04] Http://www.cs.columbia.edu/~hgs/rtsp/proposed.txt

[WPG05] http://www.isi.edu/div7/rsvp/rsvp.html

[WPG06] http://bmrc.berkeley.edu

[WPG07] Http://www.xinehq.de

References
__

 180

Abbreviations

__

 181

Abbreviations

AAP Adaptive Average Policy

AC Admission Control

ACM Admission Control Module

AMP Adaptive Maximum Policy

AP Average Policy

BW Bandwidth

CB_MDA Credit Based Media Delivery Algorithm

CCV Consumed Credits Value

CIWP Client Initiated With Prefetching

CPU Control Processing Unit

CV Credit Value

DSB Dynamic Skyscraper Broadcasting

DSL Digital Subscriber Line

DVoD Distributed Video on Demand

ES Extra Streams

FB Fast Broadcasting

FCFS First Come First Served

FOREMMS Forest Management and Monitoring System

FPS Frames Per Second

GB GigaByte

GDB Greedy Disk-conserving Broadcasting

GTK Gimp ToolKit

GTKSDL Gimp ToolKit Simple DirectMedia Layer

GTKSkin Gimp ToolKit Skin

GUI Graphical User Interface

HDTV High Definition Television

Abbreviations
__

 182

ICV Initial Credit Value

IP Internet Protocol

ISO International Standard Organization

IVoD Interactive Video on Demand

L scheduling sLot.

LAN Local Area Network

LSS Local Storage Server

MB/s MegaByte per second

Mb/s MegaBit per second

MBuffer Multicast Buffer

MP Maximum Policy

MPEG Motion Picture Experts Group

MTU Maximum Transfer Unit

No-VoD No video on Demand (Broadcast)

NTSC National Television Standard Committee

NVoD Near Video on Demand

OS Operating Systems

PB Pyramid Broadcasting

PC Personal Computer

PPB Permutation-based Pyramid Broadcasting

PPV Pay-Per-View

PRV Prefetched Reserve Value

QoS Quality of Service

Q-VoD Quasi Video on Demand

RMM Resource Manager

RMM Resource Manager Module

RSVP ReSerVation Protocol

Abbreviations

__

 183

RTCP Real Time Control Protocol

RTP Real Time Protocol

RTSP Real Time Session Protocol

RTT Round Trip Time

S video Stream

SB Skyscraper Broadcasting

SDL Simple DirectMedia Layer

SiET Expected finishing Time of stream Si

SiF maximum number of Frames in Si

SiP Playing time length of stream Si

SMPEG Simple direct media Motion Picture Experts Group

TCP/IP Transmission Control Protocol/Internet Protocol

TCV Total Credits Value

TVoD True Video on Demand

UBuffer Unicast Buffer

UDP/IP User Datagram Protocol/Internet Protocol

VBR Variable Bit Rate

VCR Video Cassette Recorder

VHS Video Home System

VoD Video on Demand

VPS Video Proxy Server

